
Computer-aided Learning Of Music

Zervopoulos Thanassis

17 November 2006

2

Contents

1 Acknowledgements 5

2 Abstract 7

3 Introduction 9

3.1 Motivation . 9

3.2 Prior Art . 10

3.3 Thesis Contribution . 12

3.4 Thesis Outline . 12

4 The MM (Music Match) Application 15

4.1 Functional Description . 15

4.2 Technical Description . 23

4.2.1 Problem Formulation 23

4.2.2 Simple Match Approach 24

4.2.3 Brute-Force Approach 25

4.2.4 Dynamic Programming Solution 25

4.2.5 Complexity . 29

5 Tools 31

5.1 MIDI . 31

5.1.1 What is MIDI . 31

5.1.2 Why Midi . 32

5.2 Lisp . 33

5.2.1 What is Lisp . 33

5.2.2 Why Lisp . 34

5.2.3 CMUCL . 35

5.2.4 CLIM . 35

5.2.5 CM . 36

3

4 CONTENTS

5.2.6 CMN . 37
5.2.7 PORTMIDI . 37

6 Implementation 39
6.1 Application Overview . 39
6.2 Classes . 42
6.3 Variables . 42
6.4 Functions . 45

6.4.1 MM (Music Matching) Algorithm Functions 45
6.4.2 LCS (Longest-Common-Subsequence) Functions . . . 50
6.4.3 Utility Functions . 51
6.4.4 GUI Functions . 57

7 Evaluation 63

8 Conclusions & Future Work 75

9 Appendix 79
9.1 Musical Terms . 79
9.2 Classes . 81
9.3 Variables . 82
9.4 Functions . 83

9.4.1 MM (Music Matching) Algorithm Functions 83
9.4.2 LCS (Longest-Common-Subsequence) Functions . . . 93
9.4.3 Utility Functions . 96
9.4.4 GUI Functions . 109

9.5 Algorithm Complexity Analysis 118

10 References 147

Chapter 1

Acknowledgements

I dedicate this thesis to my father Aristeidis Zervopoulos, my mother Aggeliki
Zervopoulou, my brother Yannis Zervopoulos and my beloved friends who
supported me all these years.

5

6 CHAPTER 1. ACKNOWLEDGEMENTS

Chapter 2

Abstract

In this thesis we present an application for computer-aided learning of music.
The application is based on the comparison of two musical scores. We
investigate two alternative algorithms for the comparison: a simple matching
algorithm and the longest common subsequence algorithm, which is based
on dynaming programming. The Music Match (MM) application that we
developed includes additional functionalities, such as playing and recording
a song, showing the sheet notation of a song and also representing the results
of the comparison between two musical scores in a sheet notation, using color
coding to present the errors to the user.

7

8 CHAPTER 2. ABSTRACT

Chapter 3

Introduction

3.1 Motivation

As the division of e-learning is rapidly developing in many areas, in the de-
partment of music great efforts have been made. There are a lot of programs
such as composing music, playing music, writing a music sheet notation, but
there is nothing like an e-teacher of music. It would be nice for those who
know how to play an instrument to get deeper in a music analysis, to com-
pare their songs with the original songs played by famous musicians.

The main idea was to create an electronic teacher of music. A student reads
a music sheet notation and tries to play that in a keyboard. While playing
there is a great possibility of errors. Those errors could be errors of four
types: a note name error, a time error according to the tempo, a duration
error of a note and an amplitude error of a note. The teacher should correct
the student according to his-her level and present him-her the errors. There
are many kinds of teachers in real life. There are strict teachers, but there
are also patient and tolerant teachers. In contrast to real life, the student
chooses his-her teacher any time he-she wants to. Thus, any time that a song
is played, the student is able to compare it with the original song without
the aid of a teacher...at least not a real one.

9

10 CHAPTER 3. INTRODUCTION

3.2 Prior Art

This paper cites two algorithms which are able to find relevant occurences
between two musical scores. Both algorithms are based on the main idea of
a string pattern matching algorithm. Instead of strings, musical sequences
have been used. Those thesis below, proposed also some algorithms which
are able to find similarities and dissimilarities between the query musical
pattern sequence and the target music.

• A Pattern Extraction Algorithm For Abstract Melodic Repre-
santations That Allow Partial Overlapping Of Intervallic Cat-
egories

Emilios Cambouropoulos, Maxime Crochemore, Costas Iliopoulos, Manal
Mohamed, Marie-France Sagot

An efficient pattern extraction algorithm is proposed in this paper that
can be applied on melodic sequences. Thoses sequences are represented
as strings of abstract intervallic symbols and can find maximal repeat-
ing pairs and repetitions with two matching subsequences separated
with an intervening non-matching symbol.

• An Approximate String Matching Algorithm For Content-
Based Music Data Retrieval

Chih Chin Liu, Jia-Lien Hsu, Arbee L. P. Chen

This paper presents an approach for content-based music data retrieval
by transforming the problem into the string matching problem and
providing a new approximate string matching algorithm which pro-
vides fault tolerance ability according to the music characteristics.

• Audio Indexing For Efficient Music Information Retrieval

Ioannis Karydis, Alexandros Nanopoulos, Apostolos N. Papadopoulos,
Yannis Manolopoulos

A novel algorithm is recommended in this paper. The algorithm ef-
ficiently retrieves audio data similar to an audio query. Moreover, a
novel false alarm resolution method is outlined that utilises a reverse
order schema while calculating the distance of the query and results,
in order to avoid costly operations.

3.2. PRIOR ART 11

• Time-Warped Longest Common Subsequence Algorithm For
Music Retrieval

AnYuan Guo, Hava Siegelmann

This paper proposes the Time-Warped Longest Common Subsequence
algorithm which deals with singing errors involving rhythmic distor-
tions. The algorithm is employed in song retrieval tasks, where its
performance is compared to the longest common subsequence algo-
rithm.

• Efficient Algorithms For The δ-Approximate String Matching
Problem In Musical Sequences

Domenico Cantone, Salvatore Cristofaro, Simone Faro

This paper proposes two new algorithms upon the δ-approximate string
matching problem. These algorithms achieve the best performances in
the case of large alphabets and short patterns, which typically occur
in practical situations in music retrieval.

• String Matching And Geometric Algorithm For Melodic Sim-
ilarity

Kjell Lemström, Niko Mikkilä, Veli Mäkinen, Esko Ukkonen

This paper cites two algorithms which are able to find musically rel-
evant occurences of the query pattern in the target music. The first
one is suitable for assessing the similarity of monophonic sequences
based on the string matching framework and the other one is suitable
for polyphonic sequences based on geometric matching.

• Comparison Of Musical Sequences

Marcel Mongeau, David Sankoff

This paper suggests a dynamic programming algorithm that measure
the overall similarity and dissimilarity between two musical scores.
The measure of comparison is defined so as to detect similarities in
melodic line despite gross differences in key, mode or tempo. The key
element is the notion of consolidation and fragmentation, which differ
both from the deletions and insertions familiar in sequence compar-
ison, and from the compressions and expansions of time warping in
automatic speech recognition.

• Finding Maximum-Length Repeating Patterns In Music Databases

12 CHAPTER 3. INTRODUCTION

Ioannis Karydis, Alexandros Nanopoulos, Yannis Manolopoulos

This paper proposes a novel algorithm which discovers all maximum-
length repeating patterns using an “aggressive” accession during search-
ing, by avoiding costly repetition frequency calculation and by examin-
ing as few as possible repeating patterns in order that maximum-length
repeating pattern(s) could be reached.

• O-Generator World Music (African and Latin)

EducationGuardian.co.uk E-learning

O-Generator World Music is an education program. It demonstrates
African and Latin American rhythms and enables students to create
their own tracks that can be represented either in O-Generator mode
or as traditional notation. It supports a record, save and export music
utility.

• Neuratron AudioScore Professional 3

www.audioscore.com

AudioScore allows the users to create musical scores, using a MIDI
keyboard or a microphone and uses highly sophisticated pitch recog-
nition and the most advanced artificial intelligence technology to de-
termine the users intended rhythm and create accurate and musical
score notation.

• Cakewalk

www.cakewalk.com

Cakewalk is the world’s leading developer of powerful and easy to
use products for music creation and recording. These products in-
clude award-winning digital audio workstations and sequencers, fully-
integrated music software and hardware solutions, and innovative vir-
tual instruments.

3.3 Thesis Contribution

This thesis presents an application according to which two songs could be
compared, using a brute-force algorithm and – from biological applications

3.4. THESIS OUTLINE 13

– a dynamic-programming algorithm named LCS (Longest Common Subse-
quence).Those algorithms have been extended with some additional prop-
erties to support fault tolerance ability. The results of the comparison are
demonstrated in a sheet notation.

The above application supports the followings:

The user could listen to a midi file, create a midi file by using a midikeyboard
and save it to hard disk, extract a sheet notation from a midi file, compare
their midi file with the original one and see the results in a new sheet no-
tation by using either a brute-force algorithm or a dynamic-programming
algorithm. They could also make a transporto in a song, open a sheet no-
tation and save it.

3.4 Thesis Outline

A quick look at the table of contents shows that there are 6 chapters repre-
sented below.

Chapter 3: covers the functional and technical analysis of the MM appli-
cation. Discusses the algorithms that are being used and also describes how
a user could handle this application.

Chapter 4: is devoted to the tools that are being used to implement the MM
application.

Chapter 5: contains all the useful data, for someone, to implement the
MM application.

Chapter 6: demonstrates the evaluation stage of the MM application.

Chapter 7: represents some conclusions and what is next to be done.

Chapter 8: its the appendix. It also displays the precious source code.

Chapter 9: its the reference guide.

14 CHAPTER 3. INTRODUCTION

Chapter 4

The MM (Music Match)
Application

4.1 Functional Description

The user of an electronic teacher of music should be able to listen to a song.
After understanding the melody, the user should see the sheet notation of
this song. Then they should try to play this song and record it through a
midi keyboard. After the recording process they should compare the original
song with the recorded one. Finally the user should be able to see the result
of the comparison in a new sheet notation and a percentage of success.

MM application features

- It supports any “.mid” or “.midi” file. That means that the user could
read any “.mid” or “.midi” file of type0 and type1 and also record
“.mid” files of type0.

- It loads or saves a sheet notation as a “.cmn” file, which easily becomes
a “.mid” file.

- A “.mid” or “.midi” file could be transformed into a “.cmn” file.

- A sheet notation could be shown in the x server, or become a postscript
file, which could be easily transmitted to a printer.

Running the application

15

16 CHAPTER 4. THE MM (MUSIC MATCH) APPLICATION

In order for someone to load all the packages that the application depends
on, they should execute the command load-system with argument music-
match in the Lisp interpreter.

If someone wishes to run the application, then, they can simply type the
command (music-match) in the interpreter.

The table below presents the commands that are to be used for the MM
application.

Command Arguments Description

Play filename Plays a midi file using timidity.

Change Sound 1 or 2 & value

Changes between soundcards. 1 is
for the default soundcard and 2 is
for an external soundcard. The
value indicates the sound volume.

Quit – Exit the application.

Clear – Clears the screen window.

Clear History – Clears the history window.

Sheet Notation filename
Presents a sheet notation of the
specified midi file, by transforming
the midi file in a cmn file.

Close Sheet – Closes an open sheet notation.

Discard Track –
Flushes the global variable *myseq*
and sets the application ready for a
new recording.

Transporto num

Change the global variable
transpose-value by such semi-
tones as indicated by num. num
should be an integer between
[−12, 12]

TempoChange num
Change the global variable *my-
tempo*.num indicates the new
tempo value.

Reset tt & dt –

Sets the global variables *time-
tolerance* and *duration-tolerance*
to default values, which are 0.1 and
0.2 respectivly.

OpenNotation filename Opens the specified cmn file.

4.1. FUNCTIONAL DESCRIPTION 17

SaveNotation filename
Saves a sheet notation as a cmn file,
named filename.

Music Match
num1, num2,
filename1, file-
name2, symbol

Two midi files are compared using
a brute-force algorithm and returns
a percentage of how similar the two
files are. filename1 stands for the
original midi file while filename2
stands for the midi file played by the
user. num1 indicates the time toler-
ance value and num2 indicates the
duration tolerance value. symbol is
either yes or no value that enables
a time process report.

LcsMatch
num1, file-
name1, file-
name2, symbol

Two midi files are compared using
the LCS algorithm and returns a
percentage of how similar the two
files are. filename1 stands for the
original midi file while filename2
stands for the midi file played by the
user. num1 indicates the duration
tolerance value. symbol is either yes
or no value that enables a time pro-
cess report.

Show Sheet
After Com-
pare

filename1, filename2

A sheet notation is created with the
results of the comparison between
the two midi files. The brute-force
algorithm is used for the compari-
son.

Show Sheet
After Lcs
Compare

filename1, filename2

A sheet notation is created with the
results of the comparison between
the two midi files. The LCS algo-
rithm is used for the comparison.

Next there are some examples that demonstrate how the MM application
works.

Lets assume we have the following midi file in figure 2.1

18 CHAPTER 4. THE MM (MUSIC MATCH) APPLICATION

Figure 4.1: A sheet notation from the original midi file

And we produce the midi file in figure 2.2 below

Figure 4.2: A sheet notation from a student’s midi file

In figure 2.3, using the command Show Sheet After Compare, results...

Figure 4.3: After the comparison with tt= 0.1 and dt= 0.2, we see that the 1st note is equal,
the 2nd has only the duration parameter equal, the 3rd is equal except for the time parameter
and the 4th is equal except for the time and duration parameter.

4.1. FUNCTIONAL DESCRIPTION 19

In figure 2.4 we see a percentage of how similar the two songs are, using the
command Music Match

Figure 4.4: The history window shows the percent of how similar are.

Now, the same example will be used but with the Longest Common Subse-
quence algorithm. Using the command Show Sheet After Lcs Compare the
results are shown in figure 2.5

Figure 4.5: After the comparison with dt= 0.2, we see that the 1st note is equal, the 2nd is
not equal, the 3rd is equal and the 4th is equal except for the duration parameter.

And if we want to see a percent of how similar the two songs are we utilize
the command LcsMatch in figure 2.6

If we change the dt (duration tolerance) value in the same example, then,
we will get different results as shown below in figures 2.7-2.10.

20 CHAPTER 4. THE MM (MUSIC MATCH) APPLICATION

Figure 4.6: The history window shows the percentage of how similar the two songs are. Also
we have 1 deletion and 1 insertion.

Figure 4.7: After the comparison with tt= 0.1 and dt= 0.5, we can perceive that the 1st note
is equal, the 2nd has only the duration parameter equal, the 3rd is equal except for the time
parameter and the 4th is equal now, except for the time parameter.

Figure 4.8: The history window shows the percentage of how similar the two songs are with
dt= 0.5

Figure 4.9: After the comparison with dt= 0.5, we see that the 1st note is equal, the 2nd is
not equal, the 3rd is equal and the 4th is equal now.

4.1. FUNCTIONAL DESCRIPTION 21

Figure 4.10: The history window shows the percentage of how similar the two songs are. Also
we have 1 deletion and 1 insertion.

Another example is our making a transporto to a midi file. Lets assume we
have the following midi file in figure 2.11

Figure 4.11: Before transporto...

Using the command transporto −3, we decrease each note by 3 semitones
and the result is shown in figure 2.12

Figure 4.12: After transporto −3 semitones...

Another example is our changing the tempo to a midi file. So, lets assume
we have the following midi file in figure 2.13

If we reduce the tempo, we will get the result below, in figure 2.14

22 CHAPTER 4. THE MM (MUSIC MATCH) APPLICATION

Figure 4.13: The default tempo is 60.

Figure 4.14: The tempo now is 16.

4.2. TECHNICAL DESCRIPTION 23

4.2 Technical Description

In this section, our aim is to formulate the music match problem by providing
two different algorithms that will solve this problem. The first one is a simple
match algorithm the second one is a brute-force algorithm and the last one
is a dynamic-programming algorithm.

4.2.1 Problem Formulation

In Music Match, we wish to compose two different pieces of music. A piece
of music consists of instances of notes or chords. Representing each of an
instance, a note can be expressed as a list of (n, t, d), where n = n1 for
the note name, t = t1 for the time note and d = d1 for the note duration,

as for the chord (−→n ,
−→
t ,
−→
d), where −→n = (n1, n2, n3),

−→
t = (t1, t2, t3) and

−→
d = (d1, d2, d3).

For example, a music piece may be:

M1 = {(n1, t1, d1), (n2, t2, d2), (n3, t3, d3), ..., (nn, tn, dn)}

while another music piece may be:

M2 = {(n′

1, t
′

1, d
′

1), (n
′

2, t
′

2, d
′

2), (n
′

3, t
′

3, d
′

3), ..., (n
′

n, t′n, d′n)}

One goal of comparing two music pieces is to determine how “similar” the
two music pieces are, providing some measure of how closely related the two
music pieces are.

We formalize this last notion of similarity as the longest-common-subsequence
problem. In the longest-common-subsequence problem (LCS), we are
given two sequences M1 = {m1, m2, ..., mm} and M2 = {m′

1, m
′

2, ..., m
′

m}
and we wish to find a maximum-length common subsequence of M1 and M2.
Longest Common Subsequence of two sequences M1, M2, (LCS(M1, M2)) is
defined as the largest set of symbols that fullfill the following properties:

i. LCS(M1, M2) is a subset of both M1, M2

ii. The symbols in LCS(M1, M2) follow the same ordering as in both
M1,M2

The LCS problem can be solved efficiently by our using dynaming program-
ming.

24 CHAPTER 4. THE MM (MUSIC MATCH) APPLICATION

4.2.2 Simple Match Approach

In this approach we do not try to find the LCS of M1, M2, but we assume
that there is a 1 to 1 correspondence of the symbol of the shortest sequence
to the first symbols of the longest sequence. So, the alignment for M1 →M2

contributes to minimize the D(M1, M2). Lets assume that an instance of a
note from M1 can be expressed as N : (n, t, d) and from M2 as N ′ : (n′, t′, d′)
and both lengths of M1 and M2 are equal.

The D(M1, M2) would be equal to the sum of each difference between two
instances.

D(M1, M2) =
n

∑

i=1

d(Ni, N
′

i)

The d(Ni, N
′

i) would be equal to the sum of the differences between the note
name, time note and note duration.

d(Ni, N
′

i) = λ1 ∗ d(ni, n
′

i) + λ2 ∗ d(ti, t
′

i) + λ3 ∗ d(di, d
′

i)

where each difference could be expressed as the equations below:

• d(ni, n
′

i) = c ∗ (1− δ(ni − n′

i))

where c is a constant value and the function δ where

δ(ni − n′

i) =

{

1 , ni = n′

i

0 , ni 6= n′

i

• d(ti, t
′

i) = |ti − t′i|

where

|ti − t′i| =

{

0 , ti − T < t′i < ti + T

MAXTHRES

and T is the time tolerance.

• d(di, d
′

i) = |di − d′i|

4.2. TECHNICAL DESCRIPTION 25

where

|di − d′i| =

{

0 , di −D < d′i < di + D

MAXTHRES

and D is the duration tolerance.

4.2.3 Brute-Force Approach

A brute-force approach is established in order to enumerate all subsequences
of M1 and to check each subsequence so that we could see if it is also a sub-
sequence of M2. Each subsequence of M1 corresponds to a subset of the
indices {1, 2, ..., m} of M1. There are 2m subsequences of M1, so this ap-
proach requires exponential time, making it impractical for long sequences.

4.2.4 Dynamic Programming Solution

That was a brute-force approach to solve the LCS problem. However the
LCS problem has an optimal-substructure property, as the following the-
orem shows. As we shall see, the natural classes of subproblems corre-
spond to pairs of “prefixes” of the two input sequences. To be more pre-
cise, given a sequence M1 = {m1, m2, ..., mm}, we define the ith prefix

of M1, for i = 0, 1, 2, ...m, as M
(i)
1 = {m1, m2, ...mi}. For example, if

M1 = {A, B, C, B, D, A, B}, then M4 = {A, B, C, B} and M0 is the empty
sequence.

Theorem: Optimal substructure of an LCS

Let M1 = {m1, m2, ..., mm} and M2 = {m′

1, m
′

2, ..., m
′

n} be sequences, and
let M3 = {m′′

1, m
′′

2, ..., m
′′

k} be any LCS of M1 and M2.

i. mm = m′

n ,then m′′

k = mm = m′

n and M
(k−1)
3 is an LCS of M

(m−1)
1 and

M
(n−1)
2 .

ii. mm 6= m′

n ,then m′′

k 6= mm implies that M3 is an LCS of M
(m−1)
1 and

M2.

iii. mm 6= m′

n ,then m′′

k 6= m′

n implies that M3 is an LCS of M1 and M
(n−1)
2 .

26 CHAPTER 4. THE MM (MUSIC MATCH) APPLICATION

Proof:

(1) If m′′

k 6= mm, then we could append mm = m′

n to M3 to obtain a common
subsequence of M1 and M2 of length k + 1, contradicting the supposition
that M3 is a longest common subsequence of M1 and M2. Thus, we must

have m′′

k = m′

n = mm. Now, the prefix M
(k−1)
3 is a length−(k − 1) common

subsequence of M
(m−1)
1 and M

(n−1)
2 . We wish to show that it is an LCS.

