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Chapter 1 

Introduction 
 

Enough research will tend 

 to support your theory. 

Murphy’s Law 

 

 

In our days, with the ongoing extension of technology, we are witnessing the emergence 

of new computing machines, which will bring us far beyond the desktop PC. Devices 

featuring advanced connectivity and Internet functionality will soon become the standard 

in computing. In fact, we're on the verge of a revolution that will bring us a wave of 

smart, electronic devices that can be controlled, gather information, and distribute data 

via the web. 

 

Virtually every embedded designer is looking to use Internet, to enhance or expand the 

reach of embedded systems. This need for connecting devices directly into Internet has 

leads many great manufacturers to implement ASICs (Application Specific Integrated 

Circuits) or reusable libraries for microcontrollers, specially designed for this purpose.  

 

The main scope of this thesis is to implement an IP Core (Intellectual Property Core) that 

will mainly support the TCP/IP protocol stack and will be able to be incorporated in any 

embedded system based on FPGA. In particular the IP Core will support the following 

protocols: 

 

IP (Internet Protocol), 

ICMP (Internet Control Message Protocol), 

UDP (User Datagram Protocol) and  

TCP (Transfer Control Protocol).  
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In addition the IP core has to support the Ethernet local area network protocol. The 

special feature of this project is its flexibility, since it consists of independent blocks that 

can easily be changed in order to support future changes in protocols. The choice of the 

FPGA family that the IP Core will be synthesized can change significantly the speed of 

design in order to support 10,100 or even 1Gbits Ethernet networks in the future, given 

the rapid improvement of FPGAs performance.  

 

The applications of this TCP/IP protocol stack vary in a wide range of devices. A lot of 

appliances will be able not only to gather and distribute information via the Internet but 

also to be re-configured through the web. The potential applications of this protocol stack 

can be extended to a wide range of devices in different fields, such as Ethernet network 

analyzers, smart Ethernet hubs or even hardware-based packet sniffers. Another potential 

application of TCP/IP core is devices that will support VoIP (Voice over Internet 

Protocol).  

 

The second chapter of this document provides a general description of different types of 

related ASICs and FPGAs, the protocols that support each of them and the applications 

that they are destined. The third chapter covers the supported protocols, examines the 

headers of these protocols and set the specifications of our design.  The fourth chapter 

provides a detailed description of the architecture and analyzes each module of this 

architecture while the fifth chapter describes the implementation board and examines 

several issues of Ethernet transceivers. The sixth chapter covers the several steps of 

simulation and verification of this design and the last chapter examines the potential 

applications of this design and the future work that can be done in order to upgrade this 

IP core. 
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Chapter 2 

Relevant research 

 

Never set a problem if you  

are not aware of its solution. 

Murphy’s Law 

 

 

The last months many companies have understand the need for Internet connectivity of 

embedded systems and have present either ASICs or reusable libraries that support  

whole or a part of the TCP/IP protocol stack.  

 

The first quarter of 2001 many manufactures such as Seiko Inc, Triscent Inc., Huyndai 

Inc and others have implemented ASICs that support the IP v4.0 protocol stack. 

Unfortunately the continuous changes in protocols, and generally in technology, are so 

rapid that some times the time to make an ASIC exceeds the time that the protocol is 

used. For example, the current ASICs don’t support IP v6.0 protocol stack and new 

ASICs have to be made to comply with the new protocols. Furthermore the most of these 

ASICs support only the TCP/IP protocols, which mean that other circuits must be used 

for the physical layer and for the specific application that will be used.  

 

Many embedded systems designers have implemented protocols stacks in micro 

controllers, in order to reduce the number of circuits that will be used in the application. 

For example, a web server has been implemented in only one micro controller [35]. But 

this solution has many disadvantages. First of all, the code for the protocol stacks cannot 

be reused in micro controllers even of the same company, but of different family because 

of their discrepancies. Moreover, the system clock of the micro controllers in not enough 

to respond to the new fast local networks, but only to the older 10Mbits/sec Ethernet 

networks. 
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On the other hand, the use of an IP Core (Intellectual Property Core) is much more 

convenient for a designer, since it is technology independent and can be reused in any 

FPGA (Field Programmable Gate Array), of any manufacturer, of any technology. An IP 

Core is a set of code written in hardware description languages such as VHDL (Very high 

speed integrated circuit Hardware Description Language) or Verilog that can be used as 

part of a project. In the case of an embedded system implemented in FPGA that have to 

support Internet functionality, the choice of a TCP/IP Core is ideal, since it can be easily 

incorporated in the whole project. Especially with the new SoCs (Systems On a Chip) 

that contain programmable gate arrays, static RAMs and some type of microcontroller 

core, the Internet connectivity can be implemented in only one chip.  

 

2.1 ASIC with TCP/IP functions 

 

The ASIC that have been created are not uniform, meaning that there in not any standard 

TCP/IP protocol stack especially for embedded systems that is supported. Each ASIC has 

each own features and some times it is targeting a special application. Some of them 

include some type of memory (SRAM or Flash) in order to reduce the total amount of 

chip for an application. Below we describe the ASICs that have been presented by some 

companies and we describe the main features of each ASIC. 

 

2.1.1 Hyundai Electronics 

 

Hyundai Electronics Industries Co. has developed a CMOS IC with a complete TCP/IP 

protocol suite to facilitate internet connection for embedded application [40]. The 

“HMS91C7432” chip implements complete TCP/IP protocol suite that includes PPP; IP; 

ICMP;TCP;UDP; DNS; SMTP; POP3 protocol and additionally a general MODEM 

driver. The “HMS91C7432” is built- in with 96Kb SRAM (12K x 8) for communication 

and buffering and a full duplex UART as DTE for ease of serial modem connection. The 

ASIC has also an 8 bits Data/Command port and 4 control pins to facilitate control and 

communication between the Host MCU and the modem. There are only 20 simple 

commands, each of which is a single byte long order to establish and to complete the 
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whole internet communication and 45 respond codes for the Host MCU to monitor the 

communication status. 

 

A typical application of this chip, according to the company, is a data bank email 

composer as shown below.  

 

 
Figure 2.1.1 A typical application of HMS91C7432 chip 

 

 

The features of this chip concisely are: 

 

• Implementation of the complete TCP/IP protocol suite 

• Built- in Email sending and reception function. 

• Standard SMTP protocol stack. 

• Standard POP3 protocol stack. 

• Standard PPP protocol stack to facilitate dial-up network log on. 

• Standard DNS protocol stack, resolve URL with dynamic DNS server. 

• Serial modem driver built- in. 

• Support V.90 56Kflex modem or lower. 
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• 8 bit parallel interface to the user application. 

• Serial DTE port for ease of modem interface. 

 

 

2.1.2 Seiko Instruments Inc. 

 

Seiko has designed the IC “iChip S-7600A”, by using low power CMOS design, which 

contains TCP/IP Protocol Stacks that act as an accelerator between MPU and Internet or 

network which uses TCP/IP protocol [39]. “iChip S7600A” is designed to provide 

Internet connectivity to devices using popular microcontrollers and  provides the 

functionality necessary for remote management and monitoring applications, portable 

email, Internet downloads, network access, and much more. This chip is a completely 

self-contained, drop- in solution for any device requiring networking connectivity and 

provides a high connect speed with low power consumption, integrating full TCP/IP, 

PPP, and UDP protocols, and 10K of on-chip SRAM for those protocol supports. The 

transport and network layers contain: 

 

• Two general sockets that provide connectivity between the application layer and 

the transport layer. 

• The TCP/UDP module that allows for reliable (retransmission) and unreliable (no 

retransmission) datagram deliveries. 

• An IP module that provides connectionless packet delivery. 

• The PPP module that provides point-to-point connection link between two peers. 



 12 

 

 
Figure 2.1.2 iChip S-7600A block diagram 

The block diagram of this chip is shown above. 

 

2.1.3 Connect One  

 

The company Connect One has developed the “iChip”, an ASIC that can be used as 

mediator device between a host processor and an Internet communication platform [41].  

“iChip” constitutes a complete Internet messaging solution for non-PC embedded 

devices. It acts as a mediator device to completely offload the host processor of Internet-

related software and activities. An industry-standard asynchronous serial link connects 

iChip to the host processor. Programming, monitoring and control are fully supported 

using Connect One’s AT+i extension to the standard AT command set. 

 

The main features of this chip are: 
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• Microprocessor-controllable through a standard serial connection or optional 

parallel bus. 

• Supports remote firmware update by host, email, or direct modem-to modem 

communications. 

• Includes onboard 128KB SRAM and 256KB or 512KB flash memory. 

• Driven by Connect One’s “AT+i" extension to the AT command set. 

• Stand-alone Internet communication capabilities. 

• Opens up to 5 TCP or UDP sockets. 

• Onboard non-volatile memory stores all functional and Internet related 

parameters. 

• Supports several layers of status reports. 

• Supports the following Internet Protocols and formats: 

PPP, LCP, IPCP, IP, TCP, UDP, DNS, SMTP, POP3, HTTP 

• Supports data modems up to 56 Kbps throughput or provides 10BaseT Ethernet 

LAN connectivity. 

 

 

The block diagram of this chip is depicted below.  

 

 

 
Figure 2.1.3 iChip architecture 
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2.1.4 eDevice Inc. 

 

The company eDevice has designed the SmartStack, a unique embedded software 

solution that allows Original Equipment Manufacturers (OEMs) to add Internet 

connectivity to their equipment easily and at low cost. SmartStack uses a single Digital 

Signal Processor (DSP) to execute the Media Access Control (MAC) layer – the standard 

functions needed to connect to a Local Area Network (LAN - and the Internet protocols 

at the same time. Implementation of the Address Resolution Protocol (ARP) with the 

MAC layer allows SmartStack to associate the Ethernet physical address with the IP 

address assigned to the device. Integration of SmartStack for Ethernet into any piece of 

equipment converts it to a stand-alone client that can be connected to any Ethernet LAN 

with access to the Internet. A simple software interface allows for communication with 

the attached equipment. This attached device uses an AT-like command set to configure 

parameters or launch actions like sending/receiving emails or downloading files from an 

FTP server. Using these AT-like commands, network parameters can be easily 

configured allowing quick integration into a LAN environment thanks to SmartStack. 

