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Chapter 1 
 
 
 
INTRODUCTION 
 
 
 
   Recent technological developments have pushed controls engineers 
to deal with very complex systems that are having uncertain and 
possibly unknown nonlinearities, operating in highly uncertain 
environments. Man has two principal objectives in the scientific study 
of his environment: he wants to understand and to control. The two 
goals reinforce each other, since deeper understanding permits firmer 
control, and, on the other hand, systematic application of scientific 
theories inevitably generates new problems which require further 
investigation, and so on. 
 
   In this project, an adaptive control algorithm based on Recurrent 
High Order Neural Networks (RHONNs) is used to control and 
tracking Intracellular networks of the cell. 
The close loop signals are uniformly ultimately bounded and the 
output of the system is proven to follow a desired trajectory of the 
linear reference system. Simulation results are presented to show the 
effectiveness of the approach proposed in order to control the two 
molecular species. 
  
   The cell is made up of molecules, like a car is made up from plastic 
and metal. But a soup of molecules is no more a cell than a heap of 
plastic and metal is a car. To understand the functioning and function 
of a cell we need to know the relations and interactions of the 
components that constitute it. If the central dogma of systems biology 
is that it is dynamics that determines biological function, we would 
argue that the dynamical manifestation of feedback determines the 
development and maintenance of biological process. 
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Chapter 2 
 
 
A GENERAL OVERVIEW IN MOLECULAR BIOLOGY 
 
 
   Because molecular biology has a vital role in this work and it is 
necessary to understand some fundamentals functions and structures 
of the cell. 
 
   The best approach for Genomic information is to consider this as 
digital because it is represented in the form of sequences of which 
each element can be one out of a finite number of entities. 
To be more specific, DNA, RNA and proteins have been 
mathematically represented by character strings, in which each 
character is a letter of an alphabet. In the case of DNA, the alphabet 
is of size four (4) and consists one of the letters A, T, C and G. In 
addition to the case of the RNA the alphabet has four elements 
(letters) A, U, C and G. Finally in the case of proteins, the size of the 
corresponding alphabet is 20. 
The next section presents a more detailed description of the nature of 
biomolecular sequences. 
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                   The nature of biomolecular sequences  
 
DNA 
 
A single strand of DNA is a biomolecule consisting of many linked, 
smaller components called nucleotides. Each nucleotide is one of four 
possible types designated by the letters A, T, C, and G and has two 
distinct ends, the 5' end and the 3' end, so that the 5' end of a 
nucleotide is linked to the 3' end of another nucleotide by a strong 
chemical bond, thus forming a long, 
one-dimensional chain (backbone) of a specific directionality. 
Therefore, each DNA single strand is mathematically represented by a 
character string which, by convention specifies the 5' to 3' direction 
when read from left to right. Single DNA strands tend to form double 
helices with other single DNA strands. Thus, a DNA double strand 
contains two single strands called complementary to each other 
because each nucleotide of one strand is linked to a nucleotide of the 
other strand by a chemical bond, so that A is linked to T and vice 
versa, and C is linked to G and vice versa. 
 
 
   Each such bond is weak compared to the bonds forming the 
backbone, but together all these bonds create a stable, double helical 
structure. The two strands run in opposite directions in which we see 
the sugar-phosphate chemical structure of the DNA backbone created 
by strong (covalent) bonds, and that each nucleotide is characterized 
by a base that is attached to it. 
The two strands are linked by a set of weak (hydrogen) bonds. In 
order to have a more stable 3d structure, DNA tend to take helix form. 
 
   Because each of the strands of a DNA double strand uniquely 
determines the other strand, a double-stranded DNA molecule is 
represented by either of the two character strings read in its 5' to 3' 
direction. Thus, in the example above, the character strings 
CATTGCCAGT and ACTGGCAATG can be alternatively used to 
describe the same DNA double strand, but they specify 
two different single strands which are complementary to each other. 
DNA strands that are complementary to themselves are called self-
complementary, or palindromes. For example AATCTAGATT is a 
palindrome.  
 
   DNA molecules store the digital information that constitutes the 
genetic blueprint of living organisms. This digital information has been 
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created and reliably stored throughout billions of years of evolution 
during which some vital regions of DNA sequences have been 
remarkably preserved, despite striking differences in the body plans of 
various animals.  
 

 
 
    Figure 2.1 DNA and its building blocks 
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                                RNA 
 
 
   RNA is very similar in structure to DNA. It contains the base urasil 
instead of the base thymine. RNA is single-stranded (this is one 
major difference with DNA). 
There are several types of RNA. M-RNA is copied from genes. Then 
intron sequences are removed by RNA splicing. The 5’ end of m-RNA 
is capped and a poly-A tail is added to the 3’ tail. 
 
 
 
T-RNA recognizes and binds the codon and the amino acid in protein 
translation. Four segments of t-RNA are double-helical. One of these 
regions forms the anticodon that pairs with the complementary codon 
in an m-RNA molecule. The other is the site where the amino acid is 
attached to the t-RNA. 
 
 
                                       Proteins 
 
    A protein is also a biomolecule consisting of many linked smaller 
components called amino acids. There are twenty possible types of 
amino acids in proteins, the single strands are connected with strong 
bonds, one after the other, forming a long one-dimensional chain 
(backbone) of a specific directionality. Therefore, as in DNA, a 
character string mathematically represents each protein. The length of 
a character string representing a protein molecule is relatively small, 
typically in the hundreds, while the length of a character string 
representing a DNA molecule in the living cell is typically in the 
millions, or even hundreds of millions. 
 
   Protein molecules tend to fold into complex three-dimensional (3D) 
structures forming weak bonds between their own atoms, and they are 
responsible for carrying out nearly all of the essential functions in the 
living cell by properly binding to other molecules with a number of 
chemical bonds connecting neighboring atoms. Thus, protein 
functions are largely determined by their 3D structures because these 
geometrical shapes often determine whether a protein can bind to 
another molecule by a process reminiscent of a hand fitting into a 
glove. 
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   Although we do not yet know how to reliably predict protein 3-D 
structures from their one-dimensional amino acid sequences, we do 
know that nearly all proteins in the living cell are uniquely determined 
by these sequences. Therefore, the amino acid character strings 
determine the functions of proteins. In fact, protein functions are 
ultimately determined by the DNA character string because it is the 
digital information in the DNA nucleotide sequences that determine 
the amino acid sequences; each protein character string is generated 
based on information in genes, which are regions in the DNA 
character strings. 
 
Protein synthesis is governed by the genetic code which maps each of 
the 64 possible triplets (codons) of DNA characters into one of the 20  
possible amino acids. 
 
 
   The things are not simple because the DNA character string 
composed of regions which code in a protein and other ones serving 
yet unknown functions! From the above discussion it is clear that the 
total number of nucleotides in the protein coding area of a gene will 
be a multiple of three and the area will be bounded by a START 
codon and it will finished with a STOP codon, and that there will be no 
other STOP codon in this frame in between. However, given a long 
nucleotide sequence, it is very difficult to accurately designate where 
the genes are. 
 
   For making this function more understandable and for completeness 
of our work I am giving the figure of the genetic code: 
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                                   Figure 2.2 The Genetic Code  
 
 
 
 
 
 
                     An Introduction to Systems Biology 
 
   Because of the sequencing of DNA for a number of genomes, the 
scientists have the vital opportunity to study the organization and 
control of genetic pathways. This new phase in the biological 
revolution, the postgenomic era, is associated with the fields 
‘genomics’, transcriptomics, proteomics’ and “metabolomics”(called 
‘the omics’ for short).  
 
 
   These fields take us from the DNA sequence of a gene to the 
structure of the product for which it codes (usually a protein) to the 
activity of that protein and its function within a cell, the tissue, and 
ultimatively the organism. 
     The two vital questions that scientists investigate are “What are 
the functional roles of genes? and “How do genes and/or proteins 
interact? 
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Answering these questions has become possible with new high-
throughput technologies to take measurements at the molecular level. 
The identification of interrelationships between groups of genes (with 
respect to their functional role) and to analyze dynamic interactions 
among genes (gene networks). The most proteins interact with 
several other proteins and most of these interactions are the 
consequence of dynamic and controlled processes. 
 
                                   
 
 
                                Genomic Cybernetics 
 
    Weaver defined “disorganized complexity” as a problem in which 
the number of variables is very large and any variable is best 
described as a random process. At this moment we are at the 
“molecular level” and the most successful method for representing 
phenomena at this level derives from statistical considerations. 
    On the other hand, at the “cellular level” matters are complicated by 
the fact that organization becomes a fundamental feature of the 
considered process. 
      Systems Biology provides a vital interface between cell biology 
and biotechnological applications. The complexity in the context of 
biological systems can be defined as  

• A property of an encoding 
• An attribute of the natural system under consideration 
• Our ability to interact with the system and to observe it  

 
                
       
                         
 
                      Gene Expression and Regulation  
 
      Each cell of a multicellular organism holds the genome with the 
entire genetic material which is represented by a large double-
stranded DNA molecule with the famous double-helix structure. The 
cell is the essential unit of living matter and it takes up chemical 
substances from its environment and transformed them. 
      The “central dogma” of biology describes how information, stored 
in DNA, is transformed into proteins via an intermediate product, 
called RNA. The transcription is the process by which coding regions 
of DNA synthesize RNA molecules. 
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    After this, the “translation” is the process of synthesizing proteins 
using the genetic information in RNA as a template. The most of the 
proteins are enzymes that carry out the reactions responsible for the 
cell’s metabolism- the reactions that allow the cell to process 
nutrients, to built new cellular material, to grow and to divide.  
    Research conducted in the 1960s showed that most basic cellular 
processes are dynamic and feedback regulated. There are two types 
of genes based on their functionality. The two categories are: 

• Structural genes which are responsible for coding of proteins 
and 

• Regulatory genes which control the rate at which structural 
genes are transcribed.  

 
 
 
 
This control of the rate of protein synthesis was the first indication 
that these processes are most appropriately viewed as dynamical 
systems. 
      Although bacteria cells are capable of producing several 
thousand different proteins, not all are produced at the same time 
or in the same quantity. The energy consumption for protein 
synthesis and the relatively short half-life of the RNA molecules are 
reasons for the cell to control both the types and amounts of each 
protein. 
 