Suppose for the purpose of contradiction that there is a common subsequence

M4 of M
(m−1)
1 and M

(n−1)
2 with length greater than k−1. Then, appending

mm = m′

n to M4 it produces a common subsequence of M1 and M2 whose
length is greater than k, which is a contradiction.

(2) If m′′

k 6= mm, then M3 is a common subsequence M
(m−1)
1 and M2. If

were there a common subsequence M4 of M
(m−1)
1 and M2 with length greater

than k, then M4 would also be a common subsequence M
(m)
1 and M2, con-

tradicting the assumption that M3 is an LCS of M1 and M2.

(3) The proof is symetric to (2).

The characterization of the theorem above shows that an LCS of two se-
quences incorporates an LCS of prefixes of the two sequences. Thus, the
LCS problem has an optimal-substructure property. A recursive solution
has also the overlapping-subproblems property, as we shall see later on.

A recursive solution

The theorem below implies that there are either one or two subproblems
to be examined when seeking an LCS of M1 = {m1, m2, ...mm} and M2 =

{m′

1, m
′

2, ..., m
′

n}. If mm = m′

n, we must find an LCS of M
(m−1)
1 and M

(n−1)
2 .

Appending mm = m′

n to this LCS, then an LCS of M1 and M2 is yielded.

If mm 6= m′

n, then we must solve two subproblems: an LCS of M
(m−1)
1 and

M2 and an LCS of M1 and M
(n−1)
2 must be found. Whichever of these

two LCS’s is longer, then this is an LCS of M1 and M2. Because these
cases exhaust all possibilities, we can be convinced that one of the optimal
subproblem solutions must be applied within an LCS of M1 and M2.

We can readily observe the overlapping-subproblems property in the LCS
problem. In order for us to find an LCS of M1 and M2, we may need to find

the LCS’s of M1 and M
(n−1)
2 and M

(m−1)
1 and M2. But each of these sub-

problems have the subsubproblem of finding the LCS of M
(m−1)
1 and M

(n−1)
2 .

However, there are many other subproblems which share subsubproblems.

4.2. TECHNICAL DESCRIPTION 27

As in the matrix-chain multiplication problem, our recursive solution to the
LCS problem involves establishing a reccurence for the value of an optimal
solution. Let us define c[i, j] to be the length of an LCS of the sequences

M
(i)
1 and M

(j)
2 . If either i = 0 or j = 0, one of the sequences has length

0, so the LCS has length 0. The optimal substructure of the LCS problem
gives the recursive formula.

c(i, j) =











0 , i = 0 or j = 0

c(i− 1, j − 1) + 1 , i, j > 0 and M
(i)
1 = M

(j)
2

max(c(i, j − 1), c(i− 1, j)) , otherwise

Observe that in this recursive formulation, a condition in the problem poses
restrictions upon which subproblems should be considered. When mi = m′

j ,
we ought to take into consideration the subproblem of finding the LCS of

M
(i−1)
1 and M

(j−1)
2 . Otherwise, we should consider the two subproblems of

finding the LCS of M
(i)
1 and M

(j−1)
2 and of M

(i−1)
1 and M

(j)
2 in stead.

Based on the above equation, we could easily write an exponential-time re-
cursive algorithm to compute the length of an LCS of two sequences. How-
ever since there are only O(mn) distinct subproblems, we can use dynamic
programming to compute the solutions bottom up.

Procedure LCS-LENGTH takes two sequences M1 = {m1, m2, ..., mm} and
M2 = {m′

1, m
′

2, ..., m
′

n} as inputs. It stores the c[i, j] values in a table
c[0 → m, 0 → n] whose entries are computed in a row-major order. (That
is, the first row of c is filled in from left to right, then the second row, is too
and so on.) It also maintains the table b[1 → m, 1 → n] to simplify con-
struction of an optimal solution. Intuitively, b[i, j] points to the table entry
corresponding to the optimal subproblem solution chosen when computing
c[i, j]. The procedure returns the b and c tables; c[m, n] contains the length
of an LCS of M1 and M2.

LCS-LENGTH(M1, M2)
1 m← length[M1]
2 n← length[M2]
3 for i← 0 to m

4 do c[i, 0]← 0
5 for j ← 0 to n

6 do c[0, j]← 0
7 for i← 1 to m

28 CHAPTER 4. THE MM (MUSIC MATCH) APPLICATION

8 do for j ← 1 to n

9 do if M
(i)
1 = M

(j)
2

10 then c[i, j]← c[i− 1, j − 1]+1
11 b[i, j]← “↖”
12 else if c[i− 1, j]≥ c[i, j − 1]
13 then c[i, j]← c[i− 1, j]
14 b[i, j]← “↑”
15 else c[i, j]← c[i, j − 1]
16 b[i, j]← “←”
17 return b and c

- “↖” : it implies that both elements of the two subsequences are equal,
also moves the pointer one position forward to both subsequences.

- “ ↑ ”: corresponds to a deletion, also moves the pointer of the first
subsequence one position forward.

- “←” : corresponds to an insertion, also moves the pointer of the second
subsequence on position forward.

The figure below shows the tables produced by LCS-LENGTH on the se-
quences M1 = {A, B, C, B, D, A, B} and M2 = {B, D, C, A, B, A}. The
running time of the procedure is O(mn), since each table entry takes O(1)
time to compute.

j 0 1 2 3 4 5 6

i M
(j)
2 B D C A B A

0 M
(i)
1 0 0 0 0 0 0 0

1 A 0 ↑ 0 ↑ 0 ↑ 0 ↖ 1 ← 1 ↖ 1
2 B 0 ↖ 1 ← 1 ← 1 ↑ 1 ↖ 2 ← 2
3 C 0 ↑ 1 ↑ 1 ↖ 2 ← 2 ↑ 2 ↑ 2
4 B 0 ↖ 1 ↑ 1 ↑ 2 ↑ 2 ↖ 3 ← 3
5 D 0 ↑ 1 ↖ 2 ↑ 2 ↑ 2 ↑ 3 ↑ 3
6 A 0 ↑ 1 ↑ 2 ↑ 2 ↖ 3 ↑ 3 ↖ 4
7 B 0 ↖ 1 ↑ 2 ↑ 2 ↑ 3 ↖ 4 ↑ 4

The c and b tables are computed by LCS-LENGTH on the sequences M1 =
{A, B, C, B, D, A, B} and M2 = {B, D, C, A, B, A}. The square in row i

and column j contains the value of c[i, j] and the appropriate arrow for the
value of b[i, j]. The entry 4 in c[7, 6] – the lower right-hand corner of the
table – is the length of an LCS {B, C, B, A} of M1 and M2. For i, j > 0,

4.2. TECHNICAL DESCRIPTION 29

entry c[i, j] depends only on whether M
(i)
1 = M

(j)
2 and the values in entries

c[i − 1, j],c[i, j − 1], and c[i − 1, j − 1], which are computed before c[i, j].
In order to reconstruct the elements of an LCS, we should follow the b[i, j]
arrows from the lower right-hand corner. Each “↖” on the path corresponds

to an entry for which M
(i)
1 = M

(j)
2 is a member of an LCS.

The b table returned by LCS-LENGTH can be used to promptly construct
an LCS of M1 = {m1, m2, ..., mm} and M2 = {m′

1, m
′

2, ..., m
′

n}. We simply
begin at b[m, n] and trace through the table following the arrows. Whenever

we encounter a↖ in entry b[i, j], it implies that M
(i)
1 = M

(j)
2 is an element of

the LCS. The elements of the LCS are encountered in reverse order according
to this method. The following recursive procedure prints out an LCS of M1

and M2 in the proper, forward order. The initial invocation is PRINT-
LCS(b, M1, length[M1], length[M2]).

PRINT-LCS(b, M1, i, j)
1 if i = 0 or j = 0
2 then return
3 if b[i, j]= “↖”
4 then PRINT-LCS(b, M1, i− 1, j − 1)

5 print M
(i)
1

6 else if b[i, j]= “↑”
7 then PRINT-LCS(b, M1, i− 1, j)
8 else PRINT-LCS(b, M1, i, j − 1)

The functions LCS-LENGTH and PRINT-LCS will be described in chapter
4.4.2 page 42.

4.2.5 Complexity

The MM algorithm is O(n2) which is a non linear complexity. See more
details on Appendix.

30 CHAPTER 4. THE MM (MUSIC MATCH) APPLICATION

Chapter 5

Tools

5.1 MIDI

5.1.1 What is MIDI

Musical Instrument Digital Interface, or MIDI, is an industry-standard elec-
tronic communications protocol that defines each musical note or event in
an electronic musical instrument. Furthermore, it shows a device such as a
synthesizer, precisely and concisely, allowing electronic musical instruments,
computers and some other show equipment to exchange data in real time.
MIDI does not transmit audio - it simply transmits real time digital data
providing information such as the type and intensity of the musical notes
and technical cues played during a performance.

The MIDI standard consists of a communications messaging protocol de-
signed for use with musical instruments, as well as a physical interface stan-
dard. It consists physically of a one-way (simplex) digital current loop serial
communications electrical connection signaling at 31,250 bits per second.
One start bit (must be 0), eight data bits, no parity bit and one stop bit
(must be 1) are used.

Each one-way connection (called a port) can transmit or receive standard
musical messages, such as note-on, note-off, controllers (which include vol-
ume, pedal, modulation signals, etc.), pitch bend, program change, after-
touch, channel pressure, and system-related messages. Those signals are
sent along with one of the 16 channel identifiers. The channels are used to

31

32 CHAPTER 5. TOOLS

separate ”voices” or ”instruments”, somewhat like tracks in a multi-track
mixer.

The ability to multiplex 16 ”channels” onto a single wire makes it possible to
control several instruments at once using a single MIDI connection. When
a MIDI instrument is capable of producing several independent sounds si-
multaneously (a multitimbral instrument), MIDI channels are used so that
those sections could be addressed independently. (This should not be con-
fused with ”polyphonic”; the ability to play several notes simultaneously in
the same ”voice”.)

MIDI messages (along with timing information) can be collected and stored
in a computer file system, in what is commonly called a MIDI file, or more
formally, a Standard MIDI File (SMF). The SMF specification was devel-
oped and is maintained by the MIDI Manufacturers Association (MMA).
MIDI files are typically created by the individual’s using desktop/laptop
computer-based sequencing software (or sometimes a hardware-based MIDI
instrument or workstation) that organizes MIDI messages into one or more
parallel ”tracks” for independent recording and editing. In most but not all
sequencers, each track is assigned a specific MIDI channel and/or a specific
General MIDI instrument patch. Although most current MIDI sequencer
softwares use proprietary ”session file” formats rather than SMF. Yet, al-
most all sequencers provide export or ”Save As...” support for the SMF
format.

An SMF consists of one header chunk and one or more track chunks. There
are three SMF formats; the format is encoded in the file header. Format 0
contains a single track and represents a single song performance. Format
1 may embody any number of tracks, thus, enabling preservation of the
sequencer track structure, and also representing a single song performance.
Format 2 may have any number of tracks, each representing a separate
song performance. Nonetheless, Format 2 is not commonly supported by
sequencers.

5.1.2 Why Midi

Almost all music recordings today utilize MIDI as a key enabling technology
for recording music. In addition, MIDI is also used as a means to control
hardware including recording devices as well as live performances equipment
such as stage lights and effects pedals.

5.2. LISP 33

A number of music file formats have been based on the MIDI bytestream.
Those formats are very compact; a file of only 10 kilobytes can often produce
a full minute of music. This is advantageous for applications such as musical
ringtones in mobile phones and some video games.

MIDI messages are extremely compact, due to the low bandwidth of the
connection, and the need for real-time accuracy. Most messages consist
of a status byte (channel number in the low 4 bits, and an opcode in the
high 4 bits), followed by one or two data bytes. However, the serial nature
of MIDI messages entail long strings of MIDI messages which consume an
appreciable period of time to be sent. At times even audible delays are
triggered, especially when someone is dealing with dense musical information
or when many channels are particularly active.

The data stream, ”Running status”, could be further optimized by a con-
vention that allows the status byte to be omitted if it is to be the same as
that of the previous message and therefore, to mitigate bandwidth issues
somehow.

Large collections of SMFs can be found on the web, most commonly with the
extension .mid. Those files are most frequently authored with the assump-
tion that they will be played on General MIDI players. But not always will
the files do so, as the result will be an occasional unintended bad-sounding
playback.

A proposal for High-Definition MIDI (HD-MIDI) extension is now being dis-
cussed by members of the MMA. This major update to MIDI would provide
greater resolution in data values, increase the number of MIDI Channels,
and support the creation of entirely new kinds of MIDI messages. [2] [3]
This work involves representatives from all sizes and types of companies,
ranging from the smallest specialty show control operations to the largest
musical equipment manufacturers.

5.2 Lisp

5.2.1 What is Lisp

Lisp is a family of computer programming languages with a long history
and a distinctive, fully-parenthesized syntax. Originally specified in 1958,
Lisp is the second oldest, high-level programming language in widespread

34 CHAPTER 5. TOOLS

use today; only Fortran is older. Like Fortran, Lisp has changed a great deal
since its early days, and a number of dialects have existed throughout its
history. Today, the most widely-known, general-purpose Lisp dialects are
Common Lisp and Scheme.

Lisp was originally created as a practical mathematical notation for com-
puter programs, based on Alonzo Church’s lambda calculus. It quickly be-
came the favored programming language for artificial intelligence research.
As one of the earliest programming languages, Lisp pioneered many ideas in
computer science, including tree data structures, automatic storage manage-
ment, dynamic typing, object-oriented programming, and the self-hosting
compiler.

The name Lisp derives from ”List Processing”. Linked lists are one of Lisp
languages’ major data structures, and Lisp source code is itself made up
of lists. As a result, Lisp programs can manipulate source code as a data
structure, giving rise to the macro systems that allow programmers to create
new syntax or even new ”little languages” embedded in Lisp.

The interchangeability of code and data also offer Lisp its instantly rec-
ognizable syntax. The whole program code is written as s-expressions, or
parenthesized lists. A function call or syntactic form is written as a list with
the function or operator’s name first, and the following arguments: (f x y
z).

5.2.2 Why Lisp

The MM application required a platform that could handle MIDI connection,
record, edit, compose, synthesize sound and be able to describe a musical
notation. All these features provided by CM, CMN and PORTMIDI, are
packages created on a Lisp language and are opensources. That is the main
reason why Lisp has been chosen to serve the needs of the MM application.

Lisp was the first homoiconic programming language: the primary represen-
tation of program code is the same type of list structure that is also used for
the main data structures. As a result, Lisp functions can be manipulated,
altered or even created within a Lisp program without extensive parsing or
manipulation of binary machine code. This is generally considered one of
the primary advantages of the language with regard to its expressiveness,
and makes the language amenable to metacircular evaluation.

5.2. LISP 35

Lisp is an expression-oriented language. Unlike most other languages, no
distinction is made between ”expressions” and ”statements”; all code and
data are written as expressions. When an expression is evaluated, it pro-
duces a value (or list of values), which then can be embedded into other
expressions.

The reliance on expressions enables the language to acquire great flexibility.
Because Lisp functions are themselves written as lists, they can be processed
exactly like data: thus, allowing easy writing of programs which manipulate
other programs (metaprogramming). Many Lisp dialects exploit this fea-
ture using macro systems, which enables extension of the language almost
without limits.

5.2.3 CMUCL

CMUCL is a free, high performed implementation of the Common Lisp pro-
gramming language which runs on most major Unix platforms. It mainly
conforms to the ANSI Common Lisp standard. CMUCL provides the fol-
lowing: a sophisticated native code compiler, a powerful foreign function
interface, an implementation of CLOS, the Common Lisp Object System;
which includes multimethods, a metaobject protocol, a source-level debug-
ger, a code profiler and an Emacs-like editor implemented in Common Lisp.
CMUCL is maintained by a team of volunteers collaborating over the Inter-
net, and it mostly appears in the public domain.

5.2.4 CLIM

The Common Lisp Interface Manager (CLIM) is a powerful Lisp-based sys-
tem that provides a layered set of facilities for building user interfaces. These
facilities incorporate a portable layer called Silica that includes basic win-
dowing, input, output services, and mechanisms for constructing window
types. Moreover, user interface components, stream-oriented input and out-
put facilities extended with presentations and context sensitive input similar
to the work pioneered in the Genera UI system are provided. Another useful
facility presented by the system is a gadget-oriented toolkit similar to those
found in the X world extended with support for look and feel adaptiveness.

The Common Lisp Interface Manager (CLIM) is specifying an interface to
a broad range of services necessary or useful for developing graphical user

36 CHAPTER 5. TOOLS

interfaces. These services include low level facilities like geometry, graph-
ics, event-oriented input, and windowing. Also, intermediate level facilities
like support for Common Lisp stream operations, output recording, and ad-
vanced output formatting are displayed. Last but not least, those services
provide high level facilities like context sensitive input, an adaptive toolkit,
and an application building framework. CLIM will eventually support a
large number of window environments including Genera[16], X[12], the Mac-
intosh[1], Microsoft Windows[5], SunView[13], and NextStep[6]. CLIM sup-
ports the incorporation of toolkits written in other languages (e.g. C-based
toolkits that implement Motif[7] or OpenLook[15]).

5.2.5 CM

Common Music (CM) is an object-oriented music composition environment.
It produces sound by transforming a high-level representation of musical
structure into a variety of control protocols for sound synthesis and display.
Common Music defines an extensive library of compositional tools and an
API through which the composer can easily modify and extend the system.

Common Music began in 1989 as a response to the proliferation of different
audio hardware, software and computers that resulted from the introduction
of low cost computers. As choices increased it became clear that composers
would be benefitted from a portable, powerful and consistent interface in the
face of the myriad sound rendering possibilities. Work on Common Music
began in 1989 when the author was a guest composer at CCRMA, Stan-
ford University. Much of the system as it exists today was implemented
at the Institut fur Musik und Akustik at the Zentrum fur Kunst und Me-
dientechnologie in Karlsruhe, Germany, where the author worked for five
years. Common Music continues to evolve today at the University of Illi-
nois at Urbana-Champaign, where the author is now an associate professor
of music composition. In 1996 Common Music received First Prize in the
computer-assisted composition category at the 1er Concours International
de Logiciels Musicaux in Bourges, France.

CM is released under the LLGPL (Lisp Lesser General Public License).

5.2. LISP 37

5.2.6 CMN

Common Music Notation is an independent subsystem of Common Music.
It provides a way of describing musical notation in terms of Lisp programmes
using CLOS, so that not only can Lisp programmers typeset Music with it,
but they can also use the power of Lisp to aid in composing. Common Music
Notation is known to run in ACL, MCL, CLISP and CMUCL.

5.2.7 PORTMIDI

Common Music supports reading and writing MIDI messages to and from
Portmidi, an open-source, cross-platform MIDI device library. CM supports
Portmidi on OS X and Linux in OpenMCL, SBCL and CMUCL. The support
consists of a portmidi-stream class so that different Portmidi input/output
devices could be managed. This kind of support also incorporates a handful
of auxiliary functions both for querying Portmidi about its current configu-
ration and for accessing its millisecond timer.

These modules are to be loaded:

$ modprobe snd_seq_midi snd_seq_oss snd_seq_midi_emul

portmidi-stream manages resources and connections between CM and Port-
midi input and output devices. This class is automatically chosen when
one specifies a stream with a .pm extension. The convenience functions
portmidi-open and portmidi-close are provided for the typical case of a sin-
gle input/output pair. Opening a portmidi-stream initializes the library and
starts the millisecond timer if they have not been initialized.

The fact that CM, CMN, PORTMIDI are opensource packages facilitates
the study and change of the source code, in that the time complexity of the
MM algorithm can be found.

38 CHAPTER 5. TOOLS

Chapter 6

Implementation

6.1 Application Overview

Represents the basic data structures.

Figure 6.1: The block diagram of the process that represents the sheet notation of a song.

In order to extract the sheet notation of a musical score, we should call the
functions above. The arrows indicate the right order, those functions should
be called.

39

40 CHAPTER 6. IMPLEMENTATION

Figure 6.2: The block diagram of the process that compares two songs with a simple match
algorithm and represents the result in a sheet notation.

6.1. APPLICATION OVERVIEW 41

In order to extract the sheet notation of the results of the comparison be-
tween two musical scores, we should call the functions above. The arrows
indicate the right order, those functions should be called. A simple match
algorithm takes place for the comparison.

Figure 6.3: The block diagram of the process that compares two songs with the LCS algorithm
and represents the result in a sheet notation.

In order to extract the sheet notation of the results of the comparison be-
tween two musical scores, we should call the functions above. The arrows
indicate the right order, those functions should be called. The LCS algo-
rithm takes place for the comparison.

42 CHAPTER 6. IMPLEMENTATION

6.2 Classes

The basic class is the “music-element” which is an abstract class.

• (defclass music-element ()())

In order to handle better the single notes and the chords of a song, two
subclasses are being used the “sinlge-note” and the “complex-note” with 3
slots each of them.

• (defclass single-note (music-element))

The first slot is the “note-name” which keeps the name of the single note.
The second slot is the “time” which keeps the time when the note has been
pressed down. The third slot is the “duration” which keeps the duration of
a note being pressed down.

• (defclass complex-note (music-element))

The first slot is the “note-name” which keeps the name of the chords. The
second slot is the “time” which keeps the time when the chords have been
pressed down. The third slot is the “duration” which keeps the duration of
a chord being pressed down.