 

The supported protocols of this DSP are: 

• ARP 

• IP 

• TCP 

• UDP 

• SMTP 

• POP3 

• HTTP 

• FTP 

• Telnet 

 

The block diagram of this ASIC is shown below. 
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Figure 2.1.4 SmartStack’s block diagram 

 

2.2 Reusable libraries for embedded applications 

 

A lot of companies have developed protocols stacks not in ASICs but in form of 

microprocessors libraries. These libraries are technology-dependent which means that 

they are designed for a particular processor manufacturer such as Intel, Atmel or 

MicroChip.   

 

2.2.1 Embedded Power Co. 

 

Embedded Power is one of the companies that have developed library solutions for 

Internet functionality of embedded systems [43]. They have designed “RTXCnet”, a 

special Network Communication Suite that is an array of fully portable software 

components for networking communications in embedded applications. Each of these 

components is fully integrated with the RTXC real-time OS kernel. In a fraction of the 

development time required with other products, the RTXCnet network components allow 

the embedded designer to build applications that transfer files, commands, and data all 

over the world. The library “RTXCnet” includes a comprehensive suite of high 

performance components to support the most popular protocols in use today, such as 

TCP, IP, ARP, UDP, ICMP, SNMP, PPP, SLIP, HTTP, FTP and DHCP. The main 

advantage of this solution is that the embedded system designer can select exactly the 

protocols that the systems must support (such as RTXip, RTXtcp, RTXftp), thus 

maximize the available space for his own application. 
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2.2.2 LiveDevices Co. 

 

The LiveDevices Standard TCP/IP stack provides the core protocols required for full 

Internet connectivity, together with a rich set of basic application services [44]. Resource 

requirements are minimal, and multiple concurrent connections are supported. This stack 

supports IP, TCP, UDP and ICMP protocols but at this time the only current target is the 

Microchip PIC18CXXX. The main advantage of this solution is the capability of the 

designer to control the properties of the TCP/IP, such as the port, through a windows-

based program. Additionally the code is dependent of each additional port that is 

supported. The typical RAM sizes, according to the company, are shown below. 

 
 

Component 
RAM 
(bytes) 

ROM 
(bytes) 

PPP 132 4147 

SLIP 2 269 

Modem control 11 528 

IP 126 3152 

UDP 0 712 

TCP 3 3872 

Incremental costs - - 

Per UDP connection 15 0 

Per TCP connection 28 0 

 

2.2.3 Rabbit Semiconductors Co. 

 

Rabbit Semiconductors has introduced the TCP/IP core, specially designed for their 

Rabbit 2000 microprocessor [37]. The TCP/IP source code is provided additionally with 

ICMP, HTTP (includes facilities for SSI, CGI routines, cookies, and basic 

authentication), SMTP, FTP and TFTP (client and server) capabilities. The main 

advantage of this solution is that the users can directly write to TCP or UDP sockets to 

develop custom applications. 

 

The supported protocols of this stack are: 



 17 

• Socket Level TCP.  

• Socket Level UDP.  

• ICMP  

• HTTP  

• SMTP 

• FTP 

• TFTP 

 

2.2.4 CMX Systems Co. 

 

A company that also provides Internet ready solutions for a wide range of processors is 

CMX Systems [46]. They have developed a TCP/IP stack that support the most of the 

known protocols such as, IP, UDP, TCP,PPP, SLIP, ARP, HTTP, Web Server, FTP 

Server. According to the company in the future TFTP, POP3 and SMTP protocols will 

also be supported. This TCP/IP stack can be incorporated into a wide range of known 

microprocessors such as 8051, Atmel AVR, MicroChip PIC and STMicroElectronics 

ST10. Many companies have adopted this protocol stack such as Triscend Co. and Texas 

Instruments DSP. 

 

2.2.5 XCoNet Project 

 

Chips on the Net is a project developed by Xilinx and University of Hawaii and its 

purpose is to connect integrated circuits directly to the Internet. This project has been 

implemented into a Xilinx demo board and it is connected with an Ethernet transceiver 

board, an LCD panel and four 512Kbytes SRAMs. The design supports TCP/IP protocol 

and has been synthesized into a Xilinx Virtex FPGA (XSV800). It is the only project 

until now that support TCP/IP stack for FPGAs, but we are not aware if it can be 

considered as IP core, thus it can be incorporated into other FPGAs as part of a larger 

design. 
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Chapter 3 

Specifications 

 
Measure with micrometer, 

mark with chalk,  

cut with axe. 

Murphy’s Law 

 

 

This chapter presents the required specifications that the design must support. In order to 

be more accurate there is a brief presentation of each supported protocol, an analysis of 

the protocol’s header and a short description of header’s field of each protocol is 

supported by our design. Before analyzing the protocols it is necessary to present the OSI 

architecture. 

 

3.1 OSI Layers 

 

The International Standards Organization (ISO) established a framework for 

standardizing communications systems called the Open Systems Interconnection (OSI) 

Reference Model. The OSI architecture defines the communication process as a set of 

seven layers, with specific functions isolated and associated with each layer. Each layer 

covers lower layer processes, effectively isolating them from higher layer functions. This 

way, each layer performs a set of functions necessary to provide a set of services to the 

layer above it.  
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7 Application Layer 

User Applications 
6 Presentation Layer 

Upper layer protocols 
5 Session Layer 

Sockets 
4 Transport Layer 

UDP, TCP 
3 Network Layer 

ARP, IP, ICMP 
2 Data Link Layer 

LLC, MAC 

 
 

IP Core 

1 Physical Layer 
PMI, MII, PMD, MMD 

Transceiver 

Figure 3.1 OSI layers 
 

In a typical PC the lower two layers are supported by the Network Interface Card (NIC), 

while the upper six are supported by the operating system and the applications. Our 

implementation supports the Data link (both Logical Link Control and Media Access 

Control), the Network and the Transport layer. The physical layer is supported by the 

Ethernet transceiver. In addition the design partially supports the Session layer, since it 

provides a socket for the embedded applications. The FPGA communicates with the 

transceiver through the Medium Independent Interface (MII) which is described 

thoroughly in chapter 5. 

 

The supported Transport layer protocols are UDP and TCP, while the supported Network 

layer protocols are ARP, IP and ICMP. The supported Data link layer network is 

Ethernet. Each of these supported protocols has its own header. When a protocol header 

is passed to the layer beneath, the datagram including the layer’s header is treated as the 

entire datagram for that receiving layer, which adds its own protocol header to the front. 
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3.2 Ethernet networks 

 

Ethernet is one of the most commonly used Local Area Networks (LANs).It was 

originally developed at Xerox’s Palo Alto Research Center as a step towards an 

electronic office communication system, and it has since grown in capability and 

popularity [3]. Ethernet is a hardware system that provides the data link and physical 

layers of the OSI model. There are several different versions of Ethernet, each one with a 

different data transfer rate, such as Thin Ethernet (10Base2), Thick Ethernet and Twisted-

Pair Ethernet (10BaseT). The most common are Ethernet 10BaseT and 100BaseTX with 

10Mbits and 100Mbits data transfer rate respectively. 

 

Our implementation is designed to support both 10BaseT and 100BaseTX Ethernet 

networks. The header of a typical Ethernet frame is shown below. 

 
 

Preamble Destination 
Address 

Source 
Address 

Type Data Frame Check 
Sequence 

                          
I/G 

(1 bit) 
U/L 

(1 bit) 
IEEE assigned 

address (22 bits) 
Locally assigned 
address (24 bits) 

 
Preamble: 8 bytes 

 

The preamble field consists of eight bytes of alternating 1 and 0 bits. The purpose of this 

field is to announce the frame and to enable all receivers on the network to synchronize 

themselves to the incoming frame. In addition, this field ensures that there is a minimum 

spacing period of 9.6 ms, in 10Mbits networks, between frames for error detection and 

recovery operations. 

 

Destination and Source Address: 6 bytes 
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The source and destination address identifies the transmitter and the recipient of the 

frame respectively. This field consists of three subfields: I/G bit, U/L bit and 46-bit 

address. The one bit I/G subfield is set to a 0 to indicate that the frame is destined to an 

individual station, or 1 to indicate that the frame is address to more than one station 

(group address). The U/L subfield indicates whether the destination address is an address 

assigned by the IEEE (universally administrated) or by the organization via software 

(locally administrated). The first three bytes of the address represent the address assigned 

by the IEEE to the manufacturer of the NIC. The vendor then assigns the last three bytes 

for each one of its NICs. 

 

Type: 2 bytes 

 

This field identifies the higher-level protocol contained in the data field, thus telling the 

receiving device how to interpret the data field. This implementation supports the ARP 

and IP type which means that the type value must be 0x0806 or 0x0800 respectively. In 

any other case the packet is discarded. 

 

Frame Check Sequence Field: 4 bytes 

 

The frame check sequence field provides a mechanism for error detection. Each 

transmitter computes a cyclic redundancy check (CRC) that covers the address fields, the 

type and the data field. The transmitter then places the computed CRC in the four bytes-

wide CRC field. The CRC algorithm treats these fields as one long binary number [53]. 

In summary, the data D is multiplied by Xn and divided by the generator polynomial 

G(X), where G(X) is: 
   

G(X) = X32+ X26+ X23+ X22+ X16+ X12+ X11+ X10+ X8+ X7+ X5+ X4+ X2+ X+1 

 

The quotient Q is then discarded, and the remainder R is added to the divided Xn * D, 

according to the following equation: 
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(Xn * D) + R = (Q* G) + 0 

 

At the receiving end, the first part of the transmitted information is the original data D 

and the second part is the remainder R. This entire quantity is divided by the same 

generator polynomial G(X), and the quotient Q is discarded. If the transmitted data has no 

errors the remainder of this division is 0. 

 

In our design the division is implemented with linear- feedback shift registers, which is a 

method that yields the same results as subtract and division process. This method is 

explained extensively in the next chapter. 

 

3.3 Address Resolution Protocol 

 

The ARP protocol is responsible for converting IP addresses to physical addresses in 

order to eliminate the need for applications to know about the physical addresses [24]. 

Essentially, ARP is a table with a list of the IP addresses and their corresponding physical 

addresses. The implementation is capable of responding to any ARP request that 

addresses its IP address by sending a packet with its physical address, but it does not 

implement the ARP table. 

