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Abstract

The aim of this work is to investigate generalized forms of linear state-space dynamic

models. Linear dynamic systems have been extensively used in the past for various

applications as well as in speech recognition. In all cases, several modeling restrictions

were applied to ensure that the model is identifiable. In this thesis, the generalization

that has been proposed relaxes these constraints, and allows choosing full noise co-

variances and state vectors that have arbitrary increased dimension compared to the

size of the observation vector. In addition, a canonical form of the system’s matrices

which ensures system’s identifiability, has been used in order to perform this gener-

alization. Furthermore, we investigate the use of an extra control input in the state

equation. For all forms of linear dynamic models that we investigate we introduce

novel maximum likelihood, element-wise, parameter estimation processes based on

the Expectation-Maximization algorithm. In our experiments on artificial data, we

show that we can obtain good estimates of the system’s parameters for various system

setups.

Furthermore, we applied the proposed system on a AURORA 2 digit classifica-

tion task to evaluate its modeling capability. The majority of the automatic speech

recognition (ASR) systems that have been extensively used, have been based on the

Hidden Markov Models (HMMs). The use of HMMs seems to be successful and ef-

ficient, however they are based on a series of assumptions some of which are known

to be poor. In particular, the assumption that each output is independent from the

previous and only depends on the current state given the current state, gives lit-

tle flexibility for modeling more complex dependencies. State-space models may be

xv



xvi

used to address some shortcomings of this assumption. Linear state-space models

are based on a continuous state vector evolving through time according to a state

evolution process. The observations are then generated by an observation process

(a linear dynamic model), which maps the current continuous state vector onto the

observation space.

Finally, we have also applied our system on weather data performing a three-day

weather forecasting, showing that our proposed system could be applied in various

tasks, beyond speech recognition. In this case, the model has been used as a predictor,

a task that linear dynamic models can also be successfully applied. Results shown

that we can achieve good predictions, having only a few observations.
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Chapter 1

Introduction

Right at the start we have to make a statement which you are certainly

familiar with, but it is necessary to repeat it again and again. It is that sci-

ence does not try to explain, nor searches for interpretations but primarily

constructs models. A model is a mathematical construction, which supple-

mented with some verbal explanation, describes the observed phenomena.

Such a mathematical construction is proved if and only if it works, that

is it describes precisely a wide range of phenomena. Furthermore it has

to satisfy certain aesthetic criteria, i.e., it has to be more or less simple

compared to the described phenomena.

J. V on Neumann

In engineering, many problems based on mathematical models of the examined

subjects. Constructing an appropriate model for each task of real processes is of great

importance. At the same time, this is an extremely painful and demanding task to

be involved with. Scientists and engineers that work in this area, are known as

Knowledge Engineers. The choice of this name is not arbitrary; in order to construct

1



2 CHAPTER 1. INTRODUCTION

a model for a certain process one should have a deep knowledge on process’ way of

functioning and also to be able to manage and efficiently transfer this knowledge into

a useful model.

In this thesis we are investigating new forms of linear dynamic models. A system

is considered to be linear when it has the following form

xi(k + 1) =

n
∑

j=1

aij(k)xj(k) + wi(k) (1.0.1)

where xj(k) are the state variables of the system and the values aij(k) are fixed

parameters or coefficients of the system. The argument k, denotes time dependence,

and this dependency is independent of the values assumed by the state variables

[38]. On the other hand, the term dynamic refers to phenomena that are changing in

time. The opposite of a dynamic phenomenon is static which refers to a steady state.

Almost everything in nature is dynamic. In solid state physics for example, we know

that crystals atoms have some dynamic aspects; this is why the behavior of the solids

is changing in time depending on the external conditions i.e., temperature. Finally,

a model of a system is a tool we apply to answer questions about the considering

system without to do an experiment [37]. Models are also been used in every day

life. For example, when a person is considered to be “friendly”, one would have been

able to answer the question of how this person would react when you ask him for

an information. These types of models are the called mental models and are not

formulated with mathematics. They are based on intuition and experience. In this

work, where we are dealing with engineering subjects, we are using the mathematical

models. In these, the relationships between quantities that can be observed in a

system are described as mathematical relations. Mathematical formulations are also
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Figure 1.1: Model construction.

used in most of the natural laws in Physics. Figure (1.1), obtained by [37], show how

a model is constructed.

Motivated by the research area of speech recognition, we initially started to inves-

tigate the construction of a model to be used for acoustic modeling. The proposed

model is called Generalized Identifiable State Space Model (GISSM). As the name of

our proposed model defines, it could be possible without to many changes, to be used

in areas outside speech recognition. In this thesis we show how this could happen.

1.1 Thesis outline

The remainder of this dissertation is organized as follows. Chapter 2 gives a brief

review of the Linear Dynamic Models. We deal with the use of LDMs in filtering and

learning processes and present some estimation approaches written in literature.



4 CHAPTER 1. INTRODUCTION

In Chapter 3 we deal with the main work that has been done in this thesis. We

begin by representing our model, the equations and the structure of it. We further

discuss about our generalization and provide the proposed element-wise estimation

method based on the EM algorithm. We examine two cases; a dynamic model without

control input and the same model with an extra control. We show how the equations

are being modified, and provide experimental results on artificial data comparing the

performance of the two cases and to previous methods.

The next chapter 4, reviews some of the most popular approaches in acoustic

modeling. As we are interesting in statistical approaches, we mainly focus on these

and hence we discuss about Hidden Markov Models, Artificial Neural Networks and

the general family of Segment Models. In addition, we show how the proposed model

and our estimation method can be applied in a real speech recognition system. We

give details on the modifications that we had to do in order the model to be applied

in speech data and show experiments in a digit recognition task.

Chapter 5 showing how our system could be applied in a weather forecasting task.

The nature of the proposed model is such, that we believe that it could be possible

to be applied in tasks beyond speech recognition. In this chapter we train our model

to predict the temperatures of the next few days.

Finally, in chapter 6, we discuss our conclusions and summarize the contributions

of this dissertation to the fields of estimation theory, pattern recognition (speech

recognition), and prediction (weather forecasting). In the end we discuss about future

work and some possible extensions.
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Chapter 2

Estimation of Linear Dynamic
Models

We must not forget that when radium was discovered no one knew that it

would prove useful in hospitals. The work was one of pure science. And

this is a proof that scientific work must not be considered from the point of

view of the direct usefulness of it. It must be done for itself, for the beauty

of science, and then there is always the chance that a scientific discovery

may become like the radium a benefit for humanity.

M. Curie

In this chapter we present an introductory treatment of the family of Linear

Dynamic Models.

2.1 Learning and Estimation

Dynamical models have many applications in a wide range of subjects. In some tasks,

the values of hidden states are known and we only have to estimate them. In such

cases, it could be possible for us to obtain prior knowledge of the system’s parameters,

7



8 CHAPTER 2. ESTIMATION OF LINEAR DYNAMIC MODELS

based on previous experience upon the system. In this case, the problem is known

as inference or filtering or smoothing, and the task is to estimate the hidden state

sequence based on the known model parameters and the given observations.

In some other applications, our knowledge and experience of the problem is poor,

and we do not have any kind of information of the structure of the model as well

as the observation and state evolution matrices. In this case, we give emphasis on

learning a few parameters which model the observation data well. The problem is

then called learning or system identification [62].

Filtering and smoothing have been extensively studied for continuous state models

in signal processing [29, 30, 53, 54]. On the other hand, learning in continuous state

models is the subject of a whole research area in Control theory called System

Identification. Considering linear Gaussian models, there are several approaches

to system identification [36]. In addition, the powerful EM algorithm for Linear

dynamic systems derived originally in [66], and then reintroduced and extended in

various applications, such as neural networks [22, 23] or speech recognition [13].

2.2 Parameter Estimation in LDMs

One of the most important statistical problems is the estimation of parameters in

different dynamic models. Suppose that for a certain problem we have a few candidate

models that could possible model the system in an efficient way. Suppose also that

the above set of models has been parameterized using a parameter vector θ. The

estimation of θ then, can be translated into the search of the optimum model within

the set. There are some different approaches on how to get into the best model. In
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this section we will deal with some of the most popular.

2.2.1 Maximum Likelihood estimation

A linear dynamic model (or Kalman Filter model or linear state-space model) is

specified by the following pair of equations

xk+1 = Fxk + wk, wk ∼ N(ε, P ) (2.2.1)

yk = Hxk + vk, vk ∼ N(λ, R) (2.2.2)

and an initial state distribution x1 ∼ N(µ0, Σ0). We use xk and yk to denote n− and

m−dimensional state and observation vectors respectively.

The Maximum Likelihood estimation [24] can be obtained by minimizing the

following

J(Y, θ) = −L(Y, θ) =

N
∑

k=0

{log |Σek
(θ)| + eT

k (θ)Σ−1
ek

(θ)ek(θ)} + constant (2.2.3)

where L(Y, θ) denotes the log likelihood. In the above equation we used ek(θ) and

Σek
(θ) to denote the prediction error and its covariance respectively. These quantities

can be obtained by the Kalman filter equations [29]. In [31], the parametrization is

being applied onto the innovations covariance Σe and Kalman gain K rather than P

and R to simplify calculations.

2.2.2 Lower Bound on log-likelihood

When the state is hidden then the ML estimation may not be an efficient method.

In this case the integral in the following equation, cannot be computed analytically.

L(θ) = log P (Y|θ) = log

∫

x

P (X,Y|θ)dX (2.2.4)
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(In the above equation, P denotes distribution and should not be considered as the

covariance of the noise in the state equation of the linear dynamic system.) However

it could be computed using numerical methods. These methods are quite computa-

tionally expensive though. Hence, we use instead a lower bound on the log-likelihood

[60].