                The central dogma of molecular biology 

 
   The “central dogma” of biology describes how information, stored in 
DNA, is transformed into proteins via an intermediate product, called 
RNA. The transcription is the process by which coding regions of DNA 
synthesize RNA molecules. 
    After this, the “translation” is the process of synthesizing proteins 
using the genetic information in RNA as a template. The most of the 
proteins are enzymes that carry out the reactions responsible for the 
cell’s metabolism- the reactions that allow the cell to process 
nutrients, to built new cellular material, to grow and to divide.  
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The next figure is very helpful for understanding this complicated process: 
 

 
                    Figure 2.3 The central dogma of Molecular Biology  
At this point I would try to explain each stage in a more detailed form: 

The major types of proteins, which must work together during the 
replication of DNA, are illustrated, showing their positions. 

When DNA replicates, many different proteins work together to 
accomplish the following steps:  
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1. The two parent strands are unwound with the help of DNA 
helices. 

2. Single stranded DNA binding proteins attach to the unwound 
strands, preventing them from winding back together. 

3. The strands are held in position, binding easily to DNA 
polymerase, which catalyzes the elongation of the leading and 
lagging strands. (DNA polymerase also checks the accuracy of 
its own work!). 

4. While the DNA polymerase on the leading strand can operate in 
a continuous fashion, RNA primer is needed repeatedly on the 
lagging strand to facilitate synthesis of Okazaki fragments. DNA 
primase, which is one of several polypeptides bound together in 
a group called primosomes, helps to build the primer. 

5. Finally, each new Okazaki fragment is attached to the 
completed portion of the lagging strand in a reaction catalyzed 
by DNA ligase.  

 

 
Figure 2.4 The process of collaboration of Proteins at the Replication Fork 
 
Little information about the RNA synthesis:  
 
    The process by which non-coding sequences of base pairs (introns) 
are subtracted from the coding sequences (exons) of a gene in order 
to transcribe DNA into messenger RNA (mRNA.) 
    
 
 



 21

   In chromosomes, DNA acts as a template for the synthesis of RNA 
in a process called transcription. In most mammalian cells, only 1% of 
the DNA sequence is copied into a functional RNA (mRNA). Only one 
part of the DNA is transcribed to produce nuclear RNA, and only a 
minor portion of the nuclear RNA survives the RNA processing steps. 
 
       One of the most important stages in RNA processing is RNA 
splicing.  In many genes, the DNA sequence coding for proteins, or 
"exons", may be interrupted by stretches of non-coding DNA, called 
"introns". In the cell nucleus, the DNA that includes all the exons and 
introns of the gene is first transcribed into a complementary RNA copy 
called "nuclear RNA," or nRNA. In a second step, introns are removed 
from nRNA by a process called RNA splicing. The edited sequence is 
called "messenger RNA," or mRNA. 
 
      The mRNA leaves the nucleus and travels to the cytoplasm, 
where it encounters cellular bodies called ribosomes. The mRNA, 
which carries the gene's instructions, dictates the production of 
proteins by the ribosomes. 
 

 
 
Figure 2.5 The RNA synthesis and processing in a summary form 
Information about the protein synthesis: 
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Process where DNA encodes for the production of amino acids 
and proteins. 
 
This process can be divided into two parts:  
 
1. Transcription  
 
Before the synthesis of a protein begins, the corresponding RNA 
molecule is produced by RNA transcription. One strand of the DNA 
double helix is used as a template by the RNA polymerase to 
synthesize a messenger RNA (mRNA). This mRNA migrates from the 
nucleus to the cytoplasm. During this step, mRNA goes through 
different types of maturation including one called splicing when the 
non-coding sequences are eliminated. The coding mRNA sequence 
can be described as a unit of three nucleotides called a codon. 
 
2. Translation  
 
The ribosome binds to the mRNA at the start codon (AUG) that is 
recognized only by the initiator tRNA. The ribosome proceeds to the 
elongation phase of protein synthesis. During this stage, complexes, 
composed of an amino acid linked to tRNA, sequentially bind to the 
appropriate codon in mRNA by forming complementary base pairs 
with the tRNA anticodon. The ribosome moves from codon to codon 
along the mRNA. Amino acids are added one by one, translated into 
polypeptidic sequences dictated by DNA and represented by mRNA. 
At the end, a release factor binds to the stop codon, terminating 
translation and releasing the complete polypeptide from the ribosome. 
One specific amino acid can correspond to more than one codon. The 
genetic code is said to be degenerate.  
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Figure 2.6 The two vital stages of Protein synthesis (Transcription and Translation) 
 
 
 
 
 
Intra- and Intercellular Dynamics: Cellular Weather Forecasting 
 
    To determine how sells act and interact within the context of the 
organism to generate coherent and functional wholes, we must 
understand how information is transferred between and within cells. 
Cell signaling or “signal transduction” is the study of the mechanism 
that enable the transfer of biological information. Many diseases, such 
as cancer, involve malfunction of signal transduction pathways. 
     Bacteria regulate cell metabolism in response to a wide variety of 
environmental fluctuations, including the heat-shock example above. 
There must be mechanisms by which the cells receive signals from 
the environment and transmit them to the specific target to be 
regulated. 
Receptors are proteins that span the membrane, with a site for 
binding the signaling compound on the outer surface of the receptor 
results in an activation of an intracellular protein. 
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In addition to, signal transduction pathways commonly consist of 
many more cascaded modules between receptor and genome. There 
can be numerous intermediate steps before the signal transduction 
process ends, often with a change in the gene expression program of 
the cell. 
 

 
   Figure 2.7 Cell signaling (signal transduction).  
 
 
 
Intracellular dynamics (gene expression) can be affected by extra-
cellular signals. Receptors spanning the cell membrane receive 
signals and transmit the information to activate intracellular proteins. 
In this figure, the response regulator binds to the operator region of a 
gene and prevents the RNA polymerase from transcription of the 
adjacent gene. A phosphatase ensures that the process is continuous. 
 
As it is shown in Figure 2.7, gene expression can be affected by 
environmental conditions. The cells have the appropriate mechanisms 
which regulate a specific target. Receptors, which are proteins, span the 
cell membrane. 
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Then another protein, the response regulator, is activated by 
phosphorylation. 
Generally a pathway consists of many more intermediate steps until the 
signal transduction come to an end. 
 
 
 

    Epidermal Growth Factor Receptor (EGFR) 
 
    EGFR belongs to RTK family and has important role in the cell. EGF 
is a polypeptide consisting of fifty three amino acids. When EGFR is 
activated, then cell functions such as cell migration and cell division 
may happen. EGFR is unbreakably connected to the creation of 
cancer tumors, that’s why many cancer medicines are straight 
directed to EGF signaling pathway. Furthermore, excessive activation 
of EGFR on the cancer cell surface is now known to be associated 
with advanced disease, the development of a metastatic phenotype 
and a poor prognosis in cancer patients. 
 
   EGFR activates the MAPK cascade pathway after it committed 
various proteins. This activation needs the commitment of the adapter 
molecules Grb2, Shc, Sos, Gap to the EGF receptor and especially by 
means of Shc-independent pathway and Shc-dependent pathway. 
MAPK takes the signal through the cytoplasm to the nucleus where it 
triggers specific functions, which drive cells into duplication. 
 
 
 
   Moreover there are and some other kind of receptors that are called 
internalized receptors and their operation is not clear. When the 
receptor internalized, then EGFR can commit the same compounds as 
the surface receptors do. 
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Chapter 3 
 
 
 

HIGH ORDER 
RECURRENT NEURAL 

NETWORKS 
 
 
 
A general overview in artificial neural networks 
 
      Man has two principal objectives in the scientific study of his 
environment:  
He wants to understand and to control. The two goals reinforce each  
other, since deeper understanding permits firmer control, and, on the 
other hand, systematic application of scientific theories inevitably 
generates new problems which require further investigation, and so 
on. 
    It might be assumed that a fine-grained descriptive theory of 
terrestrial phenomena would be required before an adequate theory of 
control be constructed.  
In actuality this is not the case, and indeed, circumstances 
themselves force us into situations where we must exert regulatory 
and corrective influences without complete knowledge of basic causes 
and effects. In connection with the design of experiments, space 
travel, economics and the study of cancer, scientists encountered 
processes which are not fully understood. Yet design and control 
decisions are required. 
      It is easy to see that in treatment of complex processes, attempts 
at complete understanding at a basic level may consume so much 
time and so large a quantity of resources as to impede us in more 
immediate goals of control. 
      Artificial Neural Networks have been studied for many years with 
the hope of achieving human like performance in solving certain 
problems in speech and image processing. There has been a recent 
resurgence in the field of neural networks owing to the introduction of 
new network topologies and training algorithms. The potential benefits 
of neural networks such as parallel distributed processing, high 
computation rates, fault tolerance and adaptive capability, have lured 
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researchers of other fields such us controls, robotics etc. to seek 
solutions to their complicated problems. 
The type of neural network most commonly used in control systems is 
the feedforward multilayer neural network, where no information is fed 
back during operation. There is, however, feedback information 
available during training. Typically, supervised learning methods, 
where the neural network is trained to learn input-output patterns 
presented to it, are used. Most often, versions of back-propagation 
(BP) algorithm are used to adjust neural network weights during 
training. This is generally a slow and very time 
consuming process, because the algorithm usually takes a long time 
to converge. However, other optimization methods such us conjugate 
directions and quasi-Newton have also been implemented [7]. Most 
often, the individual neuron-activation functions are sigmoid, but also 
signum or radial basis Gaussian functions are used. 
 
    Theoretical studies by several research groups [8], [9], [10], [11], 
demonstrate that multilayer neural networks with just one hidden layer 
can approximate any continuous function uniformly over a compact 
domain, by simply adjusting the synaptic weights, such that a 
functional of the error between the neural network output and the 
output of the unknown map, is minimized.  
   The procedure of training a neural network to represent the forward 
dynamics of a plant is called forward modeling. The neural network 
model is placed in parallel with the plant and the error between the 
prediction error- is used as the network training signal. The plant can 
be single-input single-output or multi-input multi-output, continuous or 
discrete, linear or non linear. 
 
