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Abstract 
 

The availability of large volumes of digital content in modern applications (e.g., 

digital libraries and organization intranets) and the on internet has generated 

additional interest in methods and tools for effective management of shared content. 

Data clustering is a means for achieving better organization of the information by 

partitioning the data space into groups of entities with similar content. Clustering of 

large document collections is the problem this thesis is dealing with. State of the art 

clustering algorithms are reviewed first (e.g. partitional and hierarchical algorithms).    

Initially, we focus on partitional clustering methods due to their low time 

complexity (i.e., linear on the number of documents). Hierarchical clustering methods 

are considered as well. We examine several variants of the original K-Means 

algorithm and we propose the so-called “Incremental K-Means” which differs from 

K-Means in the way the centroids are updated during each clustering iteration. 

However, both K-Means and its variants produce a flat partition of the data collection. 

Efficient methods which are able to provide effective organization of information 

(like hierarchical clustering) are preferred. 

 We propose a novel hierarchical clustering approach, which we call “BIC-

Means”. BIC-Means produces a hierarchy of clusters by recursively applying the 

Incremental K-Means on a document collection. BIC-Means combines the strengths 

of partitional and hierarchical clustering methods. The main advantage of BIC-Means 

is that it does not terminate when singleton clusters are reached at the bottom of the 

hierarchy. To prevent over-splitting of clusters, BIC-Means incorporates the use of the 

Bayesian Information Criterion (BIC) or Schwarz Criterion for terminating the 

splitting of the hierarchy when meaningful clusters are reached. We use BIC to 

perform a splitting test at each leaf cluster in order to decide whether a cluster should 

be split or not. BIC-Means terminates when there is no separable cluster according to 

the BIC function. 

 We run several sets of experiments on two TREC standard document 

collections (Reuters and OHSUMED). Our experimental results show that the main 

advantage of BIC-Means is that it requires significantly less time to build a cluster 

hierarchy than the standard Bisecting K-Means algorithm (BIC-Means does not have 

to reach singleton clusters at the leafs). In terms of clustering quality, BIC-Means 



   

 

 

 

achieves approximately the same performance as the basic Bisecting technique (the 

exhaustive approach). Therefore, BIC-Means is more suitable than its competitors for 

clustering very large document collections effectively. This is not only due to its low 

computational requirements, but also due to its comparable clustering performance.  

We also explore Medical Subject Headings (MeSH) as features for 

representing medical documents i.e., each document is represented as a vector of 

MeSH terms (multi-word terms) rather than as vectors of single-word terms. Our 

evaluation shows that MeSH-based representation of documents improves 

significantly the performance of BIC-Means in terms of clustering time and clustering 

quality.  

Finally, we examine how hierarchical clustering could be used to improve the 

effectiveness and efficiency of retrieval from large medical document collections. We 

propose several cluster-based retrieval strategies using MeSH terms as document 

representation. Experimental results show that the best proposed cluster-based 

retrieval strategy is almost as effective as exhaustive searching (i.e. searching without 

clustering). Cluster-based retrieval not only saves a huge amount of computation but 

does so without significant loss in precision and recall. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 



      

 

 

  

Περίληψη 
 

Ο συνεχώς αυξανόµενος όγκος της ψηφιακής πληροφορίας σε παλιές και νέες 

εφαρµογές (ψηφιακές βιβλιοθήκες, εσωτερικά δίκτυα οργανισµών κ.α.) και στο 

διαδίκτυο έχουν αυξήσει σηµαντικά το ενδιαφέρον για µεθόδους που επιτυγχάνουν 

την οργάνωση της πληροφορίας στα µέσα αποθήκευσης όπως είναι µέθοδοι 

«οµαδοποίησης» (clustering). Τα δεδοµένα οργανώνονται σε µικρό αριθµό οµάδων 

(clusters) όπου κάθε οµάδα περιέχει παρόµοιο πληροφοριακό περιεχόµενο. Η 

οµαδοποίηση σε πολύ µεγάλες συλλογές κειµένων (document clustering) είναι το 

βασικό θέµα της συγκεκριµένης εργασίας.  

Αρχικά κάνουµε µια ανασκόπηση των πιο γνωστών µεθόδων οµαδοποίησης 

που έχουν παρουσιαστεί στη βιβλιογραφία. Εστιάζουµε σε «διαµεριστικούς» 

(partitional) αλγόριθµούς οµαδοποίησης κειµένων (partitional clustering) εξαιτίας της 

χαµηλής (γραµµικής) πολυπλοκότητάς τους ως προς τον  αριθµό των κειµένων αλλά 

και της καλής απόδοσης που έχουν επιδείξει. Ωστόσο, για την οµαδοποίηση 

συλλογών κειµένων προτιµούνται µέθοδοι οι οποίες παρέχουν αποτελεσµατική 

πλοήγηση, οργάνωση και απεικόνιση της πληροφορίας όπως οι ιεραρχικοί µέθοδοι 

(hierarchical clustering). Οι περισσότερες γνωστές ιεραρχικές µέθοδοι, αν και 

ακριβείς έχουν τετραγωνική πολυπλοκότητα και για αυτό το λόγο δεν εφαρµόζονται 

σε µεγάλες συλλογές κειµένων. 

Η µέθοδος Κ-µέσων (K-Means) και οι παραλλαγές του παράγουν ένα επίπεδο 

διαµερισµό των δεδοµένων (flat partitioning). Εξετάζουµε διάφορες παραλλαγές του 

κλασσικού αλγορίθµου των Κ-µέσων  και προτείνουµε µία παραλλαγή του, την  

«Επαυξητική µέθοδο Κ-µέσων» (Incremental K-Means) η οποία ανανεώνει το κέντρο 

(centroid) µιας οµάδας µόλις ένα κείµενο προστεθεί σε αυτόν.  Προτείνουµε επίσης 

µία νέα ιεραρχική µέθοδο που ονοµάζουµε “BIC-Means”. Η µέθοδος BIC-Means 

παράγει µια ιεραρχία από οµάδες δεδοµένων (κειµένων στην περίπτωσή µας) 

εφαρµόζοντας επαναληπτικά την επαυξητική µέθοδο Κ-µέσων σε µια συλλογή 

κειµένων. Η µέθοδος συνδυάζει τα πλεονεκτήµατα των επίπεδων και ιεραρχικών 

τεχνικών δηλαδή, είναι ιεραρχική µέθοδος ενώ είναι πιο γρήγορη από την επαυξητική 