• (defclass container nil)

The class “container” from the package “cm” has one slot named “name”
which stores the name of an object.

• (defclass seq (container))

The class “seq” from the package “cm” has two slots named “time” which
keep the time of an object and “subobjects” which keep the subobjects of
an object. The second slot is mostly being used, because it keeps the midi
events of a song.

6.3 Variables

• (defparameter *myseq* nil)

The global variable *myseq* is being used to keep the “seq” object that the
user will play from the midi keyboard, saving some time for the comparison.

6.3. VARIABLES 43

Therefore, the user will not have to revoke the file from the hard disk since
it is on memory already.

• (defparameter *time-chords* .0234375)

The global variable *time-chords* is being utilized to define which midi
events will compose a chord. According to the package cm, the value of this
variable corresponds to a 128th note. The lower value which is 0.015625
corresponds to a 256th note. But it is quite difficult to encounter on a sheet
notation, notes with r values of 128th. So, in order for someone to define if
two or more midi events will compose a chord, they must have equal time
slot values or at least a time slot value lower than the *time-chords* variable,
each one. Otherwise the midi events will be considered as sinlge notes of a
128th note.

• (defparameter *my-tempo* 60)

The global variable *my-tempo* contributes to the definition of the global
tempo. It defaults to 60, because the package cm and cmn use that value
as default to write midi messages and to demonstrate midi messages on a
sheet notation respectively.

• (defparameter *time-tolerance* .1)

The global variable *time-tolerance* aims to define the tolerance that will
be held while comparing two time slot values, in case they are not equal. It
is set to 0.1 which means something less than a 256th note value. Thus, the
MM algorithm initiates based on very strict conditions as far as the time is
concerned. The more this variable increases, the less the restrictions of an
error are.

• (defparameter *duration-tolerance* .2)

The global variable *duration-tolerance* is being used to define the tol-
erance that will be held while comparing two duration slot values, in case
they are not equal. It is set to 0.2 which means something less than a 128th
note value. Thus, the MM algorithm initiates with very strict conditions
regarding the duration. By our increasing this variable, the restrictions of
an error lessen.

• (defparameter *transpose-value* 0)

The global variable *transpose-value* is being applied to make possible
the trasporto on a song. The default value is set to 0, which means that the
song will be demonstrated as it is. By our increasing or decreasing the value

44 CHAPTER 6. IMPLEMENTATION

of this variable, each note of a song will increase or decrease by the value of
a semitone, respectively. As a result, it makes a transporto to the song.

• (setf *cmn-output-type* :x)

The global variable *cmn-output-type* is a global variable of the cmn
package. It is used to define the output type of a sheet notation that could
be a postscript, x or quickdraw type. It is set to demonstrate the sheet
notation using the x server.

• *midi-player*

The global variable *midi-player* is a global variable of the package cm.
It is utilized to define the player according to which midi files will be played.
The default value is timidity.

• (defparameter *seq-name* ”my-song”)

The global variable *seq-name* is being applied to determine a name for
the song the user will record. The default value is “my song”.

• (defparameter *pm* nil)

The global variable *pm* is useful to remember the ports for the connection
between the computer and the midi keyboard. Default value nil.

• size

The global variable size is a global variable of the package cmn. It is used
to define the size of the sheet notation.

• page-width

The global variable page-width is a global variable of the package cmn. It
aims to estimate the width of each page of the sheet notation.

• automatic-page-numbers

The global variable automatic-page-numbers is a global variable of the
package cmn. It is used to record a number for each page of the sheet
notation automatically.

6.4. FUNCTIONS 45

6.4 Functions

This section is divided into three subsections, describing the functions which
compose the MM algorithm, the functions that make use of the MM algo-
rithm so as to demonstrate its result into a sheet notation and finally the
functions that build the user interface of the MM application.

6.4.1 MM (Music Matching) Algorithm Functions

• (defun compare-music (filename1 &optional (filename2 nil)))

The final function of the algorithm MM is the compare-music. It takes as
an argument two files “.mid” or “.midi” and returns a list of lists. Each incor-
porated list contains two elements, a code indicating the result of the com-
parison of a note and the appropriate instance of this note. The compare-
music consist of the functions import-song,midi-events-organized-to-
indicate-chords,make-instance-single-complex-note and match-music.
Each of these functions will be described below.

• (defun import-song (filename))

The function import-song takes as an argument a file “.mid” or “.midi”
and returns a “seq” object, which holds a list of time sorted subobject,
which are typically musical events. This invokes the function load-song
and if the “.mid” or “.midi” file is type0 then it will return a “seq” object
as #<seq track0>, but if the file is type1, it now will return a list of “seq”
object as (#<seq track0> #<seq track1> #<seq track2>), so the func-
tion transform-midi-to-seq is spawned so that it could get the track that
contains the melody.

• (defun load-song (filename &key (meta cm::true) (key-note ’:note)))

The function load-song takes as an argument a file “.mid” or “.midi” and
returns a “seq” object, only if the file is of type0 and a list of “seq” objects, or
if the file is of type1. It also takes two keyword arguments, the :meta and the
:key-note with default values true and ’:note respectively. That means when
the function import-events is invoked from package cm, which returns a
seq containing midi objects from one or more tracks of file, all meta messages
will be excluded (such as information about the rhythm, meter, scala) and
MIDI key number values will be interpreted as notes (i.e for the note mi in
4th octave is e4). Each midi object generates MIDI note on and off pairs

46 CHAPTER 6. IMPLEMENTATION

from a more general representation of key number, duration and amplitude
(i.e i#(midi :time 0 :keynum 60 :duration .5 :amplitude .1 :channel 3)).[]

• (defun transform-midi-to-seq (object))

The function transform-midi-to-seq takes as an argument a list of “seq”
objects and returns the “seq” object that contains the melody. By calling
the slot subobjects, from the class seq for each “seq” object, it is able to
check which “seq” object has subobjects. As it has already been suggested,
the function above has been called with the meta keyword argument set to
true, so all meta messages will be excluded which means that only one “seq”
object will have subobjects, the one which has the melody.

• (defun remove-non-midi-object (object))

The function remove-non-midi-object takes as an argument a “seq” ob-
ject and returns the same “seq” object, but it only applies subobjects which
are now midi events. The subobjects of a “seq” object could be midi
events,midi-control-change events,midi-program-change events and many oth-
ers. So, it checks all the events of the subobject, one by one to find which
one is a midi event and add them on a list. Hence, by using the functions
new and events from the package cm, it constructs a “seq” object with the
same name as the previous one and the only difference lies in that the new
subobjects consist of midi events only.

• (defun midi-events-organized-to-indicate-chords (object))

The function midi-events-organized-to-indicate-chords takes as an ar-
gument a “seq” object and returns a list. This function attempts to find out
the chords in a song and return them in a list along with the single notes.
Two or more midi events will be considered as a chord and they will be
pushed in a list, only if they have the same time slot value or at least a time
slot value lower than the global variable *time-chords*. Yet, single notes are
still midi events and chords (complex notes) are lists of midi events. What’s
more, it supports 3 cases, a song to commence with a chord, a song to end
with a chord and finally a song to have chords in the middle. For example,
a song with 6 midi events 3 of which compose a chord should look like the
midi events below.

Before the function:

(#i(midi

time 2.7895834 keynum c5 duration 1.6375 amplitude 0.93700784 channel 0)

6.4. FUNCTIONS 47

#i(midi

time 2.7812502 keynum e5 duration 1.6437501 amplitude 0.8031496 channel 0)

#i(midi

time 2.7812502 keynum g4 duration 1.6354167 amplitude 0.5748032 channel 0)

#i(midi

time 1.7875001 keynum e5 duration 0.29375002 amplitude 0.72440946 channel 0)

#i(midi

time 0.8416667 keynum d5 duration 0.33333334 amplitude 0.78740156 channel 0)

#i(midi

time 0.0 keynum c5 duration 0.31458336 amplitude 0.56692916 channel 0))

After the function:

((#i(midi

time 2.7895834 keynum c5 duration 1.6375 amplitude 0.93700784 channel 0)

#i(midi

time 2.7812502 keynum e5 duration 1.6437501 amplitude 0.8031496 channel 0)

#i(midi

time 2.7812502 keynum g4 duration 1.6354167 amplitude 0.5748032 channel 0))

#i(midi

time 1.7875001 keynum e5 duration 0.29375002 amplitude 0.72440946 channel 0)

#i(midi

time 0.8416667 keynum d5 duration 0.33333334 amplitude 0.78740156 channel 0)

#i(midi

time 0.0 keynum c5 duration 0.31458336 amplitude 0.56692916 channel 0))

• (defmacro first-subobject (obj start end))

The macro function first-subobject takes as an argument a “seq” object
with two numbers indicating a position and returns the appropriate subob-
ject. Using the function subobjects from the package cm and specifying
a specific position, it is able to get the desirable midi event from the “seq”
object.

• (defmacro substitute-times (obj start1 end1 start2 end2))

The macro function substitute-times takes as an argument a “seq” object
with four numbers indicating a position and returns a number. That number
is the difference between two time slot values of the midi events specified by
the function first-subobject.

48 CHAPTER 6. IMPLEMENTATION

• (defun make-instance-single-complex-note (midi-events-list))

The function make-instance-single-complex-note takes as an argument
a list and returns a list as well. The input of this function is the result of the
function midi-events-organized-to-indicate-chords, which means a list
of midi events. Some of the midi events stand alone and some other gathered
on lists. Those midi events which stand alone are registered as instances of
the class single-note and those which gathered on a list are registered as
instances of the class complex-note. So, the output of this function is a
list of single-note - complex-note instances. Using the function transpose
from the package cm and before proceeding into any kind of instances, it
could transpose a note, depending on the global variable *transpose-value*.
Also, the function note from the package cm is being used to transform the
key numbers of each midi event to notes (i.e the keynum of middle do is 60
and become c4), so that the package cmn will use them to reveal a sheet
notation. Finally, when the user wants to write MIDI messages from the
midi keyboard, it could make use of the portmidi package. But, the problem
is that when the user tries to play the same chord more than ones, the first
time could pass through the midi-stream as (C4 E4 G4) and the second as
(C4 G4 E4). So, should those chords be compared, they will resault error.
Thus, the function sort appears each time a complex-note instance is to be
constructed to avoid such errors. An example applying to the same track of
the 6 midi events which could adjust that function would be:

(#<COMPLEX-NOTE {581CCBDD}> #<SINGLE-NOTE {58217915}> #<SINGLE-NOTE {58217A5D}>

#<SINGLE-NOTE {58217A8D}>)

• (defun match-music (oldsong newsong))

The function match-music takes as an argument two lists and returns a
list. The input of this function is the result of the function above for each
list and corresponds to a different “.mid” or “.midi” file. The output is a list
of lists and each sublist holds a code and an instance of the single-note or
complex-note class. The first file is the original song from the internet and
the second file is the song performed by the user. Actually, this function is
the last level of the comparison and the method match-note, which will
be described below, is the key method, because along with the function
mapcar it triggers a comparison among each instances. That means, the
MM algorithm is a kind of brute force algorithm which compares the first
instance of the first file with the first instance of the second file and the

6.4. FUNCTIONS 49

same occurs for the rest instances. Some examples are shown below:

((011 #<COMPLEX-NOTE {582F7C35}>) (010 #<SINGLE-NOTE {582F7C65}>)

(011 #<SINGLE-NOTE {582F7C95}>) (T #<SINGLE-NOTE {582F7CC5}>))

((T #<COMPLEX-NOTE {58311F65}>) (T #<SINGLE-NOTE {58311F95}>)

(T #<SINGLE-NOTE {58311FC5}>) (T #<SINGLE-NOTE {58311FF5}>))

((010 #<COMPLEX-NOTE {5832A75D}>) (010 #<SINGLE-NOTE {5832A78D}>)

(011 #<SINGLE-NOTE {5832A7BD}>) (001 #<SINGLE-NOTE {5832A7ED}>))

Before the match-note methods are described below, it is essential that the
meaning of the code be explained. Two instances are considered equal only
if they have the same key number slot value, the same time slot value and
the same duration slot value or at least if they satisfy the conditions on each
match-note methods, depending on the global variables *time-tolerance*
and *duration-tolerance*. Only then the code becomes t (true). If they are
not equal, the matrix below will demonstrate the value of the code for each
mistake. For example, if the time slot and the duration slot value are equal
but the key number slot value is not, then the code value will be (1 0 0).
That means that the note will be presented in the sheet notation as a “red”
note.

keynum Time Duration Chromatic Code

t (000) : black
0 0 1 (001) : blue
0 1 0 (010) : green
0 1 1 (011) : light blue
1 0 0 (100) : red
1 0 1 (101) : purple
1 1 0 (110) : yellow
1 1 1 (111) : white

• (defmethod match-note ((oldsong single-note) (newsong single-note)
&key (note-only nil)))

This method match-note takes as an argument two instances and returns
a list. The input includes two instances of the same class single-note and the
result is a list with two elements. The first one is the code which indicates
the kind of error that occured, depending on the matrix above and the

50 CHAPTER 6. IMPLEMENTATION

second one is the instance of the second file.

• (defmethod match-note ((oldsong complex-note) (newsong complex-
note) &key (note-only nil)))

This method match-note takes as an argument two instances and returns
a list. The input is two instances of the same class complex-note and the
result is a list with two elements. The first one is the code which indicates
the kind of error made, depending on the matrix above and the second
one is the instance of the second file. As it compares complex notes, the
comparison between the time slot value of the chords is estimated by the
average value of each time slot value of the midi events that compose a chord.
The comparison between the duration slot value of the chords is estimated
by the macro duration-check that will be described below.

• (defmacro duration-check(old new))

The macro duration-check takes as an argument two numbers and returns
a number. The input of this macro is the two values of the duration slot
value of each complex-note instance that is being compared. The output is
a number indicating the number of midi events which are not equal to the
duration slot value.

6.4.2 LCS (Longest-Common-Subsequence) Functions

• (defun zero-column(array))

The function zero-column takes as an argument an array and returns that
array with the first column filled with zero’s.

• (defun zero-row(array))

The function zero-row takes as an argument an array and returns that
array with the first row filled with zero’s.

• (defun lcs-length (seq1 seq2))

The function lcs-length takes as an argument two music sequences and
according to the theory of the LCS algorithm, it returns the b table. The
only difference is that when the M1i = M2j , there is a “when” condition
that checks if the note duration of each element is equal or not.

• (defun print-lcs (b-array seq i j &key (del 0) (insert 0) (music-result
’())))

6.4. FUNCTIONS 51

The function print-lcs takes as an argument the b table, a music sequence
and the lengths of the two music sequences. It returns a list of single-note
and complex-note instances as well as the number of deletions and insertions
that took place during the dynamic-proccess. Each time that an up-arrow
is encountered, we increase the deletion counter and each time a left-arrow
is encountered, we increase the insertion counter.

• (defun lcs-match (filename1 &optional (filename2 nil)))

The function lcs-match takes as an argument two “.mid” or “.midi” files
and returns a list of single-note and complex-note instances using the func-
tion below.

6.4.3 Utility Functions

• (defun percent-of-success (list-obj))

The function percent-of-success takes as an argument a list and return a
number. The input of the function is the result from the comparison of two
songs. The output of the function is a number indicating the percentage of
success of that comparison. Since there are three parameters taking part in
the process (keynum, time, duration), there are eight situations that could
occur. Each case depends on a coefficient factor analogous to that case. For
example, if a pair of instances are equal, then the coefficient factor is 2 and
if the keynum is the only mistake then the coefficient factor is 1.

• (defun lcs-percent-of-success (list-objects))

The function lcs-percent-of-success takes as an argument a list, which
actually is the result of the lcs-match function and returns a number indi-
cating the percentage of the success of the comparison between two music
sequences. Using the LCS algorithm, only two parameters could take part
in the procedure, the keynum and the duration.

Besides the function above, a series of functions that make a bridge between
the cm and cmn package are going to follow, so as to demonstrate the result
of a comparison on a sheet notation. Hence, each note is going to have a
specific color, depending on the chromatic code, so the user would be able
to check what kind of mistakes have been made.

• (defun split-midi-events-to-left-right-hand (object))

52 CHAPTER 6. IMPLEMENTATION

The function split-midi-events-to-left-right-hand takes as an argument
a “seq” object and returns a list. That list consists of two “seq” objects.
The first object contains all the midi events whose key number is greater
than 60 (middle C) and it will be considered as the right hand on the sheet
notation. The second object contains all the other midi events whose key
number is lower than 60 (middle C) and it will be considered as the left hand
on the sheet notation.

• (defun prepare-midi-for-notation (&optional (filename nil)))

The function prepare-midi-for-notation takes as an argument a “.mid”
or “.midi” file and returns a list. This function is an assistant function
which makes use of the function import-song and split-midi-events-to-
left-right-hand.

• (defun compare-seperated-hands (hand1 hand2))

The function compare-seperated-hands takes as an argument two “seq”
objects and returns a list. This function is an assistant function which makes
use of the function midi-events-organized-to-indicate-chords, make-
instance-single-complex-note and match-music, to compare the right
or the left hands of two songs.

• (defun draw-notation (clef meter-scala midi-instances1 midi-instances2))

The function draw-notation takes as an argument two variables and two
“seq” objects and returns a cmn object of type #staff. The first variable
indicates the kind of the clef (i.e treble,tenor,bass). The second variable in-
dicates the meter of the song (i.e 3/4, 6/8, 4/4) and the key signature (i.e C
major, G minor). This function utilizes the function compare-seperated-
hands and along with the function show-notation-after-compare pro-
duces all the data required to create the sheet notation.

• (defun show-notation-after-compare (list-obj))

The function show-notation-after-compare takes as an argument a list
and returns a list. The input is the result from a comparison between the
hands of a song and the output is a list of cmn objects, such as notes
and rests. This function along with the functions add-color-to-note,
describe-rests, get-rest-value, transform the instances into cmn notes
and rests, so that the instances could be presented on a sheet notation.

• (defmethod add-color-to-note (code (song single-note)))

6.4. FUNCTIONS 53

This method add-color-to-note takes as an argument a variable and an
instance of a single-note class and returns a cmn note. The variable is the
code indicating the kind of error regarding that instance, so an appropriate
color is registered to that note.

• (defmethod add-color-to-note (code (song complex-note)))

This method add-color-to-note takes as an argument a variable and an
instance of a complex-note class and returns a cmn chord. The variable is the
code indicating the kind of error regarding that instance, so an appropriate
color is registered to that chord.

• (defmethod add-color-to-note (code object))

This method add-color-to-note is used in case there is no object or code
available and returns a rest of a whole measure.

• (defmethod note-to-notation ((song single-note)))

This method note-to-notation takes as an argument an instance of a
single-note class and returns a cmn object. It transforms a single-note in-
stance into a note object of cmn package, using its name and duration.

• (defmethod note-to-notation ((song complex-note)))

This method note-to-notation takes as an argument an instance of a
complex-note class and returns a cmn object. It transforms a complex-note
instance into a chord object of cmn package, using its name and duration.

• (defmethod note-to-notation (object))

This method note-to-notation is used in case there is no object available
and returns a rest of a whole measure.

• (defmethod get-note-time ((song single-note)))

This method get-note-time takes as an argument an instance of a single-
note class and returns a number indicating the time slot value of that in-
stance.

• (defmethod get-note-time ((song complex-note)))

This method get-note-time takes as an argument an instance of a complex-
note class and returns a number pointing out the time slot value of the first
note of that instance.

• (defmethod get-note-time (object))

54 CHAPTER 6. IMPLEMENTATION

This method get-note-time is used in case there is no object to be used
and returns 0.

• (defmethod get-note-duration ((song single-note)))

This method get-note-duration takes as an argument an instance of a
single-note class and returns a number suggesting the duration slot value of
that instance.

• (defmethod get-note-duration ((song complex-note)))

This method get-note-duration takes as an argument an instance of a
complex-note class and returns a number depicting the duration slot value
of the first note of that instance.

• (defmethod get-note-duration (object))

This method get-note-duration is used in case there is no object available
and returns 0.

• (defun get-rest-value (note note1))

The function get-rest-value takes as an argument two instances and re-
turns a number. The input of this function could be instances either of the
single-note or complex-note class. The output is a number indicating a rest
between two notes. This number refers to the difference of the time slot
value of the second note from which the sum of the time and duration slot
values of the first note are substracted.

• (defun describe-notes (var-duration))

The function describe-notes takes as an argument a number and returns
a number. The input is a number indicating the duration slot value of an
instance single-note or a complex-note. The output is a number indicating
the rhythmic value of a note of that instance, which also depends on the
tempo of the song. For example, if the tempo is 60, then a quarter note will
be between 0.9375 and 1, but if the tempo becomes 120, the quarter note
will be between 0.46875 and 0.5.

• (defun describe-rests (rest-scanner))

The function describe-rests takes as an argument a number and returns a
cons. The input is a number indicating the rest value between two instances
either a single-note or a complex-note. The output is a cons indicating the
rhythmic value of a rest between those instances, which also depends on the
tempo of the song. For example, if the tempo is 60, then a quarter rest will

6.4. FUNCTIONS 55

be between 0.9375 and 1, but if the tempo becomes 120, the quarter rest
will be between 0.46875 and 0.5.

