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Survival analysis is vital in medical statistics. It is concerned with the modeling of 

lifetime data. In many biomedical applications the primary interest is the time it takes for an 

event to occur. Therefore, survival analysis is concerned with studying the time between entry to 

a study and a subsequent event. Patients suffering from ocular melanoma are studied in order to 

plot survival curves, which are prognostic curves showing the proportion of people surviving at 

each time spot. The non parametric Kaplan Meier model (product limit estimate) is used to obtain 

a survival distribution from which important medical conclusions can be made. The log rank test 

is used to reject the hypothesis that patients with epithelioid cells and patients without them have 

the same behavior concerning their survival probabilities. In addition, the semi parametric Cox 

proportional hazards model has been implemented not only to plot survival and hazard curves but 

also to identify important prognostic factors. These factors are measurements taken from the 

patients while they were under observation. This semi parametric model is used to discover the 

influence ability of each measurement to the evolution of the disease. Finally, a fully parametric 

model is implemented, the log logistic regression model. In this case the survival distribution is 

known and regression is applied to identify the effect of covariates. Artificial neural networks are 

trained as well to learn the behavior of ocular melanoma patients regarding survival. The Cox 

model is approximated through neural networks, which have the ability to generalize and this is 

the reason why they are a powerful statistical tool.  
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Chapter 1 

Introduction 

 
This Chapter focuses on analyzing the ocular melanoma disease by explaining its symptoms, 

epidemiology and treatments. In addition, the idea of survival analysis is introduced and there is 

a brief overview of the existing models. Furthermore, the advantages of neural networks and 

their applications are discussed. 

1.1  The Ocular Melanoma Disease  

The ocular melanoma is disease of adults but might also affect children. The 

incidence in U.S. and Europe is 5 to 7.5 per million per year. Also for adults over 50 years 

old the incidence rate is 21 per million per year.  

 The Ocular melanoma is the melanoma of the eye. Melanoma is a cancer that 

develops from cells called melanoytes .These cells produce dark -colored pigment, the 

melanin which is considered to be responsible for the color of our skin. These cells are found 

in many locations in the human body including the eye. There are four types of ocular 

melanoma.  The Uveal (Choroidal) is the most commonly faced (85% of ocular melanomas), 

the Ciliary body (7-10% of ocular melanomas) which is unfortunately detected late since the 

tumour does not impede vision until it reaches a certain size. The Iris melanoma (5-8% of 

ocular melanomas) which is most common at the age of 44, and the Conjunctiva melanoma 

which is the least common, as it is the 2% of the ocular melanomas.  

The choroidal is part of the lining of the eyeball and is dark-colored (pigmented) to 

prevent light being reflected around the inside of the eye. The Ciliary body extends from the 

choroidal and focuses the eye by changing the shape of the lens. The iris is the clearly visible 

colored disc at the front of the eye, which controls the amount of light entering the eye. All 

these structures are heavily colored with melanin. 

Ocular melanoma is the most common type of cancer to affect the eye, although, 

generally, it is still quite rare. Approximately 350 new cases of ocular melanoma are 

diagnosed each year in the UK. The incidence of ocular melanoma increases with age, and 

most are diagnosed in people in their 60s.  

Since the ocular melanoma is a rare type of tumor and as for many other forms of cancer 

the exact cause is unknown. It is known that exposure to ultraviolet (UV) rays (either from 

the sun or sun beds) increases the risk of developing melanoma of the skin. People whose 

skin burns easily are most at risk: typically, people with fair skin, fair or red hair and blue 
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eyes. However, it is not yet known whether there is any link between UV ray exposure and 

the development of melanoma of the eye.[4] 

Symptoms include blurred vision, flashing lights, shadows and misting of the lens of the 

eye (cataract). Often no symptoms are noticed until the tumor is quite large. All of these 

symptoms are common to other conditions of the eye, but it is generally possible for an eye 

specialist (ophthalmologist) to diagnose these tumors quite simply and painlessly. 

Occasionally a biopsy (taking a small sample of tissue) is needed to confirm a diagnosis. 

There are many methods to diagnose the ocular melanoma disease. Some tests that could be 

performed are: 

• Ophthalmoscopy A small hand-held microscope (ophthalmoscope), similar to 

those used by opticians during routine eye tests, is used to look at the inside of 

the eye. This is likely to be the first test that you have  

• Ultrasound scan A small device which produces sound waves is rubbed over 

the skin around the eye area. The echoes are then converted into a picture by a 

computer  

• Fluorescein angiography A special dye, called flourescein, is injected into a 

vein in the arm. In a few seconds, the dye travels to the blood vessels inside 

the eye. A camera with special filters that highlight the dye is used to 

photograph the flourescein as it circulates through the blood vessels in the 

retina and choroid  

• CT (computerised tomography) scan A CT scan takes a series of x-rays to 

build a three-dimensional picture of the inside of the head. The scan is painless 

but takes 10 minutes, longer than a standard x-ray. It may be used to find the 

tumour within the eye or to check for any spread of the disease  

• MRI (magnetic resonance imaging) scan This type of scanner uses 

magnetism instead of x-rays to form a series of pictures of the inside of the 

head. The test can take about 30 minutes and is completely painless, although 

the machine is noisy and you will be given earplugs or headphones to wear  

• Biopsy A small sample of tissue may be taken from the suspicious area and 

examined under a microscope. However, this is not necessary for most ocular 

melanomas because they have a distinctive appearance and can usually be 

recognized easily from the x-rays and scans. 
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For 100 years or longer, the usual treatment for choroidal melanoma has been removal 

of the eye, or enucleation. If the tumor has not spread to other parts of the body, then removal 

of the eye rids the patient of the tumor. Since World War II, radiation treatment has been 

used for choroidal melanoma. During the past 20 years, this method of treatment has been 

refined. Radiation, at the appropriate dose rates and in the proper physical forms, is intended 

to eliminate growing tumor cells without causing damage to normal tissue sufficient to 

require removal of the eye. As the cells die, the tumor shrinks, but it usually does not 

disappear entirely. 

The kind of treatment for the ocular melanoma depends on the size of tumor, the location 

and the cell type. There are also other factor the affect the treatment methodology concerning 

the general health of the patient the age and the level of vision in both eyes. Therefore 

depending on the above limitations the treatment might be internal or external radiotherapy 

Transpupillary thermotherapy or surgery. The radiotherapy uses high energy rays to destroy 

the cancer cells, but it might harm a lithe the healthy cells that surround the cancer. The 

Transpupillary thermotherapy can be used to treat very small ocular melanomas or can be 

used as an additional treatment after radiotherapy. The surgery is a treatment method that 

mostly depends on the location of the tumor. If the cancer is very severe then the eyeball 

must first be removed to access the cancer cells. This is usually takes a lot of time and is 

painful.  

Research into treatments for ocular melanoma is ongoing and advances are being made. 

Cancer doctors use clinical trials to assess new treatments. Before any trial is allowed to take 

place an ethics committee must have approved it and agreed that the trial is in the interest of 

patients. [3] 
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1.2    Overview of survival analysis 

Survival Analysis is central to medical statistics for two reasons. First, because 

survival is an important medical concern, and second because survival analysis can be 

used to analyze data with outcomes other than deaths that are otherwise not 

analyzable. Some examples of such non fatal outcomes include time to tumor 

recurrence and age of developmental milestones. Survival analysis is concerned with 

studying the time between entry to a study and a subsequent event. Originally the 

analysis was concerned with time from treatment until death, but survival analysis is 

applicable to many areas as well as mortality.  

Survival analysis is a statistical procedure that analyses time to event data. It has 

multiple applications since it can be used to model the time to events such as the 

diagnosis of a disease, the effect of treatments and drugs, remission of cancer 

(medicine), felon’s time to parole (criminology), lifetime of electronic devices 

(engineering), length of magazine subscription, effectiveness of employees 

(marketing), duration of marriage and travel habits (sociology). 

 In medicine, a survival curve is a statistical picture of the survival experience 

of some group of patients which is a graph showing the percentage surviving against 

time. In addition several methods can be implemented to examine the effect of certain 

parameters, called covariates, on the evolution of the disease. There are many 

methods to estimate and plot a survival curves as well as to observe a covariate’s 

effect. 

 Survival analysis methods can be categorized in three main categories 

concerning the way they implement the survival function. The first group of methods 

is the non parametric one. These methods are widely used to plot a survival curve. 

There are no covariates included in such models on the contrary the survival function 

can be obtained from only time to event observations. 

 The semi parametric models form the second category of methods in survival 

analysis. These models make no assumption about the distribution of the survival 

function but they take advantage of covariates obtained from the patients while they 

were under observation. These measurements are used in regression procedures and 

only then can the survival function be plotted.    
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The third category of methods in survival analysis includes parametric 

regression models. In these models the form of the survival function is known a priori. 

Covariates are also examined in such models to formulate their effect on the disease. 

Using a known survival function, regression methodologies can be applied to check 

the effect of covariates.  

 Some well known non parametric methods that have been widely used are the 

Kaplan Meier estimator, the life table analysis, the Greenwood’s formula and the 

Nelson Aalen’s estimator. The Kaplan and Meier estimator (1958) is alternatively 

called the product limit estimator. Despite censored data the K-M method allows the 

user to estimate the proportion of subjects in the population whose survival time 

exceeds a specific time provided that survival is independent of censoring. [12] 

 The life table method was originally developed by the demographers and 

actuaries to describe the lifetime of a population.  A population life table shows the 

length of life of a hypothetical group, observed from birth to death, which is assumed 

to experience the same mortality with the one obtained from the observed population. 

From the life table analysis it is possible to calculate the expected age of death of an 

individual of a given age, the probability of surviving from one age to another and 

other related quantities. [13] 

 A hazard function can be obtained directly from the survival function in a way 

that will be proved later.  An alternative approach in absence of covariates is the 

Nelson Aalen estimator [15]. This method is actually an estimator for the cumulative 

baseline hazard. The method estimates the hazard at each distinct time of death as the 

ration of the number of deaths to the number exposed to the disease. The cumulative 

hazard up to a specific time is simply the sum of hazards at all death times up to this 

specific time. [16] 

 Another approach for large scale survival data is the relative survival rate or 

annual survival ratio. This method evaluates the survival experience of patients in 

terms of the general population. Greenwood [18] suggested this approach for to count 

the effect of cancer treatment. The main idea of the method is that if the average 

survival time of the patients treated equals that of a random sample of patients of the 

same age, gender, occupation and other relevant quantities the patients could be 

considered cured.  
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 The semi parametric models in presence of covariates have a baseline hazard 

function that is a function common for all patients. The characteristic of this group of 

models is that the baseline hazard function if cancelled out of the calculations and no 

form has to be selected a priori. In addition these models perform a regression 

procedure to count the effect of the covariates on the disease. Such models are the 

Cox proportional hazards model (1972), the Aalen’s additive model (1976), the 

piecewise exponential model, stratified model, competing risks model, recurrent 

events model, the models for related observations, the proportional excess hazards 

and the Cox Aalen model. The additive model makes no assumption about the form of 

the baseline hazard function. The covariates along with the regression parameters are 

added to the baseline hazard function.  

 In the Cox hazards model the covariates and the regression parameter, in an 

exponential form, are multiplied to the baseline hazard function (The baseline 

function can be obtained from the Breslow estimator or an extended Kaplan Meier 

estimator). The form of the baseline hazard is not known and a disadvantage is that it 

cannot be checked. The simple model requires that the covariates are time 

independent, but there is an extended Cox model which includes time dependent 

covariates.  

 As mentioned above, one characteristic of the Cox proportional hazards model 

is that the baseline hazard is conditioned out and only the impact of the covariates are 

estimated by maximizing the partial likelihood. No form of hazard has to be specified 

which make the Cox model very flexible. On the other hand the parametric models 

have to specify the functional form of the hazard function. However when the hazard 

function is of interest it is usually estimated with the Breslow estimator the 

disadvantage of which is that it lacks the ability to test hypothesis about the shape of 

the hazard function. The Piecewise Exponential model is a model that is between two 

extremes. In this model time is divided into several intervals with several different 

procedures. The hazard in each interval is assumed to be constant but can vary across 

intervals. It has the flexibility of the Cox model and the ability to statistically check 

the hazard function that the Cox model lacks due to the Breslow estimator.  

 The Cox proportional hazards model assumes that the ratio of the hazard 

functions of any two people with different prognostic covariates is a constant, 

independent of time. This assumption may not always be met in practical situations 

due to several reasons. To accommodate these cases, Cox’s model is generalized by 
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the concept of stratification. [5] The stratified proportional hazards model was 

proposed by Kalbfleisch and Prentice at 1980 [29].  In this model the data is 

categorized in strata by a covariate. If there are two strata then there are two baseline 

hazard functions and two different regression parameters to satisfy each stratum.  

 All the methods so far deal with a single type of failure time for each study 

subject. However, there are cases where a failure may be due to different causes. 

These different causes of failure are considered as competent events, which introduce 

competent risks. This type of failure is handled by the Competing risks models. The 

proportional hazards model is used again to identify significant prognostic or risk 

factors when competing risks are present.  

 The recurrences events models are a class of models that deal with the 

problem that a failure may be recurrences of the same event. For example the failures 

of an individual may be recurrences of essentially the same event, such as tumor 

recurrences after surgeries, or may be successive events of entirely different types, 

such as strokes and heart attacks. When data include recurrent events, regression 

models such as the proportional hazards model become more mathematically 

complicated.  A number of regression models have been proposed in the literature that 

all belong to the class of recurrent events models. 

 In Cox’s proportional hazards model an important assumption is that the time 

events are independent. However, in many practical situations failure times are 

observed from related individuals. For example in an epidemiological study of heart 

disease some of the patients may come from the same family and therefore are not 

independent. These families with multiple participants are usually called clusters. In 

this case the regression methods that were so far introduced are inappropriate.  A new 

class of models, the models for related observations, was introduced to solve this 

issue (Andersen 1993, Liang 1995, Klein and Moeschberger 1997). [5] 

 Another semi parametric model is the Cox Aalen model that was proposed by 

Scheike and Zhang in 2003 [30]. This model is a combination of the multiplicative 

Cox model and the Aalen’s additive model. This is actually a very flexible model. The 

main idea is that some covariates may affect additively on the risk while some others 

multiplicatively. The model allows some covariate effects to be additive non 

parametric and time varying and other covariates to have constant multiplicative 

effects.  
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 The proportional excess hazards models can be categorized to the semi 

parametric models as well (Sasieni 1996 [31]). It can be used in a clinical trial setting 

to accommodate the effect of general population mortality in regression analysis. The 

effects of covariates on the additional mortality are described by a proportional 

hazards model. The model may also be used to study cohorts identified by a common 

exposure which it is assumed will increase the risk of specific diseases, but will not 

affect the majority of causes of mortality.   

 The third group consists of the parametric regression models. These models 

are fully parametric in a sense that hazard and survival follow a given (known) 

distribution. These models are usually extended to include covariates. If an 

appropriate model can be assumed then the probability of surviving a given time 

when covariates are incorporated can be assumed. This class of models includes the 

log logistic regression model, Weibull model, Exponential model, Gamma model, log 

normal, Accelerated failure time models and the compared Mackeham model.  

Parametric models can be used with a single homogeneous population. 

Alternatively such models can be fitted ti smaller homogeneous sub-groups and 

confidence intervals for the fitted parameters will give an objective test of the 

differences in the lifetime distribution between the groups.  However, fully parametric 

models are difficult to apply without knowledge of the precise form of the hazard 

function. As a result semi parametric models are most common. A parametric 

approach is based on the assumption that the lifetime distribution (F (t) = P (T<=t)) 

belongs to a family of well known parametric distributions.  

The exponential regression model assumes that the survival function derives 

from the exponential cumulative distribution function. The cumulative function is 

( ) 1 exp( )F t tλ= − −  and therefore the survival function is ( ) 1 ( ) exp( )S t F t tλ= − = − . 

Such a model could be used to reflect the hazard for an individual who remains in 

good health, where the level of hazard would reflect the risk of death from unnatural 

causes. Therefore the hazard function is constant ( )h t λ=  and extended to include the 

covariates for the regression model the hazard function becomes ( , ) exp( )h t z zλ β Τ= . 

Here β is a vector of regression and z a vector of covariates. 
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The Gompertz - Makeham regression models is a fully parametric model too. 

This regression model could be used over longer time periods to reflect human 

mortality where the level of hazard increases as age increases. The hazard function in 

this model follows the following distribution: ( ) th t A BC= + .  

In addition the Weibull regression model could be used to reflect the hazard for 

patients recovering from major surgery where the level of hazard is expected to fall as 

the duration since surgery increases. The survival function follows a Weibull 

distribution when this model is applied. The probability density function, cumulative 

density function, survival function and hazard function are respectively: 
1( ) ( ) exp( ( ) )f t t tγ γλγ λ λ−= − , ( ) 1 exp( ( ) )F t t γλ= − − , ( ) exp( ( ) )S t t γλ= − ,

1( ) ( )h t t γλγ λ −= . When γ<1 the hazard function is monotonically decreasing, when 

γ>1 it monotonically increases and when γ=1 the hazard is constant..   In addition the 

hazard function in this model is extended to include the covariates in an exponential 

form 1( , ) ( ) exp( )h t z t zγλγ λ β− Τ= . Here, β is the regression parameter obtained from 

Weibull regression and z is a vector of covariates. 

The log logistic distribution is also used to create the log logistic regression 

model. This model could be used to reflect the hazard for patients with a disease most 

likely to cause death in the early stages where the level of hazard increases as the 

initial condition becomes more severe but then decreases once patients have survived 

a period of high risk. The probability density function, cumulative function, hazard 

function and survival function are respectively: 
1

2( )
(1 )

tf t
t

γ

γ

αγ
α

−

=
+

, 

( )
1

tF t
t

γ

γ

αγ
α

=
+

,
1

( )
1

th t
t

γ

γ

αγ
α

−

=
+

, 1( )
1

S t
a tγ

=
+ ⋅

. When γ<1 the hazard function is 

monotone decreasing from ∞, when γ=1 it decreases from α and for γ>1 the hazard 

function is non monotonic, but it increases from 0 to a maximum. For the purposes of 

the log logistic regression model, the survival function can be extended to include the 

covariates in an exponential form 1( , )
1 exp( )TS t z

a t zγ β
=

+ ⋅ ⋅
 where β is a vector of 

regression and z a vector consisting of covariates.   

The log normal distribution is used in the log normal regression model which is 

also a fully parametric model. In its simplest form the log normal distribution can be 
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defined as the distribution of a variable whose logarithm follows a normal 

distribution. For λ, σ>0 and t>0 the probability density function is  

2
2

1 1( ) exp[ (log( )) ]
22

f t t
t

λ
σσ π
−

= . The survival function is then 

2
2

1 1 1( ) exp[ (log( )) ]
22 t

S t t dx
x

λ
σσ π

∞ −
= ∫ .  The hazard function is defined as: 

( )( )
( )

f th t
S t

= . This functions is non monotonic. It begins at h(0)=0 then increases to a 

maximum and decreases with lim ( ) 0
t

h t
→∞

= . 

 The gamma distribution is also used in parametric models, to satisfy the 

gamma regression model. The two parameter gamma distribution has a density 

function that is 
1( ) exp( )( )
( )

kt tf t
k

λ λ λ− −
=

Γ
 where Γ (k) is the gamma function and k, 

λ>0. This distribution like the Weibull one is a generalization of the exponential 

model, to which it reduces for k=1. The gamma survival function is 

1

0

( ) 1 exp( ) / ( )
t

kS t u u du k
λ

−= − − Γ∫ . Therefore the survival function involves an 

incomplete gamma integral. The gamma regression model assumes a gamma survival 

function. The hazard function decreases monotonically for k<1, increases 

monotonically for k>1 and for k=1 hazard is constant.  

The class of accelerated failure time models also belongs to the parametric 

models. The main idea is that the probability that a patient with covariates z will be 

alive at time t is the same as the probability that a reference subject will be alive at 

time exp( )t zβ Τ . Here β is the regression parameter and z is a covariates vector. The 

class of  AFT models is a general class of log linear models which assume that the 

survival time of an individual with covariate z has the same distribution as 

0

( )x
TT

g z
= given that T0 is the survival time under z=0 (baseline) and has a specific 

known parametric distribution. The function g (z) can have any form provided that g 

(z)>= 0 and g (0) =1. The functions describing the distribution of failure time in any 

model of the class given that the covariates act according to 0

( )x
TT

g z
= , satisfy the 
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following relationships: 0( , ) ( ( ))S t z S t g z= ⋅ , 0( , ) ( ) ( ( ))f t z g z f t g z= ⋅ , 

0( , ) ( ) ( ( ))h t z g z h t g z= ⋅ .  

If the most significant subset of covariates is known, the selection of an 

appropriate parametric model can be made. The actual lifetime distribution will 

depend on the assumed form o the hazard rate function. This way the regression 

problem is reduced to estimating the parameters of the distribution from the observed 

data. Parametric models can be used with a single homogeneous population. 

Alternatively, such models can be fitted to smaller homogeneous sub- groups and 

confidence intervals for the fitted parameters will give an objective test of the 

differences in the lifetime distribution between the groups. However, fully parametric 

models are difficult to apply without knowledge of the precise form of the hazard 

function. As a result, in order to examine covariate’s effects semi parametric 

approaches are more common. 

The concept of neural network came up as early as the middle of this century. A 

neural network is an information processing algorithm, inspired from biological 

nervous systems. Neural networks, with their remarkable ability to obtain meaning 

from complicated data can be used to extract patterns and detect trends that are too 

complex to be noticed by other computer techniques. This fact made neural networks 

a powerful tool in statistical survival analysis.  

Neural networks have been used in various ways for the purposes of analyzing the 

survival of a group of people. They are not applicable in medicine only but also in 

engineering, management, sociology and so on.  

A restriction of the neural networks is that the dataset used for training has to be 

sufficient for the network to learn it. In the cases where datasets are too small, neural 

networks were used again to enlarge them. Resample methods have been used to the 

original dataset to produce new data with mean and covariance as close as possible to 

the original dataset. [32] 

Another use of the neural networks is the direct classification. Here survival is 

considered for a fixed time period and the problem is reduced to be binary 

classification. Censored observations are removed from these models and due to this 

limitation biases often appear. There is a threshold value at 50% with survival above 

it indicating that the subject is likely to survive the period while outputs under 50% 

indicate death. The disadvantage of this network is that no hazard functions can be 
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plotted for every individual. In addition this kind of neural network does not deal with 

the censoring problem. 