Using any distribution Q over the hidden variables, we can obtain a lower bound

[62] on log likelihood L

log
∫

x
P (X,Y|θ)dX = log

∫

x
Q(X)P (X,Y|θ)

Q(X)
dX

≥
∫

x
Q(X) log P (X,Y|θ)

Q(X)
dX

=
∫

x
Q(X) log P (X,Y|θ)dX −

∫

x
Q(X) log Q(X)dX

= F (Q, θ) (2.2.5)

where the inequality is known as Jensen’s inequality. Using a Lagrange multiplier

and an appropriate density function, we can then maximize the lower bound and

the initial log-likelihood function [60]. The maximization of F (Q, θ) is equivalent to

maximizing

G(Q(X)) = λ

(

1 −

∫

Q(X)dX

)

+ F (Q(X), θ) (2.2.6)

with respect to Q(X).

2.2.3 Applying EM algorithm

If the data we have are all available and uncorrupted we could use maximum likelihood

estimation. We can extend our application of maximum likelihood techniques to

permit the learning of a linear dynamic system’s parameters in situations where there
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are missing or incomplete data [3, 10]. In our case, the state vector is considered to

be the missing data. EM tries to maximize the following quantity at iteration p

Q(θ(p+1)|θ(p)) = E
(p)
θ

{

L(X, Y, θ(p+1)|Y )

}

(2.2.7)

where L(X, Y, θ) is given by

J(X,Y, θ) = −L(X,Y, θ) =
N

∑

k=1

{

log |Q| + (xk − Fxk−1)
T Q−1(xk − Fxk−1)

}

+
N

∑

k=0

{

log |R| + (yk − Hxk)
T R−1(yk − Hxk)

}

+ const.(2.2.8)

In [66], an EM algorithm was presented for the case of linear dynamic systems

in which the observation matrix H, is known. Many other researchers have also pre-

sented such parameter estimation methods based on EM [1, 32, 67]. In [13] however, a

nontraditional method based on Expectation Maximization algorithm was presented,

which could be considered as the continuous analog of the Baum-Welch estimation

algorithm for hidden Markov models. The main idea was the consideration that the

state vector of the linear system is observable, and that we want to find the ML

estimates of the system parameters θ given Y and X.

The basis of the EM learning is to use the solutions to the filtering/smoothing

problem to estimate the unknown hidden states given the observations and the current

model parameters. Then use this complete data set to solve for new model parameters

[62]. This process is repeated, using these new model parameters to infer the hidden

states again and again until the convergence of the algorithm.
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Chapter 3

General Identifiable State-Space
Models

If human life were long enough to find the ultimate theory, everything

would have been solved by previous generations. Nothing would be left to

be discovered.

S. Hawking

Maximum Likelihood (ML) is the most well-known parameter estimation method

that is widely used in statistical approaches. In order to perform ML estimation, we

assume that the parameters of a pdf are fixed but unknown and we aim to find the

set of parameters θ̂ that maximizes the likelihood of generating the observed data. A

solution θ̂ could represent a true global maximum, a local maximum or minimum or

(rarely) an inflection point of the log-likelihood function. If all solutions are found,

we are guaranteed that one represents the true maximum, though we have to check

each solution individually (or calculate second derivatives) to identify which is the

global optimum [14].

This chapter describes the general identifiable state-space model. Initially, we

13
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show the equations of the state and observation space and the structure of the model.

Linear Dynamic Models (LDMs) have been extensively used in the past for various ap-

plications such as in speech recognition [12]. In all cases, several modeling restrictions

were applied to ensure that the model is identifiable. Our generalization relaxes these

constraints, and allows choosing full noise covariances and state vectors that have

arbitrary increased dimension compared to the size of the observation vector. We in-

corporate the canonical form of the system’s matrices proposed in [35] which ensures

system’s identifiability. Furthermore, we investigate the use of an extra control input

in the state equation. Next, we introduce novel maximum likelihood, element-wise,

parameter estimation processes based on the Expectation-Maximization algorithm.

Finally, we show that we can obtain good estimates of the system’s parameters for

various system setups, using artificially generated data.

3.1 Introduction

The linear state-space dynamic system consists of the following pair of equations

xk+1 = Fxk + wk (3.1.1)

yk = Hxk + vk (3.1.2)

where the state xk at time k is a (n × 1) vector, the observation yk is (m × 1) and

wk, vk are uncorrelated, zero-mean Gaussian vectors with covariances

E{wkw
T
l } = Pδkl (3.1.3)

E{vkv
T
l } = Rδkl (3.1.4)
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In the above equation δkl denotes the Kronecker delta and T denotes the transpose

of a matrix. The initial state x0 is Gaussian with known mean and covariance µ0, Σ0.

Equation (3.1.1) describes the state dynamics, while (3.1.2) shows a prediction of the

observation based on the state estimation.

3.2 Model Structure

The procedure of building mathematical models of dynamic systems based on obser-

vation measurements of the system is called system identification. The parametric

structure of our multivariate state-space model has the following identifiable canoni-

cal form for the case in which xk is a 9 × 1 vector and the observation vector yk is a

3 × 1 vector.

F =











































0 1 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0

× × × × × × × × ×

0 0 0 0 1 0 0 0 0

× × × × × × × × ×

0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 1

× × × × × × × × ×











































(3.2.1)

H =









1 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0

0 0 0 0 0 1 0 0 0









(3.2.2)

The number of rows with ×’ s in F represents the free parameters of the matrix

and equals the size of the output vector m. The ones in matrix H are highly correlated
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to the number of the rows in F that are filled with free parameters, and also to the

lines that these rows are placed in F .

To construct the form of the state transition matrix F we follow the process

described in [35]. First we set its elements along the superdiagonal equal to one and

the remaining elements are zeroed. Then, we choose arbitrarily the m row numbers

ri to be filled with free parameters where i = 1, ..., m. There is only the constraint

that rm = n where m denotes the dimension of the observation and n the dimension

of the state vector.

The observation matrix H is then constructed as follows. First, we define H to be

m×n in size and filled with zeros. Assuming r0 = 0, we let in each row i = 1, ..., m of

the matrix to have a one in column ri−1 +1. For instance, in the parametric structure

shown in (3.2.1) and (3.2.2) we get:

r1 = 3 ⇒ r1−1 + 1 = r0 + 1 = 1

r2 = 5 ⇒ r2−1 + 1 = r1 + 1 = 4

r3 = 9 ⇒ r3−1 + 1 = r2 + 1 = 6.

When the control input is considered the linear system takes the following form:

xk+1 = Fxk + Buk + wk (3.2.3)

yk = Hxk + vk (3.2.4)
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The parametric structure of the control matrix B is then filled with free parame-

ters:

B =











































× ×

× ×

× ×

× ×

× ×

× ×

× ×

× ×

× ×











































(3.2.5)

The input control vector uk is a (l×1) deterministic vector, defined a-priori randomly.

3.3 Element-wise estimation with EM algorithm

3.3.1 Estimation without control input

For the system without control input , we try to find the ML estimates of its param-

eters θ given Y = [y0 y1 . . . yN ] and X = [x0 x1 . . . xN ]. The ML estimates of θ are

obtained by minimizing the following quantity

J(X,Y, θ) = −L(X,Y, θ) =

N
∑

k=1

{

log |P | + (xk − Fxk−1)
T P−1(xk − Fxk−1)

}

+
N

∑

k=0

{

log |R| + (yk − Hxk)
T R−1(yk − Hxk)

}

+ const.(3.3.1)

since, without loss of generality, wk and vk were assumed uncorrelated white Gaus-

sian noise sources. In the appendix A.1 is shown that the estimates of the system’s
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parameters are given by

F̂ i,j =

M
∑

c=1

{

(cof(P̂ i,c))(Γc,j
4 )

}

(cof(P̂ i,i))(Γj,j
3 )

−

M
∑

c=1,c6=i

{

(cof(P̂ i,c))(F̂ c,j)(Γj,j
3 )

}

(cof(P̂ i,i))(Γj,j
3 )

−

M
∑

c=1

{

(cof(P̂ i,c))

M
∑

r=1,r 6=j

{

(F̂ c,r)(Γr,j
3 )

}}

(cof(P̂ i,i))(Γj,j
3 )

(3.3.2)

P̂ i,j = (Γi,j
2 ) −

M
∑

r=1

(F̂ i,r)(Γj,r
4 ) −

M
∑

r=1

(F̂ j,r)(Γi,r
4 ) +

M
∑

c=1

M
∑

r=1

(F̂ i,c)(F̂ j,r)(Γc,r
3 ) (3.3.3)

R̂ = Γ5 − Γ6Γ
−1
1 ΓT

6 (3.3.4)

where cof(P̂ i,c) is the cofactor of the element P̂ i,c of the covariance P . Index i

denotes the i − th row of a matrix, and j denotes the j − th column, and M denotes

the column dimension of F . The sufficient statistics [12, 13] that involved in the

previous equations are given by

Γ1 =
1

N + 1

N
∑

k=0

xkx
T
k (3.3.5)

Γ2 =
1

N

N
∑

k=1

xkx
T
k (3.3.6)

Γ3 =
1

N

N
∑

k=1

xk−1x
T
k−1 (3.3.7)

Γ4 =
1

N

N
∑

k=1

xkx
T
k−1 (3.3.8)

Γ5 =
1

N + 1

N
∑

k=0

yky
T
k (3.3.9)

Γ6 =
1

N + 1

N
∑

k=0

ykx
T
k . (3.3.10)
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The statistics shown above require the following quantities at iteration p:

Eθ(p){ykx
T
k |Y} = ykx̂k|N (3.3.11)

Eθ(p){yky
T
k |Y} = yky

T
k (3.3.12)

Eθ(p){xkx
T
k−1|Y} = Σk,k−1|N + x̂k|N x̂T

k−1|N (3.3.13)

Eθ(p){xkx
T
k |Y} = Σk|N + x̂k|N x̂T

k|N . (3.3.14)

Equations (3.3.2) through (3.3.4) form the Maximization step of the EM algorithm.