• (defun find-scala (key mode))

The function find-scala takes as an argument two numbers and returns the
key signature of a song. The first number “mode” determines if the song
is in minor or major scale and the “key” determines the key signature. For
example, if the mode is 0 and the key is also 0 then a C major symbol is
returned.

• (defun midi-info (object))

The function midi-info takes as an argument a “seq” object and returns
two symbols. The first symbol indicates the key signature of a song and
the second symbol the time signature (i.e 4/4, 6/8). Also it sets the global
variable *my-tempo* to the original tempo of the song.

• (defun get-midi-info(&optional (filename nil)))

The function get-midi-info takes as an argument a “.mid” or “.midi” file
and returns the key and the time signature of that file. If the file is type0, the
global variable *my-tempo* is set to 60 and a 4/4 time singature is returned,
but if the file is type1, then, along with the function above it returns the
appropriate key and time signature of the song.

• (defun final-notation (filename1 &optional (filename2 nil)))

The function final-notation takes as an argument two files “.mid” or “.midi”
and returns a sheet notation. The sheet notation consists of the melody of
the second file which is the result of the comparison with the first file and
if there are any differences between those files, then the notes on the sheet
notation will be colored.

Proceeding with a couple of changes of some functions above, it is possible
for the user to produce a sheet notation for a file “.mid” or “.midi”. Those
functions are shown below.

• (defun prepare-hand (hand))

The function prepare-hand takes as an argument a “seq” object and re-
turns a list of single-note - complex-note instances. It is used instead of the
function compare-seperated-hands.

• (defun song-draw-notation (clef meter-scala midi-instances))

56 CHAPTER 6. IMPLEMENTATION

The function song-draw-notation takes as an argument two variables and
a “seq” object and returns a cmn object named <#staff>. It’s a resemblance
of the function draw-notation and the only difference is that it makes use
both of the function above and the show-notation.

• (defun show-notation (list-obj))

The function show-notation takes as an argument a list and returns a list.
It resembles of the function show-notation-after-compare, but the only
difference is that it accepts a list of instances that are produced from one file
and not from the comparison of two files. Also, the function add-color-to-
note is not necessary. So the function note-to-notation is used instead.
It returns a list of notes and rests ready to be translated into the package
cmn.

• (defun song-final-notation (&optional (filename nil)))

The function song-final-notation takes as an argument a “.mid” or “.midi”
file and returns a sheet notation. It makes use of all the functions above
and produce the sheet notation of that file.

• (defun lcs-prepare-song (&optional (filename nil)))

The function lcs-prepare-song takes as an argument a music file “.mid” or
“.midi” and returns a list of both single-note and complex-note instances.

• (defun lcs-draw-notation (clef meter-scala midi-instances))

The function lcs-draw-notation takes as an argument two variables and
two “seq” objects and returns a cmn object of type <#staff>. The first
variable indicates the kind of the clef (i.e treble,tenor,bass). The second
variable indicates not only the meter of the song (i.e 3/4, 6/8, 4/4) but also
the key signature (i.e C major, G minor). This function makes use of the
function show-notation-after-compare to produce all the data required
so that the sheet notation could be created.

• (defun lcs-final-notation (filename1 &optional (filename2 nil)))

The function lcs-final-notation takes as an argument a “.mid” or “.midi”
file and returns a sheet notation. The sheet notation consist of the melody
of the second file which is the result of the comparison with the first file,
(using the lcs algorithm) and if there are any differences between those files
then the notes on the sheet notation will be colored.

6.4. FUNCTIONS 57

6.4.4 GUI Functions

• (defun music-match (&key (new-process nil)))

The function music-match is the main function that calls the MM appli-
cation.

• (define-application-frame music-match ())

The function define-application-frame implements the layout of the MM
application. There are four basic areas. The header area where the title
is, the screen area where the sheet notation is going to be revealed, the
interactor area where the user could interact with the MM application and
finally the actions area which acts as a history channel.

• (defun music-match-title (frame pane))

The function music-match-title takes as an argument a specific pane and
returns the labels that will be presented as the title of the MM application
in the header area.

• (defun output-pane (pane))

The function output-pane takes as an argument a pane and sets the
application-frame variable to that pane, so that the output would be pre-
sented to that pane.

• (define-command (com-record :name ”Start Recording” :command-
table midi-commands))

The function com-record takes as an argument a string pointing out a
name for a song. That function allows the user to record a song by means of
a midi keyboard. Using the function portmidi-open from the package cm,
it opens the ports of communication between the computer and the midi
keyboard.

• (defun start-recording (&key (new-process nil)))

The function start-recording uses the function portmidi-record! from
the package cm to write midi messages.

• (defun get-my-input-device-id ())

By using the functions countdevices, deviceinfo.input, pm-get-device-
info and pm-get-default-input-device-id from the package portmidi, the

58 CHAPTER 6. IMPLEMENTATION

function get-my-input-device-id returns the input id that corresponds to
the midi keyboard.

• (defun get-my-output-device-id ())

The function get-my-output-device-id uses the functions countdevices,
deviceinfo.input, pm-get-device-info and pm-get-default-output-device-
id from the package portmidi and, as a result, the output id that corresponds
to the midi keyboard is returned.

• (define-command (com-stop :name ”Stop Recording” :command-table
midi-commands))

The function com-stop allows the user to stop the procedure of recording
and therefore, the song is saved as a “.mid” file to disk.

• (defun sort-by-time-if-needed (object))

The function sort-by-time-if-needed takes as an argument a “seq” object
and returns a “seq” object. The reason this function is being used is that
the function portmidi-record! from the package cm is not perfectly im-
plemented. When the user tries to play a melody with the right hand and
the left hand keeps holding a note, then the melody which has already been
produced from the right hand has been red as midi messages, but they are
not registered as midi events. Also, when the user stops pressing the note
with their left hand, that particular note is passed as a midi event but in
a wrong time order. Thus, this function categorises in the right order the
midi events by sorting all the midi events of a “seq” object according to the
time slot value.

• (define-command (com-play :name ”Play” :command-table file-commands))

The function com-play takes as an argument a string indicating the name
of a “.mid” file. It allows the user to play that song by using timidity.

• (define-command (com-open-sheet :name ”OpenNotation” :command-
table file-commands))

The function com-open-sheet takes as an argument a string showing the
name of a “.cmn” file. It allows the user to open that sheet notation.

• (define-command (com-save-sheet :name ”SaveNotation” :command-
table file-commands))

The function com-save-sheet takes as an argument a string indicating a
name for the “.cmn” file. It allows the user to save a sheet notation.

6.4. FUNCTIONS 59

• (define-command (com-sound :name ”Change Sound” :command-table
file-commands))

The function com-sound takes as n argument two integers. The first indi-
cates which sound card is going to be used and the second one indicates the
volume. It allows the user to change both sound cards and volume.

• (defun change-sound-volume (soundcard volume))

The function change-sound-volume takes as an argument two numbers
and sets the global variable *midi-player* so that the specified sound card
along with the appropriate volume could be used.

• (define-command (com-reset :name ”Reset tt & dt” :command-table
file-commands))

The function com-reset is used should the user have already changed the
values of the global variables *time-tolerance* and *duration-tolerance*, but
they want to see the results of a comparison in a sheet notation. Thus, in
order that the user could avoid the new values of the global variables, which
influence the result of the comparison, they set to the default value to each
of them.

• (define-command (com-quit :name ”Quit” :command-table file-commands))

The function com-quit allows the user to exit the MM application.

• (define-command (com-clear :name ”Clear” :command-table file-commands))

The function com-clear allows the user to clear the layout of the screen
area.

• (define-command (com-clear-history :name ”Clear History” :command-
table file-commands))

The function com-clear-history allows the user to clear the layout of the
actions area.

• (define-command (com-show :name ”Show Sheet After Compare” :command-
table sheet-commands))

The function com-show takes as an argument two strings and returns a
sheet notation. The strings indicate which files are going to be compared
and the result of the comparison is presented to a sheet notation.

• (define-command (com-show-notation :name ”Sheet Notation” :command-
table sheet-commands))

60 CHAPTER 6. IMPLEMENTATION

The function com-show-notation takes as an argument a string and re-
turns a sheet notation. It allows the user to enter a “.mid” file and watch
it’s sheet notation.

• (define-command (com-close :name ”Close Sheet” :command-table sheet-
commands))

The function com-close allows the user to close the sheet notation.

• (define-command (com-discard :name ”Discard Track” :command-table
midi-commands))

The function com-discard sets the global variable *myseq* into nil. It
allows the user to discard a previous song and record a new one.

• (define-command (com-transpose :name ”Transporto” :command-table
midi-commands))

The function com-transpose takes as an argument an integer and sets the
global variable *transpose-value* to that number. That integer indicates
semitones. It also, allows the user to make a transporto to a song.

• (define-command (com-music-match :name ”Music Match” :command-
table music-match-commands))

The function com-music-match takes as an argument five values and re-
turns the result of a comparison between two songs. The first and second
value indicate the *time-tolerance* and *duration-tolerance* global variable
respectively. The third and fourth value, which are to be compared, rep-
resents the original song and the user’s song respectively. The last value
indicates whether the user would like to see the result of the comparison
as a percentage of success or just the time period that the MM algorithm
requires in order to act.

• (define-command (com-tempo-change :name ”TempoChange” :command-
table midi-commands))

The function com-tempo-change takes as an argument an integer and sets
the global variable *my-tempo* to that number. It allows the user to change
the tempo of a song.

• (define-command (com-lcs-music-match :name ”LcsMatch” :command-
table music-match-commands))

The function com-lcs-music-match takes as an argument a value for the
variable *duration-tolerance*, two music files and a variable that offers the

6.4. FUNCTIONS 61

user the option to check or not the time report of the above function. It
rerurns the percentage of success, after the comparison of the two music
sequences has occured. Using the functions lcs-match and lcs-percent-
of-success. Hence, if the time report variable is yes, then it will also return
the time that was necessary so that the two sequences could be compared
with the aid of the lcs algorithm.

• (define-command (com-lcs-show :name ”Show Sheet After Lcs Com-
pare” :command-table sheet-commands))

The function com-lcs-show takes as an argument two music files, it com-
pares them and returns the result in a music sheet notation, showing each
note with the apropriate color.

62 CHAPTER 6. IMPLEMENTATION

Chapter 7

Evaluation

In support of the efficiency of the provided application, we present in this
section a number of experiments that have been performed. A description
of the experimentation platform and data sets is also cited followed by a
performance analysis.

The application has been implemented and performed on a personal com-
puter with 1, 7 M Intel Centrino processor, 512 MByte RAM, operating
system Ubuntu Linux, while the developing packages utilised, were CM ver-
sion 2.7.0, CMN version 10-11-05, PORTMIDI 1.1.1.1, CLIM 0.9, CMUCL
19c.

The experiment is conducted upon the Beethoven’s “Ode to Joy” sheet
notation. “Ode to Joy” will be played by 3 pianists, who are at a different
level, and our goal concentrates on our attempt to spot similarities between
the original “Ode to Joy” and the three music pieces represented by each
one of the three pianists. Firstly, our intention will be concentrated on the
implementation of the simple match algorithm and then we will proceed
with the use of the LCS algorithm.

The clef of the bass is not depicted in the sheet notations, which is the left
hand, because of an error in this version of the CM package. Despite that
error, the MM application supports both the recording and demostrating
utility of the left hand.

The percentages which are written on the following experiment, depict the
percentage of success of the comparisons. Since there are three parameters
taking part in the process (keynum, time, duration), there are eight situa-

63

64 CHAPTER 7. EVALUATION

tions that could occur. Each case depends on a coefficient factor analogous
to that case. For example, if a pair of instances are equal, then the coeffi-
cient factor is 2 and if the keynum is the only mistake then the coefficient
factor is 1.

Figure 7.1: This is the original “Ode to Joy” sheet notation.

65

Figure 7.2: The 1st pianist.

This sheet notation extracted by a beginer pianist but steady and concen-
trated.

Figure 7.3: The 2nd pianist.

This sheet notation extracted by a medium-level pianist.

66 CHAPTER 7. EVALUATION

Figure 7.4: The 3rd pianist.

This sheet notation extracted by a pianist with good technique but unsteady
and very enthousiastic.

67

If note errors occur while comparing two songs, each error corresponds to
a specific color according to the chromatic code below. We have 0, if the
criteria of the comparison are satisfied and 1, if not.

keynum Time Duration Chromatic Code

t (000) : black
0 0 1 (001) : blue
0 1 0 (010) : green
0 1 1 (011) : light blue
1 0 0 (100) : red
1 0 1 (101) : purple
1 1 0 (110) : yellow
1 1 1 (111) : white

Figure 7.5: Simple match algorithm: Comparing the original song with the song of the 1st

pianist with duration-tolerance= 0.2 and time-tolerance= 0.1, we have 18.333334% similarities.

The 1st pianist played a part of the Ode to joy with a restrict electronic
teacher and the results were not good.

Figure 7.6: Simple match algorithm: Comparing the original song with the song of the 2nd

pianist with duration-tolerance= 0.2 and time-tolerance= 0.1 we have 10.0% similarities.

The 2nd pianist played also a part of the Ode to joy with the same restrict

68 CHAPTER 7. EVALUATION

electronic teacher and the results were not good as the 1st pianist, because
he was out of the tempo some times.

Figure 7.7: Simple match algorithm: Comparing the original song with the song of the 3rd

pianist with duration-tolerance= 0.2 and time-tolerance= 0.1, we have 12.903225% similarities.

The 3rd pianist played a part of the Ode to joy with also the same restrict
electronic teacher and the results were not good, but better than the 2nd

pianist and worse than the 1st one, because some times he was out of the
tempo and some ohters out of the duration.

Figure 7.8: Simple match algorithm: Comparing the original song with the song of the 1st

pianist with duration-tolerance= 20 and time-tolerance= 20, we have 25.0% similarities.

By increasing the time and duration tolerance we have better results, but
yet not good.

69

Figure 7.9: Brute-force algorithm: Comparing the original song with the song of the 2nd

pianist with duration-tolerance= 20 and time-tolerance= 20. We have 35.0% similarities.

The 2nd pianist becomes better than the 1st one.

Figure 7.10: Brute-force algorithm: Comparing the original song with the song of the 3rd

pianist with duration-tolerance= 20 and time-tolerance= 20, we have 34.677418% similarities.

The 3rd pianist also becomes better than the 1st one.

70 CHAPTER 7. EVALUATION

The outcome of our estimation regarding the evaluation time with the con-
tribution of the brute-force algorithm for each comparison are the following:

Using only the simple match algorithm

• For the 1st comparison, the evaluation lasted: 0.03 seconds of real
time, 0.024996 seconds of user run time, 9.99e-4 seconds of system run
time, 21,427,271 CPU cycles, 0 page faults and 402,112 bytes consed.

• For the 2nd comparison, the evaluation occupied: 0.03 seconds of real
time, 0.027996 seconds of user run time, 0.001 seconds of system run
time, 22,581,305 CPU cycles, 0 page faults and 456,872 bytes consed.

• For the 3rd comparison, the evaluation consumed: 0.03 seconds of real
time, 0.027996 seconds of user run time, 0.0 seconds of system run
time, 22,504,620 CPU cycles, 0 page faults and 460,376 bytes consed.

Using the simple match algorithm and demonstrating the results in a sheet
notation

• For the 1st comparison, the evaluation lasted: 0.07 seconds of real
time, 0.06899 seconds of user run time, 0.0 seconds of system run time,
55,142,910 CPU cycles, 0 page faults and 1,930,680 bytes consed.

• For the 2nd comparison, the evaluation occupied: 0.12 seconds of real
time, 0.102984 seconds of user run time, 0.002999 seconds of system
run time, 93,067,968 CPU cycles, 0 page faults and 3,345,248 bytes
consed.

• For the 3rd comparison, the evaluation consumed: 0.12 seconds of real
time, 0.098985 seconds of user run time, 0.005 seconds of system run
time, 90,134,574 CPU cycles, 0 page faults and 3,260,976 bytes consed.

71

Figure 7.11: LCS algorithm: Comparing the original song with the song of the 1st pianist
with duration-tolerance= 0.2, we have 50 deletions, 1 insertion and 67.85714% similarities.

The 1st pianist has good results but not perfect with a restrict electronic
teacher.

Figure 7.12: LCS algorithm: Comparing the original song with the song of the 2nd pianist
with duration-tolerance= 0.2, we have 42 deletions, 8 insertions and 43.103447% similarities.

The 2nd pianist is not as good as the 1st one because of some durations
errors.

Figure 7.13: LCS algorithm: Comparing the original song with the song of the 3rd pianist
with duration-tolerance= 0.2, we have 42 deletions, 9 insertions and 46.666668% similarities.

The 3rd pianist is better than the 2nd one, but because of some duration
errors is not as good as the 1st one.

72 CHAPTER 7. EVALUATION

Figure 7.14: LCS algorithm: Comparing the original song with the song of the 1st pianist
with duration-tolerance= 1, we have 50 deletions, 1 insertion and 92, 85714% similarities.

The 1st pianist with a more tolerable electronic teacher is almost perfect.

Figure 7.15: LCS algorithm: Comparing the original song with the song of the 2nd pianist
with duration-tolerance= 1, we have 42 deletions, 8 insertions and 72.413795% similarities.

The 2nd pianist with a more tolerable electronic teacher is not as good as
the 1st one, because of some duration errors.

Figure 7.16: LCS algorithm: Comparing the original song with the song of the 3rd pianist
with duration-tolerance= 1, we have 42 deletions, 9 insertions and 70.0% similarities.

The 3rd pianist, despite his good technique has more duration errors than
the 2nd and the 1st pianist.

73

As far as the evaluation time is concerned and with the use of the LCS
algorithm, we have the following results for each comparison:

Using only the LCS algorithm

• For the 1st comparison, the evaluation lasted: 0.03 seconds of real
time, 0.025996 seconds of user run time, 0.001 seconds of system run
time, 21,474,265 CPU cycles, 0 page faults and 413,424 bytes consed.

• For the 2nd comparison, the evaluation consumed: 0.03 seconds of real
time, 0.030995 seconds of user run time, 0.002 seconds of system run
time, 26,801,183 CPU cycles, 0 page faults and 478,840 bytes consed.

• For the 3rd comparison, the evaluation occupied: 0.03 seconds of real
time, 0.029995 seconds of user run time, 0.002 seconds of system run
time, 25,459,815 CPU cycles, 0 page faults and 501,616 bytes consed.

Using the LCS algorithm and demonstrating the results in a sheet notation

• For the 1st comparison, the evaluation lasted: 0.07 seconds of real
time, 0.06399 seconds of user run time, 0.005999 seconds of system
run time, 55,363,188 CPU cycles, 0 page faults and 1,917,520 bytes
consed.

• For the 2nd comparison, the evaluation consumed: 0.11 seconds of real
time, 0.097986 seconds of user run time, 0.003 seconds of system run
time, 86,922,774 CPU cycles, 0 page faults and 3,154,568 bytes consed.

• For the 3rd comparison, the evaluation occupied: 0.1 seconds of real
time, 0.093986 seconds of user run time, 0.007999 seconds of system
run time, 84,326,730 CPU cycles, 0 page faults and 3,021,776 bytes
consed.

74 CHAPTER 7. EVALUATION

1st pianist 2nd pianist 3rd pianist

Human teacher
A beginer pianist
which keep the
right tempo

A medium level
pianist

A pianist with
good technique
but unsteady.

Electronic teacher, us-
ing the simple match
algorithm with tt=0.1
and dt=0.2

18, 333334% 10, 0% 12, 903225%

Electronic teacher, us-
ing the simple match al-
gorithm with tt=20 and
dt=20

25, 0% 35, 0% 34, 677418%

Electronic teacher, us-
ing the LCS algorithm
with tt=0, 1 and dt=0, 2

65, 85714% 43, 103447% 46, 666668%

Electronic teacher, us-
ing the LCS algorithm
with tt=20 and dt=20

92, 85714% 72, 413795% 70, 0%

As we see in the table above, even a pianist with good technique as the
3rd one, might be not so good with electronic teacher if he does not follow
the tempo and improvise some parts. But, a beginer pianist as the 1st one,
might be a very good executant with electronic teacher, as he follows the
music rules.

Chapter 8

Conclusions & Future Work

Conclusions:

This application is an attempt for potential users to perceive and represent
the possibilities and limitations of an approach to music pattern matching
and music representation. Using the brute-force algorithm, it is hard for the
application to find similarities between two scores, unless the user increases
to a great extent the time-tolerance and duration-tolerance parameters. It is
also runs in time O(n2) making it impractical for long sequences. Nonethe-
less, despite any human errors that may occur, it is easy for the application
to find similarities between two songs – the original and the user’s song –
with the aid of the LCS algorithm while they are playing the piano and with-
out increasing the duration-tolerance parameter.The LCS algorithm runs in
time O(nm) which is propably very hard to improve. But, a time-tolerance
parameter could be added, which is more relevant to a computer-aided learn-
ing of music, than our trying to improve the O(nm) factor.

As far as future work is concerned, there are some technical issues that need
to be changed and some feature issues that should be added.

Technical Issues:

The function portmidi-record! from package cm needs some changes.
When a note parses a midi-note-on message and is pressed down for a pe-
riod of time, a counter starts counting until the note parses a midi-note-off
message. That counter indicates the duration of that note. The problem
occurs when someone tries to play something at that period of time. The
new midi-note-on’s and midi-note-of’s messages are parsed correctly but it

75

76 CHAPTER 8. CONCLUSIONS & FUTURE WORK

is impossible for the function to write down those messages as midi events.
In the end, only the first note could become a midi event whereas the other
notes are lost.