 Multiple neural networks were used by Ohno- Machado (1996) to solve the 

problem of survival analysis. The number of the outputs equals the number of distinct 

time spots. Therefore each network’s output predicts the survival at a specific time 

point. Censored observations are included until their time of censoring. Therefore, the 

number of training inputs decreases and this fact makes predictions less reliable. In 

addition, non monotonic survival curves may result which contradicts with the 

survival curve definitions that survival curves must be monotonically decreasing. Non 

monotonic survival curves might mean that the probability of a person to survive two 

periods might be greater than the probability to survive one period since 

independencies are not taken into account properly.  Furthermore, the problem of 

combining the multiple neural networks is still under investigation. [34] 

 A multi layer feed forward network was used be Ravdin and Clark.(1992) This 

network had one output representing he survival status. A time indicator is used to 

record the time periods for which a prediction is to be made. A survival status 

indicator is also used and added to each record. To handle the problem of decreasing 

training inputs, each uncensored input is replicated for every distinct time unit. A 

censoring observation is replicated t times, where t is the time of censoring. The 

survival status is the target of the network and is set to zero when the subject is alive 

and 1 otherwise. The output of the network is very close to the Kaplan Meier 

estimator. Again the survival curves are not always monotonically decreasing and the 

same problem is met. Another disadvantage is that the replication of records leads to 

large biases as discussed earlier and that this network eventually leads to large 

datasets with severe scalability problems. [35] 

 A variation of the approach of Ravdin and Clark was proposed by Biganzoli 

(1998) at al. The network that is trained is the same, one output and a time indicator. 

The difference is that uncensored observations are only replicated for the time 

intervals at which they were actually observed. Thus, subjects that have died are not 

included after the time interval of death.    The network produces discrete hazard rates 

that are translated to monotonic survival. The disadvantage is that this network is not 

scalable due to the enormous data replications. [36] 
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 A multi layer strategy to obtain the survival times from the censored cases was 

proposed by Lapuerta et al.(1995) For each time period a different network is 

constructed. These networks are trained using only the observations for which the 

survival status for the corresponding time period is known. Therefore, the networks 

predict the outcome for the censoring cases.[37] The uncensored cases are used to 

train a principal neural network which depicts the probability of survival for each time 

period considered. There are still no guarantees that the survival curve will be 

monotonic decreasing that is against the survival curve definitions. Since one needs to 

train as many neural networks as periods considered this approach is not useful for 

large scale applications. [33] 

 Faraggi (1995) proposed a neural network close to the Cox proportional 

hazards model ( 0( , ) ( ) exp( )h t z h t zβ Τ= ) that replaces the term zβ Τ  with the output 

( , )g z θ of a network. This network has only one logistic hidden layer and one linear 

output layer. The θ parameters are estimated with the partial likelihood principle 

(Newton - Raphson).[38] 

 Street (1998) used a multilayer perceptron with as many outputs as the distinct 

observation times. A hyperbolic tangent activation function is used in the output layer 

such that all output neurons take values between -1 and 1. The first output neuron 

having a value lower than zero is considered to be the output neuron that predicts the 

event time. If all output neurons have values greater than one the patient is considered 

to survive the entire period of study. [39] 

 A variation of Street’s method was proposed by Mani (1999). Again for every 

observation in the dataset n output units are computed, where n is the number of 

distinct times. These output units now represent the rate instead of survival 

probabilities that were used in Street’s approach. [40] 

 Brown (1997) also suggested a single neural network with multiple inputs to 

predict hazard rate. For the uncensored observations the network’s output is set to 0 as 

long as the subject is alive and 1 when he experiences the event under examination. 

For the time intervals following the event the hazard is unconstrained. The output 

values for the censored observations are set to zero until the censoring time. They are 

also unconstrained for all subsequent intervals. This approach is scalable and results 

in monotonic survival curves, but there is no extension to deal with time varying 

inputs. [41] 
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1.3 Models implemented and thesis structure 

 

This thesis focuses on survival analysis for patients suffering from the ocular 

melanoma disease. Three models have been implemented for this purpose, each one 

belonging to a different category. The Kaplan Meier non parametric method has been 

used to plot survival curves for the whole population. Important conclusions can be 

made through such a curve since it presents the probability if surviving at each time 

point.  

 A semi parametric method is implemented as well. The Cox proportional 

hazards model for time independent covariates is used to check the effect of certain 

covariates on the evolution of the disease. The baseline hazard function is 

approximated in two ways. The Breslow [21] estimator and an extension of the 

Kaplan Meier estimator to include the covariates are applied for the baseline function 

to derive. Through a maximization of the partial likelihood the regression parameter 

derives. This parameter shows the effectiveness of each covariate. A positive value 

proves a direct effect on the disease. Therefore, the bigger the positive value the larger 

the effect. A negative value, proves a negative effect in a way that the larger the value 

the less the effect on the disease. A value close to zero shows that a specific covariate 

has not effect on the disease.  

 The Cox proportional hazards model is also used to obtain survival and hazard 

functions. These hazard functions are different for every patient. The model does not 

offer directly survival or hazard function for the whole population although there are 

methodologies to plot such curves. Therefore, the bigger the pick of the hazard 

function the greater the hazard for this patient. The lower the minimum value of the 

survival curve the lower the survival probability (and the greater the hazard). 

 A fully parametric model is implemented as well. A test proved that the log 

logistic distribution fits the dataset acceptably. Therefore, the log logistic regression 

model is implemented. The survival and hazard functions are known to follow a log 

logistic distribution (
1

( )
1

th t
t

γ

γ

αγ
α

−

=
+

, 1( )
1

S t
a tγ

=
+ ⋅

). A linear expression of time 

versus survival is used for the regression. As it will be shown later, this method 

cannot be applied for the specific dataset. 
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Neural networks are also used for the survival analysis of patients who suffer 

from the ocular melanoma disease. The neural networks are an approximation of the 

Cox proportional hazards model. The Breslow [21] estimator results are the target of a 

baseline neural network. The back propagation network is trained to learn the Breslow 

estimator. In addition, a covariates network is used to perform the regression. The 

original dataset is divided into three sets for training, testing and validation 

respectively. The network is trained to learn the exponential part of the Cox model in 

other words it performs regression. 

 Chapter 1 is a brief introduction of the ocular melanoma disease as well as an 

overview of the existing non parametric, semi parametric and parametric models. In 

chapter two one can find the theoretical background of the models under examination 

of this thesis. In addition, the ideas of censoring and covariate selection are introduced 

there. Chapter 3 is the models application on the ocular melanoma dataset. The 

models used are analyzed and covariates and censoring become clearer for the 

specific dataset. The chapter is divided by the models categories into non parametric 

(Kaplan Meier and log rank test), semi parametric (Cox model) and fully parametric 

(Log logistic regression). In chapter 4 a theoretical background on neural networks is 

available. Their history, applications and network types. In the same chapter two 

neural networks are introduced for the Cox proportional hazards model for the 

specific dataset. Chapter 5 consists of all the results from the models under 

examination as well as the neural network’s results. Finally, in chapter 6 one can find 

several comparisons among the models of this study and with other relevant studies as 

well.  There are two Appendixes in this thesis. Appendix A provides all programming 

codes used in environments such as MATLAB, R language and SPSS. In Appendix B 

there are additional results that might make clearer the models examined.  

  

 

 

 

 

 

 

 

 



 22

Chapter 2 
Theoretical Background 

 
Chapter 2 extends the theoretical background of the models that are examined in this 

study. The non parametric Kaplan Meier, the semi parametric Cox model and the 

fully parametric Log logistic regression are analyzed. In addition, censoring and 

covariate selection are explained theoretically.  

 
2.1 Survival function and Hazard function 
 

Survival time data measure the time to certain events such as failure (death). 

These times are subject to random variations from a distribution. This distribution is 

generally characterized by three functions: 1) The survivorship function 2) the hazard 

function and 3) the probability density function. All three functions are 

mathematically equivalent which means that having one of them the other two can be 

obtained mathematically. In practice the three functions can be used to illustrate 

aspects of the data.  We denote T a non negative random variable which represents the 

failure time of an individual in a certain population.  

Survivorship function. This function is denoted by S (t) and is defined as the 

probability that an individual survives longer than t. In other words the survival 

function gives the probability of being alive at duration t. Naturally, S (0) =1 and 

S(t)=0 as t        ∞.   S (t) = P (an individual survives longer than t) = P (T>t). 

 Or S (t) = 1-P (an individual fails before T) = 1- F (t). (Definition 1) 

Since P (T<t) is defined as the cumulative function. 

( ) Number of patients surviving longer than tS t
Total number of patients

=      (Definition 2) 

Definition 1 is not the survival function but an estimate if its values. It is of great 

importance to mention that this estimator can only be used in data without censoring.  

Probability of death density function. Like any other continuous random variable 

the survival time T has a probability density function that is defined as the limit of the 

probability of failure in a small interval per unit time.  

0
lim ( ( , ))

( ) t
P An individual fails in the Interval t t t

f t
t

Δ →
+ Δ

=
Δ

 

In practice if there are no censored observations, the probability density function is 

estimated as the proportion of patients dying in an interval per unit width. 



 23

( )
( ) (int )

number of patients dying in the Interval beginning at time tf t
total number of patients erval width

=
×

 

(Definition 3) 
Definition 2 is also an estimator and cannot be used for censored data. The cumulative 

density function is: 
0

( ) ( )
t

F t f x dx= ∫  

Hazard function. An alternative formation of the distribution of T is given by the 

hazard function. In literature the hazard function is also called the force of mortality, 

the mortality intensity function or the failure rate. This function shows the probability 

that an individual will experience an event within a time interval given that he has 

survived up to the beginning of the interval.  

 

0
lim ( ( , ) / )

( ) t
P An individual fails in the time Interval t t t The individual has survived to t

h t
t

Δ →
+ Δ

=
Δ

 

(Definition 4) 

  The cumulative hazard function is:
0

( ) ( )
t

H t h x dx= ∫   

Hazard function is defined in terms of the cumulative function and the probability 

function as: 

( )( )
1 ( )

f th t
F t

=
−

 (Definition 5) 
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Relationships of the Survival Functions 

The three functions that were defined in the previous section are mathematically 

equivalent. Given any one of them the other two can be derived.  

a. From definitions 1 and 5:    S (t) = 1- F (t) and  ( )( )
1 ( )

f th t
F t

=
−

 it can be 

derived that  ( )( )
( )

f th t
S t

=  (Definition 6) 

b. Since the probability density function is the derivative of the cumulative 

density function then /[1 ( )]( ) ( )d S tf t S t
dt
−

= = −  

c. Integrating from 0 to t and using S (0)=1 we have  

0

0

( ) log ( )

( ) log ( ) ( ) exp[ ( )]

( ) exp[ ( ) ]

t

t

h x dx S t

H t S t S t H t

S t h x dx

− =

= − ⇒ = −

= −

∫

∫

 

(Definition 7) 

 From definitions 6 and 7: ( ) ( ) exp[ ( )]f t h t H t= −  
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2.2 Models Overview 

 

2.2.1 Non parametric:  Product limit estimates of survivorship function (Kaplan 

Meier) 

The survival function is the function that is most widely used. This chapter 

introduces the Kaplan Meier estimator, a method of estimating the survivorship 

function. With the increased availability of computers this method is applicable to 

small, moderate and large samples. However, if the sample size is vary large 

(thousands) the life table analysis might be more useful for the reasons explained on 

chapter 1.  

  The Kaplan Meier estimate is a simple way of computing the survival curve. It 

involves computing the number of people who died at a certain time point, divided by 

the number of people who are still at risk in the study. The reason why this estimator is 

called product limit is because these probabilities are multiplied by any earlier 

computed probabilities. The formula of the estimator obeys the 2nd definition of the 

survival analysis: ( ) Number of patients surviving longer than tS t
Total number of patients

=  

  The Kaplan Meier survival curve is often illustrated as a staircase with steps 

downward at the time of death of each individual subject. To compute a survival curve 

first a notation of the time of occurrence of events is needed. It is possible for two or 

more events to occur at the same time. The failure times should be sorted from smallest 

to largest.  

  The basic computations for the Kaplan Meier survival curve rely on the 

computation of conditional survival probabilities. In particular, the probability 

1[ | ]i iP T t T t −≥ ≥ . This probability can be interpreted as the probability of surviving to a 

specific time given the survival to the previous time. A more important probability is 

the unconditional probability of survival: [ ] 1 ( )i iP T t F t≥ = − .This represents the simple 

probability of survival to a specific time.    

  A relationship between the unconditional and the conditional probability is: 

1 1[ ] [ | ] [ ]i i i iP T t P T t T t P T t− −≥ = ≥ ≥ × ≥ . Applying this rule again we get: 

1 1 2

2 3 3 4 0

[ ] [ | ] [ | ]
[ | ] [ | ] .... [ ]

i i i i i

i i i i

P T t P T t T t P T t T t
P T t T t P T t T t P t t

− − −

− − − −

≥ = ≥ ≥ × ≥ ≥
× ≥ ≥ × ≥ ≥ × × ≥
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The last probability presents the probability of surviving at the beginning of the study. 

This probability has to be one. Therefore, the unconditional probability equals the 

cumulative product of conditional probabilities.  

 The conditional probability of survival can be formed to be: 1[ | ] 1 i
i i

i

dP T t T t
n−≥ ≥ = −  

where id  is the number of deaths at each specific time and in  is the number of patients 

at risk at the same time. The unconditional probability of the survival times is simply 

the cumulative product of the conditional probabilities: [9] 

1

[ ] 1
i

j
i

j j

d
P T t

n=

≥ = −∏  

1

( )( ) (1 )
( )

N

i

d iS t
n i=

= −∏  

 

2.2.2 Semi parametric: Cox proportional Hazards model 

Survival analysis takes the survival times of a group of patients and produces a 

survival curve, which shows how many of the patients remain alive over time. Survival 

time is usually defined as the length of the interval between diagnosis and death, 

although other events can be examined. 

We often want to know whether the survival is influenced by one or more 

factors, called “covariates” which may be categorical or continuous. For simple 

situations involving a single factor with just two values there are methods for 

comparing the survival curves for the two groups of patients. But for more complicated 

situations a special kind of regression is needed that investigates the effect of each 

predictor on the shape of the survival curve.  

In order to understand the method of proportional hazards, one must first 

consider a baseline survival curve. This is a survival curve of a hypothetically average 

patient, with variables that are close to their mean values. This baseline survival curve 

may have any shape as long as it starts at 1 at time 0 and is monotonically decreasing.  

The baseline survival curve is then systematically ‘flexed’ up or down by each 

of the predictor variables, while still keeping its general shape. The proportional 

hazards method computes a coefficient for each predictor variable that indicates the 

direction and degree of flexing for each predictor on the survival curve. Zero means that 

a variable has no effect on the curve, and therefore it is not a predictor. A positive 
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variable means that larger values of the variable are associated with higher mortality.  

Negative value means that the covariate affects the disease negatively (The greater the 

value the less the affect on disease). Knowing these coefficients, a customized survival 

curve for any particular combination of predictor values can be constructed. [11] 

Survival analysis examines and models the time it takes for an event to occur. 

The most important event is death, but the scope of application of survival analysis is 

broader. Survival analysis focuses on the distribution of survival times. Although there 

are well known methods for estimating unconditional survival distributions, most 

interesting survival modeling examines the relationship between survival and one or 

more predictors, usually named “covariates” in the survival literature. The subject of 

this chapter is the Cox proportional hazards model, a broadly applicable tool in survival 

analysis.  

The Cox regression model was first introduced in 1972 [24] and it is now well 

recognized in the analysis of survival data. The model is widely used for exploring the 

relationship between risk and a set of explanatory variables. These variables can either 

describe treatment or prognostic factors taken from clinical trials.  

The covariates are assumed constant over time, as is typical with treatment, 

sex and age. In the case of the Cox’s model the hazard depends on both time and 

covariates. This dependence is though provided through two separate factors: The first 

is h0 (t) which is a function of time only and is assumed to be the same for all patients. 

The second is a quantity that depends on covariates through the vector β, which is the 

vector of regression. Cox suggested that the hazard function has the following form: 

0( , ) ( ) ex p ( )T
i ih t z h t z β= ⋅ ( 1) 

The hazard function is a measure of the potential for the event to occur at a 

particular time t, given that the event did not yet occur. Larger values of the hazard 

function indicate greater potential for the event to occur. In Eq 1 h0 (t) is the underlying 

hazard function, which is a function of time in the case where covariates are not 

considered. The baseline hazard function measures this potential independently of the 

covariates. The shape of the hazard function over time is defined by the baseline hazard, 

for all cases. The baseline hazard function can be approximated from the Breslow [21] 

estimator or the extended Kaplan Meier [12] estimator. The value of the hazard is equal 

to the product of the baseline hazard and a covariate effect. While the baseline hazard is 

dependent upon time, the covariate effect is the same for all time points. Thus, the ratio 
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of the hazards for any two cases at any time period is the ratio of their covariate effects. 

This is the proportional hazards assumption. In Eq. 1 the covariates simply help to 

determine the overall magnitude of the function.  zi T= (x1i  x2i  x3i… xki) where i 

indicates the patient and k is the number of covariates under examination.  βT = (β1  β2  

β3  …  βκ) is the k x 1 vector of regression. These coefficients indicate the magnitude of 

the effects of their corresponding covariates. 

Maximum Likelihood Estimation (MLE) is generally used in survival 

estimation. MLE produces estimators that are consistent, asymptotically efficient and 

asymptotically normal. Cox (1972) proposed a partial likelihood function that depends 

only on the unknown parameter β.  The maximization of this partial likelihood offers a 

rough estimate of the regression parameter. The interpretation of β’s sign is: 

o If β=0  the covariate has no effect on survival 

o If β<0 the covariate affects the survival inversely. This means that the 

higher the value of the examined covariate the lower the hazard. 

o If β>0 the covariate affects the survival. A high value of the covariate 

would mean high hazard.  

 The Cox model is not a fully parametric model since it does not specify the 

form of the baseline hazard function. It does however specify the hazard ratio of any 

two individuals and for this reason it is defined as a semi parametric model.  Therefore 

the hazard ratio of two different patients with covariate vectors z1 and z2 is: 

0 11 1 1 1
1 2

2 0 2 2 2 2

( ) exp( )( , ) ( , ) exp( ) ( , ) exp[( ) ]
( , ) ( ) exp( ) ( , ) exp( ) ( , )

T T
T T

T T

h t zh t z h t z z h t z z z
h t z h t z h t z z h t z

β β β
β β

= ⇒ = ⇒ = −  

( 2) 
Given that this ratio does not depend on time, so that it is constant then the 

failure rates of any two individuals are proportional. Due to the equation above the 

Cox’s regression model is called a proportional hazards model.  The equation 2 can 

have a logarithmic form like this: 

1 1
1 2 1 2

2 2

1 2 1 2

( , ) ( , )exp[( ) ] ln[ ] ln[exp[( ) ]]
( , ) ( , )

ln[ ( , )] ln[ ( , )] ( )

T T T T

T T

h t z h t zz z z z
h t z h t z

h t z h t z z z

β β

β

= − ⇒ = − ⇒

⇒ − = −

 ( 3) 

The assumption in this case is that there is a constant difference between the 

logarithmic hazard functions of two different individuals.  
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Moreover, the Cox proportional model makes one more assumption. This one 

has to do with the exponential link of the covariates to the hazard. The assumption is 

that two completely different covariates may affect hazard in a multiplicative way, like 

in equation 2 or in an additive way like in equation 3.  

An extension of the Cox proportional hazards model allows analyzing time 

dependent covariates. These covariates appear as functions of time. It is still possible to 

analyse the effect of time dependent covariates using the simple Cox model if the value 

of these covariates does not change greatly over the period of the investigation and if 

the main effect of these covariates depends on the value at a specific point in time.  

However, of the variables change rapidly throughout the study the extended 

Cox model can be used. Then, the Cox model is easily extended to include such 

variables. The most important change is the vector of covariates which is altered in 

order to express covariates through time ( 0( , ) ( ) exp( ( ) ( ))T
i ih t z h t z t tβ= ⋅ ). 

 

2.2.3 Fully parametric: Log logistic regression model 

 

The Cox model is a method that belongs to semi parametric models, since the 

form of the baseline hazard functions is not known during the regression part. Another 

set of models is the parametric one. Parametric models perform the regression 

procedure given that the distribution of the hazard function is known. Therefore, several 

parametric regression models can be defined. When covariates are considered, we 

assume that the survival time, or generally a function of it, has an explicit relationship 

with the covariates. Furthermore, when a parametric model is considered we assume 

that the survival time follows a given theoretical distribution and has an explicit 

relationship with the covariates. 

The log logistic distribution can be used for the purposes of a parametric model. 

In this case the survival time is accepted to follow a log logistic distribution a priori. 

The general distribution of the survival time is: 1( )
1

S t
a tγ

=
+ ⋅

. This can be extended in 

the exact same way that the Kaplan Meier estimator was extended in the Cox model to 

include the covariates. Therefore the distribution becomes: 1( , )
1 exp( )TS t z

a t zγ β
=

+ ⋅ ⋅
. 

There are obvious similarities with the Cox proportional hazards model, since the 

covariates appear again in an exponential form and they act also multiplicatively on the 
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survival. This distribution can become the original log logistic survival function in the 

absence of the covariates (β=0). As a consequence the distribution function becomes: 

( , ) 1 ( , )
1( , ) 1

1 exp( )
exp( )( , )

1 exp( )

T

T

T

F t z S t z

F t z
a t z

a t zF t z
a t z

γ

γ

γ

β
β
β

= −

= −
+ ⋅ ⋅

⋅ ⋅
=

+ ⋅ ⋅

 

With the following transformations the so called odds ( ( , )
1 ( , )

F t z
F t z−

) can be obtained: 

1 1 exp( ) 1 exp( )( , ) 1 ( , ) ( )
1 exp( ) 1 exp( ) 1 exp( )

( , )( , ) exp( ) ( , ) exp( )
( , )

( , ) exp( ) (12)
1 ( , )

T T

T T T

T T

T

a t z a t zF t z F t z F t
a t z a t z a t z

F t zF t z a t z S t z a t z
S t z

F t z a t z
F t z

γ γ

γ γ γ

γ γ

γ

β β
β β β

β β

β

+ ⋅ ⋅ − ⋅ ⋅
= − ⇒ = ⇒ = ⇒

+ ⋅ ⋅ + ⋅ ⋅ + ⋅ ⋅

⇒ = ⋅ ⋅ ⋅ ⇒ = ⋅ ⋅ ⇒

= ⋅ ⋅
−

 

Conditional that all covariates are ignored (β=0), Eq.12 reduces to the baseline 

odds function. The baseline function is multiplied with a factor  exp( )Tz β  for any 

individual with covariate z. The characteristics of the log logistic regression model are 

proportional to the formation of the odds failure. Therefore, the plot of the odds failure 

versus time is expected to be monotonically increasing and depends only on the 

parameter γ.  Additionally the covariates act multiplicatively on the odds function. This 

is obvious when regarding any two individuals with covariates z1 and z2. The ratio is 

expected to be constant.  

