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Abstract

The quantity of information in the web is huge and rapidly increasing. People
that want to use this information have to cope with the problem of information
overload. As a result, information querying and retrieval relies on search engines
and other specialized systems designed for this task. However, the user still has
to spend much time in order to seek for the information he (or she) is interested
in and to filter out unwanted information. A solution to this problem is the
use of selective dissemination of information. The idea of selective information
dissemination is that users express their desire and preferences for information
by posting profiles (or long-standing queries) to a computer system. The system
informs the user about any incoming information matching his (or her) profile.

This dissertation deals with the problem of the dissemination of textual infor-
mation. More specifically, we study the data models and query languages suitable
for such an application. Next, we propose some main memory algorithms that
support these languages. We implement these algorithms and calculate their
space and time complexities. Finally, we end up with their experimental evalua-
tion.
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Chapter 1

Introduction

The quantity of information in the web is huge and rapidly increasing. People
that want to use this information have to cope with the problem of information
overload. As a result, information querying and retrieval relies on search engines
and other specialized systems designed for this task. However, the user still has
to spend much time in order to seek for the information he (or she) is interested
in and to filter out unwanted information. A solution to this problem is the
use of selective dissemination of information. The idea of selective information
dissemination is that users express their desire and preferences for information
by posting profiles (or long-standing queries) to a computer system. The system
then, informs the user about any incoming information matching his (or her)
profile.

1.1 Overview

Dissemination of selected information is a field of more and more scientific re-
search during the last years. This dissertation implements a part of a peer-to-peer
(P2P) system like the one presented in Figure 1.1. We consider a P2P network
of middle agents, storing user profiles that represent user needs for information.
End agents connect with the middle agent network, to submit either information
or a profile. By submitting a profile, the user requests the system to send to him
any document that complies (“matches”) with the rules declared through some
appropriate language in the profile, as soon as the document is published to the
system.

In this dissertation, we propose some algorithms and data structures appro-
priate to be used by any of the middle agents to determine the elements of a set
of profiles that match an incoming document. Specifically, we implement meth-
ods to support such functionality under the profile languages AWP and AWPS
proposed in [32], as well as a boolean profile language. The methods presented
in this dissertation utilize main memory for the storage of the profiles.

1
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Figure 1.1: A distributed P2P agent architecture for information dissemination

1.2 Organization of the Dissertation

In Chapter 2 we introduce systems relative to the aforementioned scenario
and methods that propose better profile handling. In Chapter 3, we present
appropriate languages for information dissemination, originally defined in [32].
In Chapter 4, 5 and 6, we present algorithms and data structures that offer
support for the languages of Chapter 3. Finally, we conclude this dissertation
and propose future research in the area in Chapter 7.



Chapter 2

Related Work

In this chapter, we present some systems implemented for information dis-
semination. We present the context of each of these systems, the problems they
try to solve, as well as their architecture. Finally, data models and languages
relative to the ones of this thesis are reviewed.

2.1 Information Push Vs Information Pull

The concept adopted in information retrieval as well as in most database
systems, is that of information pull. This means that the system maintains a
database of documents (or, generally content). Whenever a user needs to search
for a file he might be interested in, he connects to the system, submits a query and
then, gets any relevant information according to the query he entered. On the
other hand, the concept of Selective Information Dissemination is the storage of
queries (which are now called profiles) and not of the documents. This alternate
setting implements information push. Under information push, a user submits a
profile into the system. After that, whenever a document that is relevant to the
user’s interests (expressed by his profile) arrives, a notification or the document
itself is forwarded to the user. The process of the evaluation whether a document
should be sent or not to a user given his profile, is called filtering or matching.

Information dissemination has another major difference with information re-
trieval: in information retrieval, when a query is entered, the system returns a
ranked list of candidate documents that might interest the user. An answer set is
almost always returned, no matter how relevant the documents in this set might
be. But, in information dissemination, we do not have the luxury of bothering
the user with useless documents. So, in the case where an information retrieval
system would return a ranked list of documents, an information dissemination
system returns only the these documents that worth to be seen by the user. These
usually are the top-ranked documents of the list returned by the respective in-
formation retrieval system. There might not be any documents returned, if none

3
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of them is similar enough to what the user needs.
There are many difficulties in establishing a trustworthy query model through

which a user can accurately express his demands. What is usually done, is ask
the user to enter some keywords and then try to evaluate matching using these
keywords. An alternative idea, is to employ relevance feedback, in addition to the
above. This means that the user provides feedback to the system about how much
he is interested in a returned document. The system then uses this information to
adjust the user profile and maybe become more mature itself about the meaning
of similar profiles.

Now that the concepts of information dissemination have been briefly dis-
cussed, let us present some representative systems for information dissemination
along with their languages.

2.2 The SIFT Information Dissemination Sys-

tem

In this section, we present the Stanford Information Filtering Tool (SIFT)
originally presented in [38]. SIFT was used for the dissemination of Usenet ar-
ticles. It was serving 18400 users and 80000 profiles daily and evolved in a
commercial system.

SIFT was originally based on a client-server model. The profile database was
stored in a main server, that also had the responsibility of alerting the users for
documents. A user submits his queries through email or through a web interface.
The notifications are returned to him by email.

A user of SIFT can submit either boolean profiles containing conjunctions or
negations (evaluated under the boolean model) [38, 37] and vector space profiles
containing phrases and similarity thresholds (evaluated under the vector space
model) [38]. In order to improve efficiency, SIFT employs various methods using
inverted indices. The data structures that compose the profile database in SIFT
were implemented under the perspective that user profiles will grow over time.
The overall design and implementation targets efficiency and matching speed.
Efficiency is also the metric for the evaluation of the system, rather than preci-
sion or recall (which are the basic evaluation metric in Information Retrieval).
Another interesting characteristic of SIFT is the incorporation of a similarity
threshold as part of a VSM profile. With this threshold, SIFT implements the
idea described in Section 2.1, that an information dissemination system returns
only documents worth to be seen. In the case of SIFT, only documents whose
similarity (under VSM) is above the threshold are sent to the user. Under the
boolean model, this is easier to implement, as the definition of matching is quite
straightforward.

Distributed versions of SIFT [36] have also been studied. In a distributed
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version, multiple distributed dissemination servers take the place of the single
dissemination server of the non-distributed version. Distribution relies on profile
replication to more than one servers. A document is also posted in more than
one servers. Each server matches an incoming document with only the profiles
stored in it (which are obviously less than the profiles stored in the whole system)
and sends the document to users that have sent the respective matching profiles.
Note that a server cannot identify all the users of the whole system that are
interested in a document. So, if we assume that a profile p matches a document
d, in order for us to be sure that the user that posted p will get d, we have
to send d to at least one of the servers that store p. In other words, if p was
posted in a set of server P and d is sent to a set of servers D, then P ∩ D 6= ∅
must hold. It is preferred that d will be sent to exactly one of the servers of P ,
to prevent the system from sending the document to the user more than once.
After experimenting with various protocols, it was found that a grid organization
of the peers with balanced sizes of P and D provide the best distribution of
documents and profiles. Moreover, taking advantage of the possibility that two
or more nearly located clients can be interested in the same document, network
utilization may be reduced, by establishing a profile group with the profiles of
these users. A delivery mechanism called profile grouping uses this information
to send the document to a distribution server (also located near the clients and
is connected in a high speed, such as a LAN, with them), which will then send
the document to each of the clients.

2.3 The Hermes Notification Service

In this section, we present the Hermes notification service [16]. The setting
in Hermes consists of users and digital libraries. The users wish to be notified
about publications or other content available by a digital library, at the time this
content is made available in it.

Hermes is a system that overcomes the heterogenities of the various digital
libraries and integrates their alert services into a single service. A common inter-
face is available to the users to express their demands on content. Also, Hermes
supports an interface for the digital libraries themselves, through which they can
join the system and offer, distribute or advertise their content. The user interface
is web based, while notifications are sent to users by email. More protocols are
planed to be implemented to send notifications to users.

The system is capable of integrating very diverse provider services. Specifi-
cally, the providers can be active or passive, depending on whether they have their
own alert service or not. Moreover, they can be cooperative or non-cooperative.
Cooperative providers send the notifications in an easy to parse format (e.g.
XML), with well defined metadata. Non-cooperative providers on the other hand,
send human readable notifications, such as emails or web pages. Specialized wrap-
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pers are required in order to parse information sent by non-cooperative providers.
The profiles a user can submit consist of a query and of a notification policy

part. The notification policy part contains information for example about how
often a batch of notifications for the profile should be sent (e.g. daily, weekly),
about the protocol under which the notifications should be sent (e.g. email) and
about the format of the notification (e.g. XML, plain text etc). The query part of
a profile consists of an optional boolean expression and and optional ranking part.
The boolean expression is an SQL-like attribute query, while the ranking part
contains a relevance threshold and a term list. This term list may include phrases,
proximity operators or weighted terms. When only the boolean part of the query
filters incoming documents, they are matched according to boolean semantics.
When only the ranking part constrains them, the documents are ranked using a
process similar to information retrieval. Then, the documents which are similar
to the query more than the given relevance threshold are returned to the user.
Alternatively, the user can select a number n of documents to be returned. In
that case, the n top-ranked documents are returned. When both parts of the
query contain constraints, the query is used as a two-stage filter. Documents
ranked according to the ranking part are only those that qualify matching with
the boolean expression.

The architecture of Hermes consists of three components: The Observer, re-
sponsible for gathering the information from providers, the Filter, which performs
matching and the Notifier, that sends the notifications to users. The Observer
contains all the necessary modules that receive information from providers. There
are also wrappers to support information extraction of data from non-cooperative
providers. For the support of active providers, one or more receivers (which are
protocol dependent) are enough. The notification from the provider is forwarded
to the appropriate receiver (that implements the corresponding protocol to han-
dle the notification). Then, from the receiver the notification is forwarded to a
queue and from there to the appropriate wrapper. The wrapper transforms the
notification in a format internally used by Hermes. After that the document is
ready for matching. In order to support passive providers, the Observer uses a
module called Scheduler. Scheduler generates an artificial provider notification.
This notification triggers the respective wrapper to send a request to the passive
provider. The answer of the provider is forwarded to the appropriate receiver
and is treated as a notification for the rest of the process.

There were two alternatives to implement filtering. The first one used spe-
cialized middleware called message-oriented middleware (MOM). The second one
was based on relational databases. MOM is software that apart from filtering
also supports transactions and buffering of messages. MOM can also serve as a
connection point between different parts of the system, making them more inde-
pendent from each other. This results to a more stable system, since failure of
one module does not affect the rest of the system. But, there are some tradeoffs.
MOM can evaluate matching of documents only against boolean queries. In ad-
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dition, MOM cannot support a big number of profiles, as a notification needs too
much time to reach an interested user. In other words, the system is unscalable
using MOM (the results show that practically a maximum of 1024 subscribers
can be supported). In the database solution, there are three tables: One for the
profiles (having subscriber identifiers as a key), one for messages (with message
id as a key) and a queue table in which notifications are stored before sending
them to users (using both subscriber id and message id as a key). When a docu-
ment arrives, new notifications should be generated and inserted into the queue
table for the interested users. We can do that with the use of triggers , but this
would mean that a number of triggers equal to the number of stored profiles
should be initiated whenever a new document arrived, a solution that is clearly
time consuming. On the other hand, using one trigger to examine all profiles
and accordingly update the queue table does not offer any advantages. Instead,
the authors suppose that users are tolerant to delays of one day, so what is done
is batch processing of documents. For each profile stored into the profile table,
the filtering algorithms match all newly arrived documents (documents arrived
during the day) in the document table and fill up the queue table accordingly.
This results to a filtering speedup, but it is not satisfying since the time to match
10000 documents with 10000 profiles with 0.1% selectivity was found to be about
3 hours.

To sum up, Hermes lacks scalability and processing speed. The results of
the previous paragraph were extracted by testing the system with only boolean
attribute-based profiles, while the rest of the supported language were not imple-
mented. In conclusion, we could say that the idea of using relational databases
or naive algorithms to perform matching gives unsatisfying results compared to
other systems [36, 38].

2.4 The Distributed Information Alert System

DIAS

The DIAS information dissemination system, originally presented in [21], is
studied in this section. Like Hermes, DIAS is targeting in dissemination of digital
library information. Furthermore, users may also publish documents. As we will
see, DIAS has the most expressive data language of all systems discussed in this
chapter.

The architecture of DIAS is based on a central peer-to-peer network of middle
agents. An information provider publishes documents through a so called resource
agent. A user of the system utilizes an end-agent (or personal agent) through
which he can connect to the middle agent network and send his profiles or receive
notifications about documents. The middle agents of the P2P network only
communicate with each other and with resource agents as well as personal agents.
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A resource agent has the mission to collect the information from an information
provider and upload it to the rest of the network. Middle agents are the ones
that store the profiles posted by personal agents and that perform matching of
profiles with documents posted by resource agents. After the process of matching,
middle agents send the notifications to the personal agents representing the users
that submitted the matching profiles. Future work on this system will target in
efficient distribution of documents and profiles, in order to achieve even smaller
matching times and less network utilization.

The language currently supported in DIAS is a subset of AWP and AWPS
[22, 32]. The models AWP and AWPS as well as efficient algorithms for them
are presented later in this dissertation. For now, it is enough to know that each
profile is a conjunction of atomic profiles of the form ψ∧σ, where ψ is a conjunc-
tion of atomic profiles under AWP (see Chapter 3), while σ is a conjunction of
atomic profiles under AWPS (see Chapter 3).

Each profile in DIAS is replicated in all middle agents. In order for a middle
agent A to propagate a newly received (from a personal agent) profile to all other
middle agents, a spanning tree is used. Specifically, A sends the profile to all of its
neighbors. Each middle agent M of the other middle agents of the network, runs
the following algorithm: As soon as it receives the profile from a middle agent
N , M examines if N is on the shortest path connecting M with A. If this is the
case, M forwards the profile to all of its neighbors, except N . This algorithm
requires that each middle agent M knows its (unique) neighbor that lies on the
shortest path between M and any other middle agent in the network. To be
able to keep track of this information, each middle agent maintains a routing
table. The construction of such a table is a well known problem of data networks
and there are several distributed algorithms that solve it. One of them is the
asynchronous distributed version of Bellman-Ford’s algorithm [14].

In order to reduce network utilization, each middle agent M propagates an
AWP profile ψ to other middle agents by subscribing ψ to them. In order to
reduce network utilization, ψ is propagated to a neighbor N of M only if M has
not subscribed a more general profile to N . To achieve evaluation of whether ψ is
more general from another profile or not, a partially ordered set (or profile poset
[25]) is kept in each middle agent. This data structure is able to keep information
for each AWP profile ψ about which AWP profiles are more general ψ. Also, for
each profile ψ there is a set containing those middle agents that subscribed with
ψ, as well as a set with those middle agents to which ψ was forwarded. These
are necessary data in order to achieve reliable forwarding of subscriptions and
notifications.

DIAS implements processes notifications in the following way: When a noti-
fication n that matches a profile ψ is published to a middle agent M , M routes
the profile to the middle agent A, where ψ was initially subscribed. This rout-
ing is done using the reverse path that was created when ψ was propagated in
the middle agent network. Filtering could be performed by the poset structure
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available at each node. But this solution would be very expensive, so specialized
filtering algorithms are used to perform matching. As we will see in Chapter 6,
there are scalable algorithms able to perform matching under the data models of
AWP and AWPS. Moreover, we will see that these algorithms can efficiently
handle millions of profiles.

The DIAS system discussed in this section is still under development and is
a part of project DIET1.

2.5 The Multi-Modal Approach to VSM

In this section, we present the Multi-Modal (MM) approach to vector space
user profiles that could help to increase the precision and recall of the respective
data model under an information dissemination setting. The methods presented
in this section were originally proposed in [7].

The data model considered in MM approach, is the vector space model [3]. In
other systems and languages supporting the vector space model, such as SIFT
[38] or AWPS [22, 32], a user profile is represented as a vector. In the MM
approach, a user profile is represented as a set of profile vectors. This is because
the MM approach supposes that a user’s interests cannot be represented with
a single profile. So, each of the profile vectors represents only a part of the
user’s interests, while altogether, they build up a profile that identifies him more
precisely. One could argue that a user could submit more than one vector profiles
to have the above functionality, so forming vector profile sets is not necessary.
But, by using the MM profiles, we have a better view of a user’s interest and
we can use some interesting reformulation algorithms to increase precision and
recall. These algorithms are based on relevance feedback. Also, the MM approach
offers us a method to keep track of the changes in user’s interests over time.

Filtering of a document d, with vector representation vd, with a MM profile
P is performed by matching each of the profile vectors pi of P with vd. There is
a similarity threshold, in order to separate the matching profile vectors from the
others. If there exists a pi that matches, d, the entire profile P is considered to
match d.

The user submitted a profile P (= set of profile vectors pi) provides relevance
feedback to the system by evaluating each document d (with a vector represen-
tation vd) of the ones returned to him as relevant or irrelevant. The system
represents his selection with a parameter fd. For documents evaluated as rele-
vant, fd = 1, while for those identified as irrelevant, fd = −1. After that, the
profile vector pact that was found to be the most similar to d of all vector profiles
of P , is considered. If pact’s similarity to vd is greater than a threshold δ (with
0 ≤ δ ≤ 1), then pi is adjusted in order to come closer (if d was judged to be
relevant by the user) or to move away (if d was judged to be irrelevant by the

1http://www.dfki.de/diet
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user) from vd. The distance and direction of pact’s move is relative to vd and an
adaptability value λ, with 0 ≤ λ ≤ 1. In the case that there is no pi the similarity
of which with vd is greater than δ, action is taken only if the document was judged
as relevant. In that case, a new profile vector, equal to vd, is created for P .

In order for all the above to be implemented, too much storage space as well as
processing power is required, so that filtering can be completed in rational time.
This is because we have profiles consisting of many vectors, which are often too
big (consider the case where a new profile vector is created from a document).
So, techniques that save storage space or speedup filtering could be proved very
useful. In order to shrink filtering time and storage space needs, the authors of
[7] suggest to reduce the number of profile vectors of a profile, by merging two
of them into a new profile vector or by deleting the ones that are judged to not
represent the user’s needs any more.

Decision of whether a profile vector must be deleted is taken by utilizing
negative feedbacks. For each profile vector, there is a parameter called strength
of the profile vector. Each profile vector’s strength is initialized to a default value
upon establishment of the profile vector. Whenever a profile vector pi is found
to match a document d that is judged to be irrelevant by the user, the strength
of pi is reduced. When it becomes less than a threshold value, pi is deleted.

In addition to profile vector deletion, there is also the option to merge profile
vectors in order to reduce the profile size. This is done after filtering and after
pact has been adjusted according to vd and relevance feedback. The similarities
of both pact and pc are considered in order to decide if pact and pc will be merged
into a new profile vector. If its similarity with pact is greater than δ, then pact

and pc are merged to form a new profile vector. The new profile vector depends
on pact, pc and also on their strengths. We can imagine that the new profile
vector the sum of pact and pc. Its own strength is equal to the sum of strengths
of pact and pc. Of course, pact and pc are deleted after merging, as the new profile
vector has taken their place. Note that the new profile vector’s similarity with
another profile vector of P can be greater than δ. In that case, merging of the
two profile vectors should occur. This is left to be done in subsequent iterations,
as in a different case there would be a great time overhead in filtering due to
profile vector merging.