For the neural network training discrete samples of the plant are often 
used. 
Assume that the plant is described by the nonlinear difference 
equation: 
 

( 1) ( ( ),..., ( 1); ( ),..., ( 1)p p py k f y k y k n u k u k m+ = − + − +  
 
The system output py  at time 1k + depends on the past n outputs 
values and the past m  values of the input u . An obvious approach for 
system modeling is to choose the input-output structure of the neural 
network to be the same as that of the system. 
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Denoting the output of the network as that of the system. Denoting the 
output of the network as my , we have:  
 

( 1) ( ( ),..., ( 1); ( ),..., ( 1)).m p p
apry k f y k y k n u k u k m+ = − + − +  

 
Here, aprf  represents the nonlinear input output map of the network, 
that is, the approximation of f. It is clear that the input to the network 
includes the past values of the real system output, hence, the system 
has no feedback. 
Assuming that after a certain training period the network gives a good  
representation of the plant that is m py y≈  the training stops and the 
network output together with its delay values can be fed beck and 
used as part of the network input. In this way, the network can be 
used independently of the plant. Such a network model is described 
by  
 

( 1) ( ( ),..., ( 1); ( ),..., ( 1)).m m m
apry k f y k y k n u k u k m+ = − + − +  

 

 
           Figure 3.1 Plant Identification with a multi-layer Neural Network  
 
 
   
 Suppose now that the information about the plant is in the form of 
an input-output table, which makes the problem for identification look 
like a typical pattern recognition problem: then, for the training of the 
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plant model the current and previous inputs to the plant, as well as 
the previous outputs of the plant should be used again. Other 
possibilities for the training include the plant states and derivatives of 
the plant states. 
For this reason, if a feedforward multilayer neural network is used and 
the training is done with BP algorithm, a discrete or discretized 
continuous plant has to be considered since discrete outputs of the 
plant model is needed. 
 
   This can be illustrated in the Figure 3.1 the arrow that passes 
through the neural model is indicative of the fact that the output error 
is used to train the neural network. The number of delays of previous 
inputs and outputs is unknown: since we have no information about 
the structure of the plant this number has to be determined 
experimentally. As far as the training signal is concerned, it has been 
suggested, [12],[13] that a random signal uniformly 
distributed over certain ranges should be used. 
      Instead of training a neural network to identify the forward 
dynamics of the plant, a neural network can be trained to identify the 
inverse dynamics of the plant. The neural network's input is the plant's 
output, and the desired neural network output is the plant's output. 
The error difference between the actual input of the plant and the 
output of the neural network is to be minimized and can be used to 
train the neural network. The desired output of the neural network is 
the current input to the plant. When modeling the inverse dynamics of 
the plant with a neural network, the assumption 
is being made, either implicitly or explicitly, that the neural network 
can approximate the inverse of the plant well. This, of course, means 
that the inverse exists and it is unique; if not unique then care should 
be taken with the ranges of the inputs to the network. It also means 
that the inverse is stable. 
 
     We want a neural network architecture be able to approximate the 
behavior of a dynamical system in some sense, it is clear that it 
should contain some form of dynamics, or said with other words, 
feedback connections. 
In the neural network literature, such networks are known as 
recurrent. 
 
They were originally designed for pattern recognition applications. A 
static neural network can also be made a dynamic one, by simply 
connecting the past neural outputs as inputs to the neural network, 
thus making the neural network a very complicated and highly 
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nonlinear dynamical system. A more efficient way is to introduce 
dynamics with the aid of feedforward multilayer neural networks was 
proposed in [13]. They connect stable linear dynamical systems with 
static multilayer networks. The connections need not be only 
serial: parallel, and feedback connections and combinations of the 
three types are also permitted. Similar to the static multilayer 
networks, the synaptic weights are adjusted according to a gradient 
descent rule. 
 
 
     The main problem with the dynamic neural networks that are based 
on static multilayer networks is that the synaptic weights appear 
nonlinearly in the mathematical representation that governs their 
evolution. This leads to a number of significant drawbacks. First, the 
learning laws that are used, require a high amount of computational 
time. Second, since the synaptic weights are adjusted to minimize a 
functional of the approximation error and the weights appear 
nonlinearly, the functional possesses many local minimum so there is 
no way to ensure the convergence of the weights to 
the global minimum. Moreover, due to the highly nonlinear nature of 
the neural network architecture, basic properties like stability, 
convergence and robustness, are very difficult to verify. On the other 
hand the recurrent neural networks possessing a linear-in-the weights 
property, make the issues of proving stability and convergence 
feasible and their incorporation into a control loop promising. 
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                                The RHONN Model 
 
Recurrent neutral network (RNN) models are characterized by the two 
way connectivity between units (in our example neurons). This 
distinguishes them from feed forward neutral networks, where the 
output of one unit is connected only to units of the next layer.  
 
In the simplest case, the state history of each neuron is governed by a 
differential equation of the form: 

                            
.

,i i i i ij j
j

x a x b yω= − + ∑  

 
Where ix  is the state of the th neuron, ,  are constantsi ii a b− , ijω is the 
synaptic weight connecting the j th−  input to the i th−  neuron and jy  
is the j th−  input to the above neuron. Each jy  is either an external 
input or the state of the neuron passed through a sigmoid function 
(i.e., ( )j jy s x= ), where (.)s  is the sigmoid nonlinearity.  
 
    The dynamic behavior and the stability properties of neural network 

models of the form 
.

,i i i i ij j
j

x a x b yω= − + ∑  have been studied extensively 

by various researchers. These studies exhibited encouraging results 
in application areas such as associative memories, but they also 
revealed the limitations inherent in such a simple model. 
 
   In a recurrent second order neutral network, the input to the neuron 
is not only a linear combination of the components jy , but also of their 
product j ky y . 
 
Consider a Recurrent High Order Neural Network (RHONN) consisting 
of n neurons and m inputs. The state of each neuron is followed by a 
differential equation of the form: 
 

                     
. ( )

1
[ ],j

k

L
d k

i i i i ik j
k j I

x a x b yω
= ∈

= − + ∑ ∏  

 
where 1 2{ , ,..., }LI I I is a collection of L not-ordered subsets of 

i{1, 2,..., },  ,  bim n a+  are real coefficients, ikω are the (adjustable) synaptic 
weights of the neural network and ( )jd k  are non-negative integers. 
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The state of the i th−  neuron is again represented by ix  and 

1 2[ , ,..., ]T
m ny y y y +=  is the input vector to each neuron defined by: 

 
1 2 1

1 2 1 2

[   ...   ... ]

  [ ( ) s(x ) ... ( )   ... ]

T
n n n m

T
n m

y y y y y y

s x s x u u u
+ += =

=
 

 

 
 
where 1 2[ , ,..., ]T

mu u u u=  is the external input vector to the network. 
The function (.)s  is monotone-increasing, differentiable and is 
represented by sigmoids of the form: 
 

                      ( ) ,
1 x

as x
e β γ−= −

+
 

 
where the parameters ,a β  represent the bound and slope of sigmoid’s 
curvature and γ  is a bias constant. 
 
In the case where 1,  =0a β γ= =  we take the logistic function. 
 
If   2,  =1a β γ= = , we take the hyperbolic tangent function. 
These two sigmoid activation functions are commonly used in neural 
network applications. 
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The L-dimensional vector z is: 
 

                  
1 2

1 2
(1) (2) ( )

[   ... ]

 [   ... ]j j j

L

T
L

d d d L
j j j

j I j I j I

z z z z

y y y
∈ ∈ ∈

= =

= ∏ ∏ ∏  

 
 

 
                                
 
After this the RHONN model  
 

                                          
. ( )

1
[ ],j

k

L
d k

i i i i ik j
k j I

x a x b yω
= ∈

= − + ∑ ∏  

becomes  

                                
.

1

[ ]
L

i i i i ik k
k

x a x b zω
=

= − + ∑                       

 
Let us consider the adjustable parameter vector as  
 
                          1 i2[   ... ] ,T

i i i iLbω ω ω ω=  
 
after this the above equation will take the form: 
  

                         
.

T
i i i ix a x zω= − +  (1) 
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The vectors {  :  1, 2,..., }i i nω =  represent the adjustable weights of the 
network, while the coefficients {  : 1, 2,..., }ia i n=  are part of the 
underlying network architecture and are fixed during training. 
 
The dynamic behavior of the overall network is described by 
expressing the equation (1) as a vector notation: 

.
Tx A x W z= ⋅ +  

 

where 1 2 1 2

1 2

[ , ,..., ] ,  [ , ,..., ]
and { , ,..., } is a  matrix.

T n T L n
n n

n

x x x x R W R
A diag a a a n n

ω ω ω ×= ∈ = ∈

= − − − ×
 

 
Since 0,   1, 2,...,ia i n> ∀ =   A is a stability matrix. 
The vector z is a function of both the neural network state x and the 
external input u. 
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                              Approximation Properties 
 
 
Consider now the problem of approximating a general nonlinear 
dynamical system whose input-output behavior is given by 
 

                        
.

( , )x F uχ=  (2) 
 
where nRχ ∈  is the system state, mu R∈  is the system input and  

  : n m nF R R+ →  is a smooth vector field defined on a compact set 
n mY R +⊂  

 
The approximation problem consists of determining whether by 
allowing enough higher-order connections, there exist weights W, 
such that 

the RHONN model 
.

Tx A x W z= ⋅ +  
approximates the input-output behavior of an arbitrary dynamical 
system of the form 

                       
.

( , )x F x u= . 
 
In order to have a well-posed problem, we assume that F is 
continuous 
and satisfies a local Lipschitz condition such that  (2) has a unique 
solution 
Based on the above assumptions we obtain the following result. 
 
Theorem 2.1.1 
Suppose that the system (2) and the model (1) are initially at the 
same state  

(0) (0);x χ=  then for any 0ε >  and any finite T>0, there exists an integer 
L and a matrix * L nW R ×∈  such that the state ( )x t  of the RHONN model 

.
T

i i i ix a x zω= − +  with L high-order connections and weight values 
*W W=  satisfies 

 

0
sup | ( ) ( ) | .

t T
x t tχ ε

≤ ≤
− ≤  
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Proof: 
 
From (1), the dynamic behavior of the RHONN model is described by 
 

                           
.

( , )Tx A x W z x u= ⋅ +              
 
Adding and subtracting Aχ , the equation (2) rewritten as 

.
( , ),

 ( , ) ( , ) .
x Ax G u
where G u F u A

χ
χ χ χ

= +
= −

 

 
Since (0) (0)x χ= , the state error e x χ= −  satisfies the differential 
equation 

               
.