1

1 1
1 2

2 2

2

( , )
1 ( , ) exp( )( 1) exp[( ) ]( , )( 2) exp( )
1 ( , )

T
T T

T

F t z
F t z a t zodds individual z zF t zodds individual a t z
F t z

γ

γ

βλ β
β

− ⋅ ⋅
= = = = −

⋅ ⋅
−

 

An empirical check of the suitability of the log logistic regression model for the 

analysis of a specific dataset in the presence of covariates can be derived when 

logarithms are applied to Eq. 12 

( , ) exp( )
1 ( , )

( , )log[ ] log[ exp( )]
1 ( , )

( , )log[ ] log( ) log( ) (13)
1 ( , )

T

T

T

F t z a t z
F t z

F t z a t z
F t z

F t z z t
F t z

γ

γ

β

β

β α γ

= ⋅ ⋅ ⇒
−

⇒ = ⋅ ⋅ ⇒
−

⇒ = + +
−
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Equation 13 proves that there is a linear relationship between the log odds and 

the logarithm of time. The slope is γ and there is a clear dependence on Tz β  which 

moves the plot on the y axis. For the model to be suitable we expect that a plot of the 

non parametric log odds (that can be log odds derived from the non parametric Kaplan 

Meier estimator) against the log t is linear for a homogeneous population. In other 

words patients that appear with a particular covariate pattern (homogeneous) should 

have almost linear plots. In addition two different patterns for example z1 and z2 should 

correspond to roughly parallel lines the slope of which gives an estimate of γ. If the two 

patterns are different in one covariate only say x1 and all other covariates have the same 

values then the distance between the two lines gives an estimate of β. If the distance is 

not constant then the proportional odds model is not appropriate. [6] 

In the biomedical research we are mostly interested in the hazard functions. The 

hazard function n the log logistic regression model is: 

1

0

1

( , ) exp[ ( , )] ( , ) log ( , )

1( , ) log ( , ) log(1 exp( ))
1 exp( )

( , ) exp( )( , ) ( ) ( , )
1 exp( )

exp( )( , )
1 exp( )

T
T

t T

T

T

T

S t z H t z H t z S t z

H t z H t z at z
a t z

dH t z t zH t z h x dx h t z
dt t z

t zh t z
t z

γ
γ

γ

γ

γ

γ

β
β

αγ β
α β

αγ β
α β

−

−

= − ⇒ = − ⇒

= − ⇒ = +
+ ⋅

= ⇒ = =
+

=
+

∫
 

Equation 12 could be a member of class models if the covariates didn’t appear 

exponentially but in a variety of ways say g (z). The class of proportional odds models 

(PO) suggests that      0
( , ) ( ) ( )

1 ( , )
F t z t g z

F t z
ω= ⋅

−
  [Eq. 14]. Here g (z) is a function of the 

covariate vector but not of time. In addition 0 ( )tω is any function of time not dependent 

on time with 0 ( )tω >0.   
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2.3    Censoring 

In medical studies censoring is common and needs to be handled by some techniques. 

There are two major sources of censoring. In the first case a patient might be lost to follow 

up. It is known that the patient is alive at the last meeting but his subsequent status is 

unknown. This might happen if a patient stops coming to the clinic or moves away for 

undefined reasons. In addition censoring occurs even if patients die from other causes 

(competing risks) before the closure of the study. Time to last contact will be taken as 

censoring time. [2] 

 In the second case where a clinical study is closed after a fixed study period, some of 

the patients are alive at the time of study closure. Therefore time to study closure will be 

taken as censoring time. In this case we only know that the time to event is greater than a 

certain value, the time from entry to the end of the study. There are right censored data. 

Although the exact time of the outcome event is not known the fact that it does not precede 

the censoring time is useful information for the survival analysis. 

 Some other censoring cases come about if the length if the follow up varies due to 

random entry. Therefore, we can not observe the event for those individuals with insufficient 

follow up time. Censoring form staggered entry may be different from censoring due to the 

other reasons mentioned earlier. In addition, left censoring happens when the time of entry of 

certain individuals is not known and even worse, interval censoring happens when neither the 

time of entry nor the event time are known. 

 There is an important assumption in survival analysis that individuals who are 

censored are at the same risk of subsequent failure as those who are still alive and 

uncensored. The risk set at any time point (which is defined as the set of individuals who are 

still alive and uncensored) should be representative of the entire population alive at the same 

time. Statistically this assumption is equivalent to the one that the censoring process is 

independent of the survival time. If censoring only occurs because of staggered entries then 

the assumption of independent censoring is satisfied. However, when censoring results from 

loss to follow up or death from a competing risk, then this assumption is more suspect.   

If the study period is long enough to observe the survival time of all subjects, as in 

some animal experiments, one may prefer to use more common methods to analyze the 

survival (t- test, least square regression). However in studies of human subjects there is 

censoring (due to the reasons mentioned above) and the outcome cannot be analyzed by the 

usual methods of continuing data. [1] 
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2.4 Covariate Selection 

  In survival analysis it is often useful to examine the influence of certain covariates on 

the probability of the examined event to occur. There are various measurements that can be 

examined in such models. Survival analysis for travel habits (sociology) could examine the 

effects of the weather, roads, location and so on.  Survival analysis of newspapers subscribers 

(management) could examine the effects of social status, marriage, job description and so on.  

  In the medical field survival analysis focuses on predicting the survivability given 

several measurements. From the moment a disease is diagnosed and the patient enters the 

study, several measurements are taken that are related to the disease. For example, in the case 

where tumors are under examination, an appropriate measurement could be the location of 

the tumor and its diameter.  

  In addition, several kinds of treatments could be examined to figure out the most 

effective one. In this case, the event under examination is the recovery and not death. There 

are various studies that perform survival analysis on patients suffering from a disease and 

certain treatments are applied on them. For example, in the case of tumors, radiotherapy, 

chemotherapy, drugs, placebos and surgeries are some of the treatment methodologies that 

are investigated. Survival analysis answers the issue of selecting the more appropriate 

treatment.  

  These measurements are called covariates. Several models in survival analysis include 

covariates in the estimations. The semi parametric and fully parametric models are able to 

check the influence of a certain covariate on the disease. The covariates can either be constant 

or time dependent and all models can be extended to include time dependent covariates. A 

covariate is any quantity recorded in respect of each life under observation, which is likely to 

affect the future lifetime distribution. Such covariates can be: 

1. A direct quantitative measure which is numerical (for example age, tumour 

diameter, weight) 

2. An indicator which is usually binary (e.g. 0 for male 1 for female, 0 for non 

metastatic death, 1 for metastatic death) 

3. A quantitative interpretation of a qualitative measure. This covariate is 

numerical but it expresses quality (e.g. severity of symptoms ranging from 0 to 10, 

with 0 representing no symptoms and 10 representing extremely severe symptoms). 
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Chapter 3 

Models application on specific dataset 

 
 In the beginning of this chapter there is an extended analysis of the specific dataset 

under examination, the ocular melanoma dataset. Then, this chapter analyzes the way that 

the models introduced in previous chapters are applied on the specific ocular melanoma 

dataset. In addition, for the purposes of the Kaplan Meier, censoring on the specific dataset 

is defined and the log rank test is introduced analytically. For the purposes of the Cox 

proportional hazards model covariate selection is also defined.  

 

3.1 Overview of the ocular melanoma dataset 

The data for this study come from patients who suffer from the ocular melanoma disease. 

The data were actually collected from patients who suffer from one of the four kinds of 

ocular melanoma that where mentioned earlier in chapter 1.  There were 1735 patients who 

were studied from the moment the disease was diagnosed. From this collection we have  

information about the following measurements:  Date of birth, Date of death (if they died), 

Submission date which is the date when the disease was diagnosed, management date, an 

indicator of metastatic death, the survival time in years and sex. Furthermore there is 

information on certain characteristics of the tumour which were obtained after medical 

observation. These are: anterior tumour margin, ultrasound height, longest ultrasound basal 

dimension and epithelioid cellularity. 

The date of birth was obtained from the hospital records while the date of death from 

death certificates, the family, a medical practitioner or any other valid source. The 

management day was the day of primary treatment of intraocular tumour. The death is a 

binary variable obtained from any valid source. Logical one indicates a dead patient while 

logical 0 indicates a patient still alive. The sex is a binary variable as well with one indicating 

male and zero indicating a female. Another binary variable is the epithelioid cellularity. Zero 

indicates that there were no epithelioid melanoma cells and one the contrary.  

Another measurement is concerned with the tumour height. The ultrasound height is 

measured by ultrasonography. Distance is measured from internal scleral surface to tumour 

apex, taking care to measure thicknest part of tumour, excluding overlying retinal detachment 

and avoiding oblique cuts.  The MD is an indicator of the existence or not of a metastatic 



 35

death. One indicates that the death was provoked from metastasis, while zero indicates the 

opposite. Obviously patients who are still considered to be alive have a value of MD equal to 

zero.  

A measurement that deals with the ultrasound height is the LUDB which stand for the 

’Longest Ultrasound Basal Dimension ’. This defines the longest basal tumour dimension as 

measured by ultrasonography. Care must be taken to avoid over-estimating this measurement 

because of retinal detachment or underestimating it because of tapering tumour margins. 

The anterior tumour margin is estimated by ophthalmoscopy, slit-lamp examination and 

ultrasonography. This variable is called ANT MAR, Anterior Tumour Margin. The equator is 

located 15.6 mm from the fovea in an emmetropic eye and corresponds to a point just anterior 

to the vortex vein ampulla. This is a categorical variable with 14 indicators of the location of 

the tumour.       

Value Location  

1 Disc and Fovea  

2 Fovea  

3 =<1DD Fovea 

4 1-2DD Fovea  

5 Disc  

6 =<1DD Disc  

7 1-2DD Disc  

8 Posterior Choroid 

9 Anterior Choroid  

10 Pars plana 

11 Pars plicata  

12 Iris 

13 Angle 

14 Cornea 

The survival time is a variable measured for each patient in years. It counts the date from 

the first ocular melanoma treatment to the date of death. In the case where a patient is still 

alive (when dead=0) then the survival time is counted from the date of birth to the end of 

study (10th February 2005). This variable is going to be used as the time variable in all of our 

plots.  
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Database ID Submission Date Last Update Date DOB antmar 

7690 21/3/2005 16:43 21/3/2005 16:43 25-Feb-1933 9
7691 21/3/2005 16:43 21/3/2005 16:43 17-Sep-1907 9

 
Mand DOD Lubd Uh epi 

19-Jan-2005 missing 13.60 6 1.00 

19-Mar-1993 missing 10.00 5 0.00 

 
Md death survy Sex Rand10 

0.00 0.00 0.06 0.00 1
0.00 0.00 11.90 0.00 1

 
 
 

 

 

3.2 Non Parametric: The product limit estimator (Kaplan Meier) 
 

Kaplan and Meier [12] proposed an estimator that computes survival probabilities. 

When these probabilities are plotted versus the survival time, very important 

conclusions can be extracted concerning the probability of survival of a patient by 

comparing it with the experience of other patients.  

The model was introduced in Chapter 2. The Product limit estimator is an 

estimator for survival functions which is implemented in order to analyze the 

survivability of patients suffering from the ocular melanoma disease. This specific 

dataset has also censoring cases. These cases are patients that were cancelled out of the 

study for various reasons but are still alive at the end of the study. 

At this point it is important to examine which cases of this particular study 

should be considered as censored. After the closure of the study there are some patients 

who are still alive (those with dead=0). This is obviously a censoring case: “In the 

second case where a clinical study is closed after a fixed study period, some of the 

patients are alive at the time of study closure. Therefore time to study closure will be 

taken as censoring time.” Thus, whenever the model suggests that a set includes 

patients at risk, the censored patients will be cancelled out of the calculations. 
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The Kaplan Meier estimator is: 
1

( )( ) (1 )
( )

N

i

d iS t
n i=

= −∏ . This estimator produces 

survival results for each time spot. Here N is the number of time spots, d (i) is the 

number of deaths at each time spot and n (i) is the risk set at this time. 

 At the beginning, the risk set has to be defined. The risk set is calculated for each 

specific time to include patients that have survived up to this time and after it. For this 

study the “survy” (survival years) numerical variable will be considered as time. Time 

zero is the time when all patients become subjects to the study (They are considered to 

enter the study at the same time). Therefore, the risk set at time 8.00 includes all 

patients that are alive after the 8th year. Taking a subset of our dataset the risk set idea 

can become clearer: 

Patient 

number 

Survival 

years   

Death 

indicator 

Risk set 

(patients) 

1 0.02 1 2,3,4,5,6 

2 0.08 1 4,5,6 

3 0.08 1 4,5,6 

4 0.16 1 5,6 

5 0.24 1 6 

6 0.28 1 - 

 

 

 Generally a formula to obtain the risk set for each specific time spot is t R (tj)= {j: 

tj >= ti }. In the ocular melanoma dataset very often two or more patients experience the 

event at the same time. Therefore attention should be made when considering that 

moment’s dataset.  

In the ocular melanoma dataset there are also censoring cases, which can be easily 

handled with the Kaplan Meier estimator. Patients might be censored because they 

abandoned the study or because they died due to other (even natural) reasons. The 

censoring indicator is the binary “death” variable. In order for statisticians to have a 

clear view over the group that they follow up, the study has to go on until all patients 

involved die. Consequently, when “death” indicates 0, this doesn’t mean that the patient 

is still alive and under observation. Therefore, death=0 indicates a censoring case.   
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This fact has a direct effect in the risk set of specific time spot. To be more 

specific, in order to obtain the risk set at time ti, not only do we have to leave aside the 

deaths at that time but also the censoring cases. Taking another subset into 

consideration this becomes clearer: 

   

Patient 

number 

Survival 

years 

Death 

indicator 

Risk set 

(patients) 

1 0,01 0 2,3,4,5,6,7,8,9,10,11,12 

2 0,02 1 3,4,5,6,7,8,9,10,11,12 

3 0,04 0 4,5,6,7,8,9,10,11,12 

4 0,05 0 6,7,8,9,10,11,12 

5 0,05 0 6,7,8,9,10,11,12 

6 0,07 0 7,8,9,10,11,12 

7 0,08 1 8,9,10,11,12 

8 0,1 0 10,11,12 

9 0,1 0 10,11,12 

10 0,15 1 11,12 

11 0,16 1 12 

12 0,17 1 - 

 

 

Using these rules the risk set is obtained for each time. The Kaplan Meier 

estimator can then be easily implemented using 
1

( )( ) (1 )
( )

N

i

d iS t
n i=

= −∏  
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3.2.1 The log rank Test 
 

Often it is useful to compare the survival experience of two or more groups of 

individuals. In the case of the ocular melanoma dataset such stratification could have some 

point if we compared the survival curves of patients who have epithelioid cellularity and of 

those who don’t. The epithelioid cellularity could be examined as a comparing factor. Epi is 

a binary covariate indicating whether or now a patient has it. 

In clinical research one is concerned not only with estimating the cumulative 

probability of surviving but also with the comparison of the experience of groups of 

subjects differing on a given characteristic or on different treatments. Unlike the reliability 

analysis in the technological field where the physical properties of the production process 

can suggest the theoretical failure function, in the biomedical field it is extremely difficult 

to have a priori knowledge to make hypothesis on the underlying theoretical survival 

functions. Therefore, the non parametric approach is usually adopted to compare survival 

curves. Among the various non parametric tests the Mantel Haenzel test (1959) currently 

called the log rank test will be applied to our dataset. [6] 

The log rank test is the most popular method of comparing the survival of groups, 

which takes the whole follow up period into account. An advantage o this test is that it does 

not require to know anything about the shape of the survival curve or the distribution of 

survival times.  

  The log rank test is used to test the null hypothesis that there is no difference 

between the populations in the probability of an event at any time point. The analysis is 

based on the time of events. It is based on the same assumptions as the Kaplan Meier curve, 

that censoring is unrelated to prognosis and that the survival probabilities are the same for 

subjects recruited early and late in the study.  Deviations from these assumptions are more 

important if they are satisfied differently in the groups being compared; for example if 

censoring is more likely in one group than another.   

  The log rank test is most likely to detect a difference between groups when the 

risk of an event is consistently higher for one group than another. It is unlikely to detect the 

difference when survival curves cross as can happen when comparing a medical with a 

surgical intervention. Since the log rank test is a test of significance it cannot provide an 

estimate of the size of the difference between the groups investigated. [10] 
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3.3 Semi parametric: The Cox Proportional Hazards model 
 

The Cox proportional hazards model was introduced in chapter 2. It is a semi 

parametric model that includes the covariates whether they are time dependent or not. 

This model assumes a baseline hazard function that is not obtained parametrically but 

derives from an estimator. The general formula of the Cox model hazard is: 

0( , ) ( ) ex p ( )T
i ih t z h t z β= ⋅  

The covariates act multiplicatively on hazard. Z is a vector of covariates and β 

is the regression parameter. In addition, h0 (t) is the baseline hazard function, that is a 

common function for all patients. 

For the purposes of the Cox proportional model, three covariates are selected 

to examine their effect on the evolution of the disease. These covariates are time 

independent and therefore the proportionality assumption introduced in chapter 2 is 

met. In other words the variables used are constant over time.  

 In addition the three variables that are selected have some serious medical 

interest. Doctors should need the conclusions of this study in order to diagnose the 

severity of the ocular melanoma given a set of prognostic factors. The covariates 

selected are: ultrasound height, longest ultrasound basal dimension and the indicator of 

epithelioid cellularity. These variables have missing values for certain cases in the 

dataset. There are techniques to fill in the missing gaps (even with a neural network) nut 

it was preferred that patients with missing values were extracted from the calculations. 

This leaves us with a dataset of 743 patients.  

The Cox model can examine the effect of time dependent variables as long as 

they don’t change value over the study period. For example, age has a value that 

changes over time. If the study period is a few months then age can be considered 

constant. In our case the study period has a year scale and therefore age can not be a 

variable under examination. 

Cox proposed that the parameter β can be estimated by the partial likelihood 

method.  Consider a total of N subjects and suppose that k failures occur (k<N).  R (t) is 

a set that contains all patients who are still alive when the ith patient experiences the 

event (R (tj)= {j: tj >= ti } ).  Conditioned on the fact that one individual is observed to 

fail at time ti the probability that he is the patient with covariates zi is: (from equation 1). 
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 . Here the baseline function is 

canceled out.         

Assume we have k failures (deaths) then the partial likelihood function over all failure 

times is: (independent probabilities) 
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 Equation 4 indicates that L (β) depends on the unknown values of the 

regression parameter and the known vector of covariates. Apparently, there is no 

contribution to the estimate of β from the gaps between successive failure times due to 

the absence of the baseline hazard function. In other words, since this partial likelihood 

involves patient’s covariates it makes sense only for specific time points and not for the 

spots between them. The Log partial likelihood is: 

1
( )

1
( )

1 ( )

( )

e x p ( )
lo g ( ) lo g

e x p ( )

e x p ( )
( ) l o g

e x p ( )

( ) l o g ( e x p ( ) ) lo g ( e x p ( ) )

( ) ( ) lo g ( e x p ( ) )

j

j

j

j

k
j

j
i R t

k
j

j
i R t

k

j
j i R t

j
i R t

z
L

z

z
l

z

l z z

l z z

ι

ι

ι

ι

β
β

β

β
β

β

β β β

β β β

=
∈

=
∈

= ∈

∈

⎡ ⎤
⋅⎢ ⎥

= ⎢ ⎥⋅⎢ ⎥
⎣ ⎦

⎛ ⎞⎛ ⎞
⎜ ⎟⋅⎜ ⎟

= ⎜ ⎟⎜ ⎟⋅⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

⎛ ⎞
= ⋅ − ⋅⎜ ⎟⎜ ⎟

⎝ ⎠

= ⋅ − ⋅

∏ ∑

∑ ∑

∑ ∑

∑
1

k

j =

⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠

∑
 

 
The maximum partial likelihood estimation of β is the solution of the equation: 
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( 5) 
 
              From this log likelihood, Cox showed that a valid value of β can be 

estimated. One of the nonlinear algorithms to compute this maximization is the 

Newton-Raphson iteration. In this algorithm we start with an initial guess of β and 

iteratively determine βm with the formula ( ) 1 ( 1) ( 1)( ) ( )m m mU sβ β β− − −=  

where ( ) ( )U Hessianβ β= −Ν ⋅  ).  

 The baseline hazard function can be estimated in various ways. The 

most common way is to use the Breslow estimator or an extension of the Kaplan Meier 

estimator. In addition, there are many cases in literature where the baseline function is 

approximated theoretically or by taking advantage only of patients that have low 

numerical values in their covariates (This makes sense since theoretically the baseline 

function is the hazard in absence o covariates). In this study, the Breslow and the 

extended Kaplan Meier will be used to obtain the baseline hazard function.  

Although the values of the regression parameters are derived right form the 

dataset, the over all survival behaviour can not be understood without knowing the 

baseline hazard function. One way to understand the baseline hazard function is to 

specify it.  
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By assuming that the baseline hazard function is constant between each pair of 

successive observed failure times, Breslow [21] has proposed the following estimator of 

baseline cumulative hazard function: 

0
( )

( )

( )( )
exp( )

i

T
t i t l

l R t

d iH t
z β≤

∈
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With the estimated regression coefficient β, the Breslow estimator for the 

cumulative hazard can be implemented to obtain the values of H0 (t). This estimator is 

not enough by itself to produce meaningful hazard or survival curves since there is no 

meaningful proportion. The number of deaths divided by an exponential sum of 

covariates and regression parameter can not give by itself an appropriate estimate of 

hazard or survival. Only after this estimator is used in the Cox model can the graphs 

make sense.  

A very important point is that this estimator is used for every unique survival 

time but only those when a death happens. Thus, a value of the cumulative hazard 

function is obtained for each death time. This doesn’t mean that censoring cases are 

cancelled out of the calculations. The censored patients are included in the risk set. The 

idea of the risk set was analyzed in chapter 2. For any time point a risk set includes 

patients that are still alive and not censored. 