Evaluation of the multi-modal approach has proved that it is more accurate
than a uni-modal one. Also, is was shown that the mergings, creations and
deletions of profile vectors during filtering do represent the user interest changes
over time. Moreover, the MM approach’s adaptability was proven to be more
efficient than other traditional approaches to relevance feedback. Finally, the
MM approach has proved to successfully combine speed and effectiveness.
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2.6 Conclusions

The concept of information dissemination, as well as systems that offer infor-
mation dissemination functionality were presented in this chapter. Firstly, the
conceptual differences between information push and information pull were pre-
sented. After that, we discussed SIFT, thee data model of which is based on
both the boolean and the vector space model. Next, a system (named Hermes)
that tries to solve the problem of information dissemination in the World Wide
Web was shown. We presented one more system, named DIAS, that targets in-
formation dissemination. At the moment, DIAS’s model is the boolean model.
This can easily change, as support for models and data languages presented in
the next chapter can be added with no significant effort. Lastly, we presented an
alternate approach (Multi-Modal) to represent a user profile. This approach is
based on the vector space model. It extends the basic representation of a user
profile by adding various heuristics in order to improve precision and recall.



Chapter 3

Data Models and Query

Languages

In this chapter, we will present the models WP , AWP and AWPS defined
in [15, 19, 22, 21, 20, 23, 32]. For the presentation of these models we rely on the
publications [15, 19, 22, 21, 20, 23, 32] and present the definitions given there by
the developers of these models verbatim.

We define formally the modelsWP ,AWP and AWPS, and their correspond-
ing languages for textual information dissemination in distributed agent systems
such as the ones briefly discussed in Chapter 2. Data model WP is based on
free text and its query language is based on the boolean model with proximity
operators. The concepts of WP extend the traditional concept of proximity in
IR [3, 9, 10] in a significant way and utilize it in a content language targeted at
information dissemination applications. Data model AWP is based on attributes
or fields with finite-length strings as values. Its query language is an extension of
the query language of data model WP . Our work on AWP complements recent
proposals for querying textual information in distributed event-based systems
[6, 5] by using linguistically motivated concepts such as word and not arbitrary
strings. This makes AWP potentially very useful in some applications (e.g., alert
systems for digital libraries or other commercial systems where similar models are
supported already for retrieval). Finally, the model AWPS extends AWP by
introducing a “similarity” operator in the style of modern IR, based on the vec-
tor space model [3]. The novelty of the work in this area is the move to query
languages much more expressive than the one used in the information dissem-
ination system SIFT [38] where documents and queries are represented by free
text. The similarity concept of AWPS is an extension of the similarity concept
pioneered by the system WHIRL [12] and recently also used in the XML query
language ELIXIR [11]. We note that both WHIRL and ELIXIR target informa-
tion retrieval and integration applications, and pay no attention to information
dissemination and the concepts/functionality needed in such applications.

12
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3.1 Text Values and Word Patterns

In this section we present our first data model and query language for textual
information dissemination. The data model is based on free text which is captured
formally by the concept of text value. Our query language is based on the Boolean
model with proximity operators. Queries in this model are formalized using the
concept of word pattern [10]. The two basic concepts of this section (text values
and word patterns) are subsequently used in Section 3.3 to define the attribute-
based data model and query language.

We assume the existence of a finite alphabet Σ. A word is a finite non-empty
sequence of letters from Σ. We also assume the existence of an infinite set of
words called the vocabulary and denoted by V .

Definition 3.1 A text value s of length n over vocabulary V is a total function
s : {1, 2, . . . , n} → V.

In other words, a text value s is a finite sequence of words from the assumed
vocabulary and s(i) gives the i-th element of s. Text values can be used to
represent finite-length strings consisting of words separated by blanks. The length
of a text value s (i.e., its number of words) will be denoted by |s|.

Example 3.1 In all the examples of this chapter, our vocabulary will be the
vocabulary of the English language and will be denoted by E. The string

Wavelet Image Coefficients

can be represented by a text value s of length 3 over vocabulary E with s(1) =
Wavelet, s(2) = Image etc. The text value “Image Coefficients” is included
in s.

We now give the definition of word-pattern. The definition is given recursively
in three stages.

Definition 3.2 Let V be a vocabulary. A proximity-free word pattern over vo-
cabulary V is an expression in any of the following forms:

1. w where w is a word in the vocabulary V.

2. ¬wp where wp is a proximity-free word pattern.

3. wp1 ∧ wp2 where wp1, wp2 are proximity-free word patterns.

4. wp1 ∨ wp2 where wp1, wp2 are proximity-free word patterns.

5. (wp) where wp is a proximity-free word pattern.
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A proximity-free word pattern will be called positive if it does not contain the
negation operator.

Example 3.2 The following are proximity-free word patterns that might appear
in queries of a user of a news dissemination system interested in articles on a
specific field of Neural Networks:

Network, Recognition ∧ System, (Input ∨Recognition) ∧ System,

Middle ∧ Layer ∧ ¬Binary ∧ Logistic ∧ Units

We now introduce a new class of word patterns that allows us to capture
the concepts of order and distance between words in a text document. We will
assume the existence of a set of (distance) intervals I defined as follows:

I = {[l, u] : l, u ∈ N, l ≥ 0 and l ≤ u} ∪ {[l,∞) : l ∈ N and l ≥ 0}

The symbols ∈ and ⊆ will be used to denote membership and inclusion in an
interval as usual.

The following definition uses intervals to impose lower and upper bounds on
distances between word patterns.

Definition 3.3 Let V be a vocabulary. A proximity word pattern over vocabulary
V is an expression

wp1 ≺i1 wp2 ≺i2 · · · ≺in−1
wpn

where wp1, wp2, . . . , wpn are positive proximity-free word patterns over V and
i1, i2, . . . , in−1 are intervals from the set I. The symbols ≺i where i ∈ I are called
proximity operators. The number of proximity-free word patterns in a proximity
word pattern (i.e., n above) is called its size.

Example 3.3 The following are proximity word patterns:

Recognition ≺[0,0] System, Continuous ≺[0,0] State ≺[0,0] Space,

Middle ≺[0,0] Layer ≺[0,3] Binary ≺[0,0] Logistic ≺[2,5] Units,

Decision ≺[0,0] Tree ≺[1,10] Feature ≺[0,2] (Selection ∧ Algorithm),

Input ≺[0,∞) Pattern

The proximity word pattern wp1 ≺[l,u] wp2 stands for “word pattern wp1 is
before wp2 and is separated by wp2 by at least l and at most u words”. In the
above example Layer ≺[0,3] Binary denotes that the word “Layer” appears before
word “Binary” and at a distance of at least 0 and at most 3 words. The word
pattern Recognition ≺[0,0] System denotes that the word “Recognition” appears
exactly before word “System” so this is a way to encode the string “Recognition
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System”. We can also have arbitrarily long sequences of proximity operators with
similar meaning (see the examples above). Note that proximity-free subformulas
in proximity word-patterns can be more complex than just simple words (but
negation is not allowed; this restriction will be explained below). This makes
proximity-word patterns a very expressive notation.

Definition 3.4 Let V be a vocabulary. A word pattern over vocabulary V is an
expression in any of the following categories:

1. a proximity-free word pattern over V

2. a proximity word pattern over V

3. wp1 ∧ wp2 where wp1, wp2 are word patterns.

4. wp1 ∨ wp2 where wp1, wp2 are word patterns.

5. (wp) where wp is a word pattern.

A word pattern will be called positive if its proximity-free subformulas are positive.

Example 3.4 The following are word patterns of the most general kind we allow:

Middle ∧ (Layer ≺[0,10] (Binary ∧ Units)),

F eature ∧ (Decision ≺[0,0] Tree) ∧ ¬Algorithm,
Feature ∧ (Decision ≺[0,0] Tree) ∧ (Selection ≺[0,0] Algorithm),

Estimation ∧ ((Continuous ≺[0,0] State ≺[0,0] Space)∨
(Feature ≺[0,0] Selection ≺[0,0] Algorithm)),

(Middle ≺[0,0] Layer) ∧ (Binary ≺[0,0] Logistic ≺[0,0] Units)

We have here completed the definition of the concept of word pattern. We
now turn to defining their semantics.

3.2 Semantics

We now give meaning to the expressions that define word patterns. First, we
define what it means for a text value to satisfy a proximity-free word pattern.

Definition 3.5 Let V be a vocabulary, s a text value over V and wp a proximity-
free word pattern over V. The concept of s satisfying wp (denoted by s |=P wp)
is defined as follows:
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1. If wp is a word of V then s |= wp iff there exists p ∈ {1, . . . , |s|} and
s(p) = wp.

2. If wp is of the form ¬wp1 then s |= wp iff s 6|= wp1.

3. If wp is of the form wp1 ∧ wp2 then s |= wp iff s |= wp1 and s |= wp2.

4. If wp is of the form wp1 ∨ wp2 then s |= wp iff s |= wp1 or s |= wp2.

5. If wp is of the form (wp1) then s |= wp iff s |= wp1.

The above definition mirrors the definition of satisfaction for Boolean logic [27].
This will allow us to draw on a lot of related results in the rest of this chapter.

Example 3.5 Let s be the following text value:

Currently most speech recognition systems are based on hidden Markov models

Then s |= Regognition ∧ Systems.

The following definition captures the notion of a set of positions in a text value
containing exactly the words that contribute to the satisfaction of a proximity-
free word pattern. This notion is then used to define satisfaction of proximity
word patterns.

Definition 3.6 Let V be a vocabulary, s a text value over V, wp a proximity-free
word pattern over V, and P a subset of {1, . . . , |s|}. The concept of s satisfying
wp with set of positions P (denoted by s |=P wp) is defined as follows:

1. If wp is a word of V then s |=P wp iff there exists x ∈ {1, . . . , |s|} such that
P = {x} and s(x) = wp.

2. If wp is of the form wp1∧wp2 then s |=P wp iff there exist sets of positions
P1, P2 ⊆ {1, . . . , |s|} such that s |=P1

wp1, s |=P2
wp2 and P = P1 ∪ P2.

3. If wp is of the form wp1 ∨ wp2 then s |=P wp iff s |=P wp1 or s |=P wp2.

4. If wp is of the form (wp1) then s |=P wp iff s |=P wp1.

Now we define what it means for a text value to satisfy a proximity word
pattern.

Definition 3.7 Let V be a vocabulary, s a text value over V and wp a proximity
word pattern over V of the form

wp1 ≺i1 wp2 ≺i2 · · · ≺in−1
wpn.

Then s |= wp iff there exist sets P1, P2, . . . , Pn ⊆ {1, . . . , |s|} such that s |=Pj
wpj

and min(Pj)−max(Pj−1)− 1 ∈ ij−1 for all j = 2, . . . , n (the operators max and
min have the obvious meaning).
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Example 3.6 The text value

Currently most speech recognition systems are based on hidden Markov models

satisfies the following word patterns:

Recognition ≺[0,6] Markov ≺[0,0] Models

Recognition ≺[0,0] (Systems ∨Methods) ≺[0,6] Markov,

Recognition ≺[0,10] Markov ≺[0,0] Models

The sets of positions required by the definition are for the first word pattern {4},
{10} and {11}, for the second, {4}, {5} and {10}, and for the third one {4},
{10} and {11}.

If the structure of wp falls under the four cases of our most general definition
(Definition 3.4), satisfaction is similarly defined in a recursive way as in Definition
3.5 (for Cases 1, 3 and 4) and Definition 3.7 (for Case 2).

Example 3.7 The text value

Currently most speech recognition systems are based on hidden Markov models

satisfies word pattern Speech ∧ (Recognition ≺[0,0] Systems ≺[0,7] Models).

3.3 An Attribute-Based Data Model and Query

Language

Now that we have studied text values and word patterns in great detail, we
are ready to define our second data model and query language. This data model
for text documents is based on attributes or fields with finite-length strings as
values. Attributes are used to encode information such as author, title, date,
body of text and so on. This simple data model is restrictive since it offers a
rather flat view of a text document, but it has wide applicability as we will show
below.

We start our formal development by defining the concepts of document schema
and document. Throughout the rest of this chapter we assume the existence of a
countably infinite set of attributes U called the attribute universe.

Definition 3.8 A document schema D is a pair (A,V) where A is a subset of
the attribute universe U and V is a vocabulary.

Example 3.8 An example of a document schema for a news dissemination ap-
plication is D = ({SENDER, EMAIL, BODY }, E).
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Definition 3.9 Let D be a document schema. A document d over schema (A,V)
is a set of attribute-value pairs (A, s) where A ∈ A, s is a text value over V, and
there is at most one pair (A, s) for each attribute A ∈ A.

Example 3.9 The following is a document over the schema of Example 3.8:

{ (SENDER, “Manolis Koubarakis”),

(EMAIL, “manolis@ced.tuc.gr”)

(BODY, “Currently most speech recognition systems

are based on hidden Markov models”) }

The syntax of our query language is given by the following recursive definition.

Definition 3.10 Let D = (A,V) be a document schema. A query over D is a
formula in any of the following forms:

1. A w wp where A ∈ A and wp is a positive word pattern over V. The
formula A w wp can be read as “A contains word pattern wp”.

2. A = s where A ∈ A and s is a text value over V.

3. ¬φ where φ is a query containing no proximity word patterns.

4. φ1 ∨ φ2 where φ1 and φ2 are queries.

5. φ1 ∧ φ2 where φ1 and φ2 are queries.

Example 3.10 The following are queries over the schema of Example 3.8:

SENDER w (John ≺[0,2] Smith),

(BODY w (Markov∧(Speech ≺[0,5] Recognition)))∧¬SENDER = “John Smith”

3.3.1 Semantics

Let us now define the semantics of the above query language in our dissemi-
nation setting. We start by defining when a document satisfies a query.

Definition 3.11 Let D be a document schema, d a document over D and φ a
query over D. The concept of document d satisfying query φ (denoted by d |= φ)
is defined as follows:

1. If φ is of the form A w wp then d |= φ iff there exists a pair (A, s) ∈ d and
s |= wp.

2. If φ is of the form A = s then d |= φ iff there exists a pair (A, s) ∈ d.
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3. If φ is of the form ¬φ1 then d |= φ iff d 6|= φ1.

4. If φ is of the form φ1 ∧ φ2 then d |= φ iff d |= φ1 and d |= φ2.

5. If φ is of the form φ1 ∨ φ2 then d |= φ iff d |= φ1 or d |= φ2.

Example 3.11 The first query of Example 3.10 is not satisfied by the document
of Example 3.9 while the second one is satisfied.

3.4 Extending AWP with Similarity
Let us now define our third data model AWPS and its query language.

AWPS extends AWP with the concept of similarity between two text values
(the letter S stands for similarity). The idea here is to have a “soft” alternative
to the “hard” operator w. This operator is very useful for queries such as “I am
interested in documents sent by John Brown” which can be written in AWP as

SENDER w (John ≺[0,0] Brown)

but it might not be very useful for queries “I am interested in documents about
the use of ideas from agent research in the area of information dissemination”.

The desired functionality can be achieved by resorting to an important tool
of modern IR: the weight of a word as defined in the Vector Space Model (VSM)
[3, 26, 35]. In VSM, documents (text values in our terminology) are conceptually
represented as vectors. If our vocabulary consists of n distinct words then a text
value s is represented as an n-dimensional vector of the form (ω1, . . . , ωn) where
ωi is the weight of the i-th word (the weight assigned to a non-existent word is
0). With a good weighting scheme, the VSM representation of a document can
be a surprisingly good model of its semantic content in the sense that “similar”
documents have very close semantic content. This has been demonstrated by
many successful IR systems recently (see for example, WHIRL [12])1.

In VSM, the weight of a word is computed using the heuristic of assigning
higher weights to words that are frequent in a document and infrequent in the
collection of documents available. This heuristic is made concrete using the
concepts of word frequency and the inverse document frequency defined below.

Definition 3.12 Let wi be a word in document dj of a collection C. The term
frequency of wi in dj (denoted by tfij) is equal to the number of occurrences of
word wi in dj. The document frequency of word wi in the collection C (denoted

1Note that in the VSM model and systems adopting it (e.g., WHIRL [12]) word stems,
produced by some stemming algorithm [28], are forming the vocabulary instead of words. Ad-
ditionally, stopwords (e.g., “the”) are eliminated from the vocabulary. These important details
have no consequence for the theoretical results of this chapter, but it should be understood
that our current implementation of the ideas of this section utilizes these standard techniques.
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by dfi) is equal to the number of documents in C that contain wi. The inverse
document frequency of wi is then given by idfi =

1
dfi
. Finally, the number tfij ·idfi

will be called the weight of word wi in document dj and will be denoted by ωij.

At this point we should stress that the concept of inverse document frequency
assumes that there is a collection of documents which is used in the calculation.
In our dissemination scenario we assume that for each attribute A there is a
collection of text values CA that is used for calculating the idf values to be used
in similarity computations involving attribute A (the details are given below).
CA can be a collection of recently processed text values as suggested in [38].

We are now ready to define the main new concept in AWPS, the similarity
of two text values. The similarity of two text values sq and sd is defined as the
cosine of the angle formed by their corresponding vectors2:

sim(sq, sd) =
sq · sd

‖sq‖ · ‖sd‖
=

∑N

i=1wqi
· wdi

√

∑N

i=1 w
2
qi
·∑N

i=1w
2
di

(3.1)

By this definition, similarity values are real numbers in the interval [0, 1].
Let us now proceed to give the syntax of the query language for AWPS.

Since AWPS extends AWP , a query in the new model is given by Definition
3.3 with one more case for atomic queries:

• A ∼k s where A ∈ A, s is a text value over V and k is a real number in the
interval [0, 1].

Example 3.12 The following are some queries in AWPS using the schema of
Example 3.9:

BODY ∼0.6 “Use of Markov models in speech recognition,

(SENDER w (John ≺[0,2] Brown))∧
(TITLE ∼0.9 “Applicationsi of Markov models”),

BODY ∼0.9 “Reliable optical character recognition software”

We now give the semantics of our query language, by defining when a docu-
ment satisfies a query. Naturally, the definition of satisfaction in AWPS is as in
Definition 3.11 with one additional case for the similarity operator:

• If φ is of the form A ∼k sq then d |= φ iff there exists a pair (A, sd) ∈ d
and sim(sq, sd) ≥ k.

2The IR literature gives us several very closely related ways to define the notions of weight
and similarity [3, 26, 35]. All of these weighting schemes come by the name of tf · idf weighting
schemes. Generally a weighting scheme is called tf · idf whenever it uses word frequency in a
monotonically increasing way, and document frequency in a monotonically decreasing way.
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The reader should notice that the number k in a similarity predicate A ∼k s
gives a relevance threshold that candidate text values s should exceed in order
to satisfy the predicate. This notion of relevance threshold was first proposed in
an information dissemination setting by [17] and later on adopted by [38]. The
reader is asked to contrast this situation with the typical information retrieval
setting where a ranked list of documents is returned as an answer to a user query.
This is not a relevant scenario in an information dissemination system because
very few documents (or even a single one) enter the system at a time, and need
to be forwarded to interested users.