µέθοδο. Αυτό οφείλεται στο ότι η µέθοδος BIC-Means δεν είναι εξαντλητική,  

δηλαδή δεν χρειάζεται να τερµατίσει  όταν οι οµάδες περιέχουν ένα µόνο κείµενο 

(singleton clusters). Για να επιτευχθεί αυτό, o BIC-Means ενσωµατώνει το Bayesian 



   

 

 

 

Information Criterion (BIC) ή Schwarz Criterion. Το κριτήριο αυτό  εφαρµόζεται για 

να σταµατήσει τις διασπάσεις των οµάδων σε ανώτερα επίπεδα της ιεραρχίας όταν η 

περαιτέρω διάσπασή τους δεν θα οδηγήσει σε καλύτερη οµαδοποίηση. Ο BIC-Means 

τερµατίζει όταν έχουν εξεταστεί όλες οι υποψήφιες προς διάσπαση οµάδες (οµάδες 

που βρίσκονται στα φύλλα της ιεραρχίας) και δεν υπάρχει άλλη υποψήφια οµάδα για 

διάσπαση. 

 Για την αξιολόγηση της απόδοσης των αλγορίθµων που αναπτύξαµε κάναµε 

ένα σύνολο πειραµάτων σε δύο πολύ διαδεδοµένες συλλογές κειµένων (Reuters, 

OHSUMED). Σύµφωνα µε τα πειραµατικά αποτελέσµατα, το βασικό πλεονέκτηµα 

του BIC-Means είναι ότι χρειάζεται πολύ λιγότερο χρόνο (εν σε σχέση µε τον βασικό 

επαυξητικό αλγόριθµο Κ-µέσων) για να δηµιουργήσει µια ιεραρχία από οµάδες ενώ 

αποδίδει το ίδιο καλά µε την επαυξητική µέθοδο που προτείναµε (η οποία είναι ήδη 

πολύ αποτελεσµατική επιτυγχάνοντας  ακρίβεια οµαδοποίησης πάνω από 75% εν 

σχέση µε µία οµαδοποίηση που παράγουν ειδικοί χρήστες). Εποµένως, ο BIC-Means, 

συγκρινόµενος µε τις γνωστές µεθόδους οµαδοποίησης είναι εξίσου ακριβής και 

µπορεί να εφαρµοστεί για την ιεραρχική οµαδοποίηση  πολύ µεγάλων συλλογών 

κειµένων. Παράλληλα, εξετάζουµε την χρήση ειδικών ιατρικών όρων (από την MeSH 

ταξινοµική ιεραρχία) για την αναπαράσταση ιατρικών κειµένων. Με αυτόν τον τρόπο 

κάθε κείµενο αναπαριστάται µε διανύσµατα πολυ-λεκτικών MeSH όρων (multi-word 

terms) αντί µε διανύσµατα απλών µονο-λεκτικών όρων (single-word terms). Οι 

παραστάσεις αυτές περιγράφουν καλύτερα το ιατρικό περιεχόµενο των κειµένων σε 

ιατρικές εφαρµογές (π.χ. κείµενα της συλλογής OHSUMED) και είναι πιο συµπαγείς 

(περιέχουν λιγότερους όρους).  Τα αποτελέσµατα των πειραµάτων έδειξαν, ότι η 

παράσταση των κειµένων µε MeSH όρους βελτιώνει σηµαντικά την απόδοση του 

BIC-Means, τόσο σε σχέση µε την ποιότητα της οµαδοποίησης όσο και µε τον χρόνο 

που απαιτείται. 

 Ολοκληρώνοντας, εξετάζουµε πώς µία ιεραρχική οµαδοποίηση (που έχει 

παραχθεί µε µία µέθοδος όπως η BIC-Means) µπορεί να χρησιµοποιηθεί για την 

γρηγορότερη ανάκτηση πληροφορίας (information retrieval) σε µεγάλες ιατρικές 

συλλογές κειµένων. Προτείνουµε µια σειρά από στρατηγικές ανάκτησης που κάνουν 

χρήση των δεδοµένων της ιεραρχίας. Τα πειραµατικά αποτελέσµατα έδειξαν ότι η 

καλύτερη από τις προτεινόµενες στρατηγικές ανάκτησης αποδίδει το ίδιο καλά µε την 

εξαντλητική µέθοδο ανάκτησης (χωρίς χρήση οµαδοποίησης) δηλαδή, µειώνει κατά 



      

 

 

  

πολύ τον απαιτούµενο υπολογιστικό χρόνο, χωρίς να προκαλεί µείωση της απόδοσης 

της ανάκτησης. 
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Chapter 1  

 

Introduction 

 

In recent years, we have seen a tremendous explosion of electronic information 

available on the Internet, digital libraries and organizational intranets. Large 

collections of documents are becoming increasingly common and widely available to 

the public. On the other hand, the World Wide Web (WWW) continues to expand at 

an amazing rate. Due to the huge size of document collections, searching for 

information in such collections has become a very challenging task. 

Document or text clustering plays an important role toward this goal. It refers 

to the process of automatic grouping of text documents into clusters, so that each 

cluster consists of similar documents (documents in different clusters are dissimilar). 

Document clustering is the fundamental tool for enabling efficient document 

summarization, organization, and navigation in very large data sets. It provides the 

infrastructure for developing tools supporting navigation and browsing mechanisms 

by organizing enormous amounts of documents into meaningful clusters.   

Document clustering has been widely applied in various scientific fields for 

supporting search engines, text mining, and Information Retrieval [68]. It has been 

used also as a post-retrieval tool for organizing query results into thematic topics. 

These organized results can be interactively browsed, visualized, and explored by the 

users. 

Text Clustering is an unsupervised learning process of grouping documents 

into clusters. There are no pre-defined classes available in document clustering and 

this is how text clustering differs from text classification. In text classification, we are 

provided with a training set of labeled documents and we are asked to assign to one of 

new, yet unlabeled documents the pre-defined categories [67]. Thus, text 

categorization is a supervised learning task. 
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1.1. Motivation 

Document clustering has been extensively studied in the literature and a variety of 

algorithms have been proposed [17], [23], [24], [30], [34]. These algorithms can be 

categorized along different dimensions. First, clustering can be either static or 

dynamic. Static clustering algorithms usually refer to static document collections. On 

the other hand, dynamic clustering is applied on data sets that change dynamically. 