The Breslow estimator is an extension of the Nelson Aalen estimator:   

0
( )

( )( )
( )t i t

d iH t
n i≤

= ∑  

The Breslow estimator includes the covariates and the regression parameter β. 

On the contrary the Nelson Aalen estimator takes advantage only of the number of 

deaths d(i) and the risk set n(i). The two estimators are equivalent in the absence of the 

covariates, that is when β=0. 

Alternatively the Breslow estimator can be transformed to calculate the values 

of the cumulative survival. This transformation is performed by applying Definition 7 

from the 2nd chapter to the Breslow estimator: 
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The Kaplan Meier estimator is also an estimator of a cumulative survival function in 

the absence of covariates. This survivorship function shows how the probability of surviving 

changes through time, living aside the existence of any kind of covariates. Thus, there is a 

theoretical relationship of the Kaplan Meier’s estimator for the survival function, with the 

baseline hazard function.  

The formula of the Kaplan Meier estimator is
1

( )( ) (1 )
( )

N

i

d iS t
n i=

= −∏  .  (Eq. 10) 

Here d (i) is the number of events that take place at the same time with the event of 

the ith patient. n (i) is the number of patients who are still at risk when the ith patient 

experiences the event. In other words, n (i) indicate the number of patients that have more 

survival years than the ith patient and are not censored.  

Of course we can not cancel out completely the fact there are some covariates that 

affect the survivorship. The main idea is that the Kaplan Meier survival function can be 

transformed to include somehow the effects of the covariates. This implementation is 

completely analogue to the Nelson Aalen and Breslow estimators in chapter 6.1.2. Therefore, 

an analog of the Kaplan Meier estimator can be derived for S (t) by thinking if h0 (t) in terms 

of a discrete hazard having mass 
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 at each failure time. This could be 

interpreted as the probability that m individuals with covariates x=0 fail at ti conditional on 

the sets of covariates observed individuals at risk at ti. Therefore the analogue if the Kaplan- 

Meier estimator is: 0
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∏ ∑
 (Eq. 11)  

This estimator is actually the same with the Kaplan Meier (Eq. 10) for β=0 which 

theoretically means that no covariates affect the survivorship of an individual. Obviously the 

extended Kaplan Meier is an estimator and not a function used to obtain separate estimations 

of the cumulative survival at each death time.  
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The Breslow estimator for survival 0
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extended Kaplan Meier estimator  0
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 have similar numerical 

results. There s a connection between these two estimators that derives from a Taylor series 

of an exponential function: 
2 3

exp( ) 1 ...
1! 2! 3!
x x xx x= + + + + −∞ < < +∞  

 

 

3.4 Fully parametric: Log logistic regression model 

 

In the beginning it is essential to provide a brief overview of the log logistic 

distribution since it is widely used both in the Cox model application on the specific dataset ( 

as it fits well the survival function obtained from the Cox model) and the log logistic 

regression model.  

  The survival time T has a log logistic distribution if log (T) has a logistic 

distribution. The two parameter distribution has a hazard function that is: 
1
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γ

αγ
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This distribution differs form the Weibull hazard for the denominator. The log logistic 

distribution is characterized by two factors α and γ. The median of the log logistic is
1
γα

−
. 

When γ>1 the log logistic hazard has the value zero at time zero, increases to a peak and then 

declines.  When γ=1 the hazard starts at 
1
γα  and declines monotonically. When γ<1 the 

hazard starts at infinity and then declines which is similar to the Weibull distribution. 

Therefore the log logistic distribution can be used to describe a first increasing and then 

decreasing or a monotonically decreasing hazard.  
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 The probability density function and the survival function of the log logistic 

distribution are:
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.  The cumulative hazard function can 
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An example taking all possible values of the parameter γ in the hazard and density function 

is:  [5] 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Hazard function and probability density function for the log logistic 

distribution. [5] 

 

The suitability of the log logistic distribution for the survival analysis of a specific 

dataset can be empirically checked, using a linear relationship which can be derived from S 

(t) and F (t) = 1- S (t). 
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From this relationship the log logistic distribution is a linear model for the log odds of 

failure over the logarithm of time with slope γ. If a plot of the log odds ( ( )log[ ]
1 ( )

F t
F t−

) versus 

the logarithm of time appears to be approximately a straight line then the log logistic 

distribution is suitable to the dataset. The log odds can be calculated through the Kaplan 

Meier estimator, 
1

( )( ) (1 )
( )

N

i

d iS t
n i=

= −∏  Here d ( i) is the number of events that take place at the 

same time with the event of the ith patient. n (i) is the number of patients who are still at risk 

when the ith patient experiences the event. In other words, n (i) indicates the number of 

patients that have more survival years than the ith patient and are not censored.  

The Log logistic regression model was introduced in chapter 2. Before starting to plot 

the hazard functions, the model suitability should be checked. In order to do that, the non 

parametric odds must be calculated to be plotted versus the log t. The log odds are: 

( , ) exp( )
1 ( , )

( , )log[ ] log[ exp( )]
1 ( , )

( , )log[ ] log( ) log( ) ( .13)
1 ( , )

T

T

T

F t z a t z
F t z

F t z a t z
F t z

F t z z t Eq
F t z

γ

γ

β

β

β α γ

= ⋅ ⋅ ⇒
−

⇒ = ⋅ ⋅ ⇒
−

⇒ = + +
−

 

The reason why the odds are used is obvious. They provide a linear representation of 

the cumulative density function F (t) against the log t. When the plot of the log odds against 

the log t is almost linear then the log logistic distribution is considered suitable for the 

description of the dataset.  Theoretically only the odds are expected to be linear against the 

log t. If the plot doesn’t follow this theoretical hypothesis as it is shown in equation 13, then 

log logistic distribution is not suitable.  

The values of the survival function will derive from the Kaplan Meier estimator 

because the model requires non parametric estimates. The values of the density function can 

derive from F (t) =1 – S (t). The logarithmic ratio of those two will be plotted against the log t 

to check linearity and calculate the regression parameter β. 

 The Kaplan Meier estimator is: 
1

( )( ) (1 )
( )

N

i

d iS t
n i=

= −∏ where d (i) is the number of 

events that take place at the same time with the event of the ith patient. n (i) is the number of 

patients who are still at risk when the ith patient experiences the event. In other words, n (i) 

indicate the number of patients that have more survival years than the ith patient. After 
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having obtained the estimates from the Kaplan Meier, the values of the density function 

derive. The next step if to obtain the log odds ( ( , )log[ ]
1 ( , )

F t z
F t z−

) and plot them against the 

logarithm of time.  

It is important to notice that this procedure has to be performed for a homogeneous 

population. In other words, patients with the same pattern of covariates will be plotted 

together. If the two populations are different in one covariate only for example z1 and all the 

others are the same, the distance between the two lines gives a rough estimate of β1.   Two 

covariates will be used for the log logistic regression model, the epithelioid cellularity and the 

ultrasound height. The selection wasn’t random. In order for the population to be 

homogeneous, it is divided into to two sets of patients, to those who have epithelioid 

melanoma (epi=1) and ultrasound height bigger than 10 and those who have epithelioid 

melanoma and uh<10. No other classification could be made since the ultrasound height and 

the longest ultrasound basal dimension have real numerical values. 

The characteristics of those two groups of patients are applied in the Kaplan Meier 

estimator and their log odds are plotted against the log t. If a plot shows departure from 

linearity another model from the class of proportional odds models can be used. If linearity is 

satisfied but the distance between the lines is not constant a model assuming proportional 

odds model is not appropriate. In the case where linearity is satisfied and distance is constant 

this distance is an estimate of the regression parameter β. 
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Chapter 4 
The application of Neural Network models 

 
Chapter 4 analyzes neural networks only. There is an extended theoretical background in the 

beginning, explaining their applications and the existing network types. In addition this 

chapter introduces the two networks of this study for the Cox proportional hazards model. 

 
4.1   Theoretical Background 

 
The concept of the neural network came up as early as the middle of this century. A 

neural network is an data processing algorithm that is inspired by the way biological nervous 

systems process information. A neural network is an assembly of simple processing elements, 

the nodes, whose functionality is loosely based on the animal neuron. The processing ability 

of the network is stored in the inter-unit connection strengths, the weights, which are obtained 

by a learning process.  [7] 

Neural networks are used in statistical analysis and data modeling, in which their role 

is to perform a non linear regression or cluster analysis. Therefore they are typically used in 

problems of classification, image and speech recognition. In addition neural networks are 

applied in domains of human expertise such as medical diagnosis. As explained in chapter 1 

neural networks, with their remarkable ability to derive meaning from complicated data can 

be used to extract patterns that are too complex to be noticed by other computer techniques. 

This fact made neural networks a powerful tool in statistical survival analysis. 

The type of networks that is most commonly used in survival analysis is the 

multilayer feedforward network. The class consists of one or more hidden layers whose nodes 

are called hidden nodes. The function of hidden nodes is to intervene between the input and 

the network output in some useful manner. By adding one or more hidden layers the network 

can extract higher statistics which is particularly valuable if the size of the input layer is 

large. 

The most commonly used training algorithm for the multilayer feed forward networks 

is the Backpropagation training algorithm. It is a supervised learning rule which offers a 

solution to the multilayer training problem. Backpropagation is a generalization of the 

Widrow -Hoff learning rule to multiple-layer networks and nonlinear differentiable transfer 

functions. Input vectors and target vectors are used to train a network until it can approximate 

a function, associate the input to the output vectors, or classify input vectors in an appropriate 

way as defined by the designer.  
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Standard Backpropagation is a gradient descent algorithm, as is the Widrow-Hoff 

learning rule, in which the network weights are moved along the negative of the gradient of 

the performance function. The term Backpropagation refers to the way in which the gradient 

is computed for nonlinear multilayer networks. There are a number of variations on the basic 

algorithm that are based on optimization techniques, such as conjugate gradient and Newton 

methods. [8] 

The basic idea is to give the input vector and calculate the output of each layer  

in the forward direction. For the output layer the desired values are known (supervised 

learning) and therefore the weights can be adjusted according to the gradient descent rule.  

To calculate the weights in the hidden layer the error in the output layer is transferred 

back to these layers according to their connecting weights. This process is repeated for each 

sample in the dataset. One cycle through the dataset is called an epoch.  

 

 
 

Figure 2. An example of a multilayer network with three hidden layers. [8] 

 

The transfer functions that can be used in the Backpropagation training algorithm are 

the purelin the tansig and the logsig (MATLAB environment). A simple neuron is shown in 

the picture below.  
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Here p1 to pR are consist the input vector, w 

show the weights, b the bias f the transfer 

function. The sum of the weighted inputs and 

the bias forms the input to the transfer function 

f. Neurons may use any differentiable transfer 

function f to generate their output. 

 

Figure 3.  A layer of a network. [8] 

The argument of the transfer function is the sum of the bias plus the weighted inputs. 

11 1 12 2 1.... R Rn w p w p w p b= + + + +  Where R is the number of inputs. For the  

Backpropagation algorithm the transfer functions that can be used are: 

 

 
    The log sigmoid transfer function generates  

 outputs between 0 and 1 as the neuron’s net input                  

goes from negative to positive infinity 

 
 
 

Figure 4. The log sigmoid transfer function [8] 
 

 
The tan sigmoid transfer function, 

 
 
 
 
 

Figure 5. The tan sigmoid 
transfer function [8] 

 
 

Occasionally the linear transfer function purelin 

 is used in Backpropagation networks  

 
 

 

Figure 6. The linear transfer function. [8] 

 



 52

There are many variations of the Backpropagation algorithm. In the simplest 

implementation, the network weights and biases change in the direction in which the 

performance function decreases most rapidly which is the negative of the gradient. An 

iteration of this algorithm is 1k k k kx x a g+ = −  where kx  is the vector of current weights 

and biases, ka is the learning rate and kg is the current gradient. There are two different ways 

in which this gradient descent algorithm can be implemented: incremental mode and batch 

mode. In the incremental mode, the gradient is computed while the weights are updated after 

each input is applied to the network. In the batch mode all of the inputs are applied to the 

network just before the weights are updated.  

In multilayer feedforward networks the input neurons supply input data to the first 

hidden layer whose outputs constitute to the second hidden layer and so on. The outputs of 

the final layer represent the response of the network to the inputs fed by the input neurons of 

the input layer.  

Learning process can either be supervised or unsupervised. In supervised learning the 

inputs and the outputs are provided. The network then tries to learn a set of input output pairs 

which constitute the training set. Therefore the weights are adjusted such as the network 

responds to any input by the desired output or with an accepted accuracy or error. This 

process occurs repeatedly as the weights are continually changed. During the training of the 

network the same set of data is processed many times as the connection weights are refined.  

For faster training the Levenberg- Marquardt algorithm can be used to train the 

network. Like the quasi-Newton methods, the Levenberg-Marquardt algorithm was designed 

to approach second-order training speed without having to compute the Hessian matrix. 

When the performance function has the form of a sum of squares, then the Hessian matrix 

can be approximated as TH J J= and the gradient descent can be estimated through 
Tg J e= where J is the Jacobian matrix which contains the derivatives of the network errors. 

The Levenberg-Marquardt algorithm uses this approximation to the Hessian matrix in the 

following Newton-like update: 
1

1 [ ] T
k kx x H I J eμ −
+ = − +  
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When the scalar µ is zero, this is just Newton's method, using the approximate 

Hessian matrix. When µ is large, this becomes gradient descent with a small step size. 

Newton's method is faster and more accurate near an error minimum, so the aim is to turn 

towards Newton's method as quickly as possible. Thus, µ is decreased after each successful 

step (reduction in performance function) and is increased only when a  step would increase 

the performance function. In this way, the performance function will always be reduced at 

each iteration of the algorithm. [8] 

 

4.2 Neural Networks for the Ocular Melanoma dataset 

 

 The Cox proportional hazards model can be implemented with the use of the 

Backpropagation multilayer neural network. Two different nets will be modeled, one to 

simulate the baseline hazard function and another one to simulate the covariates (the 

exponential part of the model) Taking into consideration the general formula of the Cox 

model the two networks will be: 

0( , ) ( ) exp( )T
i ih t z h t z β= ⋅  

  
                                          Baseline network 

 
                  Covariates network 

 
The two networks are multilayer feed forward with the Backpropagation algorithm. 

The learning type is supervised in both cases, since the output target is known. For faster 

training the Levenberg- Marquardt algorithm is be used to train the networks too. The 

transfer and activation functions as well as the training epochs vary for each network.  

The baseline function approximation as introduced in chapter3 can be  performed with 

two different estimators. The first one was the Breslow estimator and the second one was the 

extended Kaplan Meier. Both of these estimators were extensions of simple estimators in the 

absence o covariates (Nelson Aalen, Kaplan Meier). Since the results were approximately 

equal only one of those two will be implemented with a neural network. The estimator that is 

most widely used in the Cox model for the baseline hazard approximation is the Breslow 

estimator.  

The neural network will be a multilayer net with hidden nodes on which the 

Backpropagation training algorithm will be applied. The inputs and the output of the network 
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will be defined from the Breslow estimator 0
( )

( )

( )( )
exp( )

i

T
t i t l

l R t

d iH t
z β≤

∈

= ∑ ∑
. The unknown 

parameters are the number of deaths at each time and the sum of exp( )T
lz β  for each patient 

at risk at the same time. Much attention must be given to the censoring times since d (i) refers 

only to deaths but exp( )T
lz β  refers to censored patients too. When censoring takes place, the 

patient is considered at risk at that time but not at the following times. The network couldn’t 

be trained to include or cancel out censored patients because a censoring variable is not 

present at the estimator. 

 Therefore, the network is created to have one input, which would be a vector of two 

elements, the number of deaths d (i) and the sum exp( )T
lz β  of patients at risk. The output of 

the network is obviously one, the values of the cumulative hazard of the baseline hazard 

function. The input vector has length 240, since there are 240 discrete times when deaths take 

place among the 743 patients. The output is of the same length. In addition, 6 hidden layers 

were applied for the outcome to be reasonable since the input is vector is large. The first layer 

has 2 nodes, the next two hidden layers have 5 nodes each, the fourth 20 and the following 

two 5 nodes each. The transfer function applied to the input and the 5 hidden layers is the tan 

sigmoid while the output layer has a linear transfer function. 

In order to have a network with inputs and outputs and training according to the error of 

each epoch, a Backpropagation rule was used.  With this learning rule the network weights 

are moved along the negative of the gradient of the performance function. 

The training algorithm is the Levenberg- Marquardt which was analyzed earlier in the 

chapter. The learning function is the Gradient descent momentum weight/bias learning 

function. This function calculates the weight change dW for a given neuron for the neuron’s 

input, the error, the weight, the learning rate and the momentum constant MC, according to 

the gradient descent with momentum: dW = mc*dWprev + (1-mc)*lr*gW. The previous 

weight change dWprev is stored and read from the learning state LS. 

The main idea is that in the future one could simulate this network by supplying the 

inputs (number of deaths and the sum exponential for patients at risk) to easily obtain the 

values of the cumulative baseline hazard function.  
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The input dataset was divided into two sets, one for simulating and one for training.  

The two sets had to be equal. When the original input (240 elements) was split into two sets, 

one containing the first 120 elements and the second the rest, simulation had very bad results. 

The training set and the simulation set must have same deviations and for this reason, the 

original set was divided with a rule that supports both big and small values in the two sets. 

The Covariates Network is referred to the exponential part of the Cox proportional 

hazards model. The main idea is to create a network that provides the values of the 

exponential part for each patient. In the future any one would be able to obtain the 

exponential part by entering the covariate values.  

0( , ) ( ) exp( )T
i ih t z h t z β= ⋅  

Given the formula of the Cox proportional hazards model, the inputs of the neural 

network are three. These will be the three covariates under examination, longest ultrasound 

basal dimension, ultrasound height and the epithelioid cellularity. The input values can either 

be numerical or binary. The regression parameter is not an input to the neural network so it 

won’t be necessary in later studies to approximate it in order to simulate the network.  The 

output of the network is the value of the exponential part for each patient. In other words, this 

network performs a regression, since the regression parameter β can be easily obtained from 

network’s output. 

The network that has been evaluated is a feed forward multilayer network with the 

Backpropagation learning rule. The learning is supervised again since the target output is 

known. The training function is the Levenberg- Marquardt which was analyzed earlier in the 

chapter. The learning function is the Gradient descent momentum weight/bias learning 

function. 

 In order to achieve a good performance our data is divided into three sets that will be 

used for training, testing and validation of the network correspondingly. The user can select 

the number of data vectors that each set will consist of.  This is done by giving specific 

values at the variables NTR (training) and NTST (testing). The remaining data will be used 

for validation.  Suppose a user enters 100 data vectors for training. In order to achieve 

efficient training, these 100 data vectors should not be sequential. Therefore an algorithm was 

created that selects 100 data vectors normally distributed across the entire data set. Hence, 

they are not sequential and will be used for training only. This means that a certain column of 

the input vector will be part of only one these three sets.  This process is handled by indexing 
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on the input matrix. In other words we pick the sets as equally spaced points throughout the 

original data. 

 After defining the indexes for each set, 6 matrices are constructed. The first two are 

the input and output data for validation, the second is the input and output testing data and the 

rest is the input and output training data.  

The Backpropagation Neural Net was chosen as it is one of the most powerful neural 

net types. Generally this network has the same structure as the Multi Layer Perceptron and it 

uses the Backpropagation learning algorithm. This Neural net type is a feedforward which 

means that that there are connections only between two different layers.  Our purpose is to 

approximate a function effectively.   
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Chapter 5 
Implementation Aspects and Results. 

 
Chapter 5 provides the results of the three statistical methods under examination. 

Several implementation aspects are explained for the Kaplan Meier, the Cox model and the 

Log logistic regression model. In addition, the results from the log rank test are provided 

after the Kaplan Meier method since they are methodologically close. Finally, the neural 

networks results are presented and the correlations of the network’s outputs and targets 

are provided.  

 
5.1  Non parametric: Product limit estimate (Kaplan Meier). 
 
   The Kaplan Meier estimate is a simple way of computing the survival curve. It 

involves computing the number of people who died at a certain time point, divided by the 

number of people who are still at risk in the study. 

   The formula of the estimator is
1

( )( ) (1 )
( )

N

i

d iS t
n i=

= −∏ . In this formula, N is the 

number of time points, d (i) is the number of deaths at each time point and n (i) is the risk 

set at this time. The risk set was analyzed in chapter 3.  

   The Kaplan Meier estimator was not applied to the whole original dataset. The 

reason is that in order to have analogue results with the Cox proportional hazards model 

the dataset had to be reduced to 743 patients (The Cox model examines covariates and 

there are missing values in the dataset, which leaves us with 743 patients with full 

records). 

The estimator was programmed with the help of MATLAB environment the 

code of which is available in APPENDIX A.  In addition it was programmed with the 

SPSS statistical tool the code of which is in APPENDIX A and the results in APPENDIX 

B. 
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Figure 7. Survival curve for 743 patients from the ocular melanoma dataset 

  obtained from the Kaplan Meier estimator 

 

Figure 7 is a probabilistic plot that is very useful in survival analysis as it 

expresses the experience of 743 patients suffering from the ocular melanoma disease. 

The vertical Y axis gives the proportion of people surviving.  The value is a 

fraction which runs from 1 at the top to zero at the bottom representing 100% survival 

to zero percent survival at the bottom. Often the actual percentage is used rather that the 

proportion. 

The horizontal X axis gives the time after the start of the observation experiment. 

Even if the observation o different patients started at different times the curve represents 

the experience of each patient from the time that observation began for that patient.  

Any point of the curve gives the proportion or percentage surviving at a particular 

time after the beginning of the observation. A survival curve always starts out with 

100% survival time at zero, the beginning. From there it can descend or stay level but it 

can never increase. 
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In the survival curve of figure 7, it is obvious that in the end of the study period 

there have been observed sudden deaths. These deaths alter the plot in a way that they 

affect the conclusions. After the 23rd year of the disease there is a big step down due to 

this deaths. These deaths effect might be statistically wrong and can be cancelled out. In 

the case where they are cancelled out the survivability at the 23rd year is 32% and not 

29%. 

Most survival curves are portrayed as staircase curves with a ‘step’ down to mean 

that there is a death. At the moment of each death the proportion of survivors decreases 

and it cannot change at any other time.  

There are two main types of survival curves. First, curves which flatten to a level 

plateau and which suggest that patients are being cured, and second curves which 

descent all the way to zero implying that no one is cured.  