( , ) ( , ),   (0) 0.Te Ae W z x u G u eχ= + − =  (3) 
 

By assumption, 
( ( ), ( ))  for all [0, ],  where  is a compact
subset of .n m

t u t Y t T Y
R

χ
+

∈ ∈
 

 
Let              {( , ) :| ( , ) ( , ) | ,  ( , ) }n m

e y y y yY u R u u u Yχ χ χ ε χ+= ∈ − ≤ ∈  
 
It can be seen easily that eY  is also a compact subset of n mR + and 

eY Y⊂ In simple words eY  is larger than Y , where  ε  is the required 
degree of approximation. Since z is a continuous function, it satisfies 
a 
Lipschitz condition in eY  
 
                      1 2 1 2| ( , ) ( , ) | | |z x u z x u l x x− ≤ −  
 
The function ( , )TW z x u satisfies the conditions of the Stone-Weierstrass 
Theorem and can approximate any continuous function over a 
compact domain, therefore. 
 

From the equations  
. ( )

1
[ ],j

k

L
d k

i i i i ik j
k j I

x a x b yω
= ∈

= − + ∑ ∏ and 

1 2 1

1 2 1 2

[   ...   ... ]

  [ ( ) s(x ) ... ( )   ... ]

T
n n n m

T
n m

y y y y y y

s x s x u u u
+ += =

=
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It is clear that ( , )z x u is in the standard polynomial expansion with the 
exception that each component of the vector x is preprocessed by a 
sigmoid function s(.).  
The preprocessing of input via a continuous invertible function does 
not affect the ability of a network to approximate continuous functions: 
therefore, it can be shown that if L is sufficient large, then there exist 
weight values *W W= such that * ( , )TW z x u can approximate G(x, u) to 
any degree of accuracy, for all (x, u) in a compact domain. 
 
 
There exists *W W=  such that  
 
                      *

( , )
sup | ( , ) ( , ) |

e

T

u Y
W z x u G u

χ
χ δ

∈
− ≤  (4) 

 
where δ  is a constant to be designed in the sequel. 
 
The solution of (3) is 
 

   

( ) *

0

( ) * *

0

( ) *

0

( ) [ ( ( ), ( )) ( ( ), ( ))]

     [ ( ( ), ( )) ( ( ), ( ))]

      [ ( ( ), ( )) ( ( ), ( ))] .

t
A t T

t
A t T T

t
A t T

e t e W z x u G x u d

e W z x u W z u d

e W z u G u d

τ

τ

τ

τ τ τ τ τ

τ τ χ τ τ τ

χ τ τ χ τ τ τ

−

−

−

= ⋅ −

= ⋅ − +

= + ⋅ −

∫

∫

∫

 (5) 

 
Since A is a diagonal stability matrix, there exists a positive constant 
a  such that  
|| ||At ate e−≤  for all 0t ≥ . Furthermore, let *|| || .L l W= ⋅  
If we combine this with the definitions of the constants , ,a L ε   we 
choose δ  in equation (4) as  

                         0
2

L
aa eεδ

−
= >  

a) Consider the case where ( ( ), ( ))  for all [0, ].ex t u t Y t T∈ ∈  If we go to the 
equation (5) and taking norms on both sides and use the definition of 
δ , the following inequalities hold for all [0, ]t T∈ : 
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( ) * *

0

( ) *

0

( ) ( )

0 0

( )

0

| ( ) | || || | ( ( ), ( )) ( ( ), ( )) |

      || || | ( ( ), ( )) ( ( ), ( )) | ,

      | ( ) | ,

      | ( ) | .
2

t
A t T T

t
A t T

t t
a t a t

tL
a ta

e t e W z x u W z u d

e W z u G u d

e L e d e d

e L e e d

τ

τ

τ τ

τ

τ τ χ τ τ τ

χ τ τ χ τ τ τ

τ τ δ τ

ε τ τ

−

−

− − − −

− − −

≤ ⋅ ⋅ − +

+ ⋅ ⋅ −

≤ +

≤ +

∫

∫

∫ ∫

∫

 

 
Using the Bellman-Gronwall Lemma [34], we take 
 

( )

0

| ( ) | ,
2

        .
2

tL
L a tae t e e e dτε τ

ε

− − −≤ + ⋅

≤

∫
(6) 

b) Now consider the case where  ( ( ), ( ))  for all [0, ].ex t u t Y t T∉ ∈      
By the continuity of x(t) ,there exist a *T , where 

* * *0 ,  such that ( ( ), ( )) eT T x T u T Y< < ∈∂  , eY∂  denotes the boundary of eY  
If we make the same analysis for *[0, ]t T∈  we find that in this interval  

| ( ) ( ) |
2

x t t εχ− ≤  that it is clearly a contradiction. 

 
After this the inequality (6) holds for all [0, ]t T∈ . 
 
The aforementioned theorem proves that if sufficiently large number 
of connections is allowed in the RHONN model then it is possible to 
approximate any dynamical system to any degree of accuracy. This is 
strictly an existence result: it does not provide any constructive 
method for obtaining the optimal weights *W . In what follows we 
consider the learning problem of adjusting the weights adaptively, 
such that the RHONN model identifies 
general dynamic systems. 
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Chapter 4 
 
 
Tracking Problems 
 
 
The definition of the word tracking is the action of forcing the state of 
the actual system to follow the output of a given stable-dynamical 
system. In order to achieve this purpose the recurrent high-order-
neural-network-based adaptive control algorithm is extended to cover 
this category of tracking problems. 
 
 
                        Complete Matching Case 
 
In our case we investigate the adaptive model reference control 
problem when the modeling error term is zero and we have the 
complete model matching. 
    
Under this hypothesis, the unknown system can be written as  
 

        
. ** '( ) ( )1x Ax S x S x uWW= − + +  

 
In addition to, we want the unknown system states to follow the states 
of a stable linear model like as 
 

           mmmmm uBxAx +−=
.

 
 
From the two previous equations we take the error equation 
 

          mmmm uBxAuxSWxSWAxe −+++−= )()( '*
1

*
.

 
 
Where we have defined 
 

          mxxe −=
∆

 
 
In the nest step we add and subtract the term mAx , the previous 
equation becomes 
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          =−+−+++−= mmmmmm AxAxuBxAuxSWxSWAxe )()( '*
1

*
.

 
             

             mmm uBxAuxSWxSWAe −+++−=
~

'*
1

* )()(   
 
 
Where  

             AAA m −=
~

 
 
We take a function h(e) from nR  to +R  of class 2C , whose the 
derivative with respect to time is the following equation  
 

         ])()([ '*
1

*
.

mmmm

T

uBxAuxSWxSWAe
e
hh −+++−⋅
∂
∂

=  

 
 
If we use the *W  and *

1W  the above linear equation can be written as 
 

uxSW
e
hxSW

e
huB

e
hxA

e
hAe

e
hh

TT

mm

T

m

TT

)()( '*
1

*
~.

∂
∂

+
∂
∂

=
∂
∂

+
∂
∂

−
∂
∂

+  

 
 
 
Define 
 

mm

T

m

T

uB
e
hxA

e
hAx

x
hhuxSW

x
hxWS

x
hv

∂
∂

−
∂
∂

+
∂
∂

−−
∂
∂

+
∂
∂

=
∆ ~.

'
1 )()(  

 
 
Where W and 1W  are estimates of  *W  and *

1W  respectively. 
 

The v signal cannot be measured since 
.
h  is unknown. 

 
To deal with this problem, we use the error filtering method, according 
to which 
      

      vk =+ ξξ
.

 , 
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][])()([

)()(

~
'

1

.

~.
'

1

mmm

TT

mm

T

m

TTTT

uBxA
e
huxSWxWSAe

e
hh

uB
e
hxA

e
hAe

e
hhuxSW

e
hxWS

e
h

−
∂
∂

+++−
∂
∂

+−=

∂
∂

−
∂
∂

+
∂
∂

−−
∂
∂

+
∂
∂

=

 (1) 

                 
       With k a strictly positive constant. To implement the previous 
equation, we take  
           

         h−=
∆

ζξ  (2) 
 
If we combine the relations (1) and (2) we take the following result 
 

        

. ~
'

1

2

~ ~ ~ ~
2

1 1

~
*

~
*

1 1 1

( ) ( )
1( ) | |
2

1 1 1{ } { }
2 2 2

T T T T T
m m m

T T

h e Ae e WS x e W S x u e A x e B u

h e e

L tr W W tr W W

W W W

W W W

ζ κζ κ

ξ

+ = − + + + −

=

= + +

= −

= −

   (3) 

 
with the stateζ ∈ . 
 

We choose h (e) to be  21( ) | |
2

h e e=   the relation (3) will take the form  

 
. ~

'
1( ) ( )T T T T T

m m mh e Ae e WS x e W S x u e A x e B uζ κζ κ+ = − + + + −  
 
If we consider the Lyapunov-like function  
 

~ ~ ~ ~
2

1 1
1 1 1{ } { }
2 2 2

T T

L tr W W tr W Wξ= + +  (4) 

 
where 
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~
*

~
*

1 1 1

W W W

W W W

= −

= −
 

 
If we take the derivative of the relation (4) with respect to time we 
obtain 
 

. . . ~ . ~

1 1{ } { }
T T

L tr W W tr W Wξ ξ= + +  

Continuing  
. . ~ . ~

2 * * ' '
1 11 1[ ( ) ( ) ( )] [ ( ) ] { } { }

T T
T T T TL k x W S x x W S x u x WS x x W S x u tr W W tr W Wξ ξ ξ= − + − − + + + +

 
or equivalently 
 

. ~ ~ . ~ . ~
2 '

1 1 1( ) ( ) ] { } { }
T T

T TL k x W S x x W S x u tr W W tr W Wξ ξ= − + + + +  
 
If we choose  
 

. ~ ~

. ~ ~
'

1 1 1

{ } ( )

{ } ( )

T
T

T
T

tr W W x W S x

tr W W x W S x u

ξ

ξ

= −

= −

(5, 6) 

 
.
L  becomes 
 

       
.

2 0L kξ= − ≤  
 
 
We can write the relations (5), (6) in terms of elements 
 

.

.
'

1

( )

( )

ij i j

i i i i

x s x

x s x u

ω ξ

ω ξ

= −

= −
 

 
for all , 1, 2,...,i j n=  and in matrix form as 
 

.