 

The header of a typical ARP packet is shown below. 

 
Hardware Type (16 bits) 
Protocol Type (16 bits) 

Hardware Address Length Protocol Address Length 
Operation Code 

Sender Hardware Address 
Sender IP Address 

Recipient Hardware Address 
Recipient IP Address 

 
Hardware type: 2 bytes 

The type of hardware interface. 
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Protocol type: 2 bytes 

The type of protocol used by the sending device. 

 

Hardware Address Length: 1 byte  

The length of each hardware address in the datagram, given in byte. 

 

Protocol Address Length: 1 byte  

The length of the protocol address in the datagram, given in byte. 

 

Operation Code: 2 bytes 

The operation code indicates whether the datagram is an ARP request or an ARP reply. If 

the datagram is a request, the value is set to 1 and if it is a reply the value is set to 2. 

 

Sender Hardware Address: 6 bytes  

The hardware address of the sending device. 

 

Sender IP Address: 4 bytes 

The IP address of the sending device. 

 

Recipient Hardware Address: 6 bytes 

The hardware address of the recipient device. 

 

Recipient IP Address: 4 bytes 

The IP address of the recipient device. 

 

3.4 Internet protocol 

 

The Internet Protocol (IP) is a primary protocol of the OSI model responsible for 

addressing the datagrams between computers and managing the fragmentation process of 

these datagrams [21]. 
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The header of an IP datagram when encapsulates a packet is shown below. 

 
Version Length Type of Service Total Length 

Identification Flags Fragmentation Offset 
Time to Live Protocol Header Checksum  

Source IP Address  
Destination IP Address  

Options ( variable length) 
 

Version:  4 bits 

 

This is a 4-bit field that contains the IP version number of the protocol. The current 

design supports only version 4, but it can be easily adjusted to support version 6. 

 

Internet Header Length:  4 bits 

 

This 4-bit number indicates the total length of the IP header, including the Options field 

in number of 32 bit words (4 bytes), and thus points to the beginning of the data. Since 

this is limited to a 4-bit number, the maximum length of an IP header is fixed at 15 * 4 

bytes, or 60 bytes. If no options are present, the value of the header length is always 0x5 

(20 bytes) which is the minimum value for a correct header. This will be the value in all 

IP datagrams sent by this implementation since these packets don’t include options. 

 

Type of Service:  8 bits 

 

The Type of Service provides an indication of the abstract parameters of the quality of 

service desired.  These parameters are to be used to guide the selection of the actual 

service parameters when transmitting a datagram through a particular network.  Several    

networks offer service precedence, which somehow treats high precedence traffic as more 

important than other traffic (generally by accepting only traffic above certain precedence 

at time of high load).  The major choice is a three way tradeoff between low-delay,    

high-reliability, and high-throughput. In the current design this byte is ignored and is set 

to 0 when transmitting a datagram. The bits of Type of Service are shown below. 
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      Bits 0-2:  Precedence. 

      Bit   3:  0 = Normal Delay,      1 = Low Delay. 

      Bit   4:  0 = Normal Throughput, 1 = High Throughput. 

      Bit   5:  0 = Normal Reliability, 1 = High Reliability. 

      Bit 6, 7:  Reserved for Future Use. 

 

Total Length:  16 bits 

 

This field represents the total number of bytes in the IP datagram. Using this field in 

conjunction with the header length, the start of the data field of the IP datagram can be 

calculated. Since this field is limited to 16 bits, the largest IP datagram that can be sent is 

64K. 

 

Identification:  16 bits 

 

An identifying value assigned by the sender to aid in assembling the fragments of a 

datagram. In this implementation the identification field is ignored when receiving 

datagrams since this design does not support fragmented IP packets. This field is 

initialized to 0 and is incremented by 1 when transmitting. 

 

Flags:  3 bits 

 

The Flags field is a 3-bit field, the first bit of which is left unused. The remaining two bits 

are dedicated to flags called DF (Don’t fragment) and MF (More fragments), which 

control the handling of the datagrams when fragmentation is desirable. Because the order 

of the fragments’ arrival might not correspond to the order in which they were sent, the 
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MF flag is used in conjunction with the Fragment Offset field to indicate to the receiving 

machine the full extent of the message. 

 

Fragment Offset:  13 bits 

 

If the MF flag is set to 1, the fragment offset contains the position in the complete 

message of the sub message contained within the current datagram. This enables IP to 

reassemble fragmented packets in the proper order. Offsets are always given relative to 

the beginning of the message. This is a 13-bit field, so offsets are calculated in units of 8 

bytes, corresponding to the maximum length of 65,536 bytes. Given the fact that the core 

is aimed at embedded systems manipulating usually small packets, our design does not 

support IP fragmentation, so these fields are ignored. Moreover the current web explorers 

use the TCP fragmentation to send large packets over networks that support small packets 

like Ethernet (1500 bytes maximum).  

 

Time to Live:  8 bits 

 

This field sets an upper limit on the number of routers through which a datagram can 

pass, and therefore limits the lifetime of the datagram. It is set by the sender and 

decrements once each time it passes through a router. When this field reaches 0x00, the 

datagram is discarded, and the sender notified by an ICMP message. 

. 

Protocol:  8 bits 

 

This field indicates the type of data encapsulated in the current IP datagram. The table 

below displays the protocols supported by our implementation. 
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Header Checksum:  16 bits 

 

This checksum is calculated over the IP header and includes only the options that are 

sent. Since some header fields change (e.g., time to live), this is recomputed and verified 

at each point that the internet header is processed. In this design, this field is ignored 

when receiving packets, since the whole packet is checked through CRC, but is computed 

when transmitting packets. 

 

The checksum algorithm is: 

 

The checksum field is the 16 bit one's complement of the one's complement sum of 

all 16 bit words in the header.  For purposes of computing the checksum, the 

value of the checksum field is zero. 

 

Source Address:  32 bits 

 

This 32-bit address represents the source of the IP datagram when one is received, and 

our IP address when a datagram is sent. 

 

Destination Address:  32 bits 

 

This 32-bit address represents the IP datagram's destination and our IP address when a 

datagram is received. Upon receiving a datagram, if the destination IP address is not 

equals to our design’s address then the datagram is discarded. 
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Options:  variable 

 

This field is used to transmit various parameters such as security and handling 

restrictions, record routing, and timestamp information. The options field must end on a 

32-bit boundary and pad bytes are added in as necessary (pad bytes are always 0x00). 

These options are not supported in the current design since most of them are reserved for 

future use or they are supported only for special use such as military purposes. 

 

3.5 Internet Control Message Protocol 

 

ICMP messages are used to report error conditions when processing datagrams [22]. In 

addition to reporting error conditions, ICMP is also used to query other machines. This is 

the protocol used to implement the PING application. ICMP messages are embedded 

within the data field portion of an IP. The structure of the header in the case of echo 

request or echo reply is shown in the table below. 

 
Message Type Sub Code Checksum 

Identifier Sequence Number 
Optional Data 

(Variable length) 
 
 

Message Type: 8 bits 

 

This field is used to indicate the general class of the ICMP message. The implementation 

supports only Echo Requests (type 0x08) and Echo Replies (type 0x00). These classes are 

used when a host sends an echo request and waits an echo reply message in order to 

determine if another machine is reachable. The design sends an echo reply automatically 

in response to any echo request, but it does not support echo requests. 

 

Sub Codes: 8 bits 
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This field is used to indicate sub codes within each message type. Our implementation 

supports only sub codes “0x00” with the Echo Request (0x08) and Echo Reply (0x00) 

message types. 

 

Checksum: 16bits  

 

The checksum is the 16-bit one’s complement of the one's complement sum of the ICMP 

message starting with the ICMP Type. For computing the checksum, the checksum field 

should be zero. The ICMP fields are the only ones computed for this checksum.  

 

Identifier: 16 bits 

 

This is normally the process ID of the sending process. When an Echo Request is 

received, the Identifier is copied into the Identifier field of the Echo Reply. When sending 

an Echo Reply the Identifier will be fixed at 0x01. 

 

Sequence Number: 16 bits 

 

This field is usually used to keep track of Echo Requests sent. It is incremented with each 

Echo Request sent. When an echo Request message is received, the Sequence number is 

copied into the Sequence Number field of the Reply. Our implementation will always 

start the sequence number at 0x00 and increment it each time an ECHO Request is sent. 

 

3.6 User Datagram Protocol 

 

The User Datagram Protocol is a connectionless protocol which does not provide 

reliability, meaning there is no indication to the sending device that a message has been 

received correctly [20]. This protocol also does not offer error-recovery capabilities. UDP 

is much simpler than TCP and is usually used with the Trivial File Transfer Protocol 

(TFTP). 
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The header of a UDP datagram is shown below. 

 
Source Port Number Destination Port Number 

Length Checksum 
Data (if any) 

 
 

Source Port Number: 16 bits 

 

The source port is a 16-bit field that identifies the local UDP user, which is usually an 

upper- layer application program. 

 

Destination Port Number: 16 bits 

 

The destination port number is a 16-bit field that identifies the remote machine’s UDP 

user. 

 

Length: 16 bits 

 

This 16-bit field indicates to the UDP receiver the size of the UDP data. The UDP 

module extracts the UDP data length based on this field and only receives the correct 

amount of data. 

 

Checksum: 16 bits 

 

The checksum is calculated by taking the 16-bit one’s complement of the one’s 

complement sum of the 16-bit words in the header and data together. Unlike the ICMP 

and IP header in the UDP checksum some fields of the IP header (called pseudo-header) 

are also used for the UDP checksum calculation. These fields are the source IP address, 

the destination IP address, the protocol type and the UDP total length. 
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3.7 Transmission Control Protocol 

 

The Transmission Control Protocol provides a considerable number of services to the IP 

layer and the upper layers. Most important, it provides a connection-oriented protocol to 

the upper layers that allows an application to make sure that a datagram sent out over the 

network was received in its entirety. If a datagram is corrupted or lost, TCP handles the 

retransmission, thus providing reliable communications in the higher layer applications. 

 

TCP provides two methods to establish a connection: active and passive. An active 

connection establishment occurs when TCP issues a request for the connection, based on 

an instruction from an upper- level protocol that provides the socket number. A passive 

open approach takes place when the upper- level protocol instructs TCP to wait for the 

arrival of connection requests from a remote system. When TCP receives the request, it 

assigns a port number. The design provides only passive open connections. This means 

that a host must initiate not only the establishment of the connection but also the closing 

of this connection. 