Consider for example the flow of information that arrives continuously on news wires 

message systems such as Reuters, Marketwatch, etc. In this case the clusters must 

adapt to the incoming flow or deletions of documents. Dynamic clustering has not 

been widely studied, while static clustering methods can be further improved.  

Based on the nature of the membership function the clustering can be either 

hard or soft (fuzzy).  Hard clustering algorithms produce hard clusters (i.e., each 

document is assigned to a single cluster) while in soft clustering, documents may be 

instances of more than one cluster. Notice that a fuzzy clustering can be converted to 

a hard clustering by assigning each data object to the closest cluster. In this thesis, we 

focus on static, hard clustering algorithms.  

Based on the underlying algorithmic methodology, the standard clustering 

algorithms can be categorized into hierarchical [28], [31], [54], [55], [68] and 

partitional [9], [20], [24], [40]. Hierarchical clustering algorithms proceeds either 

bottom-up (agglomerative), or top-down (divisive). Hierarchical Agglomerative 

Clustering (HAC) starts with all documents as individual clusters and works by 

merging the most similar ones iteratively until a single cluster with all documents is 

produced at the root of the hierarchy. Divisive algorithm approaches start with all 

documents in the same root cluster and work by iteratively splitting each cluster into a 

number of smaller ones until clusters with one document (singleton clusters) are 

produced at the leafs of the hierarchy. Both types of methods produce a tree hierarchy 

of clusters called a “dendrogram”. Contrary to hierarchical clustering techniques, 

partitional algorithms create a flat (un-nested) partitioning of documents. K-Means is 

a widely used partitional clustering method. It partitions the entire collection into K 

clusters, where K stands for the desired number of output clusters and must be known 

in advanced. 

In recent years, various experimental results [1], [6], [32], [55] have indicated 

that partitional clustering algorithms are well-suited for clustering large data sets due 
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to their low computational requirements (linear in the number of documents) [1], [6]. 

The time complexity of most hierarchical clustering methods is quadratic in the 

number of documents. Due to the large size of document collections in modern 

applications and the explosion of the WWW there is an increased need for effective 

clustering, which scales-up well for very large data sets. Hierarchical clustering 

provides the infrastructure for developing effective navigation, organization, and 

visualization tools for such large amounts of information. For this reason, hierarchical 

clustering solutions are preferred. However, traditional hierarchical clustering 

algorithms have limited applicability in large document collections due to their 

quadratic time complexity. Furthermore, partitional techniques usually lead to better 

clustering solutions than agglomerative algorithms [55], [66]. 

Partitional clustering methods can also be used to obtain a hierarchical 

clustering solution via a sequence of repeated application of the K-Means algorithm. 

Bisecting K-Means method is such an approach. The method starts with all documents 

in a single cluster. Initially, this cluster is partitioned into two clusters by applying K-

Means. The algorithm continues by splitting similarly each produced cluster until 

singleton clusters are obtained at the leafs or until K clusters have been produced.  

The so-obtained clusters are structured as a hierarchical binary tree. The overall 

hierarchy is built in ( log )O n n time (in case of a balanced hierarchy), where n  is the 

number of documents. 

An important issue in divisive clustering approaches is to determine a strategy 

to terminate the divisive procedure. Without prior knowledge on the number of 

clusters the algorithm executes exhaustively. In the case of large document collections 

the efficiency of clustering decreases significantly. For this reason, additional 

termination criteria must be introduced to increase the efficiency of the algorithm and 

prevent it from over-partitioning. This is exactly one of the problems this work is 

dealing with. Notice that, without a termination criterion, even meaningful clusters 

(i.e., clusters corresponding to real classes) are further split until singleton clusters are 

reached at the leafs of the tree hierarchy. 
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1.2. Contributions 

In this thesis, our main objective is to develop a highly efficient algorithm for 

clustering very large document collections. We focus on partitional clustering 

methods due to their low time complexity. We implemented several partitional 

clustering algorithms and we studied their performance. 

Initially, we examined the standard K-Means clustering approach. We 

developed several variants of the original K-Means method and we proposed the so-

called “Incremental K-Means”. Incremental K-Means differs from basic K-Means in 

the way the centroids are updated during each clustering iteration. In Incremental K-

Means each cluster centroid is updated after each document is assigned to a cluster 

(rather than re-computing each cluster centroid after each iteration when all 

documents have been assigned to clusters). 

We investigate how Incremental K-Means can be used effectively to build a 

hierarchy of clusters. A hierarchical solution is obtained by recursively applying the 

Incremental K-Means on a document collection. All documents are initially 

partitioned into two clusters. Then, the least cohesive leaf cluster is selected for 

further splitting. This process of selecting and bisecting a leaf cluster continues until 

all clusters at the bottom of the hierarchy contain a single document. We call the 

proposed algorithm “Bisecting Incremental K-Means”. As indicated in [55], [66] the 

basic Bisecting approach significantly outperforms agglomerative hierarchical 

clustering algorithm in terms of clustering quality and efficiency. Thus, we focus our 

research on Bisecting Incremental K-Means. 

As mentioned in Section 1.1, despite its effectiveness, the main disadvantage 

of Bisecting Incremental K-Means is that it terminates when each leaf cluster contains 

a single document which is not only slow but also produces lots of meaningless 

clusters at the bottom of the hierarchy (e.g., singleton clusters). The produced 

clustering result is not appropriate for navigation, data summarization and browsing 

of information. For this, a terminating condition must be defined. 

We propose a novel hierarchical clustering approach which incorporates the 

use of the “Bayesian Information Criterion (BIC)” or Schwarz Criterion [52] for 

terminating the splitting of the Bisecting Incremental K-Means algorithm. We suggest 

using BIC as the splitting criterion of a cluster. BIC estimates the cohesiveness of 

clusters in order to denote whether a cluster should split. If the BIC score of the 
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produced children clusters is less than the BIC score of the parent cluster we do not 

accept the split and keep the parent cluster as is. We terminate the divisive procedure 

when there is no separable leaf cluster according to the BIC function. Similarly to our 

approach X-Means [42], which is a variant of K-Means, first used BIC to estimate the 

best K in a given range of values. Notice that X-Means is a partitional clustering 

algorithm. 