.
' '

1

( )

( )

TW xS x

W x S x U

ξ

ξ

= −

= −
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where 
 

'
1 2

1 2

[ , ,..., ]
[ , ,..., ]

n

n

x diag x x x
U diag u u u
=
=

 

 
 
One important Lemma for continuing our analysis is the following:    
 
 
 
Lemma 4.4.1  
 
Consider the system 
 

. ** '

.

. ~
'

1

2

( ) ( )1

( ) ( )

1 | |
2

m m m m m

T T T T T
m m m

m

x Ax S x S x u

x A x B u

k h e Ae e WS x e W S x u e A x e B u
h

h e

e x x

WW

ζ ζ κ
ξ ζ

= − + +

= − +

= − + − + + + −
= −

=

= −

 

The update laws 
 

.

.
' '

1

( )

( )

TW xS x

W x S x U

ξ

ξ

= −

= −
 

 
with 1 2[ , ,..., ]nU diag u u u= , guarantee the following properties 

1

2
. .

1

 ,| |, , ,
 | | L

 lim ( ) 0,  lim ( ) 0,  lim ( ) 0
t t t

e W W L

t W t W t

ξ ζ
ξ

ξ

∞

→∞ →∞ →∞

• ∈
• ∈

• = = =
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provided that u L∞∈  
 
If we have understand the lemma 4.4.1 we have the opportunity to 
take one more step with the theorem 4.4.1:  
 
 
 
Theorem 4.4.1  
 
The closed-loop system 
 

. ** '

.

. ~
'

1

~
' 1

1

2

( ) ( )1

( ) ( )

[ ( )] [ ( ) ]

1 | |
2
1

m m m m m

T T T T T
m m m

m m m

x Ax S x S x u

x A x B u

k h e Ae e WS x e W S x u e A x e B u

u W S x WS x A x B u
h

h e

k

WW

ζ ζ κ

ξ ζ

−

= − + +

= − +

= − + − + + + −

= − + −

= −

=

=

 

 
 
together with the update laws 
 

.
( )ij i je s xω ξ= −  
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.

1iω = {

' ' '
i1 i1 1

' *
i 1

*
i1 1

' *
i 1

' ' '
i1 i1 1

( )  if  or sgn( )  

                 and e ( ) sgn( ) 0

 0               if sgn( )  and

                  e ( ) sgn( ) 0

( )  if  or sgn( )

i i i i

i i i

i

i i i

i i i i

e s x u W

s x u

s x u

e s x u W

ξ ω ω ω ε

ξ ω

ω ω ε

ξ ω

ξ ω ω ω

− ∈ =

≤

=

>

− ∈
' *

i 1

*
i1 1

' *
i 1

                 and e ( ) sgn( ) 0

 0              if sgn( )  and 

                 e ( ) sgn( ) 0

m

i i i

m
i

i i i

s x u

s x u

ω

ξ ω

ω ω ω

ξ ω

=

≥

=

<

 

 
for all , 1,2,...,  guarantees that 
lim | ( ) | 0
t

i j n
e t

→∞

=
=  
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Direct adaptive tracking (n=m) Complete matching 
 

.

.

. ** '

' 1
1

Actual System:       x ( ) ( ) ,  x,u

Reference System:  ,  ,  

Model:                   ( ) ( )1
Tracking error:       

Control Law:         [ ( )]

n

n n
m m m m m m m

m

f x G x u

x A x B u x u

x Ax S x S x u

e x x

u W S x

WW

−

= + ∈

= − + ∈ ∈

= − + +

= −

= −
~

.

[ ( ) ]

Update Laws:        ( )

                               

T
m m m

ij i j

WS x A x e B u

e s xω ξ

+ −

= −

 

.

1iω = {

' ' '
i1 i1 1

' *
i 1

*
i1 1
' *

i 1
' ' '

i1 i1 1

( )  if  or sgn( )  

                 and e ( ) sgn( ) 0

 0               if sgn( )  and

                  e ( ) sgn( ) 0

( )  if  or sgn( )

i i i i

i i i

i

i i i

i i i i

e s x u W

s x u

s x u

e s x u W

ξ ω ω ω ε

ξ ω

ω ω ε

ξ ω

ξ ω ω ω

− ∈ =

≤

=

>

− ∈
' *

i 1
*

i1 1

' *
i 1

                 and e ( ) sgn( ) 0

 0              if sgn( )  and 

                 e ( ) sgn( ) 0

m

i i i
m

i

i i i

s x u

s x u

ω

ξ ω

ω ω ω

ξ ω

=

≥

=

<

 

. ~
'

1
~

2

Filter:       ( ) ( )

                  A A A
                  ,  1

1                   | |
2

T T T T T
m m m

m m

k h e Ae e WS x e W S x u e A x e B u

h k

h e

ζ ζ κ

ξ ζ

= − + − + + + −

= −

= − =

=

 

 
'

1
.

2

Properties:      , ,| |, , ,  

                       | | ,  lim ( ) 0

                       lim ( ) 0,  lim | ( ) | 0
t

t t

u e W L W W

L W t

t e t

ξ ζ

ξ

ξ

∞

→∞

→∞ →∞

∈ ∈

∈ =

= =
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* ' '
1 1Requirements:     ,  (0)W W W W∈ ∈  

 
 

( )S x  is an L-dimensional vector with elements, 
( ),  1, 2,...,  of the formis x i L=  

 
( )( ) [ ( )] j

i

d i
i j

j I

s x s x
∈

=∏   

 
where ,  1, 2,...,iI i L=  are a collection of L not-ordered subsets of 
{1,2,…,n} and 

jd  are positive integers. 
 

' '
0( ) is a  matrix with elements ( ) of the formlkS x L m s x×  

 
( , )' ( ) [ ( )] j

lk

d l k
lk j

j I

s x s x
∈

=∏  

 
for all 01, 2,...,  and 1,2,...,l L k m= =  where lkI are collections of 0mL  not-
ordered subsets of  
[1,2,…,n} and ( , )jd l k  are positive integers. 
 
The ( )js x  is a smooth, monotone increasing function, which is usually 
represented by sigmoidals of the form 
 

0

( )
1

for all 1, 2,...,  with the parameters ,l  to represent
the bound and the slope of sigmoid's curvature and  a bias constant.

o ij l xs x
e

j n

µ λ

µ
λ

−= +
+
=  
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Adaptive Tracking Examples  
 
 
 
Example Scalar case 
 
 
 
Consider the following first order plant: 

                  
.
x ax bu= +  

 
where a and b are unknown parameters but the sign of b is known. 
The control objective is to choose an appropriate control law such that 
all signals in a closed-loop plant are bounded and x tracks the state of 

mx of the reference model given by 

                    
.

m m m mx a x b r= − +  
 
for any bounded piecewise continuous signal r(t), where am > 0, bm 
are 
known and xm(t); r(t) are measured at each time t. It is assumed that 
am; bm and r are chosen so that xm represents the desired state 
response of 
the plant. 
 
Control Law 
 
For x to track xm for any reference input signal r(t), the 
control law should be chosen so that the closed-loop plant transfer 
function 
from the input r to output x is equal to that of the reference model. We 
propose the control law 
 

* *u k x l r= − +  
where * *,k l  are calculated so that  
 

*

*

( )( )
( ) ( )

m m

m

b x sx s bl
r s s a bk s a r s

= = =
− + +

 

 
Of course,  
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* *,  m mb a al k
b b

+
= =  

 
 

provided of course that 0b ≠ the plant 
.
x ax bu= +  is controllable.  

The control law guarantees that the transfer function of the 
closed-loop plant is equal to that of the reference model. 
 
 
 
 
Vector Case: Full Statement Measurement  
 
 
Consider the n-order plant: 
 

                            
.

,  nx Ax bu x R= + ∈  
 
where ,n n n qA R B R× ×∈ ∈ are unknown constant matrices and (A;B) is 
controllable. The control objective is to choose the input vector nu R∈  
such that all signals in the closed-loop plant are bounded and the 
plant state x  
follows the state n

mx R∈ of a reference model specified by the LTI 
system 

                        
.

m m m mx A x B r= +  
 
where n n

mA R ×∈ is a stable matrix, n q
mB R ×∈ and qr R∈ is a bounded 

reference input vector. The reference model and input r are chosen so 
that ( )mx t  represents a desired trajectory that x has to follow. 
 
 
Control Law 
 
 
If the matrices A, B were known, we could apply the control law 
 
               * *u K x L r= − +  
 
and obtain the closed-loop plant  
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.

* *( )x A BK x BL r= − +  
 
If * * and n q q qK R L R× ×∈ ∈ are chosen to satisfy the algebraic equations 
                  
                   * *,  m mA BK A BL B− = =  
then the transfer matrix of the closed-loop plant is the same as that of 
the reference model and ( ) ( )mx t x t→  exponentially fast for any 
bounded reference input signal r(t). 
 
 
 
Adaptive Law 
 
 
By adding and subtracting the desired input term, namely,  
 

* *( )B K x L r− +  in the plant equation we take  
 
             * *( )m mx A x B r B K x L r u= + + − +  
 
Following the same procedure as in the scalar example, we can show 
that the tracking error me x x= − and parameter error 

~ ~
* * and K K K L L L= − = − satisfy the equation  

              

                 
~ ~

 ( )me A e B K x L r= + − +  
 
which also depends on the unknown matrix B. In the scalar case we 
manage to get away with the unknown B by assuming that its sign is 
known. An extension of the scalar assumption to the vector case is as 
follows: Let us assume that *L  is either positive definite or negative 
definite and 1 * sgn( )L l−Γ = ⋅  
where 1l =  if  *L  is positive definite and 1l = −  if *L  is negative definite.  
Then * 1

mB B L −=  and the above equation becomes 

                      
~ ~

* 1( )m me A e B L K x L r−= + − +  
 
We propose the following Lyapunov function candidate  
 

                     
~ ~ ~ ~ ~ ~

( , , )    [ ]
T T

TV e K L e Pe tr K K L L= + Γ + Γ  
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where 0TP P= >  satisfies the Lyapunov equation  
                      
                         T

m mPA A P Q+ = −  
for some 0TQ Q= > . Then  
 

             
. .

. ~ ~ ~ ~ ~ ~
* 1 2 ( ) 2  [ ]

T T
T T

mV e Qe e PB L K x L r tr K K L L−= − + − + + Γ + Γ  
 
Now  

             
~ ~ ~

* 1  [ ] sgn( )  [ ]sgn( )
T T

T T T T T
m m me PB L K x tr x K B Pe l tr K B Pex l− = Γ ⋅ = Γ  

and  
 

            
~ ~

* 1  [ ] sgn( )
T

T T T
m me PB L L r tr L B Per l− = Γ ⋅  

 

After this we have: 
. .
~ . ~ .

sgn( ),  sgn( )T T T T
m mK K B Pex l L L B Per l= = ⋅ = = ⋅  

We have  

               
.