The function midi-events-organized-to-indicate-chords needs to be re-
defined. Instead of a list, a hash table should be used to hold the chords.

The function duration-check should change. If two instances of complex-
note are to be compared, then at least the notes which are equal should be
returned and not the whole chord.

Also, the process of presenting the left hand in a sheet notation should
be subject to certain changes. The “seq” object, that holds the left hand,
should be transposed upto 4 semitones down to satisfy the bass clef.

The sheet notation should be demonstrated inside the screen area of the
MM application.

The function insert-bars-ties-and-rests in package CMN in file cmn4.lisp
requires some changes on how the bars assignment on an unmeasured score
are handled.

The LCS algorithm supports a duration false tolerance ability but a time
false tolerance ability could also be added.

Feature Issues:

The MM algorithm is able to compare two songs among three parameters,
which are the note, time, duration. An amplitude parameter should be
added, so that the user would be more careful on how hard (forte) or how
soft (piccolo) they press the notes according to the sheet notation.

There is also a package named gsharp, which allows the user to create a sheet
notation by typewriting in real time. A nice idea would be if the MM applica-
tion adapted this package, so that the user could play on a midi keyboard and
thus, a sheet notation would be created in real time. In the past, an effort
was made so that this achievment could be accomplished, but the existing
knowledge at that time was insufficient and an e-mail from the creator of the
package gsharp has made clear that this idea could only be applied without
the time and duration parameters, or at least until now its too dificult for it
to occur. If someone wishes to acquire further information on the topic, they
should contact Robert Strandh. Alternatively, if they wish to receive email
information about CCRMA’s family of Lisp music programs (CM, CLM
and CMN) they should e-mail cmdist-request@ccrma.stanford.edu. By us-

77

ing the jack with qsynth and the appropriate connections between the midi
keyboard and the sound card, the MM application will be able to support
sound production. But that implies that some changes in the CM package
should be achieved, in the first place.

Last but not least, a print utility function should be added to facilitate the
print of a sheet notation.

78 CHAPTER 8. CONCLUSIONS & FUTURE WORK

Chapter 9

Appendix

9.1 Musical Terms

A few usefull musical terms.

Transposition

Music may be transposed when the original key is changed, a process all
too necessary in accompanying singers and for whom a transposition of the
music down a tone or two may be necessary. Some instruments are known
as transposing instruments because the written notes for them sound higher
or lower than the apparent written pitch, when they are played.

Forte

Forte (Italian: loud) is used in directions to performers. It appears in the
superlative form fortissimo, very loud. The letter f is an abbreviation of
forte, ff an abbreviation of fortissimo, with fff or more rarely ffff even louder.

Piano

Piano (Italian: soft) is generally represented by the letter p in directions to
performers. Pianissimo, represented by pp, means very soft. Addition of
further letters p indicates greater degrees of softness, as in Tchaikovsky’s
Sixth Symphony, where an excessive pppppp is used.

Mezzo

79

80 CHAPTER 9. APPENDIX

Mezzo (Italian: half) is found particularly in the compound words mezzo-
forte, half loud, represented by the letters mf, and mezzo-piano, half soft,
represented by the letters mp. Mezzo can serve as a colloquial abbreviation
for mezzo-soprano, the female voice that employs a generally lower register
than a soprano and consequently is often, in opera, given the parts of con-
fidante, nurse or mother, secondary roles to the heroine, usually a soprano.
The instruction mezza voce directs a singer to sing with a controlled tone.
The instruction can also occur in instrumental music.

Notation

Notation is the method of writing music down, practices of which have varied
during the course of history. Staff notation is the conventional notation
that makes use of the five-line staff or stave, while some recent composers
have employed systems of graphic notation to indicate their more varied
requirements, often needing detailed explanations in a preface to the score.
Notation is inevitably imprecise, providing a guide of varying accuracy for
performers, who must additionally draw on stylistic tradition.

Octave

The octave is an interval of an eighth, as for example from the note C to C
or D to D. The first note can have a sharp or flat providing the last note
has the corresponding sharp or flat (i. e. C sharp to C sharp).

Score

A musical score is written music that shows all parts. A conductor’s score,
for example, may have as many as thirty different simultaneous instrumental
parts on one page, normally having the woodwind at the top, followed below
by the brass, the percussion and the strings. A distinction is made between
a vocal score, which gives voice parts with a simplified two-stave version
of any instrumental parts, and a full score, which includes all vocal and
instrumental parts generally on separate staves. To score a work is to write
it out in score. A symphony, for example, might be sketched in short score,
on two staves, and later orchestrated or scored for the required instruments.

Scale

A scale is a sequence of notes placed in ascending or descending order by
step.

Staff

9.2. CLASSES 81

The staff or stave (plural: staves) indicates the set of lines used for the
notation of notes of different pitches. The five-line stave is in general use,
with a four-line stave used for plainchant. Staves of other numbers of lines
were once used. The system, with coloured lines for C and for F, followed
principles suggested first by Guido of Arezzo in the 11th century. Staff
notation is the system of notation that uses the stave.

9.2 Classes

(defclass music-element ()())

(defclass single-note (music-element)

((note-name :accessor single-note-name

:initarg :note-name

:initform nil)

(time :accessor single-note-time

:initarg :time

:initform 0)

(duration :accessor single-note-duration

:initarg :duration

:initform 0)))

(defclass complex-note (music-element)

((note-name :accessor complex-note-name

:initarg :note-name

:initform nil)

(time :accessor complex-note-time

:initarg :time

:initform 0)

(duration :accessor complex-note-duration

:initarg :duration

:initform 0)))

82 CHAPTER 9. APPENDIX

(progn

(defclass container nil

((name :initform nil

:accessor object-name

:initarg :name)))

(defparameter <container> (find-class ’container))

(finalize-class <container>)

(values))

(progn

(defclass seq (container)

((time :accessor object-time

:initarg :time

:initform 0)

(subobjects :initform ’()

:accessor container-subobjects

:initarg :subobjects)))

(defparameter <seq> (find-class ’seq))

(finalize-class <seq>)

(values))

9.3 Variables

(defparameter *myseq* nil)

(defparameter *time-chords* .0234375)

(defparameter *my-tempo* 60)

(defparameter *time-tolerance* .1)

9.4. FUNCTIONS 83

(defparameter *duration-tolerance* .2)

(defparameter *transpose-value* 0)

(setf *cmn-output-type* :x)

midi-player timidity -A 300

(defparameter *seq-name* "my_song")

(defparameter *pm* nil)

size 30

page-width 45

automatic-page-numbers t

9.4 Functions

9.4.1 MM (Music Matching) Algorithm Functions

84 CHAPTER 9. APPENDIX

(defun compare-music (filename1 &optional (filename2 nil))

(match-music

(make-instance-single-complex-note

(midi-events-organized-to-indicate-chords

(import-song filename1)))

(make-instance-single-complex-note

(midi-events-organized-to-indicate-chords

(or (import-song filename2)

cl-user::*myseq*)))))

(defun import-song (filename)

(let ((song (load-song filename :key-note ’:keynum)))

(if (atom song)

song

(transform-midi-to-seq song))))

(defun load-song (filename &key (meta cm::true) (key-note ’:note))

(cond ((null filename) nil)

(t (cm::import-events

(namestring

(make-pathname :directory ’(:absolute "home" "pontikis" "Lisp")

:name filename

:type (or "mid" "midi")))

:meta-exclude meta :keynum-format key-note))))

(defun transform-midi-to-seq (object)

(remove-non-midi-object

(dolist (track object)

(if (cm::container-subobjects track)

(return track)))))

(defun remove-non-midi-object (object)

(let ((midi-ev nil))

(dolist (midievent (cm::container-subobjects object))

9.4. FUNCTIONS 85

(typecase midievent

(cm::MIDI (push midievent midi-ev))))

(cm::events (reverse midi-ev)

(new cm::seq :name (object-name object)))))

(let ((midi-events)

(midi-complex))

(defun midi-events-organized-to-indicate-chords (object)

(let ((len (length (cm::container-subobjects object))))

(cond ((null object)

nil)

(t

(setq midi-events nil)

(setq midi-complex nil)

(dotimes (i len)

(cond ((= len 1)

(push (first-subobject object 0 1)

midi-events))

((equal i (- len 1)) ;;1st case

(when (<= 0 (substitute-times object i (+ i 1)

(- i 1) i)

time-chords)

(push (first-subobject object i (+ i 1))

midi-complex)

(push midi-complex

midi-events))

(unless (<= (substitute-times object i (+ i 1)

(- i 1) i)

time-chords)

(push (first-subobject object i (+ i 1))

midi-events)))

((<= 0 (substitute-times object i (+ i 1) ;;2nd case

(+ i 1) (+ i 2))

time-chords)

(push (first-subobject object i (+ i 1))

midi-complex))

((>= (substitute-times object i (+ i 1) ;;3rd case

(+ i 1) (+ i 2))

86 CHAPTER 9. APPENDIX

time-chords)

(when (equal (- i 1) -1)

(push (first-subobject object i (+ i 1))

midi-events)

(setf i 1))

(when (<= 0 (substitute-times object i (+ i 1)

(- i 1) i)

time-chords)

(push (first-subobject object i (+ i 1))

midi-complex)

(push midi-complex

midi-events)

(setq midi-complex nil))

(when (and (equal i 1)

(<= 0 (substitute-times object i (+ i 1)

(+ i 1) (+ i 2))

time-chords))

(push (first-subobject object i (+ i 1))

midi-complex))

(unless (or (equal (- i 1) -1)

(<= 0 (substitute-times object i (+ i 1)

(- i 1) i)

time-chords)

(<= 0 (substitute-times object i (+ i 1)

(+ i 1) (+ i 2))

time-chords))

(push (first-subobject object i (+ i 1))

midi-events)))))

midi-events)))))

(defmacro first-subobject (obj start end)

‘(first (cm::subobjects ,obj :start ,start :end ,end)))

(defmacro substitute-times (obj start1 end1 start2 end2)

‘(cond ((null (first-subobject ,obj ,start2 ,end2))

(sv (first-subobject ,obj ,start1 ,end1) :time))

(t

9.4. FUNCTIONS 87

(abs (- (sv (first-subobject ,obj ,start1 ,end1) :time)

(sv (first-subobject ,obj ,start2 ,end2) :time))))))

(defun make-instance-single-complex-note (midi-events-list)

(mapcar #’(lambda (midis)

(if (atom midis)

(make-instance ’single-note

:note-name (cm::note

(cm::transpose

(sv midis :keynum)

transpose-value))

:time (sv midis :time)

:duration (sv midis cm::duration))

(make-instance ’complex-note

:note-name (cm::note

(sort

(keynum

(mapcar

#’(lambda (x)

(cm::transpose

(sv x :keynum)

transpose-value))

midis))

#’<))

:time (mapcar #’(lambda (x)

(sv x :time))

midis)

:duration (mapcar #’(lambda (x)

(sv x cm::duration))

midis))))

midi-events-list))

(defun match-music (oldsong newsong)

(mapcar #’match-note oldsong newsong))

88 CHAPTER 9. APPENDIX

(let ((res))

(defmethod match-note ((oldsong single-note)

(newsong single-note)

&key (note-only nil))

(setf res nil)

(cond (note-only

(setf res (equal (single-note-name oldsong)

(single-note-name newsong))))

((and (equal (single-note-name oldsong)

(single-note-name newsong))

(<= 0

(abs (- (single-note-time oldsong)

(single-note-time newsong)))

time-tolerance)

(<= 0

(abs (- (single-note-duration oldsong)

(single-note-duration newsong)))

duration-tolerance))

(setf res (list t newsong)))

((and (equal (single-note-name oldsong)

(single-note-name newsong))

(<= 0

(abs (- (single-note-time oldsong)

(single-note-time newsong)))

time-tolerance)

(>

(abs (- (single-note-duration oldsong)

(single-note-duration newsong)))

duration-tolerance))

(setf res (list 001 newsong)))

((and (equal (single-note-name oldsong)

(single-note-name newsong))

(>

(abs (- (single-note-time oldsong)

(single-note-time newsong)))

time-tolerance)

(<= 0

(abs (- (single-note-duration oldsong)

(single-note-duration newsong)))

duration-tolerance))

9.4. FUNCTIONS 89

(setf res (list 010 newsong)))

((and (equal (single-note-name oldsong)

(single-note-name newsong))

(>

(abs (- (single-note-time oldsong)

(single-note-time newsong)))

time-tolerance)

(>

(abs (- (single-note-duration oldsong)

(single-note-duration newsong)))

duration-tolerance))

(setf res (list 011 newsong)))

((and (not

(equal (single-note-name oldsong)

(single-note-name newsong)))

(<= 0

(abs (- (single-note-time oldsong)

(single-note-time newsong)))

time-tolerance)

(<= 0

(abs (- (single-note-duration oldsong)

(single-note-duration newsong)))

duration-tolerance))

(setf res (list 100 newsong)))

((and (not

(equal (single-note-name oldsong)

(single-note-name newsong)))

(<= 0

(abs (- (single-note-time oldsong)

(single-note-time newsong)))

time-tolerance)

(>

(abs (- (single-note-duration oldsong)

(single-note-duration newsong)))

duration-tolerance))

(setf res (list 101 newsong)))

((and (not

(equal (single-note-name oldsong)

(single-note-name newsong)))

(>

90 CHAPTER 9. APPENDIX

(abs (- (single-note-time oldsong)

(single-note-time newsong)))

time-tolerance)

(<= 0

(abs (- (single-note-duration oldsong)

(single-note-duration newsong)))

duration-tolerance))

(setf res (list 110 newsong)))

((and (not

(equal (single-note-name oldsong)

(single-note-name newsong)))

(>

(abs (- (single-note-time oldsong)

(single-note-time newsong)))

time-tolerance)

(>

(abs (- (single-note-duration oldsong)

(single-note-duration newsong)))

duration-tolerance))

(setf res (list 111 newsong))))

res))

(let ((res))

(defmethod match-note ((oldsong complex-note)

(newsong complex-note)

&key (note-only nil))

(cond (note-only

(setf res (equal (complex-note-name oldsong)

(complex-note-name newsong))))

((and (equal

(complex-note-name oldsong)

(complex-note-name newsong))

(<= 0

(abs (-

(/ (apply #’+ (complex-note-time oldsong))

(length (complex-note-time oldsong)))

(/ (apply #’+ (complex-note-time newsong))

(length (complex-note-time newsong)))))

9.4. FUNCTIONS 91

time-tolerance)

(equal 0

(duration-check (complex-note-duration oldsong)

(complex-note-duration newsong))))

(setf res (list t newsong)))

((and (equal (complex-note-name oldsong)

(complex-note-name newsong))

(<= 0

(abs (-

(/ (apply #’+ (complex-note-time oldsong))

(length (complex-note-time oldsong)))

(/ (apply #’+ (complex-note-time newsong))

(length (complex-note-time newsong)))))

time-tolerance)

(>

(duration-check (complex-note-duration oldsong)

(complex-note-duration newsong)) 0))

(setf res (list 001 newsong)))

((and (equal (complex-note-name oldsong)

(complex-note-name newsong))

(>

(abs (-

(/ (apply #’+ (complex-note-time oldsong))

(length (complex-note-time oldsong)))

(/ (apply #’+ (complex-note-time newsong))

(length (complex-note-time newsong)))))

time-tolerance)

(equal 0

(duration-check (complex-note-duration oldsong)

(complex-note-duration newsong))))

(setf res (list 010 newsong)))

((and (equal (complex-note-name oldsong)

(complex-note-name newsong))

(>

(abs (-

(/ (apply #’+ (complex-note-time oldsong))

(length (complex-note-time oldsong)))

(/ (apply #’+ (complex-note-time newsong))

(length (complex-note-time newsong)))))

time-tolerance)

92 CHAPTER 9. APPENDIX

(>

(duration-check (complex-note-duration oldsong)

(complex-note-duration newsong)) 0))

(setf res (list 011 newsong)))

((and (not

(equal (complex-note-name oldsong)

(complex-note-name newsong)))

(<= 0

(abs (-

(/ (apply #’+ (complex-note-time oldsong))

(length (complex-note-time oldsong)))

(/ (apply #’+ (complex-note-time newsong))

(length (complex-note-time newsong)))))

time-tolerance)

(equal 0

(duration-check (complex-note-duration oldsong)

(complex-note-duration newsong))))

(setf res (list 100 newsong)))

((and (not

(equal (complex-note-name oldsong)

(complex-note-name newsong)))

(<= 0

(abs (-

(/ (apply #’+ (complex-note-time oldsong))

(length (complex-note-time oldsong)))

(/ (apply #’+ (complex-note-time newsong))

(length (complex-note-time newsong)))))

time-tolerance)

(>

(duration-check (complex-note-duration oldsong)

(complex-note-duration newsong)) 0))

(setf res (list 101 newsong)))

((and (not

(equal (complex-note-name oldsong)

(complex-note-name newsong)))

(>

(abs (-

(/ (apply #’+ (complex-note-time oldsong))

(length (complex-note-time oldsong)))

(/ (apply #’+ (complex-note-time newsong))

9.4. FUNCTIONS 93

(length (complex-note-time newsong)))))

time-tolerance)

(equal 0

(duration-check (complex-note-duration oldsong)

(complex-note-duration newsong))))

(setf res (list 110 newsong)))

((and (not

(equal (complex-note-name oldsong)

(complex-note-name newsong)))

(>

(abs (-

(/ (apply #’+ (complex-note-time oldsong))

(length (complex-note-time oldsong)))

(/ (apply #’+ (complex-note-time newsong))

(length (complex-note-time newsong)))))

time-tolerance)

(>

(duration-check (complex-note-duration oldsong)

(complex-note-duration newsong)) 0))

(setf res (list 111 newsong))))

res))

(defmacro duration-check(old new)

‘(count nil

(mapcar (lambda (x y)

(when (<= (abs (- x y)) *duration-tolerance*)

t)) ,old ,new)))

9.4.2 LCS (Longest-Common-Subsequence) Functions

(defun zero-column(array)

(do ((i 0 (+ i 1))

(m (car (array-dimensions array))))

((= i m))

(setf (aref array i 0) 0)))

94 CHAPTER 9. APPENDIX

(defun zero-row(array)

(do ((j 0 (+ j 1))

(n (second (array-dimensions array))))

((= j n))

(setf (aref array 0 j) 0)))

(defun lcs-length (seq1 seq2)

(let* ((len1 (length seq1))

(len2 (length seq2))

(c (make-array (list (+ len1 1) (+ len2 1))

:initial-element nil))

(b (make-array (list (+ len1 1) (+ len2 1))

:initial-element nil)))

(zero-row c)

(zero-column c)

(do ((i 1 (+ i 1)))

((= i (+ len1 1)))

(do ((j 1 (+ j 1)))

((= j (+ len2 1)))

(cond ((equal (get-note-name

(nth (- i 1) seq1))

(get-note-name

(nth (- j 1) seq2)))

(when (> (abs (- (get-note-duration

(nth (- i 1) seq1))

(get-note-duration

(nth (- j 1) seq2))))

duration-tolerance)

(setf (aref c i j)

(+ (aref c (- i 1) (- j 1))

1))

(setf (aref b i j)

’diagonal-up-no-duration))

(unless (> (abs (- (get-note-duration

(nth (- i 1) seq1))

(get-note-duration

9.4. FUNCTIONS 95

(nth (- j 1) seq2))))

duration-tolerance)

(setf (aref c i j)

(+ (aref c (- i 1) (- j 1))

1))

(setf (aref b i j)

’diagonal-up)))

((>= (aref c (- i 1) j)

(aref c i (- j 1)))

(setf (aref c i j)

(aref c (- i 1) j))

(setf (aref b i j)

’up))

((< (aref c (- i 1) j)

(aref c i (- j 1)))

(setf (aref c i j)

(aref c i (- j 1)))

(setf (aref b i j)

’left)))))

b))

(defun print-lcs (b-array seq i j

&key

(del 0)

(insert 0)

(music-result ’()))

(cond ((or (= i 0)

(= j 0))

(when (null music-result)

(dolist (midi-instance seq)

(push (list 100 midi-instance) music-result))

(setq music-result (reverse music-result)))

(list "deletions:" del "insertions:" insert music-result))

((equal (aref b-array i j)

’diagonal-up)

(push (list t (nth (- j 1) seq)) music-result)

(print-lcs b-array seq (- i 1) (- j 1)

:del del

96 CHAPTER 9. APPENDIX

:insert insert

:music-result music-result))

((equal (aref b-array i j)

’diagonal-up-no-duration)

(push (list 001 (nth (- j 1) seq)) music-result)

(print-lcs b-array seq (- i 1) (- j 1)

:del del

:insert insert

:music-result music-result))

((equal (aref b-array i j)

’up)

(print-lcs b-array seq (- i 1) j

:del (+ del 1)

:insert insert

:music-result music-result))

((equal (aref b-array i j)

’left)

(push (list 100 (nth (- j 1) seq)) music-result)

(print-lcs b-array seq i (- j 1)

:del del

:insert (+ insert 1)

:music-result music-result))))

(defun lcs-match (filename1 &optional (filename2 nil))