For the Expectation step of the EM algorithm we need to compute the required

statistics, and we use the fixed interval smoothing form of the Kalman filter (RTS

smoother) [54]. It consists of a backward pass that follows the standard Kalman

filter forward recursions [29]. In addition, we computed also the cross-covariances

proposed by Digalakis [12] in both the forward and the backward pass. All the

necessary recursions are shown below.
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Forward Recursions

x̂k|k = x̂k|k−1 + Kkek (3.3.15)

x̂k+1|k = F x̂k|k (3.3.16)

ek = yk − Hx̂k|k−1 (3.3.17)

Kk = Σk|k−1H
TΣ−1

ek
(3.3.18)

Σek
= HΣk|k−1H

T + R (3.3.19)

Σk|k = Σk|k−1 − KkΣek
KT

k (3.3.20)

Σk,k−1|k = (I − KkH)FΣk−1|k−1 (3.3.21)

Σk+1|k = FΣk|kF
T + P (3.3.22)

Backward Recursions

x̂k−1|N = x̂k−1|k−1 + Ak[x̂k|N − x̂k|k−1] (3.3.23)

Σk−1|N = Σk−1|k−1 + Ak[Σk|N − Σk|k−1]A
T
k (3.3.24)

Ak = Σk−1|k−1F
T Σ−1

k|k−1 (3.3.25)

Σk,k−1|N = Σk,k−1|k + [Σk|N − Σk|k]Σ
−1
k|kΣk,k−1|k (3.3.26)

To summarize, at each iteration we compute the sufficient statistics described

previously using the above recursions of the Forward-Backward and the old estimates

of the model parameters (E-step). Then, the new estimates can be obtained from

these statistics via the proposed element-wise way (M-step).
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3.3.2 Estimation with additional control input

Assuming that the additional control term Buk is inserted in the state equation,

which becomes as in (3.2.3), the ML estimates of θ are then obtained by minimizing:

J(X,Y, θ) = −L(X,Y, θ) =
N

∑

k=1

{

log |P |

+(xk − Fxk−1 − Buk−1)
T P−1(xk − Fxk−1 − Buk−1)

}

+
N

∑

k=0

{

log |R| + (yk − Hxk)
T R−1(yk − Hxk)

}

+ constant (3.3.27)

The element-wise estimates of the parameters are now given by:

F̂ i,j =

M
∑

c=1

{

(cof(P̂ i,c))(Γc,j
4 )

}

(cof(P̂ i,i))(Γj,j
3 )

−

M
∑

c=1

{

(cof(P̂ i,c))

T
∑

q=1

{

(B̂c,q)(Γq,j
8 )

}}

(cof(P̂ i,i))(Γj,j
3 )

−

M
∑

c=1,c6=i

{

(cof(P̂ i,c))(F̂ c,j)(Γj,j
3 )

}

(cof(P̂ i,i))(Γj,j
3 )

−

M
∑

c=1

{

(cof(P̂ i,c))
M

∑

r=1,r 6=j

{

(F̂ c,r)(Γr,j
3 )

}}

(cof(P̂ i,i))(Γj,j
3 )

(3.3.28)

B̂i,j =

M
∑

c=1

{

(cof(P̂ i,c))(Γc,j
10 )

}

(cof(P̂ i,i))(Γj,j
9 )

−

M
∑

c=1

{

(cof(P̂ i,c))

M
∑

s=1

{

(F̂ c,s)(Γs,j
7 )

}}

(cof(P̂ i,i))(Γj,j
9 )

−

M
∑

c=1,c6=i

{

(cof(P̂ i,c))(B̂c,j)(Γj,j
9 )

}

(cof(P̂ i,i))(Γj,j
9 )

−

M
∑

c=1

{

(cof(P̂ i,c))

T
∑

q=1,q 6=j

{

(B̂c,q)(Γq,j
9 )

}}

(cof(P̂ i,i))(Γj,j
9 )

(3.3.29)
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P̂ i,j = (Γi,j
2 ) −

M
∑

r=1

(F̂ i,r)(Γj,r
4 ) −

M
∑

r=1

(F̂ j,r)(Γi,r
4 )

+

M
∑

c=1

M
∑

r=1

(F̂ i,c)(F̂ j,r)(Γc,r
3 ) −

T
∑

q=1

(B̂i,q)(Γj,q
10 ) +

T
∑

q=1

M
∑

r=1

(B̂i,q)(F̂ j,r)(Γq,r
8 )

−

T
∑

q=1

(B̂j,q)(Γi,q
10 ) +

M
∑

r=1

T
∑

q=1

(F̂ i,r)(B̂j,q)(Γr,q
7 ) +

T
∑

q=1

T
∑

p=1

(B̂i,q)(B̂j,p)(Γq,p
9 ) (3.3.30)

R̂ = Γ5 − Γ6Γ
−1
1 ΓT

6 (3.3.31)

where T denotes the column size of B.

The additional sufficient statistics that we need for the case of control input, are

given by

Γ7 =
1

N

N
∑

k=1

xk−1u
T
k−1 (3.3.32)

Γ8 =
1

N

N
∑

k=1

uk−1x
T
k−1 (3.3.33)

Γ9 =
1

N

N
∑

k=1

uk−1u
T
k−1 (3.3.34)

Γ10 =
1

N

N
∑

k=1

xku
T
k−1 (3.3.35)

The statistics shown above require the following quantities at iteration p:

Eθ(p){xk−1u
T
k−1|Y} = x̂k−1|NuT

k−1 (3.3.36)

Eθ(p){uk−1x
T
k−1|Y} = uk−1x̂

T
k−1|N (3.3.37)

Eθ(p){uk−1u
T
k−1|Y} = uk−1u

T
k−1 (3.3.38)

Eθ(p){xku
T
k−1|Y} = x̂k|NuT

k−1. (3.3.39)
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The Forward-Backward recursions are the same as shown in the previous paragraph.

The only difference is at the computation of x̂k+1|k, which its now given by x̂k+1|k =

Jẑk|k, where J = [F B].

3.4 Experiments with artificial data

We applied the proposed estimation method using as training data a Gaussian random

sequence generated artificially by a predefined system. The parameters of the prede-

fined system were chosen randomly, based on the canonical forms shown in (3.2.1),

(3.2.2) and (3.2.5), as well as square symmetric structures for the noise covariances.

We then ensure system’s stability, observability and controllability. When the state

equation includes a control input we also set the control vector uk randomly from a

zero mean Gaussian distribution. The control input and the training data are consid-

ered a known deterministic quantity in the training process. Based on these data and

the EM algorithm, we expect to estimate system parameters close to the predefined

ones.

For the initialization of the EM algorithm we choose randomly an initial set of

system’s parameters. We only check to ensure that the system based on this initial

configuration is observable, controllable and stable. Initialization is very important

since it can influence the convergence of the algorithm. In our experiments, vari-

ous initial sets of parameters highly affected the convergence rate of the estimation

process.

Using the initial conditions and the training data we perform 50 iterations of the

expectation and maximization steps of the EM algorithm. In the expectation step we
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compute the forward - backward counts from the Kalman smoother and collect the

sufficient statistics. In the maximization step we obtain new estimates for the system

parameters based on the element-wise process that we propose. Since the estimates of

the parameters of the state linear equation F , B and P are mutually dependent, we

might consider an additional iterative estimation process of these parameters based

on the same sufficient statistics obtained in the expectation step. This iterative

process can be terminated when a predefined threshold of the distance between two

successive estimates is reached. The distance metric that we consider between any

set of parameter estimations θ and θ̂ is norm 1 described as

D(θ, θ̂) =
‖θ − θ̂‖

‖θ‖
. (3.4.1)

In the first set of experiments we consider 1000 artificially generated training data

and the same dimension for the state and observation vector (n = m = 3). We

can therefore compare the performance of our element-wise ML estimation process in

figure (3.2) to the full matrix estimation process proposed in [12, 13] in figure (3.1).

In both experiments the same predefined system and the same EM initialization is

considered. The results include the increase of the log-likelihood versus the number of

EM iterations. The increase of the log-likelihood does not guarantee convergence to a

global maximum since local optima might be reached. However, if a global maximum

is estimated in a Maximum Likelihood fashion, it is guaranteed to be the optimum

estimate [10].

It is therefore necessary to show the distances between the estimated parameters

θ̂ML = (F̂ML, P̂ML, R̂ML) and the actual ones of the predefined system for various

number of EM iterations to check actual convergence to the true values. The distance

is calculated based on the distance metric defined in (3.4.1). It can be seen that the
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estimation with the proposed element-wise method shows similar convergence rates to

the real values compared to the full estimation. Similar findings can be obtained from

tables (3.1), (3.2), and (3.3) where we present the estimated values for F, P , and R

respectively after 50 iterations with both element-wise and full estimation methods.

Estimation for F

Actual





0 1 0
0 0 1

0.8 −1.79 1.9





Full estimation





−0.0001 1.0048 −0.0254
0.0386 −0.0443 1.0291
0.8173 −1.8161 1.9389





Element-wise





0 1 0
0 0 1

0.7881 −1.7815 1.9044





Table 3.1: Estimation of F with statistics and element-wise method for n = m = 3

A second set of experiments which compares element-wise estimation of the system

parameters, with control input in figure (3.4), and without control in figure (3.3). We

consider increased state size (n = 5) compared to the size of the observation vector

(m = 2) and 1000 training sentences. It can be seen that the additional control term

results in faster convergence to the real parameter values. An issue worth-mentioning,

is that the distance does not always decreases as the number of iterations increases.

This is attributed to the mutual dependence of the system’s parameters. The ML

estimation of a parameter might temporarily converge to a local optimum. However,

as the remaining parameters converge to their true values they can influence the
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Estimation for P

Actual





1 0 0
0 1 0
0 0 1





Full estimation





1.086 0.1387 0.0429
0.1387 1.0403 −0.1126
0.0429 −0.1126 0.8447





Element-wise





1.1334 0.1382 0.0292
0.1382 1.0206 −0.0775
0.0292 −0.0775 1.0187





Table 3.2: Estimation of P with statistics and element-wise method for n = m = 3

convergence of this parameter to another local or global optimum. If we compare

figures (3.4) and (3.3) we can conclude that adding the control input the convergence

towards the global optimum is smoother. Similar findings are shown in figures (3.5)

and (3.6) where the state and observation size was set to n = 9 and m = 3 respectively.