TV e Qe= −  
 
 
Analysis 
From the properties of 

.
,V V , we establish as in the scalar case 

that K(t), L(t),  e(t) are bounded and that ( ) 0 as e t t→ →∞ . 
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Chapter 5 
 
 
 

           PROBLEM ANALYSIS 
 
 
   Systems theory and cell biology have enjoyed a long relationship 
that has received renewed interest in recent years in the context of 
systems biology. The term “systems” in systems biology based on 
systems theory or dynamic systems theory: 
 
   Systems biology is defined through the application of systems and 
signal-oriented approaches for understanding of inter- and intra- 
cellular dynamic processes. The aim of the present text is to review 
the systems and control perspective of dynamic systems. The 
biologist’s conceptual framework for representing the variables of a 
biochemical reaction network, and for describing their relationships, 
and pathway maps. A principal goal of systems biology is to turn 
these static maps into dynamic models which can provide insight into 
the temporal evolution of biochemical reaction networks. Towards this 
end we review the case for differential equation models as a natural 
representation of casual entailment in pathways. Block diagrams, 
commonly used in the engineering sciences, are introduced and 
compared to pathway maps. The stimulus-response representation of 
a molecular system is a necessary condition for an understanding of 
dynamic interactions among the components that make up a pathway. 
Using simple examples, we show biochemical reactions are modeled 
in the dynamic systems framework and visualized using block-
diagrams.    
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                             5.1 System Description 
 
 
Consider a simple monomolecular reaction where chemical species X 
is transformed. The change in concentration of X at time t depends on 
the concentration of X at time t in that the rate by which the reaction 
proceeds is proportional to the concentration at each time instant, 
 

                               ( ) ( )dx t x t
dt

∝  

 
with a certain positive rate constant k. A diagrammatic representation 
of this biochemical process illustrates the fact that chemical species X 
“feed back” on itself: 
 

                                   
 
A linear mathematical ODE model of the process is given by  
 

                                       ( ) ( )d x t k x t
dt

= ⋅  

 
Here X acts as a substrate being converted and the product. Thee is 
positive feedback in that the larger the product X, the greater the rate 
of change by which substrate X is transformed. A simulation of this 
system reveals the expected unbounded growth in the concentration 
of X, 
 
                                        0( ) ktx t x e= ⋅  
 
where 0 ( 0)x x t= =  denotes the initial condition. With increasing x, the 

growth rate dx
dt

 also increases in this system, leading to an unbounded 

growth. 
 
Continuing, we analyze the autocatalytic reaction 
 
                                      1

2
2k

k
X A X→+ ←  
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where for a given X molecule, A facilitates the doubling. A pathway 
map of this process would be  

                                      
In pathway maps we use a bar at the end of the arrow to denote an 
inhibition or negative feedback loop. If A is considered to have a 
constant concentration, generalizing the law of mass action, we have 
the differential equation model: 
 

                                        

2
1 2

2
1

1

( ) ( ) ( )

          = ( )(1 ( ))

d x t k ax t k x t
dt

kk ax t x t
ak

= −

−
 

 
In this autocatalytic reaction the ‘product’ has a strong inhibitory effect 
on the rate at which X is transformed. For the reason to indicate the 
internal feedback mechanisms at work in this system we will label the 

term 2

1

(1 ( ))k x t
ak

−  as control input variable ( )u t  

 

                                       1( ) ( ) ( )d x t k au t x t
dt

=  

 
 
If we consider variable x  to represent the state of the system, and we 

write 
.( )dx t x

dt
= for short, this system becomes at the form of the state-

space model, in particular: 
 

                                     
.

0 0( ) ( ) ,   ( )
( )

x f x g x u x t x
y h x
= + =
=

 

 
 At this point it very important to point out the state-space model: 
 
The most commonly employed framework to model nonlinear dynamic 
systems is the state space model 

                                
.

1

( ) ( ) ,

( )                   1

m

i i
i

j j

x f x g x u

y h x j p
=

= +

= ≤ ≤

∑  
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where 
.
x  is shorthand for the rate of change ( )dx t

dt
 of the n variables 

summarized in the vector x . At any time ,  ,t x  represented though the 
variables 1( ),..., ( )nx t x t  defines the state of the system. This system has 
m  inputs and p  outputs, the dependence on t  is omitted to simplify 
notation.  
A fundamental assumption in above model is that together with some 
initial condition 0 ( 0)x x t= =  the state completely defines the future 
behavior of the system. 
    
      Control variable u  represents some independent stimulus. In cell 
signaling ( )u t  would typically model ligands binding to receptors. In 
many situations we will not be able to observe all state variables 
directly. Through the response variable y  and the mapping h  we can 
capture this situation. The ,  and f g h  are mathematical morphisms or 
mappings, relating the variables on the right-hand side of the equation 
to rates on the left-hand side. Be careful that ,  and x u y  are functions of 
time, , ,f g h  do not explicitly depend on time. 
 
      This means that we consider only time-invariant systems, dynamic 
systems where the variables evolve in time but where the system 
properties remain unchanged. 
 
      The state-space model is available to a wide range of systems. 
Although spatial aspects are not represented explicitly, this would 
require Partial Differential Equations, for many practical cases it is 
either possible to assume rapid diffusion and thus ignore it, or 
different regions of the cell may also be modeled by introducing 
additional variables to the model. For many intracellular processes it 
is clear which proteins can be considered “drivers” and which 
“followers”.  
    For signal transduction pathways ligands binding to cell surface 
receptors may be considered the input to the system and gene 
expression as the output or response to the stimulus ( )u t . The area of 
cell signaling [9] is therefore most susceptible to the control 
perspective on intra-cellular dynamics.  
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Continuing our analysis:  
 
We can write: ( )u x xα β= − , where the constant α  is called the intrinsic 

growth rate of the population and α
β

 corresponds to the maximum 

attainable population. 
The model we thus obtain is specified by the equation 
 

                                
( )

    ( ) (1 ( ))

xdx x
dt

x t x t

α
βα α
β

βα
α

−
=

= ⋅ −

 

 
This model form is called the logistic growth model and is equivalent 
to the autocatalytic reaction. 
The model describes the real growth rate as a proportion of the 
intrinsic growth rate. This proportion however decreases with an 
increased in the population. 
 
For two molecular species we can generalize the control of the 
system into 
 

                        
.

1 1 1 2 1
.

2 2 1 2 2

( , )

( , )

x u x x x

x u x x x

=

=
 

 
We understand that the vector u  is depended on both of the 1 2,x x . 
 
This is equal with the form of matrices: 
 
 
Actual system: 
 

.

1 1
1 2.

2
2

0
[  ]

0
xx

u u
xx

     = ⋅     

 

 
 
 
Reference System: 
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.

1 1 1
.

2 2
2

1 0 1 0
0 1 0 1

m m m

m m
m

x ux
x ux

  −         = ⋅ + ⋅        −       

 

 
 
Now we give an example if we specify for 1 2and u u  
 

                          1 1 2 1 2 2

2 1 2 2 1 3

( , )
( , )

u x x k k x
u x x k x k

α= −
= −

 

 
We take the well known Lotka-Voltera model of two competing 
populations. 
If variables 1 2 and x x correspond to the chemical species 1 2 and X X , the 
biochemical representation of this system is 
 

                         

1

2

3

1 1

1 2 2

2

 2

2

        

k

k

k

X A X

X X X

X B

+ →

+ →

→

 

where A is maintained at a constant concentration and B corresponds 
to the degradation of 2X . The first two reactions are autocatalytic. 
 
   The Lotka-Voltera model of competing species give an opportunity 
to discuss the purpose of mathematical model as a mechanism for 
illuminating basic principles, while not necessarily describing the 
details of a particular case. 
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5.2 Introduction of the method 
 
In this project we implement direct adaptive tracking using RHONN 
(Recurrent High-Order Neural Networks). RHONNs are used as models of 
the unknown plant, transforming the original system into a RHONN model 
which is of known structure, but contains a number of unknown constant-
value parameters, known as synaptic weights. RHONNs were introduced 
in the Chapter 3. As we have already discussed the particular method 
refers to affine in the control nonlinear dynamical systems possessing 
unknown non-linearities. 
 
A system affine in the control has the form: 
 

                       
.

( ) ( )x f x G x u= + ⋅  
 
We want the unknown system to follow the state of the reference system 
and in our case is the stable linear model  
 

                       
.

m m m m mx A x B u= − +  
 
in the general form. 
 
To be more specific: 
 

.

1 1 1
.

2 2
2

1 0 1 0
0 1 0 1

m m m

m m
m

x ux
x ux

  −         = ⋅ + ⋅        −       
 

 
 
Our system is a nonlinear dynamical system and has 2 states according to 
the state equations. 
 
This system is of the general form: 
 

                             
.

( , )x f x u=  
  

                               

.

1 1 1
.

2 2 2

x u x

x u x

= ⋅

= ⋅
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where the inputs u1, u2 are depended on x1, x2. 
 
 
 
In our case the matrices ( )f x  and ( )G x  are: 
 

0
( )

0
f x

 
=  
 

 

 

and    1

2

0
( )

0
x

G x
x

 
=  
 

 

 
Therefore the true plant can be modeled by the recurrent neural network  
 

                       
. ** '( ) ( )1x Ax S x S x uWW= − + +  

 
where u is a control input. 
 
The control law is the following: 
 

              
~

' 1
1 [ ( )] [ ( ) ]T

m m mu W S x WS x A x e B u−= − + −  
 
There are appropriate update laws of matrices of the weights W, W1, 
which ensure the boundness of the weights estimates and guarantee the 
stability of our system. 
 
The update laws are the following: 
 

.
( )ij i je s xω ξ= −  

 
and 
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.