  

The header of a TCP datagram is shown below. 

 
Source Port Destination Port 

Sequence Number 

Acknowledgment Number 

Data 
offset 

Reserved U
R
G 

A
C
K 

P
S
H 

R
S
T 

S
Y
N 

F
I
N 

Window 

Checksum Urgent Pointer 

Options and Padding 

 
Source and Destination Port: 16 bits 

 

This is a 16-bit field that identifies the local and the remote TCP application. In the 

design only one port is supported and has a fixed number. 

 

Sequence Number: 32 bits 
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This 32-bit field indicates to the TCP receiver whether the incoming segment is to be 

stored in SRAM. If the sequence number matches the receive buffer’s next expected 

sequence number, it stores the data to the buffer. Otherwise, the TCP receiver ignores the 

incoming segment. This scheme works even if the received sequence number arrives out 

of order because the remote TCP module guarantees to resend unacknowledged segments 

When the TCP module makes a connection, the initial sequence number is derived from a 

random number generator in order to avoid the confusion with earlier connections. After 

a connection is established, the sender module fills this field with the last acknowledge 

number received from the TCP peer. 

 

Acknowledge Number: 32 bits 

 

The TCP receiver checks this number to disable re-sending data. If the received 

acknowledge number is larger than the last received number and same or smaller than 

what was expected, the internal acknowledge number is updated. The TCP sender fills 

this field with a valid acknowledgement number except for when it first requests a TCP 

connection as a client. The acknowledge number that will be sent is incremented by the 

number of data received. It is also incremented in response to SYN, FIN without data 

because they have virtually one byte worth of data in the TCP sequence / acknowledge 

scheme. The TCP receiver checks both SEQ and ACK numbers to validate the incoming 

TCP segments. 

 

Data Offset: 4 bits  

 

This 4-bit header length field contains an integer that specifies the length of the segment 

header measured in 32-bit multiples. The TCP receiver state machine uses this field to 

determine if TCP options exist. The TCP receiver checks this field when it receives SYN 

flag. When this field is 0x60, then the TCP module knows that the current TCP segment 

contains options. 
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Reserved: 6 bits 

 

This 6-bit field is reserved. The TCP receiver module does not check this field. The TCP 

sender module always fills this field with zeros. 

 

Flags: 6 bits 

 

The next 6-bits field specifies codes. The codes are summarized in the Table below. 

 

 
 

The URG bit, if set, indicates that the incoming TCP segment’s urgent pointer is valid. 

The TCP module does not support urgent pointer scheme. The module also uses ACK 

flag when receiving new packets. The PSH flag indicates that the data will be stored in 

the SRAM. When the module receives a packet with RST flag set then the TCP 

connection is reset. The SYN flag is used for the TCP module to initiate a TCP 

connection. If this flag is received after the connection is established the segment is 

ignored. The FIN flag is used to terminate connections. The TCP module supports only 

one case of closing which is server initiated. 

 

Windows Size: 16 bits 

 

This 16-bit field is used to advertise how many bytes are reserved for receiving incoming 

TCP data. After the TCP receiver reads this value, the TCP sender limits the number of 

bytes to be sent if this field indicates smaller number of data than what is needed to be 
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sent. The TCP sender also inserts the number of acceptable bytes to this field on every 

TCP segment it sends out. 

 

Checksum: 16 bits 

 

This 16-bit field is ignored for incoming TCP segments since the reliability of the packet 

is checked by CRC but the TCP sender always calculates this field before passing the 

segment on to the IP module. Just like the UDP header, the TCP checksum is calculated 

taking account some fields of the IP header (called pseudo-header).  These fields are the 

source IP address, the destination IP address, the protocol type and the TCP total length. 

 

Urgent Pointer: 16 bits 

 

This 16-bit field, upon the reception of URG flag, is used to determine where the urgent 

pointer resides in the TCP data. This field is ignored by the TCP module since all data are 

treated the same and they are stored in the SRAM in order to be available to any 

application. 

 

TCP Options: 16 bits 

 

The only option that this design accepts is Maximum Segment Size option and that only 

when it receives SYN flag, which initiates the connection. This is detected by the TCP 

header field when this field is 0x60 instead of 0x50. The MSS option is listed in the table 

below. Any other option received is ignored.  

 
 
TCP Data: Variable Length 
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The TCP data are stored in the SRAM in conjunction with the TCP sequence number. 

Data storing begins at the address 0x01. When a new TCP packet arrives, targeting the 

same port, then the new data are stored in the next available address. When we close the 

TCP port the SRAM address register initiates to 0x01. 
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Chapter 4 

Architecture 

 

Any system must be designed to withstand  

the worst possible set of circumstances. 

Murphy’s Law 

 

 

This chapter presents the architecture of our design. The first section describes the 

design’s dataflow through the modules. The following sections are an in-depth 

examination of each module of IP core. Each protocol module is actually a finite state 

machine (fsm) that decodes each field of the protocol’s header when receiving a packet 

and creates each field of the protocol’s header before transmitting a packet. In the last 

two sections we describe the checksum and the CRC module. 

 

4.1 Overall Architecture 

 

When a new packet arrives to the system, an Ethernet transceiver chip converts the 

analog signals of Ethernet to 8-bit width digital signals (the function of an Ethernet 

transceiver is described in the next chapter). The design reads the data and at the same 

time decodes the protocol’s header. The main control unit is actually the RxEther module 

since this unit activates all the other modules. The incoming data can be read by every 

protocol module (RxEther, ARP, ICMP, IP, UDP and TCP), except TxEther. The data are 

also read by the receiving CRC-32 module in order to check the packet for errors. The 

TCP module can route the packet to the SRAM in order to be used by a potential 

application. When the system has received the whole packet it decides whether it has to 

reply to this packet. In this case the packet that is going to be transmitted is created in an 

internal RAM module (TxRAM). Each protocol header is created by the corresponding 

module. All modules can write to TxRAM data bus and to TxRAM address bus. This bus 

is initially set to high impedance, thus every module can write to this bus without any 
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conflict. All the protocol modules control the TxRAM write enable signal while TxEther 

controls the read enable signal. Every module writes its data to the corresponding address 

of TxRAM. The first byte is used to indicate the total size of the packet that is going to be 

transmitted. The TxRAM data bus can be read by the checksum modules, thus they can 

produce the corresponding checksum field. This bus can also be read by the transmitting 

CRC-32 module which provides the transmitted packet’s CRC field. The overall data 

flow is depicted below (see figure 4.1).  

 

TCP
Module

UDP
Module

ICMP
Module

IP
Checksum

ICMP-UDP-TCP
Checksum

CRC-32
CRC-32

TxRAM
256 Bytes

IP
Module

ARP
Module

RxEther

8
8 8

32

32

16

16

MII MII

SRAM

TxEther

Address8

 
Figure 4.1 Dataflow block diagram 

The basic features of the supported protocols that are described below in each module are 

• ARP (without look up table) 

• ICMP (echo request-reply) 

• UDP (one connection) 

• TCP (one connection, passive open port) 
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In case that an application module must be added, it can be simply added like the other 

protocol modules. It must be able to write to TxRAM data bus and must be triggered by 

the RxEther module. 

 

4.2 RxEther module 

 

The RxEther module is the basic one that controls all the  other modules. When the signal 

RX_DV (data valid) goes high then the fsm goes to read preamble state and waits until 

the end of the preamble (“AB”). Next, fsm examines the local MAC address. If the 

address’s first byte is FF, which means that it is a group address, the ARP module is 

activated.  

 
 

idle

read preamble

read local MAC

read remote MAC

read SRAM

ARP module

protocol type

read IP header

read UDP read TCPread ICMP

read CRC write SRAM

write preamble

write remote MAC

write local MAC

write protocol type

write UDP write TCPwrite ICMP

write IP

write CRC

wait to transmit

Figure 4.1 RxEther fsm 
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Otherwise the module keeps examining the local MAC address and if it matches with its 

own address it goes to the next state. In this state, read remote MAC, the remote physical 

address is stored in the proper register and then fsm goes to protocol type state. This fsm 

state examines the type and if it is “0x0800” (the Internet protocol type), it accepts the 

packet. 

 

The next state is read IP header state which activates the IP module. This module 

decodes the IP header and returns a signal that indicates the Transport’s protocol type. 

Depending on this signal fsm goes to the proportional state. In the case of read TCP state, 

if the TCP module activates a special signal then the fsm goes to write SRAM state, which 

is responsible for writing the incoming data to the SRAM. Otherwise the fsm goes to 

read CRC state which examines the CRC register. If the register does not have the default 

value “38FB2284”, the packet is discarded. This value is the only valid CRC value and 

includes the CRC field of the Ethernet header. 

 

The transport module (ICMP, UDP or TCP) decides whether the RxEther module must 

reply to the incoming packet. If so, then the fsm transits to write preamble state which 

writes the appropriate sequence of preamble (7 “AA”, following one “AB”) to the 

internal RAM. The next states are write remote MAC and write local MAC states that 

write the remote and the local MAC addresses respectively. The following state is write 

protocol type state which writes the data 0x0800 to the internal RAM. Depending on the 

transport protocol of the incoming packet, fsm goes to the proportional state (write 

ICMP, write UDP or write TCP). The next state is write IP state that activa tes the IP 

module, in order to write the IP header to the RAM. This state is following the transport’s 

protocol states because the IP header must know the length of the packet that is going to 

be transmitted. The last state is write CRC state which writes the CRC register to the 

corresponding field. 

 

When fsm is at the idle state we can set a signal to 1 (SRAM_RD=’1’) in order to activate 

the read SRAM function which sends the contents of the SRAM to the corresponding pins 

of the FPGA. This way we can move the contents of the SRAM to the ports of the FPGA. 
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This function has been implemented for testing purposes and is described in detail in the 

next chapter. 