Overall, we propose the so-called here-after “BIC-Means” clustering 

algorithm which is the main contribution of this thesis. It produces a hierarchical 

clustering solution and combines all the following ideas: 

 

1. Bisecting clustering approach to build a hierarchy of clusters effectively. 

2. Incremental K-Means as the proposed partitional method to bisect the 

selected leaf cluster at each bisecting step. 

3. A termination criterion from preventing clustering from over-splitting based 

on Bayesian Information Criterion (BIC). 

 

The proposed BIC-Means terminates before each leaf cluster becomes a single 

document. As a result, the obtained clusters are more meaningful as compared to 

meaningless singleton clusters of standard hierarchical algorithms. The proposed 

algorithm combines the strengths of partitional and hierarchical clustering methods. 

We focus on evaluating the performance of the proposed clustering algorithms 

in terms of clustering quality and time required to obtain clustering solutions. We 

used two standard document collections (OHSUMED and Reuters). F-Measure was 

used to examine the quality of the produced clustering results. It measures the 

performance of clustering methods in terms of how well the documents belonging to 

each of the pre-defined classes match the documents belonging to the corresponding 

cluster. 

Experimental results indicated that Bisecting Incremental K-Means performs 

significantly better than K-Means and (our proposed variant) Incremental K-Means in 

terms of F-Measure on both test collections. We also observed that Incremental K-

Means always produces better partitional clustering solutions than standard K-Means. 

We also explored Medical Subject Headings (MeSH) [27], a controlled vocabulary for 

describing medical literature, as features for representing medical documents in 
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OHSUMED i.e., each document is represented as a vector of MeSH terms (multi-

word composite terms) rather than by vectors of single word terms (the state of the art 

approach). This leads to a more compact representation (each vector contains less 

terms) which is directly perceivable by humans. Our evaluation showed that MeSH-

based representation of documents improves noticeably the performance of Bisecting 

Incremental K-Means with respect to clustering time and clustering quality. 

The performance of our proposed BIC-Means algorithm is evaluated and 

compared against the performance of hierarchical clustering methods such as 

Bisecting Incremental K-Means. Experimental results indicated that the main 

advantage of BIC-Means is that requires significantly less time to build a cluster 

hierarchy than Bisecting Incremental K-Means (is executed exhaustively). In terms of 

clustering quality, BIC-Means performs approximately the same as our initial 

Bisecting approach. Therefore, the proposed BIC-Means is well-suited for obtaining 

effective hierarchical clustering solutions of large data sets. This is not only due to its 

low computational requirements, but also comparable performance. Notice that, BIC-

Means terminates at meaningful clusters (clusters which are likely to correspond to 

real classes). 

Having established the quality of the implemented document clustering 

algorithms, we examine how hierarchical clustering could be used to improve the 

effectiveness and efficiency of retrievals on large medical document collections. Our 

main goal is to noticeably reduce the number of required similarity computations 

between the user’s query and documents within a collection. We produce a hierarchy 

of clusters using the BIC-Means. We propose and evaluate several cluster-based 

strategies for searching hierarchical clustered document collection based on the idea 

that only leaf clusters need to be searched (intermediate level clusters combine 

information from lower level leaf clusters). We retrieve the documents contained in 

the N top-ranked clusters. Notice that, we use MeSH terms to build the document, 

cluster and query vectors. 

The experimental results indicated that among all cluster-based retrieval 

strategies proposed in this thesis the best results on OHSUMED are obtained in case 

we examine only the leaf clusters which contain all the MeSH terms of the query in 

their centroid vectors. Contrary to exhaustive search (233,445 documents are 

searched), the proposed cluster-based retrieval strategy search only 30% of 

OHSUMED documents. Experiments also showed that the proposed search strategy is 
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almost as effective as the retrieval by exhaustive search on OHSUMED. 

Summarizing, this cluster-based retrieval not only saves a huge amount of 

computation, but does so without loss of retrieval effectiveness. 

 

1.3. Thesis Structure 

The rest of this thesis is organized as follows. 

Chapter 2 provides a review of related work in the fields of document 

clustering, evaluation methodology of clustering quality and stopping criteria on 

hierarchical clustering. 

Chapter 3 describes in detail our proposed clustering algorithms for efficient 

clustering of large document collections. We discuss techniques to improve the 

quality of the obtained clustering results. 

Chapter 4 presents the two sets of experiments that we performed for 

evaluating our proposed methodology. The first one focuses on evaluating the quality 

of the clustering solutions produced by the several proposed clustering algorithms. 

The second set of experiments examined how hierarchical clustering could be used to 

improve the effectiveness and efficiency of retrieval by exhaustive search on large 

document collections. 

Chapter 5 summarizes the achievements of this thesis and points out possible 

directions for future research. 

Appendix A talks in detail about many parts that took place in the 

implementation process and describes some technical issues about the developed 

software. 
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Chapter 2 

 

Background and Related Work 

 

In this chapter, we provide an overview of research related to document clustering. 

We highlight the key issues in the area of Information Retrieval (IR), presenting the 

three common Information Retrieval Models. We describe the main text clustering 

techniques and we explain some technical issues. Then, we present the basic 

measures of cluster quality. Finally, we focus on stopping criteria in hierarchical 

document clustering algorithms, emphasizing on the so-called Bayesian Information 

Criterion (BIC). We conclude by describing MeSH control vocabulary which we use 

in our experimental evaluation. 

 

2.1 Information Retrieval 

The internet is expanding at increasing rate, and search for information is becoming 

more difficult in this gigantic digital library. This fact calls for improved automatic 

methods for searching and organizing documents so requested information can be 

accessed quickly and accurately. The term Information Retrieval (IR) defines all 

those activities that can be used to retrieve documents of interest from a given 

collection of documents. 

 

2.1.1 Information Retrieval Models 

The three classic models in IR [2] are known as Vector Space, Boolean, and 

Probabilistic. In the Vector Space model [50], documents and queries are represented 

by vectors in a multi-dimensional space, where each dimension corresponds to a 

unique word in corpus. Thus, we say that the model is algebraic. In the Boolean 

model, documents and queries are represented as a set of index terms, thus this model 

is set theoretic. Finally, in the Probabilistic model the representation of documents 

and queries is based on probabilities of occurrence of terms in a corpus. Among the 
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three models, vector space is the most commonly used. The various clustering 

algorithms that are described and implemented in this thesis are based on the vector 

space model. 