The median survival is the time at which the percentage surviving is 50%. If more 

than half patients are cured there is no such point in the survival curve and the median is 

undefined. For the ocular melanoma disease the median survival is at 17th year of the 

disease. This suggests that after the 17th year half the patients die.  

 
Figure 8. Kaplan Meier plot showing the Median survival. 
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The Kaplan Meier estimator can be implemented to obtain the survival curves 

of two groups, patients with epi 1 and epi 0. First the dataset is divided into two 

homogeneous sets concerning the epi variable. The first group has 464 patients with epi 

1. The second group has 279 patients with epi 0. It is important to notice that not all 

patients from the original dataset are used, because there were missing values concerning 

the covariates. Therefore 743 patients with known covariates were selected to be part of 

the calculations. 

In the first group there are totally 184 deaths and 280 censoring cases. In the 

second group there are 89 deaths and 190 censoring cases. The Kaplan Meier estimator is 

used (
1

( )( ) (1 )
( )

N

i

d iS t
n i=

= −∏ ) to obtain the following survival curves. 

 
  Figure 9. Kaplan Meier plots for two populations. The first group  

  has epi=1 and the second epi=0. The curve is obtained from the  

  SPSS environment. 
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From figure 9 it is clear that at any time spot that the patients with epithelioid 

cellularity are less likely to survive than patients without it. The median survival for 

patients with epi1 is at the 10th years while for patients with epi 0 is at the 20th year.  

For the purposes of the log rank test, the null hypothesis has to be formulated. The 

groups under observation are two; the first one includes patients with epithelioid cellularity and 

the second patients without it. The null hypothesis is that the two groups are equally likely to 

survive at any given time point.  

Null Hypothesis S A (t)=S B (t) 

  The properties of each group under examination are: 

 Group A (epi=1) Group B (epi=0) Total  

Deaths 184 89 273 

Censoring 280 190 470 

Total  464 279 743 

 

  For every time point the expected number of deaths is calculated if there were in 

reality no difference between the groups and the null hypothesis was true. The real number of 

deaths is also calculated. For example, the first death occurred at time 0.02, when one patient 

from the first group (epi =1 ) died. At the start of this time period there were 743 patients alive 

in total, so the risk of death was 1/743.  There were 184 patients in group A, so if the null 

hypothesis were true the expected number of deaths would be 464x1/743= 062. Likewise, in 

group B the expected number of deaths is 279x1/743= 0.37.  The same calculations occur each 

time an event occurs. If a survival time is censored, that individual is considered to be at risk of 

dying at that time but not in subsequent times. This way of handling censored observations is 

the same as for the Kaplan Meier survival curve.  

  In the end of these calculations, the expected numbers of deaths for each group are 

summed as well as the true number of deaths. The chi square can be used to test the null 

hypothesis. The degrees of freedom are the number of groups minus one that is 1. The test 

statistic is computed through the formula: K= 
2 2( ) ( )A A B B

A B

O E O E
E E
− −

+ . Here O is the real 

number of deaths for each group and E the expected number of deaths. The test statistic is a 

measure of difference between what was observed and what we’d expected if there were no 

difference between the populations. Asymptotic argument suggests that if there were no 

population differences the statistic K has approximately a chi square distribution with one 
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degree of freedom. Comparing k with chi square tables enables us to obtain a p value which 

measures the strength of the hypothesis of no population difference.  The log rank and the chi 

square results are performed with the help of MATLAB environment the code of which is in 

APPENDIX A.  

  The test statistic is 30,525 (Also computed by the SPSS, APPENDIX B).  This 

statistic is checked at the chi square distribution with 1 degree of freedom.  

 
Figure 10. The chi square distribution for 1 degree of freedom. 

 

Degree of 

freedom 

Probability p 

/ 0.99 0.95 0.05 0.01 0.001 

1 0.000 0.004 3.84 6.64 10.83 

Table 1. Chi square values for one degree of freedom. 

 

Literature in chi square tests mentions that if the estimated K value is greater 

that the chi square value in the 0.05 column (at specific degrees of freedom) then there 

is a significant difference from the null hypothesis. This would mean that there is only 

5% probability that the estimated K value would occur by chance.  

The test statistic computed for the specific dataset is 30.525 with one degree of 

freedom. And it exceeds the chi square value in the 0.001 probability columns. This can 

make us even more confident that the null hypothesis can be rejected. 
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From the chi square distribution the corresponding probability is 

p<0.00000003295 and we can sensibly reject the null hypothesis. The p values is the 

probability that a test statistic at least as significant as the one observed would be 

obtained assuming the null hypothesis were true. The smaller the P value the stronger 

the evidence against the null hypothesis.  The reason why the chi square is used in the 

log rank test is because the chi square distribution is non parametric and it does not 

require the data to be more or less normally distributed. In addition chi square can be 

applied only when observations are independent.  

 

5.2 Semi parametric: The Cox Proportional Hazards Model  

   
 

The semi parametric Cox model is a model that includes the covariates to 

examine their influence on the disease. For the purposes of this model, three covariates 

were selected to examine their effect on the evolution of the ocular melanoma disease. 

There are no time dependent variables in the ocular melanoma dataset and for this 

reason the simple version of the model is used. Since the covariates are time 

independent so that the proportionality assumption is met. The proportionality 

assumption is that the hazard ratio of two different patients with covariate vectors z1 

and z2 is constant. 

0 11 1 1 1
1 2

2 0 2 2 2 2

( ) exp( )( , ) ( , ) exp( ) ( , ) exp[( ) ]
( , ) ( ) exp( ) ( , ) exp( ) ( , )

T T
T T

T T

h t zh t z h t z z h t z z z
h t z h t z h t z z h t z

β β β
β β

= ⇒ = ⇒ = −

 

  Since the covariates vectors z are time independent the expression 

1 2exp[( ) ]T Tz z β−  is also constant over time and therefore the proportionality assumption 

is met. 

 In addition the three variables that are selected have to have some serious 

medical interest. Doctors should need the conclusions of this study in order to diagnose 

the severity of the ocular melanoma given a set of prognostic factors. The covariates 

selected were: ultrasound height, longest ultrasound basal dimension and the indicator 

of epithelioid cellularity. There are missing values in these three variables at the 

original dataset which is the reason why the dataset was reduced to include patients 

with known covariates. The new sub set dataset involves 743 patients. 
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  The formula of the Cox proportional hazards model is 

0( , ) ( ) ex p ( )T
i ih t z h t z β= ⋅ . Z is the vector of covariates and β is the regression 

parameter. In addition h0 (t) is the underlying baseline hazards function, that is a function of 

time which is covariates independent.  

  The baseline hazards function will be approximated with two different but close   
estimators, the Breslow estimator and an extension of the Kaplan Meier estimator. The 

regression parameter is estimated with maximum likelihood estimation as analyzed in chapter 

3.  
The regression was performed with the SPSS environment. SPSS took advantage only 

of uncensored patients (patients whose death indicator is 1). It is important that SPSS has a 

variable which indicates if a patient is censored or uncensored. In our case this variable is 

“death” which has binary values, 1 to indicate death and 0 to indicate censored. The SPSS 

also performs an Omnibus test. It first analyzes the data to quantify the asymmetry of the 

distribution and then calculates how much each of these values differs from the value 

expected from a Gaussian distribution and computes a single value from the sum of the 

squares of these discrepancies.  The code for the SPSS and alternatively a MATLAB code are 

provided at APPENDIX A.  

The estimated regression parameter is 
1

2

3

0.127
0.033
0.664

β
ββ
β

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟= =⎜ ⎟ ⎜ ⎟

⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠

 

The regression parameter β could have both positive and negative values. The values 

are all positive which means that the prognostic factors affect the disease. The higher these 

values are the higher is the hazard and eventually the lower is the survival probability. A 

value closer to 0 means that this variable affects the disease less. From the results above, the 

longest ultrasound basal dimension and the epithelioid cellularity affect the disease more. 

This means that a higher value of these values will result in higher hazard or risk of death.   

A very important conclusion can be made here. A patient that appears to have 

epithelioid cellularity is less likely to survive than a person who doesn’t.  Therefore, the 

presence or not of epithelioid cellular can be a serious prognostic factor for this kind of 

disease.  

Since the regression parameter is estimated, the Breslow estimator can be used to 

approximate the baseline hazard function. The formula of this estimator is 
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( )( )
exp( )
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T
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d iH t
z β≤

∈

= ∑ ∑
where d (i) is the number of deaths at each distinct time, and R (t) 

is the risk set at each specific time point. The idea of the risk set was analyzed in chapter 2.  

The estimator is programmed in the MATLAB environment the code of which is available in 

APPENDIX A. It has also been performed with the help of the R language, the code of which 

is in APPENDIX A and results in APPENDIX B. 

Obviously Breslow’s formula is an estimator and not a function used to obtain 

separate estimations of the cumulative hazard at each death time. In order to obtain the 

distribution from this estimator‘s output   MATLAB environment was used to perform the 

fitting. To make sure that there is only one distribution and a standard selection of its 

parameters, the data was divided into three different sets at random. Each set was tested to 

examine the quality of fitness to a certain distribution. The main idea is that once the same 

distribution fits properly three different sets, then it will certainly fit their union.  

To examine the quality of fitness some goodness parameters were estimated to 

indicate a good or bad fit. Those parameters were: 

            Sum of squares due to error. This statistic measures the total deviation of the 

response values. It is also called the summed square of residuals and is usually labeled as 

SSE. A value closer to 0 indicates a better fit. 
2

1
( )

n

i i i
i

SSE w y y
=

= −∑  

    R-square. This statistic measures how successful the fit is in explaining the variation 

of the data. In other words it is the square of the correlation between the response values and 

the predicted response values. It can take any value between 0 and , with a value closer to 1 

indicating a better fit. 1SSR SSER square
SST SST

− = = −  

          Where  
2

1
( )

n

i i
i

SST w y y
=

= −∑  and  
2

1
( )

n

i i
i

SSR w y y
=

= −∑  

   Adjusted R square. This statistic is generally considered to be the best indicator of the 

fitness, for model with coefficients. It can take values less than or equal to 1, with 1 

indicating the best fit. ( 1)1
( )

SSE nAdjusted R square
SST u

−
− = −  

        Root mean square error.  This one is also known the fit standard error of the 

regression. SSERMSE
u

=  
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(Note:  n = number of response values, m = number of fitted coefficients, u = n-m)  

All relevant code is available in APPENDIX A. The Breslow estimator is used to 

compute the cumulative hazard values and then these values are fitted with the help of 

MATLAB in a known distribution. During the fitting process the parameters of the distribution 

are estimated.  

The quality of fitness is more than accepted since the parameters which were 

explained earlier have acceptable values: 

 
Measure Value Good Fit values 
Sum of squares due to error 0,0022721 Close to 0 
R-square 0,98346 Close to 1 
Adjusted R- square 0,98339 Close to 1 
Root mean square error 0,0030897 Close to 0 

 
 The distribution that turned out to fit the data best is 0 ( ) log(1 )H t atγ= +  and the 

parameters α and γ are estimated to be 1.036
0 ( ) log(1 0.005176 )H t t= + . The parameters are 

estimated as long as the function is fitted.  

It can be proved that 0 ( ) log(1 )H t atγ= + is the log logistic Cumulative Hazard.  

( ) log(1 )H t atγ= +  ,  0
1( ) exp[ ( )] ( )

1
S t H t S t

a tγ
= − ⇒ =

+ ⋅
    (7) 

1

0

( )( ) ( ) ( )
1

t dH t tH t h x dx h t
dt t

γ

γ

αγ
α

−

= ⇒ = =
+∫   (8) 

 
From the definitions, the relationship of the hazard function to the cumulative survival 

function is: ( )( )
( )

f th t
S t

=  (9). 

 Where f (t) is the probability density function (in the case of the log logistic 

distribution the probability density function is known to be:  
1

2( )
(1 )

tf t
t

γ

γ

αγ
α

−

=
+

  ) Equations 7 

and 8 are replaced in equation 9.  

1
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γ
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 This is indeed the probability density function of the well known log logistic distribution.  
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Figure 11. Cumulative hazard obtained from the Breslow estimator and it’s fit to  

the log logistic cumulative hazard function. 

 
 

 

The baseline hazard function can be derived form definition 7 of chapter 2  (where the 

hazard function derives from the survival function
0

( ) log ( )
t

h x dx S t− =∫ ). Therefore, the 

baseline hazard function is 
1

0 ( )
1

th t
t

γ

γ

αγ
α

−

=
+

 . 
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     Figure 12. The baseline hazard function obtained from the Breslow estimator and  

   definition 7 of chapter 2 

  
 

 

]Having obtained the cumulative hazard function, the cumulative survival can be 

easily obtained using 0
1( ) exp[ ( )] ( )

1
S t H t S t

a tγ
= − ⇒ =

+ ⋅
 and with the estimated 

parameters 0 1.036

1( )
1 0.005176

S t
t

=
+ ⋅

. The plot of the Cumulative survival function (derived 

from the Breslow estimator) is: 
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Figure 13. The Cumulative survival function from the Breslow estimator. This plot  

cannot be considered probabilistic and is much different from the Kaplan Meier  

survival curve.  

 

Having obtained the baseline hazard function and the regression parameter, the hazard 

function can be plotted for each patient. Each patient has a specific covariate vector, which is 

used in the exponential non parametric part of the Cox model in a multiplicative way. In this 

way, every patient is expected to raise the hazard function on the y axis at an amount 

proportional to this individual’s covariates.  

In practice, it is not the hazard function plot that is needed to make conclusions. The 

Cox model is not just useful in estimating and plotting hazard plots. The main interest is not 

the hazard function of a certain individual but the form of the baseline hazard function and 

the values of the regression parameters.  

From the plot of the density hazard function one can see how the hazard changes as 

years pass. It is clear that there is a hazard peak at the 5th year of the disease. This conclusion 

is justified by the doctors too. It is generally believed that the 5th year of the ocular melanoma 

disease is critical concerning the survivability. In other words, a patient is more likely to 

experience the event before the 5th year rather than after it. 
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Figure 12 is the plot of the baseline hazard function. The dependent variable is the 

survival of patients which is counted on years. This plot can not be interpreted as a 

probabilistic plot. Its peak does not show death (Every patient’s hazard function will have the 

exact same form, but this doesn’t mean that all patients experienced the event at the 5th  year).  

There is large distance between the Survival curve of the Breslow estimator and the 

Kaplan Meier estimator that was analyzed in earlier in this chapter. The risk set in the Kaplan 

Meier estimator included patients as units. On the contrary the risk set in the Breslow 

estimator includes the exponential of patient’s covariates. In addition, the figure above can 

not be interpreted as probability of dying, or the proportion of people surviving due to the 

exact same reason. The cumulative survival or cumulative hazard curves that are obtained 

form the Breslow estimators are only used to obtain the baseline hazard function and not to 

make consumptions.  

The Kaplan Meier estimator is also an estimator of a cumulative survival function in 

the absence of covariates. This survivorship function shows how the probability of surviving 

changes through time, living aside the existence of any kind of covariates. Thus, there is a 

theoretical relationship of the Kaplan Meier’s estimator for the survival function, with the 

baseline hazard function.  

The formula of the Kaplan Meier estimator is
1

( )( ) (1 )
( )

N

i

d iS t
n i=

= −∏  .  (Eq. 10) 

Here d ( i) is the number of events that take place at the same time with the event of 

the ith patient. n (i) is the number of patients who are still at risk when the ith patient 

experiences the event. In other words, n (i) indicate the number of patients that have more 

survival years than the ith patient and are not censored.  

Of course we can not cancel out completely the fact there are some covariates that 

affect the survivorship. The main idea of the second step for this implementation is that the 

Kaplan Meier survival function can be transformed to include somehow the effects of the 

covariates.  
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This implementation is completely analogue to the Nelson Aalen and Breslow 

estimators in chapter 6.1.2. Therefore, an analog of the Kaplan Meier estimator can be 

derived for S (t) by thinking if h0 (t) in terms of a discrete hazard having mass 

( )

( )
exp( )

i

T
l

l R t

d i
z β

∈
∑

 at each failure time. This could be interpreted as the probability that m 

individuals with covariates x=0 fail at ti conditional on the sets of covariates observed 

individuals at risk at ti. Therefore the analogue of the Kaplan- Meier estimator is: 

0
( )

( )

( )( ) 1
exp( )

i

T
t i t l

l R t

d iS t
z β≤

∈

⎡ ⎤
⎢ ⎥= −⎢ ⎥
⎢ ⎥⎣ ⎦

∏ ∑
 ( 11)  

This estimator is actually the same with the Kaplan Meier (Eq. 10) for β=0 which 

theoretically means that no covariates affect the survivorship of an individual. 

Obviously, the extended Kaplan Meier is an estimator and not a function used to 

obtain separate estimations of the cumulative survival at each death time. In order to obtain 

the distribution from this estimator‘s output the MATLAB environment is used to perform 

the fitting. To make sure that there is only one distribution and a standard selection of its 

parameters, data is divided into three different sets at random. Each set is tested to examine 

the quality of fitness to a certain distribution. The main idea is that once the same distribution 

fits properly three different sets, then it will certainly fit their union.  

To examine the quality of fitness some goodness parameters were estimated to 

indicate a good or bad fit. Those parameters were: Sum of squares due to error,   R-square,  

Adjusted R square and  Root mean square error.   

The analogue to the Kaplan Meier estimator is performed with the help of MATLAB 

environment (APPENDIX A).  Having obtained the values of the survival function from the 

analog to the Kaplan Meier estimator, they are fitted in a distribution in a way that the quality 

of fit is accepted, to obtain the survival function. MATLAB environment is used to carry out 

this process (APPENDIX A). The method used was the non linear least squares fitting. In 

addition, to make sure there were only one appropriate distribution and a standard selection 

of parameters, data is divided again into three random sets, which are checked individually 

for their fitness to the same distribution.  
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The distribution that turns out to fit the data best is 0
1( )

1
S t

a tγ
=

+ ⋅
 (7) and the parameters α 

and γ are estimated to be 0 1.037

1( )
1  0.005169

S t
t

=
+ ⋅

. It can be proved that equation 7 is the log 

logistic Cumulative Survival.  
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From the definitions, the relationship of the hazard function to the cumulative survival 

function is: ( )( )
( )

f th t
S t

=  (9) where f (t) is the probability density function (in the case of the 

log logistic distribution the probability density function is known to be:  
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Equations 7 and 8 are replaced in equation 9.  
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This is indeed the probability density function of the well known log logistic 

distribution. 
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Figure 14. The baseline cumulative survival function from the extended Kaplan    

Meier estimator. This plot is very close to the one obtained form the Breslow  

estimator in figure 13. 

 
  Figure 15. The baseline cumulative hazard function obtained from the survival  

 function of figure 14. This function derives from the extended Kaplan Meier  

 estimator. Figure shows its fit to the log logistic distribution. 
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The quality of the fitness is good. The parameters checked for the quality are: 

Measure Value Good Fit values 
Sum of squares due to error 0,0022926 Close to 0 
R-square 0,98334 Close to 1 
Adjusted R- square 0,98327 Close to 1 
Root mean square error 0,0031037 Close to 0 

 

 We continue with the exact same process with the first implementation. The density 

hazard function can be mathematically obtained from the cumulative hazard function.     
1

0

( )( ) ( ) ( )
1

t dH t tH t h x dx h t
dt t

γ

γ

αγ
α

−

= ⇒ = =
+∫   (8) 

 
    Figure 16. The baseline hazard function derived from the extended Kaplan Meier 

   estimator. This function is very close to the one obtained from the Breslow estimator in  

   figure 12. 

 

From the plot of the density hazard function one can see again how the hazard 

changes as years pass. It is clear that there is a hazard peak at the 5th year of the disease. 

Again, there is higher probability that a patient will experience the event before the 5th year 

rather than after it. 
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Figure 16 is the plot of the baseline hazard function. The dependent variable is the 

survival of patients which is counted on years. This plot can not be interpreted as a 

probabilistic plot. Its peak does not show death (Every patient’s hazard function will have the 

exact same form, but this doesn’t mean that all patients experienced the event at the 5th  year).  

The Breslow estimator and the extended Kaplan Meier estimator have mathematical 

similarities as explained in chapter 3 and therefore they conclude in close values.  

This conclusion is perfectly met in this project since the values of the cumulative 

hazard, survival and density hazard from the two estimators are very close. This is a 

reasonable conclusion considering that the Extension of the Kaplan Meier is a derivative of 

the simple Kaplan Meier estimator. In addition the Breslow estimator is e derivative of the 

Nelson Aalen estimator. In general the simple Kaplan Meier and the Nelson Aalen estimators 

conclude in close values for the survival function. It is therefore reasonable that their 

extensions will act the same since covariates appear multiplicatively in both of them.  

 
  Figure 17. Cumulative survival functions from Breslow and Extended  

Kaplan Meier estimators. 
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 Figure 18. Cumulative hazard functions from the Breslow and the extended Kaplan  

Meier estimators. 

 
 Figure 19. Baseline hazard functions from Breslow and extended Kaplan Meier 

estimators. 
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The red line in figures 17, 18 and 19 is for the hazard plot obtained through the 

Breslow estimator while the blue one is from the analog to Kaplan- Meier estimator. The two 

plots have the exact same form, which was expected since the same sample was examined in 

both cases. Furthermore, the implementations were examined in the terms: Regression 

parameter independent from the baseline hazard distribution and a hazard function that does 

not cancel out the regression parameter.  

Of course there are some differences between these two plots, which happens because 

the two estimators are not 100% equivalent. Of course a part of these deviations is due to the 

MATLAB incapacity to approximate perfectly a given set of variables.  

At this point it is essential to identify each estimator that was used in the Cox model 

to obtain the baseline hazard function. The following table summarizes these estimators as 

well as showing their origin.  

The estimator in absence 

of covariates 

The estimator in presence of 

covariates 

 

Nelson Aalen  

0
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Incomparable 

Kaplan Meier 

1
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Extended Kaplan Meier 

0
( )

( )

( )( ) 1
exp( )

i

T
t i t l

l R t

d iS t
z β≤

∈

⎡ ⎤
⎢ ⎥= −⎢ ⎥
⎢ ⎥⎣ ⎦

∏ ∑

 

Incomparable 

Comparable Comparable  

 

The extended Kaplan Meier estimator is comparable to the Breslow estimator as 

proven in figures 17, 18 and 19. The Kaplan Meier is also comparable to the Nelson Aalen 

estimator. In addition, there can not be any comparison among the Breslow and the Nelson 

Aalen estimator since only the second one is a probabilistic plot. On the other hand the 

survival function obtained from the Cox model (using the Breslow estimator) is well 

compared to the Nelson Aalen and the Kaplan Meier estimator.  