 

 

4.3 ARP module 

 

The Address Resolution Protocol (ARP), as we presented it in section 3.1, is responsible 

for converting IP addresses to physical addresses in order to eliminate the need for 

applications to know about the physical addresses. The ARP module is actually an fsm 

that decodes and synthesizes each field of the received and transmitted packet 

respectively. The first state, read local MAC, examines if the MAC address is set to high 

(“FF FF FF FF FF FF”) which would mean that is a group address. The second state, 

read remote MAC, stores the remote MAC address in order to know the sender of the 

packet. The next two states, read protocol type and read ARP general, read the incoming 

data, which are useless in the current design. The read destination MAC and read 

destination IP include the MAC and IP address of the sender. The read source MAC state 

simply reads the data without storing it. That happens because the sender does not know 

the recipient MAC address, only the recipient IP address. The next state is read CRC 

state which in case the field is correct the fsm goes to the transmission states. 

 

In these states, the module writes to the internal RAM the corresponding registers that 

have been read. The only difference is that the source MAC address (all high) is replaced 

by the actual MAC address. Finally the fsm transits to write length state that writes to the 

first byte of TxRAM the total size of the packet that is going to be transmitted. 
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Figure 4.3 ARP fsm 
 

 

4.4 IP module 

 

The Internet Protocol (IP) module is divided into 2 fsms; the first one is activated when 

the system is receiving packets and the second one when it is transmitting packets. When 

receiving a packet the fsm goes to read version state, which reads the IP version (0x4), 

the header length (in 32-bit words, 0x5) and the service type (usually 0x00). The next 
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state, read size, reads the packet length in bytes in order to know the size of the packet. 

Then the fsm goes to read offset and read time to live states that simply ignore these 

fields. The next state, read protocol type, is very important as it determines the next 

module that will be activated after the IP header. The next state reads the IP header 

checksum, but does not verify it, since we use the Ethernet CRC field in order to know if 

the packet has any errors. The following states, read remote address and read local IP, 

store the IP address of the sender and the IP address of the recipient respectively in order 

to use them when creating the IP header of the transmitted packet. 
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Figure 4.4 IP fsm 
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When it is time for the IP module to create the IP header of the packet, it uses the 

necessary registers that were loaded when the module was receiving a packet. Otherwise 

the module fills theses field according to other functions. For example, in the write size 

state, the IP module reads from RxEther the current size of the packet and adds the IP 

header size (20 bytes) and the CRC field size (4 bytes) to obtain the right size of the 

packet. The transmitted identification number of the packet is obtained by inverting the 

receiving identification number in order to create a random number. The transmitted time 

to live is set to 0x80=128 which is the default value for most network programs, such as 

ping and trivial ftp. When the fsm goes to write checksum state then the module writes a 

dummy checksum since the checksum module has not received all the fields yet. When 

the IP module has written all the fields of the IP header it goes to write real checksum 

state which reads the right checksum from the checksum module and writes it to the  

internal RAM. 

 
4.5 ICMP module 
 
The Internet Control Message Protocol module is responsible for replying to information 

requests that usually come from the ping program. This module supports only this 

function, which means that the type field of the ICMP header when receiving a packet 

must be 0x08 and the code field must be 0x00. The ICMP module is divided into two 

fsms, like the IP fsm; the first one is activated when receiving a packet and the second 

one when creating the transmitted packet. When the fsm is in read identifier and read 

sequence state the two fields are stored into the proportional registers, so they can be 

retrieved when the module writes the identifier and sequence number of the transmitted 

packet, respectively.   
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Figure 4.5 ICMP fsm 
 

When the fsm goes to write data state the module writes 32 dummy data in order to pad 

the ICMP packet according to the ICMP protocol. In this module we use one more state, 

write real checksum state, in order to write the correct checksum which includes not only 

the ICMP header but the data, too. 

 

4.6 UDP module 

 

The Uses Datagram Protocol (UDP) is widely used as a connectionless protocol by many 

programs such as the Trivial File Transfer Protocol (TFTP) and the Remote Call 

Procedure (RCP). The UDP fsm also consists of two distinct fsms; the first one is 

activated when receiving a UDP packet and the second one when creating the UDP 

header of the transmitted packet. Since UDP is connectionless its header is rather simple. 

When receiving a packet the UDP module reads some fields of the IP header (for pseudo-



 45 

header purpose) and then stores the remote (source) port and the local (destination) port 

into two distinct registers. The next state, read length, reads the packet size including 

header and data. The checksum field is ignored when receiving a packet as we use again 

the Ethernet CRC field to check if there are any errors in the datagram. When we produce 

the UDP header we read the local and remote port registers and write them to the internal 

RAM. We also output the pseudo-header fields without writing these fields to the 

TxRAM. The UDP checksum is written at the last state of the fsm since it must include 

both the header and the data. We must note that even though the UDP module does not 

have to transmit any acknowledgment, when receiving a datagram, in this design the 

UDP module  send a fake reply by sending back the data to the sender in order to achieve 

a form of communication. This way we can be aware of the proper or not reception of 

UDP packets by the implementation. 
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Figure 4.6 UDP fsm 
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4.7 TCP module 

 

The Transmission Control Protocol module is the most basic and the most complex 

module of this design. It consists of three independent fsms; the first one is activated 

when the module receives a TCP packet (see figure 4.7a), the second one when creating 

the TCP header of the transmitted packet (see figure 4.7a) and the third one is 

implemented according to the official TCP fsm document (RFC793). This fsm describes 

the different states of TCP depending on the receiving packets (see figure 4.6b).   

 

The receiving fsm is activated when the design is still reading the IP header. The reason 

is that the TCP checksum includes some fields of the IP header (pseudo header). The 

module reads and stores the IP length, the IP destination address (remote) and the IP 

source address (local), while discarding all the other unnecessary IP fields (read IP 

dummy state). This way, when the module creates the TCP checksum in the header of the 

new packet, it includes the TCP header, the above IP fields and the data. After read local 

IP state, the fsm goes to read remote port (source port) and read local port (destination 

port) state, where it stores these fields so that it can be used when creating the transmitted 

packet. The local port has been set to 1001, which means that only packets with this value 

at the destination port are valid and all others are discarded. The next states, read 

sequence number and read acknowledgment number, store these values in the appropriate 

registers, so they can be used by the TCP fsm. The next state, read data offset, determines 

if the TCP header has any options. If so, the fsm goes to read options state after read 

urgent state, otherwise the fsm goes to read data state. After reading the data offset, the 

fsm goes to read flags state which determines the next TCP fsm state. The following 

states read window and read checksum, simply read these fields without any action. The 

urgent pointer that is read in the next state is not supported since any action taken, using 

this field, depends on the upper application. If the fsm goes to read options state then it 

reads the maximum segment size type (0x02), the options length and the maximum 

segment size in bytes. If the fsm goes to read data state then a signal is activated in order 

for RxEther to start saving these data to the SRAM. 
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The transmitting fsm is responsible for writing the header of the transmitted packet. The 

first four states create the right IP fields in order to be included into the TCP checksum 

field (pseudo header), although they are neither written to the RAM, nor are included in 

the CRC field. The following states write all the other TCP fields by reading the 

appropriate registers. Some of these registers are written by the receiving fsm while all 

other registers are written by the TCP fsm. If the fsm is in write urgent state and options 

have to be written then the fsm goes to write options state, otherwise it writes the TCP 

checksum and then goes to idle state. 
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Figure 4.7a TCP read-write fsm 
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The TCP fsm (see figure 4.6b) is implemented in order to support the main functions of 

TCP. It is responsible for establishing a connection, transferring data and closing a 

connection. It is also responsible for the values of the transmitted flags, the sequence and 

the acknowledgment numbers. This fsm supports only passive open ports, thus a 

connection establishment happens only if an active ports initiates a connection. This fsm 

is in the listen state while waiting to receive a packet with the SYN flag on, which 

indicates that an active port wants to establish a connection. Then the fsm sets the SYN 

and the ACK flags and activates the RxEther module to send the reply packet.  
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Figure 4.7b TCP fsm 
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With the arrival of a new packet, fsm checks the flags and if the ACK flag is on, the fsm 

goes from syn_rcvd state to established state. In this state, the fsm receives data packets 

and sends the right acknowledgment. The sequence number of the transmitted packet is 

once again created by inverting the receiving sequence number, thus obtaining a random 

number. The transmitted acknowledgment number is created by adding the receiving 

sequence number to the number of data bytes received.  

 

The fsm stays in that state until it receives a packet with the FIN flag on. In this case the 

fsm goes to close Wait state and sends a packet with the ACK flag on. When the 

transmission of this packet has ended the fsm sends another packet with the FIN flag on 

and goes to last ack state. With the arrival of the last packet, if the ACK flag is on, the 

fsm goes to closed state and waits for a new connection to be established. We must note 

that the TCP fsm interacts with the RxEther fsm through the tcp_status register in order 

for RxEther fsm to know if it must send a new packet or not, while all the other protocols 

always send a new packet after receiving a datagram. 

 

4.8 TxEther module 

 

Under the IEEE 802 series of 10-Mbits operating standards, the data link layer of the OSI 

Reference Model is subdivided into two layers, the logical link control (LLC) and 

medium access control (MAC). The frame format that we examined in section 3.1 

represents the manner in which LLC information is transported. Directly under the LLC 

sublayer is the MAC sublayer, which is responsible for checking the channel and 

transmitting data if the channel is idle or checking for the occurrence of a collision, and 

performing some actions if a collision is detected. Actually the MAC layer is an interface 

between user data and the physical placement and retrieval of data on the network. The 

TxEther module actually implements the transmitting MAC operations since the 

receiving MAC operations are rather simple and are implemented in the RxEther module. 

 



 51 

These operations are based on the Carrier-Sense Multiple Access with Collision 

Detection method (CSMA/CD) that in used in Ethernet networks. According to this 

protocol, when a station has data to send, it first listens to determine whether any other 

station on the network is talking. In a CSMA/CD network, if the channel is busy, the 

station will wait until it becomes idle before transmitting data. Since it is possible for two 

stations to listen at the same time and discover an idle channel, it is also possible that the 

two stations could then transmit at the same time. When this situation arises, a collision 

will occur. Upon sensing a collision, a delay scheme is employed to prevent a repetition 

of the collision.  