Once again the extra input helped the system to reach more close to the real values.
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Estimation for R

Actual





1 0 0
0 1 0
0 0 1





Full estimation





0.9503 0.1093 0.1260
0.1093 1.0181 −0.1400
0.1260 −0.1400 0.8802





Element-wise





0.9023 0.0787 0.0901
0.0787 1.0312 −0.1193
0.0901 −0.1193 0.9326





Table 3.3: Estimation of R with statistics and element-wise method for n = m = 3
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Figure 3.1: Distances between the estimated matrices F, P, R and their actual values.
Log-likelihood is also shown. Case n=3 and m=3. (full matrix estimation)
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Figure 3.2: Distances between the estimated matrices F, P, R and their actual values.
Log-likelihood is also shown. Case n=3 and m=3. (element-wise estimation)
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Figure 3.3: Distances between the estimated matrices F, P, R and their actual values.
Log-likelihood is also shown. Case n=5 and m=2. (element-wise estimation)
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Figure 3.4: Distances between the estimated matrices F, P, R and their actual values.
Log-likelihood is also shown. Case n=5 and m=2. (element-wise estimation with
additional control input)
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Figure 3.5: Distances between the estimated matrices F, P, R and their actual values.
Log-likelihood is also shown. Case n=9 and m=3. (element-wise estimation)
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Figure 3.6: Distances between the estimated matrices F, P, R and their actual values.
Log-likelihood is also shown. Case n=9 and m=3. (element-wise estimation with
additional control input)



34 CHAPTER 3. GENERAL IDENTIFIABLE STATE-SPACE MODELS

3.5 Discussion

We presented a novel maximum-likelihood algorithm for the re-estimation in an

element-wise manner of the parameters of a generalized linear dynamic system. Most

of the current systems follow a constrained structure which considers diagonal noise

covariances, full state transition matrices under the assumption of identical state and

observation dimensionality and the lack of control input. In the generalized system

that we investigated, although we relax all these constraints, we still retain its identi-

fiability. Experiments in artificial data, show that our algorithm is able to efficiently

converge to the real values. The addition of the control input, enhances system per-

formance and improves convergence speed. It also seems to overcome problems such

as entrapment in a local optimum. Our generalized scheme can prove to be beneficial

in various applications since it increases the degrees of freedom.



Chapter 4

Application on Speech: digit
recognition

It is impossible to know all the causal factors. We can only choose a

limited number of significant factors, and use these for predicting future

events, being forced to ignore factors having only minor influence.

H. Reichenbach

Since the very early years of humanity, speech communication has been, and

will continue to be, the dominant mode of human social bonding and information

exchange. This behavior has a natural reflection on the way humans prefer to interact

with technological artifacts, such as computers. Speech scientists and engineers has

been working in the area of speech communication between humans and computers

for over six decades. A major task in speech science is speech recognition. In this,

the goal is to develop a device that transcribes human speech into written text at the

same level of accuracy as, or higher than, that exhibited by humans.

A few years ago, communicate with a computer or a machine in general via speech

was a part of science-fiction filmography. In nowadays, Automatic Speech Recognition

35
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(ASR) has moved from that stage to daily reality, at least for people who live in

developed countries. Applications of this technology can be found in mobile phones,

in cars, in security buildings, in hospitals or in online airplane tickets booking. People

with specialities have also been profited by speech recognition devices.

The most popular approaches to the speech recognition problem today are based

on statistical methods. In this chapter we shall present different approaches for

acoustic modeling. At the beginning we shall give the general definition of the acoustic

model and then some of the most popular forms of it that are widely used by scientists.

Next, we shall present how the proposed system could be applied as acoustic model

in a speech recognition task. The data that have been used are digits spoken in a

natural way by native speakers.

4.1 Acoustic Modeling Overview

An automatic speech recognition system mainly consists of the blocks shown in figure

(4.1), obtained by [60]. These are the front-end, the acoustic models, the language

model, the lexicon and the search algorithm [60]. Acoustic Modeling plays a critical

role in a speech recognition system and is very important in improving accuracy.

Consider a sequence of speech vectors or observations O , defined as O = o1, o2, ..., oT

where ot is the speech vector observed at time t. The goal of speech recognition is to

find out the corresponding word sequence W = w1, w2, ..., wT that has the maximum

a-posteriori probability P (W |O)

Ŵ = arg max P (W |O) =
P (O|W )P (W )

P (O)
(4.1.1)
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Figure 4.1: A real speech recognition system

The above formula is known as Bayes’ rule. It should be noted that the likelihood

of the observation sequence, P (O), may be omitted in the maximization since it is

independent of the word sequence. The conditional likelihood P (O|W ) is called the

acoustic model and the P (O) is called the language model.

In practice, the problem we need to overcome is to build robust acoustic models in

order to decode (recognize) the spoken utterance. For small-vocabulary applications,

the unit that usually being modeled is word, however for large-vocabulary speech

recognition tasks, we need to decompose the word into some sub-word units, which

called phonemes. In all cases, an optimal acoustic model has to reflect the speech

production mechanism as naturally as it can, and to be able to model contextual

effects such as co-articulation.

Hidden Markov Models (HMMs) and Artificial Neural Networks (ANNs) are the

most popular approaches to acoustic modeling. Both are stochastic methods and

especially the first one has become a “standard” in speech recognition. In the last

15 years though, Segment-based Models (SMs) have been developed from a variety
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of research groups all over the world. These models seem to overcome some of the

problems we meet in HMMs and ANNs. In the following, we shall represent each one

of these different approaches for the acoustic model.

4.2 Hidden Markov Models

Hidden Markov Models are the most flexible and successful statistical approach and

also very popular for acoustic modeling in speech recognition [2, 28, 52]. In HMMs, it

is assumed that the sequence of observed speech vectors corresponding to each word

or phone is generated by a Markov model [69] as shown in figure (4.2). Hence, this

Figure 4.2: A hidden Markov model

model can be viewed as a double-embedded stochastic process with an underlying

stochastic process (the state sequence) not directly observable - the name “hidden”

has been adopted due to this fact. This hidden process can only be probabilistically

associated with another, observable stochastic process which produces the sequence

of features we observe [27].
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Formally an HMM consist of the following elements:

• Number of states: N

• Number of distinct observation symbols: M for discrete HMMs and ∞ for contin-

uous HMMs

• State transition probability distribution: αi,j

• Output distribution of state j: Oj

• Initial state probability: πi.

To summarize, a complete specification of an HMM includes two constant param-

eters, N and M , that represents the total number of states and the size of observation

alphabets respectively, and three sets (matrices) of probability measures A, O, and

π. For convenience, we use the following notation

λ = (A, O, π) (4.2.1)

to denote the whole parameter set of an HMM [27].

4.2.1 Types of HMMs

HMMs can be suitable classified according to the nature of the elements of the O

matrix, which are distribution functions [19]. If observations are vectors of symbols

in a finite alphabet of N different elements then, the distributions are defined on

finite spaces, and the HMMs are called discrete HMMs. If the observation does not

come from a finite set, but from a continuous space, the discrete output distribu-

tion discussed above needs to be modified. In this case, we have to imposed a series

of limitations on the functional form of the distributions, in order to have a logical

number of statistical parameters to estimate. The approach that most researchers
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apply, is the characterization of the model transitions, to mixtures of base densities

g of a family G that have a simple parametric form. Densities g ∈ G are usually

Gaussian or Laplacian, and can be parameterized by the mean vector and the covari-

ance matrix [19]. HMMs with these kinds of distributions are usually referred to as

continuous HMMs. To model more complex distributions, a rather larger number of

base densities has to be used in every mixture. This may require a very large training

set of data for the estimation of the distribution parameters. Problems arising when

the available corpus is not large enough and can be lightened by sharing distributions

among transitions of different models. In semi-continuous HMMs though, all mix-

tures are expressed in terms of a common set of base densities. Different mixtures

can be characterized only by different weights [19].

The computation of probabilities with discrete models is quicker than with contin-

uous models, nevertheless it is possible to speed up the mixture densities computation

by applying vector quantization (VQ) on the Gaussians of the mixtures [5]. Finally,

the parameters of HMMs can be estimated by iterative learning algorithms [52] in

which the likelihood of a set of training data is guaranteed to increase at each step.

4.2.2 The problem with HMMs

Two are the assumptions that characterized the HMMs; firstly, the Markov chain

assumption, referring that the current state depends only on the previous state given

the current state (in a first-order Markov chain). Secondly, the output independence

assumption, in where a particular symbol that is emitted at time t, depends only on

the state st given this state, and is conditionally independent of the past observations.

These assumptions puts however some significant limitations on the accuracy of the
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model [12]. It is difficult to model relative durations within a phone segment since

the mode sequence in HMMs is a Markov chain. It is possible to have some parts

of a segment stretched and others compressed, and this does not agree with speech

knowledge. The biggest deficiency of HMMs comes however from the second step

and the conditional independence assumption of the observations. The modeling of

inter-frame time correlation is done through the statistics of the mode sequence only.

In particular if we use continuous output distributions then one can show [45] that the

joint likelihood of a particular mode and observation sequence is dominated by the

terms of the output distributions as the dimension of the feature vector increases. In

other words an HMM with continuous output distributions converges asymptotically

to an independent process with the dimension of the feature vector and this we believe

is not a realistic model for speech.

4.3 Artificial Neural Networks

Artificial Neural Networks (ANNs), introduced in 1943 by McCulloch and Pitts [44],

are variations on the parallel distributed processing (PDP) idea. This is why ANNs

are also known as connectionist models or parallel distributed processing. Due to their

nature, ANNs are particularly interesting for automatic speech recognition, which

requires a series of constraints to be satisfied, i.e., the parallel evaluation of many clues

and facts and their interpretation in the light of numerous interrelated constraints

[27].