1iω = {

' ' '
i1 i1 1

' *
i 1

*
i1 1

' *
i 1

' ' '
i1 i1 1

( )  if  or sgn( )  

                 and e ( ) sgn( ) 0

 0               if sgn( )  and

                  e ( ) sgn( ) 0

( )  if  or sgn( )

i i i i

i i i

i

i i i

i i i i

e s x u W

s x u

s x u

e s x u W

ξ ω ω ω ε

ξ ω

ω ω ε

ξ ω

ξ ω ω ω

− ∈ =

≤

=

>

− ∈
' *

i 1

*
i1 1

' *
i 1

                 and e ( ) sgn( ) 0

 0              if sgn( )  and 

                 e ( ) sgn( ) 0

m

i i i

m
i

i i i

s x u

s x u

ω

ξ ω

ω ω ω

ξ ω

=

≥

=

<

 

for all , 1, 2,...,  guarantees that 
lim | ( ) | 0
t

i j n
e t

→∞

=
=  

 
where 

 

. ~
'

1
~

2

Filter:       ( ) ( )

                  A A A
                  ,  1

1                   | |
2

T T T T T
m m m

m m

k h e Ae e WS x e W S x u e A x e B u

h k

h e

ζ ζ κ

ξ ζ

= − + − + + + −

= −
= − =

=

 

 
Results 
 
We apply the method with the next dimensions of vectors and matrices: 
 

2

2

1

2

' 2

 2 2
 2 2

A 2 2
( )
( )

x R
u R
W
W

S x R
S x R

∈

∈
×
×
×

∈

∈
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We choose a relatively small value of the design constant: 
 
                       1k =  
 
We use the control law (5.4) of the method, which gives the dynamic 
feedback. 
Moreover we choose: 
 

'( ) ( )i iS x S x=  
 
This choice gives a simpler model with simpler adaptive laws and it is 
crucial for the run-time of the program. 
 
 
 
 
The initial values of the states are  
 
Variable Initial Value 
X1 5 Moles 
X2 7 Moles 
 
 
The initial weights W,W1 and the matrix A are: 
 

0.09 0.09
0.9 0.9initialW  

=  
 

 

 

1,

0.2 0.06
0.06 0.3

1.2 0
       

0 2.6

initialW

A

 
=  
 

 
=  

 

 

  
The parameters of the sigmoid functions were set to: 
 

                  0

1
1

0.5
l
µ

λ

=
=
= −

 

 
We have the following simulations for the below cases: 
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                    5.3  SIMULATIONS 
 
 

For 1

2

3cos(5 ). /(5. 1.)
5cos(8 ). /(8. 1.)

m

m

u t t
u t t

= +
= +

 and initial condition 0 [2 2]mx =  

 
 
We take the following results: 
 

 
                                                     (a) 
 

 
                                                    (b) 
 
                                          Figure 5.2.1  
[In (a) we see the plot of 1mx , 1x  and in (b) we see the plot of 2mx , 2x ] 
 
In figure 5.2.1 we can see that the output of our actual system follows the 
output of our desired trajectory of our reference system. 
The plot of output of the reference system is with the blue line, and the 
output of our system is with the red line. We can see that 1x  follows 1mx  
after the time t=0.6 sec and  

2x  follows 2mx after the time t =2.8 sec. The tracking errors 1E  and 2E  are 
zero after these times t. 
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Tracking errors: 
 

 
                                                    (a) 
 

 
                                                   (b) 
                Figure 5.2.2 Tracking errors 1E in a) and 2E  in b) 
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Now, follows an another simulation with different initial condition 0 [20 20]mx =  
 

 
                                                      (a) 
              

 
                                                  (b) 
 
 
                                           Figure 5.2.3  
[In (a) we see the plot of 1mx , 1x  and in (b) we see the plot of 2mx , 2x ] 
 
 
In figure 5.2.3 we can see that the output of our actual system follows the 
output of our desired trajectory of our reference system. 
The plot of output of the reference system is with the blue line, and the 
output of our system is with the red line. We can see that 1x  follows 1mx  
after the time t=2.1 sec and  

2x  follows 2mx after the time t =2.8 sec. The tracking errors 1E  and 2E  are 
zero after these times t. 
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Tracking errors: 
 

 
                                                   (a) 
 

 
                                                 (b) 
              Figure 5.2.4 Tracking errors 1E in a) and 2E  in b) 
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For 1

2

2cos(3 )
5cos(80 )

m

m

u t
u t

=
=

 and initial condition 0 [2 2]mx =  

 

 
                                                  (a) 
 

 
                                                  (b) 
 
                                           Figure 5.2.5  
[In (a) we see the plot of 1mx , 1x  and in (b) we see the plot of 2mx , 2x ] 
 
In figure 5.2.5 we can see that the output of our actual system follows the 
output of our desired trajectory of our reference system. 
The plot of output of the reference system is with the blue line, and the 
output of our system is with the red line. We can see that 1x  follows 1mx  
after the time t=0.6 sec and  

2x  follows 2mx after the time t =2.6 sec. The tracking errors 1E  and 2E  are 
zero after these times t as we can see in the Figure 5.2.6. 
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Tracking errors: 

 
                                                    (a) 
 

 
                                                     (b) 
              Figure 5.2.6 Tracking errors 1E in a) and 2E  in b) 
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Now, follows an another simulation with different initial condition 0 [20 20]mx =  
 

 
                                                     (a) 
 

 
                                                  (b) 
 
                                          Figure 5.2.7  
[In (a) we see the plot of 1mx , 1x  and in (b) we see the plot of 2mx , 2x ] 
 
In figure 5.2.7 we can see that the output of our actual system follows the 
output of our desired trajectory of our reference system. 
The plot of output of the reference system is with the blue line, and the 
output of our system is with the red line. We can see that 1x  follows 1mx  
after the time t=1.6 sec and  

2x  follows 2mx after the time t =2.7 sec. The tracking errors 1E  and 2E  are 
zero after these times t as we can see in the Figure 5.2.8. 
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Tracking errors: 
 

 
                                                (a) 
 

 
                                                  (b) 
                Figure 5.2.8 Tracking errors 1E in a) and 2E  in b) 
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For 1

2

3(cos(5 )).^ 2. /(5 1.)
5(cos(8t)).^5./(8t+1.)

m

m

u t t
u

= +
=

and initial condition 0 [2 2]mx =  we have: 

 

 
                                                    (a) 
 

 
                                                     (b) 
 
                                           Figure 5.2.9  
[In (a) we see the plot of 1mx , 1x  and in (b) we see the plot of 2mx , 2x ] 
 
 
In figure 5.2.9 we can see that the output of our actual system follows the 
output of our desired trajectory of our reference system. 
The plot of output of the reference system is with the blue line, and the 
output of our system is with the red line. We can see that 1x  follows 1mx  
after the time t=0.3 sec and  

2x  follows 2mx after the time t =2.1 sec. The tracking errors 1E  and 2E  are 
zero after these times t as we can see in the Figure 5.2.10. 
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Tracking errors: 
 

 
                                                    (a) 
 

 
                                                     (b) 
               Figure 5.2.10 Tracking errors 1E in a) and 2E  in b) 
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Now, follows an another simulation with different initial condition 0 [20 -20]mx =  
 

 
                                                    (a) 
 

 
                                                   (b) 
 
                                       Figure 5.2.11  
[In (a) we see the plot of 1mx , 1x  and in (b) we see the plot of 2mx , 2x ] 
 
In figure 5.2.11 we can see that the output of our actual system follows the 
output of our desired trajectory of our reference system. 
The plot of output of the reference system is with the blue line, and the 
output of our system is with the red line. We can see that 1x  follows 1mx  
after the time t=2 sec and  

2x  follows 2mx after the time t =1.6 sec. The tracking errors 1E  and 2E  are 
zero after these times t as we can see in the Figure 5.2.12. 
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Tracking errors: 
 

 
                                                   (a) 
 

 
                                                     (b) 
                 Figure 5.2.12 Tracking errors 1E in a) and 2E  in b) 
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For 1

2

50sin (1000 )
-500sin (6 )

m

m

u c t
u c t

=
=

and initial condition 0 [2 2]mx =  

 

 
                                                     (a) 
 

 
                                                    (b) 
 
                                      Figure 5.2.13  
[In (a) we see the plot of 1mx , 1x  and in (b) we see the plot of 2mx , 2x ] 
 
 
In figure 5.2.13 we can see that the output of our actual system follows the 
output of our desired trajectory of our reference system. 
The plot of output of the reference system is with the blue line, and the 
output of our system is with the red line. We can see that 1x  follows 1mx  
after the time t=0.4 sec and  

2x  follows 2mx after the time t =1 sec. The tracking errors 1E  and 2E  are 
zero after these times t as we can see in the Figure 5.2.14. 
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Tracking errors: 
 

 
                                                    (a) 
 

 
                                                      (b) 
                 Figure 5.2.14 Tracking errors 1E in a) and 2E  in b) 
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Now, follows an another simulation with different initial condition 0 [20 20]mx =  
 

 
                                                      (a) 
 

 
                                                       (b) 
 
                                            Figure 5.2.15  
[In (a) we see the plot of 1mx , 1x  and in (b) we see the plot of 2mx , 2x ] 
 
In figure 5.2.15 we can see that the output of our actual system follows the 
output of our desired trajectory of our reference system. 
The plot of output of the reference system is with the blue line, and the 
output of our system is with the red line. We can see that 1x  follows 1mx  
after the time t =2 sec and  

2x  follows 2mx after the time t =1.6 sec. The tracking errors 1E  and 2E  are 
zero after these times t as we can see in the Figure 5.2.16. 
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Tracking errors: 
 

 
                                                       (a) 
 

 
                                                      (b) 
                Figure 5.2.16 Tracking errors 1E in a) and 2E  in b) 
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For 1

2

5sin(25 ) 6sin(61 )
22sin(25 ) 26sin(61 )

m

m

u t t
u t t

= +
= +

 and initial condition 0 [2 2]mx =  

 
We take the following results: 
 

 
                                                  (a) 
 

 
                                                   (b) 
 
                                        Figure 5.2.17  
[In (a) we see the plot of 1mx , 1x  and in (b) we see the plot of 2mx , 2x ] 
 
In figure 5.2.17 we can see that the output of our actual system follows the 
output of our desired trajectory of our reference system. 
The plot of output of the reference system is with the blue line, and the 
output of our system is with the red line. We can see that 1x  follows 1mx  
after the time t=0.3 sec and  

2x  follows 2mx after the time t =2.2 sec. The tracking errors 1E  and 2E  are 
zero after these times t as we can see in the Figure 5.2.18. 
 