 

The TxEther fsm (see figure 4.7) is in idle state until the signal tx_start is activated by the 

RxEther module. When this signal arises, that means that the data to be transmitted is in 

TxRAM and ready to be transmitted. The fsm goes to S1 state, which examines if the 

network is idle, by checking the Carrier Sense signal (CRS). If the CRS signal is on then 

the fsm goes to CRS state and stays there until CRS’s falling edge. When CRS turns to 0 

the fsm goes to the next state. In this state the module, using an internal counter, waits 

9.6usec before trying to retransmit. This 9.6usec space between two consecutive packets 

ensures that all receiving electronic devices will sense the silence in the network. At the 

end of this delay the fsm goes again to S1 state and if CRS is low then the fsm reads the 

total size of the packet, information stored in the first byte of the packet (RAM 

address=0x01). After reading the packet size the fsm goes to data state and start 

transmitting the packet to the network. In this state the fsm reads the data written by all 

the other modules from the internal RAM.  

If there is no collision the fsm goes to idle state after the transmission of the whole 

packet. While transmitting data if a collision is detected the fsm goes to jamm state. In 

this state the TxEther module transmit 128 consecutive high bits which ensures that the 

collision lasts long enough to be detected by all stations on the network. After 

transmitting these jamming bits the fsm goes to backoff state. In this state the module 

waits a random number of slot times before attempting to retransmit. A slot is a frame 

that represents 512 bits (or 51.2usec on a 10-Mbits network). The actual number of slot 

times the module waits is selected by a randomization process, formerly known as a 
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truncated binary exponential backoff. Under this randomization process, a randomly 

selected integer r defines the number of slot times the module waits before trying to 

retransmit the packet. This integer is selected by specific range of values, which is called 

window. If a collision occurs on a retransmission attempt the module doubles the 

window, a new random number is generated from the new window and then waits for the 

prescribed number of slot intervals prior to attempting a retransmission. The maximum 

retransmission attempts before the module aborts the retransmission is 16. In the first 10 

attempts the backoff window increases binary (0-1, 0-4, 0-8…) while in the last 6 

attempts the window is constant (0-1023).  

  

 

idle state

s1 state

CRS state

wait 9.6usec state jamm state

backoff state

wait 51.2usec state

depth state

data state

CRS='1' CRS='0'

COL='1'

end of
51.2usec

wcount=window

wcount window

end of data

end of
jamm bits

CRS='0'

end of
9.6usec

tx_start='1'

 
Figure 4.8 TxEther fsm (MAC fsm) 

 

In TxEther module we use an internal integer (wcount) to count the number of slots. Each 

time the 51.2usec delay ends we check if this integer is equal to the random generated 

window. If it is equal, the fsm goes to S1 state while doubling the possible values that the 

window can take the next time. The window range is produced by using an integer from 0 

to 1023 and taking the remainder with 2, 4, 8, 16 … in each attempt. In this design we 

have not implement the random generator process and the slot number r is selected from 

a Look Up Table (LUT) for each attempt. 
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4.9 16bit Checksum algorithm 

 

The 16-bit checksum algorithm is widely used in many protocols of the Transport and 

Network layer. The official algorithm of this checksum according to the RFC793 [23] is: 

 

The checksum field is the 16 bit one's complement of the one's complement sum of all 16 

bit words in the header.  For purposes of computing the checksum, the value of the 

checksum field is zero. 

 

Depending on the protocol, the checksum can include only the protocol’s header, the 

header and the data or even the header of other protocols, i.e. the TCP checksum includes 

the TCP and part of IP header. 

 

 

temp_register
 (16 bit)

checksum_register
 (16 bit)

adder
comparator

bit(16)=1

increase checksum
by 1

set bit (16) to 0

data (8 bit)

 
Figure 4.9 The checksum module architecture 
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In our implementation, on the first cycle the 8 bit data are inverted and stored in the 8 

upper bits of a 16-bit wide register (see Figure 4.8). On the second cycle the data are 

inverted and stored in the 8 lower bits of this register. On the same cycle this register is 

added to the previous value of the checksum register. If there is an overflow (bit(16) =1) 

then the checksum register is increased by one and bit(16) is set to 0. 

 

4.10 32bit Cyclic Redundancy Checking algorithm  
 

The frame check sequence field provides a mechanism for error detection. Each 

transmitter computes a cyclic redundancy check (CRC) that covers the address fields, the 

type and the data field. The transmitter then places the computed CRC in the four bytes 

CRC field. As presented in section 3.1 the CRC field is the remainder when M(X) is 

divided by the following polynomial: 

 

G(X) = X32+ X26+ X23+ X22+ X16+ X12+ X11+ X10+ X8+ X7+ X5+ X4+ X2+ X+1, 

where M(X) is a polynomial that covers the data bits. 

 

In general, digital logic does not implement efficiently the division of very large number. 

Consequently, binary information must be converted into a more appropriate form before 

the CRC is used. The strings of bits to be verified is represented as the coefficients of a 

large polynomial, rather than as a large binary number, as shown in the following 

example: 

1,1000,0000,0000,0101 = X16+X15+X2+1 

 

Typically, CRC calculations are implemented with linear- feedback shift registers 

(LFSRs). LFSRs use a method that yields the same results as subtraction and shift 

division process when the subtraction is performed without carry by the XOR function. 

To affect subtraction and shift division one bit at a time, you can shift through and 

examine each bit in the original frame of data. For the first bit of value 1, the divisor 

high-ordered bit is subtracted (XOR) from the dividend. That dividend bit, which is 

unnecessary and is not generated, is set to zero by the subtraction. The lower order bits of 
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the divisor cannot be subtracted yet, because the corresponding divisor bits have not been 

shifted in. 

  

As shown in the following figure, for the simple case of the CRC-16, the algorithm is 

implemented by shifting the data stream into a 16-bit shift register. Register Bit(0) 

receives an XOR of the incoming data and the output of Bit(15). Bit(2) receives an XOR 

of the input to Bit(0) and the output of Bit(1). Bit(15) receives an XOR of the input to 

Bit(0) and the output of Bit(14). 

 

 
In the case of CRC-32, which is used in Ethernet header, we use 14 XOR gates, one for 

each coefficient of polynomial G(X). As data is shifted into the CRC circuitry, a CRC 

calculation accumulates in the registers. When the CRC value is loaded into the CRC 

calculation register, the ending CRC checksum is loaded into the CRC Register. The 

value loaded into the CRC Register should be zero; otherwise, the configuration failed 

CRC check. 

 

In addition, as the data is 8-bit wide we take advantage of the VHDL variables in order to 

process 8 bit data each clock cycle. In order to calculate the CRC field, as soon as the 

first bit is processed, we save this register and we immediately begin the process of the 

second bit. This way we achieve the serial processing of 8 bits for the CRC calculation in 

only one cycle. 
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Chapter 5 

Implementation 

 
A complex system that works is 

  invariably found to have evolved 

 from a simple system that works. 

Murphy’s Law 

 

 

In this chapter we describe Ethernet transceivers which are essential components in order 

to connect our design in a 10 or 100Mbits Ethernet network. In addition we describe 

Pammete, a PCI generic interface board based on reconfigurable logic, on which our 

design is implemented.  

 

5.1 Ethernet Transceivers 

 

In order to connect our implementation to Ethernet networks we must use a mixed signal 

ASIC that will convert our digital signals into appropriate analog signals. The Ethernet 

network created at the Xerox Palo Alto Research Center by Dr. Robert Metcalfe is the 

most widely used local area network [3]. The transmission in the physical layer is  

baseband with Manchester coding, which means that the signal does not use a modulated 

carrier but it is transmitted directly on the network line. The Manchester coding is 

depicted below. 

 

DATA

NRZ
Signal

Manchester
Code

0 1 1 0 1 1 1 0

-2 Volt
0 Volt

 

Figure 5.1a Manchester Coding 
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These ICs incorporate many necessary electronic parts such as parallel to serial 

converters, NRZ to NRZI converters and binary to ML-3 encoders and decoders. 

Furthermore when there is no packet to send transceivers send control pulses every 

16msec in order to confirm the connection. If the receiver in the network does not sense 

these pulses for more than 100msec then it considers that the connection failed. In 

addition transceivers are responsible for carrier detection and collision detection, thus the 

MAC layer knows when to send a packet or send jamm bits. 

 

Most of the Ethernet transceivers support the Media Independent Interface (MII) as 

specified in clause 22 of the IEEE 802.3u standard. This interface may be used to connect 

transceivers to a 10/100 Mb/s MAC or a 100 Mb/s repeater controller. The management 

interface of the MII allows the configuration and control of multiple transceivers, the 

gathering of status and error information, and the determination of the type and abilities 

of the attached devices.  

 

The Media Independent Interface also includes a dedicated receive bus and a dedicated 

transmit bus. These two data buses, along with various control and indicative signals, 

allow the simultaneous exchange of data between the transceiver and the upper layer 

agent (MAC or repeater).  

 

The receive interface consists of  

• a nibble wide data bus RXD [3:0], 

• a receive error signal RX_ER, 

• a receive data valid flag RX_DV, and 

• a receive clock RX_CLK for synchronous transfer of the data. 

 

The receive clock can operate at either 2.5 MHz to support 10 Mb/s operation modes or 

at 25 MHz to support 100 Mb/s operational modes. In addition RX_CLK is the clock that 

drives the implementation. 
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The transmit interface consists of 

• a nibble wide data bus TXD [3:0], 

• a transmit error flag TX_ER, 

• a transmit enable control signal TX_EN, and 

• a transmit clock TX_CLK which runs at either 2.5 MHz or 25 MHz.  

 

Additionally, the MII includes the carrier sense signal CRS, as well as a collision detect 

signal COL. The CRS signal asserts to indicate the reception of data from the network or 

works as a function of transmit data in Half Duplex mode. The COL signal asserts as an 

indication of a collision which can occur during half-duplex operation when both transmit 

and receive operation occur simultaneously. Although the MII interface provides a 4-bit 

data bus it is trivial enough to adjust this conflict by using an 8-bit register that reads the 

4-bit MII data bus and provides an 8-bit data bus plus a clock with double period. This 

way the implementation is actually triggered by 12.5MHz in 100Mbits networks and by 

1.25MHz in 10Mbits networks.  