ANNs consist of a number of nodes, or units, connected with each other by links

[64]. Each link has a probabilistic weight, and the learning procedure is taking place
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by updating these weights with the new estimated ones. There are some units which

are connected to the external environment, and these can be consider as the input or

output units. Each unit has a set of input links from other units, a set of output links

Figure 4.3: A single-layer perceptron

to other units, a current activation level, and a means of computing the activation

level at the next step in time, given its inputs and weights. The idea is that each

unit does a local computation based on the inputs from its neighbors, independently

without any kind of control over the rest units. In practice, due to the fact that most

neural network have been implemented as a software program, it is customary to use

synchronous control to update all the units in a fixed sequence. To build a neural

network to perform an application task, one must first decide how many units are to

be used, what kind of units are appropriate, and how the units have to be connected

to form a network. One then initializes the weights of the network, and trains the

weights using a learning algorithm applied to a set of training examples for the task.

A simple neural network consists of one layer and is called a single-layer perceptron.
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In figure (4.3) it is shown graphically the structure of a such network [27]. The output

yj, which is non-linear, can be defined as

yj = f

(

w0j +

N
∑

i=1

wijxi

)

= wjx
t = gj(x) (4.3.1)

where wj = (w0j , w1j, w2j, ..., wNj) are weights and x = (1, x1, x2, ..., xN) are the N

inputs. Each class ωj is associated with a discriminant function gj(x) as shown in

(4.3.1). The decision rule can be based on these discriminant functions, and can be

given by

x ∈ ωk ⇐⇒ k = arg max gi(x). (4.3.2)

A more complex form of ANNs, is the multi-layer perceptron [26, 63] shown in

figure (4.4) with four layers with the two middle ones being hidden, obtained by [27].

Each layer has the same computation models as the single-layer perceptron.

When one is intending to deal with speech, which is a nonstationary signal, has to

take into consideration a few important facts. For instance, he needs to address how

to map an input sequence properly to an output sequence when the two sequences

are not synchronous. In this consideration, one should include a proper alignment,

segmentation, and classification rule. The basic neural networks though, are not good

enough to address these problems in a unified way. On the other hand, recurrent

neural networks have an internal state that is a function of the current input and the

previous internal state. One of the popular neural networks is the Time Delay Neural

Network (TDNN) [68]. The TDNN can be used in a training process, to recognize a

sequence of predefined length. The activation in the hidden layer is computed from

the current and multiple time-delayed values of the previous layer, and the output
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Figure 4.4: A multi-layer perceptron with four total layers. The middle two layers
are hidden.

units are activated only when a complete speech segment has been processed. A

typical TDNN is illustrated in figure (4.5), which we have also obtained by [27]. The

TDNN has been successfully used to classify pre-segmented phonemes.

For small vocabulary speech recognition tasks, ANNs seem to have better per-

formance than HMMs, especially when they have to deal with short, isolated speech

units. Nevertheless, it still remains a challenge for researchers that involved with

neural networks, to prove in practice that they can be as effective as HMMs for large
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Figure 4.5: A Time Delay Neural Network (TDNN). h denotes hidden, xt the input
vector at time t and z denotes a delay of one sample.

vocabulary speech recognition applications.

4.3.1 Hybrid HMMs/ANNs

In dealing with continuous speech tasks, the most effective solution is to integrate

neural networks with HMMs [16, 17]. Instead of the gaussian mixture densities that we

have in HMMs, ANNs can be used as the output probabilities replacing the gaussian

mixtures. The output probabilities could be estimated in the same way as in standard

HMMs, but this time the Bayes rule should be applied to the output of the ANNs

that have been trained to classify the HMM state categories. The neural networks

can consist either of a single large trained network or of a group of separately trained

small networks [9, 21, 46, 59]. A number of techniques have been developed in order

to improve the training performance of these networks. Training can be embedded in

an EM-style process. For example, dynamic programming can be used to segment the

training set and then the segmented data are used to retrain the neural network. In
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addition, it is also possible to have a Baum-Welch style training [6, 25] as in Hidden

Markov Models.

4.4 Segment Models

Previously, we mentioned that in order to apply HMMs in acoustic modeling, one

should make a few assumptions, that are not always corresponding to reality. One

of them is the state conditional independence assumption. Instead of generating

conditionally independent observation vectors, the discrete states in a segment model

generate a sequence of observations length l [48, 60] as shown in figure (4.6), obtained

by [48].

Figure 4.6: A HMM generates one single frame y. On the other hand, SM generates
a random length sequence of frames (y1, ..., yl).

When we are referring to a segment in speech, we mean a variable-length part of

the speech waveform [12], that usually corresponds to a language unit, a word, a phone

or a sub-phone. Segment-based models [4, 7, 33, 43, 50, 62, 18] have been proposed

as HMMs alternatives, offering a more suitable and flexible scheme to model the
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dynamics of speech signal. In [47, 50, 61], a Stochastic Segment Model (SSM)

was introduced for continuous speech recognition. In this, one assumes that the

observation sequence Y = [y1, ..., yl] of random length l, is generated by each segment

of speech, and the model for a phone α consists of a family of joint density functions

(one for every observation length), and a collection of mappings that specify the

particular density function for a given observation length [49]. The segments are

described by a fixed length sequence of locally time-invariant regions. To specify

which observation vector corresponds to each of these regions, one uses a deterministic

mapping.

The probability of a segment given phone α is the product of the probability of

each observation yi and the probability of its duration L, which is known

p(Y |α) = p(Y, L|α) = p(L|α)
L

∏

i=1

p(yi|α, TL(i)) (4.4.1)

where TL(i)) is the corresponded region and determines the mapping of the L-long

observation to the m regions in the model.

One of the basic problems with this model, was the training procedure. A first

approach was a full-covariance Gaussian SSM, an approach that requires a large num-

ber of parameters. However, it takes full account of the intra-segmental correlations

within a speech segment. Robust estimation of such model would require a great

amount of data, and in practice was found to be inappropriate for systems having

larger feature dimensions. For this reason, the idea of using a block-diagonal covari-

ance was adopted. The basic assumption was that successive frames are independent

given the length l of the segment. Even though the inter-frame correlation modeling

- the potential advantage of SSMs - is ignored under a such model, it has been shown

to match the performance of HMMs.
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In [12], a Gauss-Markov SSM was introduced to solve the above problems. Thus,

the model that was looking for should have a moderate number of free parameters

without trading its capability to model time correlation efficiently. The density of the

unobserved feature sequence y given phone α is characterized by a Markov assumption

p(y|α) = p(y1|α)p(y2|y1, α)p(y3|y2, α)...p(yM |yM−1, α) (4.4.2)

where p(yk|yk−1, α) are the conditional Gaussian densities of the jointly normal ran-

dom vectors yk, yk−1. This model has the advantage that the number of parameters

being estimated, increases by less than a factor of 3 over the block-diagonal case,

whereas it still models time correlation. Experiments shown that there was no sig-

nificant improvement in performance over the independent-frame model (diagonal-

covariance SSM). Due to the nature of speech, it is quite possible to have large

differences between speakers, dialects, and recordings. Hence, they thought that

they can get significant improvements if they could foresee possible mismatches and

smooth the estimated distributions. The idea was to achieve a more smooth version

of Gauss-Markov model, by adding an observation noise component to the model.

Thus, a linear state-space dynamic system or Linear Dynamic Segment Model

(LDSM) was constructed. The set of equations for the state and the observation

space respectively was then

xk+1 = Fk(α)xk + wk (4.4.3)

yk = Hk(α)xk + µk(α) + vk (4.4.4)

where wk, vk were uncorrelated zero-mean Gaussian vectors with covariances Pk(α), Rk(α)

respectively. In the above, the structure of the model was such, in order to ensure

that the system was identifiable [8, 35].
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4.4.1 Other segment-based models

In previous years, another approach, similar to SSMs, has been proposed in bibli-

ography called Hidden Dynamic Models (HDMs) [11, 42, 51, 55, 70]. In this,

one tries to better model the co-articulation phenomenon and the transitions between

neighboring phones. The HDM consists of a single vector target per phone in a hid-

den dynamic space in which the trajectories of speech are produced by a dynamic

system. The observation process in HDMs is implemented by a global multi-layer

perceptron (MLP). The model has a simple, and a very flexible structure and it can

capture important aspects of the relationship between phonetic labels and acoustic

patterns. However, the inference algorithms for the HDM are not really tractable. A

number of approximate methods have been proposed [34, 39, 40, 41, 65].

Another approach in segment-based modeling, was the idea of inserting articu-

latory knowledge into acoustic models. In [56, 57, 58] the Hidden Articulatory

Markov Model (HAMM) was introduced which directly integrates articulatory

information into speech recognition. Based on the [15], HAMM essentially is a HMM

in which each articulatory configuration is modeled by a separate state. The state

transitions aim to naturally reflect human articulation; static constraints disallow con-

figurations which would not occur in a human language such as English, and dynamic

constraints ensure that only physically possible movements are allowed. Furthermore,

asynchronous articulator movement is allowed as each feature can change value in-

dependently of the others. In addition to the static constraints which reduced the

number of states from 25600 to 6676, the number of parameters was further reduced

by removing states with low occupancy during training process. The recognition task
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was the PHONEBOOK, an isolated word, telephone speech corpus. With a 600 word lex-

icon, the HAMM gave a significantly higher word error rate than a standard 4-state

HMM. However, a combination of the models gave a word error rate smaller than the

HMM.

In [20], a Linear Dynamic Model (LDM) is proposed. LDM is based on

the work of Digalakis et. al., mentioned previously, and examines the assumptions

made in applying such a model in speech recognition and shows that the addition of

a hidden dynamic state leads to increases in accuracy over the equivalent static mod-

els. LDMs are suitable in modeling smoothly varying, continuous, noisy trajectories

such as found in measured articulatory data. In this work, it was also introduced

a novel approach of decoding for segment models in the form of a stack decoder

with A∗ search. Such a scheme allows flexibility in the choice of the acoustic and

language models since the Viterbi criterion is not integral to the search, and hy-

pothesis generation is independent of the certain language model. Furthermore, the

time-asynchronous ordering of the search means that only the most likely paths are

extended, and so a minimum number of models are evaluated.

Finally, in [60], there were examined several state-space modeling approaches.