(let* ((midi-ev1 (lcs-prepare-song filename1))

(midi-ev2 (lcs-prepare-song filename2))

(len1 (length midi-ev1))

(len2 (length midi-ev2)))

(print-lcs (lcs-length midi-ev1 midi-ev2)

midi-ev2

len1

len2)))

9.4.3 Utility Functions

9.4. FUNCTIONS 97

(defun percent-of-success (list-obj)

(let ((i 0)

(len (length list-obj))

(percent 0))

(dolist (notes-instances list-obj)

(case (first notes-instances)

((t) (incf i 2))

(1 (incf i 1.5))

(10 (incf i 1.5))

(11 (incf i .5))

(100 (incf i 1))

(101 (incf i .5))

(110 (incf i .5))

(111 (incf i 0))))

(setq percent (float (* (/ i (* 2 len))

100)))

percent))

(defun lcs-percent-of-success (list-objects)

(let* ((i 0)

(list-obj (fifth list-objects))

(len (length list-obj))

(percent 0))

(dolist (notes-instances list-obj)

(case (first notes-instances)

((t) (incf i 2))

(001 (incf i 1))

(100 (incf i 0))))

(setq percent (float (* (/ i (* 2 len))

100)))

percent))

(defun split-midi-events-to-left-right-hand (object)

(cond ((null object) nil)

(t (list

(new seq :name (string-append

(object-name object) "-right-hand")

98 CHAPTER 9. APPENDIX

:subobjects

(subobjects object :test

(lambda(x) (>= (sv x :keynum) 60))))

(new seq :name (string-append

(object-name object) "-left-hand")

:subobjects

(subobjects object :test

(lambda(x) (< (sv x :keynum) 60))))))))

(defun prepare-midi-for-notation (&optional (filename nil))

(split-midi-events-to-left-right-hand

(or (import-song filename)

cl-user::*myseq*)))

(defun compare-seperated-hands (hand1 hand2)

(match-music

(make-instance-single-complex-note

(midi-events-organized-to-indicate-chords hand1))

(make-instance-single-complex-note

(midi-events-organized-to-indicate-chords hand2))))

(defun draw-notation (clef meter-scala midi-instances1 midi-instances2)

(cm::cmn-eval

(append

’(staff) ’(bar) (list clef) (list meter-scala)

(show-notation-after-compare

(compare-seperated-hands midi-instances1 midi-instances2)))))

(defun show-notation-after-compare (list-obj)

(cond ((null list-obj)

(push (add-color-to-note nil nil)

oi))

((null (cdr list-obj))

(push (add-color-to-note (first (first list-obj))

9.4. FUNCTIONS 99

(second (first list-obj)))

oi)

(when (> (get-note-time (second (first list-obj))) 0)

(push (describe-rests

(get-note-time (second (first list-obj))))

oi))

oi)

(t

(push (add-color-to-note (first (first list-obj))

(second (first list-obj)))

oi)

(push (describe-rests

(get-rest-value (second (first list-obj))

(second (second list-obj))))

oi)

(show-notation-after-compare (cdr list-obj)))))

(defmethod add-color-to-note (code (song single-note))

(case code

((t) (note-to-notation song))

(1 (cmn::note (note-to-notation song) (color ’(0 0 1))))

(10 (cmn::note (note-to-notation song) (color ’(0 1 0))))

(11 (cmn::note (note-to-notation song) (color ’(0 1 1))))

(100 (cmn::note (note-to-notation song) (color ’(1 0 0))))

(101 (cmn::note (note-to-notation song) (color ’(1 0 1))))

(110 (cmn::note (note-to-notation song) (color ’(1 1 0))))

(111 (cmn::note (note-to-notation song) (gray-scale .9)))))

(defmethod add-color-to-note (code (song complex-note))

(case code

((t) (note-to-notation song))

(1 (cmn::chord (note-to-notation song) (color ’(0 0 1))))

(10 (cmn::chord (note-to-notation song) (color ’(0 1 0))))

(11 (cmn::chord (note-to-notation song) (color ’(0 1 1))))

(100 (cmn::chord (note-to-notation song) (color ’(1 0 0))))

(101 (cmn::chord (note-to-notation song) (color ’(1 0 1))))

(110 (cmn::chord (note-to-notation song) (color ’(1 1 0))))

100 CHAPTER 9. APPENDIX

(111 (cmn::chord (note-to-notation song) (gray-scale .9)))))

(defmethod add-color-to-note (code object)

(cond ((null (or code

object))

(rest (rq 4)))))

(defmethod note-to-notation ((song single-note))

(note (cm::cmn-eval (single-note-name song))

(quarters

(describe-notes

(single-note-duration song)))))

(defmethod note-to-notation ((song complex-note))

(let ((notes-list nil))

(dolist (note-ev (complex-note-name song))

(push (cm::cmn-eval note-ev)

notes-list))

(chord (cm::cmn-eval

(apply #’list

(append ’(notes)

notes-list)))

(quarters

(describe-notes

(get-note-duration song))))))

(defmethod note-to-notation (object)

(cond ((null object)

(rest (rq 4)))))

(defmethod get-note-time ((song single-note))

(single-note-time song))

9.4. FUNCTIONS 101

(defmethod get-note-time ((song complex-note))

(car (complex-note-time song)))

(defmethod get-note-time (object)

(cond ((null object)

0)))

(defmethod get-note-duration ((song single-note))

(single-note-duration song))

(defmethod get-note-duration ((song complex-note))

(car (complex-note-duration song)))

(defmethod get-note-duration (object)

(cond ((null object)

0)))

(defun get-rest-value (note note1)

(abs (-

(+ (get-note-time note)

(get-note-duration note))

(get-note-time note1))))

(defun describe-notes (var-duration)

(let ((tempo (/ *my-tempo* 60)))

(cond ((< var-duration (* .0234375 tempo))

’1/64)

((<= (* .0234375 tempo) var-duration (* .03125 tempo))

102 CHAPTER 9. APPENDIX

’1/32)

((<= (* .03125 tempo) var-duration (* .046875 tempo))

’3/64)

((<= (* .046875 tempo) var-duration (* .0546875 tempo))

’7/128)

((<= (* .0546875 tempo) var-duration (* .05859375 tempo))

’15/256)

((<= (* .05859375 tempo) var-duration (* .0625 tempo))

’1/16)

((<= (* .0625 tempo) var-duration (* .09375 tempo))

’3/32)

((<= (* .09375 tempo) var-duration (* .109375 tempo))

’7/64)

((<= (* .109375 tempo) var-duration (* .1171875 tempo))

’15/128)

((<= (* .1171875 tempo) var-duration (* .125 tempo))

’1/8)

((<= (* .125 tempo) var-duration (* .1875 tempo))

’3/16)

((<= (* .1875 tempo) var-duration (* .21875 tempo))

’7/32)

((<= (* .21875 tempo) var-duration (* .234375 tempo))

’15/64)

((<= (* .234375 tempo) var-duration (* .25 tempo))

’1/4)

((<= (* .25 tempo) var-duration (* .375 tempo))

’3/8)

((<= (* .375 tempo) var-duration (* .4375 tempo))

’7/16)

((<= (* .4375 tempo) var-duration (* .46875 tempo))

’15/32)

((<= (* .46875 tempo) var-duration (* .5 tempo))

’1/2)

((<= (* .5 tempo) var-duration (* .75 tempo))

’3/4)

((<= (* .75 tempo) var-duration (* .875 tempo))

’7/8)

((<= (* .875 tempo) var-duration (* .9375 tempo))

’15/16)

((<= (* .9375 tempo) var-duration (* 1 tempo))

9.4. FUNCTIONS 103

’1)

((<= (* 1 tempo) var-duration (* 1.5 tempo))

’3/2)

((<= (* 1.5 tempo) var-duration (* 1.75 tempo))

’7/4)

((<= (* 1.75 tempo) var-duration (* 1.875 tempo))

’15/8)

((<= (* 1.875 tempo) var-duration (* 2 tempo))

’2)

((<= (* 2 tempo) var-duration (* 3 tempo))

’3)

((<= (* 3 tempo) var-duration (* 3.5 tempo))

’7/2)

((<= (* 3.5 tempo) var-duration (* 3.75 tempo))

’15/4)

((<= (* 3.75 tempo) var-duration (* 4 tempo))

’4)

((<= (* 4 tempo) var-duration (* 6 tempo))

’6)

((<= (* 6 tempo) var-duration (* 8 tempo))

’8)

((> var-duration (* 8 tempo))

var-duration))))

(defun describe-rests (rest-scanner)

(let ((tempo (/ *my-tempo* 60)))

(cond ((< rest-scanner (* .0234375 tempo))

’(rest (rq 1/64)))

((<= (* .0234375 tempo) rest-scanner (* .03125 tempo))

’(rest (rq 1/32)))

((<= (* .03125 tempo) rest-scanner (* .046875 tempo))

’(rest (rq 3/64)))

((<= (* .046875 tempo) rest-scanner (* .0546875 tempo))

’(rest (rq 7/128)))

((<= (* .0546875 tempo) rest-scanner (* .05859375 tempo))

’(rest (rq 15/256)))

((<= (* .05859375 tempo) rest-scanner (* .0625 tempo))

’(rest (rq 1/16)))

104 CHAPTER 9. APPENDIX

((<= (* .0625 tempo) rest-scanner (* .09375 tempo))

’(rest (rq 3/32)))

((<= (* .09375 tempo) rest-scanner (* .109375 tempo))

’(rest (rq 7/64)))

((<= (* .109375 tempo) rest-scanner (* .1171875 tempo))

’(rest (rq 15/128)))

((<= (* .1171875 tempo) rest-scanner (* .125 tempo))

’(rest (rq 1/8)))

((<= (* .125 tempo) rest-scanner (* .1875 tempo))

’(rest (rq 3/16)))

((<= (* .1875 tempo) rest-scanner (* .21875 tempo))

’(rest (rq 7/32)))

((<= (* .21875 tempo) rest-scanner (* .234375 tempo))

’(rest (rq 15/64)))

((<= (* .234375 tempo) rest-scanner (* .25 tempo))

’(rest (rq 1/4)))

((<= (* .25 tempo) rest-scanner (* .375 tempo))

’(rest (rq 3/8)))

((<= (* .375 tempo) rest-scanner (* .4375 tempo))

’(rest (rq 7/16)))

((<= (* .4375 tempo) rest-scanner (* .46875 tempo))

’(rest (rq 15/32)))

((<= (* .46875 tempo) rest-scanner (* .5 tempo))

’(rest (rq 1/2)))

((<= (* .5 tempo) rest-scanner (* .75 tempo))

’(rest (rq 3/4)))

((<= (* .75 tempo) rest-scanner (* .875 tempo))

’(rest (rq 7/8)))

((<= (* .875 tempo) rest-scanner (* .9375 tempo))

’(rest (rq 15/16)))

((<= (* .9375 tempo) rest-scanner (* 1 tempo))

’(rest (rq 1)))

((<= (* 1 tempo) rest-scanner (* 1.5 tempo))

’(rest (rq 3/2)))

((<= (* 1.5 tempo) rest-scanner (* 1.75 tempo))

’(rest (rq 7/4)))

((<= (* 1.75 tempo) rest-scanner (* 1.875 tempo))

’(rest (rq 15/8)))

((<= (* 1.875 tempo) rest-scanner (* 2 tempo))

’(rest (rq 2)))

9.4. FUNCTIONS 105

((<= (* 2 tempo) rest-scanner (* 3 tempo))

’(rest (rq 3)))

((<= (* 3 tempo) rest-scanner (* 3.5 tempo))

’(rest (rq 7/2)))

((<= (* 3.5 tempo) rest-scanner (* 3.75 tempo))

’(rest (rq 15/4)))

((<= (* 3.75 tempo) rest-scanner (* 4 tempo))

’(rest (rq 4)))

((<= (* 4 tempo) rest-scanner (* 6 tempo))

’(rest (rq 6)))

((<= (* 6 tempo) rest-scanner (* 8 tempo))

’(rest (rq 8)))

((> rest-scanner (* 8 tempo))

(rest (rq rest-scanner))))))

(defun find-scala (key mode)

(case mode

(0

(case key

(0 ’c-major)

(1 ’g-major)

(2 ’d-major)

(3 ’a-major)

(4 ’e-major)

(5 ’b-major)

(6 ’fs-major)

(7 ’cs-major)

(-1 ’f-major)

(-2 ’bf-major)

(-3 ’ef-major)

(-4 ’af-major)

(-5 ’df-major)

(-6 ’gf-major)

(-7 ’cf-major)))

(1

(case key

(0 ’a-minor)

(1 ’e-minor)

106 CHAPTER 9. APPENDIX

(2 ’b-minor)

(3 ’fs-minor)

(4 ’cs-minor)

(5 ’gs-minor)

(6 ’ds-minor)

(7 ’as-minor)

(-1 ’d-minor)

(-2 ’g-minor)

(-3 ’c-minor)

(-4 ’f-minor)

(-5 ’bf-minor)

(-6 ’ef-minor)

(-7 ’af-minor)))))

(defun midi-info (object)

(let ((scala nil)

(meter nil))

(dolist (info (cm::container-subobjects object))

(typecase info

(cm::MIDI-KEY-SIGNATURE (setq scala

(find-scala (sv info cm::key)

(sv info cm::mode))))

(cm::MIDI-TIME-SIGNATURE (setq meter

(list ’meter (sv info :numerator)

(sv info :denominator))))

(cm::MIDI-TEMPO-CHANGE (if (= (sv info cm::time) 0)

(setq *my-tempo* (* (/ 60

(sv info cm::usecs))

1000000))))))

(values scala meter)))

(defun get-midi-info(&optional (filename nil))

(let ((song (load-song filename :meta cm::false)))

(multiple-value-bind (sc mt)

(typecase song

(null (meter 4 4))

(list (midi-info (car song)))

9.4. FUNCTIONS 107

(seq (meter 4 4)))

(values sc mt))))

(defun final-notation (filename1 &optional (filename2 nil))

(let* ((meter-scala (get-midi-info filename1))

(both-hand1 (prepare-midi-for-notation filename1))

(both-hand2 (prepare-midi-for-notation filename2))

(right-hand1 (first both-hand1))

(left-hand1 (second both-hand1))

(right-hand2 (first both-hand2))

(left-hand2 (second both-hand2)))

(cmn (size 30)

(page-width 45)

(automatic-page-numbers t)

(system brace

(draw-notation ’treble meter-scala right-hand1 right-hand2)

(setf oi nil)

(draw-notation ’bass meter-scala left-hand1 left-hand2)

(setf oi nil)))))

(defun prepare-hand (hand)

(make-instance-single-complex-note

(midi-events-organized-to-indicate-chords hand)))

(defun song-draw-notation (clef meter-scala midi-instances)

(cm::cmn-eval

(append

’(staff) ’(bar) (list clef) (list meter-scala)

(show-notation

(prepare-hand midi-instances)))))

(defun show-notation (list-obj)

(cond ((null list-obj)

(push (note-to-notation nil)

108 CHAPTER 9. APPENDIX

io))

((null (cdr list-obj))

(push (note-to-notation (first list-obj))

io)

(when (> (get-note-time (first list-obj)) 0)

(push (describe-rests

(get-note-time (first list-obj)))

io))

io)

(t

(push (note-to-notation (first list-obj))

io)

(push (describe-rests

(get-rest-value (first list-obj)

(first (cdr list-obj))))

io)

(show-notation (cdr list-obj)))))

(defun song-final-notation (&optional (filename nil))

(let* ((meter-scala (get-midi-info filename))

(both-hand (prepare-midi-for-notation filename))

(right-hand (first both-hand))

(left-hand (second both-hand)))

(cmn (size 30)

(page-width 45)

(automatic-page-numbers t)

(system brace

(song-draw-notation ’treble meter-scala right-hand)

(setf io nil)

(song-draw-notation ’bass meter-scala left-hand)

(setf io nil)))))

(defun lcs-prepare-song (&optional (filename nil))

(make-instance-single-complex-note

(midi-events-organized-to-indicate-chords

(or (import-song filename)

cl-user::*myseq*))))

9.4. FUNCTIONS 109

(defun lcs-draw-notation (clef meter-scala midi-instances)

(cm::cmn-eval

(append

’(staff) ’(bar) (list clef) (list meter-scala)

(show-notation-after-compare midi-instances))))

(defun lcs-final-notation (filename1 &optional (filename2 nil))

(let* ((meter-scala (get-midi-info filename1))

(midi-events1 (lcs-prepare-song filename1))

(midi-events2 (lcs-prepare-song filename2))

(len1 (length midi-events1))

(len2 (length midi-events2))

(del-ins-music (print-lcs

(lcs-length midi-events1 midi-events2)

midi-events2

len1

len2)))

(format t "~%~A Deletions" (second del-ins-music))

(format t "~%~A Insertions" (fourth del-ins-music))

(cmn (size 30)

(page-width 45)

(automatic-page-numbers t)

(system brace

(lcs-draw-notation ’treble meter-scala (fifth del-ins-music))

(setf oi nil)))))

9.4.4 GUI Functions

(defun music-match (&key (new-process nil))

(let ((frame (make-application-frame ’music-match :width 700 :height 500)))

(flet ((run ()

(run-frame-top-level frame)))

(if new-process

110 CHAPTER 9. APPENDIX

(clim-sys:make-process #’run :name "music-match")

(run)))))

(define-application-frame music-match ()

()

(:panes

(screen :application

:display-time nil

:text-style (make-text-style :sans-serif :roman :normal))

(interactor :interactor)

(actions :application

:display-time nil)

(doc :pointer-documentation)

(header (make-pane ’application-pane

:background +green-yellow+

:display-function ’music-match-title

:scroll-bars nil)))

(:command-table (music-match

:inherit-from (menubar-commands

file-commands

midi-commands

sheet-commands

music-match-commands

file-command-table

midi-command-table

sheet-command-table

music-match-command-table)

:menu (("File" :menu file-command-table)

("Midi" :menu midi-command-table)

("Sheet" :menu sheet-command-table)

("Music-Match" :menu music-match-command-table))))

(:layouts

(default (vertically ()

(1/10 header)

(8/10 screen)

(2/10 (spacing (:thick-lines 5 :thickness 2)

interactor))

(1/10 (spacing (:thick-lines 5)

9.4. FUNCTIONS 111

actions))

(1/10 doc))))

#+nil

(:top-level (menutest-frame-top-level)))

(defun music-match-title (frame pane)

(declare (ignore frame))

(let ((out pane))

(with-drawing-options (out :text-size 20 :text-face :bold :ink +white+)

(format out " Music Match~%"))

(with-drawing-options (out :text-size :normal :ink +white+)

(format out " Author: Zervopoulos Thanassis~%"))))

(defun output-pane (pane)

(get-frame-pane *application-frame* pane))

(define-command (com-record :name "Start Recording"

:command-table midi-commands)

((name ’string :prompt "Name your song:" :default (setq *seq-name* "my_song")))

(setf *seq-name* name)

(setf *myseq* nil)

(setf *pm*

(cm::portmidi-open :latency 0

:input (get-my-input-device-id)

:output (get-my-output-device-id)))

(setf *myseq* (cm::new cm::seq))

(start-recording)

(format *standard-output* "You pressed the start recording button.~%")

(finish-output *standard-output*))

(defun start-recording (&key (new-process nil))

(flet ((run ()

(cm::portmidi-record! *myseq*)))

(if new-process

112 CHAPTER 9. APPENDIX

(clim-sys:make-process #’run :name "start-recording")

(run))))

(defun get-my-input-device-id ()

(let ((my-input nil))

(dotimes (i (pm:countdevices))

(if (and (pm::deviceinfo.input

(pm::pm-get-device-info i))

(not (eql

(pm::pm-get-default-input-device-id)

i)))

(setq my-input i)))

my-input))

(defun get-my-output-device-id ()

(let ((my-output nil))

(dotimes (i (pm:countdevices))

(if (and (not (pm::deviceinfo.input

(pm::pm-get-device-info i)))

(not (eql

(pm::pm-get-default-output-device-id)

i)))

(setq my-output i)))

my-output))

(define-command (com-stop :name "Stop Recording"

:command-table midi-commands)

()

(cm::portmidi-record! nil)

(cm::portmidi-close *pm*)

(cm::events (cmn::sort-by-time-if-needed *myseq*)

(concatenate ’string

seq-name

".mid")

:play nil)

9.4. FUNCTIONS 113

(format *standard-output* "You pressed the stop recording button.~%")

(finish-output *standard-output*))

(defun sort-by-time-if-needed (object)

(let ((seq-track (cm::new cm::seq)))

(dolist (midev (cm::container-subobjects object))

(cm::insert-object midev seq-track))

seq-track))

(define-command (com-play :name "Play"

:command-table file-commands)

((song-name ’string :prompt "Track"))

(cm::play (concatenate ’string song-name ".mid"))

(format *standard-output* "You pressed the play button.~%")

(finish-output *standard-output*))

(define-command (com-open-sheet :name "OpenNotation"

:command-table file-commands)

((name ’string :prompt "Sheet Name"))

(load (concatenate ’string name ".cmn"))

(format *standard-output* "You pressed the open notation button.~%")

(finish-output *standard-output*))

(define-command (com-save-sheet :name "SaveNotation"

:command-table file-commands)

((name ’string :prompt "Sheet Name"))

(cmn::cmn-store cmn::*cmn-score* (concatenate ’string name ".cmn"))