 

We must note at this point that according to the MII interface the data bus and the other 

signals (input and output) change on the falling edge of the clock. According to this 

specification all the receiving modules (RxEther, ARP…) are triggered directly by 

RX_CLK in order to read the correct data on the rising edge of the clock. In reverse 

TxEther module must be triggered by the falling edge of RX_CLK in order to change the 

transmitted data and signals in the falling edge. Consequently TxRAM, CRC-32 and 

checksum modules must also be triggered on the falling edge of the clock in order to read 

the right data on the TxRAM bus which is written by the protocol modules (see figure 

5.1b). 
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Figure 5.1b Timing waveforms  

 

Another important note is that some Ethernet transceivers support the preamble 

suppression mode. If the Station Management Entity (i.e. MAC or other management 

controller) determines that all transceivers in the network support preamble suppression 

then the Station Management Entity need not generate preamble for each management  

transaction.  This is a very important topic because if we choose to enable preamble 

suppression mode then we must change the RxEther fsm in order to omit the preamble 

states when receiving and transmitting a packet. In the first case we must start decoding 

Ethernet header immediately and in the second case we must start writing the MAC 

address to TxRAM without writing the preamble field first. 

 

A typical application of the National’s transceiver (DP83843) is shown below (see figure 

5.1c). The RJ-45 module is connected to the transceiver through magnetic modules that 

provide EMI filtering for the network applications. Our implementation utilizes the MII 

interface in order to communicate with the transceiver. The status leds provide 

information concerning the network status, such as collision, the type of the network (10 

or 100Mbit and half or full duplex), if it has sensed the network (link), and if it is 

currently transmitting or receiving. A 25MHz module provides the appropriate clock to 

the transceiver in order to be able functional either at 10Mbits or 100Mbits Ethernet 
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networks. The transceiver must be clocked by a 25MHz clock since it provides a 4-bit 

data bus, thus the 100MHz clock of the network is reduced to ¼=25MHz. 

 

 

 
Figure 5.1c Typical transceiver application 

 

 

5.2 PCI Pammete 

 

PCI Pammete is a generic interface board based on reconfigurable logic manufactured by 

Compaq [32]. It contains a PCI interface FPGA which has a relatively fixed 

configuration, and four FPGAs which are programmed with application specific 

configurations. The board has also two banks of 16-bit wide 64k SRAM, and connectors 

for industry standard 72-pin SIMM DRAM modules which permit from 4MB to 256MB 

of DRAM to be attached. The specific board that we used contains a Xilinx 4010-E 

FPGA for the PCI interface and four Xilinx 4044-XL FPGAs for custom designs. The 

overall architecture of Pammete is shown below. 
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Figure 5.2a Pammete overall architecture 

 

 

Using the Xilinx Foundation Environment the design, written in VHDL code, was 

converted to an appropriate netlist in order to be downloaded to Pamette. Compaq 

provides all the necessary libraries in order to download our design to Pamette using 

simple C functions. 

The implemented design is compact enough to fit in only one 4044-XL FPGA and 

moreover only one of the two 64k SRAM banks was used, since the maximum TCP 

packet size is 64Kbytes.  

 

Extensively, the design consists of a total of 1372 CLBs. The specific number of CLBs 

used by each module is described below: 

 
Component # CLBs % CLBs Speed (MHz) 

RxEther module 174 12.7 23.1 
ARP module 177 12.9 22.2 
IP module 102 7.4 25.9 
ICMP module 83 6 38.4 
UDP module 73 5.3 37.4 
TCP module 368 26.8 15.9 
TxEther module 49 3.6 39.3 
TxRAM 128 9.3 - 
Checksum module 2x40 5.8 22.8 
CRC-32 module 2x69 10 23.7 
Total design 1372 100 10.1 
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For the specific FPGA (4040XL -3) the total maximum frequency is 10.1 MHz which is 

above the required one for 10Mbits Ethernet networks (1.25MHz) and slightly below the 

required frequency for 100Mbits networks (12.5MHz) with 8-bit data bus. If we use the 

same family with different speed option (-9) we get the desirable speed. In practice we 

know that these tools are rather pessimistic and the design can function properly in 

speeds above the tool estimated limit of 10.1 MHZ in the specific family. Actually the 

current implementation functions properly in 12.5MHz (80ns) in Pamette although the 

conservative speed in only 10.1MHz. 

 

Using different Xilinx FPGA families we obtain the following results.  

 
Family #CLBs Speed (MHz) 

XC4044-XL -3 1372 CLBs 10.1 
XC4044-XL -9 1372 CLBs 13.0 
Virtex-V1000BG -6 1361* slices 13.7** 
   

* without TxRAM module 

** minimum  (without timing constraints)  

 

At this point we must note that module’s fsms have been implemented into 

reconfigurable logic using one-hot encoding [9]. Xilinx FPGAs are particularly well-

suited for one-hot encoded state machines, because flip-flop resources in the devices are 

abundant. In a one-hot encoded state machine, a single flip-flop represents each state. 

Therefore, an n-state state machine requires n flip-flops to implement. One-hot encoded 

state machines also tend to require less combinational logic because a smaller amount of 

decoding logic is required. 

 

The external ports of the FPGA are divided into 3 groups. The first group provides all the 

necessary I/O pins that MII interface supports, the second group provides all the 

necessary I/O pins for the SRAM control and the third one uses all the spare pins for the 

debugging functions (5 bits indicates the current RxEther state).  

 

MII Pins  
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• rx_clk  : input - receiving clock 

• rx_dv  : input - receiving valid data 

• rx_er  : input - receiving error 

• rxd  : input - receiving data (8 bits) 

• col  : input - collision detected 

• crs  : input - carrier sense 

• tx_en  : output - transmit enable 

• tx_er  : output - transmit error 

• txd  : output - transmit data (8 bits) 

 

SRAM Pins 

• sram_oe : output - SRAM output enable  

• sram_cs : output - SRAM chip select (2 bits) 

• sram_we : output - SRAM write enable (2 bits; low or high bits)  

• sram_a  : output - SRAM address (15 bits; 32 K * 16 bits = 64 Kbytes) 

• sram_dq : bidirectional - SRAM input and output (8 bits) 

 

General Pins 

• sram_r  : input - SRAM read enable (start transmitting SRAM data to host) 

• state  : output - RxEther module’s state 
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Chapter 6 

Test and Verification 

 
A failure will not appear till a 

 unit has passed final inspection. 

Murphy’s Law 

 

 

Since our design is not targeted at any specific application there is no program that can be 

used to test the whole design. Instead there are many network utilities that can be used in 

order to examine the correct replies of the implementation to specific protocols. For 

example, ping is a quite useful program that can help us test our design in ARP and 

ICMP packets requests. 

 

The flow of our verification starts with the execution of a network analyzer program. 

Network analyzers help us capture and analyze packets transmitted on the network. Upon 

starting this memory-resident program all incoming and outgoing packets are captured 

and saved in log files. Then we execute a network program such as ping, Interne t browser 

or any ftp utility. At the end of execution every packet that this program has send to and 

received from the network is recorded in log files. These packets are transformed to a 

proper data file in order to be sent to Pamette through the PCI interface, using a custom 

C++ program. Using the same C++ program we save the packets that Pamette returns 

after processing the received packets. Finally, the packets received by network are 

compared to the packets received by Pamette. If the packets are the same, except some 

random fields such as identification numbers, then the implementation has met the 

required specifications.  

 

The verification steps can be summarized in the following statements and are illustrated 

in the diagram below (see figure 6): 
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1. Start the execution of one network analyzer 

2. Execute any network program (ping, ftp, chat) 

3. Save the captured packets 

4. Transform the packets to appropriate files (MII compatible) 

5. Start the Visual C++ program in order to download the implementation (bit file) to 

Pamette 

6. Send the new files to Pamette through PCI using the Visual C++ program (request) 

7. Save the data that come from Pamette to log files (replies) 

8. Compare the data received by network with the data received by Pamette 

 

Network
Analyzer

d i g i t al

Ethernet Hub

Sent
Received

XC40
44XL

Created

PCI Interface

Valid

Comparator

Pamette's
FPGA

Ethernet

Visual C++
program

 
Figure 6 Verification block diagram 
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This chapter describes all the programs required to test and verify that the 

implementation meets the required specifications. The first section describes the network 

analyzer programs. The second section contains information regarding the networks 

programs that were executed in order to record the incoming and outgoing packets. This 

way the design can be stimulated by the same packets and compare the outgoing packets. 

The last section describes the program that was developed in Microsoft Visual C++ 

environment, which is responsible for sending the appropriate packets to Pamette through 

the PCI interface and recording the incoming packets from Pamette to a log file. 

 

6.1 Network analyzers 

 

Network analyzers, also known as packet sniffers, are programs used for capturing the 

incoming and outgoing packets on a network. These programs are able to capture not 

only packets that are destined for or come from the host computer but also every packet 

in the network. Network analyzer programs are usually freeware or shareware with many 

capabilities. The current programs are very sophisticated and most of them provide many 

functions such as selected capture depending on the protocol (TCP, UDP…), the port or 

the IP address, statistics and other useful options. 

 

One mainstream packet sniffer that was used in the current thesis is CommView 

(TamoSoft Inc.). CommView [55] is a program for monitoring network activity capable 

of capturing and analyzing packets on any Ethernet network. It gathers information about 

data flowing on a LAN and decodes the analyzed data.  

 

CommView allows us to see the list of network connections, vital IP statistics, and 

examine individual packets. IP packets are decoded down to the lowest layer with full 

analysis of the main IP protocols: TCP, UDP, and ICMP. Full access to raw data is also 

provided. Captured packets can be saved to log files for future analysis, as well as 

exported to other formats. A flexible system of filters makes it possible to drop unwanted 

packets and capture only packets with specific features such as IP address, TCP port or 

MAC address. 
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The main functions (tabs) of the last version of CommView (v2.3, see figure 6.1a) are 

listed below: 

 

• IP statistics 

This tab is used for displaying detailed information about your computer’s 

network connections (IP protocol only). 

 

• Packets 

This tab is used for listing all captured network packets and displaying detailed 

information about a selected packet. 

 

• Logging 

This tab is used for saving captured packets to a file on the disk. CommView 

saves packets in its own format with the .CCF (CommView Capture Files) 

extension. 

 

• Log Viewer 

Log Viewer is a tool for viewing and exploring captures files created by 

CommView and several other packet analyzers. It has the functionality of the 

Packets tab of the main program window, but unlike the Packets tab, Log Viewer 

displays packets loaded from the files on the disk rather than the packets captured 

in real time. 