The state evolution and observation processes are assumed to be linear and noise

sources are distributed according to Gaussians or Gaussian mixture models. The

Factor Analyzed HMM (FAHMM) was the first model to be investigated in the

referred work. In this, the state evolution process is assumed to be piece-wise con-

stant. All the variations of the state vector about these constant values are modeled

as noise. In the FAHMM a discrete Markov random variable chooses the continuous

state and the observation process parameters. The FAHMM generalizes a number of
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standard models such as the independent factor analysis, shared factor analysis and

semi-tied covariance matrix HMMs. A second approach examined in the same thesis

[60], was the case that the state evolution process is assumed to be a linear first-

order Gauss-Markov random process. Using Gaussian distributed noise sources and

a factor analysis observation process this model corresponds to a LDS. For acoustic

modeling, a discrete Markov random variable is required to choose the parameters of

the LDS. This hybrid model is called the Switching Linear Dynamical System

(SLDS). The SLDS is related to the stochastic segment model, which assumes that

the segments are independent. In contrast, for the SLDS the continuous state vec-

tor is propagated over the segment boundaries, and hence provides a better model

for co-articulation. Unfortunately, the inference for the SLDS is intractable due to

the exponential growth of posterior components as time passes. In the experiments

was found that a FAHMM system with very basic configuration could outperform

or achieve an equal performance to a standard diagonal covariance matrix HMM

with fewer parameters. The SLDS systems generally were outperformed by the SSM

systems, which were outperformed by the baseline FAHMM.

4.5 Linear Dynamic System Segment Models

Our proposed General Identifiable State-Space Models (GISSMs) could be applied

to speech recognition, as an acoustic model. In this case the model is referred as

Linear Dynamic System Segment Models (LDSSMs). In the next, we shall present

the application process, beginning with the preliminaries, the dataset and the feature

selection and extraction processes.
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4.5.1 Database

The source speech of AURORA 2 database is the TIDigits consisting of connected

digits task spoken by American English talkers (down-sampled to 8 kHz). A selection

of 8 different real-world noises have been added to the speech over a range of signal to

noise ratios with controlled filtering of the speech and noise. Noise signals are selected

to represent the most probable application scenarios for telecommunication terminals.

Noises have been recorded at different place s: 1) Suburban train, 2) Crowd of people

(babble), 3) Car, 4) Exhibition hall, 5) Restaurant, 6) Street, 7) Airport, 8) Train

station. The noise signals are added to the TIDigits at SNRs of 20 dB, 15 dB, 10 dB,

5 dB, 0 dB and −5 dB.

Two training modes are defined as: training on clean data only, and training

on clean and noisy (multi-condition) data. Each of the above modes contain 8440

utterances selected from the training part of the TIDigits. For the second mode, the

data are equally split into 20 subsets with 422 utterances in each subset. Each subset

contains a few utterances of all training speakers. The 20 subsets represent 4 different

noise scenarios at 5 different SNRs. The 4 noises are suburban train, babble, car and

exhibition hall. The SNRs are 20 dB, 15 dB, 10 dB, 5 dB and the clean condition.

Three different test sets are defined. 4004 utterances from 52 male and 52 female

speakers in the TIDigits test part are split into 4 subsets with 1001 utterances in

each. A noise signal is added to each subset of 1001 utterances at SNRs of 20 dB,

15 dB, 10 dB, 5 dB, 0 dB and −5 dB. Furthermore the clean case without adding

noise is taken as seventh condition. In the first test set, called test set A, the four

noises suburban train, babble, car and exhibition hall are added to the 4 subsets. The

second test set, called test set B, is created in exactly the same way, but using the
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four different noises, namely restaurant, street, airport and train station. The third

test set, called test set C, contain s 2 of the 4 subsets with 1001 utterances in each.

Again the clean case without additive noise is considered as seventh condition. This

set is intended to show the influence on recognition performance when a different

frequency characteristic is present at the input of the recognizer.

4.5.2 Front-End

Although all HTK tools can parameterize waveforms on-the-fly, in practice it is usu-

ally better to parameterize the data just once [69]. The tool HCopy is used for this.

As the name suggests, HCopy is used to copy one or more source files to an output

file. Normally, HCopy copies the whole file, but a variety of mechanisms are provided

f or extracting segments of files and concatenating files. By setting the appropriate

configuration variables, all input files can be converted to parametric form as they

ar e read-in. Thus, simply copying each file in this manner performs the required

encoding.

HTK support both FFT-based and LPC-based analysis. In our experiments we

used Mel Frequency Cepstral Coefficients (MFCCs), which are derived from FFT-

based log spectra. Coding can be performed using the tool HCopy configured to

automatically convert its input into MFCC vectors. A configuration file (config) is

needed which specifies all of the conversion parameters.

Our settings for these are as follows, even though some of them are in fact the

default setting. In brief, they specify that the target parameters are to be MFCC

using C0 and energy E, data were created on a big-endian SUN machine, the source

file has no header, the frame period is 10msec (HTK uses units of 100ns), the output
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should not be saved in compressed format, and no crc checksum should be added.

The FFT should use a Hamming window and the signal should have first order pre-

emphasis applied using a coefficient of 0.97. The filterbank should have 23 channels

and 12 MFCC coefficients should be output. The sample rate is set to be at 1250

since data were down-sampled at 8 kHz. Lower and higher frequencies cut-offs are

set at 64 and 4000 respectively.

4.5.3 Learning LDSSMs

We then investigated the performance of the linear dynamic system on a classification

problem on real speech data. We chose the connected digits task of the clean Aurora

2 database for our experiments and trained our models using 4000 training sentences.

We train a total of 11 word-models, 9 for the digits one to nine and 2 for the zero and

oh words. Each word model consists of several segments each of which is modeled

with a linear state-space model as the one defined in equations (3.1.1), (3.1.2) or

(3.2.3). The number of segments is defined according to the number of phonemes of

each word as it shown in the following table. Dummy silence ”sil” and short pause

”sp” models were also considered for implementation issues.

Words One Two Three Four Five Six Seven Eight Nine Zero Oh

Segments 6 4 6 6 6 4 8 4 6 6 2

Table 4.1: Number of Segments for each Aurora 2 Word-Model.

The modeling of a 4-segment word-model and the corresponding state-space equa-

tions are shown in the example of figure 4.7. It can be seen that the correlations

between segments are modeled through the time transitions of the linear systems.
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Based on this configuration, it is obvious that the training of the word-models re-

quires frame-segment alignments. Such alignments can be ideally obtained through

dynamic programming. However, we choose to simplify our implementation at this

phase and obtain these alignments using HTK and equivalent, well trained HMMs

consisting of as many states as the number of segments defined in each of the word-

models.

Figure 4.7: Training scheme for a 4-segment word-model.

We choose the dimension of the state to be equal to the size of the observation vec-

tor which means that the F matrix is filled with free parameters and the observation

matrix is set to the identity matrix H = I. The initial values of the noise covariances

P and R are set randomly while the initial state-transition matrices F are estimated
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from the training data. The forward and backward runs are then applied to the whole

training sentence.

4.5.4 Recognition

For the classification we choose single-word test utterances that were not used for

training. The test set consisted of 600 isolated words distributed uniformly among

the word-models. We obtain alignments for each of the test sentences and each of the

word-models and we sum the log-likelihoods obtained from the forward run on each

trained word-model. We finally classify the sentence to the word that achieved the

highest likelihood.

The learning and the recognition part of the LDSSMs, was done by Georgios

Tsontzos and Vassilios Diakoloukas. In these two tasks of our speech recognition

application, the author had a more auxiliary and advisory role. The feature extraction

and the frame-segment alignments though, was carried out by the author.

4.6 Experimental Results

Figure 4.8 shows classification performance (% word-accuracy) for models trained

using three different initialization sets for the noise covariances P and R. Figure 4.9

presents the increase of the log-likelihood for the same training runs. As can be seen

from both diagrams there is fast initial convergence of the EM algorithm and the

best performance is achieved after only a few EM iterations. However, results also

indicate strong relation of the initialization of the noise covariances P and R and the

performance of the final system.
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Figure 4.8: Classification performance of test data vs. number of EM iterations for
models trained with three different initialization sets.
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Figure 4.9: Normalized log-likelihood ratio of each iteration relative to the convergent
value for the training data, for models trained with three different initialization sets.
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4.7 Discussion

Stochastic processes are a standard in acoustic modeling. We have a small review

of the most popular statistical approaches. Linear State-Space Models could be a

promising solution for speech recognition, since they can visualize the mechanism of

speech production system in a more accurate form. The development of such models

is a very difficult procedure and requires patience and hard work.

We performed training and classification on speech data based on speech segments

and the generalized identification state-space models equations. The results show

significant correlation of the system performance and the initialization of several

system parameters.

A set of improved experimental results will be presented in the near future, within

a diploma thesis written by Georgios Tsontzos.
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Chapter 5

A Weather Application: three-days
forecasting

The basis of a science is its ability to predict.

R. P. Feynman

As we have already mentioned from the beginning of this dissertation, our goal

was to develop such a linear dynamical system, so as to be easily applied in various

tasks, without constraints and limitations. In this chapter we show how the proposed

system could be applied in a weather prediction problem. The task is simple; to

predict the temperatures over the next three days from a few weather observations.

5.1 Database

The database is a part of author’s personal file, retrieved from the internet during

the last three years. Data concerning the city of Chania (Souda airport) and were

collected from the yahoo’s weather service at the following URL: http://weather.

yahoo.com/forecast/GRXX0032_c.html?force_units=1. We considered tempera-

tures at three different times per day; the first measurement was taken at 6.50 am
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referred as the morning measurement, the second at 3.50 pm considered as the midday

measurement and the third at 11.50 pm referred as the night measurement.

Months from January to June contain data from three years (2004, 2005, 2006).

On the other hand, months from July to December only contain data from years

2004 and 2005 (for practical reasons). For our experiments, we used data only from

January to June. Two were the main reasons for considering this decision; firstly

because of the symmetry in temperatures between the first and the second half of a

year that could probably cause some ambiguity to the system (spring and autumn

have quite the same temperatures and the same is for July and August), and secondly

because for the current year 2006, we do not have temperatures over the second half

of the year.