The Cox regression with the maximum likelihood estimation was used to obtain the 

regression parameter β.  Analyzing β we have proven that the epithelioid cellularity is the 

prognostic factor that affects the disease most. 
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 In addition the baseline hazard function was approximated by implementing the 

Breslow and the extended Kaplan Meier estimator. Therefore all parts of the Cox formula 

have been estimated and we can use 0( , ) ( ) ex p ( )T
i ih t z h t z β= ⋅  to plot the hazard 

function for each patient. The higher the exponential part of the formula the higher does it 

displace the baseline hazard function. Therefore, a patient with higher probability of dying 

has higher values on the y axis of the hazard curve. 

Useful conclusions can be made when plotting the hazard functions of patients with 

epithelioid cellularity versus patients with epi=0. It is expected that patients with epi=1 will 

have higher curves than those with epi=0. In addition this distinction has to be clear. 

 
   Figure 20. Hazard functions of 743 patients obtained from the Cox model. Red plots are 

for patients with epithelioid melanoma and blue for patients without it. 

 

In order to obtain the survival plot from the Cox model, the following 

transformations are performed: 
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 Figure 21. Survival functions for 743 patients from the Cox model. Red plots present 

patients with epithelioid melanoma and who have less average survivability than patients 

without it who appear in blue. 

 
  To make clearer the influence of epithelioid melanoma on ocular melanoma patients, 

the original dataset is divided into two sets (with the epi variable) and hazard functions 

from the Cox model are plotted for each group in their mean covariate value.  
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 Figure 22. Hazard functions at the mean covariate values of patients with epithelioid 

melanoma (blue) and patients without it (red). Patients with epi =1 have higher hazard 

values.  

 

Figure 22 shows that patients with epithelioid cellularity (epi=1, with blue) 

have higher hazard values than patients with without. This conclusion totally agrees with 

the one made from the regression results. In addition, figure 23 shows that patients with epi 

=1 have less survivability than patients without it.  
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a) 

 
b) 

 
     Figure 23. a) Survival functions of two groups at their mean covariates  

     values  from the Cox model. Blue plot is for patients with epithelioid cellular  

     and red for patients with epi  =0. b) The same plots fitted in distributions 



 82

Following the same steps, the survival plots for patients with high and low 

ludb can be obtained by dividing the dataset into two groups. The median value of the ludb 

covariate is 14.9. The plots of 743 patients are shown in figure 24.  

The same conclusion can be made about the ultrasound height, the third 

covariate under examination. The median value is 10.  In figure 25, red is for patients with 

uh larger than 10 and blue lower than 10. 

 

 

 

 
 Figure 24. Survival curves of 743 ocular melanoma patients from the Cox model. Red is 

for ludb > 14.9 and blue for ludb lower than the median value. It is obvious that patients 

with large values of ludb have less survivability.  
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    Figure 25. Survival curves for patients with uh< 10 (blue) and uh>10 (red) 

  

Figure 24 shows that atients with ludb higher than 14.9 have 20% probability of 

surviving after 23 years.  At the same time patients with low ludb have 50% probability of 

surviving. In addition in figure 25 it is obvious that patients with large uh (>=10) have 

around 20% probability of surviving after 23 years, while patients with low uh 40%.  

Figure 26 proves that epithelioid cellularity affects the disease more than the longest 

ultrasound dimension (ludb). For this reason, patients with large ludb (bigger than the mean 

value 14.9) and epi 0 or 1 are plotted. The conclusion is that even if a patient has large 

ultrasound basal dimension he will be less likely to die if he has epi=0. In other words, 

when epithelioid cellularity appears, the hazard increases despite the values of the rest of 

the covariates.  
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  Figure 26. Survival curves from the Cox model for two sets of patients. Red is for  

those who have large ludb and epithelioid melanoma and blue for large lubd and no 

epithelioid cellular. It is clear that even if a patient has large value in the ludb 

covariate, it is still the epi factor that affects survivability. 

 

 

In figure 26 the red curves are the survival plots of patients with epithelioid 

cellularity and ludb higher that 14.9.  The blue curves are patients with epi= 0 and high 

ludb. After 23 years, patients who have epithelioid cellularity and ludb bigger that 14.9, 

have a median probability of 10% to survive. On the contrary, patients who do not appear 

to have epithelioid cellularity and ludb bigger that 14.9, have median probability of 35% 

to survive. 
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5.3 Fully parametric: The log logistic regression model 
 
 

As explained in Chapter 3, the log logistic function suitability should be 

checked. There is a linear representation of this function, beginning with the 

cumulative density function and ending with the log odds: 

1 1 1( ) 1 ( ) ( )
1 1 1
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The log odds can provide a linear mathematical representation of the 

cumulative density function versus log t as it is shown in the equation above. If a plot 

of the log odds ( ( )log[ ]
1 ( )

F t
F t−

) versus the logarithm of time is approximately linear, 

then the log logistic distribution is appropriate to describe the survivability of the 

specific dataset. The cumulative density function is approximated non parametrically, 

and therefore the Kaplan Meier estimator is used to obtain an estimate of S (t). Then, 

using the formula F (t) = 1- S (t) the cumulative density function derives and the log 

odds can be obtained. The estimator was created in MATLAB environment (available 

in APPENDIX A) and the log odds were plotted against the logarithmic time. 
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Figure 27. A plot of the log odds versus the logarithm of time, showing  

approximately a straight line.  The odds are obtained in a non parametric way  

(product limit estimate). 

 

Figure 27 proves that a plot of the log odds versus logT is approximately a 

straight line (when fitting it in a linear distribution the goodness of fit is accepted). 

Therefore, the log logistic distribution is suitable for our data. The slope can be 

calculated to be γ= 1.1054 and the parameter α = 0.060904. With these parameters the 

survival function is defined and so is the density function. 
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Figure 28. The parameters α and γ obtained from figure 27 are used to plot the  

survival function and fit it to the Kaplan Meier estimates.  

 
In the log logistic regression model the hazard function comes from the formula: 
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The regression process to obtain the regression parameter β follows a specific 

methodology which was described in chapter 3. It is important to notice that this 

procedure has to be performed for a homogeneous population. In other words, patients 

with the same pattern of covariates will be plotted together. If the two patterns are 

different in one covariate only say, z1 all the others be the same, the distance between 

the two lines gives a rough estimate of β1.   Two covariates will be used for the log 

logistic regression model, the epithelioid cellularity and the ultrasound height. The 

population was divided into to two sets of patients, to those who had epithelioid 

melanoma (epi=1) and ultrasound height bigger than 10 and those who have 

epithelioid melanoma and uh<10.  
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The separation was performed with the help of MATLAB environment. After 

the classifications two homogeneous populations derived. The characteristics of those 

patients where applied in the Kaplan Meier estimator, then used to obtain the 

cumulative density estimates (F (t) = 1- S (t)) and the log odd ( 

( )log[ ]
1 ( )

F t
F t−

) results were plotted against the log t. 

If the plots of the two groups show departure from linearity another model 

from the class of proportional odds models could be used. If linearity is satisfied but 

the distance between the lines is not constant a model assuming proportional odds 

model is not appropriate. 

 
Figure 29. The log odds from the two populations are plotted against the  

logarithm of time.  
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Figure 30.  The curve fitting tool of MATLAB environment is used to 

 fit the two plots from figure 29 in order to check linearity better. 

 

 The two plots have acceptable linear fits, but they don’t have constant 

distance.  Therefore the log logistic regression model cannot be applied to this 

specific dataset, since it is not possible to count the regression parameter β. 
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5.4 Neural Networks results 

The application of neural networks on specific dataset was introduced widely in 

chapter 4. The Cox proportional hazards model is implemented with the use of the 

Backpropagation multilayer neural networks. Two different nets are modeled, one to simulate 

the baseline hazard function and another one to simulate the covariates (the exponential part 

of the model) Taking into consideration the general formula of the Cox model the two 

networks are: 

0( , ) ( ) exp( )T
i ih t z h t z β= ⋅  

  
                                          Baseline network 

 
                  Covariates network 

 
A code in the MATLAB environment is created to unify the two networks in one in 

order for the implementation to be friendlier to user. 

The baseline function approximation was performed in this chapter in two different 

ways, with the Breslow and the extended Kaplan Meier estimator. Since these two are 

mathematically close, the Breslow estimator is used in the network. 

The baseline network has two inputs, the number of deaths ant each time and the sum of 

exponential covariates for the risk patients ( exp( )T
lz β ) at the same time. The output of the 

network is obviously one, the values of the cumulative hazard of the baseline hazard function. 

The input vector has length 240, since there are 240 discrete times when deaths take place 

among the 743 patients. The output is of the same length. In addition, 6 hidden layers were 

applied for the outcome to be reasonable since the input is vector is large. The first layer has 

2 nodes, the next two hidden layers have 5 nodes each, the fourth 20 and the following two 5 

nodes each. The transfer function applied to the input and the 5 hidden layers is the tansig  

while the output layer has a purelin transfer function from the MATLAB environment. The 

newff function of MATLAB created a feed forward Backpropagation net and the trainlm 

training function was applied for fast training. The main idea is that in the future one could 

simulate this network by supplying the inputs (number of deaths and the sum exponential for 

patients at risk) to easily obtain the values of the cumulative baseline hazard function.  

The input dataset is divided into two sets, one for simulating and one for training The 

training set and the simulation set must have same deviations and since the original set was 

divided with a rule that supports both big and small values in the two sets. This is more 

obvious in the source code which provided in APPENDIX A.  
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Finally, in order to check the simulation results the postreg function of MATLAB 

environment is applied. The network training set is post processed by performing a linear 

regression between one element of the network response and the corresponding target. This 

way the correlation is checked. This function produces a plot where all outputs are plotted, 

and were a best possible linear fit is applied. Then this fit is compared to the ideal 

correspondence of network outputs and targets and the correlation is calculated. Correlation 

is normalized measure of linear relationship strength between variables. The closer the 

correlation coefficient to one, the better the correspondence of outputs and targets.  The 

correlation for this network is 0.999: 

 
Figure 31. Correlation of network’s outputs and targets of the baseline neural  

Network. 

 

The correlation in figure 31 proves that the network output is the desirable as the output 

values are very close to their targets and the performance is acceptable.  
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The Covariates Network is referred to the exponential part of the Cox proportional 

hazards model. The main idea is to create a network that provides the values of the 

exponential part for each patient. This network is actually performing a regression since the 

regression coefficient can be easily obtained from the network’s output. In the future any one 

would be able to obtain the regression parameter by entering the covariate values.  

The inputs of the neural network are three. These will be the three covariates under 

examination, longest ultrasound basal dimension, ultrasound height and the epithelioid 

cellularity. The input values can either be numerical or binary. The regression parameter is 

not an input to the neural network so it won’t be necessary in later studies to approximate it in 

order to simulate the network.  The output of the network is the value of the exponential part 

for each patient. 

In order to achieve a good performance our data is divided into three sets that will be 

used for training, testing and validation of the network correspondingly. The 

Backpropagation Neural Net was chosen as it is one of the most powerful neural net types. 

Generally this network has the same structure as the Multi Layer Perceptron and it uses the 

Backpropagation learning algorithm. 

Using the newff MATLAB function, the network’s number of hidden layers and their 

corresponding transfer functions can be selected. There is no rule that can guide this selection 

but many alternatives have been studied and checked their results. In conclusion, the network 

would be more properly trained if it had one hidden layer with 5 neurons, 1 input layer and 

(one neuron) and one output layer (one neuron).  

Finally, in order to check the simulation results the postreg function of MATLAB 

environment was applied again. The network training set is post processed by performing a 

linear regression between one element of the network response and the corresponding target. 

This way the correlation is checked. The correlation for this network is 0.999 
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Figure 32. Correlation of network’s outputs and targets for the covariates network. 
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Chapter 6 
Comparisons with relevant studies 

 
In the beginning of the chapter 6 some comparisons are made along the models 

implemented in this study. In particular, The Kaplan Meier results are compared to the Cox 

model results. Then, there are important comparisons of our results with the results of 

other studies (that are introduced here) even if they come from a different dataset.  

 
6.1 Comparisons between the methods implemented in this project 
   

  The Kaplan Meier estimator is a non parametric method in survival analysis. It 

has been widely analyzed and implemented in chapters 3 and 5. With this estimator a 

survival curve for the whole population of the study derived. This curve is very important 

in medical statistics as it is widely used in prognosis. 

  In addition, in chapter 5, the original population is divided into two sets. The 

first set includes patient that appear to be influenced from epithelioid melanoma and the 

second one involves patients that are do not have epithelioid cellular. The distinction is 

performed according to a variable called epi, which is an indicator of epithelioid cellular. 

Therefore, the first set has epi=1 and the second 0. 

  There are 279 patients with epithelioid melanoma and 464 without it. Survival 

curves are plotted for the two populations, using the Kaplan Meier estimator. The results 

proved that patients with epi =1 have less survival probability that patients without it at any 

time.  

  In addition, in chapters 3 and 5 the Cox proportional hazards model was 

introduced. The influence of three covariates is examined to check whether they are 

prognostic factors. All three of them (epi, ludb and uh) affect the ocular melanoma disease 

in a way that the bigger their values the worse the survival probability and the greater the 

hazard.  The covariate that affects more the disease is the epithelioid melanoma.  

  Again, the population is divided into two sets in respect with the epi variable. 

Since the Cox model offers only curves for each patient and not for the whole population, 

the average values of the covariates of the two populations are computed. These mean 

values are used in the Cox model to obtain hazard and eventually survival functions for the 

two populations.   
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 a) 

 
 b) 

 
Figure 33. a) Survival plots for two populations (epi=1 and epi=0) with 

 the Cox model and the Kaplan Meier estimator. b) The same plots fitted to  

distributions. 
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Figure 33 shows the survival curves for the two groups of patients as they derived 

from the non parametric Kaplan Meier and the Semi parametric Cox model. Red lines are for 

patients with epithelioid melanoma. The two models are close to each other. The Kaplan 

Meier estimator is performed for every single time spot of the dataset no matter of it is a 

death or censoring time. The epi= 0 population is smaller in size than the epi =1 and this is 

the reason why the red dashed line ends up earlier than the blue one.  

On the contrary, in the Cox model there is baseline hazard function that is the same 

for all patients. This function is approximated from the Breslow estimator which uses only 

the death times. Since the baseline hazard function is the same for all patients, the baseline 

survival function is too. This is the reason why in figure 33 the Cox model survival curves 

have the same form.    

An important observation from figure 33 is that the Cox model curve for epi=1, has 

lower values than the Kaplan Meier for the same population. One could detect here the effect 

of the epi covariate since it has been proven to be a prognostic variable. A curve that is 

covariate dependent is expected to show less survival probability than a covariate 

independent curve. The same conclusion can be made for the epi=0 population .  

 

6.2  Kaplan Meier estimator for the original dataset. 
 

In chapter 5, in order to implement the Cox proportional hazards model, a model 

where covariates are included to check their effectiveness, the original dataset of the ocular 

melanoma disease had to be reduced to a subset. In this subset, all the data that contained 

missing values in the covariates field were removed. As a result the new subset contained 743 

elements while the original dataset included 1743 patients.  

At this point, it is useful to prove that no information was lost due to this reduction if 

we want ti generalize the results for the ocular melanoma disease. In order to come up with 

this conclusion the results from another study are used. The survival curve for the original 

population was performed by Kourkouta Anna-Maria [45].A comparison of the survival 

curves from both the original and the reduced dataset could lead to such a conclusion. For the 

two curves to be analogue the same estimator had to be used to obtain their values.  

The Kaplan Meier estimator has been implemented in both cases. The same 

assumptions had to be made for the censoring type and therefore, in both datasets, a patient is 

considered to be censored if the death indicator is zero. 
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Figure 34. Survival curves form the Kaplan Meier estimator. The red curve is  

for the original dataset while the blue one is for the reduced dataset. 

 

The two survival curves are acceptably close to each other. In addition they 

seem to have the same shape. If the reduction had altered the shape of the survival 

curve, no generalizations could have been made about the ocular melanoma disease 

concerning the prognostic factors.  

 

6.3 Regression comparison with the Aalen‘s additive model. 
 
 The Cox proportional hazards model, which was implemented in chapter 5, 

and the Aalen’s additive model include their implementation covariates. These 

covariates affect the survivability and both of the above models have as purpose to 

show how much and in what way they do it. The Aalen’s additive model that was 

performed by Kourkouta Anna- Maria includes in its implementation the same dataset 

of the 743 patient as the one which is included in the Cox model.  

The additive hazard model was suggested for the influence of the covariates 

on the hazard function. This method results in plots that may give information on the 

change over time in the influence of covariates. It is an alternative to the Cox model 

which does not condition on constant proportional hazard. In this model the covariates 

are modeled as additive risks to a baseline hazard.  
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The basic equation may be formulated as follows:  

0 1
( , ) ( ) ( ) ( )k

j jj
h t Z β t β t Z t

=
= +∑  

The hazard at any time is thus a sum of a baseline hazard β0 (t) and a linear 

combination of the covariate values, Zj. In the following equations n is the number of 

subjects and r is the number of covariates. 

So, the vector of intensities ( ), 1, 2,....,ih t i r= is formulated by the linear 

model: ( ) ( ) ( )h t Y t β t= .The matrix Y is of size ( 1)n r× + and is constructed as 

follows: 

• If the ith individual is a member of the risk set at time t then the ith 

row of Y (t) is the vector 1 2( ) (1, ( ), ( ),.... ( ))i i i i
kZ t Z t Z t Z t= , where 

( ), 1,...i
jZ t j r=  are the covariate values.  

• If the individual is not at risk at time t, meaning that the event of 

interest has already occurred or the individual has been censored, then 

the corresponding row in Y (t) contains only zeros.  

The first element of the vector β (t) is a baseline parameter and the remaining 

elements ( ), 1, 2,....,iβ t i r=  are called regression functions and estimate the 

influence of the covariates. These regression functions are the equivalents to the 

regression parameters in the Cox regression model. But in contrast to the Cox model, 

where the regression parameters are constant, the regression functions may vary with 

time. 

Since the regression functions may vary with time, statistical analysis of them 

may reveal changes in the influence of the covariates over time. This is one of the 

main advantages of this method. 

 It is unpractical and difficult to estimate the individual regression functions 

and instead the cumulative regression functions are estimated. The elements 

Β ( ), 0,1,....,j t j k= of the column vector B (t) are the cumulative regression 

functions and are defined as: 
0

Β ( ) ( )
t

j jt β t ds= ∫   

The cumulative regression functions are plotted against time and give a 

description of how the covariates influence the survival over time. It is therefore the 

change in the cumulative functions, the slope that is of primary interest. 
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If T1 < T2 < … are the ordered event times, meaning the times when an actual 

event, not censoring, occurs, an estimator of B (t) is given by: 
*Β ( ) ( )k k

Tk t
t X T I

≤

= ∑  

where Ik is a vector of zeros except for a one corresponding to the individual 

experiencing an event at time Tk. X (t) is a generalized inverse of Y (t): 
' 1 '( ) [ ( ) ( )] ( )X t Y t Y t Y t−= . [12] 

Figure 35 shows the distribution of the covariates that were used in the 

analysis of the additive model. The brown fit-line represents the epithelioid cellularity 

(epi), the red one the longest ultrasound basal dimension (lubd), and lastly the blue 

line represents the ultrasound height (uh). As it can be seen, the covariate that affects 

more the disease id the epi, since it has the greater slope. The covariate lubd affects 

the disease less and lastly the covariate uh has almost no affect in the disease.[] 

 
Figure 35.  The regression functions obtained form Aalen’s model, fitted to 

 linear distributions to show their rank. 
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The results of the Cox proportional Hazards model are analogue to those from 

the additive model. Through the regression (maximum likelihood estimation) the 

regression parameters were calculated to be: 

1

2

3

0.127
0.033
0.664

β
ββ
β

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟= =⎜ ⎟ ⎜ ⎟

⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠

 These coefficients indicate the magnitude of the effects of 

their corresponding covariates. The interpretation of β’s sign is: 

o If β=0  the covariate has no effect on survival 

o If β<0 the covariate affects the survival inversely. This means that the higher 

the value of the examined covariate the lower the hazard. 

o If β>0 the covariate affects the survival. A high value of the covariate would 

mean high hazard.  

  

  Therefore, the factor that affects the disease more is the presence of epithelioid 

cellular. In addition the lubd affects more than uh. The same results were obtained from 

analysis of the additive model. The only difference is that the regression parameters are 

not counted numerically but represented graphically. 

  Therefore, even though different models were applied to the same dataset and 

even though each one had each own assumptions, the results are the same. Furthermore 

this conclusion has real medical interest for both the doctors and the patients since for 

now one a patient that appears to have epithelioid cellular will have less probability to 

survive.   

 

 

 

 

 

 

 

 

 

 

 

 



 101

6.4 Comparison with relevant study using artificial neural networks and Bayes theorem. 

 

The use of neural networks in survival analysis has been evaluated in earlier 

chapters. Their ability to generalize made them a powerful tool in clinical survival 

analysis. There have been various methodologies of neural networks applications.  

A relevant study with this thesis was performed by Taktak, Fisher and Damato 

[42] in 2004. They modeled the survival after treatment of intraocular melanoma 

patients. This specific study introduces a new idea of how the neural networks can be 

combined with Bayes theorem. It describes the development of an artificial 

intelligence system for survival prediction from intraocular melanoma. The network’s 

targets are compared to the Kaplan Meier estimator and the Cox model.   

The database originates from patients treated in Glasgow and Liverpool 

between 1969 and 2001. The measurements that are analyzed to check their influence 

on the disease are the coronal and sagittal tumor location , anterior tumor margin 

largest basal tumor diameter and cell type. These covariates along with time consist 

the inputs of the neural network. The output of the system is the survival probability. 

The issue is to examine tumor specific survival, that is how the survival is affected by 

certain characteristics of the tumor.   

The dataset includes 2331 patients after excluding records with missing 

values.  The final observation in the database is 15 years. This time period is divided 

into five time intervals each one trying to contain the same amount of events. There is 

one neural network for each time interval, estimating the survivability at this time. 

Censoring patients are considered only in the time intervals when they are active, that 

is still in the study. Uncensored patients are also considered until the time interval that 

they die.  

Therefore, for each time interval a three layer feed forward network is 

constructed and trained by back propagation. The output layer contains one node 

which generates an output value from 0 to 1, where 0 representing high chance of 

survival and 1 low chance for that time interval.  The records in each time interval are 

divided to training and test sets with a specific methodology in order to eliminate bias.  