A low similarity threshold in a predicate A ∼k s might result in many irrel-
evant documents satisfying a query, whereas a high similarity threshold would
result in very few achieving satisfaction (or even no documents at all). In an
implementation of our ideas, users can start with a certain relevance threshold
and then update it using relevance feedback techniques to achieve a better sat-
isfaction of their information needs. Recent techniques from adaptive IR can be
utilized here [7].

Example 3.13 The first query of Example 3.12 is likely to be satisfied by the
document of Example 3.9 (of course, we cannot say for sure until the exact weights
are calculated in the manner suggested above). The second query is not satisfied,
since attribute TITLE does not exist in the document. Moreover the third query
is unlikely to be satisfied since the only common word between the query and
Example 3.9 is the word “Recognition”.

3.5 Conclusions

In this chapter, previous work on data models and query languages for tex-
tual information dissemination has been presented. Specifically, the syntax and
semantics of modelsWP , AWP and AWPS have been defined. Implementation
of basic functionality of a textual information dissemination system under these
models is the subject of this dissertation.

The WP data model is a boolean model with proximity operators, based on
free text. AWP is an extension ofWP , as it supports multi-attribute documents,
where each attribute is considered to be free text. Finally, we add vector space
support to AWP by introducing the model AWPS. In the next chapter, we
introduce some data structures and algorithms appropriate to support these data
models and languages. Moreover, we study the complexity of these methods and
we experimentally evaluate them.



Chapter 4

The HashTrie Method for

Boolean Profiles

In this chapter, we present a method for the support of boolean atomic pro-
files and we experimentally evaluate and compare this method with other known
algorithms.

4.1 Method Description

In this section, the HashTrie method, used for the manipulation of boolean
profiles (or boolean parts of profiles), is presented. Specifically, we describe the
data structures used for the profile storage and the procedures followed for the
insertion and matching of the profiles. We also calculate time and space com-
plexities of the algorithms used for these operations.

HashTrie tries to benefit from the commonalities between profiles. These
commonalities are used to decrease the space used by the profiles and are also
exploited during filtering. To achieve this, a trie-like data structure combined
with a hash table is used for the storage of the profiles. The shape of the data
structure used to store the profiles is the one presented in Figure 4.1.

Let us now explain the method employed to store profiles into a trie.

Definition 4.1 Let p, q be profiles such that q ⊆ p. Then r = p \ q will be called
the remainder of p with respect to q.

Definition 4.2 Let P be a set of profiles, p a profile in P and q ⊆ p. Profile q
will be called an identifying subset of p in profile set P if there is no other profile
r in P such that q ⊆ r.

Example 4.1 Table 4.1 shows a sample profile set along with some of their pos-
sible identifying subsets. One can see that the identifying subsets used for two
profiles are the same only if these profiles are identical (this holds for p1 and p2).

22
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Figure 4.1: The shape of the data structure that stores the profiles under the
HashTrie method

Profile Possible Identifying Subset
p0: Databases {Databases}
p1: Relational ∧ Databases {Databases, Relational}
p2: Databases ∧ Relational {Databases, Relational}
p3: Neural ∧ Networks ∧ Relational
∧ Databases

{Databases, Neural, Relational}

p4: Knowledge ∧ Artificial ∧ Rela-
tional ∧ Intelligence ∧ Databases

{Artificial, Databases, Intelligence,
Knowledge, Relational}

p5: Artificial ∧ Relational ∧ Intelli-
gence ∧ Databases

{Artificial, Databases, Intelligence,
Relational}

Table 4.1: Sample of profiles and some possible identifying subsets
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Figure 4.2: A possible trie created from a profile set

As profiles that have common words arrive, HashTrie organizes some of their
identifying subsets (one identifying subset for each profile) into a profile trie. The
identifying subset with the minimum number of words is selected for each profile.
The root of the profile trie (at depth 1) corresponds to a one-word identifying
subset. A node n at depth i corresponds to a set I consisting of i words. The
set I is a subset of some identifying subsets. Node n represents all identifying
subsets identical to I. A node n is implemented as a structure consisting of the
following fields:

• Word : a string representing one of the words of I.

• Profiles : A table containing the profile identifiers for which I is the iden-
tifying subset.

• Remainder : a table containing the words that form the remainder of the
identified profiles.

• Children list : a linked list of pairs (w, ptr), where w is a word such that
I ∪ {w} is the set corresponding to a child of n and ptr is a pointer to
that child.

Example 4.2 The profiles p0, . . . , p5 of Table 4.1 can be stored in a trie like
the one in Figure 4.2. We can see the profile identifiers stored at the nodes of
the trie. We can also see the remainder “Networks” stored at the node with the
word “Neural”.

One can easily notice that the selected identifying subset Ip of each profile
p can be figured out by simply traversing the trie from the root to the node n
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containing p (or backwards) and noting down the word associated with each node.
The complete set of words contained in p can be retrieved by taking the union
of the remainder of n with Ip, i.e. Ip ∪ remainder[n]. Only the leaves of a trie
can have a non-empty remainder. If a non-leaf node had a non-empty remainder,
this would mean that all the profiles in its sub-tries should include the words in
its remainder. This is unacceptable. The calculation of the word set identified
by a node should not include remainders of the intermediate nodes. The purpose
of the remainder is to enable us to better exploit commonalities between profiles.
The insertion process described in the rest of this secction will reveal the manner
in which the remainder helps.

It is important to understand that using the above structure (tries with nodes
containing common words) only profiles that have one or more common words
can be stored in a single trie. But, obviously, this does not hold for all the
profiles that users submit. To overcome this, we use more than one tries, each
containing profiles that have one or more common words. So, for the set of all
the profiles, we actually use a forest. A hash table H is used to index the roots
of the tries, speeding up searching. A profile p can only be inserted in tries with
roots containing words of p. Any such trie will be called a candidate trie.

Our intention is to cluster profiles as compactly as possible so that we save
storage space but also achieve very fast filtering performance. Whenever a new
profile p arrives in the system, we select a trie node n representing the word set J
which has the maximum number of common words with p. J may be represented
by a node which is located in any of the candidate tries. For example, the
node that represents the set Artificial ∧ Intelligence may be located in the trie
that has either the word Artificial or Intelligence as root. Moreover, in each
candidate trie, there may be more than one solutions (more than one positions
that represent J). Also, in each node of each candidate trie, there may exist more
than one sub-tries able to include the best solution. All these force us to perform
almost exhaustive search of each of the candidate tries. However we are still able
to avoid searching of certain sub-tries. These are the sub-tries the roots of which
contain words that does not exist in the document.

From the above, it is clear that the profile insertion procedure consists of two
parts:

1. Find the best node in which profile p can be inserted (or else the node n
that represents a word set J that has the most possible common words with
p).

2. Insert p into n (or create a new node under n to insert p).

Searching of the node that represents J is performed using a special algorithm
called ChooseBestTrieNode. ChooseBestTrieNode traverses one of the
candidate tries in a depth-first search order. This way, it examines all the nodes



CHAPTER 4. THE HASHTRIE METHOD FOR BOOLEAN PROFILES 26

of the trie that possibly contain the best solution. By the end of ChooseBest-

TrieNode’s execution, we know the best node for a single trie. This means that
we have a “trie-wide” solution. What we want is a “forest-wide” solution, that is
the node n that represents J . All we have to do is to let ChooseBestTrieN-

ode update a global variable, in which n will be stored. This global variable will
be updated only when ChooseBestTrieNode finds a better solution than the
one already stored in the global variable. Alternatively, we could compare all the
trie-wide solutions and pick up the best of them in order to find J . After the
execution of any (but not both) of these steps, we can insert p into n.

Insertion of p is done in a way such that its commonality with J is exploited.
The insertion procedure follows:

1. Run ChooseBestTrieNode in each of the candidate tries and find the
set J which has the maximum number of common words with p.

2. If no set J was found, create a new trie (containing only p) and exit algo-
rithm.

3. Let n be the node representing the set J , J ′ = p \J and r = remainder[n].
We will try to insert p under n.

4. If J ′ = r, store p into n′ and exit algorithm.

5. Let C be the set of words contained in both J ′ and r.

6. If C = ∅, let n′ = n, r′ = r and J ′′ = J ′ and go to step 8.

7. Create a node for each of the words of C. Set them to be each other’s child
(at most one child per node). Set the one that is nobody’s child to be n’s
child and let n′ be the one that has no child. Let r′ = r\C and J ′′ = J ′ \C.

8. If r′ 6= ∅, choose a word of r′ to create a new node and set that node to be
child of n′. Move the rest of the remaining words as well as the profiles of
n to the new node.

9. If J ′′ 6= ∅, choose a word of J ′′ to create a new node and set that node to
be child of n′. Store p as well as the remaining words of J ′ into the new
node and exit algorithm.

10. Store p into n′ and exit algorithm.

There is a similar method (called Tree method) [37] to insert profiles in the
tries. The Tree method does not try to insert p in the best possible position
(as defined here) of all the tries (and does not utilize any algorithm similar to
ChooseBestTrieNode). Instead, it sorts the words of the profile in alphabet-
ical order and only considers the common prefixes between profiles. Using the
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Tree method, there is a single candidate trie for each profile. Moreover, only
common prefixes (and not common subsets) are considered. Also, the remainder
of a profile is called postfix in the Tree method.

To better understand insertion, consider the profiles p0 to p5 of Table 4.1.
Assume that there is a trie hash table H with only one trie T2, shown in Figure
4.8. T2 contains a profile p9 = Artificial∧Databases. Let us consider that each
of p0, . . . , p5 arrives in the system (p0 arrives first, p1 arrives second etc). We
will examine the creation and modification of T2 and other tries in H, after each
profile’s arrival. For simplicity, in the following example we assume that initially
there is only p9 in the system. To better understand the advantages of HashTrie
against the Tree method, the latter is also studied in parallel with HashTrie. So,
at each step, we will present the actions taken by HashTrie and the Tree method
in order to insert the respective profile.

When p0 arrives, a new trie T1 (shown in Figure 4.3) with the word Databases
as root is created by HashTrie, containing the identifier of p0. T2 is not a candi-
date trie for p0, as p0 does not contain the word Artificial. p0 does not contain
Life either, but this is not important. If Artificial existed in p0, T2 would be a
candidate trie.

The Tree method sorts p0 alphabetically (p0 = (Databases)) and searches the
trie with Databases as root for common prefixes. Since there is no such trie at
the moment, Tree also creates T1.

Next, p1 arrives. Again, T2 is not a candidate trie (as Artificial is not contained
in p1) under HashTrie, so ChooseBestTrieNode examines only T1. p1 is found
to contain the word Databases, so a new node with the word Relational is created
under the node containing p0 in T1. The new node contains the identifier of p1.
The snapshot of T1 after the insertion of p1 is shown in Figure 4.4.

Under the Tree method, p1 is alphabetically sorted (p1 = (Databases, Relational)).
So, for the Tree method, T1 is the unique candidate trie (as Databases is its root).
Since there are no other nodes in T1, the Tree method also transforms T1 to the
trie presented in Figure 4.4.

The next profile is p2. Once more, under HashTrie T1 is the only candidate
trie in H (and the only examined by ChooseBestTrieNode), as p2 does not
contain Artificial. We can see that there is already a node in T1 that represents
a set containing all the words of p2 (the node that contains p1). This node is
detected by ChooseBestTrieNode. So, as we can see in Figure 4.5, p2 is
stored under this node too, with no other modifications in T1.

Tree sorts p2 alphabetically (p2 = (Databases, Relational)). Once more, T1

is the unique candidate trie. Searching for common prefixes, Tree also finds the
node containing p1 and inserts p2 there. So, Tree also changes T1 to the one
shown in Figure 4.5.

After p2, p3 arrives. Again T1 is the only candidate trie under HashTrie, as p3

does not contain Artificial. ChooseBestTrieNode finds that the node holding
p1 and p2 represents a set with more p3’s words than any other set represented
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by a node of a trie of H. So, p3 is inserted under that node. We can see how T1

is transformed in Figure 4.6. A new node, with the word Neural, is constructed
under the one containing p1 and p2. This node stores the identifier of p3, as well
as the remainder of p3. Neural (rather than Networks) is selected to represent the
new node. This is because whenever a new node is to be created, the “leftmost”
free word (that is not contained in the word set J) of the profile is selected to
represent the new node. The use of this rule makes it possible to apply various
heuristics by simply sorting the input profiles. For example, we could sort profiles
in descending profile frequency order (implementing the rank heuristic, see Section
4.2.5), making frequent words appear in nodes with small depths and infrequent
ones to appear more deeply in tries. On the other hand, we could sort profiles in
ascending profile frequency order (implementing the irank heuristic, see Section
4.2.5), making infrequent words appear in nodes with small depths and frequent
ones to appear more deeply in tries.

Until the arrival of p3, the Tree method inserted profiles in such a way that the
resulting organization was the same as the organization resulted after HashTrie.
But this does not hold with p3, as Tree sorts alphabetically its words (p3 =
(Databases, Neural, Networks, Relational)). Then, Tree searches for common
prefixes in T1 (as its root contains the alphabetically first word of p3, Databases).
It turns out that (Databases) is the only common prefix found in T1. So, p3 is
inserted in T1, under the root node. T1 is transformed to the one shown in Figure
4.9. We can see that although p3 has one more common word with p1 and p2

(word Relational), this commonality is not exploited. Relational exists twice in
T1. This is worse clustering than the one achieved by HashTrie.

Next, p4 arrives. This time, T1 (as presented in Figure 4.6) and T2 (as pre-
sented in Figure 4.8) are both candidate tries (as p4 contains both Databases and
Artificial) for HashTrie, so ChooseBestTrieNode examines both of them.
But, in T2 there is a node representing a set with at most one common word with
p4 (Artificial). On the other hand, in T1 ChooseBestTrieNode finds a node
(the one containing p1 and p2) that represents a set with two common words
with p4 (Databases and Relational). So, the node containing p1 and p2 in T1 is
the node under which p4 will be inserted by HashTrie. A snapshot of T1 after this
insertion is shown in Figure 4.7. Same as previous, a new node with the word
Artificial is created, containing the identifier of p4 and the words Intelligence and
Knowledge as the remainder of p4.

Tree on the other hand sorts p4 (p4 = (Artificial, Databases, Intelligence,
Knowledge, Relational)) and only examines T2 for common prefixes (as T2’s root
is Artificial, the first alphabetically word of p4). Artificial is the only common
prefix found, so p4 is inserted under the node containing it and T2 is altered to
the one shown in Figure 4.10.

Finally, p5 arrives. Under the HashTrie method, ChooseBestTrieNode

examines both T1 (as shown in Figure 4.7) and T2 (as shown in Figure 4.8)
and finds that the node (contained in T1) where p4 is stored represents a set
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Figure 4.3: T1 after the insertion of p0

Figure 4.4: T1 after the insertion of p1

Figure 4.5: T1 after the insertion of p2

Figure 4.6: T1 after the insertion of p3 using HashTrie

Figure 4.7: T1 after the insertion of p4 using HashTrie
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that contains more common words with p5 than any other set represented by a
node in any of the tries of H. So, p5 is inserted under the node containing p4

and T1 is transformed into the trie of Figure 4.2. We can see how the concept
of remainder is used to exploit commonalities between p4 and p5. Intelligence,
originally contained in the remainder of p4, was found to be contained in p5. One
could argue that the result would be the same if, instead of p4’s remainder, two
other nodes, containing Intelligence and Knowledge (like the ones of Figure 4.2)
were created during p4’s insertion. But, before the arrival of p5, we were not sure
whether p5 or a profile (for example) p6 = Artificial∧Relational∧Knowledge∧
Databases would appear. With the use of remainder we are able to not create
certain sub-tries until the time we know how to create and organize them in such
a way so that we exploit commonalities as better as possible.

On the other hand, Tree sorts p5 alphabetically (p5 = (Artificial, Databases,
Intelligence, Relational)) and searches T2 (as presented in Figure 4.10) for com-
mon prefixes (because T2’s root word is the fist alphabetically word of p5). The
node that contains p4 is found to represent the prefix with the most common
words with p5. So, p5 is inserted under that node and T2 changes to the one
shown in Figure 4.11.

As demonstrated by the example, HashTrie organizes the profiles in two tries:
T1, as presented in Figure 4.2 and T2 as presented in Figure 4.8. On the other
hand, Tree organizes the profiles in T1 as shown in Figure 4.9 and in T2 as shown
in Figure 4.11. One can easily see that HashTrie’s organization is better, as in the
tries created by Tree there are many words repeated in more than once in nodes
or postfixes. Also, in the tries created by Tree, there is a total of 9 nodes and a
sum of 3 words in postfixes, while in the tries created by HashTrie, there is a total
of 7 nodes and a sum of 2 words in remainders. The fact that HashTrie created
less nodes and stored less words in remainders is another intuitive verification
that HashTrie performed better clustering than Tree.

The algorithm used for the insertion of the profiles is named HashTrieIn-

sert and is presented in Figure 4.12 and Figure 4.13. It inserts a profile p in
a node n of a trie T , which is chosen as the best node among all nodes of all
candidate tries.