 

2.1.2 Vector Space Model 

The Vector Space model (VSM) [51] is the most popular IR model. It has been shown 

to perform at least as good as the other two models. In VSM, both documents d  and 

queries q  are considered to be vectors in a multidimensional term space. The VSM 

assigns to the terms non-binary weights which are used to compute the degree of 

similarity between a document and a query or between two documents.  

The weights assigned to each term can be either the term frequency ( )tf  or 

term frequency-inverse document frequency ( )tf idf−  [32]. In first case, the 

frequency of occurrence for a term in a document is included in the vector 

( )1 2, ,....,tf md tf tf tf= , where itf  is the frequency of the thi  term in the document. 

Usually, very common words are removed and the terms are stemmed. A refinement 

to this weighting scheme is the so-called tf idf−  weighting scheme. In this approach, 

a term that appears in many documents should not be regarded as more important 

than the one that appears in few documents, and for this reason it needs to be de-

emphasized.  

Let N  be the total number of documents in the collection; idf  (document 

frequency) be the number of documents in which the ik  term appears, and ,i jfreq  be 

the raw frequency of the term ik  in the document jd . The inverse document 

frequency ( idfi ) for ik  is defined as: 

 log Nidfi dfi
=  (2.1) 

The tf idf−  weight of term i  is computed by:  

 log Nw freqij ij dfi
= ×  (2.2) 

To account for documents of different length, each vector is normalized so that it is of 

unit length. 
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There are many variations of this basic formula. The one we use in our implemented 

algorithms is described in section 3.2.1. 

 

Similarity Computation 

The Vector Space Model computes the degree of similarity between a document d j  

and a query q  (or between two documents). The similarity between two documents is 

computed as the cosine of the angle between their document vectors in the 

multidimensional term space [50]: 

        ( ) ( ), cos ,
2 2

w wd d it jti j tsim d d d di j i j
d d w wi j it jtt t

×∑⋅
= = =

× ∑ ∑
                     (2.3) 

This measure simplifies to ( )cos , Td d d di j i j=  due to the unit length of 

document vectors. All vectors are normalized by document length. The measure takes 

values between 1 (the two documents are identical) and 0 (the two documents have no 

common terms). 

 

The main advantages of Vector Space Model (VSM) are [57]: 

♦ The documents are sorted by decreasing similarity with the query q . 

♦ The terms are weighted by importance. 

♦ It allows for partial matching: the documents need not have exactly the same 

terms with the query. 

One disadvantage of VSM is that the terms are assumed to be independent. Moreover, 

weighting is intuitive and not very formal. 

 

2.1.3 Boolean Model 

The Boolean Model [2] is the most simple among the three models and relies on the 

use of Boolean operators and set theory. The terms in a query are combined together 

with AND , OR  and NOT  operators. A document is predicted as relevant to a query 

expression if it satisfies the query Boolean expression. Each term is either present (1) 

or absent (0). The basic advantage of Boolean model is that is very simple (based on 

set theory). It is easy to understand and implement.  
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The Boolean model also has its drawbacks. It only retrieves exact matching (a 

retrieved document contains exactly the same terms with the query). The retrieved 

documents are all equally ranked with respect to relevance. Furthermore, all terms are 

equally important. Boolean operator usage has much more influence than a critical 

word. Also query language is expressive but complicated due to complex Boolean 

expressions. The Boolean retrieval model has been extended and refined to solve 

these problems [51]. Expanded term weighting operations make ranking of 

documents possible, where the terms in the document could be weighted according to 

their frequency in the document. 

 

2.1.4 Probabilistic Model 

The Probabilistic Retrieval Model [2], [15] computes the probability that a document 

is similar to the query. It assumes that for each document an ideal answer set of 

similar documents exists for each query. Given a query q , a subset of documents, R  

is relevant to q . The probability that a specific document will be judged relevant to a 

specific query is based on the assumption that the terms are distributed differently in 

relevant and non-relevant documents. The weights take binary values (a term exists in 

a document or not). In general, the Probabilistic model attempts to answer a basic 

question: “What is the probability that this document is relevant to this query?”.  

If retrieved documents are ordered by decreasing probability of relevance on 

the data available, then the system’s effectiveness is the best that is obtainable on the 

basis of those data (Probability Ranking Principle) [48]. Moreover, relevance 

feedback can improve the ranking by giving better term probability estimates.  

In conclusion, Probabilistic Model uses probability theory to model the 

uncertainty in the retrieval process. It evaluates probability of relevance based on the 

occurrence of terms in queries and in documents. 

 

2.2 A Variety of Document Clustering Algorithms 

In this section, we review the most common clustering algorithms. Over the past few 

years, clustering techniques have been developed [19], [25]. The goal of clustering is 

to group the points in a feature space optimally based on proximity. Document or text 
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clustering relates to the automatic grouping of documents into clusters, so that 

documents within a cluster have high similarity in comparison to one another, but are 

very dissimilar to documents in other clusters. 

Text Clustering differs from text classification. Text classification is a 

supervised learning process that involves pre-defined category labels; while text 

clustering is an unsupervised task (no pre-defined category labels are available).  

Document Clustering is widely applicable in areas such as web mining, text 

mining and information retrieval. Recently, it has been used in browsing large 

collection of documents [6] and in organizing the results returned by a search engine 

to help users find relevant documents (within the query results) faster [62].  

This section focuses on the techniques used in document clustering and offers 

a brief review of hierarchical and partitional clustering methods, which are used in 

this study. These techniques are the most common and differ in the way clusters are 

organized. Hierarchical algorithms produce a hierarchy of clusters, while partitional 

algorithms generate a flat partition of the data objects.   

 

2.2.1 Hierarchical Clustering Algorithms 

Hierarchical Text Clustering creates a hierarchical decomposition of the documents 

[55]. It produces a nested sequence of partitions with a single cluster at the top and 

individual documents at the bottom of the hierarchy. Each cluster at the intermediate 

level can be viewed as combining two or more clusters from the next lower level, or 

splitting a cluster from the next higher level. A hierarchical clustering defines a tree 

called a dendrogram [25]. A dendrogram is a tree structure that displays the clusters 

that are merged during clustering. Figure 2.1 shows how five documents can be 

merged into a single cluster. The parent-child relationship among the nodes in the 

dendrogram provides taxonomy and facilitates browsing. 
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Dendrogram                      

                                         A               B          C         D         E                 

Figure 2.1: Sample Dendrogram 
 
 

There are two basic approaches to generate a hierarchical clustering. 