For each month, we divided the available data into training and testing subsets.

We used data from years 2004 and 2005 as training data and we kept data from 2006

as testing. Training data were saved in six different files, each of which was used for

estimating the models parameters. On the other hand, testing data were saved all in

one file; rows from 1 to 31 corresponded to January 2006, from 32 to 59 corresponded

to February 2006, from 60 to 90 to March 2006, 91 to 120 to April 2006, 121 to 151

to May 2006, and finally rows from 152 to 181 corresponded to June 2006.

5.2 Training the month-models

The first step was to train the system by inserting the training observations, so as

to extract 6 models, one for each of the months from January to June. Starting

from January, we inserted the data observations into the system, considered to be
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the observation vector yk. At the beginning we randomly initialized the systems

parameters F, P and R as well as the initial values of the covariance Σx of the state.

For the initial mean value µx of the state vector, we set it to be equal to zero.

Training was carried out by inserting the data within a three-day segment. This

means that the state vector was a 9 × 1 vector and the dimension of the parameters

matrices F, H, P, R, was 9 × 9. In essence, the observation vector consisted of a

set of three days. Consider for example three continuous days. The first day has

three samples [a1b1c1]
T for the morning, midday and night measurement. The second

day consists of the [a2 b2 c2]
T and the third of [a3 b3 c3]

T . In this case the first

three-day segment is [a1 b1 c1 a2 b2 c2 a3 b3 c3]
T . The second three-day segment is

[a2 b2 c2 a3 b3 c3 a4 b4 c4]
T where the index 4 refers to the upcoming day. Hence,

every day can be found within its neighboring days. In this way, we give some extra

information to the model about the behavior of the temperature across the time.

The training process followed the same path as in our previous experiments. The

training data passed through the Forward and Backward recursions of the Kalman

smoother and then the sufficient statistics were computed. The new estimates of the

month-model parameters, obtained from these statistics according to the element-wise

estimation equations given in (3.3.2) - (3.3.4).

5.3 Forecast

We then used the trained month-models to perform a three-day weather forecasting

or, to be more precise, a three-day temperature forecasting since we only try to predict

the temperatures and not other weather conditions such as humidity, winds, clouds,

rain, sun, snow etc.
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At the beginning, the system was initialized according to the parameters of the

model January. Next, we inserted the testing data, recalling that the first 31 samples

corresponded to January, also in a three-day segment as in the training process.

In every iteration of the Forward algorithm, and before continuing with the next

sample, we also computed the yk+1|k, yk+2|k and yk+3|k which are our estimates over

the next three time steps. Essentially, these values are our temperature prediction

of the following three days-segments, based on the temperatures of the current day-

segment, namely the yk|k or simple yk, following the notation of the Forward recursions

presented in chapter 3. We followed the same procedure for all the testing data. The

parameter set automatically switched to the values of the February model, when the

first day of a three-day segment was a February sample. Every time the first sample

of the next segment was from a different month, the system immediately turned to the

corresponded model. In the end, for every day we obtained a three-day prediction.

5.4 Experimental Results

In this section we shall present interesting experimental results extracted from our

application in weather forecasting. Figures (5.1), (5.2), and (5.3) shown norm 1

distances between the real temperatures and the predicted ones from GISSM for the

next day, after two days and after three days respectively. We used the same distance

metric as we did in our experiments with artificial data shown in equation (3.4.1).

Figures shown that the error is larger for the second day of prognoses compared to

the first, and even larger for the third day compared to the second, as we normally

expected.

In order to compare our results, we did the next experiment. We assumed on each
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Figure 5.1: Distances between the actual and the predicted temperatures considering
temperatures forecasting after one day.

day that the following three days will have the same temperature as the current day.

In other words, we simulated a “naive weather predictor” defending that temperatures

would be the same for a time period of three days. Figures (5.4), (5.5), and (5.6) shown

norm 1 distances between the actual temperatures and the “naive prognoses” for the

next day, after two days, and after three days respectively. Studying these figures, one

can easily conclude that the GISSMs’ prognoses is significant better than the “naive

predictor”. GISSM predictor clearly outperforms the “naive predictor” during winter

time, which is the most flexible season concerning temperatures. “Naive predictor”
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Figure 5.2: Distances between the actual and the predicted temperatures considering
temperatures forecasting after two days.

cannot predict the weather dynamical characteristics. The performance of the two

predictors for summer time (May and June), was pretty the same mostly due to the

fact that in this time of the year, weather in Chania is quite the same every day with

small temperature divergences in a time window of three days.

In the next, we show absolute values of the mean temperature error for the three-

day prediction with the GISSM predictor (figure (5.7)). Figure (5.8) show its standard

deviation. In figures (5.9) and (5.10), we present the same as above for the case of

the “naive predictor”.
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Figure 5.3: Distances between the actual and the predicted temperatures considering
temperatures forecasting after three days.

Finally, we compare the two mean error values of the two predictors, for the first,

second and the third day (figures (5.11), (5.12), and (5.13) respectively). In these, one

can clearly notice the undoubted domination of GISSM predictor. In table (5.1) it is

shown the mean temperature error and its standard deviation for the two predictors.
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Figure 5.4: Distances between the actual and the predicted temperatures considering
temperatures after one day to be the same as the current’s day.

forecast GISSM predictor “naive predictor”
mean temp. error std mean temp. error std

1st day [1.2362 1.6094 1.4356] [1.1500 1.4923 1.3451] [2.0057 2.0961 1.8757] [1.8768 1.8588 1.9309]

2nd day [1.8620 2.3252 2.1556] [1.6557 2.0707 1.9071] [2.4859 2.9548 2.5028] [2.1175 2.6845 2.3467]

3rd day [2.5239 3.1890 2.7741] [2.0959 2.5913 2.2916] [2.6045 3.3277 2.7684] [2.0945 2.9254 2.3636]

Table 5.1: Mean temperature error and its standard deviation for the two predictors.
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Figure 5.5: Distances between the actual and the predicted temperatures considering
temperatures after two days to be the same as the current’s day.
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Figure 5.6: Distances between the actual and the predicted temperatures considering
temperatures after three days to be the same as the current’s day.



5.4. EXPERIMENTAL RESULTS 71

Figure 5.7: Mean temperature error between the actual and the predicted tempera-
tures, using GISSM.
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Figure 5.8: Standard deviation of the mean temperature error between the actual
and the predicted temperatures, using GISSM.



5.4. EXPERIMENTAL RESULTS 73

Figure 5.9: Mean temperature error between the actual and the predicted tempera-
tures, assuming the same temperature over the next three days.
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Figure 5.10: Standard deviation of the mean temperature error between the actual
and the predicted temperatures, assuming the same temperature over the next three
days.
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Figure 5.11: Comparison of the mean temperature error in case of prediction with
GISSM and when assuming the same temperature. Case of one day after.
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Figure 5.12: Comparison of the mean temperature error in case of prediction with
GISSM and when assuming the same temperature. Case of two days after.
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Figure 5.13: Comparison of the mean temperature error in case of prediction with
GISSM and when assuming the same temperature. Case of three days after.
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5.5 Discussion

We have shown how our system could be used for various applications beyond speech

recognition. Essentially, this was achieved without any kind of modification into the

structure of the model or into the estimation procedure. The powerful linear dynamic

system seems to be able to be applied in a classification/recognition task and also in

a prediction/prognoses task, in a very efficient way.

Our experiments in weather prognoses shown that it can achieve good results.

Generally speaking, and taking also under consideration the fact that we only had

a few temperatures data for training and even less for testing, the behavior of the

predictor was effectual. We all know that weather is essentially a non-linear, chaotic

phenomenon which can be dramatically affected by many unpredictable and unex-

pected conditions. Temperature, in particular, could be affected from the physical

environment such as sea, mountain chains, forests, etc. or from high or low pressure

or from the wind i.e., if it blows from the cold north or from the hot south. However,

the GISSM predictor performed well, and in all cases the prognoses that obtained as

its outcome was remarkably close to the reality.



Chapter 6

Conclusions

I know nothing except the fact of my ignorance.

Socrates

The goal of this thesis was to investigate new strategies of estimating the pa-

rameters of a linear dynamic system and to apply the proposed model to improve

the acoustic model in a speech recognition system. We show that our work can be

applied beyond the area of speech recognition, by applying it in a weather prediction

task. That means that the proposed model could be used in many problems in fields

such as estimation, pattern classification/recognition or in prediction problems. In

the next section, we first summarize the contributions of this work, which are both

theoretical and experimental, and then we highlight the many alternatives that it

offers for extension.

6.1 Thesis Contributions

Chapter 2, gives a brief review on Linear Dynamic Models. We presented the main

structure of such models that could be found in Dynamic systems literature. We
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presented the main tasks that these models could be applied in, depending on whether

we performing filtering or learning, and show the different approaches on estimating

the parameters and the states of each model.

In chapter 3, we presented generalized forms of linear state-space dynamic models

that we were investigated. At the beginning of the chapter, we presented the structure

of the proposed model that its canonical form, ensures its identifiability. In our

model we overcome the problem with the diagonal noise covariances allowing instead

the use of full noise covariances. Moreover the state vectors can arbitrary increased

dimension compared to the size of the observation vector. We also developed the

training algorithm for this model based on the a non-traditional approach proposed in

[12], which is based on the EM algorithm. We extended the proposed training method

to an element-wise process and we showed how the equations and the estimation

algorithm changes in this way. Next, we investigated the use of an extra control

input in the state equation, and we showed how the novel element-wise maximum

likelihood approach can be modified in this case. In the end of this chapter, we

presented some experimental results with artificially-generated data and studied the

convergence of the algorithm.