Lines 7 to 21 search all candidate tries for possible positions in them where
the profile could be inserted. Variable tree x is a pointer to that node and
tree rest is the set of words that do not belong to the set identified by tree x.
Variable tree depth indicates the depth of tree x. The algorithm ChooseBest-

TrieNode that chooses the best node in a single trie is utilized here. This
algorithm is presented and explained later. For the time being, it is enough to
know that ChooseBestTrieNode updates tree x (if necessary, i.e. if it finds a
better node), tree depth and tree rest and that it returns an indication whether
updated tree x identifies p (which means that tree x represents an identifying
subset that contains all of the words of p or that tree x contains a profile iden-
tical to p). If this holds, then p is saved in tree x with no other modification to
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Figure 4.8: T2 before the insertion of any profile

Figure 4.9: T1 after the insertion of p3 using Tree

Figure 4.10: T2 after the insertion of p4 using Tree

Figure 4.11: T2 after the insertion of p5 using Tree
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algorithm HashTrieInsert

input: a profile p represented as a sorted sequence of words,
a profile hash table H

output: -

1 words = elements[p]
2 tree depth← 0
3 tree x← null
4 tree rest← ∅
5 non existent word← null
6 same found← False
7 for each word w in words do
8 if same found = False then
9 rest← words− {w}
10 let T be the hash table entry with the trie with root w
11 if T 6= null then
12 same found = ChooseBestTrieNode(rest,T )
13 if same found = True then
14 add identifier[p] to profiles[tree x]
15 end if

16 else if non existent word = nil then
17 non existent word← w
18 end if

19 rest← rest+ {w}
20 end if

21 end for

22 if same found = False then
23 if tree depth > 0 or non existent word = null then
24 common← the common part of remainder[tree x] and tree rest
25 rem rest← tree rest− common
26 rem remainder ← remainder[tree x]− common
27 remainder[tree x]← ∅
28 profiles← profiles[tree x]
29 profiles[tree x]← ∅

Figure 4.12: The algorithm HashTrie for the insertion of a profile
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30 while common 6= ∅ do
31 create a new tree node y and let ptr y to point to y
32 insert the pair (head[common],ptr y) in children[tree x]
33 remainder[y]← ∅
34 profiles[y]← ∅
35 children[y]← ∅
36 common← tail[common]
37 tree x← y
38 end while

39 if rem rest 6= ∅ then
40 create a new tree node z and let ptr z to point to z
41 insert the pair (head[rem rest],ptr z) in children[tree x]
42 remainder[z]← tail[rem rest]
43 profiles[z]← {identifier[p]}
44 children[z]← ∅
45 else

46 profiles[tree x]← {identifier[p]}
47 end if

48 if rem remainder 6= ∅ then
49 create a new tree node y and let ptr y to point to y
50 insert the pair (head[rem remainder],ptr y) to children[tree x]
51 remainder[y]← tail[rem remainder]
52 profiles[y]← profiles
53 children[y]← ∅
54 else

55 profiles[tree x]← profiles
56 end if

57 else

58 create a new node x of T
59 remainder[x]← words− {non existent word}
60 children[x]← ∅
61 profiles[x]← {identifier[p]}
62 insert x in the root hash table of T with non existent word as its key
63 end if

64 end if

end algorithm

Figure 4.13: The algorithm HashTrie for the insertion of a profile (continued)
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algorithm ChooseBestTrieNode

input: a set rest representing the remaining words in p,
a profile trie T

output: same found (indication that the same profile was found in T)

1 same found← False
2 depth← 1
3 let x be the root node of T
4 if tree depth = 0 then
5 tree depth← 1
6 tree x← x
7 tree rest← rest
8 end if

9 if rest = ∅ then
10 tree x← x
11 tree rest← ∅
12 if remainder[root] = ∅ then
13 same found← True
14 end if

15 end if

16 while rest 6= ∅ and same found = False do
17 child found = False
18 if x is a leaf then
19 let n be the number of words common in remainder[x] and rest
20 if n = |rest| = |remainder[x]| then
21 tree x← x
22 same found← True
23 else if n+ depth > tree depth then
24 tree x← x
25 tree depth← n+ depth
26 tree rest← rest
27 end if

Figure 4.14: The algorithm that finds the best position in a trie
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28 else

29 for each w ∈ rest and w /∈ tested do
30 if same found = False and child found = False then
31 tested← tested+ {w}
32 if a pair (w,ptr) exists in children[x] then
33 let y be the node of T pointed to by ptr
34 rest← rest− {w}
35 if rest = ∅ then
36 tree x← y
37 same found← True
38 end if

39 push tested to stack
40 tested← ∅
41 increase depth by 1
42 x← y
43 if depth > tree depth then
44 tree x← x
45 tree depth← depth
46 tree rest← rest
47 end if

48 child found← True
49 end if

50 end if

51 end for

52 end if

53 if same found = False and child found = False and depth > 1 then
54 pop tested from stack
55 x← father[x]
56 rest← rest+ {w}
57 decrease depth by 1
58 end if

59 end while

end algorithm

Figure 4.15: The algorithm that finds the best position in a trie (continued)
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any of the tries. Lines 23 to 56 are executed only if tree x represents a set I that
has some common words with p (but p and / or I also have some non-common
words) or if there is no room for new tries (all the words in p already index a trie).
In that case, lines 24 to 29 find the common words between remainder[n] and
tree rest and lines 30 to 38 make a new sub-trie under tree x with these words.
By doing this, we create a sequence of nodes (children of one another). The last
of them, n′, identifies a set I ′ with all the common words between tree rest and
I. If there are any words left in tree rest that are not part of I ′, lines 39 to 44
make a child to n′ with one of the remaining words of tree rest as identifier and
insert p into this child. If this is not the case, then p is inserted into n′ (lines
45 - 46). Lines 48 to 56 do the same for the profiles that were stored in tree x.
Note that it is not possible for both p and these profiles to be saved into n′. That
would mean that p is identical to them, something that would have been detected
by ChooseBestTrieNode and then, p along with the other profiles would be
saved in tree x. Lines 58 to 62 are executed in the case that no candidate trie
or no suitable node in any of the candidate tries is found. What is done is to
create a new trie that only contains p. The word of p that indexes the new trie
is chosen in lines 16 - 17.

The algorithm ChooseBestTrieNode is given in Figure 4.14 and Figure
4.15. Given a trie T and a set rest of words (which is equal to the set of the
words contained in p − {root[T ]}), ChooseBestTrieNode finds the best (in
the greatest possible depth) node n in T where the profile can be inserted. This
means that such a position n is chosen so that for the set I identified by n holds
I ⊂ s ∪ {root[T ]} and I contains the maximum possible number of words. To
achieve this, the algorithm traverses T using depth first search. The output of the
algorithm is an indication that a node n was found that identifies a set I = s ∪
{root[T ]} = words[p]. ChooseBestTrieNode updates three global variables:
tree x, tree depth and tree rest. The first points to the best node n, found by
the successive application of ChooseBestTrieNode for each candidate trie,
(either if it identifies a set I = words[p] or not), while the second identifies the
depth of tree x. The third is a set with the words in rest that do not exist in
I. If such a node n is found such that its depth is greater than tree depth, then
tree x is set to point to n, tree depth is set to the depth of n and tree rest is
set to the set I identified by n. tree x is also set if n is such that I = words[p].
In such a case, tree rest = ∅ and we are sure that p will be inserted into n.
Lines 1 to 15 initialize the variables. If no other candidate trie hash been found
yet, lines 4 to 8 initialize tree x, tree depth and tree rest. Lines 9 to 15 are
executed in the case rest is empty. In that case, the root of T is the node we
are seeking. Lines 16 to 59 consist the main loop of the algorithm. The traversal
of T is done in this loop and node x at depth represented by the variable depth
is examined in each iteration. Lines 18 to 27 examine the case x is a leaf. If
this holds, we search for common words between remainder[x] and rest. In the
case that remainder[x] and rest contain exactly the same words, we know that
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p is going to be inserted in x, so we update the variables accordingly. If this is
not true, then we examine the case the sum of the number of common words
and current depth is bigger than tree depth. In that case, we update the global
variables, because, in the case p will be inserted here, it will be inserted in depth
equal to this sum (understanding the way HashTrieInsert works will help to
understand why this happens). If x is not a leaf, lines 29 to 51 are executed.
Every child of x is searched for a word included in rest. When one is found, this
child becomes node x and the procedure continues by searching its children or
remainder. Lines 54 to 57 are executed in the case we examined all of x’s children
or remaining words. These lines make x to return one level up to the trie, so that
we can search the rest of its father’s children. The main loop (lines 16 - 59) is
terminated when all of the possible positions in T where p could be inserted are
searched. When this happens, if a better node than tree x was found to insert
p, then the global variables have been updated to values concerning that node.

The algorithm that matches a document d with a set of profiles stored in a
trie hash table is named HashTrieMatch and is presented in Figure 4.16. It
traverses each trie in a breadth first search way. This algorithm is almost the
same as the one used in [23] for matching. The HashTrie Method utilizes two
data structures for the matching of a document d: The occurrence table (OT
or OT (d)) and distinct word list (DWL of DWL(d)) of d. They both contain
all the distinct words met in d. While OT is implemented as a hash table with
words as keys (so, search of a word is fast), DWL is implemented as a list (so,
iteration through d’s words is fast).

HashTrieMatch uses a queue Q to temporarily store nodes to be searched.
Lines 1 to 7 create the occurrence table and distinct word list of d and initialize
Q with the roots of the tries that may contain matching profiles. Lines 8 to 21
search the tries. Lines 10 to 15 search the current node for children that may
contain matching profiles and add these children to Q. Lines 16 to 20 examine if
the words of the word set identified by the current node exist in the occurrence
table of d. If this is true, the profiles contained in the current node are added to
the success list.

Next, we calculate the complexities of the data structures and algorithms used
in the HashTrie method. The parameters used in the complexity calculations of
HashTrie and subsequent algorithms are presented in Table 4.2.

In the presentation of complexity bounds in the rest of this work, if A is a
set then |A| will denote its cardinality. For the HashTrie complexity computa-
tions, we use the following notation: Let P be a set of profiles and IP the set of
identifying subsets in P . Let K be the number of nodes of all tries in the profile
hash table. Thus, if we store the profiles of P in a trie hash table H, the number
of nodes of all tries in H is equal to K and the number of leaves of all tries in
H is at most |IP |. To understand this, consider the case where all the profiles
are stored each one in a leaf of a trie (one or more profiles per leaf). Then, each
profile’s (unique) identifying subset corresponds to exactly one leaf and each leaf
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algorithm HashTrieMatch

input: a document d, a profile Hash Table H
output: success list (list of matching profile identifiers)

1 create the Occurrence Table and Distinct Word List of d
2 Q← ∅
3 for each word w in DWL(d) do
4 if there exists a trie T in H with root node x that contains w then

5 enqueue(Q,x)
6 end if

7 end for

8 while Q 6= ∅ do
9 x← dequeue(Q)
10 for each pair (u, ptr y) in children[x] do
11 if word u exists in OT (d) then
12 let y be the node of T pointed to by ptr y
13 enqueue(Q,y)
14 end if

15 end for

16 if profiles[x] 6= ∅ then
17 if remainder[x] = ∅

or all words of remainder[x] exist in OT (d) then
18 success list← success list+ profiles[x]
19 end if

20 end if

21 end while

end algorithm

Figure 4.16: The algorithm used for matching a document with a trie hash table

Symbol Parameter
N Number of profiles
S Maximum profile size
D Document size
L Maximum number of letters (characters) in a word
Vd Document vocabulary
Vp Profile vocabulary

Table 4.2: Parameters used in complexity calculations
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corresponds to exactly one identifying subset (the one of the profiles it stores).
So, the number of the leaves is equal to |IP |. In the (more common) case where
one or more profiles are stored in a non-leaf node (which means that their identi-
fying subsets are subsets of other identifying subsets), then the number of leaves
is smaller than |IP |. Also, note that generally K ≥ |IP |, as a node n may exist
without containing any profiles (its identifying word is a word common in two or
more profiles that have one or more different words). In that case, n represents
no identifying subset. On the other hand, each identifying subset is represented
by a node (since the profile with that subset is stored in a node). Finally, let M
be the maximum number of children in a node of a trie of H. During the time
complexity calculations, we assume that the insertion or lookup of a trie in H
takes O(1) time. This is realistic, as H is implemented using Open Addressing
with Double Hashing [13]. Moreover, its load factor α is less than 0.1 and its size
is a prime number. These also hold for all other hash table instances described
in this section as well. Hash table insertion and search speedup is achieved with
these techniques.

4.1.1 Space Complexity

The space needed for the storage of profile identifiers is O(N). The space
required by all nodes is O(K) and the total number of word-keys at each node
is O(K). In order to calculate the number of words that the trie-like structures
need to store the profiles, we have to add the number of words in the nodes to the
number of words in the remainder list of each leaf. So the space needed for storing
words in the trie-like structures would normally be O((K−|IP |) ·L+ |IP | ·S ·L) =
O(L · (K − |IP | + |IP | · S)). In order to reduce this size, we consider the fact
that many words in the nodes are repeated, so the space needed for each word is
O(L ·R), where R is the number of repetitions of the word in the nodes. To avoid
this, we use another data structure called word pool in which we store all the
words met in the inserted profiles. The words in the nodes (word-keys and words
in remainders) are actually pointers to the respective words stored in word pool.
The space needed for word pool is O(L · |Vp|). So the space needed for storing
the words is O(K − |IP |+ |IP | · S + L · |Vp|) = O(K + S · |IP |+ |Vp| · L). Thus,
in total the space required by HashTrie Method is:

O(N +K +K + S · |IP |+ |Vp| · L) =

O(L · |Vp|+ S · |IP |+ 2 ·K +N)

4.1.2 Update Complexity

The algorithm ChooseBestTrieNode in Figures 4.14 and 4.15 traverses
the trie T in a DFS way and finds the best node for the profile to be inserted. In
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the worst case, ChooseBestTrieNode examines all the nodes of all the tries,
so its time complexity is O(K).

The algorithm HashTrieInsert is listed in Figures 4.12 and 4.13. The loop
of lines 7 to 21 takes O(K) time. Line 24 takes O(S2), so do lines 25 and 26.
The loop of lines 30 to 38 takes O(S) time. Thus, the update complexity of
HashTrieInsert is O(K + S2).

4.1.3 Filtering Complexity

The algorithm HashTrieMatch is listed in Figure 4.16. The loop of lines 3
to 7 take O(min(D, |Vd|)) time. The loop of lines 8 to 21 do a breadth-first search
of each trie in H and examine O(K) nodes. Line 17 takes O(S) time. Thus, the
total time for filtering of one document is O(min(D, |Vd|) + K · S). The time
consumed for the construction of the occurrence table and distinct word list of
the document must be added. This is O(D), so the total time consumed for
document matching is O(min(D, |Vd|) +K · S +D).

4.2 Experimental Evaluation

In this section, we proceed with the experimental evaluation of the HashTrie
method and we compare it with the Tree method [37] as well as with a Brute
Force algorithm.

4.2.1 The Neural Networks Corpus

The testset used for the evaluation of the algorithms, is based on a document
corpus (referenced as NN corpus). The advantage of this method is that the
profiles and documents used for evaluation are more realistic than test data cre-
ated using randomly chosen words (as, considering a specialized corpus, someone
would submit a profile containing words of the corpus area’s terminology).

The NN corpus was initially created and processed by the group of Evagge-
los Milios at Dalhousie University 1. The documents were created from a set of
research papers about Neural Networks. These papers were downloaded from Re-
searchIndex [1, 24], that is a digital library aiming to the dissemination of scientific
information. The documents were downloaded as postscript files and converted
into simple text. Any non-text information such as images and equations were
wiped out, resulting in documents that contain simple text words. After this,
a part-of-speech (POS) tagger [4] was applied to the documents, adding an in-
dication about whether a word is a verb or a noun etc. This information were
used in order to find the candidate multi-word terms for profile generation. The
C-Value and NC-Value method proposed in [18] were applied in order to retrieve

1http://www.cs.dal.ca/∼eem
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Description Value

Number of documents 10,426
Document vocabulary size 641,242
Maximum document size (words) 110,452
Minimum word size (letters) 1
Maximum word size (letters) 35

Table 4.3: Some characteristics of the NN corpus

Attribute number of documents % fraction of documents

title 6523 63%
authors 6046 58%
abstract 9162 88%

body 8990 86%

Table 4.4: Number of documents containing each attribute

that terms. A multi-word term sets were the result of this processing. Some
statistical information about the NN corpus are presented in Table 4.3.

The NN corpus was further processed by Theodoros Koutris [23] and Christos
Tryfonopoulos [32]. A set containing the authors of the documents and another
one containing the words in the abstracts were created during this procedure.
The frequency that each author appears in the author set is proportional to the
number of citations the author receives. The POS tags were removed from the
documents, while four possible attributes were left: Author, Title, Abstract and
Body.

The overall result of the NN corpus processing was documents containing free
text organized in attributes, as well as datasets proper for profile generation.
Statistical information on how many documents contain a specific attribute can
be found in Table 4.4. Statistical information about how many documents contain
a specific number of attributes can be found in Table 4.5.

4.2.2 Unit Sets Creation

All the profiles used to evaluate the algorithms for the boolean model are
generated from the combination of three different unit sets created from the
selection of words and multi-word terms that appear in the NN corpus documents.
In this section, we describe these unit sets as well as the procedure followed for
their creation. There is one unit set created from the modification of the multi-
word terms of the corpus. There is also a unit set containing the last names
of authors of the corpus documents. Finally, there is a unit set that contains
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Number of attributes number of documents % fraction of documents

1 479 4.59%
2 3495 33.52%
3 1641 15.74%
4 4680 44.89%

Table 4.5: Percentage of documents containing one or more attributes

selected nouns from the abstracts of the documents.
In order to create the unit set with the multi-word terms, the original list of

multi-word terms was sorted by C-value / NC-value. Then, the terms containing
more than 5 words were cleared out, as they were noise created by the C-value
/ NC-value method. The discriminating power of terms with high C-value /
NC-value is very low, so terms C-value / NC-value greater than an upper bound
that we defined, were also rejected. Also, terms with C-value / NC-value lower
than a bound are considered to be noise created by the conversion of the initial
postscript files to text, so they were rejected too. The set of multi-word terms
created with this method will be referred as MS.

The second unit set contains nouns taken from the abstracts of the documents
and will be referred as NS. The indications created by the POS tagger were used
to identify the nouns. Very frequent nouns would have small discrimination power
and would not be used in profiles, while infrequent ones were noise. So, after the
extraction, the nouns were sorted by frequency, an upper and lower threshold
were set and nouns with frequencies greater than the upper threshold as well as
the ones with frequencies below the lower threshold were removed. As a result,
we created a set of words very likely to be used for searching in an information
dissemination setting. The list of the initial nouns was chosen to contain nouns
only from abstracts because a paper’s abstract is an overview of the whole paper,
a place where “keywords” that define the paper’s subject are mostly met.

The last unit set contains the surnames of the authors of the documents. It
will be referred as AS. There are 8832 distinct authors. Something we were
aware of is that the average user would request papers published by specific
authors more often than papers published by others. This is because there are
scientists more or less active in a region or scientists whose work is considered
to be more important than others’. So, these authors gain more visibility and
consequently their work is more oftenly searched for. Thus, a collection of all
the authors’ names would not be enough by itself. What we do is to enter an
author’s name more than once in the author set.

In order to determine how many times an author a should appear in the
author set, we apply the following method: Let Ni be the number of papers that
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contain a citation to an author i’s paper. We define the probability:

P (a) =
Na

∑

i∈V author Ni

P (a) is a metric of the popularity of author a and consequently, a good metric
for the frequency of the appearance of a in a profile. So, an author a is repeated
n times in the author set, where n is proportional to P (a). This way, popularity
information about each author is also contained in the author set. One thing we
noticed during the author unit set creation is that P (a) follows the Zipf distri-
bution. This becomes logical since we realize that in most specialized scientific
areas there are a few popular scientists and many that receive less popularity.

In this section we described the different unit sets used for boolean atomic
profile generation as well as the process of their creation. More details can be
found in [23, 32].

4.2.3 Boolean Atomic Profiles Generation

In this section we describe a method to generate profiles appropriate to eval-
uate algorithms and data structures that support boolean atomic profiles. The
method presented here is similar to the one used in [32] for the evaluation of
algorithms that implement the same functionality under AWP .

A boolean atomic profile is a conjunction of words w1 ∧ w2 ∧ . . . ∧ wn, where
wi is a word. We form such a profile by concatenating one or more different units
from the unit sets described in Section 4.2.2. The first step for the creation of an
atomic profile is to decide how many units will take part in it. Let the number
of these units be S. S is an integer randomly chosen from the interval [1, Smax],
where Smax is defined separately for each attribute in the attribute set.

In order to decide which unit sets will offer units to take part in the creation of
an atomic profile, we use a selection probability for each of the unit sets. These
selection probabilities for each of the sets of Section 4.2.2 are shown in Table
4.6. Using these probabilities, we decide whether a unit set will take part in the
creation of the atomic profile. We are able to change the frequency that each unit
set appears in profiles by properly adjusting the corresponding probability. We
could make the units of a specific set appear in all the atomic profiles by setting
the respective probability equal to 1. Similarly, we could prevent these units from
appearing in any of the atomic profiles by setting the probability equal to 0. If
a unit set is decided to take part, then one of its units is randomly chosen to be
inserted in the atomic profile, using a uniform distribution. To select the units,
a loop executes S iterations. In each iteration i, a unit of the atomic profile is
created. The possibility to be selected by MS, NS or AS is shown in Table 4.6.