Hierarchical clustering algorithms are either agglomerative (bottom-up) or divisive 

(top-down).  

 

Hierarchical Agglomerative Clustering (HAC) 

Hierarchical Agglomerative Clustering proceeds bottom-up. It starts with the 

documents as individual clusters and, at each step, computes the similarity between 

all pairs of clusters and merges the most similar pair. The algorithm continues until a 

single cluster is formed at the top of the hierarchy. A definition of cluster similarity or 

distance is required. In the following page we present the most commonly used 

techniques for calculating the similarity between two clusters.  

The following summarizes the basic hierarchical agglomerative clustering 

algorithm [55]:  

1. Treat each document as a cluster on its own. 

2. Compute the similarity between all pairs of clusters, calculate the 

similarity matrix whose thij  entry gives the similarity between the thi  and 
thj  clusters. 

3. Merge the most similar two clusters. 

4. Update the similarity matrix entries for the newly formed cluster and the 

other clusters. 

5. Repeat steps 3 and 4 until only one cluster remains. 
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The time complexity of hierarchical agglomerative clustering algorithm is 2( )O n  

where n  is the number of documents. All hierarchical methods need to compute 

similarity for all pairs of n individual instances. 

 

Divisive Methods 

The Divisive approach follows the opposite strategy. It starts with all documents in 

the same root cluster. It works by iteratively splitting each cluster into a number of 

smaller ones until clusters with one document (singleton clusters) are produced at the 

leafs of the tree hierarchy or until the desired number of clusters is reached. 

Methods to Compute Similarity between Clusters 

In Hierarchical Agglomerative Clustering a number of different methods have been 

proposed for determining the next pair of clusters to be merged, i.e. how we define 

cluster similarity. There are four commonly used techniques: single-link [54], 

complete-link [31], group-average [24], [55] and centroid similarity method. 

  

• Single-Link Method 

In the single-link method, the similarity of a pair of clusters ( iC , jC ) is the maximum 

similarity between any two individuals, one in each cluster: 

                                                 
,

( , ) max ( , )
i j

i j x C y C
sim C C sim x y

∈ ∈
=                                 (2.4)   

where x  and y  are documents in cluster iC  and jC  correspondingly. 

However, this method is highly susceptible to noise, outliers, artifacts and 

suffers from a chaining effect [39]. It has a tendency to form loosely bound clusters 

[25]. Single-link algorithm remains popular due to its simplicity and the availability 

of an optimal space and time complexity [53] 

 

• Complete Link Method 

In complete-link algorithm, the similarity between two clusters ( iC , jC ) is the 

minimum of all pairwise similarities between documents in the two clusters:  

,
( , ) min ( , )

i j
i j x C y C

sim C C sim x y
∈ ∈

=                                   (2.5) 
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where x  is a document in cluster iC  and y  in cluster jC . This method produces 

“tighter” clusters that are typically preferred. 

 

• Group Average Method (UPGMA) 

Computes the average similarity across all pairs of documents within the two clusters 

( iC , jC ) that will be merged (including the pairs of documents within each one of two 

clusters): 

                                                ,

( , )
( , ) i jx C y C

i j
i j

sim x y
sim C C

C C
∈ ∈

=
∗

∑
                                 (2.6)   

where x  is a document in cluster iC  and y  in cluster jC . 

However, due to the complexity of computing the similarity between every 

pair of clusters, UPGMA does not scale up well for large data sets. 

 

• Centroid Similarity Technique 

The similarity between two clusters ( iC , jC ) is defined as the cosine between their 

centroid vectors. The centroid vector of a cluster is defined as the mean vector of data 

objects. The similarity between two centroids is:  

                                  ( , ) cos( , ) /i j i j i j i jsim C C c c c c c c= = • ∗                             (2.7)   

where ic , jc  are the centroid vectors of the two clusters. Note that the centroid 

vectors will not necessarily be of unit length.  

 Among the four methods discussed above, group average is the preferred one 

performing for document clustering [18], [55]. More elaborate schemes have also 

been developed. See for example Cure [16], Rock [17] and Chameleon [28]. 

 

2.2.2 Partitional Clustering Algorithms 

Contrary to hierarchical clustering techniques, a partitional clustering algorithm 

creates a flat (non-hierarchical) clustering of data objects. There are many partitional 

clustering techniques available. The K-Means algorithm is widely used in document 

clustering because it is easy to implement and has low time complexity.  
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K-Means 

K  stands for the desired number of output clusters. For K-Means we use the notion 

of the centroid, which is the mean or the median point of a group of data objects. 

Given a set S  of documents and their corresponding vector representations, the 

centroid vector SC  is the vector obtained by averaging the weights of the various 

terms presented in the documents of S . Note that a centroid almost never 

corresponds to an actual data object. The similarity between a document d  and a 

centroid c  is computed according to Equation 2.4. Note that even though the 

document vectors are of unit length the centroid vector is not necessarily of length 

one.  

The basic K-Means algorithm works as follows [25]: 

 

1. Randomly select K  points as the initial cluster centroids (seeds). 

2. For each point, put the point in the cluster whose centroid is the closest (most 

similar). The most common measure to calculate the similarity between a 

document and a centroid is the vector cosine measure which we use in this 

study. 

3. Re-compute the centroid of each cluster using the current cluster members. 

4. Repeat steps 2 and 3 until an objective criterion is met. 

 

At step 4 of the algorithm, there are two most commonly used objective functions.     

♦ The procedure terminates when there is no re-assignment of instances to new 

cluster. 

♦ The second popular objective function is the mean squared distance function, 

which tend to work well with isolated and compact clusters. The square error 

criterion function for a clustering of N  documents (containing K  clusters), 

is:  

 
2

2 ( )

1 1
( , )

jnk
j

i j
j i

e K N x c
= =

= −∑∑  (2.8) 

where ( )j
ix  is the thi  document belonging to the thj  cluster and jc  is the 

centroid of the thj  cluster. 

At step 3 of basic K-Means algorithm, there are two ways to update the centroid: 
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♦ Continuously: The centroid is updated after each data object is assigned. 

♦ Non-continuously: The centroid is adjusted only at the end of iteration, when 

all the data objects have been assigned. 