The main idea of this study is that the ANN output is transformed to a survival 

function using Bayes theorem. If the ANN output at a time interval is above a certain 

cut off level (Γi) this would indicate a low chance of survival. An output lower than 

the cut off would indicate high chance of survival and this record is presented to the 
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subsequent network for the next time interval. The probability figures are calculated 

in a way described below.  

The probability of death at the end of a time interval [I,i+1) is: 

1
1

( ) 1 i
i

i i i

dP D
n c d+

+

= −
− −

where d (i) is number of deaths at the interval, n (i) is the 

total number of patients and c (i) is the number of censoring cases. Some definitions 

are: 

/ iT d  The number of patients who died from the tumor and had score value >= Γi 

/ it d  Number of patients who died from the tumor and had score value < Γi 

/ iT n  All patients with score >= Γi 

/ it n  All patients who had score < Γi 

 

In this particular study the syndrome S is represented by a high ANN score 

(>=Γi).  The probability of death given the presence and non presence of the 

syndrome S can be defined with the help pf Bayes theorem.  

( ) ( / )( / )
( )

i i
i

i

P D x P S DP D S
P S

=  , ( ) ( / )( / )
( )

i i
i

i

P D x P S DP D S
P S

=  

The parameters of the theorem are computed as follows: 

/( / )

/( )

/( / )

/( )

i
i

i

i
i

i

i
i

i

i
i

i

T dpatients died with score iP S D
total deaths d

T npatients with score iP S
tatal patients n

t dpatients died with score iP S D
total deaths d

t npatients with score iP S
tatal patients n

≥ Γ
= =

≥ Γ
= =

< Γ
= =

< Γ
= =

 

 

The survival function SF is represented by the following sequence: 

1 0
1 ( / ) 1 [ 1, )

1 ( / ) [ 1, )
t t

i

for t
SF P D S for t i if score for i i i

P D S for t i if score for i i i

⎧ =
⎪

= − ≥ − − ≥ Γ⎨
⎪ − ≥ − < Γ⎩
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The results of the ANN in comparison to the Kaplan Meier and the Cox 

model, prove that the AI system was on average 41% lower than the survival 

probability predicted by the Cox model, and 37% lower than the Kaplan Meier. 

However, when the samples increase the difference is lower than 20%. The Kaplan 

Meier survival curve is shown in figure 36.  

These results can hardly be compared to the ones from this study that are 

presented on chapter 5. The reason is that the two implementations use different 

datasets even though our dataset is a subset of Taktak’s dataset. In addition, Taktak 

reduced the dataset n order to treat missing values according to five parameters 

(covariates). In this study the same methodology was followed for three variables. 

These eliminations obviously affected the statistical result.   

 

 

 
 Figure 36. Kaplan Meier survival curve for 2331 patients of intraocular  
 melanoma [42]. 
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6.5 Comparison with a study on prognostic factors for survival after enucleation. 

 

 There is a relevant study on prognostic factors from Isager, Ehlers and 

Overgaard (2003) [43]. The purpose of this study is to evaluate prognostic factors for 

the survival of patients treated by enucleation for choroidal and Ciliary body 

melanomas. The non parametric Kaplan Meier and the semi parametric Cox model 

are used to plot survival curves and discover influential covariates.  

 The study includes 293 patients treated by primary enucleation for 

choroidal and Ciliary body melanoma. Kaplan Meier analysis is performed for death 

from melanoma and death from all causes. In melanoma specific survival, patients 

that died from other causes are considered censored.  Prognostic factors are estimated 

by univariate Cox proportional Hazards (Cox examining one covariate only) model 

and by Kaplan Meier with the log rank test.  

 Parameters that are known from literature to be prognostic or with a log 

rank p value less than 0.2 (meaning that populations are not similarly affected by the 

covariate) are include in the multivariate Cox proportional hazards analysis. The 

covariates that are examined are tumor location, largest basal diameter, epithelioid 

cellularity and extrascleral extension. The cause of death was melanoma in 56% of the 

population and non melanoma in 44%. The melanoma related deaths were verified by 

autopsy. The authors provide the following survival probabilities in the cumulative 

melanoma specific survival function: 

Time  Survival 
5 years  70% 
10 years 53% 
15 years 47% 
20 years  45% 
25 years 41% 
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Figure 37. The Kaplan Meier survival curve for the ocular melanoma dataset of this 

study. 

 
Figure 37 shows the Kaplan Meier survival curve of the present study of the 

ocular melanoma disease. Using this figure a similar matrix can be constructed.  

Time Survival 
5 years 73% 
10 years  55% 
15 years 48% 
20 years 45% 
25 years 30% 

It is obvious that the survival probabilities are close which is reasonable since 

the same disease is under examination. Any difference could be due to the fact that in 

Isager’s study there are many deaths due to non melanoma causes. On the contrary, in 

the ocular melanoma dataset censored patients are considered alive.  
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The results in Isager’s study with the Cox proportional hazards model proves 

that the epithelioid cellularity is associated with the worst prognosis, as expected by 

the authors. The prognosis has been found to deteriorate with an increasing number of 

epithelioid cells. The population was divided into two groups the first one containing 

patients with spindle cell type (non epithelioid) and the second one with epithelioid 

patients. The survival curves as obtained from the Cox model are shown in figure 38 

where both of the populations are shown.  

  

Figure 38. Survival curves for patients with epithelioid and non epithelioid  

cells as they derived from the Cox model. [43] 
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a) 

 
b) 

 
Figure 39. a) Survival curves from the Cox model of this study as it was  

presented in chapter 5. There are two populations, one with epithelioid cells 

 and one without them.  b) The same plots fitted to distributions. 
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Figures 38 and 39.b are comparable. Figure 28 shows the survival curves from 

Isager’s study and figure 39 from this study. Both of them are created with the Cox 

model. The survivability for the population with epithelioid cells is close in the two 

studies. On the contrary there is much difference on the epithelioid population. An 

important mark is that Isager’s study is survival analysis after a treatment (enucleation) 

and the present study does not involve any treatments. Nevertheless, an important 

conclusion is that Cox regression in both studies showed that epithelioid cellularity the 

most important factor, the presence of which influences the disease enormously.  

 

 

6.6 Comparison with a relevant study from the University of Helsinki on prognostic 

indicators in choroidal and ciliary body melanoma.   

 

There is a relevant study from Teemu Makitie [44] on survival analysis of 

intraocular melanoma. This study is for the purposes of an Ophthalmology department 

and therefore there are more clinical and medical than statistical results.  

The study implements both the non parametric Kaplan Meier method and the 

semi parametric Cox model. The product limit estimator is used to obtain melanoma 

specific survival curves. In the dataset used, there are patients that died from other 

non melanoma causes and therefore they are considered as censored. The Cox 

proportional hazards regression is used to adjust the survival for the effect of 

previously identified independent predictors.  

Five covariates are used in the Cox model, the microvascular density, the 

largest basal tumor diameter. Epithelioid cells , microvascular patterns and Ezrin. The 

covariate that turned out from Cox regression to influence the disease most is the 

presence of epithelioid cells. The same conclusion was made in the present study too 

which is available in chapter 5. In addition, the regression parameters for the 

epithelioid variable are very close.  The regression coefficient of Makitie is 0.612 

while our regression coefficient is 0.664. The regression coefficient for the largest 

basal diameter is 0.128 and our regression coefficient is 0.127.  
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Figure 39. Melanoma specific survival curves generated by Cox regression 

 analysis for two populations, epithelioid and non epithelioid.  

 

 

The population is divided into two sets considering the existence or not of epithelioid 

cells. The melanoma specific survival curves (because the author presents non 

melanoma survival curves including patients that did not die from melanoma disease) 

is shown in figure 39. Even though the present study and Makitie ’s study use 

different datasets of the same disease, the survival curves are very close.  

 At the 23rd year of the disease, patients with epithelioid melanomas have 

around 20% probability of surviving in both cases. In addition, on the 23rd year of the 

disease non epithelioid patients have 40% probability of surviving. There are of 

course some differences which are mostly due to the different dataset and to the fact 

that Makitie’s dataset involves records with non melanoma deaths.  
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Chapter 7 
Conclusions and future work 

 
 

The purpose of this study is to analyze the survivability of patients suffering 

from the ocular melanoma disease. Survival analysis offers three kinds of models. The 

non parametric models make no assumption about the form of the survival function, 

while they do not include covariates. They are the simplest models to implement in 

order to plot patients’ hazard and survival functions. The second class of models is the 

semi parametric models. Like non parametric, the semi parametric make no 

assumption about the distribution of the survival function but what makes them 

unique is their ability to investigate the effect of covariates on the evolution of the 

disease. Covariates are measurements taken from a group of patients while they were 

studied. Semi parametric models allow identifying, through regression procedures, 

covariates that can be considered as prognostic factors as well as making a 

comparison among them. The third class of models consists of fully parametric 

models. A study of the survivability of patients can lead biostatisticians to have an a 

priori knowledge of the distribution of the survival function. Therefore there is a fully 

parametric model for each well known distribution. A regression procedure can also 

be applied to identify which covariates are prognostic factors and explore the amount 

of their influence on the evolution of the disease.     

From the class of non parametric models the Product limit model (Kaplan 

Meier estimator) is implemented to plot the survival function of the population. This 

function proves that the median survival, which is 50% survivability, is at the 17th 

year after the disease is diagnosed. In other words, an ocular melanoma patient has 

50% probability of surviving after the 17th year conditional that he has reached this 

year. In addition, the original population is divided into two sets, the first one 

including patients with epithelioid cellular and the second patients without it. Two 

separate survival curves are plotted showing the patients with epithelioid cellularity 

have at any time point less survival probabilities. The significant difference of these 

curves is also checked with the log rank test. 
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The Cox proportional hazards model is implemented from the class of semi 

parametric models. In this model there is baseline hazard function that depicts the 

hazard ratio or the survival probability of the whole population. This function is 

flexed up or down when a single patient is considered. The baseline function is 

approximated through the Breslow and the extended Kaplan Meier estimator. In 

addition three covariates are examined in this model, the ultrasound height, the 

longest ultrasound basal dimension and the epithelioid cellularity. Regression is 

performed through maximum likelihood estimation and the effect of each covariate 

derives. The covariate that affects the disease most is the epithelioid cellular. This is 

confirmed from the results gained from the non parametric analysis. In addition the 

longest ultrasound basal dimension affects the melanoma more than the ultrasound 

height. To explain further, a patient that has big ultrasound height is more likely to 

experience to experience the event (for this study the event under observation is 

death) if he has a large value of the longest ultrasound basal dimension covariate. All 

three covariates are proved to have direct and positive effect on the disease, that is the 

bigger their values the bigger the effect.  

From the class of fully parametric model, the log logistic model is 

implemented. The reason why this model is used is because after observation of the 

survival function the log logistic distribution fitted well. First a test is applied on the 

specific dataset to check if logistic distribution is appropriate for the data. This test 

checks the linearity of certain expression of the log logistic distribution against the 

logarithm of time. The time variable in this study is the survival years variable from 

the dataset. The linearity is satisfied and therefore the log logistic distribution fits the 

specific dataset. Furthermore, regression is applied in a graphical way that differs a lot 

form the Cox model. Unfortunately, log logistic regression is proven that it can not be 

performed for the specific dataset. 

Neural networks are also used in this study. Their purpose in the Cox model is 

to approximate the baseline hazard function of a certain population and estimate the 

regression parameters. Neural networks, with their advantage to generalize, have been 

tested with unseen patients and the results showed high correlation of the inputs and 

targets. 
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The conclusions of this study are of high interest in the medical field. The 

experience of a certain group of subjects can be generalized for the ocular melanoma 

disease. Doctors often need a priori knowledge of the survivability of each patient. 

When doctors take measurements from a newly diagnosed patient, they can use the 

knowledge of the prognostic factors of this study (that are confirmed with other 

relevant studies) to predict survival.   

This study can be extended in the future in two ways. The first is to continue 

working on these specific models by exploring their variations. The Cox model can be 

altered to include stratification. Stratum is a group of patients with a specific 

characteristic. Given a covariate the original population can be divided into two or 

more sets including patients with specific numerical values of this covariate. The 

epithelioid cellular can be used to divide the population in to two sets as it has been 

widely performed in this study. The difference would be that the baseline hazard 

approximation and the regression would be performed separately for each stratum. 

The results of such a model can justify more the serious effect of epithelioid 

cellularity on survivability.  

In addition the “age” can be used in the Cox model to examine whether there 

is a dependence of age and survivability due to the melanoma. In this case, the age 

should be considered as a time dependent covariate as it changes throughout the study 

period. The date of birth of each patient is known and age can be extracted. To 

perform such an analysis the simple version of the Cox model is non applicable. An 

extension of it with time dependent covariates is more appropriate. In addition, a test 

of the proportional hazards assumption should be performed (Test based on defined 

time dependent covariates, Gill and Schumacher test, O’ Quigley and Pessione test). 

A second way to extend this study is to apply on the ocular melanoma dataset 

new models. Several other fully parametric models can be applied on the dataset 

(Weibull, Gamma, Exponential regression models). In addition there are many semi 

parametric models that can be used. Apart from the Aalen’s additive model, a 

combination is the Cox Aalen model where covariates are accepted to have 

multiplicative or additive effect on hazard. 
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In the Cox proportional hazards model the baseline hazard is conditioned out 

and only the impact of the covariates are estimated by maximizing the partial 

likelihood. No functional form of hazard has to be specified which make the Cox 

model very flexible. On the other hand the parametric models have to specify the 

functional form of the hazard function. However when the hazard function is of 

interest it is usually estimated with the Breslow estimator which lacks the ability to 

test hypothesis about the shape of the hazard function. The Piecewise Exponential 

model can extend this study in the future, as it is a model that is between two 

extremes. In this model time is divided into intervals. The hazard in each interval is 

assumed to be constant but can vary across intervals. It has the flexibility of the Cox 

model and the ability to statistically check the hazard function.  

Neural networks can also be used in a different way than they are in this study. 

They are not only functional in approximating a specific function as they are in this 

study. Neural networks are lately used to predict survival themselves. Even though 

this field is still under examination, several types and structures can be used to predict 

survival for the ocular melanoma dataset (Ohno- Machado (1996), Ravdin and 

Clark.(1992), by Biganzoli et al. (1998), Lapuerta et al.(1995) ,  Faraggi (1995), Street 

(1998) , Mani (1999)). 

The event under examination in this study is death. Time to event is computed 

with the models analyzed earlier. The survival analysis field has been extended to 

measure not only time to death but also to other events, for example recovery after 

surgery. This study can be extended by examining metastatic death as the event under 

investigation. Metastasis is the primary reason of death for ocular melanoma patients. 

It is of high medical interest to examine the effect of covariates on metastasis as well 

as predicting time to metastasis. This variable can be used in all three models 

examined in this thesis (Kaplan Meier, Cox proportional hazards and log logistic 

regression) and offer interesting results.  
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APPENDIX A 
 

This Appendix includes all programming codes that have been programmed for the 

purposes of Kaplan Meier, Cox regression, Log logistic regression, log rank test and neural 

networks. The environments used are MATLAB, R language and SPSS. 

 
The MATLAB code for the Kaplan Meier estimator: 

function kaplan_meier 
  
%with the kaplan.m workspace 
load kaplan.mat 
kaplan = []; 
mul=1; 
j=1; 
k=1; 
temp1=0; 
risk=[]; 
  
    for k=1:560 
          risk(k)=743-temp1; 
          temp1=temp1+m(k,2)+s(k,2); 
    end 
      
      for i=1:560 
          temp2(i)=1-m(i,2)/risk(i); 
          time2(i)=m(i,1); 
      end 
  
kaplan(1)=temp2(1); 
      for  j = 2:560 
       kaplan(j)=kaplan(j-1)*temp2(j); 
      end 
 time2=transpose(time2);  
figure(1) 
 plot(time2,kaplan); 
 xlabel('Survival Years'); 
 ylabel('Cumulative Surival'); 

 
 
 
The SPSS code to perform the Kaplan Meier: 

 
KM 
  V5  /STATUS=V4(1) 
  /PRINT TABLE MEAN 
  /PLOT SURVIVAL . 

 
Where V5 stands for the survival years and V4 the death (or censoring) indicator. 
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The MATLAB code for the logrank test: 
function log_rank 
load bres.mat 
k=0; 
n=0; 
o=0; 
t=0; 
for i=1:743 
    if data(i,3)==1 
        k=k+1;    
        if death(i)==1 
            o=o+1; 
        end 
    end 
    if data(i,3)==0 
        n=n+1;  
        if death(i)==1 
            t=t+1; 
        end 
    end 
end 
  
c=1; 
f=1; 
prob1=[]; 
prob0=[]; 
for i=1:743 
    if death(i)==0 
        if data(i,3)==1 
            k=k-1; 
        end 
         if data(i,3)==0 
            n=n-1; 
         end 
    end 
         
    if death(i)==1         
      prob1(c)=k*(1/(k+n)); 
      prob0(f)=n*(1/(k+n)); 
      c=c+1; 
      f=f+1; 
        if data(i,3)==1 
            k=k-1; 
        end 
        if data(i,3)==0 
            n=n-1; 
        end 
    end 
              
end 
  
k=184; 
n=89; 
exp_death1=sum(prob1); 
exp_death0=sum(prob0); 
  
chi=(((n-exp_death0)^2)/exp_death0) + (((k-
exp_death1)^2)/exp_death1); 
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The SPSS code to perform the Cox Regression is: 
 

               Here the variable V5 is time, V4 shows whether an individual has experienced the 

event or not (0= alive (censored), 1=dead (uncensored)) and variables V1, V2, V3 are the 

regression’s covariates.  It is also required a baseline and survival plot.  

 
 
COXREG 
  V5  /STATUS=V4(1) 
  /METHOD=ENTER V1 V2 V3 
  /PLOT SURVIVAL HAZARD 
  /PRINT=CI(95) CORR BASELINE 
  /CRITERIA=PIN(.05) POUT(.10) ITERATE(20) 
 

R code for the Breslow estimator based on basehaz.gbm 
 

t.unique <- sort(unique(t[delta==1])) 
   nominator <- length(t.unique) 
   for(i in 1:length(t.unique)) 
   { 
      nominator[i] <- sum(t[delta==1]==t.unique[i])    
} 
denominator <- length(t.unique) 
   for(i in 1:length(t.unique)) 
   { 
      denominator[i] <- sum(exp(f.x[t>=t.unique[i]])) 
    
} 
 
print(nominator) 
print(denominator) 
 
breslow <- length(t.unique) 
   for(i in 1:length(t.unique)) 
   { 
      breslow[i] <- nominator/denominator; 
   } 
 
print (breslow) 
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Alternatively, a MATLAB code to compute the Breslow estimator and fit to the log 
logistic cumulative hazard is: 

function breslow 
load bres.mat 
temp3=0; 
time2=[]; 
t_unique=[]; 
k=1; 
m2=[]; 
  
for i=1:560 
    if m(i,2)>0 
        t_unique(k)=m(i,1); 
        m2(k)=m(i,2); 
        k=k+1; 
    end 
end 
sum=[]; 
  
  
for i=1:240 
    for k=1:743 
        if (time(k)==t_unique(i)) 
           for j=k:743  
            sum(i)=temp3+exp(data(j,:)*b(:,1)); 
            temp3=sum(i); 
           end 
         temp3=0; 
         break; 
        end 
    end    
end 
  
for i=1:240 
    breslow(i)=m2(i)/sum(i); 
end 
breslow_est=cumsum(breslow); 
figure(2) 
plot(t_unique,breslow_est) 
  
%--------------------------------------- 
t_unique=t_unique'; 
breslow_est=breslow_est'; 
g = fittype('log(1+a*(x)^c)'); 
F=FITOPTIONS('METHOD','NonLinearLeastSquares','StartPoint',[0.1,0.1])
; 
[FITTEDMODEL,GOODNESS,OUTPUT]=fit(t_unique,breslow_est,g,F); 
  
a=FITTEDMODEL.a; 
c=FITTEDMODEL.c; 
y=[]; 
for i=1:240 
    y(i)= log(1+a*(t_unique(i))^c); 
end 
  
figure(1) 
 hold on  
 plot(t_unique,y); 
 xlabel('Survival Years'); 
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 ylabel('Cumulative Hazard'); 
 plot(t_unique,breslow_est,'*'); 
 hold off; 
  
 survival=[]; 
  
 for i=1:240 
%      survival(i)=1/(1+a*((t_unique(i))^c)); 
survival(i)=exp(-breslow_est(i)); 
 end 
  
 figure(2) 
 plot(t_unique,survival); 
 xlabel('Survival Years '); 
 ylabel('Cumulative Survival'); 
  
 h=[]; 
for i=1:240 
     h(i)=(a*c*(t_unique(i)^(c-1)))/(1+a*(t_unique(i)^c)) 
end 
  
figure(3) 
plot(t_unique,h); 
xlabel('Survival Years'); 
ylabel('Hazard'); 

 
The MATLAB code of the analogue to the Kaplan Meier estimator and its fitting to the 

log logistic distribution 
 
function kaplan_extended 
  
load bres.mat 
breslow; 
t_unique2=[]; 
m3=[]; 
k=1; 
  
  
for i=1:560 
    if m(i,2)>0 
        t_unique2(k)=m(i,1); 
        m3(k)=m(i,2); 
        k=k+1; 
    end 
end 
  
temp3=0; 
sum2=[]; 
for i=1:240 
    for k=1:743 
        if (time(k)==t_unique2(i)) 
           for j=k:743  
            sum2(i)=temp3+exp(data(j,:)*b(:,1)); 
            temp3=sum2(i); 
           end 
         temp3=0; 
         break; 
        end 
    end    