There are two possible ways of forming a profile: In the first of them (with
which 75% of the profiles are constructed), a multi-word term fromMS is selected
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Participating unit sets Selection probability Smax percentage of profiles

MS 0.8 2 25%
NS 0.2
MS 0.8 3 50%
NS 0.2
AS 1.0 2 25%

Table 4.6: Boolean atomic profile generation concepts

with a probability of 0.8 and a noun from NS with a probability of 0.2. The rest
25% of the profiles is constructed using one or two authors from AS. The concepts
of boolean atomic profile generation are summarized in table 4.6.

4.2.4 Experiment Settings

Now that the profile generation techniques have been explained, it is time to
present the results of simulations and to experimentally evaluate our algorithms.
Several of their performance characteristics are revealed through this process.

All the tested algorithms were implemented in C++. The simulations were
carried out on a Pentium 4 at 1.7GHz running Linux. The system had 1GB main
memory. At the time of each simulation, no other user programs were running,
while the process of each experiment was running with highest priority to avoid
multitasking with operating system services.

Testing of the various algorithms is done according to the following procedure:
Firstly, the profile set appropriate to test each algorithm is generated according
to the procedure described in the respective section. After the generation of
the profiles, we select 100 documents from the corpus in order to test filtering
performance. Moreover, the results of matching are averaged, so testing with
the whole document set is not necessary. The average number of words in each
document was 971, while the average size of a document was 31KB.

To perform matching, the document is loaded into the main memory and its
occurrence table is constructed. Matching time calculations include no overhead
due to hard disk I/O. Also, the time consumed for the creation of the occur-
rence table and for its destruction after the matching process, is not added into
matching time calculation, but they are calculated separately. So, match time
calculations only include the time consumed by the various matching methods,
excluding time needed for any memory allocation or deallocation. Moreover, con-
cerning the various matching time calculations, the simulations only measured
the time needed for matching, occurrence table creation and destruction. The
time needed for document download as well as the time needed to send the doc-
ument to interested users (whose profiles are found to match the document), are
not taken into account.
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Due to many unstable factors, errors may occur in time calculations concern-
ing matching. In order to prevent this, the matching process for each document
is repeated eight times and the measured times are averaged. These averages are
considered to be the time consumed for matching and occurrence table creation
and destruction.

Performance of profile database update is also evaluated. Specifically, we com-
pare the time needed for the insertion of a number of profiles for various database
sizes, between the various algorithms. One could argue that the problems that
appear in matching time evaluation may also appear in these calculations. But,
insertion time calculates the time needed for the insertion of a great number of
profiles, so what is really computed is a statistical value.

Another counted size, is the memory allocated by each algorithm for various
profile database sizes. This size is compared with respective measurements taken
for Brute Force algorithm, showing up the memory size overhead required for
each method. It gives us an idea about the price of matching speed.

4.2.5 Simulation Results

In this section, we present the data that came out of the analysis of exper-
imental data for HashTrie as well as some other algorithms. These data were
the result of simulations ran with the settings described in Section 4.2.4. The
efficiency of HashTrie was measured and compared to that of the Tree method
[37] and to that of a Brute Force method. The profiles for these simulations were
generated with the method described in Section 4.2.3.

The memory space needed for each of the algorithms is shown in Figure 4.17.
We can see that Tree and HashTrie, not only need more space than Brute Force,
but also, the space needed by HashTrie and Tree, increases more rapidly with the
profile database size than the space needed by Brute Force. Moreover, Tree is
the worst algorithm of the three considering memory space, as it allocates more
memory than the others.

Speed is the advantage of HashTrie and Tree. The average match time for
each of the algorithms is presented in Figure 4.18. Filtering time for HashTrie
and Tree is much less than filtering time of the Brute Force algorithm. Also, the
time needed by Brute Force increases more rapidly with profile database size.
Between HashTrie and Tree, HashTrie is clearly a winner.

A metric that is also evaluated through matching time, is the throughput
of the system. Throughput represents the computational capability of our algo-
rithms. It is of great importance, as a big throughput minimizes the possibility
of system overload, while maximizing quality of service. In Figure 4.19, the pro-
cessing capability of each algorithm is presented. The entry Algorithm-xM means
“performance of Algorithm with a database size of x millions of profiles”. We can
clearly see once more that HashTrie is the best of the three algorithms. What
is most impressing is that even with a database size of three times the database
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Figure 4.17: Effect of database size in allocated memory space for the Boolean
Model
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size of Tree, HashTrie is still faster than Tree.
The Tree algorithm uses alphabetical rules for the selection of the word which

will be used to create a new trie or node during insertion. This means that
during profile insertion, whenever a new node is needed to be constructed or
a new trie is needed to be indexed in a profile hash table, the alphabetically
smallest word of the profile (from the words in tree rest - see Section 4.1) is
selected. So, moving from the root of a trie towards its roots, we meet the
words of the profiles in alphabetical order. HashTrie picks the “leftmost” word
of tree rest to create a new node. For example, if we wish to insert the profile
Neural ∧ Networks ∧ Corpus in a node containing Networks, then Neural is
selected (as tree rest contains Neural, Corpus) as the key of the new node. There
were two heuristics used for the selection of the word which will be used to create
a new trie or node during insertion in HashTrie. These heuristics utilize ranking
information [37]. Using the first of them (called rank heuristic), the word in
tree rest that is most popular among the currently stored profiles is used to index
the new node or trie. Using the second one (called irank heuristic), the least
popular one is used. In other words, using the rank heuristic, we expect popular
words to be inserted near the roots of tries (which we expect to result in wide and
short tries), while with irank, we expect that they will be inserted far from the
roots (which will result in tall and thin tries). In the former case, we expect that
the profile database size will be minimized, as there will be better clustering of
profiles, as more common words are expected to be found among profiles. In the
latter case though, we expect that the filtering time will be reduced, as less tries
are expected to be examined (many profiles will be discarded without needing
to examine in depth the tries in which they are stored). Ranking information is
extracted from the inserted profiles. For each word, its popularity is equal to the
number of inserted profiles containing it. This means that ranking information
is updated in every insertion.

We experimented with these heuristics. The results for the profile database
size are shown in Figure 4.20. We can see that all versions of HashTrie need
about the same memory, which is considerably less than the memory needed by
Tree. The heuristics did not have any serious impact on the profile database size.

The results for matching time are shown in Figure 4.21. The results this time
correspond to what we expected. We see a significant speedup using the irank
heuristic. On the other hand, using the rank heuristic slows down the system. In
any case though, HashTrie is fastest than Tree.

Having seen the results of heuristic evaluation, we decided to apply the irank
heuristic (which was shown to speedup the system with almost no cost) to the Tree
algorithm. This means that the resulting algorithm will still search for common
prefixes among the profiles, but now, instead of sorting the profiles alphabetically
to determine common prefixes, we sort them by inverse ranking frequency. The
results of this algorithm’s comparison with HashTrie with the irank heuristic are
following.
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Figure 4.21: Filtering time with the use of heuristics for the Boolean Model

In Figure 4.22, we can see the results of the comparison between the space
needed by the two algorithms. We see that Tree with irank needs about the same
space with the “simple” Tree, which is more that the space needed by HashTrie.
But, the time consumed by Tree (with irank) matching is less than the time
needed by the respective version of HashTrie, as we can see in Figure 4.23. A
reason for this could be that HashTrie changes word ordering in the profiles in
order to achieve better clustering. Tree does not do this, it simply looks for
common prefixes using the existing ordering. So, word ordering in the profile
has a greater impact in Tree than in HashTrie. That’s why irank performs even
better with Tree.

4.3 Conclusions

Methods appropriate to support data models and languages under the boolean
model are presented in this chapter. The HashTrie method is proposed and its
space and time complexities are calculated. Moreover, the performance of this
method is experimentally evaluated and compared to the performance of other
methods for the boolean model, such as the Tree method. A Brute Force algo-
rithm was also implemented for comparison purposes. Finally, various heuristics
based on ranking were tested. It was shown that bad use of ranking may result
in undesired slowdown of the system. On the other hand, if we properly exploit
ranking, we can gain many benefits. Use of ranking information can also change
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the effectiveness ordering of two methods.



Chapter 5

Methods for AWP Support

In this chapter, we propose a method to support profiles under AWP . We
analytically present the data structures and algorithms of the method and we
conclude with its evaluation and experimental comparison with other algorithms.

5.1 Proximity Storage and Evaluation

In this section we present the Proximity method used for proximity evaluation.
This method is used in conjunction with HashTrie for the support of boolean
profiles with proximity operators.

Under the Proximity method, proximity formulas contained in a profile are
stored in an array. Each slot of this array is actually a structure representing a
proximity formula with n words. This structure consists of the following fields:

• words : An array that contains the words taking part in the proximity
formula, in the order they appear in the formula. It size is equal to n.

• min distance : An array each slot i of which represents the minimum re-
quired distance between words[i] and words[i + 1]. Its size is equal to
n− 1.

• max distance : An array each slot i of which represents the maximum
required distance between words[i] and words[i + 1]. Its size is equal to
n− 1.

Example 5.1 The proximity formula

Artificial ≺[0,0] Intelligence ≺[3,4] Neural ≺[0,2] Network

52
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is represented with the following structure:

words : Artificial Intelligence Neural Network

min distance : 0 3 0

max distance : 0 4 2

To fully support proximity profiles, we use a proximity table PT . PT ’s size
is equal to the number of profiles N . Each of its slots contains the array of
proximity formulas of the respective profile. If a profile p has no proximities, the
slot of PT corresponding to p is empty.

Example 5.2 Let us assume three profiles p1, p2 and p3 with the proximity for-
mulas:

p1 : Artificial ≺[0,0] Intelligence

p2 : Speech ∧Recognition ∧ System
p3 :Markov ≺[0,2] Chain ≺[4,8] Monte ≺[0,3] Carlo

Notice that p1 has one proximity formula, p2 has no proximity formulas, while
pi has two proximity formulas. We are inserting these profiles into a proximity
table PT . The proximity table will look like the one in Figure 5.1.

For the evaluation of a proximity formula with a document, an occurrence
table (OT ) like the one used in HashTrie is used. Each record in OT is indexed
using the word and it also contains a list of the positions in the document where
the word is found. These positions are expressed in terms of word indexes (word
in position 0 is the first word in the document, word in position 1 is the second
etc). The positions are stored in the list in ascending order.

Example 5.3 Some of the records of an OT of a document is shown in Figure
5.2. We can see that the word “Artificial” appears in positions 3 and 15 etc.

The algorithm used for matching a document with a proximity formula is
named EvaluateProximityFormula and is given in Figure 5.3. For each
word wi in the occurrence table of the document, the algorithms chooses wi+1’s
positions in the document that satisfy the proximity formula’s constraint between
wi and wi+1. Only these positions qualify to be checked for satisfaction with the
positions of wi+2. If there are qualifying positions of the last word in the proximity
formula, the algorithm returns True (which means that the proximity formula is
satisfied). The algorithm returns False as soon as a wi with no qualifying positions
is found. positions[wi] are taken from the occurrence table of a document, with
a hash table search. We assume that all the words in the proximity formula exist
in the occurrence table. By the time we study the unification of the Proximity
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Figure 5.1: A proximity table PT with some profiles in it

Figure 5.2: Some of the records of an OT used for proximity evaluation
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algorithm EvaluateProximityFormula

input: a proximity formula pf , a document occurrence table OT
output: matches (indication whether the document represented by OT matches pf)

1 matches← False
2 temp positions← positions[first word in words]
3 for each word wi in words[pf ] do
4 if temp positions is not empty then
5 if wi is the last of words[pf ] then
6 matches← True
7 else

8 candidate positions list← ∅
9 fetch the first position from temp positions into pi

10 fetch the first position from positions[wi+1] into pi+1

11 while there exist words in temp positions and positions[wi+1] do
12 diff ← pi+1 − pi − 1
13 while diff ≥ min distance[wi] and diff ≤ max distance[wi]

and there exist positions in positions[wi+1] do
14 add pi+1 to candidate positions list
15 fetch next position from positions[wi+1] into pi+1

16 diff ← pi+1 − pi − 1
17 end while

18 while diff < min distance[wi]
and there exist positions in positions[wi+1] do

19 fetch next position from positions[wi+1] into pi+1

20 diff ← pi+1 − pi − 1
21 end while

22 if diff > max distance[wi]
and there exist positions in positions[wi] then

23 fetch next position from temp positions into pi

24 end if

25 end while

26 temp positions← candidate positions list
27 end if

28 end if

29 end for

end algorithm

Figure 5.3: The algorithm used for evaluation of a proximity formula
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method with the HashTrie method, we will understand why this is a reasonable
assumption.

The EvaluateProximityFormula algorithm takes a proximity formula pf
and an occurrence table OT as input. Lines 1 and 2 initialize the output variable
and store the positions of the first word of pf in temp positions. temp positions
is the place where the qualifying profiles of wi are stored at each iteration. All
of the positions of the first word are assumed to be qualifying (since there is no
constraint considering a word preceding the first word). The loop of lines 3 to
29 is executed for every word wi in pf . Line 4 checks whether or not we have
reached to a point where no qualifying positions exist. If we have, the algorithm
returns immediately. If we haven’t, then line 5 checks if wi is the last word of pf .
If it is, then pf is satisfied by OT , so the output variable is set appropriately in
line 6. Lines 7 to 27 examine the symmetric case: They determine the qualifying
positions of wi+1. Line 8 initializes the list of the candidate positions of wi+1.
Line 9 initializes pi, the currently examined position of wi. The same is done
for pi+1, the currently examined position of wi+1 in line 10. The loop of lines
11 to 25 find the qualifying positions of wi+1 and insert them into the candidate
positions list. Line 12 calculates the distance between pi and pi+1. Lines 13 to
17 are executed while positions of wi+1 that satisfy pi are found. These positions
are inserted into the candidate positions list without any further examination.
pi+1 advances to the next position of wi+1 after each iteration. The loop of lines
18 to 21 is executed while pi and pi+1 are too close to each other. While this
happens, pi+1 advances to the next position of wi+1 in the document, until a
satisfying position is found. Lines 22 to 24 examine the case where pi and pi+1

are too far away from each other. In that case, pi advances to the next position of
temp positions. Careful study of the algorithm will make clear that this is done
until a satisfying position pi is found. Finally, line 26 initializes temp positions
to be used in the next iteration.

As mentioned earlier, a profile p contains zero, one or more proximity formu-
las. Given that all of p’s words exist in a document d with occurrence table OT ,
to be able to decide whether d matches p, we have to determine whether all of the
proximity formulas of p are satisfied by d. What we do is to apply the Evalu-

ateProximityFormula algorithm to each of the proximity formulas of p. If at
least one of them is not satisfied, then d does not match with p. The rather simple
algorithm used to perform this calculation is named EvaluateProximity and
is presented in Figure 5.4.

5.1.1 Space Complexity

For the complexity calculations of the Proximity method, let us assume that
each profile has an average of f word formulas and that each word formula con-
tains an average of m words. So, each proximity formula needs O(L · f) space,
while a profile takes O(L · f ·m) = O(L ·S) space. Consequently, the proximities



CHAPTER 5. METHODS FOR AWP SUPPORT 57

of all the profiles in PT would normally need O(N · S · L) space. In an effort to
decrease the space complexity, we once more use a word pool data structure in
which we store all the words met in the stored proximity formulas. Each of the
contents of the words array of each proximity formula is actually a pointer to the
respective word stored in word pool. As a result, the space used to store PT be-
comes O(N ·S). The space needed for word pool is O(L · |Vp|), so the total space
needed for the storage of the profiles’ proximity information is O(N ·S+L · |Vp|).

5.1.2 Update Complexity

A proximity formula needs O(f) time to be saved, so all the proximity infor-
mation of a profile needs O(m · f) = O(S) time to be saved.

5.1.3 Filtering Complexity

The algorithm EvaluateProximityFormula is listed in Figure 5.3. The
loops of lines 13 to 17 and 18 to 21 are mutual exclusive: Execution of one or
more iterations in the first, mean that the evaluation expression of the second is
False and vice-versa. So, the time complexity of these combined loops is O(R),
where R is the average number of repetitions of a word in a document. The loop
of lines 11 to 25 executes O(R) iterations, so its time complexity is O(R2). The
loop of lines 3 to 29 executes O(f) iterations, so the time complexity of that loop
and of the algorithm if O(f · R2). Thus, The time complexity of the evaluation
of proximities in a single profile is O(m · f · R2) = O(S · R2). Evaluation of the
proximities in all the profiles is done in O(N · S ·R2) time.

5.2 Combining HashTrie with Proximity

In this section we study how the HashTrie method described in Chapter 4
can be combined with the Proximity method described in section 5.1 in order to
support boolean profiles with proximity operators. The model supported by this
combination is a subset of WP described in Chapter 3.

Example 5.4 A profile supported by the method of this section is:

Artificial ∧ Intelligence ∧Markov ≺[0,2] Chain ≺[4,8] Monte ≺[0,3] Carlo

The semantics of such a profile are that all words in profile must be found in a
document in order for the document to be able to match the profile. Additionally,
the proximity formula(s) of the profile must be satisfied, or else the document does
not match the profile.
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In order to support boolean queries with proximity operators, we use the trie
hash table H used in the HashTrie method and the proximity table PT used in
the Proximity method. The shape of such data structures is shown in Figure 5.5.
Profile insertion and matching rely on the property that the existence of all the
words contained in a profile p is required in a document d in order for d to be
able to match p. Proximity is an additional constraint that must be satisfied for
p to qualify as a matching profile.

Insertion of a profile p is done in two stages. Firstly, we create a distinct
word list containing the words of p, without considering any proximity operators.
Using this distinct word list, we insert p into H. Secondly, we identify the distinct
proximity formulas of p and we create an array (each slot of which contains a
structure like the one described in section 5.1) with them. We insert this array
into the PT slot that corresponds to p. This means that no indexing exists for
proximities. Instead, the words that take part in proximities are indexed in the
tries used by HashTrie.

One obvious algorithm for matching is to use the algorithm presented in Figure
5.6. As we can see, this algorithm calls HashTrieMatch to get the candidate
matching profiles and then constructs an occurrence table to perform proximity
matching. But HashTrieMatch has already constructed, used and destruc-
ted an occurrence table of the document (as shown in Figure 4.16). In order
to avoid multiple occurrence table constructions, we utilize a new algorithm to
match a document with boolean profiles that may also contain proximities. The
algorithm, named HashTrieProximityMatch is presented in Figure 5.7. It
is slightly different from the HashTrieMatch algorithm listed in Figure 4.16.
What HashTrieProximityMatch does is to determine the candidate profiles
to be inserted into the success list, by the use of the HashTrie data structures.
Next, it evaluates the proximity constraints of the candidate profiles and inserts
into the success list these profiles that all of their proximities are satisfied.