In chapter 4 we presented the different approaches to the problem of acoustic

modeling. We presented the most common methods starting with the most popular,

the HMMs. We saw their structure, their mathematical formulation and the applica-

tions in speech recognition. We mentioned that the output-independence assumption

inherent in HMM modeling is not valid. We also noticed that HMMs cannot model

real speech efficiently due to their disability to model more complex dependencies i.e.,

coarticulation, a very common phenomenon that happens often because articulators,
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due to their inertia, cannot make instantaneous transitions from one configuration to

the next. Then, we showed neural networks, an approach that, nevertheless is not

so famous among speech researches, it can be consider quite efficient, especially for

small vocabulary tasks. In the end of this section, we saw some of the work that has

been done in the last few years in segment-based models. Since the work that has

been presented in this thesis, has a strong relation with these models, we presented a

deep review about them. We know that segment models can represent higher order

phenomena and the evolution of speech dynamics. However not all of the proposed

models have these kind of properties. We mainly focused on linear dynamic models

and discuss about the restrictions and constraints that are related with most of them,

and the problems that are involved with their application in speech recognition. In

the end of the chapter, we represented the application of our GISSM model, which

in speech recognition terminology is called LDSSM, in a real speech recognition task.

We have shown all the necessary modifications in order to be applied in speech data,

and we presented results about the classification accuracy of the system.

Finally, in chapter 5 we have shown in practice how GISSM could be useful in a

totaly different task. We have applied our model in a weather forecasting problem

trying to perform a three-day temperature prediction, based on our model and a

few weather observations. Even though we know that weather prognoses is a difficult

non-linear task, results shown that under some circumstances, the General Identifiable

State-Space model could be efficiently applied in weather prediction.
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6.2 Future Work

There are many suggestions for continuing the work that presented in this dissertation.

Basically the extensions are referring to the two applications; speech recognition and

weather forecasting.

Starting with the first, we have noticed that experimental results shown signif-

icant correlation of the system performance and the initialization of several system

parameters. It is then necessary to investigate methods for optimized initialization

of the training process. A good approach in this direction would be the use of other

features, such as formants or other articulatory features for the initialization of the

state space. Along with the different types of features, it would be interesting to

examine different dimensions of the state vector and/or observation vector, too.

In implementation of the LDSSMs for speech recognition, we used frame-segment

alignments for training the word-models. We have chosen to simplify our implemen-

tation at that phase and obtain these alignments using HTK and equivalent, well

trained HMMs consisting of as many states as the number of segments defined in

each of the word-models. We believe that a more sophisticated approach to this

would be to develop algorithms to obtain feature-segments alignments through dy-

namic programming.

In theory, we investigated the use of an extra control input for the proposed

GISSMs. It should be challenging for our research to examine how this could be

useful in speech recognition. Could it be possible to use an extra input in a speech

recognition task? What would that be? A clear answer at the moment, could not

be said. Maybe we could use the air flow between the mouth of the speaker and the
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microphone, as an extra input.

Finally, we applied our model only on the clean set of AURORA 2 database.

However, the real challenge would be to evaluate the performance of LDSSM on the

rest of the database, with different noise additions in various noisy scales. The power

of segment-based models is in these kind of situations.

Results in weather prediction shown also that there are some subjects that could

be improved. We only used 360 samples for training and 180 for testing. Maybe it

would be better to obtain from a meteorological service, data for more than three years

in order to more efficiently train the month-models and to evaluate the prediction

performance of the system with larger data set.

In our experiments on weather forecasting, we only used temperature samples

obtained in the morning, midday and night. We can investigate the use of extra

information by rising the observation vector and the state vector, too. For a more ac-

curate weather prognoses, one would need information about the humidity, the wind,

pressure, dewpoint and many other meteorological parameters that meteorologists

take into consideration when they train their models to predict the weather.

In conclusion, we have applied the GISSM only on the first half of the year,

months from January to June. One of the reasons for doing this was the “temperature

similarity” between Spring and Autumn, and also among July and August, in Chania.

Taking under consideration additional parameters, as those mentioned above, we

could apply the model to the whole year since it could be possible to obtain more

robust models for each month and hence to be able to predict weather with a better

performance. In all cases, we cannot ignore weather’s non-linearity and that is a fact

that always would cause error in prognoses.
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Appendix A

Derivation of the Element-wise
estimation of General State-Space
models’ parameters

A.1 Without control input

In this appendix we derive the Maximum-Likelihood estimates in an element-wise

way of the parameter matrix F and the state covariance P in case with no extra

control input and in next section, in case of additional input B.

Proposition A.1.1. If matrix F has the identifiable canonical form shown in 3.2.1

and the covariance P is a full matrix of the same dimension as F , then the element-

wise estimators of F, P that maximize the quantity

L(X,Y) = −
N

2
log |P | −

1

2

N
∑

k=1

{(yk − Fxk)
T P−1(yk − Fxk)} + constant (A.1.1)
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APPENDIX A. DERIVATION OF THE ELEMENT-WISE ESTIMATION OF

GENERAL STATE-SPACE MODELS’ PARAMETERS

are given by

F̂ i,j =

M
∑

c=1

{

(cof(P̂ i,c))(Γc,j
4 )

}

(cof(P̂ i,i))(Γj,j
3 )

−

M
∑

c=1,c6=i

{

(cof(P̂ i,c))(F̂ c,j)(Γj,j
3 )

}

(cof(P̂ i,i))(Γj,j
3 )

−

M
∑

c=1

{

(cof(P̂ i,c))
M

∑

r=1,r 6=j

{

(F̂ c,r)(Γr,j
3 )

}}

(cof(P̂ i,i))(Γj,j
3 )

(A.1.2)

P̂ i,j = (Γi,j
2 ) −

M
∑

r=1

(F̂ i,r)(Γj,r
4 ) −

M
∑

r=1

(F̂ j,r)(Γi,r
4 ) +

M
∑

c=1

M
∑

r=1

(F̂ i,c)(F̂ j,r)(Γc,r
3 ) (A.1.3)

Proof. The likelihood function that we want to maximize is

L(X,Y) = −
N

2
log |P | −

1

2

N
∑

k=1

{(yk − Fxk)
T P−1(yk − Fxk)} + constant. (A.1.4)

In Digalakis PhD thesis [12] has been derived that the quantity (A.1.4) can be max-

imized by

θ̂ = argmindet

[

1

N

N
∑

k=1

ek(θ)ek(θ)
T

]

(A.1.5)

P̂ =
1

N

N
∑

k=1

ek(θ)ek(θ)
T . (A.1.6)

Hence, we can write:

∂F̂

∂F i,j
=

∂|P |

∂F i,j
=

M
∑

r=1

M
∑

c=1

∂|P |

∂P r,c

∂P r,c

∂F i,j
. (A.1.7)

We know that

|P | =

M
∑

c=1

P r,c cof(P r,c) (A.1.8)
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but cof(P r,c) is independent of P r,c for every (r,c), and so

∂|P |

∂P r,c
=

∂

M
∑

c=1

P r,c cof(P r,c)

∂P r,c
= cof(P r,c). (A.1.9)

Hence, finally we get

∂|P |

∂F i,j
=

M
∑

r=1

M
∑

c=1

cof(P r,c)
∂P r,c

∂F i,j
. (A.1.10)

It can be shown, using some elementary matrix algebra, that the derivative ∂P
∂F i,j

is given by

∂P

∂F i,j
= 2

M
∑

r=1

F i,rxrxj − 2yixj (A.1.11)

and considering the (A.1.10) we get for the general case the following equation

∂|P |

∂F i,j
= 2

M
∑

c=1

{

cof(P i,c)

[ M
∑

r=1

(F c,rxrxj) − ycxj

]}

. (A.1.12)

If we consider the above to be equal to zero we finally get the equation (A.1.2).

For the covariance matrix we have
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P̂ =
1

N

N
∑

k=1

ek(θ)ek(θ)
T ⇐⇒

P̂ =
1

N

N
∑

k=1

{

(yk − Fxk)(yk − Fxk)
T

}

⇐⇒

P̂ =
1

N

N
∑

k=1

{(

yk −

[

F i xk

])(

yk −

[

F i xk

])T }

⇐⇒
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. (A.1.13)

A.2 With control input

In this section we derive the Maximum-Likelihood estimates in an element-wise way

when we have control input.

Proposition A.2.1. If matrix F has the identifiable canonical form shown in (3.2.1)

and the control matrix B the one that shown in (3.2.5) and the covariance P are filled

of free parameters, then the element-wise estimators of F, B, and P that maximize
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the quantity

J(X,Y, θ) = −L(X,Y, θ) =

N
∑

k=1

{

log |P |

+(xk − Fxk−1 − Buk−1)
T P−1(xk − Fxk−1 − Buk−1)

}

+

N
∑

k=0

{

log |R| + (yk − Hxk)
T R−1(yk − Hxk)

}

+ constant (A.2.1)

are given by

F̂ i,j =

M
∑

c=1

{

(cof(P̂ i,c))(Γc,j
4 )

}

(cof(P̂ i,i))(Γj,j
3 )

−

M
∑

c=1

{

(cof(P̂ i,c))
T
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{

(B̂c,q)(Γq,j
8 )

}}
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−
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{
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{
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{
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(A.2.2)

B̂i,j =
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∑
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(A.2.3)
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Proof. The likelihood function that we want to maximize is given by (A.2.1). Follow-

ing the same steps as in the previous section, we again conclude in equation (A.1.10).

At this time, the derivative of |P | in respect to the ij − th element of F is given by

the following

∂|P |

∂F i,j
= 2

M
∑

c=1

{

cof(P i,c)

[ M
∑

r=1

(F c,rxrxj) +
T

∑

q=1

(Bc,quqxj) − ycxj

]}

. (A.2.5)

If we consider the above to be equal to zero we finally get the equation (A.2.2).

In the same way, the equation that we get if we consider derivation with respect

to Bi,j, is given by

∂|P |

∂Bi,j
= 2

M
∑

c=1

{

cof(P i,c)

[ M
∑

r=1

(F c,rxruj) +
T

∑

q=1

(Bc,ququj) − ycuj

]}

. (A.2.6)

By considering again, the above equation to be equal to zero, we conclude in (A.2.3).

For the covariance matrix we have
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