 
 
 
 



 79

Tracking errors: 
 

 
                                                      (a) 
 

 
                                                       (b) 
                  Figure 5.2.18 Tracking errors 1E in a) and 2E  in b) 
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Now, follows an another simulation with different initial condition 0 [20 20]mx =  
 

 
                                                      (a) 
 

 
                                                     (b) 
 
                                            Figure 5.2.19  
[In (a) we see the plot of 1mx , 1x  and in (b) we see the plot of 2mx , 2x ] 
 
 
In figure 5.2.19 we can see that the output of our actual system follows the 
output of our desired trajectory of our reference system. 
The plot of output of the reference system is with the blue line, and the 
output of our system is with the red line. We can see that 1x  follows 1mx  
after the time t=1.6 sec and  

2x  follows 2mx after the time t =2.6 sec. The tracking errors 1E  and 2E  are 
zero after these times t as we can see in the Figure 5.2.20. 
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Tracking errors: 
 

 
                                                     (a) 
 

 
                                                      (b) 
                  Figure 5.2.20 Tracking errors 1E in a) and 2E  in b) 
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For 1

2

5cos(25 ) 6cos(61 )
22cos(50 ) 26sin(90 )

m

m

u t t
u t t

= +
= +

 and initial condition 0 [2 2]mx =  

 
We take the following results: 
 

 
                                                     (a) 
 

 
                                                      (b) 
 
                                          
                                           Figure 5.2.21  
[In (a) we see the plot of 1mx , 1x  and in (b) we see the plot of 2mx , 2x ] 
 
 
In figure 5.2.21 we can see that the output of our actual system follows the 
output of our desired trajectory of our reference system. 
The plot of output of the reference system is with the blue line, and the 
output of our system is with the red line. We can see that 1x  follows 1mx  
after the time t=0.4 sec and  

2x  follows 2mx after the time t =2 sec. The tracking errors 1E  and 2E  are 
zero after these times t as we can see in the Figure 5.2.22. 
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Tracking errors: 
 

 
                                                   (a) 
 

 
                                                    (b) 
Figure 5.2.22 Tracking errors 1E in a) and 2E  in b) 
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Now, follows an another simulation with different initial condition 0 [20 20]mx =  
 

 
                                                    (a) 
 

 
                                                    (b) 
 
                                         Figure 5.2.23  
[In (a) we see the plot of 1mx , 1x  and in (b) we see the plot of 2mx , 2x ] 
 
 
In figure 5.2.23 we can see that the output of our actual system follows the 
output of our desired trajectory of our reference system. 
The plot of output of the reference system is with the blue line, and the 
output of our system is with the red line. We can see that 1x  follows 1mx  
after the time t=2.6 sec and  

2x  follows 2mx after the time t =2.9 sec. The tracking errors 1E  and 2E  are 
zero after these times t as we can see in the Figure 5.2.24. 
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Tracking errors: 
 

 
                                                       (a) 
 

 
                                                    (b) 
                 Figure 5.2.24 Tracking errors 1E in a) and 2E  in b) 
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Chapter 6 
 
 
Conclusions and future Developments 
 
 
6.1 Final Conclusions 
 
   This project provides the model of the adaptive tracking of the 
dynamic behavior of two molecular species in the intra-cellular 
environment. This function seems to be very significant for the cell 
because it is essential in cancer research, because we have the great 
opportunity, are forced the cancer cells to follow a stable model in 
which the populations of cancer cells would have eliminated. 
A simulation of it thus would be of a great interest for the biologists, 
since they waste a lot of time for the experiments in the laboratory. A 
first model of it was constructed by Kholodenko, [48] from the 
calculation of the kinetics. 
Producing data from that model we proved that recurrent high order 
neural networks provide very excellent approximation capabilities. 
 
   When biological data are available, the RHONN methods are 
capable of the computer simulation of the effects caused by a change 
in the concentration of one molecular specie. 
The biologists elsewhere have to know very complicated and always 
precise differential equations to describe those effects. In opposite we 
proved how easy for the RHONN is to approximate systems of the 
form: 
 
 

                    
.

( , ),  : external inputi ix f x u u=  
 
  
  Recurrent high order neural networks provide a powerful 
mathematical tool for the calculation of the appropriate control in 
order to bring the system to the right dynamical 
behavior. In medical words, this means finding the treatment to a 
disease. 
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It is questionless, how complicated things are in the cell. The 
experiments in the cell are also very difficult. One could easily 
imagine thus how hard is for the biologists to understand only from 
the chemical experiments the interaction between two or more cells. 
Control theory provides powerful mathematical tools in order to make 
these enormous numbers of data useful and easy to handle. 
To sum up, technical knowledge coming from control engineers 
should be used in cooperation with biological knowledge in order to 
produce significant results in medicine. 
 
 
 
6.2 Future Work 
 
 
The design of adaptive controllers with certain robustness properties with 
respect to modeling errors or external disturbances can be further improved in 
order to cover the aspect of this subject. This condition guarantees the existence 

and uniqueness of solutions of 
.

* ' *
1 0( ) ( ) ( , )x Ax W S x S x W u x uω= − + + +  which 

is necessary according to Theorem 2.1.1 for the actual system. Furthermore, 
larger values of k1,k2 cause larger modeling error, but we can take small k1,k2 
because the approximation error ε can be considered arbitrarily small, 
according to Theorem 2.1.1. 
 
Another future extension of my work is the generalization for n molecular 
species of the cell: 
 
This general control of the system is: 
 

                        

.

1 1 1 2 1

.

2 2 1 2 2

.

1 2

( , ,..., )

( , ,..., )
.
.
.

( , ,..., )

n

n

n n n n

x u x x x x

x u x x x x

x u x x x x

= ⋅

= ⋅

= ⋅

 

 
and the only think to do this is the considering in the n-dimensionality.  
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Another significant matter is the use of Recurrent High Order Neural 
Networks in order to find the appropriate control input for pathways which 
do not have a desirable behaviour. RHONNs is an effective method and 
can calculate the control input in order the system obtain the desirable 
state. This can bring about benefits as the treatment of a disease. 
In conclusion, biologists recognize system approaches as necessary to 
understand the complex mechanisms or interactions among cells. There 
are various tools and methods from system engineering which can help 
them handle the experimental data or make simulations. Consequently, the 
application of Control Theory to biological research is necessary and can 
lead to important innovations in Biology and Medicine. 
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        “Before you begin a thing, remind yourself that difficulties 
 
         and delays quite impossible to foresee are ahead. If you 
 
             could see them clearly, naturally you could do a 
 
                great deal to get rid of them but you can’t. 
 
                  You can only see one thing clearly and 
 
                      that is your goal. Form a mental 
 
                         vision of that and cling to it 
 
                            through thick and thin.” 
 
                                Kathleen Norris 
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Appendix A 
 
 
Case 1: 

Let us now choose 1

2

sin(10 )
sin(20 )

m

m

u t
u t

=
=

 

 
The steady-state response of the plant is given by 
 

1 1 1

2 2 2

sin(10 )
sin(20 )

y A t
y A t

φ
φ

≈ ⋅ +
≈ ⋅ +

 

 
where  
 

    
1 2 2

1
1

| | | | ,
| 10 | 10

10(sgn( ) 1) 90 tano

b bA
j a a

b
a

φ −

= =
+ +

= − ⋅ −

      
2 2 2

1
2

| | | | ,
| 20 | 20

20(sgn( ) 1) 90 tano

b bA
j a a

b
a

φ −

= =
+ +

= − ⋅ −

 

 
 
In our case we take: 
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I am giving this solution because it is important to see that these figures 
are in the simulation results with the blue line, with the red line in the 
simulations are the results of the X1, X2 which we taking from the model. 
 
 
 
Case 2:  
 

In the case of 1

2

3cos(5 ). /(5. 1.)
5cos(8 ). /(8. 1.)

m

m

u t t
u t t

= +
= +

 and with the initial condition 0 [2 2]mx =  

 
The solution of this linear reference model. 
 



 92

 
 
 
I am giving this solution because it is important to see that these figures 
are in the simulation results with the blue line, with the red line in the 
simulations are the results of the X1, X2 which we taking from the model. 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 



 93

BIBLIOGRAPHY 
 
 
 
[1] G.A. Rovithakis, and M.A. Christodoulou, Adaptive Control with 
Recurrent high order Neural Networks, Springer Verlag, New York, USA, 
2000. 
 
[2] P. Ioannou, Robust Adaptive Control, University of Southern California   
 
[3] Systems Biology IEEE CSS Magazine Aug. 2003 
 
[4] Rovithakis G.A., Christodoulou M.A (1994) IEEE Trans. Systems Man 
     Cybernetics, 24, 400-412 
 
[5] O. Wolkenhauer, M. Ullah, P. Wellstead, K-H. Cho.  
      The Dynamic Systems Approach to Control and Regulation of 
Intracellular Networks December 2004 
 
[6] E.D. Sontag. Mathematical Control Theory. Springer, 1998 
 
[7] Hertz J., Krogh A., and Palmer R.G - (1991). Introduction to the Theory 
of Neural Computation (Addison-Wesley Publishing Company) 
 
[8] Cybenko G. (1989) Mathematics of Control, Signals, and Systems, 2, 
303-314 
 
[9] Funahashi K. (1989) Neural Networks, 2, 183-192 
 
[10] Hartman E.J, Keeler J.D., Kowalski J.M. (1990) Neural Computation, 
2, 201-215 
 
[11] Hornik K.M., Stinchombe M., White H. (1989) Neural Networks, 2, 
359-366 
 
[12] Hou Z. (1992) Analysis of Auto Powertrain Dynamics and Modelling 
Using Neural Networks, M.Sc. Thesis, Department of Electrical Engi- 
neering, University of Notre Dame. 
 
 
[13] Narendra K.S, Parthasarathy K. (1990) IEEE Transactions on Neural 
Networks, 1, 4-27 
 



 94

[14] J.D. Murray. Mathematical Biology. Springer Verlag, third edition, 2002 
 
[15] G.A. Rovithakis, and M.A. Christodoulou, "Adaptive Control of 
Unknown Plants Using Dynamical Neural Networks," IEEE Trans. 
Systems, Man, andCybernetics, vol. 24, No. 3, Mar. 1994, pp. 400-412. 
 
[16] R. Heinrich, B. Neel, and T. Rapoport, “Mathematical Models of 
protein kinase signal transduction,” Molecular Cell, vol. 9,no. 5, pp. 957-
970, May 2002. 
 
 