HashTrieProximityMatch uses a queue Q to temporarily store nodes to
be searched. Lines 1 to 8 create the occurrence table OT (d) (with word position
information) and distinct word list DWL(d) of d and initialize Q with the roots
of the tries that may contain matching profiles. Lines 9 to 26 search the tries.
Lines 11 to 16 search the current node for children that may contain matching
profiles and add these children to Q. Line 18 examines if the words of the word
set identified by the current node exist in d. If this is true, the proximities of the
profiles contained in the current node are examined in lines 19 to 23. The profiles
the proximities of which are satisfied by d are added into the success list.

5.2.1 Space Complexity

For the complexity calculations, we use the same notation used in the com-
plexity calculations of the various HashTrie algorithms. The space required for
the storage of the profiles is the space required for the HashTrie hash table H and
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algorithm EvaluateProximity

input: a profile p, a document occurrence table OT
output: matches (indication whether the document represented by OT matches p)

1 for each proximity formula pfi contained in p do
2 if EvaluateProximityFormula(pfi,OT ) = False then
3 return False
4 end if

5 end for

6 return True

end algorithm

Figure 5.4: The algorithm used for the evaluation of a profile’s proximities

Figure 5.5: Shape of data structures able to store boolean atomic profiles with
proximities
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for the Proximity table PT . We also utilize the word pool data structure in the
same way as it is used in the standalone HashTrie and Proximity methods. Note
that we only need one word pool, since the vocabulary of the profiles is common,
no matter whether the profiles contain proximity operators or not. So, according
to Sections 4.1.1 and 5.1.1, the space needed for the storage of boolean profiles
with proximity operators is:

O(L · |Vp|+ S · |IP |+ 2 ·K +N +N · S) =

O(L · |Vp|+ S · (|IP |+N) + 2 ·K)

5.2.2 Update Complexity

According to Section 4.1.2 and Section 5.1.2 and since the insertion of a
profile consists of an execution of HashTrieInsert followed by the insertion of
the proximity information of the profile, the update complexity is:

O(K + S2 + S) = O(K + S2)

K is the variable defined in Section 4.1.

5.2.3 Filtering Complexity

The algorithm HashTrieProximityMatch is listed in Figure 5.7. The loop
of lines 4 to 8 takes O(min(D, |Vd|)) time. The loop of lines 9 to 26 do a breadth-
first search of each trie in H and examine O(K) nodes. Line 18 takes O(S) time.
According to section 5.1.3, the loop of lines 19 to 23 takes O(S2 ·R2) time. Thus,
the total time for filtering of one document is O(min(D, |Vd|) +K ·S2 ·R2). The
time consumed for the construction of the occurrence table and distinct word list
of the document must be added. This is O(D), so the total time consumed for
document matching is O(min(D, |Vd|) +K · S2 ·R2 +D).

5.3 Adding Attribute Support

In this section, we extend the data structures and data algorithms of Section
5.2 in order to support attribute based profiles and documents under the model
AWP .

Support for attribute based profiles means that a profile may consist of one or
a conjunction of more atomic profiles. Each atomic profile refers to an attribute
and can be a boolean profile with proximities. The document model supported by
this method consists of attributes containing free text. Each document has to be
consisted of one or more parts. These parts are the attributes of the document.
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Example 5.5 An example of a profile p1 supported by the method of this section
is:

(AUTHOR w Manolis ≺[0,0] Koubarakis)∧
(BODY w Artificial ∧ Intelligence ∧Markov ≺[0,2] Chain ≺[4,8] Monte ≺[0,3] Carlo)

This profile consists of the atomic profile:

p11
wManolis ≺[0,0] Koubarakis

that refers to attribute AUTHOR and

p12
w Artificial ∧ Intelligence ∧Markov ≺[0,2] Chain ≺[4,8] Monte ≺[0,3] Carlo

that refers to attribute BODY . The semantics of p1 are that the constraints
concerning all of the profile’s attributes must be satisfied by a document d in order
for the document to match the profile (so, d must contain text in both AUTHOR
and BODY attributes). In other words, p11

and p12
must be satisfied by the the

text of the corresponding attributes of d in order for d to match p1.

All the other methods we have so far discussed, consider a document contain-
ing free text only. In Section 5.2, we presented a method to support a language
with boolean expressions and proximities. In order to support attributes, we
employ the algorithms and data structures used in that method.

The data structures of the HashTrie method with proximities are a trie hash
table H and a proximity table PT . Let us consider a data structure AT that
contains both H and PT . Each AT is able to store an atomic profile that refers
to an attribute of a profile. The main data structure used is a table ATT of AT .
Its size is equal to the total number of attributes of profiles currently inserted
in the system. ATT can grow to support more attributes that belong to the
attribute universe of our system. Each attribute is encoded in a number. Each
slot of ATT contains all the necessary data structures to support AWP atomic
profiles referring to the corresponding attribute. A view of how an ATT table
looks like is shown in Figure 5.8. There is also a table total, with size equal to
the number N of the profiles currently inserted in the system. For each profile,
there is exactly one record in total. Each record of total contains the number
of atomic profiles that in conjunction form a specific profile. During filtering, a
table count is used along with total to find the matching profiles. While each slot
of total contains the number of attributes of a profile, the respective slot of count
contains the number of attributes of that profile that match with the respective
attributes of the document.

Example 5.6 Assuming that no other profile exists in the system, ATT with
only the profile of Example 5.5 stored looks like the table of Figure 5.9, which also
presents the total table.
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Insertion is performed in the same way as in the HashTrie method with prox-
imities. For each atomic profile pi of the inserted attribute profile p, a distinct
word list containing pi’s words is created, without considering any proximity op-
erators. Using this distinct word list, we insert pi into the HashTrie hash table
H of the proper slot AT of ATT . Secondly, we identify the distinct proximity
formulas of pi and we create an array (each slot of which contains a structure like
the one described in section 5.1) with them. We insert this array into AT ’s PT
slot that corresponds to pi.

In the attribute enabled matching process, we use a slightly different version
of HashTrieProximityMatch (presented in Figure 5.7), called AwpMatch.
Its only difference from HashTrieProximityMatch is that this algorithm does
not operate on any success list. Instead (as it is already said) there is a table
named count, the contents of which are modified. Document matching is done
in a similar way as profile insertion. Firstly, we identify which attributes exist
in the incoming document d. Then, for each attribute i of d, we probe the data
structures in the respective slots of ATT using AwpMatch. When AwpMatch

is called, its input document is the text contained in the respective attribute i
of d, not the whole document. count is a table containing integers, with size is
equal to the number of profiles N . There is exactly one slot for each profile.
Before AwpMatch is called, count’s contents are all set to zero. Whenever a
profile p’s attribute i is found to match the respective attribute of d, p’s entry in
count is increased by one. At the end of the matching process, the contents of
count are compared with the 0 contents of total. The matching profiles are the
ones the entries of which in count is equal to the respective entry in total (the
ones that have all their attributes matched). This is a very fast method to find
the matching profiles and helps us avoid set intersection (among the success lists
that each run of HashTrieProximityMatch would produce). This method
was inspired by the Count algorithm proposed in [37]. The algorithm used for
matching is presented in Figure 5.10.

5.3.1 Space Complexity

For the complexity calculations of the attribute enabled method, let us assume
that each profile contains A attributes. In this method, the idea of word pool of
size O(L · |Vp|) is also employed. According to section 5.2.1, the space complexity
of each slot of ATT is O(S · (|IP |+N) + 2 ·K), so the space employed for ATT
is O(N ·S · (|IP |+N)+ 2 ·N ·K). Also, the spaced used by total is O(N). Thus,
the space needed by the attribute enabled method is:

O(L · |Vp|+N · S · (|IP |+N) + 2 ·N ·K +N) =

O(L · |Vp|+N · S · |IP |+ 2 ·N 2 ·K +N 2 · S) =
O(L · |Vp|+N · S · |IP |+ 2 ·N 2 ·K)
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where K and I are as defined in Section 4.1.

5.3.2 Update Complexity

According to Section 5.2.2, the insertion of a boolean atomic profile with
proximities needs O(K + S2) time. So, the update complexity is:

O(A · (K + S2))

K is the variable defined in Section 4.1.

5.3.3 Filtering Complexity

According to Section 5.2.3, the time needed to match a single document at-
tribute is O(T +min(T, |Vd|) + K · S2 · R2), where T is the average size of the
text contained in an attribute and R is the average number of repetitions of a
word in a document. Therefore, in AwpMatch, the loop of lines 3 to 6 takes
O(A · (T +min(T, |Vd|) +K · S2 ·R2)) time. The loop of lines 7 to 10 consumes
O(N) time. So, the filtering complexity is:

O(A · (T +min(T, |Vd|) +K · S2 ·R2) +N) =

O(D +min(D,A · |Vd|) + A ·K ·R2 +N)

5.4 Experimental Evaluation

In this section, we evaluate the method previously presented and we compare
it with a Brute Force algorithm, as well as with algorithm SingleWordIndex
presented in [32].

5.4.1 Unit Sets Creation

All the profiles used to evaluate algorithms for AWP are generated from the
combination of four different unit sets created from the selection of words and
multi-word terms that appear in the NN corpus documents. In this section, we
describe these unit sets as well as the procedure followed for their creation. There
are two unit sets that contain proximity formulas. There is also the set NS of
nouns taken from document abstracts and the set of author surnames AS, the
creation of which is described in Section 4.2.2.

In order to create the unit sets that contain proximity formulas, the set of
multi-word terms MS (the creation of which is described in Section 4.2.2) is
used. For the explanation of the creation of each of these unit sets, let us assume
a multi-word term w1w2 . . . wn.
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The first unit set contains proximity formulas of the form w1 ≺[0,0] w2 ≺[0,0]

. . . ≺[0,0] wn. It will be referred as PF0. The number of words that take part
in such a formula is 2 to 5 (since multi-word terms contain 2 to 5 words). It
is obvious that the proximity formulas in this set represent search strings of the
form “w1 w2 . . . wn”, which is actually one of the possible ways to support string
search.

Example 5.7 The 3-word term Wavelet Image Coefficients creates the proximity
formula Wavelet ≺[0,0] Image ≺[0,0] Coefficients. This is equal to the search
string “Wavelet Image Coefficients”.

The second unit set contains proximity formulas of the form w1 ≺[0,k] wj,
where k is an integer with 1 ≤ k ≤ 10. This unit set will be referred as PFk. It
is created using 3,4 and 5-word terms. For each multi-word term used, the first
and last of its words (w1 and wj respectively) are used to create the proximity
formula w1 ≺[0,k] wj. k is a number randomly chosen uniformly at random among
all integers between 1 and 10.

Example 5.8 The proximity formula Conjugate ≺[0,4]Method can be created
using the multi-word term Conjugate Gradient Method and setting (randomly
selecting) k = 4.

Note that we do not consider the creation of proximity formulas of the form
w1 ≺[l,k], with 1 ≤ l ≤ k or w1 ≺[m,n] w2 ≺[o,p] . . . ≺[q,r] wn, with 1 ≤
m,n, o, p, q, r. This is not necessary for the type of the experiments we would
like to perform, as these experiments are not affected by different values of l.

Finally, as mentioned before, the set NS that contains nouns from document
abstracts as well as AS that contains author surnames are used. These are the
same sets described in Section 4.2.2.

In this section we described the different unit sets used for AWP atomic
profile generation as well as the process of their creation. More details can be
found in [23, 32].

5.4.2 AWP Profiles Generation

First of all, we generate some realistic profiles appropriate to evaluate algo-
rithms and data structures that support AWP . The method presented here is
the same as the one used in [32] for the evaluation of algorithms that implement
the same functionality under an information dissemination setting.

As mentioned earlier, a profile under AWP is a conjunction of atomic profiles.
All of the atomic profiles must be satisfied in order for the whole profile to match
a document. In general, an atomic profile is a conjunction of one or more words
or proximity formulas. An atomic profiles refers to an attribute and is of the
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form A w wp, where A is an attribute and wp is a conjunction of one or more
words and proximity formulas with only words as operands.

Our first challenge is the creation of realistic atomic profiles. To achieve this,
we keep in mind that each atomic profile is nothing more than a conjunction of
different units, such as the ones contained in the unit sets described in Section
4.2.2. So, we create atomic profiles by combining units from these unit sets. The
first step for the creation of an atomic profile is to decide how many units will
take part in it. Let the number of these units be S. S is an integer randomly
chosen from the interval [1, Smax]. Smax is different for each attribute. It is equal
to 2 for atomic profiles referring to the Author or Title attribute, while it is equal
to 3 for profiles referring to Abstract and body attributes. This is logical, as the
abstract and the body of a document are usually larger than the authors or title
part.

In order to decide which unit sets will offer units to take part in the creation
of an atomic profile, we use a selection probability for each of the unit sets.
These selection probabilities for each of the sets of Section 4.2.2 are shown in
Table 5.1. Using these probabilities, we decide whether a unit set will take part
in the creation of the atomic profile. We are able to change the frequency that
each unit set appears in a specific attribute of profiles by properly adjusting the
corresponding probability. We could make the units of a specific set appear in
all the atomic profiles of a specific attribute by setting the respective probability
equal to 1. Similarly, we could prevent these units from appearing in any of these
atomic profiles by setting the probability equal to 0. If a unit set is decided to take
part, then one of its units is randomly chosen to be inserted in the atomic profile,
using a uniform distribution. To select the units, a loop executes S iterations.
In each iteration i, a unit of the atomic profile is created. The possibility to be
selected by PF0, PFk, NS or AS is shown in Table 5.1.

Example 5.9 An atomic profile referring to the Body attribute may be:

BODY w Wavelet ≺[0,0] Image ≺[0,0] Coefficients ∧ Interpolation

We can discriminate two units in this atomic profile. The first is Wavelet ≺[0,0]

Image ≺[0,0] Coefficients and comes from PF0. The second is Interpolation
and comes from NS. Other examples of atomic profiles are:

ABSTRACT w Origin ∧ Unary ≺[0,3] Specifiers ∧ Linear ≺[0,4] Method

TITLE w Conjugate ≺[0,3] Method

BODY wMonte ≺[0,4] Simulation ∧Optimal ≺[0,0] Linear ≺[0,0] Threshold

The atomic profiles that refer to the Author attribute worth to be specially
considered. As we can see from table 5.1, all types of units except AS can
participate in the creation of an atomic profile that refers to the Title, Abstract
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algorithm HashTrieProximityMatchNaive

input: a profile trie hash table H, a proximity table PT , a document d
output: success list (list of matching profile identifiers)

1 candidate profiles← HashTrieMatch(d,H)
2 construct occurrence table with positions OT of d
3 success list← ∅
4 for each profile p in candidate profiles do
5 if EvaluateProximity(PT [p],OT ) = True then
6 add p into success list
7 end if

8 end for

9 return success list

end algorithm

Figure 5.6: A naive algorithm to support matching of documents with boolean
profiles with proximities

Attribute Participating unit sets Selection probability

Title PF0 0.4
PFk 0.4
NS 0.2

Abstract PF0 0.4
PFk 0.4
NS 0.2

Body PF0 0.4
PFk 0.4
NS 0.2

Author AS 1.0

Table 5.1: Participation of different unit sets in the creation of atomic formulas
for each attribute
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algorithm HashTrieProximityMatch

input: a document d, a profile Hash Table H, a profile proximity table PT
output: success list (list of matching profile identifiers)

1 create proximity occurrence table with position information OT (d) of d
2 create Distinct Word List DWL(d) of d
3 Q← ∅
4 for each word w in DWL(d) do
5 if there exists a trie T in H with root node x that contains w then

6 enqueue(Q,x)
7 end if

8 end for

9 while Q 6= ∅ do
10 x← dequeue(Q)
11 for each pair (u, ptr y) in children[x] do
12 if word u exists in OT (d) then
13 let y be the node of T pointed to by ptr y
14 enqueue(Q,y)
15 end if

16 end for

17 if profiles[x] 6= ∅ then
18 if remainder[x] = ∅

or all words of remainder[x] exist in OT (d) then
19 for each profile pi in profiles[x] do
20 if EvaluateProximity(PT [pi], OT (d)) = True then
21 add pi to success list
22 end if

23 end for

24 end if

25 end if

26 end while

27 return success list

end algorithm

Figure 5.7: The algorithm used to match a document with a trie hash table and
a proximity table
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Figure 5.8: The shape of a table able to store AWP profiles
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Figure 5.9: An example attribute table with an AWP profile inserted
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algorithm AwpMatch

input: a document d, an attribute table ATT , a total table
output: success list (list of matching profile identifiers)

1 success list← ∅
2 set all entries of count equal to 0
3 for each attribute i of d do
4 let t be the text of attribute i
5 HashTrieProximityMatch(t,H[ATT [i],PT [ATT [i]]])
6 end for

7 for each entry p in count do
8 if count[p] = total[p] then
9 add p into success list
10 end if

11 end for

12 return success list

end algorithm

Figure 5.10: The algorithm used for matching under AWP

or Body attribute. On the other hand, only AS can take part in the creation of
an atomic profile for the Author attribute. This is logical if we consider that in
the Author attribute only author surnames are expected to be entered. Recall
that for the author attribute Smax = 2, so an atomic profile for this attribute
consists of one or the conjunction of two author surnames. Additionally, for the
Author attribute the selection of only one author is favored against the selection
of two authors. Specifically, the probability of using one author is 0.8 and that
of selecting two authors is 0.2. The same does not hold for the other attributes,
where Smax is drawn from a uniform distribution. The use of proximity operators
is not expected to be exploited by a user of the system, as proximity operators
have no meaning in such a small and specialized attribute. Proximity operators
would be useful if the corpus provided the first names of the authors. Then, we
could create proximity formulas consisting of the name and the surname of an
author (for example, George ≺[0,0] Smith). But, the first names of the authors
are not provided. Also, the use of more than two authors is quite rare when
searching for a paper.

Example 5.10 Two possible atomic profiles for the Author attribute could be
AUTHOR w Riedel and AUTHOR w Rice ∧Barton.

Having defined a relatively realistic method to generate atomic profiles for
AWP , the next step is to select which of the attributes will be entered into a
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profile. To make this decision, we once more use the idea of selection probabilities.
Each attribute has a specific probability of inserting an atomic profile referring
to it in a given profile. For each attribute, this probability is equal to 0.2. This
means that each generated profile is composed by few atomic profiles. Measuring
the resulting profiles, we saw that there were about 1.5 atomic profiles per profile.

5.4.3 Simulation Results

In this section, we present the data that came out of the analysis of exper-
imental data for HashTrie as well as some other algorithms for AWP . These
data were the result of simulations were carried out with the settings of Section
4.2.4. The efficiency of HashTrie with proximities was measured and compared
to that of the SingleWordIndex method [32] and to that of a Brute Force method.
The profiles for these simulations were generated with the method described in
Section 5.4.2.

The memory space needed for HashTrie and Brute Force is shown in Figure
5.11. We can see that HashTrie needs more space than Brute Force. The memory
requirements for the two algorithms increase at about the same rate for different
profile database sizes.

The average match time for each of the algorithms is presented in Figure 5.12.
HashTrie and SingleWordIndex are shown to be much faster than Brute Force.
Also, the time needed by Brute Force is more sensitive to the profile database
size. Between HashTrie and SingleWordIndex, HashTrie is clearly faster.