 

• Rules 

This tab allows you to set rules for capturing packets. If one or more rules are set, 

the program filters packets based on these rules and displays only the packets that 

comply with the rules. 

 

• Packet Generator 

This tool allows you to edit and send packets via your network card.  
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By using this program we were able to capture all the packets that networks utilities send 

to the network. The specific network utilities that we used in this thesis are described in 

the next section. 

 

 
Figure 6.1a 

 

 

6.2 Network programs 

 

The networks programs that we used to test our design are divided into two groups: off-

the-shelf programs and custom programs. Off-the-shelf programs are widely used 

programs such as ping, telnet and ftp utilities. Custom programs are utilities that were 

developed in Microsoft Visual Basic Environment and were used to test the trivial 

communication of TCP and UDP protocols in simple tasks such as chat communication 

or simple file transfer.  
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6.2.1 Off-the-shelf programs 

 

Ping 

 

Ping is the most widely used utility to check a valid connection. The ping utility verifies 

connections to remote computer or computers, by sending ICMP echo packets to the 

computer and listening for echo reply packets. Ping waits for up to 1 second for each 

packet sent and prints the number of packets transmitted and received. Each received 

packet is validated against the transmitted message. By default, four echo packets 

containing 64 bytes of data (a periodic uppercase sequence of alphabetic characters) are 

transmitted. We can use the ping utility to test both the computer name and the IP address 

of the computer. 

 

Ping can be run using many parameters. The main parameters are: 

 

• -n count 

Sends the number of ECHO packets specified by count. The default is 4. 

• -l length 

Sends ECHO packets containing the amount of data specified by length. The 

default is 64 bytes; the maximum is 8192.  

• -i ttl 

Sets the Time to live field to the value specified by ttl. 

• -w timeout 

Specifies a timeout interval in milliseconds. 

 

Before sending an ICMP echo request, ping sends an ARP request in order to obtain the 

physical address of the network card by advertising the corresponding IP. The ping utility 

was used to obtain both ARP and ICMP packets in order to test the design, while custom 

programs were used for testing the other protocols. 
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6.2.2 Custom Programs 

 

The custom programs were developed using Microsoft Visual Basic. Visual Basic 

provides us with a complete set of tools to simplify rapid application development. The 

main advantage of Visual Basic is the ActiveX controls. ActiveX controls, formerly 

called OLE controls, are standard user interface elements that allow us to assemble forms 

and dialog boxes rapidly. For the purposes of this thesis the WinSock ActiveX control 

was used. WinSock control allows us to connect to a remote machine and exchange data 

using either the User Datagram Protocol (UDP) or the Transmission Control Protocol 

(TCP). Both protocols can be used to create client and server applications. By using this 

module two utilities were created; one for each protocol. The UDP utility implements a 

simple chat application without the need for a server and a client program. In contrast, the 

TCP utility is divided into two applications; the server and the client utility. 

 

UDP chat utility 

 

UDP chat utility consists of two text boxes and three options (see figure 6.2.2a). These 

options determine the name of the remote host we want to chat with, the remote port and 

the local port. After initiating the program we can chat with the other host and in the 

same time we can capture the incoming and outgoing UDP packets by our network 

analyzer, CommView. Every character typed in the text box is sent to the network 

encapsulated into a UDP packet.  
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Figure 6.2.2a The UDP chat application 

 

TCP chat ut ility 

 

The TCP chat utility is divided into two sub-utilities. The first one is the server and the 

second the client utility. 

 

The server utility is pretty simple since its graphical user interface (GUI) consists of two 

text boxes representing the transmitted and received characters. The server port number is 

set to 1001 and is actually a passive open port. This means that this port only listens to 

the network and does not initiate a connection. 

 

The client utility is more sophisticated. The GUI consists of two text boxes, two options 

boxes and three commands. The text boxes represent the transmitted and received 

characters while the options boxes let the user specify the remote host’s name and the 

remote host’s port number. In order this utility to communicate with the server utility the 

remote host name must be the computer’s name that the server utility is running and the 

remote port number must be set to 1001. To initiate a connection we must run the Init 

command first and then the Connect command. To end properly a connection the Exit 

command must be executed. 

 

In contrast to the UDP utility, the TCP connection is not established immediately 

according to the TCP protocol. First the TCP client sends a packet stating that it wants to 

initiate a connection. The TCP server responds to this packet by sending an 

acknowledgment packet and then the TCP client replies with its acknowledgment packet. 

This way the connection is established. Each time a character is typed in any utility, it is 

sent as a packet to the other utility. By executing the Exit command, the client utility 

sends a packet stating it wants to close the connection. The Server utility sends an 

acknowledgment packet, a packet also stating the end of connection and then waits to 

receive the acknowledgment packet. Upon receiving this packet the connection has been 

totally closed.  
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These utilities enable us to capture all the TCP packets needed to stimulate our design 

and verify the proper response of the implementation. Since the implementation on 

Pamette does not have any packets to send, it corresponds to the TCP server utility, while 

the computer on which Pamette is installed acts as the TCP client. Pamette has a passive 

open port, set to 1001, and responds to all packets that refer to that port.  

 

 

 
Figure 6.2.2b The TCP chat application 

 

 

The next section describes the program that was developed in Visual C++ in order to 

stimulate Pamette through the PCI interface and record the responses in UDP and TCP 

packets referring to a specific port. 

 

 

 

6.3 H/W – S/W co-simulation 

 

Although Pammete has many different interfaces modes to communicate with the host 

computer through the PCI interface the static mode interface is used for this 

implementation. This mode is a simple low-performance interface that provides statically 

configured 16-bit paths to and from the custom FPGAs (see figure 6.3). Extensively, 
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from the host side it consists of a single 32 bit link register (address 0x38 in struct 

PamRegs of PamRT library) that can be read or written. The high 16 bits of write data are 

ignored. From the user-area side it consists of a 16 bit input port driven by the low 16 bits 

of the link register and a 16- bit output port which loads the high 16 bits of the link 

register on each Clksys cycle. 

The user-area input port is EBus<15:0> and the output port is EBus<31:16>. 

 

 

 
Figure 6.3 Static mode 

 

 

Even though Pammete supports interfaces that provide 32-bit bidirectional bus the static 

mode was selected since the I/O pins of the design are less than 16-bit in each direction 

(input-output). 

 

The program that has been created in C++ uses the static interface mode to send and 

receive data through the PCI interface. These data has the MII interface structure so that 

the simulation is as realistic as possible in case our design is connected to an Ethernet 

transceiver. Our program sends the packet that was captured using the network analyzer 

and then saves the reply into a log file. The protocols supported by the program are: 
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• ARP, 

• ICMP, 

• UDP and 

• TCP 

 

The ARP and ICMP packets sent to the Pamette are captured by the ping program. The 

UDP packets are captured when the custom UDP chat application is running. On the 

other hand the TCP packets are captured when the custom TCP chat application is 

running. Packets captured by a running Internet browser are also used as TCP packets for 

simulation. Using these packets our implementation is tested if it can respond properly to 

fragmented TCP packets, by saving the data to the appropriate address of the SRAM. 

 

This program supports an additional function, the read SRAM option. Running this 

command we have the ability to save the SRAM contents to a log file through our FPGA 

and EBus<31:16>. The SRAM contents are saved to the sram.log file. This way the TCP 

data saved in the SRAM can be checked. 

 

 

 

A GUI program was created in Visual Basic in order the C++ protocol Simulator to be 

more user friendly. This program consists of 4 buttons, one for each supported protocol 

and a button to save SRAM contents to a file. In addition there is command history text 

box and a button that is used to open the corresponding log file for each protocol. The 

program’s GUI in shown below. 
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Figure 6.3b Visual Basic’s Protocol Simulator 
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Chapter 7 

Conclusions and Future Work 

 
New systems generate new problems. 

  Murphy’s Law 

 

 

7.1 Conclusion  

 

This document describes all the basic steps, according to the waterfall model [9], that 

need to be taken in order to go from a problem to a complete system. The early chapters 

described the requirements and the specifications of the desired IP core. Then we moved 

on analyzing the specific design for this core and the implementation of this design into 

reconfigurable logic. Finally we described the various steps of testing and validating this 

design  

 

As displayed in the implementation chapter, the design is compact enough to fit into 

many of the current FPGAs. This way the TCP/IP core can be easily embedded in a 

larger design that will target any application needing Internet connectivity. Thus any 

future application that will incorporate this core will only need one chip, while the 

TCP/IP ASIC solutions need at least two chips (one for Internet connectivity and one for 

the specific application). This implementation is also fast enough to function into fast 

Ethernet network (100Mbits), in contrast to the microcontroller’s library solutions that 

target to 10Mbits Ethernet networks only.  

 

7.2 Future work 

 

The modular structure of this design allows it to be upgraded in many ways. It can be 

upgraded in the design level by changing the supported protocols or at the application 

layer by adding various accessories that need Internet connectivity. 
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A possible upgrade of the design level is the change of the RxEther module to support 

ATM networks instead of Ethernet networks. The IP module can also be changed in order 

to support the new IP v.6 protocol (also called IP Next Generation). Another possible 

upgrade would be the addition of upper OSI’s layer modules in order to achieve a total 

protocol representation to hardware. These modules could implement any upper layer 

application such as telnet, FTP, TFTP or SMTP. In addition a possible upgrade would be 

the support of multiple connections in order to serve multiple clients. 

 

In the implementation level the most important upgrade would be the connection of the 

design with an Ethernet transceiver, in order to examine its proper function in a real 

network.  

 

In addition this module could be used to specific applications that need Internet 

functionality. For example the FPGA could be connected to a digital camera in order to 

implement a web camera without the need of a PC. Furthermore the implementation 

could be incorporated to any household appliance that needs to be connected to Internet, 

thus implementing a part of the smart house idea. 

 

This implementation is not restricted to commercial devices. It can also be used, with the 

appropriate changes, in an active network project such as PLATO as a network switch 

that forward the packets depending on the header or even the packet’s data. It can also be 

used as a hardware-based packet sniffer which analyze the packets much faster and more 

efficiently than software-based packet sniffers (hopefully not by Echelon). This TCP/IP 

core has unlimited applications and can only be restricted by the designer’s imagination.  
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