(format *standard-output* "You pressed the save notation button.~%")

(finish-output *standard-output*))

(define-command (com-sound :name "Change Sound"

:command-table file-commands)

114 CHAPTER 9. APPENDIX

((sd ’integer :prompt "Sound Card" :default 1)

(v ’integer :prompt "Volume" :default 400))

(change-sound-volume sd v)

(format *standard-output* "You pressed the change sound button.~%")

(finish-output *standard-output*))

(defun change-sound-volume (soundcard volume)

(setf cm::*midi-player*

(concatenate ’string

"timidity -ig -"

(if (eql soundcard 1)

"A"

"Os")

" "

(cm::number->string volume))))

(define-command (com-reset :name "Reset tt & dt"

:command-table file-commands)

()

(setf cmn::*time-tolerance* .1)

(setf cmn::*duration-tolerance* .2)

(format *standard-output* "You pressed the reset tt & dt.~%")

(finish-output *standard-output*))

(define-command (com-quit :name "Quit"

:command-table file-commands)

()

(frame-exit *application-frame*))

(define-command (com-clear :name "Clear"

:command-table file-commands)

()

(window-clear (output-pane ’screen)))

9.4. FUNCTIONS 115

(define-command (com-clear-history :name "Clear History"

:command-table file-commands)

()

(window-clear (output-pane ’actions)))

(define-command (com-show :name "Show Sheet After Compare"

:command-table sheet-commands)

((track1 ’string :prompt "Original Song")

(track2 ’string :prompt "Your Song"))

(format (output-pane ’screen) "~S~%"

(if (equal track2 *seq-name*)

(cmn::final-notation track1)

(cmn::final-notation track1 track2)))

(format *standard-output* "You pressed the show sheet button.~%")

(finish-output *standard-output*))

(define-command (com-show-notation :name "Sheet Notation"

:command-table sheet-commands)

((track ’string :prompt "Original Song"))

(if (equal track *seq-name*)

(cmn::song-final-notation)

(cmn::song-final-notation track))

(format *standard-output* "You pressed the sheet notation button.~%")

(finish-output *standard-output*))

(define-command (com-close :name "Close Sheet"

:command-table sheet-commands)

()

(cmn::x-close)

(format *standard-output* "You pressed the close sheet button.~%")

(finish-output *standard-output*))

(define-command (com-discard :name "Discard Track"

116 CHAPTER 9. APPENDIX

:command-table midi-commands)

()

(setf *myseq* nil)

(format *standard-output* "You pressed the discard track button.~%")

(finish-output *standard-output*))

(define-command (com-transpose :name "Transporto"

:command-table midi-commands)

((semitone ’integer :prompt "No of Semitones"))

(setf cmn::*transpose-value* semitone)

(format *standard-output* "You pressed the transporto button.~%")

(finish-output *standard-output*))

(define-command (com-music-match :name "Music Match"

:command-table music-match-commands)

((tt ’real :prompt "Time tolerance:"

:default (setq cmn::*time-tolerance* .1))

(dt ’real :prompt "Duration tolerance:"

:default (setq cmn::*duration-tolerance* .2))

(track1 ’string :prompt "Original Song:")

(track2 ’string :prompt "Your Song:")

(func-time ’symbol :prompt "Time Report"))

(let ((result nil))

(setq cmn::*time-tolerance* tt)

(setq cmn::*duration-tolerance* dt)

(case func-time

(no (setq result (if (equal track2 *seq-name*)

(cmn::compare-music track1)

(cmn::compare-music track1 track2)))

(format *standard-output* "You pressed the music match button.~%")

(format *standard-output* "With values TT: ~A and DT: ~A .~%"tt dt)

(format *standard-output* "Song: *~A* Vs. Song: *~A*.

Result:~A% of success.~%"

track1 track2 (cmn::percent-of-success result)))

(yes (if (equal track2 *seq-name*)

(time (cmn::compare-music track1))

(time (cmn::compare-music track1 track2)))))

9.4. FUNCTIONS 117

(finish-output *standard-output*)))

(define-command (com-tempo-change :name "TempoChange"

:command-table midi-commands)

((tempo ’integer :prompt "New Tempo"))

(setf cmn::*my-tempo* tempo)

(format *standard-output* "You pressed the tempo change button.~%")

(finish-output *standard-output*))

(define-command (com-lcs-music-match :name "LcsMatch"

:command-table music-match-commands)

((dt ’real :prompt "Duration tolerance:" :default (setq cmn::*duration-tolerance* .2))

(track1 ’string :prompt "Original Song:")

(track2 ’string :prompt "Your Song:")

(func-time ’symbol :prompt "Time Report"))

(let ((result nil))

(setq cmn::*duration-tolerance* dt)

(case func-time

(no (setq result (if (equal track2 *seq-name*)

(cmn::lcs-match track1)

(cmn::lcs-match track1 track2)))

(format *standard-output* "You pressed the lcs match button.~%")

(format *standard-output* "With DT: ~A .~%"dt)

(format *standard-output* "Song: *~A* Vs. Song: *~A*. Result:~A% of success.~%"

track1 track2 (cmn::lcs-percent-of-success result)))

(yes (if (equal track2 *seq-name*)

(time (cmn::lcs-match track1))

(time (cmn::lcs-match track1 track2)))))

(finish-output *standard-output*)))

(define-command (com-lcs-show :name "Show Sheet After Lcs Compare"

:command-table sheet-commands)

((track1 ’string :prompt "Original Song")

(track2 ’string :prompt "Your Song"))

(format (output-pane ’screen) "~S~%" (if (equal track2 *seq-name*)

118 CHAPTER 9. APPENDIX

(cmn::lcs-final-notation track1)

(cmn::lcs-final-notation track1 track2)))

(format *standard-output* "You pressed the show sheet button.~%")

(finish-output *standard-output*))

9.5 Algorithm Complexity Analysis

Before analysing the complexity of the MM algorithm, it is important that
we present the functions which take part in the MM implementation and
are considered to have time stability. Those functions are depicted below:

let

if

cond

case

eq

equal

<

<=

>

=

>=

push

pop

first

second

when

unless

and

or

not

null

oddp

let*

flet

setf

9.5. ALGORITHM COMPLEXITY ANALYSIS 119

setq

+

-

/

abs

progn

with-open-io

make-instance

sv

lambda

integerp

consp

list

format

typep

error

It is necessary that we examine which functions influence the amount of
complexity, such as recursive functions or loops so as to be able to find
the complexity of each function. For example dolist, dopairs, dotimes are
instances of those kind of functions.

The time complexity of the function load-song is:

(defun load-song (filename &key (meta cm::true) (key-note ’:note))

(cond ((null filename) nil)

(t (cm::import-events

(namestring

(make-pathname :directory ’(:absolute "home" "pontikis" "Lisp")

:name filename

:type (or "mid" "midi")))

:meta-exclude meta :keynum-format key-note))))

This function takes as an argument a file, so it is more important for our
research to find the time complexity of the function import-events.

(defmethod import-events ((io midi-file)

&key (tracks t) seq meta-exclude

120 CHAPTER 9. APPENDIX

channel-exclude (time-format ’:beats) tempo

exclude-tracks (keynum-format ’:keynum)

(note-off-stack t))

(let ((results ’())

(notefn nil)

(result nil)

(class nil)

(root nil)

(tempo-map nil)

(num-tracks nil))

(if exclude-tracks

(if tracks

(if (eq tracks t)

(setf tracks nil)

(error

":tracks and :exclude-tracks are exclusive keywords."))

(cond

((integerp exclude-tracks)

(setf exclude-tracks (list exclude-tracks)))

((consp exclude-tracks))

(t

(error

":exclude-tracks value ’~s’ not number, list or ~s."

exclude-tracks

t))))

(cond

((eq tracks t))

((consp tracks))

((integerp tracks)

(setf tracks (list tracks)))

(t

(error ":tracks value ’~s’ not number, list or ~s."

tracks

t))))

(case time-format

((:ticks) t)

((:beats) t)

(t

(error ":time-format value ~s is not :beats or :ticks."

time-format)))

9.5. ALGORITHM COMPLEXITY ANALYSIS 121

(case keynum-format

((:keynum nil) t)

((:note) (setf notefn #’note))

((:hertz) (setf notefn #’hertz))

(t

(error

":keynum-format value ’~s’ not :keynum, :note or :hertz."

keynum-format)))

(unless (member channel-exclude ’(t nil))

(unless (consp channel-exclude)

(setf channel-exclude (list channel-exclude)))

(dolist (e channel-exclude)

(unless

(and (integerp e)

(<= +ml-note-off-opcode+ e +ml-pitch-bend-opcode+))

(error

":channel-exclude value ’~s’ not a channel message opcode."

e))))

(unless (member meta-exclude ’(t nil))

(unless (consp meta-exclude)

(setf meta-exclude (list meta-exclude)))

(dolist (e meta-exclude)

(unless

(and (integerp e)

(or

(<= +ml-file-text-event-opcode+

e

+ml-file-cue-point-opcode+)

(<= +ml-file-tempo-change-opcode+

e

+ml-file-sequencer-event-opcode+)))

(error

":meta-exclude value ’~s’ not a meta message opcode."

e))))

(with-open-io (file io :input)

(cond

((= 1 (midi-file-format file))

(setf num-tracks (midi-file-tracks file))

(if tracks

(if (eq tracks t)

122 CHAPTER 9. APPENDIX

(setf tracks

(loop for i below num-tracks collect i)))

(setf tracks

(loop for i below num-tracks

unless (member i exclude-tracks)

collect i))))

(t

(setf num-tracks 1)

(if (eq tracks t) (setf tracks (list 0)))))

(cond

((typep seq <seq>))

((or (not seq) (find-class seq))

(setf class (or seq <seq>))

(setf root

(format nil

"~a-track"

(filename-name (file-output-filename io))))

(setf seq nil))

(t

(setf root (format nil "~s" seq))

(setf class <seq>)

(setf seq nil)))

(when (and (eq time-format ’:beats) (not tempo))

(setf tempo-map (parse-tempo-map file)))

(dolist (track tracks)

(when (consp track)

(setf channel-exclude

(if (numberp (second track))

(list (second track))

(second track)))

(setf meta-exclude

(if (numberp (third track))

(list (third track))

(third track)))

(setf track (first track)))

(cond

((<= 0 track (- num-tracks 1))

(unless seq

(setf seq

(make-instance class

9.5. ALGORITHM COMPLEXITY ANALYSIS 123

:name (format nil

"~a-~s"

root

track))))

(setf result

(midi-file-import-track file track seq notefn

note-off-stack channel-exclude meta-exclude))

(push result results)

(setf seq nil))

(t

(error "track ’~s’ out of range. Maximum track is ~s."

track

(- num-tracks 1)))))

(setf results (reverse results))

(cond

((and (eq time-format ’:beats)

(not tempo)

(consp (cdr tempo-map)))

(let ((div (midi-file-divisions file)))

(dolist (tr results) (apply-tempo-map div tempo-map tr))))

((not (eq time-format :ticks))

(let ((div (midi-file-divisions file))

(scaler

(if tempo

(/ 60.0 tempo)

(if (consp tempo-map)

(* (tc-scaler (car tempo-map)) 1.0)

0.5))))

(dolist (tr results) (apply-tempo-scaler div scaler tr)))))

(if (null results)

nil

(if (null (cdr results)) (car results) results)))))

The function import-events imports musical events in a file according to
the type of the file specified. If the file is a “.mid” file, then import-events
returns a seq containing midi objects from one or more tracks of the file.
As the function uses a dolist function to import each midi event, the time
complexity is O(n). Thus, it could be considered that load-song is also
O(n).

124 CHAPTER 9. APPENDIX

The time complexity of the function remove-non-midi-object is:

(defun remove-non-midi-object (object)

(let ((midi-ev nil))

(dolist (midievent (cm::container-subobjects object))

(typecase midievent

(cm::MIDI (push midievent midi-ev))))

(cm::events (reverse midi-ev) (new cm::seq :name (object-name object)))))

This function uses a dolist function to check each midi event, so, that gives
a O(n). Also, the reverse function which has linear complexity O(n) is used.
Moreover, the function events is applied from the package cm which is:

(defun events (object &rest args)

(if (scheduling?)

(progn

(format t

"Can’t schedule events in non-real time while RTS is running.")

nil)

(let* ((to

(if

(and (consp args)

(or (stringp (car args))

(eq (car args) nil)

(typep (car args) <object>)))

(pop args)

(current-output-stream)))

(ahead

(if

(and (consp args)

(or (consp (car args)) (numberp (car args))))

(pop args)

0))

(err? ’:error))

(when (oddp (length args))

(error "Uneven initialization list: ~s." args))

(unwind-protect

(progn

9.5. ALGORITHM COMPLEXITY ANALYSIS 125

(flet ((getobj (x)

(if (not (null x))

(if (or (stringp x) (and x (symbolp x)))

(find-object x)

x)

(error "Not an object specification: ~s."

x))))

(if (not to)

(setf *out* nil)

(progn

(setf *out*

(open-io (apply #’init-io to args)

’:output))

(initialize-io *out*)))

(schedule-events *out*

(if (consp object)

(mapcar #’getobj object)

(getobj object))

ahead)

(setf err? nil)))

(when *out*

(deinitialize-io *out*)

(close-io *out* err?)))

(if (or err? (not *out*))

nil

(if (typep *out* <event-file>)

(let ((path (file-output-filename *out*))

(args (event-stream-args *out*))

(hook (io-class-output-hook (class-of *out*))))

(when hook

(apply hook path args))

path)

out)))))

The function events records events ranging from objects to destination.
Objects can be either a single object (i.e. an event, seq or process) or a list
of objects. Destination can be a file, port, seq or plotter window.[] As the
function uses a mapcar function to write each midi event into a “seq” object,
the time complexity is O(n). Thus, the function remove-non-midi-object

126 CHAPTER 9. APPENDIX

has O(n) (from dolist) + O(n) (from reverse) + O(n) (from events) that
gives O(3n),which means a linear complexity O(n).

The time complexity of the function transform-midi-to-seq is:

(defun transform-midi-to-seq (object)

(remove-non-midi-object

(dolist (track object)

(if (cm::container-subobjects track)

(return track)))))

This function takes as an argument a list of “seq” objects of a “.mid” file
type1. However, two hypothetical cases could appear regarding the “.mid”
file type1. The worst case would be, if the list had displayed n elements, so
the complexity would become O(n) (from remove-non-midi-object) + O(n)
(from dolist) that would give O(2n). The best case would be, if the list
contained one element n = 1, the complexity would become O(n) + O(1)
that would give O(n). The best case happens to be the average case, because
only one “seq” object contains the melody.

The time complexity of the function import-song is:

(defun import-song (filename)

(let ((song (load-song filename :key-note ’:keynum)))

(if (atom song)

song

(transform-midi-to-seq song))))

This function takes as an argument a file, so the internal functions will
specify the time complexity. From the functions above, load-song has O(n)
and transform-midi-to-seq has also O(n). The worst case would be if
both functions were to be called, so the complexity would become O(n) (from
load-song) + O(n) (from transform-midi-to-seq) that would give O(2n). The
best case would be if the function transform-midi-to-seq were not to be
called, so the complexity would become O(n). The import-song is going
to be called exactly twice for the needs of the MM algorithm. The first time,
it will satisfy the best case and the second time will satisfy the worst case.

The time complexity of the function map-objects from package cm is:

9.5. ALGORITHM COMPLEXITY ANALYSIS 127

(defun map-objects

(fn objs

&key (start 0) end (step 1) (width 1) at test class key slot

slot! arg2

&aux doat indx this)

(if (not (listp objs)) (setf objs (container-subobjects objs)))

(if (and slot slot!)

(error ":slot and slot! are exclusive keywords."))

(when (or slot slot!)

(if key

(error ":slot[!] and :key are exclusive keywords.")

(setf key

(if slot!

(lambda (x) (slot-value x slot!))

(lambda (x) (slot-value x slot))))))

(when at

(unless (and (eq start 0) (not end) (eq step 1))

(error ":at excludes use of :start step and :end"))

(unless (apply #’< at)

(error ":at values not in increasing order."))

(setf doat t)

(setf start (pop at)))

(setf indx start)

(do ((tail (nthcdr start objs) (nthcdr step tail))

(data nil)

(done nil)

(func (cond

((not arg2)

fn)

((eq arg2 ’:object)

(lambda (x) (funcall fn x this)))

((eq arg2 ’:position)

(lambda (x) (funcall fn x indx)))

(t

(error ":arg2 not :object or :position")))))

((or (null tail) done (and end (not (< indx end)))) (values))

(cond

((> width 1)

(setf this

128 CHAPTER 9. APPENDIX

(loop for i below width

for x = (nthcdr i tail)

until (null x)

collect (car x)))

(when

(or (not class)

(loop for x in this always (typep x class)))

(if key (setf data (mapcar key this)) (setf data this))

(if

(or (not test)

(loop for x in data always (funcall test x)))

(if slot!

(loop for x in (funcall func data)

for y in this

do (setf (slot-value y slot!) x))

(funcall func data)))))

(t

(setf this (car tail))

(when (or (not class) (typep this class))

(if key (setf data (funcall key this)) (setf data this))

(if (or (not test) (funcall test data))

(if slot!

(setf (slot-value this slot!) (funcall func data))

(funcall func data))))))

(when doat

(if (null at)

(progn

(setf done t)

(setf step 0))

(progn

(setf step (- (pop at) indx)))))

(setf indx (+ indx step))))

This function maps a function of one argument over a list or seq of objects
according to the specified keyword arguments. As it makes use of the do
function the complexity becomes O(n).

The time complexity of the function subobjects from package cm is:

9.5. ALGORITHM COMPLEXITY ANALYSIS 129

(defun subobjects (object &rest args)

(if (null args)

(container-subobjects object)

(let* ((head (list nil)) (tail head))

(if (member ’:slot! args)

(error "Illegal keyword argument :slot!"))

(apply #’map-objects

(lambda (a x)

a

(rplacd tail (list x))

(setf tail (cdr tail)))

object

:arg2 ’:object

args)

(cdr head))))

This function returns a list of subobjects from a list or seq of objects. It
makes use of the map-object above, so the complexity becomes O(n) as
well.

The complexity of the macros first-subobject, substitute-times is:

(defmacro first-subobject (obj start end)

‘(first (subobjects ,obj :start ,start :end ,end)))

(defmacro substitute-times (obj start1 end1 start2 end2)

‘(cond ((null (first-subobject ,obj ,start2 ,end2))

(sv (first-subobject ,obj ,start1 ,end1) :time))

(t

(abs (- (sv (first-subobject ,obj ,start1 ,end1) :time)

(sv (first-subobject ,obj ,start2 ,end2) :time))))))

Those macros utilize the function subobjects above, so the complexity for
them becomes O(n).

The time complexity of the function midi-events-organized-to-indicate-
chords is:

130 CHAPTER 9. APPENDIX

(let ((midi-events)

(midi-complex))

(defun midi-events-organized-to-indicate-chords (object)

(let ((len (length (cm::container-subobjects object))))

(cond ((null object)

nil)

(t

(setq midi-events nil)

(setq midi-complex nil)

(dotimes (i len)

(cond ((equal i (- len 1)) ;;1st case

(when (<= 0 (substitute-times object i (+ i 1)

(- i 1) i)

time-chords)

(push (first-subobject object i (+ i 1))

midi-complex)

(push midi-complex

midi-events))

(unless (<= (substitute-times object i (+ i 1)

(- i 1) i)

time-chords)

(push (first-subobject object i (+ i 1))

midi-events)))

((<= 0 (substitute-times object i (+ i 1) ;;2nd case

(+ i 1) (+ i 2))

time-chords)

(push (first-subobject object i (+ i 1))

midi-complex))

((>= (substitute-times object i (+ i 1) ;;3rd case

(+ i 1) (+ i 2))

time-chords)

(when (equal (- i 1) -1)

(push (first-subobject object i (+ i 1))

midi-events)

(setf i 1))

(when (<= 0 (substitute-times object i (+ i 1)

(- i 1) i)

time-chords)

(push (first-subobject object i (+ i 1))

midi-complex)

9.5. ALGORITHM COMPLEXITY ANALYSIS 131

(push midi-complex

midi-events)

(setq midi-complex nil))

(when (and (equal i 1)

(<= 0 (substitute-times object i (+ i 1)

(+ i 1) (+ i 2))

time-chords))

(push (first-subobject object i (+ i 1))

midi-complex))

(unless (or (equal (- i 1) -1)

(<= 0 (substitute-times object i (+ i 1)

(- i 1) i)

time-chords)

(<= 0 (substitute-times object i (+ i 1)

(+ i 1) (+ i 2))

time-chords))

(push (first-subobject object i (+ i 1))

midi-events)))))

midi-events)))))

The function container-subobjects from package cm, has access to the
memory to get the slot subobjects from the instance object of the class “seq”
of which the class “container” is a subclass. This access needs a constant
time, so the complexity becomes O(1). The function length along with the
container-subobjects, returns the amount of that instance object, so if n

is the number of all the subobjects, then, complexity will become O(n).
As the function uses the dotimes function along with the macros above,
first-subobjects - substitute-times the complexity becomes O(n) (from
length) + O(n) (from dotimes) *O(n) (from macros), which means that
according to the equation O(n) + O(n2) = O(n2), the complexity becomes
a non linear one.