In Figure 5.13, the processing capability of each algorithm (throughput) is
presented. The entry Algorithm-xM means “performance of Algorithm with a
database size of x millions of profiles”. We can clearly see once more that HashTrie
is the best of the three algorithms. What is most impressing is that even with
a database size of three times the database size of SingleWordIndex, HashTrie is
still faster. The same holds for SingleWordIndex and the Brute Force algorithm.

Motivated by the results of Section 4.2.5, we applied and tested the irank
heuristic with HashTrie and compared it with the original HashTrie method with
proximities. Moreover, we evaluated a method that combines Tree with proximi-
ties in a similar way with HashTrie and we included the results of the simulations
of this algorithm with the rest.

The results for the profile database size are shown in Figure 5.14. We can see
that both versions of HashTrie need about the same memory, which is a bit less
than the memory needed by Tree with irank. The heuristics did not have any
serious impact on the profile database size.

The results for matching time are shown in Figure 5.15. The results this time
correspond to what we expected. We see a significant speedup when using the
irank heuristic. Moreover, Tree with irank is faster than HashTrie with irank. The
speedup achieved with Tree is about twice the speedup achieved with HashTrie
when using irank. A possible reason for this can be found in Section 4.2.5.
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Figure 5.11: Effect of database size in allocated memory space for AWP
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Figure 5.15: Filtering time with the use of irank for AWP

Note that this time, Tree with irank does not seem to have as big memory space
overhead as in the boolean model. This is because the proximity formulas allocate
much space, decreasing the importance of such differences in memory space.

5.5 Conclusions

In this section, we extended the HashTrie method with proximities proposed
in Chapter 4 in order to support AWP profiles. The space and time complexity
of this method were calculated and experimental evaluation took place. HashTrie
with proximities was compared with SingleWordIndex (an algorithm proposed in
[32]) as well as a Brute Force algorithm. Our algorithms outperformed both Sin-
gleWordIndex and Brute Force. Motivated by the results of the evaluation that
took place for HashTrie under the boolean model, we applied ranking heuris-
tics and once more concluded that ranking is an excellent way of improving our
algorithms.



Chapter 6

Methods for AWPS Support

In this chapter, we present some methods able to support vector space atomic
profiles. Moreover, we propose a method that with the use the data structures
and algorithms of Chapter 5, is able to offer support for AWPS. Finally, we
experimentally evaluate the method and compare it with other algorithms.

For convenience, in this chapter we use the following notation to represent
strings of vector space atomic profiles:

〈(w1, g1), (w2, g2), . . . , (wn, gn)〉

The above expression assumes that the string contained in a vector space atomic
profile p contains n distinct words (w1 to wn). Also, the symbol gi in the above
expression represents the weight of the word wi in p. Similar notation is used
for documents matched with atomic profiles under the vector space model. For
example, a document d represented as:

d = 〈(wd1, gd1), (wd2, gd2), . . . , (wdm, gdm)〉

is a document with m distinct words (wd1 to wdm), where gdi is the weight of
wdi in d.

Also, the similarity of a document with a profile is given by Equation 3.1,
repeated here for convenience:

sim(sq, sd) =
sq · sd

‖sq‖ · ‖sd‖
=

∑N

i=1wqi
· wdi

√

∑N

i=1 w
2
qi
·∑N

i=1w
2
di

However, we assume that the weights of words in a vector space atomic profile
or in a document are normalized by the magnitude of the profile or document.
Therefore, the vector representation p of a vector space atomic profile is equal to
sq/‖sq‖. Similarly, the vector representation d of a document is equal to sd/‖sd‖.
Due to these normalizations, we can calculate the similarity of the document with

75
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the profile using the formula:

sim(p, d) = p · d =
N

∑

i=1

gi · gdi (6.1)

where gi and gdi are considered to be the (normalized) weights of word i in the
profile and in the document respectively.

6.1 The Query Indexing Method

In this section we present a method to handle vector space atomic profiles.
Its name is Query Indexing (QI) and it was originally proposed in [38].

QI uses an inverted index (word directory). For each word w appearing in a
set A of vector space atomic profiles, we construct an inverted list of postings.
There is exactly one posting for each of the words of A in that list. Each posting
contains the identifier of the corresponding profile and the weight of w in this
profile. The list is saved in the word directory along with w. This means that
the word directory contains entries that include a word w and the posting list of
w. So, a profile that contains k words appears in k postings, one for each word.
The word directory is implemented as a hash table indexing words. During the
document matching process, candidate profiles for matching are only those that
are included in the posting lists of the terms that appear in the document.

Except for the word directory, an array to store the profile thresholds is also
used. The size of this threshold array is equal to the number of profiles in the
system. Each slot i of this table contains a real number representing the threshold
of the respective profile.

Example 6.1 Let us assume the following vector space atomic profiles:

p1 ∼0.25 〈(Artificial, 0.20), (Intelligence, 0.14),
(Natural, 0.17), (Language, 0.40), (Recognition, 0.62)〉

p2 ∼0.20 〈(Artificial, 0.95), (Intelligence, 0.30)〉
p3 ∼0.20 〈(Natural, 0.14), (Language, 0.25), (Recognition, 0.21), (System, 0.18)〉

The thresholds of p1, p2 and p3 are θ1 = 0.25, θ2 = 0.20 and θ3 = 0.20 respectively.
The word directory as well as the threshold table employed for the QI method to
represent the profiles are shown in Figure 6.1.

To perform matching of a document (or text string) d, QI uses an extra profile
table, named score. Each slot i of this table is a real number and corresponds to
the same profile as slot i of the threshold table. QI also uses an occurrence table
OT (d) and a distinct word list DWL(d) of the document. Except for the words
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Figure 6.1: A QI word directory and a threshold table
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Figure 6.2: A sample OT and a score table used for document matching under
the QI and SQI method

of d, OT (d) also contains the weight of each word in d. For each distinct word
w with weight g in DWL(d), QI uses the word directory to find the postings of
the profiles that contain w. For each posting post representing profile p, QI adds
weight(post) · g to the slot representing p in the score table. By the end of this
process, we can determine which profiles match d by comparing each entry of the
score table with the respective entry of the threshold table. The algorithm that
performs matching is presented in Figure 6.3.

Example 6.2 Figure 6.2 shows the occurrence table of a document d and the
score table after matching with the profiles stored in the data structures of Figure
6.1. Only p1 and p2 match the document, as score[p3] < threshold[p3].

6.1.1 Space Complexity

The number of slots of the word directoryWD is O(|Vp|). Each profile appears
in O(S) postings, so the total number of postings is O(N · S). The size of the
threshold table TT is O(N). So, the space complexity of QI is:

O(L · |Vp|+N · S +N) = O(L · |Vp|+N · S)

6.1.2 Update Complexity

For each word of an inserted profile, there is an insertion in a posting list of
WD that takes O(1) time. Thus, each profile needs O(S) time to be inserted.

6.1.3 Filtering Complexity

For the algorithm of Figure 6.3, the above hold: The creation of OT (d) and
DWL(d) take O(D) time. The loop of lines 5 to 12 examines O(N · S) postings,
so it needs O(N · S) time. The loop of lines 13 to 18 needs O(N) time. So, the
filtering of a document using the QI method takes O(D+N ·S+N) = O(D+N ·S)
time.
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algorithm QiMatch

input: a document d, a QI word directory WD, a threshold table TT
output: success list (list of matching profile identifiers)

1 create the occurrence table with weights OT (d) of d
2 create the distinct word list DWL(d) of d
3 success list← ∅
4 set all slots of score table equal to 0
5 for each word w with weight g in DWL(d) do
6 if there exists an entry e indexed by w in WD then

7 for each posting post in e do
8 let p be the profile represented by post
9 add weight(post) · g to score[p]
10 end for

11 end if

12 end for

13 for each profile p in TT do

14 let thres be the threshold stored in TT for p
15 if score[p] ≥ thres then
16 add p to success list
17 end if

18 end for

19 return success list

end algorithm

Figure 6.3: The algorithm used for matching under the QI method
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6.2 The Selective Query Indexing Method

The Selective Query Indexing (SQI) method used to store and match vector
space atomic profiles is presented in this section. This method is an evolution of
the QI method presented in Section 6.1. In QI method, a profile is indexed by
all its terms. In contrary, SQI indexes only the “significant” words of a profile.
Typically, these are the less frequent words in documents. Document matching
may become less expensive this way. Like QI, this method was presented in [38].

To motivate SQI, recall that for every document or vector space atomic profile
with a vector representation d or p respectively, 0 ≤ ‖d‖ ≤ 1 and 0 ≤ ‖p‖ ≤ 1.
Consequently, for the similarity of d with a profile p, according to the Cauchy-
Schwarz Inequality [29],it holds:

sim(p, d) = p · d ≤ |p · d| ≤ ‖p‖ · ‖d‖ ≤ ‖p‖
This means that the magnitude of a vector space atomic profile is an upper

bound of its similarity with any document. This also holds for any subvector of
the profile: The similarity of this subvector with any document is less than or
equal to the magnitude of the subvector. If this magnitude is less than the atomic
profile’s threshold θ, then the words contained in the subvector are “unable” to
match any document if the document does not contain at least one of the other
words of the profile. The words of this subvector are then called insignificant
words of the atomic profile at a threshold θ. The words of the profile that are
not contained in any such subvector are called significant words of the profile at
a threshold θ.

For example, consider the word “Natural” in profile p3 of Example 6.1. Sup-
pose that a document that does not contain words “Language”, “Recognition”
or “System” arrives. The maximum score p3 could have against this document
is 0.14 (if “Natural”’s weight in the document is 1, the highest possible), which
is less than the threshold specified for p3. So, at a threshold of 0.25, the word
“Natural” is insignificant, because it alone cannot “produce enough similarity”
for any document to be relevant. Thus, we can leave “Natural” unindexed. No
document that does not contain any of the other words of p3 will match it anyway.
But, the information about “Natural” and its weight in p3 must not be discarded,
as a document that contains at least one of the other words of p3 may match it
with the help of “Natural”.

Similarly, consider the subvector 〈(Intelligence, 0.14), (Natural, 0.17)〉 in p1.
Suppose a document arrives that contains none of the other words of p1. In that
case, an upper bound to the similarity between this document and p1 is the the
magnitude of this subvector, that is

√
0.142 + 0.172 = 0.22 (in the case “Intelli-

gence” and “Natural” have the maximum possible weight, 1, in the document).
With a threshold of 0.25, this subvector is insignificant. So, as we did above,
we can leave “Intelligence” and “Natural” unindexed. Again, we must keep the
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information about these words and their weights in p1, in case a document with
any of the other words in p1 appears.

A profile like p1 may have more than one insignificant subvectors. For exam-
ple, p1 has among others: 〈(Intelligence, 0.14), (Natural, 0.17)〉 and 〈(Artificial,
0.20), (Intelligence, 0.14)〉. So, we have many choices in which subvector to
choose. Keeping in mind that what we want to do is decrease the number of
postings in order to save lookup work during matching, it is rational to choose
the words with the lowest idfs in the profile as insignificant terms (they are the
words most likely to “offer less similarity” than any of the other words of the
profile). Thus, to find the best possible insignificant subvector, we first sort the
words by idf . Then, we include in the subvector as many low idf words as possi-
ble, without having the magnitude of the subvector (calculated using the weights
of the words) exceed the threshold.

Example 6.3 Consider the atomic profile p1 of Example 6.1. In this and all
subsequent example, we assume that for any word i in a vector space profile or
document, tfi = 1, so i’s weight is equal to its idf . If we sort the words of p1

according to their idfs, then we have:

p1 ∼0.25 〈(Intelligence, 0.14), (Natural, 0.17), (Artificial, 0.20),
(Language, 0.40), (Recognition, 0.62)〉

One can easily calculate that the subvector 〈(Intelligence, 0.14), (Natural, 0.17)〉
is the subvector with the largest possible number of insignificant words (and that
contains no significant words).

SQI uses an inverted index (word directory) WD and a threshold table TT
just as QI does. But there are some differences: The “insignificant” words of
an atomic profile are stored in an array, along with their weights in the profile.
There should be a table where the array with the insignificant words of each
atomic profile could be stored. This table is unified with TT . So, except for a
profile’s threshold, each slot of TT also stores the array with the insignificant
words of the profile along with their weights in that atomic profile.

Example 6.4 Under the SQI method, the atomic profiles of Example 6.1 are
stored in the data structures of Figure 6.4. Notice that atomic profile p2 has no
insignificant words and therefore, the array in the respective position of TT is
empty.

SQI performs matching in a similar way as QI. There is a score table, an
occurrence table OT (d) and a distinct word list DWL(d) for the document d.
As QI, for each distinct word w with weight g in DWL(d), SQI uses the word
directory to find the postings of the profiles that contain w. For each posting post
representing a profile p, QI adds weight(post)·g to score[p] (the slot representing p
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Figure 6.4: A SQI word directory and a threshold and insignificant words table
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in the score table). Moreover, if score[p] was equal to 0 before before the addition
of the product, for each word wi contained in the insignificant array of TT [p],
SQI adds the product of the weight of wi in p with the one in d to score[p]. This
way, insignificant terms are also taken into account during matching. Note that
insignificant terms are considered the first time a word of p is probed in WD and
only then. The algorithm used for matching is presented in Figure 6.5.

6.2.1 Space Complexity

For the complexity calculations of the SQI method, let us assume that each
profile has k significant and l insignificant words. The number of slots of the
word directory WD is O(|Vp|). Each profile appears in O(k) postings, so the
total number of postings is O(N · k). Each profile has O(l) insignificant words.
The number of slots of the threshold table TT is O(N), so the size of TT would
normally be O(N · L · l). But, inspired of the idea of word pool of Section 4.1.1,
we also use a word pool in the SQI method. The idf of each word is saved in the
word pool along with the word itself. So, the size of TT is O(N · l) and the space
complexity of the SQI method is:

O((L+ 1) · |Vp|+N · k +N · l) =
O(L · |Vp|+N · S)

6.2.2 Update Complexity

For each of the significant words of an inserted profile, there is an insertion
in a posting list of WD that takes O(1) time. For each of the insignificant words
of the profile, there is an insertion in an array that also needs O(1) time. Thus,
each profile needs O(k + l) = O(S) time to be inserted.

6.2.3 Filtering Complexity

For the algorithm of Figure 6.5, the above hold: The creation of OT (d) and
DWL(d) take O(D) time. The loop of lines 10 to 14 needs O(l) time. The total
number of iterations of the loop of lines 7 to 17 (given that it is included in the
loop of lines 5 to 19) is O(N · k). The loop of lines 20 to 25 needs O(N) time.
So, the filtering complexity of a document under the SQI method is:

O(D +N · k · l +N) = O(D +N · k · l) < O(D +N · S2)

6.3 Joining HashTrie with Proximity and SQI

In this section we introduce a method consisting of data structures and al-
gorithms appropriate to support both boolean atomic profiles with proximities
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algorithm SqiMatch

input: a document d, a QI word directory WD, a threshold table TT
output: success list (list of matching profile identifiers)

1 create the occurrence table with weights OT (d) of d
2 create the distinct word list DWL(d) of d
3 success list← ∅
4 set all slots of score table equal to 0
5 for each word w with weight g in DWL(d) do
6 if there exists an entry e indexed by w in WD then

7 for each posting post in e do
8 let p be the profile represented by post
9 if score[p] = 0 then
10 for each word wi contained in insignificant[TT [p]] do
11 let gi be the weight of wi in d
12 let weight(wi) be the weight of wi in p
13 add weight(wi) · gi to score[p]
14 end for

15 end if

16 add weight(post) · g to score[p]
17 end for

18 end if

19 end for

20 for each profile p in TT do

21 let thres be the threshold stored in TT for p
22 if score[p] ≥ thres then
23 add p to success list
24 end if

25 end for

26 return success list

end algorithm

Figure 6.5: The algorithm used for matching under the SQI method.
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and vector space atomic profiles. The method is based on the combination of the
HashTrie method with proximities presented in Section 5.2 and the SQI method
presented in Section 6.2. The type of the supported atomic profiles is either
boolean with proximities or vector space.

This Joint method indexes words in a hash table JH. This hash table plays
the role of hash table H in the HashTrie method, while at the same time serves
as a word directory (same as WD) for the SQI method. This means that each
slot of JH serves as a placeholder for a trie, a posting list or both a trie and a
posting list. The shape of such a hash table is shown in Figure 6.6. As we can
see, a slot may contain a trie, a posting list or both.

Apart from JH, the Joint method also uses a proximity table PT that stores
the proximity data for each boolean atomic profile with proximities. The proxim-
ity table is the same as the one used in Section 5.2. A threshold table TT , same
as the one of Section 6.2, is also used to store the thresholds and insignificant
words of vector space profiles.

Insertion of boolean atomic profiles with proximities is done in exactly the
same way as in Section 5.2. The data structures present to serve vector space
atomic profiles are ignored. Only PT and the tries stored in JH are consid-
ered. Similarly, during the insertion of a vector space profile, the data structures
that serve boolean atomic profiles with proximities are ignored and only TT and
the postings of JH are examined and the procedure presented in Section 6.2
is followed. So, insertion of a boolean profile with proximity is done by using
HashTrieInsert and by creating the proximity formula arrays, while inser-
tion of a vector space profile is done by using SQIInsert. The algorithm that
implements the insertion is presented in Figure 6.7.

Matching of a document (or part of a document) d is performed with the
use of an occurrence table OT (d) that is a combination of the ones used in the
HashTrie method with proximity and in the SQI method. More specifically, the
occurrence table is implemented as a hash table indexing document words. Each
slot of OT (d) indexing a word w contains the weight of w in d and a list showing
the positions in d where w is met. An example of such a data structure is shown in
Figure 6.8. Note that a word w1 that appears in more positions in d than another
word w2 does not necessarily have a grater weight than w2, as w2 may has a much
greater idf . During the matching process, a distinct word list DWL(d) of the
words of d is also used.

The matching procedure is quite simple. The document could be processed
first by using the HashTrieProximityMatch in order to find matching profiles
among the set of boolean profiles with proximity in the system. Then with
the help of SqiMatch algorithm, we could also find the matching vector space
profiles. But this method would require that OT (d) and DWL(d) would be
constructed twice and that DWL(d) would be also traversed twice. This is the
reason that we create a new algorithm called JointMatch to perform matching
of a document. This algorithm traverses DWL(d), performing matching with
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Figure 6.6: The shape of a hash table for boolean or vector space atomic profiles

algorithm JointInsert

input: a profile p, a joint hash table JT , a threshold table TT , a proximity table PT
output: -

1 if p is a boolean profile with proximities then
2 HashTrieInsert(p,JT )
3 identify and save all proximity formulas of p into PT
4 else

5 insert the significant words of p into the proper posting lists of JT
6 insert the insignificant words of p into the proper position of TT
7 insert the threshold of p into the proper position of TT
8 end if

end algorithm

Figure 6.7: The algorithm used for profile insertion under the Joint method



CHAPTER 6. METHODS FOR AWPS SUPPORT 87

vector space atomic profiles. At the same time, the queue Q (used in the same
way as in HashTrie) is filled. After DWL’s traversal, the matching vector space
profiles are entered into the success list, by performing the same score evaluation
as in SQI. Finally, the matching boolean atomic profiles with proximities are
added to the success list, just as in the HashTrie method with proximities. This
algorithm is given in Figure 6.9 and Figure 6.10.