Experimental results [55][13] indicated that the continuous centroid adjustment is 

more effective.  

K-Means and other partitional clustering techniques are well-suited for 

clustering large data sets due to their low computational requirements. Their time 

complexity is ( )O n  where n is the number of data objects (documents). They are 

more efficient as compared to the HAC algorithm which has quadratic computation 

time.  

However, a drawback of Κ-Means is that K  must be known in advance. An 

incorrect estimation of the input parameter may lead to poor accuracy. To avoid this, 

we try out several K  and the best configuration is obtained (the one that optimizes 

the objective function). Apart from that, X-Means [42] is an algorithm implemented 

to avoid this inaccuracy.  

Κ-Means is also sensitive to the selection of the initial centroids. Several 

methods have been reported in the literature, which attend to select a good initial 

partition. The most efficient are: 

♦ Run K-Means several times with different initial centroids and pick the best 

result. 

♦ Use heuristics to pick initial centroids. 

 

Hybrid Approaches to Pick Good Initial Centroids  

Buckshot and Fractionation are two methods designed to find the initial centroids in 

order to avoid random selection. Both techniques are based on other clustering 

algorithms. They cluster well, but their run time is slower than plain K-Means.  

 

• Buckshot Algorithm 

The Buckshot algorithm avoids problems of bad seed selection. It combines 

Hierarchical Agglomerative Clustering and K-Means clustering techniques [6]. 

Buckshot randomly picks Kn  documents from an input set of n  documents. Then, 

it runs group-average HAC on this sample. This algorithm has 2( ( ) ) ( )O Kn O Kn=  
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time complexity. The K  centroids resulting from HAC become the initial centers for 

K-Means.  

 

• Fractionation Algorithm 

Fractionation [6] uses the HAC, like Buckshot, to build a bottom-up hierarchy. If we 

want to get K  clusters, fractionation algorithm splits N  documents into M K>  

groups of size /N M  each ( M  is a parameter). Then uses HAC for each of the M  

groups to generate /pN M  clusters ( p  is a parameter). The iteration terminates when 

only K  groups remain. The algorithm takes ( )O Kn  time. 

Summarizing, Buckshot applies HAC to sample the documents randomly in 

order to find initial centroids. Fractionation uses successive applications of HAC over 

particular groups of documents to find centroids. Fractionation is more accurate than 

Buckshot [6]. However, Buckshot is significantly faster, so it is more appropriate for 

many applications. 

 

Bisecting K-Means 

Partitional algorithms can also be used to obtain hierarchical clustering solutions via a 

sequence of repeated applications of K-Means algorithm. The Bisecting K-Means 

algorithm uses this approach to build a hierarchy of clusters. It is very effective in 

many applications (browsing, indexing, navigation, and information retrieval 

systems). Bisecting K-Means algorithm starts with a single cluster of all the 

documents and works as follows [55]: 

1. Choose a cluster to split (starting with the initial cluster). 

2. Apply the basic K-Means algorithm to split this cluster into 2 sub-clusters 

(Bisecting step). 

3. Repeat step 2 for ITER times and take the split that produces the clustering 

with the highest overall similarity (the average pairwise similarity between all 

documents in the cluster). We want to maximize that sum over all clusters. 

4. Repeat steps 1, 2 and 3 until a pre-defined stopping criterion is met. 

At step 1, there is a number of different ways to select which cluster to split from the 

list of leaf clusters. We can select either the cluster with the least cohesion (the least 

overall similarity), or the one with the largest size. Alternatively, a criterion based on 



20                                                                       CHAPTER 2. BACKGROUND & RELATED WORK 
  

TECHNICAL UNIVERSITY OF CRETE 

 

 

both overall similarity and cluster size can be used. Experiments in [55] indicated 

small differences between these possible methods. 

To summarize, the Bisecting K-Means algorithm is a divisive hierarchical 

clustering technique. Its time complexity is about linear to the number of documents, 

( * )O n M , where M  is the number of the produced clusters. In chapter 3, we present 

in detail our implementation of Bisecting K-Means algorithm. 

 

2.2.3 Representation of clusters 

The meaning of cluster representation was introduced in many studies [7], [12], [38].  

In many applications the resulting clusters have to be represented or described in a 

compact form to achieve data abstraction. Jain [25] summarized three representation 

schemes and indicated that among them, the use of the centroid to represent a cluster 

is the most popular way. In many cases, the cluster can be effectively represented by 

a number of the highest weighted terms in the centroid vector [32]. 

 

2.2.4 Comparison of Document Clustering Techniques 

Experimental results [55] indicated that group-average hierarchical clustering 

algorithm (UPGMA) is the best performing hierarchical technique. However, it has 

limited applicability because of its quadratic time complexity. K-Means and its 

variants are commonly preferred due to their time complexity which is linear to the 

number of documents. Moreover, partitional algorithms can also be used to obtain 

hierarchical clustering solutions via a sequence of repeated bisections (Bisecting K-

Means). Notice that, Bisecting K-Means has a linear time complexity. 

As reported in [55]: 

♦ Bisecting K-Means is better than regular K-Means and UPGMA.  

♦ Although, results of basic K-Means can vary from one run to another, K-

Means is generally better than UPGMA (i.e., achieves better clustering 

quality).  

 Bisecting K-Means has linear time complexity as opposed to the quadratic 

time complexity of HAC. Furthermore, Bisecting K-Means is not susceptible to 

initialization issues. Finally, it is ideal for clustering large document collections not 

only due to its linear time complexity, but also due to its higher clustering quality. 
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2.3 Clustering Quality 

The quality of various clustering algorithms can be evaluated with regards to both 

internal and external measures [65]. Internal measures compare different sets of 

clusters without reference to external knowledge. The cohesiveness of a cluster, 

which is called “overall similarity” and is based on the pairwise similarity of the 

documents in a cluster, is an internal measure. Contrary to internal measures, external 

measures evaluate the clustering quality by comparing the clusters produced from 

clustering algorithms against already defined classes. The most common external 

measures are “entropy” and “F-Measure”. Internal and external metrics are 

subsequently discussed. 

 

2.3.1 Overall Similarity 

In the absence of class labels, as external information, overall similarity is an internal 

cluster quality measure [55]. In a clustering solution, objects within a cluster are most 

similar to each other than objects that come from different clusters. Particularly, the 

cluster cohesiveness is defined as the average pairwise similarity between objects in a 

cluster S : 

          2
1 cos( , )

d S
d S

d d
S ∈

′∈

′∑                                              (2.9)         

The above Equation is just the squared length of the cluster centroid vector, 2c . This 

equivalence is shown in section 3.3. 