The time complexity of the function note from package cm is:

(defun note (freq &rest args)

(let ((oper nil)

(hz? nil)

(scale nil)

(test? nil)

132 CHAPTER 9. APPENDIX

(tuning nil)

(mode nil)

(acci nil))

(unless freq

(error

"~s is not a note name, key number, Hertz value or list."

false))

(when

(and (consp args)

(member (first args) %hertz)

(oddp (length args)))

(setf args (list* ’:hz true (rest args))))

(dopairs (sym val args)

(case sym

((:hz) (setf hz? val))

((:in :in? :through)

(when oper

(error

"Found more than one of :in, :in? or :through in ~s."

(cons ’note args)))

(if (eq sym ’:in?) (setf test? t))

(setf oper sym)

(setf scale val))

((:accidental) (setf acci val))

(t

(error "~s not a valid keyword: :hz :in :in? :through"

sym))))

(unless scale

(setf scale *scale*))

(if (typep scale <mode>)

(progn

(if (eq oper ’:in) (setf oper ’:from))

(setf tuning (mode-tuning scale))

(setf mode scale))

(progn

(if (eq oper ’:through)

(error "Not a mode: ~s ~s." oper scale))

(setf tuning scale)))

(when (and (eq oper ’:from) (or hz? (and freq (symbolp freq))))

(error ":from conversion: ~s is not a key number in ~s."

9.5. ALGORITHM COMPLEXITY ANALYSIS 133

freq

mode))

(cond

((consp freq)

(with-default-octave tuning

(loop for f in freq collect (apply #’note f args))))

((and freq (symbolp freq))

(let ((ref (tuning-note->note tuning freq acci (not test?))))

(if (not mode)

ref

(if (not ref)

nil

(let* ((key (tuning-note->keynum tuning ref t))

(out

(mode->tuning mode (tuning->mode mode key t)

’:note)))

(if test? (if (eq out ref) ref nil) out))))))

(t

(let ((keyn (if hz? (tuning-hertz->keynum tuning freq) freq)))

(if (not mode)

(tuning-keynum->note tuning keyn acci (not test?))

(let* ((in

(if (eq oper ’:from)

keyn

(tuning->mode mode keyn (not test?))))

(out (and in (mode->tuning mode in ’:note))))

(if test?

out

(or out

(error "No note for keynum ~s in mode ~s."

keyn

mode))))))))))

This function returns the note name of a note name, a key number, a Hertz
value or a list of the same. As it uses the dopairs function, the complexity
becomes O(n).

The time complexity of the function keynum from package cm is:

134 CHAPTER 9. APPENDIX

(defun keynum (freq &rest args)

(let ((hz? nil)

(scale nil)

(mode nil)

(tuning nil)

(oper nil)

(test? nil))

(unless freq

(error

"~s is not a note name, key number, Hertz value or list."

false))

(when

(and (consp args)

(member (first args) %hertz)

(oddp (length args)))

(setf args (list* ’:hz true (rest args))))

(dopairs (sym val args)

(case sym

((:hz) (setf hz? val))

((:in :in? :through :to :from)

(when oper

(error "More than one of: :in, :in? or :through in ~s."

(cons ’note args)))

(if (eq sym ’:in?) (setf test? t))

(setf oper sym)

(setf scale val))

(t

(error "~s not a valid keyword: :hz :in :in? :through"

sym))))

(unless scale

(setf scale *scale*))

(if (typep scale <mode>)

(progn

(setf tuning (mode-tuning scale))

(setf mode scale))

(progn

(setf tuning scale)))

(if (consp freq)

(with-default-octave tuning

(loop for f in freq collect (apply #’keynum f args)))

9.5. ALGORITHM COMPLEXITY ANALYSIS 135

(let ((key

(if hz?

(tuning-hertz->keynum tuning freq)

(if (and freq (symbolp freq))

(tuning-note->keynum tuning freq (not test?))

freq))))

(if mode

(let ((in

(if (eq oper ’:from)

(if (integerp key)

key

(error

"keynum: :from value ~s not integer."

key))

(tuning->mode mode key

(not (eq oper ’:in?))))))

(if (not in)

nil

(if (eq oper ’:to)

in

(mode->tuning mode in ’:keynum))))

(if (eq oper ’:from)

(if (integerp key)

(tuning-hertz->keynum *chromatic-scale*

(tuning-keynum->hertz scale key))

(error "keynum: :from value ~s not integer."

key))

(if (eq oper ’:through)

(values (round key))

key)))))))

This function returns the key number of a note name, a key number, a Hertz
value or a list of the same. As it utilizes the function dopairs, the complexity
becomes O(n).

The time complexity of the function transpose from package cm is:

(defun transpose (data &key (from-key c-major) (to-key c-major) (octave 0))

(let* ((from-sig (map-signature from-key))

136 CHAPTER 9. APPENDIX

(to-sig (map-signature to-key))

(cclass-inc-1 (- (key-base to-key) (key-base from-key)))

(cclass-inc (+ (if (minusp cclass-inc-1)

(+ cclass-inc-1 7) cclass-inc-1) (* octave 7)))

(pclass-inc-1 (- (key-pitch to-key) (key-pitch from-key)))

(pclass-inc (+ (if (minusp pclass-inc-1)

(+ pclass-inc-1 12) pclass-inc-1) (* octave 12)))

(saved-from-sig (map-signature from-key))

(saved-to-sig (map-signature to-key)))

(flet ((transpose-obj (obj)

(if (audible-p obj)

(if (note-p obj)

(update-note obj cclass-inc pclass-inc from-sig to-sig)

(loop for nobj in (chord-data obj) do

(update-note nobj cclass-inc pclass-inc from-sig to-sig)))

(if (key-p obj)

(update-key obj from-sig to-sig))))

(reset-original-sigs ()

(loop for i from 0 below 6 do

(setf (aref from-sig i) (aref saved-from-sig i))

(setf (aref to-sig i) (aref saved-to-sig i)))))

(if (not (eq (key-mode from-key) (key-mode to-key)))

(warn "changing modes is not fair --

results are unlikely to be convincing..."))

(if (score-p data)

(loop for sys in (systems data) do

(loop for stf in (staves sys) do

(reset-original-sigs)

(loop for obj in (staff-data stf) do

(transpose-obj obj))))

(if (system-p data)

(loop for stf in (staves data) do

(reset-original-sigs)

(loop for obj in (staff-data stf) do

(transpose-obj obj)))

(if (staff-p data)

(loop for obj in (staff-data data) do

(transpose-obj obj))

9.5. ALGORITHM COMPLEXITY ANALYSIS 137

(loop for obj in data do

(transpose-obj obj)))))

data)))

This function returns the transposed value of a note name, a key number
or a list of the same, in scale. As it makes use of the loop function, the
complexity becomes O(n).

The time complexity of the function make-instance-single-complex-note
is:

(defun make-instance-single-complex-note (midi-events-list)

(mapcar #’(lambda (midis)

(if (atom midis)

(make-instance ’single-note

:note-name (cm::note

(cm::transpose

(sv midis :keynum)

transpose-value))

:time (sv midis :time)

:duration (sv midis cm::duration))

(make-instance ’complex-note

:note-name (cm::note

(sort

(keynum

(mapcar

#’(lambda (x)

(cm::transpose

(sv x :keynum)

transpose-value))

midis))

#’<))

:time (mapcar #’(lambda (x)

(sv x :time))

midis)

:duration (mapcar #’(lambda (x)

(sv x cm::duration))

midis))))

138 CHAPTER 9. APPENDIX

midi-events-list))

This function makes use of the mapcar function, so the complexity becomes
O(n). Also, when a single-note instance is to be created the complexity of the
note,keynum,transpose becomes O(1) as there is only one note. When
a complex-note instance is to be formed, the complexity for those functions
is O(n). But, it is known that a chord consists of 2 to 5 notes, which is a
constant number. So, as this is an average case and despite the fact that
is O(n), the complexity of the note, keynum, transpose functions, now
becomes O(1). Finally the best case would be, if all instances were single-
note instances, so the complexity would become O(n). The worst case would
be, if all instances were comple-note instances, thus each chord would have
an unlimited number of notes m. The complexity becomes O(nm), because
of the internal mapcar. In an average case, the complexity becomes O(n)
because each chord contains up to 4 notes and the time of the internal
mapcar could be considered upper limited.

The time complexity of the function match-music is:

(defun match-music (oldsong newsong)

(mapcar #’match-note oldsong newsong))

This function makes use of the mapcar function, so the complexity becomes
O(n).

The time complexity of the method match-note is:

(let ((res))

(defmethod match-note ((oldsong single-note)

(newsong single-note)

&key (note-only nil))

(setf res nil)

(cond (note-only

(setf res (equal (single-note-name oldsong)

(single-note-name newsong))))

((and (equal (single-note-name oldsong)

(single-note-name newsong))

(<= 0

(abs (- (single-note-time oldsong)

9.5. ALGORITHM COMPLEXITY ANALYSIS 139

(single-note-time newsong)))

time-tolerance)

(<= 0

(abs (- (single-note-duration oldsong)

(single-note-duration newsong)))

duration-tolerance))

(setf res (list t newsong)))

((and (equal (single-note-name oldsong)

(single-note-name newsong))

(<= 0

(abs (- (single-note-time oldsong)

(single-note-time newsong)))

time-tolerance)

(>

(abs (- (single-note-duration oldsong)

(single-note-duration newsong)))

duration-tolerance))

(setf res (list 001 newsong)))

((and (equal (single-note-name oldsong)

(single-note-name newsong))

(>

(abs (- (single-note-time oldsong)

(single-note-time newsong)))

time-tolerance)

(<= 0

(abs (- (single-note-duration oldsong)

(single-note-duration newsong)))

duration-tolerance))

(setf res (list 010 newsong)))

((and (equal (single-note-name oldsong)

(single-note-name newsong))

(>

(abs (- (single-note-time oldsong)

(single-note-time newsong)))

time-tolerance)

(>

(abs (- (single-note-duration oldsong)

(single-note-duration newsong)))

duration-tolerance))

(setf res (list 011 newsong)))

140 CHAPTER 9. APPENDIX

((and (not

(equal (single-note-name oldsong)

(single-note-name newsong)))

(<= 0

(abs (- (single-note-time oldsong)

(single-note-time newsong)))

time-tolerance)

(<= 0

(abs (- (single-note-duration oldsong)

(single-note-duration newsong)))

duration-tolerance))

(setf res (list 100 newsong)))

((and (not

(equal (single-note-name oldsong)

(single-note-name newsong)))

(<= 0

(abs (- (single-note-time oldsong)

(single-note-time newsong)))

time-tolerance)

(>

(abs (- (single-note-duration oldsong)

(single-note-duration newsong)))

duration-tolerance))

(setf res (list 101 newsong)))

((and (not

(equal (single-note-name oldsong)

(single-note-name newsong)))

(>

(abs (- (single-note-time oldsong)

(single-note-time newsong)))

time-tolerance)

(<= 0

(abs (- (single-note-duration oldsong)

(single-note-duration newsong)))

duration-tolerance))

(setf res (list 110 newsong)))

((and (not

(equal (single-note-name oldsong)

(single-note-name newsong)))

(>

9.5. ALGORITHM COMPLEXITY ANALYSIS 141

(abs (- (single-note-time oldsong)

(single-note-time newsong)))

time-tolerance)

(>

(abs (- (single-note-duration oldsong)

(single-note-duration newsong)))

duration-tolerance))

(setf res (list 111 newsong))))

res))

This method takes as an argument single-note instances. It makes use of
functions that are considered time constants. So, the complexity becomes
O(1).

The time complexity of the method match-note is:

(let ((res))

(defmethod match-note ((oldsong complex-note)

(newsong complex-note)

&key (note-only nil))

(cond (note-only

(setf res (equal (complex-note-name oldsong)

(complex-note-name newsong))))

((and (equal

(complex-note-name oldsong)

(complex-note-name newsong))

(<= 0

(abs (-

(/ (apply #’+ (complex-note-time oldsong))

(length (complex-note-time oldsong)))

(/ (apply #’+ (complex-note-time newsong))

(length (complex-note-time newsong)))))

time-tolerance)

(equal 0

(duration-check (complex-note-duration oldsong)

(complex-note-duration newsong))))

(setf res (list t newsong)))

((and (equal (complex-note-name oldsong)

(complex-note-name newsong))

142 CHAPTER 9. APPENDIX

(<= 0

(abs (-

(/ (apply #’+ (complex-note-time oldsong))

(length (complex-note-time oldsong)))

(/ (apply #’+ (complex-note-time newsong))

(length (complex-note-time newsong)))))

time-tolerance)

(>

(duration-check (complex-note-duration oldsong)

(complex-note-duration newsong)) 0))

(setf res (list 001 newsong)))

((and (equal (complex-note-name oldsong)

(complex-note-name newsong))

(>

(abs (-

(/ (apply #’+ (complex-note-time oldsong))

(length (complex-note-time oldsong)))

(/ (apply #’+ (complex-note-time newsong))

(length (complex-note-time newsong)))))

time-tolerance)

(equal 0

(duration-check (complex-note-duration oldsong)

(complex-note-duration newsong))))

(setf res (list 010 newsong)))

((and (equal (complex-note-name oldsong)

(complex-note-name newsong))

(>

(abs (-

(/ (apply #’+ (complex-note-time oldsong))

(length (complex-note-time oldsong)))

(/ (apply #’+ (complex-note-time newsong))

(length (complex-note-time newsong)))))

time-tolerance)

(>

(duration-check (complex-note-duration oldsong)

(complex-note-duration newsong)) 0))

(setf res (list 011 newsong)))

((and (not

(equal (complex-note-name oldsong)

(complex-note-name newsong)))

9.5. ALGORITHM COMPLEXITY ANALYSIS 143

(<= 0

(abs (-

(/ (apply #’+ (complex-note-time oldsong))

(length (complex-note-time oldsong)))

(/ (apply #’+ (complex-note-time newsong))

(length (complex-note-time newsong)))))

time-tolerance)

(equal 0

(duration-check (complex-note-duration oldsong)

(complex-note-duration newsong))))

(setf res (list 100 newsong)))

((and (not

(equal (complex-note-name oldsong)

(complex-note-name newsong)))

(<= 0

(abs (-

(/ (apply #’+ (complex-note-time oldsong))

(length (complex-note-time oldsong)))

(/ (apply #’+ (complex-note-time newsong))

(length (complex-note-time newsong)))))

time-tolerance)

(>

(duration-check (complex-note-duration oldsong)

(complex-note-duration newsong)) 0))

(setf res (list 101 newsong)))

((and (not

(equal (complex-note-name oldsong)

(complex-note-name newsong)))

(>

(abs (-

(/ (apply #’+ (complex-note-time oldsong))

(length (complex-note-time oldsong)))

(/ (apply #’+ (complex-note-time newsong))

(length (complex-note-time newsong)))))

time-tolerance)

(equal 0

(duration-check (complex-note-duration oldsong)

(complex-note-duration newsong))))

(setf res (list 110 newsong)))

((and (not

144 CHAPTER 9. APPENDIX

(equal (complex-note-name oldsong)

(complex-note-name newsong)))

(>

(abs (-

(/ (apply #’+ (complex-note-time oldsong))

(length (complex-note-time oldsong)))

(/ (apply #’+ (complex-note-time newsong))

(length (complex-note-time newsong)))))

time-tolerance)

(>

(duration-check (complex-note-duration oldsong)

(complex-note-duration newsong)) 0))

(setf res (list 111 newsong))))

res))

This method takes as an argument complex-note instances. It deals with
functions that are considered time constants. So, the complexity becomes
O(1).

The time complexity of the function compare-music is:

(defun compare-music (filename1 &optional (filename2 nil))

(match-music

(make-instance-single-complex-note

(midi-events-organized-to-indicate-chords

(import-song filename1)))

(make-instance-single-complex-note

(midi-events-organized-to-indicate-chords

(or (import-song filename2)

cl-user::*myseq*)))))

This function takes as an argument two files, so it is of paramount impor-
tance for us to see the complexity of the internal functions. The more one
function is being called, the more it influences the time complexity. The
problem is that the compare-music consists of functions that are called
equal times. So, the complexity will be determined from the function that
requires more time to act, which is the function midi-events-organized-
to-indicate-chords with time complexity O(n2). As a result, the time
complexity of the MM algorithm is O(n2) which is a non linear complexity.

9.5. ALGORITHM COMPLEXITY ANALYSIS 145

It could become linear, if though, instead of lists hash tables, were used and
some functions from the package cm were redefined.

146 CHAPTER 9. APPENDIX

Chapter 10

References

[1] A Guided Tour Of The Common Lisp Interface Manager Tour Of CLIM

[2] http://www-ccrma.stanford.edu/software/cmn/ Common Music Nota-
tion

[3] Wikipedia Lisp (Programming Language)

[4] Wikipedia Open-source software

[5] Wikipedia Musical Instrument Digital Interface

[6] Wikipedia CLOS (Common Lisp Object System)

[7] www.cm.html Common Music

[8] Introduction To Algorithms 2nd Edition Thomas H. Cormen, Charles E.
Leiserson, Ronald L. Rivest, Clifford Stein

[9] Algorithms Panagiotis D. Bozanis

[10] Speech And Language Processing 1999 Daniel Jurafsky, James H. Mar-
tin

[11] A. Amir, E. Porat, and M. Lewenstein. Approximate subset matching
with don’t cares. In Proceedings of the twelfth annual ACM-SIAM sym-
posium on Discrete algorithms, pages 305-306. Society for Industrial and
Applied Mathematics, 2001. ISBN 0-89871-490-7.

[12] T. Crawford, C. Iliopoulos, and R. Raman. String matching techniques
for musical similarity and melodic recognition. Computing in Musicology,

147

148 CHAPTER 10. REFERENCES

11:73-100, 1998.

[13] C. S. Iliopoulos, M. Mohamed, L. Mouchard, K. Perdikuri, W. F. Smyth,
and A. Tsakalidis. String regularities with don’t cares. Nordic Journal of
Computing, 10(1):40-51, 2003.

[14] K. Lemstrom and P. Laine. Musical information retrieval using musical
parameters. In Proc. International Computer Music Conference (ICMC
’98), pages 341-348, 1998.

[15] B. Schieber and U. Vishkin. On finding lowest common ancestors:
Simplification and parallelization. SIAM Journal on Computing, 17(6):1253-
1262, 1988.

[16] Hjelsvold, R. and R. Midstraum, “Modelling and Querying Video Data”
in Proc. o VLDB Conf, pp. 686-694, 1994.

[17] Hsu J. L., C. C. Liu, and A. L. P. Chen, “Efficient Repeating Pattern
Finding in Music Databases” in Proc. of Seventh International Conference
on Information and Knowledge Management (CIKM’ 98), 1998.

[18] Jain, R., “Metadata in Video Databases” SIGMOD RECORD, Vol. 23,
No. 4, pp. 27-33, Dec. 1994.

[19] Jones, M. R. and S. Holleran, Cognitive bases of musical communication,
American Psychological Association, 1991.

[20] Knuth D. E., I. H. Morris, V. R. Pratt, “Fast Pattern Matching 4.
Conclusion in Strings” SIAM J. Comput.,pp.323-350, 1977.

[21] Lerdahl, F. and R. Jackendoff, A generative rheory of tonal music, The
MIT Press, 1983.

[22] Liu, C. C., J . L Hsu, and A. L. P. Chen, “Efficient Near Neighbor
Searching Using Multiple Indexes for Content-Based Multimedia Retrieval”
Multimedia Tools and Applications (to be appeared).

[23] Liu C. C., J. L. Hsu and A. L. P. Chen, “Efficient Theme and Non-
Trivial Repeating Pattern Discovering in Music Databases” in Proc. o IEEE
International ConJ on Data Engineering, 1999.

[24] Boyer, R. S. and J . S. Moore, “A Fast String Searching Algorithm”
CACM, Vol. 20, Oct. 1977.

[25] Chiueh, T. C., “Content-Based Image Indexing” in Proc. of the 20th
VLDB Conf, pp. 582-593, 1994.

149

[26] Chou, T. C., A. L. P. Chen, and C. C. Liu, “Music Databases: Indexing
Techniques and Implementation” in Proc. of IEEE

[27] A. Uitdenbogerd and J. Zobel. Manipulation of music for melody match-
ing. In B. Smith and W. Effelsberg, editors, Proceedings of the ACM Multi-
media Conference, pages 235-240, Bristol, UK, Sept. http://www.intelliscore.net/.
1998.

[28] Innovative music systems, inc. wav to midi, mp3 to midi converter -
intelliscore.

[29] T. Cormen, C. Leiserson, and R. Rivest. Introduction to Algorithms.
The MIT Press, Cambridge, MA, 1990.

[30] F. Damerau. A technique for computer detection and correction of
spelling errors. Comm. of the ACM, 7(3):171-176, 1964.

[31] R. Wagner and M. Fisher. The string to string correction problem.
Journal of the ACM, 21:168-178, 1974.

[32] D. Deutsch. Grouping mechanisms in music. In Psychology of Music,
Orlando, 1982. Academic Press.

[33] A. L. Uitdenbogerd and J. Zobel. Matching techniques for large music
databases. In D. Bulterman, K. Jeffay, and H. J. Zhang, editors, Proceedings
of the ACM Multimedia Conference, pages 57-66, Orlando, Florida, Nov.
1999.