6.3.1 Space Complexity

For the Joint method complexity calculations, let us suppose that a number
B of the atomic profiles are boolean atomic profiles with proximities. Then a
number (N −B) of the profiles are vector space profiles. The use of a word pool
is also employed in the Joint method as in all other methods. As in SQI, the idf
of each word is saved in the word pool. The size of word pool is O((L+1) · |Vp|) =
O(L · |Vp|). According to Section 4.1.1, the space employed for the tries used for
boolean profile support, is O(S · |IP |+2 ·K+B). According to Section 5.1.1, the
space needed for the storage of proximities is O(B ·S). According to Section 6.2.1,
the size employed for the SQI postings and threshold table is O((N −B) ·S). So,
the total space needed for the data structures of the Joint methods, is:

O(L · |Vp|+ S · |IP |+ 2 ·K +B +B · S + (N −B) · S) =

O(L · |Vp|+ S · |IP |+ 2 ·K +N · S)

6.3.2 Update Complexity

As shown in Section 5.2.2, the insertion of a boolean atomic profile with
proximities takes O(K+S2) time, where K is the variable defined in Section 4.1.
Similarly, based on Section 6.2.2, we have that the insertion of a vector space
atomic profile needs O(S) time.

6.3.3 Filtering Complexity

As we did in the complexity calculations of the SQI method, we assume that
each vector space atomic profile has k significant and l insignificant words. Also,
let R be the average number of repetitions of a word in a document. For the
JointMatch algorithm of Figure 6.9 and Figure 6.10, the above hold: The
creation of OT (d) and DWL(d) require O(D) time. The loop of lines 11 to 15
needs O(l) time. The total number of iterations of the loop of lines 8 to 18 (given
that it is included in the loop of lines 6 to 23) is O(N ·k). The number of executed
iterations of loop in lines 6 to 23 is O(min(D, |Vd|)). The loop of lines 24 to 29
requires O(N) time. The loop of lines 30 to 47 do a breadth - first search of each
trie in H and examine O(K) nodes (where K is defined as in Section 4.1). Line
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39 takes O(S) time. According to section 5.1.3, the loop of lines 40 to 44 takes
O(S2 ·R2) time. Thus, the time consumed for matching of a document is:

O(D +N · k · l +min(D, |Vd|) +N +K · S2 ·R2) <

O(D +min(D, |Vd|) +N · S2 +K ·R2 · S2)

6.4 An Attribute Based Method for AWPS
In this section, we extend the data structures and algorithms presented in

Section 6.3, in order to support attribute based profiles and documents under the
calAWPS model.

Support for attribute based profiles means that a profile may consist of one
or more atomic profiles. Each atomic profile refers to an attribute and can be
a boolean atomic profile with proximities or a vector space atomic profile. The
document model supported by this method consists of attributes containing free
text. The various parts of the document (body, abstract, title, author, etc) may
be defined as attributes.

Example 6.5 An example of a profile p supported by the method of this section
is:

AUTHOR w Manolis ≺[0,0] Koubarakis

TITLE ∼0.25 〈(Artificial, 0.20), (Intelligence, 0.14),
(Natural, 0.17), (Language, 0.40), (Recognition, 0.62)〉

ABSTRACT ∼0.20 〈(Natural, 0.14), (Language, 0.25), (Recognition, 0.21), (System, 0.18)〉
BODY w Artificial ∧ Intelligence ∧Markov ≺[0,2] Chain ≺[4,8] Monte ≺[0,3] Carlo

This profile consists of the atomic profiles:

p1 wManolis ≺[0,0] Koubarakis

that refers to attribute AUTHOR,

p2 ∼0.25 〈(Artificial, 0.20), (Intelligence, 0.14),
(Natural, 0.17), (Language, 0.40), (Recognition, 0.62)〉

that refers to attribute TITLE,

p3 ∼0.20 〈(Natural, 0.14), (Language, 0.25), (Recognition, 0.21), (System, 0.18)〉

that refers to attribute ABSTRACT and

p4 w Artificial ∧ Intelligence ∧Markov ≺[0,2] Chain ≺[4,8] Monte ≺[0,3] Carlo
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that refers to attribute BODY . The semantics of p are that the constraints
concerning all of the profile’s attributes must be satisfied by a document d in
order for the document to match the profile (so, d must contain text in all four
attributes). In other words, p1, p2, p3 and p4 must be satisfied by the the text of
the corresponding attributes of d in order for d to match p.

All the other methods we have so far discussed, consider a document con-
taining free text only. In Section 6.3, we presented a method that supports a
language with boolean expressions, proximities and vector space queries. In or-
der to support attributes, we employ the algorithms and data structures used in
that method.

The data structures of the Joint method are a joint hash table JH, a proximity
table PT and a threshold table TT . Let us consider a data structure ATS that
contains each of JH, PT and TT . Each ATS is able to store an atomic profile
that refers to an attribute of a profile. The main data structure used is a table
ATTS of ATS. Its size is equal to the total number of attributes of profiles
currently inserted in the system. ATTS can grow to support more attributes.
Each slot of ATTS contains all the necessary data structures to support atomic
profiles referring to the corresponding attribute. A view of how an ATTS table
looks like is shown in Figure 6.11. There is also a table total, with size equal to
the number N of the profiles currently inserted in the system. For each profile,
there is exactly one record in total. Each record of total contains the number of
atomic profiles that consist the respective profile.

Example 6.6 Assuming that no other profile exists in the system, ATT with
only the profile of Example 6.5 stored looks like the table of Figure 6.12 and
Figure 6.13. Figure 6.12 also presents the total table.

Insertion is performed in the same way as in the Joint method. For each
attribute i of the inserted attribute profile p, algorithm JointInsert (presented
in Figure 6.7) is applied to the data structures of the proper slot of ATTS, using
the atomic profile pi that represents the respective attribute. So, assuming that
p has A attributes, in order to insert p in the system, algorithm JointInsert is
executed A times.

In the attribute enabled matching process, we use a slightly different version
of JointMatch (presented in Figure 6.9 and Figure 6.10), called AwpsMatch:
Its only difference from JointMatch is that this algorithm does not operate
on any success list.Instead, there is a table named count, the contents of which
are modified. Document matching is done in a similar way as profile insertion.
Firstly, we identify which attributes exist in the incoming document d. Then, for
each attribute i of d, we probe the data structures in the respective slots of ATTS
using AwpsMatch. When AttributeJointMatch is called, its input document
is the text contained in the respective attribute i of d, not the whole document.
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count is a table containing integers. Its size is equal to the number of profiles N .
There is exactly one slot for each profile. Before JointMatch is called, count’s
contents are all set to zero. Whenever a profile p’s attribute i is found to match
the respective attribute of d, p’s entry in count is increased by one. At the end
of the matching process, the contents of count are compared with the respective
contents of total. The matching profiles are the ones the entry of which in count
is equal to the respective entry in total (the ones that have all their attributes
matched). This is a very fast method to find the matching profiles and helps us
avoid set intersection (among the success lists that each run of AwpsMatch

would produce). This method was inspired by the Count algorithm proposed in
[37]. The algorithm used for matching is presented in Figure 6.14.

6.4.1 Space Complexity

For the complexity calculations of the method for AWPS, let us assume that
each profile contains A attributes. Let us also assume that in an average profile,
there are B boolean atomic profiles with proximity. In this method, the idea of
word pool of size O(L · |Vp|) is also employed. According to section 6.3.1, the
space complexity of each slot of ATTS is O(S · |IP |+2 ·K +N ·S), so the space
employed for ATTS is O(N · S · |IP |+ 2 ·N ·K +N 2 · S). Also, the space used
by total is O(N). Thus, the space needed by the attribute enabled method is:

O(L · |Vp|+N · S · |IP |+ 2 ·N ·K +N 2 · S +N) =

O(L · |Vp|+N · S · |IP |+ 2 ·N ·K +N 2 · S)
where K and |IP | are as defined in Section 4.1.

6.4.2 Update Complexity

According to Section 6.3.2, the insertion of a boolean atomic profile with
proximities needs O(K + S2) time. According to the same section, the insertion
of a vector space atomic profile takes O(S) time. So, the update complexity is:

O(B · (K + S2) + (A−B) · S) =

O(B · (K + S2))

K is the variable defined in Section 4.1.

6.4.3 Filtering Complexity

According to Section 6.3.3, the time needed to match a single document at-
tribute is O(T +min(T, |Vd|) +N · S2 +K ·R2 · S2), where T is the average size
of the text contained in an attribute and R is the average number of repetitions
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of a word in a document. Therefore, in AttributeMatch, the loop of lines 3 to 6
take O(A · (T +min(T, |Vd|) +N · S2 +K ·R2 · S2)) time. The loop of lines 7 to
10 consumes O(N) time. So, the filtering complexity is:

O(A · (T +min(T, |Vd|) +N · S2 +K ·R2 · S2) +N) =

O(D +min(D,A · |Vd|) + A ·N · S2 + A ·K ·R2 · S2)

6.5 Experimental Evaluation

In this section, we evaluate the Joint method and we compare it with a Brute
Force algorithm.

6.5.1 AWPS Profiles Generation

A profile under AWPS is a conjunction of atomic profiles. These atomic
profiles may be either boolean profiles with proximities or vector space profiles.
We can create boolean atomic profiles with proximities by applying the method
of Section 5.4.2. A vector space atomic profile is created using the following
procedure:

Recall that a vector space atomic profile consists of one or more words (some
text) and a real number in the interval [0, 1], the similarity threshold. So, we
have two challenges: To generate text sensible to be used for searching under
the vector space model and to generate logical thresholds. By using the term
“sensible text”, we mean text that a user would enter in order to set a profile.

In order to create the profile text, we use the units available in three unit
sets MS, NS and AS, presented in Section 4.2.2. The following explains the
process followed to generate a vector space atomic profile for an attribute, given
the attribute.

First of all, we have to select the number of words S contained in the atomic
profile. S is an integer randomly drawn from the interval [Smin, Smax]. Smin and
Smax are different for each attribute. Their values in each attribute are shown
in Table 6.1. S follows the normal distribution for the Title, Abstract and Body
attributes. The values of its standard deviation and mean value for each attribute
are also shown in Table 6.1. The distribution of the number of words in profiles
for the title, abstract and body attribute are shown in Figures 6.15, 6.16 and 6.17
respectively.

The generation of vector space atomic profiles for the author attribute follows
exactly the same procedure as the generation of boolean profiles with proximities
for this attribute (see Section 5.4.2). Again, we choose one or two authors from
the author set AS. The possibility of choosing one author is 80%, while the
possibility of choosing two authors is 20%. The only difference is that the resulting
profile is a vector space profile and a boolean one.
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Figure 6.8: An example of an OT used in Joint method

Attribute Smin Smax Mean Standard Deviation

Title 1 3 2 1
Abstract 8 16 12 4
Body 20 40 30 10
Author 1 2 - -

Table 6.1: Distribution parameters for number of words for each attribute
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algorithm JointMatch

input: a document d, a joint hash table JT , a threshold table TT , a proximity table PT
output: success list (list of matching profile identifiers)

1 create the occurrence table with weights and position information OT (d) of d
2 create the distinct word list DWL(d) of d
3 success list← ∅
4 Q← ∅
5 set all slots of score table equal to 0
6 for each word w with weight g in DWL(d) do
7 if there exists an entry e indexed by w in WD then

8 for each posting post in e do
9 let p be the profile represented by post
10 if score[p] = 0 then
11 for each word wi contained in insignificant[TT [p]] do
12 let gi be the weight of wi in d
13 let weight(wi) be the weight of wi in p
14 add weight(wi) · gi to score[p]
15 end for

16 end if

17 add weight(post) · g to score[p]
18 end for

19 end if

20 if there exists a trie T in H with root node x that contains w then

21 enqueue(Q,x)
22 end if

23 end for

Figure 6.9: The algorithm used for matching under the Joint method
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24 for each profile p in TT do

25 let thres be the threshold stored in TT for p
26 if score[p] ≥ thres then
27 add p to success list
28 end if

29 end for

30 while Q 6= ∅ do
31 x← dequeue(Q)
32 for each pair (u, ptr y) in children[x] do
33 if word u exists in OT (d) then
34 let y be the node of T pointed to by ptr y
35 enqueue(Q,y)
36 end if

37 end for

38 if profiles[x] 6= ∅ then
39 if remainder[x] = ∅

or all words of remain[x] exist in OT (d) then
40 for each profile pi in profiles[x] do
41 if EvaluateProximity(PT [pi], OT (d)) = True then
42 add pi to success list
43 end if

44 end for

45 end if

46 end if

47 end while

48 return success list

end algorithm

Figure 6.10: The algorithm used for matching under the Joint method (continued)
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Figure 6.11: The shape of a table able to store AWPS profiles
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Figure 6.12: An example attribute table with an AWPS profile inserted
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Figure 6.13: An example attribute table with an AWPS profile inserted (con-
tinued)
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algorithm AwpsMatch

input: a document d, an attribute table ATTS, a total table
output: success list (list of matching profile identifiers)

1 success list← ∅
2 set all entries of count equal to 0
3 for each attribute i of d do
4 let t be the text of attribute i
5 JointMatch(t,JT [ATTS[i]],TT [ATTS[i]],PT [ATTS[i]])
6 end for

7 for each entry p in count do
8 if count[p] = total[p] then
9 add p into success list
10 end if

11 end for

12 return success list

end algorithm

Figure 6.14: The algorithm used for matching under AWPS
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Figure 6.15: The distribution of the number of words in profiles of title attribute
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Figure 6.16: The distribution of the number of words in profiles of abstract
attribute

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 20  25  30  35  40  45

%
 p

er
ce

nt
ag

e 
of

 b
od

y 
at

om
ic

 p
ro

fil
es

number of words

Figure 6.17: The distribution of the number of words in profiles of body attribute
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In order to generate atomic profiles for the title attribute, we use units from
the abstracts’ nouns NS and multi-word terms MS set. The probability of
choosing a multi-word term is 80%, while an abstract noun is chosen in the rest
20% of the cases.

The process followed to generate profiles for the abstract attribute is similar
to the previous one. A multi-word term is used from MS in 80% of the cases,
while a noun from NS is used in the rest 20%. But this happens only in 40%
of the generated profiles. In the rest 60%, a sentence or a part of a sentence is
chosen from the abstracts of the documents to be the body of the profile. This
is because we consider that in many cases the user would like to search using a
sentence or a phrase met in a document as a criterion.

The same to the above happens when generating profiles for the body at-
tribute. In 60% of the cases, a text part from a document abstract is chosen,
while in the rest, the profile is filled with multi-word terms of MS (selected in
80% of the cases) and abstract nouns from NS (selected in 20% of the cases).
We use text from document abstracts and not bodies to generate profiles for the
body attribute, as we get more discriminative and logical profiles.

The similarity threshold that a user would enter should be neither too high
(or no documents would match, even the ones the user would be interested in),
nor too low (because too many unwanted documents would be returned to the
user). Using the conclusions of [38], we assume that an average value of 0.2 is
logical for a similarity threshold. We also understand that this average value
will not be entered by all users. Most of them will enter thresholds near to 0.2
though. Considering these, we generate the thresholds of the profiles using a
normal distribution. So, the thresholds of the profiles are randomly generated,
following a normal distribution with a mean value equal to 0.2 and a standard
deviation equal to 0.2. Of course, the thresholds are restricted to the interval
[0, 1]. The distribution of the thresholds is shown in Figure 6.18.

What is left is to define the attributes for which a profile will contain a non-
empty atomic profile and the type of that atomic profile. The first problem is
solved as it did in Section 5.4.2. We require that each attribute will appear in
20% of the documents. After a profile is decided to contain an atomic profile for
an attribute, we have to select the atomic profile’s type. For half of the generated
atomic profiles, we choose them to be boolean profiles with proximities. The rest
of the atomic profiles are chosen to be vector space profiles. When the atomic
profile is decided to be boolean with proximities, the procedure of Section 5.4.2
is followed for its generation. When it is chosen to be a vector space profile, the
process described above is applied to generate the atomic profile.

6.5.2 Simulation Results

In this section, we present the data that came out of the analysis of exper-
imental data for the Joint method for AWPS. These data were the result of
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simulations ran with the settings of Section 4.2.4. The efficiency of Joint was
measured and compared to that of a Brute Force algorithm. The profiles for
these simulations were generated with the method described in Section 6.5.1.

The memory space needed for Joint and Brute Force is shown in Figure 6.19.
We can see that Joint needs more space than Brute Force. The memory require-
ments for the two algorithms increase at about the same rate for different profile
database sizes.

The average match time for each of the algorithms is presented in Figure
6.20. Filtering time for Joint is much less than filtering time of the Brute Force
algorithm. Also, the time needed by Brute Force increases more rapidly with
profile database size.

In Figure 6.21, the processing capability of each algorithm (throughput) is
presented. The entry Algorithm-xM means “performance of Algorithm with a
database size of x millions of profiles”. We can clearly see once more that Joint
is the better than Brute Force. What is most impressing is that even with a
database size twice the database size of Brute Force, Joint is still faster.

Motivated by the results of Section 5.4.3, we applied tested the irank heuristic
with HashTrie and compared it with the original HashTrie method with proxim-
ities. Moreover, we evaluated a method that combines Tree with proximities in a
similar way with HashTrie. The results were disappointing, as the vector space
atomic profiles dominate in matching time requirements, so the speedup of the
system is too small to be seen.

6.6 Conclusions

In this chapter we further extended the HashTrie method by adding vector
space profiles support. The resulting method is called Joint method. Its space
and time complexities are also calculated, while (one more) experimental evalu-
ation shows us that the algorithm used in the method is much faster than the
respective Brute Force algorithm. One think that draws our attention here, is
that filtering of vector space atomic profiles needs much more time than filtering
of boolean atomic profiles with proximities. This does not allow us to have signif-
icant improvement of matching speed (the speedup is practically zero compared
to the time needed for vector space matching).

The algorithms and data structures of the Joint method presented in this
chapter are going to be integrated in P2P-DIET [30], a distributed information
dissemination system that also offers a variety of other services.
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Figure 6.18: Threshold distribution of vector space atomic profiles
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Chapter 7

Conclusions and Future Work

This dissertation considered the problem of textual information dissemination
in peer-to-peer systems. Initially, we studied work that has been done in the field
and presented the advantages and disadvantages of each solution. Then, we dealt
with the problem of document filtering in such a system. We considered some
well-defined data models and languages for information dissemination. We stud-
ied and implemented methods appropriate to support these languages. Finally,
we applied a method to generate realistic user profiles and using these profiles,
we evaluated the various algorithms.

There is much left to be done. The algorithms and data structures imple-
mented in this dissertation need to be incorporated in system a real information
dissemination system, such as DIAS [21]. An interesting extension would be the
support of XML based documents supporting XPath [33] or XQuery [34]. Rela-
tive work in this field is presented in [2, 8]. Finally, P2P systems architecture is an
area with many problems remaining to be solved. Relative work in peer-to-peer
systems by our research group is presented in [31].
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