 119

end 
kaplan=[]; 
for i=1:240 
    kaplan(i)=1-m3(i)/sum2(i); 
end 
  
kaplan_est=[]; 
kaplan_est(1)=kaplan(1); 
for i=2:240 
    kaplan_est(i)=kaplan_est(i-1)*kaplan(i); 
end 
  
kaplan_hazard=[]; 
for i=1:240 
    kaplan_hazard(i)=-log(kaplan_est(i)); 
end 
  
%------------------------ 
 t_unique2=t_unique2'; 
kaplan_hazard=kaplan_hazard'; 
g = fittype('log(1+a*(x)^c)'); 
F=FITOPTIONS('METHOD','NonLinearLeastSquares','StartPoint',[0.1,0.1])
; 
[FITTEDMODEL,GOODNESS,OUTPUT]=fit(t_unique2,kaplan_hazard,g,F); 
  
a=FITTEDMODEL.a; 
c=FITTEDMODEL.c; 
y2=[]; 
for i=1:240 
    y2(i)= log(1+a*(t_unique2(i))^c); 
end 
  
figure(4) 
 hold on  
 plot(t_unique2,y2); 
 xlabel('Survival Years'); 
 ylabel('Cumulative Hazard'); 
 plot(t_unique2,kaplan_hazard,'*'); 
 hold off; 
  
 survival2=[]; 
  
  
 figure(5) 
 plot(t_unique2,kaplan_est); 
 xlabel('Survival Years '); 
 ylabel('Cumulative Survival'); 
  
 h2=[]; 
for i=1:240 
     h2(i)=(a*c*(t_unique2(i)^(c-1)))/(1+a*(t_unique2(i)^c)) 
end 
  
figure(5) 
plot(t_unique2,h2); 
xlabel('Survival Years'); 
ylabel('Hazard'); 
ylabel('Hazard'); 
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 The MATLAB code to plot the cumulative survival function from the cox model 
for patients with epi=0 and epi=1 
function survival_epi01 
  
load matlab2.mat 
  
b=[0.127;0.033;0.664]; 
k=1; 
m=1; 
exponential0=[]; 
exponential1=[]; 
  
for i=1:743 
    if data(i,3)==1 
        exponential1(k)=exp(data(i,:)*b(:,1)); 
        k=k+1; 
    end 
    if data(i,3)==0 
        exponential0(m)=exp(data(i,:)*b(:,1)); 
        m=m+1; 
    end 
end 
  
s0=[]; 
s1=[]; 
  
for i=1:279 
    for j=1:240 
        s0(j,i)=exp(-y(j)*exponential0(i)); 
    end 
end 
  
for i=1:464 
    for j=1:240 
        s1(j,i)=exp(-y(j)*exponential1(i)); 
    end 
end 
  
figure (1) 
hold on; 
  
  plot(t_unique,s0(:,8));   
  plot(t_unique,s0(:,12));   
  plot(t_unique,s0(:,16));   
  plot(t_unique,s0(:,25));   
  plot(t_unique,s0(:,34)); 
  
for i=1:5 
  plot(t_unique,s1(:,i),'r'); 
end 
xlabel('Survival time'); 
ylabel('Hazard') 
hold off; 
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The MATLAB code to plot the density hazard function from the cox model for 
patients with epi=0 and epi=1 

 
function hazard_epi01 
  
load matlab.mat 
b=[0.127;0.033;0.664]; 
k=1; 
m=1; 
exponential0=[]; 
exponential1=[]; 
  
for i=1:743 
    if data(i,3)==1 
        exponential1(k)=exp(data(i,:)*b(:,1)); 
        k=k+1; 
    end 
    if data(i,3)==0 
        exponential0(m)=exp(data(i,:)*b(:,1)); 
        m=m+1; 
    end 
end 
h0=[]; 
h1=[]; 
for i=1:279 
    for j=1:240 
    h0(j,i)=h(j)*exponential0(i); 
    end 
end 
  
  
for i=1:464 
    for j=1:240 
    h1(j,i)=h(j)*exponential1(i); 
    end 
end 
  
  
figure (1) 
hold on; 
  
  plot(t_unique,h0(:,8));   
  plot(t_unique,h0(:,12));   
  plot(t_unique,h0(:,16));   
  plot(t_unique,h0(:,25));   
  plot(t_unique,h0(:,34)); 
  
for i=1:5 
  plot(t_unique,h1(:,i),'r'); 
end 
xlabel('Survival time'); 
ylabel('Hazard') 
hold off; 
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MATLAB code to plot the survival function o patients with epi0 and epi1 
function survival_epi01 
  
load matlab2.mat 
  
b=[0.127;0.033;0.664]; 
k=1; 
m=1; 
exponential0=[]; 
exponential1=[]; 
  
for i=1:743 
    if data(i,3)==1 
        exponential1(k)=exp(data(i,:)*b(:,1)); 
        k=k+1; 
    end 
    if data(i,3)==0 
        exponential0(m)=exp(data(i,:)*b(:,1)); 
        m=m+1; 
    end 
end 
  
s0=[]; 
s1=[]; 
  
for i=1:279 
    for j=1:240 
        s0(j,i)=exp(-y(j)*exponential0(i)); 
    end 
end 
  
for i=1:464 
    for j=1:240 
        s1(j,i)=exp(-y(j)*exponential1(i)); 
    end 
end 
  
figure (1) 
hold on; 
  
  for i=1:279 
  plot(t_unique,s0(:,i)); 
end 
  
for i=1:464 
  plot(t_unique,s1(:,i),'r'); 
end 
xlabel('Survival time'); 
ylabel('Hazard') 
hold off; 
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MATLAB code to plot the survival function o patients with high and low ludb 
 
function survival_ludb 
  
load matlab2.mat 
  
b=[0.127;0.033;0.664]; 
k=1; 
m=1; 
ludb0=[]; 
ludb1=[]; 
  
for i=1:743 
    if data(i,1)>=14.9 
      ludb1(k)=exp(data(i,:)*b(:,1)); 
        k=k+1; 
    end 
    if data(i,1)<14.9 
        ludb0(m)=exp(data(i,:)*b(:,1)); 
        m=m+1; 
    end 
end 
  
s0=[]; 
s1=[]; 
  
for i=1:463 
    for j=1:240 
        s0(j,i)=exp(-y(j)*ludb0(i)); 
    end 
end 
  
for i=1:280 
    for j=1:240 
        s1(j,i)=exp(-y(j)*ludb1(i)); 
    end 
end 
  
figure (1) 
hold on; 
  
for i=1:463 
  plot(t_unique,s0(:,i)); 
end 
  
for i=1:280 
  plot(t_unique,s1(:,i),'r'); 
end 
xlabel('Survival time'); 
ylabel('Cumulative Survival') 
hold off; 
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MATLAB code to plot the survival function o patients with high and low uh 
function survival_uh01 
load matlab2.mat 
  
b=[0.127;0.033;0.664]; 
k=1; 
m=1; 
uh0=[]; 
uh1=[]; 
  
for i=1:743 
    if data(i,2)>=10 
       uh1(k)=exp(data(i,:)*b(:,1)); 
        k=k+1; 
    end 
    if data(i,2)<10 
        uh0(m)=exp(data(i,:)*b(:,1)); 
        m=m+1; 
    end 
end 
  
s0=[]; 
s1=[]; 
  
for i=1:549 
    for j=1:240 
        s0(j,i)=exp(-y(j)*uh0(i)); 
    end 
end 
  
for i=1:194 
    for j=1:240 
        s1(j,i)=exp(-y(j)*uh1(i)); 
    end 
end 
  
figure (2) 
hold on; 
  
  for i=1:549 
  plot(t_unique,s0(:,i)); 
end 
  
for i=1:194 
  plot(t_unique,s1(:,i),'r'); 
end 
xlabel('Survival time'); 
ylabel('Cumulative survival') 
hold off; 
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MATLAB code to plot the survival function o patients with epi1 and high ludb 
and patients with epi0 and high ludb 
 
funtion survival_epi_ludb01  
load matlab2.mat 
  
b=[0.127;0.033;0.664]; 
k=1; 
m=1; 
exponential0=[]; 
exponential1=[]; 
  
for i=1:743 
    if (data(i,3)==1 && data(i,1)>=14.9) 
        exponential1(k)=exp(data(i,:)*b(:,1)); 
        k=k+1; 
    end 
    if (data(i,3)==0 && data(i,1)>=14.9) 
        exponential0(m)=exp(data(i,:)*b(:,1)); 
        m=m+1; 
    end 
end 
  
s0=[]; 
s1=[]; 
  
for i=1:87 
    for j=1:240 
        s0(j,i)=exp(-y(j)*exponential0(i)); 
    end 
end 
  
for i=1:193 
    for j=1:240 
        s1(j,i)=exp(-y(j)*exponential1(i)); 
    end 
end 
  
figure (1) 
hold on; 
  
  for i=1:87 
  plot(t_unique,s0(:,i)); 
end 
  
for i=1:193 
  plot(t_unique,s1(:,i),'r'); 
end 
xlabel('Survival time'); 
ylabel('cumulative survival') 
hold off; 
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The MATLAB code to check the suitability of the log logistic distribution 
function logistic_suitability 
load log_suit.mat 
  
s=[]; 
f=[]; 
odds=[]; 
logtime=[]; 
  
for i=1:560 
    f(i)=1-kaplan(i); 
end 
  
for i=1:560 
    odds(i)=log(kaplan(i)/f(i)); 
end  
for i=1:560 
    logtime(i)=log(time2(i)); 
end  
plot(logtime,odds); 
xlabel('logt') 
ylabel('log odds') 
  
 
  
 
The MATLAB code for the log logistic regression (subsets: 1) epi=1, uh<10   
2)epi=0, uh>10 ) 
function kaplan_logistic 
load kaplan_log.mat  
    for k=1:132 
          risk1(k)=132-temp1; 
          temp1=temp1+m1(k)+s1(k); 
    end      
      for i=1:132 
          temp2(i)=1-m1(i)/risk1(i); 
      end  
kaplan1(1)=temp2(1); 
      for  j = 2:132 
       kaplan1(j)=kaplan1(j-1)*temp2(j); 
      end 
 %--------------------- 
  
    for k=1:332 
          risk2(k)=332-temp1; 
          temp1=temp1+m2(k)+s2(k); 
    end 
      
      for i=1:332 
          temp2(i)=1-m2(i)/risk2(i);           
      end 
  
kaplan2(1)=temp2(1); 
      for  j = 2:332 
       kaplan2(j)=kaplan2(j-1)*temp2(j); 
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      end 
 
 
function logistic_regression  
load logistic_regr.mat   
  
for i=1:132 
    f1(i)=1-kaplan1(i); 
end 
  
for i=1:132 
    odds1(i)=log(kaplan1(i)/f1(i)); 
end 
  
for i=1:132 
    logtime1(i)=log(time1(i)); 
end 
%---------------------------- 
for i=1:332 
    f2(i)=1-kaplan2(i); 
end 
  
for i=1:332 
    odds2(i)=log(kaplan2(i)/f2(i)); 
end 
  
for i=1:332 
    logtime2(i)=log(time2(i)); 
end 
  
figure(1) 
hold on; 
plot(logtime1,odds1); 
plot(logtime2,odds2,'r'); 
xlabel('log time'); 
ylabel('log odds') 
hold off; 
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The MATLAB code that creates and trains the baseline network 
 
function [Y]=network_breslow 
load net_bre; 
 
train_p=[]; 
train_t=[]; 
sim_p=[]; 
sim_t=[]; 
 
k=1; 
m=1; 
index=[]; 
for i=1:240 
    index(i)=0; 
end 
for i=1:2:240     
    index(i)=1;    
     
end 
for i=1:240 
    if index(i)==0 
       sim_p(:,k)=p(:,i); 
       sim_t(k)=t(i); 
       k=k+1; 
    end 
    if index(i)==1;         
       train_p(:,m)=p(:,i); 
       train_t(m)=t(i);   
       m=m+1; 
    end 
    
end 
 
net=newff(minmax(train_p),[2 5 5 20 5 5 
1],{'tansig','tansig','tansig','tansig','tansig','tansig','purelin'},
'trainlm','learngdm','mse'); 
net.trainParam.epochs=2000; 
net.trainParam.goal=0; 
net=train(net,train_p,train_t); 
 
Y=[]; 
a_sim=[]; 
t_sim=[]; 
 
         
k=1; 
    for i=1:120 
    Y(k)=sim(net,[sim_p(1,i);sim_p(2,i);]);  
    a_sim(k)=Y(k); 
    t_sim(k)=sim_t(k); 
   k=k+1; 
    end  
figure(2) 
[m(2),b(2),r(2)]=postreg(a_sim,t_sim); 
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The MATLAB code that creates and trains the covariates network 
 
function [Y]=train_net_3(NTR,NTST,PATIENT); 
%NTR=# training Data 
%NTST=# testing Data 
load p_t_3; %load input output vectors 
 
[pn,meanp,stdp,tn,meant,stdt] = prestd(p,t); 
%[ptrans,transMat] = prepca(pn,0.02); 
%[m,n] = size(ptrans); 
  
% iitest=2:round(n/NTST):n; 
% iival=4:round(n/NVAL):n; 
% iitrn=[1:round(n/NTR):743 3:round(n/NTR):n]; 
[m,n]=size(p); 
available_index(n)=0; 
k=1; %number of indices for training data 
while 1==1, 
    j=round(rand(1)*n); 
    if j>0 
        if available_index(j)==0 
            available_index(j)=1; 
            iitrn(k)=j; 
            k=k+1; 
        end 
        if k==NTR 
            break; 
        end 
    end 
end 
 
 
k=1; %number of indices for testing data 
while 1==1, 
    j=round(rand(1)*n); 
    if j>0 
        if available_index(j)==0 
            available_index(j)=1; 
            iitest(k)=j; 
            k=k+1; 
        end 
        if k==NTST 
            break; 
        end 
    end 
end 
 
k=1; %number of indices for validation data 
while 1==1, 
    j=round(rand(1)*n); 
    if j>0 
        if available_index(j)==0 
            available_index(j)=1; 
            iival(k)=j; 
            k=k+1; 
        end 
        if k==(n-NTR-NTST) 
            break; 
        end 
    end 
end 
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val.P=p(:,iival); %validation Input Data 
val.T=tn(:,iival);%validation Output Data 
 
%test.P=ptrans(:,iitest); %test Input Data 
test.P=p(:,iitest); %test Input Data 
test.T=tn(:,iitest);%test Output Data 
 
%ptr=ptrans(:,iitrn); %Training Input Data 
ptr=p(:,iitrn); %Training Input Data 
ttr=tn(:,iitrn);%Training Output Data 
 
net=newff(minmax(ptr),[5 1],{'tansig' 'purelin'},'trainlm'); 
net.trainParam.epochs = 500; 
net.Trainparam.show=1; 
[net,tr]=train(net,ptr,ttr,[],[],val,test); 
 
an=sim(net,p); 
a=poststd(an,meant,stdt); 
 
a_sim=[]; 
t_sim=[]; 
    SIM_VECTOR=[p(1,PATIENT);p(2,PATIENT);p(3,PATIENT)]; 
    Yn=sim(net,SIM_VECTOR); 
    Y=poststd(Yn,meant,stdt); 
    disp('-----------------------'); 
    disp('Item Selected:'); 
    disp(PATIENT); 
    disp('->Neural Network output:'); 
    disp(Y); 
    disp('->Target Vector:'); 
    disp([t(PATIENT)]); 
    disp('->Input Vector:'); 
    disp(SIM_VECTOR); 
     
    a_sim=[a_sim Y]; 
    t_sim=[t_sim t(PATIENT)]; 
 
figure(1) 
[m(1),b(1),r(1)]=postreg(a,t); 
 
figure(2) 
[m(2),b(2),r(2)]=postreg(a_sim,t_sim); 
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APPENDIX B 

 
In this Appendix additional results are presented for the Kaplan Meier and Cox 

models. SPSS results, MATLAB fitting results and MATLAB neural network results 

are available here.  

 
The results from the SPSS Kapan Meier 
 

Kaplan-Meier 
 
 Case Processing Summary 
 

Censored 
Total N N of Events N Percent 

743 273 470 63,3%
 
 Survival Table 
 

Cumulative Proportion 
Surviving at the Time 

  Time Status Estimate Std. Error 

N of 
Cumulative 

Events 

N of 
Remaining 

Cases 
1 ,020           1 ,999 ,001 1 742 
2 ,060           0 . . 1 741 
3 ,070           0 . . 1 740 
4 ,140           0 . . 1 739 
5 ,140           0 . . 1 738 
6 ,160           1 ,997 ,002 2 737 
7 ,170           0 . . 2 736 
8 ,180           0 . . 2 735 
9 ,240           1 ,996 ,002 3 734 
10 ,260           0 . . 3 733 
11 ,270           0 . . 3 732 
12 ,310           1 ,995 ,003 4 731 
13 ,340           0 . . 4 730 
14 ,350           0 . . 4 729 
… … … … … …. … 
736 22,640           0 . . 272 7 
737 22,880           0 . . 272 6 
738 23,210           1 ,283 ,066 273 5 
739 23,460           0 . . 273 4 
740 24,270           0 . . 273 3 
741 25,300           0 . . 273 2 
742 29,820           0 . . 273 1 
743 32,320           0 . . 273 0 
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Means and Medians for Survival Time 
 

Mean(a) Median 
95% Confidence Interval 95% Confidence Interval 

Estimate Std. Error Lower Bound Upper Bound Estimate Std. Error Lower Bound Upper Bound 
15,969 ,861 14,282 17,655 13,040 1,566 9,971 16,109

a  Estimation is limited to the largest survival time if it is censored. 
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The results from the SPSS Kaplan Meier for epi 1 and 0 as well as the logrank test 
 

Kaplan-Meier 
 

 Case Processing Summary 
 

Censored 
epi Total N N of Events N Percent 
0 279 89 190 68,1%
1 464 184 280 60,3%
Overall 743 273 470 63,3%

 
 
 
 

Means and Medians for Survival Time 
 

Mean(a) Median 
95% Confidence Interval 95% Confidence Interval 

epi Estimate 
Std. 
Error 

Lower 
Bound 

Upper 
Bound Estimate 

Std. 
Error 

Lower 
Bound 

Upper 
Bound 

0 18,844 1,139 16,610 21,077 19,660 1,952 15,833 23,487
1 11,299 ,491 10,337 12,261 8,320 ,827 6,700 9,940
Overal
l 15,969 ,861 14,282 17,655 13,040 1,566 9,971 16,109

a  Estimation is limited to the largest survival time if it is censored. 
 
  

Overall Comparisons 
 

  Chi-Square df Sig. 
Log Rank (Mantel-Cox) 30,525 1 ,000 
Test of equality of survival distributions for the different levels of V3. 
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The results from the SPSS Cox regression 
 
 Case Processing Summary 
 

  N Percent 
Event(a) 273 36,7% 
Censored 470 63,3% 

Cases available in 
analysis 

Total 743 100,0% 
Cases with missing values 

0 ,0% 

Cases with negative time 0 ,0% 
Censored cases before 
the earliest event in a 
stratum 

0 ,0% 

Cases dropped 

Total 
0 ,0% 

Total 743 100,0% 
a  Dependent Variable: V5 

 
 

Block 0: Beginning Block 
Omnibus Tests of Model Coefficients 

 

-2 Log 
Likelihood 
3225,927 

 

Block 1: Method = Enter 
Omnibus Tests of Model Coefficients(a,b) 

 

Overall (score) Change From Previous Step Change From Previous Block 
-2 Log 

Likelihood Chi-square df Sig. Chi-square df Sig. Chi-square df Sig. 
3130,945 92,791 3 ,000 94,982 3 ,000 94,982 3 ,000

a  Beginning Block Number 0, initial Log Likelihood function: -2 Log likelihood: 3225,927 
b  Beginning Block Number 1. Method = Enter 
 

Variables in the Equation 
 

  B SE Wald df Sig. Exp(B) 
V1 ,127 ,019 44,466 1 ,000 1,136 
V2 ,033 ,021 2,490 1 ,115 1,034 
V3 ,664 ,133 24,855 1 ,000 1,943 
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Survival Table 
 

At mean of covariates 

Time 
Baseline 

Cum Hazard Survival SE Cum Hazard 
,02 ,000 ,999 ,001 ,001 
,16 ,000 ,998 ,002 ,002 
,24 ,000 ,997 ,002 ,003 
,31 ,000 ,996 ,002 ,004 
,37 ,001 ,994 ,002 ,006 
,50 ,001 ,993 ,003 ,007 
,64 ,001 ,992 ,003 ,008 
,65 ,001 ,990 ,003 ,010 
,67 ,001 ,989 ,004 ,011 
,70 ,001 ,987 ,004 ,013 
,72 ,001 ,985 ,004 ,015 
…. …… ….. ….. ….. 
16,54 ,082 ,408 ,032 ,896 
16,80 ,085 ,398 ,033 ,921 
19,66 ,090 ,374 ,038 ,983 
20,43 ,099 ,340 ,047 1,079 
20,58 ,109 ,306 ,052 1,186 
21,13 ,153 ,267 ,057 1,320 
23,21 ,153 ,190 ,069 1,663 

 
Covariate Means 

 
  Mean 
V1 13,538
V2 7,447
V3 ,624
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The results of the R code for the Breslow estimator 

 
 
The MATLAB fitting results of Breslow in the Cox Model  

FITTEDMODEL = 
 
     General model: 
       FITTEDMODEL(x) = log(1+a*(x)^c) 
     Coefficients (with 95% confidence bounds): 
       a =    0.005176  (0.004935, 0.005417) 
       c =       1.036  (1.016, 1.055) 
 
GOODNESS =  
           sse: 0.0022721 
           rsquare: 0.98346 
           dfe: 238 
           adjrsquare: 0.98339 
           rmse: 0.0030897 
 
 
OUTPUT =  
           numobs: 240 
           numparam: 2 
           residuals: [240x1double] 
           Jacobian: [240x2double] 
            exitflag: 1 
            iterations: 18 
            funcCount: 55 
           firstorderopt: 9.9587e-007 
           algorithm: 'Trust-Region Reflective Newton' 
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The MATLAB fitting results of the extension of the Kaplan Meier for the Cox Model  
 
 
FITTEDMODEL = 
 
     General model: 
       FITTEDMODEL(x) = log(1+a*(x)^c) 
     Coefficients (with 95% confidence bounds): 
       a =    0.005169  (0.004927, 0.005411) 
       c =       1.037  (1.017, 1.056) 
 
 
GOODNESS =  
           sse: 0,0022926 
           rsquare: 0,98334 
           dfe: 238 
           adjrsquare: 0,9832 
           rmse: 0,0031037 
 
OUTPUT =  
           numobs: 240 
           numparam: 2 
           residuals: [240x1 double] 
           Jacobian: [240x2 double] 
            exitflag: 1 
            iterations: 28 
            funcCount: 55 
           firstorderopt: 9,7583e-007 
           algorithm: 'Trust-Region Reflective Newton' 
 
 
 
 
 
 
Baseline network training for 2000 epochs 
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Performance plot of the baseline network 
 

 
 
Covariates network training for 500 epochs 
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Performance plot of the baseline network 

 
 
Some patients selected to simulate the covariates network and their results 
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