 

2.3.2 Entropy 

Entropy is an external measure of cluster “goodness” [65]. It provides a measure of 

quality for un-nested clusters or for the clusters at a certain hierarchy of clusters. 

Initially, we calculate the entropy of each cluster, i.e., for cluster j  we compute ijp  

the probability that a member of cluster j  belongs to class i . Then, the entropy of 

each cluster j  is defined to be: 

               - log( )j ij ij
i

E p p= ∗∑                                    (2.10)  
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where the sum is taken over all classes. The entropy of the entire clustering solution is 

defined to be the sum of the individual cluster entropies weighted by the size of each 

cluster:  

             
1

m
j j

j

n E
Entropy

n=

∗
=∑                                     (2.11)  

where jn  is the size of cluster j , m  is the number of clusters and n  is the total 

number of data objects. A clustering solution is perfect when the entropy is zero.  

 

2.3.3 F-Measure 

F-Measure [32] is more suitable for measuring the effectiveness of not only 

partitional but also of hierarchical clustering. We use this metric in this work to 

evaluate our clustering implementations. F-Measure combines the precision and 

recall ideas from information retrieval area. 

 For each manually labelled category (topic) T , we assume that a cluster C  

corresponding to the topic T  will be formed somewhere in the hierarchy. To find the 

cluster C  corresponding to category T , traverse the hierarchy computing precision, 

recall and F-Measure. For any category T  and cluster C , we define: 

  P( , ) /C T N C=                                         (2.12)        

 R( , ) /C T N T=                                         (2.13)   

                                            2 /( )F Measure P R P R− = ∗ ∗ +                                  (2.14) 

where N  is the number of members of category T  in cluster C , C  is the number of 

documents in cluster C , T  is the number of documents in category T . 

 For hierarchical clustering, we consider the cluster with the highest F-Measure 

to be the cluster corresponding to the category T . The overall F-Measure for the 

hierarchy is computed by taking the weighted average of the F-Measure for each 

topic T  and is defined as:  

             
( )

_ TeS

TeS

T F T
Overall F Measure

T

∗
− =

∑
∑

                       (2.15) 

where S  is the set of categories, T  is the number of documents in topic T  and 

( )F T  is the F-Measure for topic T . 
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 F-Measure score ranges from 0 to 1. A higher F-Measure score indicates a 

better clustering solution. 

 

2.4 Stopping Criteria in Bisecting K-Means Algorithm 

As mentioned Bisecting K-Means is a divisive hierarchical clustering technique. Step 

4 of the basic algorithm indicates that the procedure terminates when a stopping 

criterion is met. Thus, a strategy to stop bisections is needed. In recently published 

studies there are various criteria which have been proposed as stopping rules. In this 

section, we make a brief review of all known methods. 

 The most commonly used method suggests stopping the algorithm when no 

more clusters can be split. In case of document clustering this implies that the 

algorithm continues until each leaf cluster of the hierarchy contains a single 

document. The reasons of this are that: 1) no prior knowledge of the desired number 

of clusters is available in a specific application; 2) the purpose of clustering is to find 

the complete hierarchy.  

 Bisecting K-Means algorithm continues partitioning until the desired number K 

of leaf clusters is reached [55]. This rule is the most simple and can be applied if there 

is prior knowledge of the desired number of clusters. 

 Karypis and Zhao proposed in [64] an alternative stopping criterion for 

terminating the divisive procedure. Specifically, they stop splitting a cluster if it 

contains less that 5% of the total number of documents. The algorithm terminates 

when all the resulted clusters meet the stopping condition. 

 The stopping criterion proposed by Ding [8] is derived from the Min-Max Cut 

algorithm [9]. It was developed using similarity concepts and was based on a min-

max clustering principle: “Data should be grouped into clusters such that similarity 

between different clusters is minimized while the similarity within each cluster is 

maximized”.  

We briefly describe the Min-Max algorithm. If n is the number of data objects 

and ( )ijW w=  is the pairwise similarity matrix, where ijw  is the similarity between i , 

j , we desire to partition the data into two clusters 1A , 2A  using the min-max 

clustering principle. The similarity between 1A , 2A B Bis defined to be 
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1 2( , ) ij
i A i A

s A A w
∈ ∈

=∑∑ . The similarity within a cluster 1A  is the sum of pairwise 

similarities within 1A . The clustering principle requires minimizing 1 2( , )s A A , while 

maximizing 1 1( , )s A A  and 2 2( , )s A A  simultaneously. These requirements lead to the 

minimization of the Min-Max Cut objective function, 

 1 2 1 2

1 1 2 2

( , ) ( , )
( , ) ( , )MMC

s A A s A AJ
s A A s A A

= +   (2.16) 

Generally, for 3K ≥ , we define 1( ,..., ) ( )k MMCMCCJ A A J K≡ , 

 
,

( , )
( ) ( , )

( , )
k k

p q
k k

MMC MMC
p q k

s A A
J K J A A

s A A
= =∑ ∑  (2.17) 

where pk
p k

A A
≠

= ∑  is the complement of kA .  

 After that brief explanation of Min-Max Cut algorithm, we return to its use as 

a stopping criterion for terminating Bisecting K-Means technique. The authors 

proposed that the algorithm terminates when MMCJ  (computed on recent leaf clusters) 

exceeds a pre-defined threshold value stopJ . They showed that as the algorithm 

continues (the number of leaf clusters increases) MMCJ  increases. This strategy to stop 

bisections can be used in applications where the correct K, as the desired number of 

clusters, is not known. 

 

2.5 Bayesian Information Criterion (BIC) 

In section 3.5 we will propose a strategy for terminating our implementation of 

Bisecting algorithm. The proposed stopping criterion is based on the Bayesian 

Information Criterion (BIC) or Schwarz Criterion [52]. BIC is discussed below. 

Building upon the BIC criterion, Pelleg and Moore [42] proposed X-Means, a 

new K-Means variant algorithm. X-Means first adapted BIC for estimating the best 

K  clusters from a given range of values automatically. The algorithm searches over 

the values of K  and scores each clustering result using the BIC criterion. An 

equivalent technique called Minimum Description Length (MDL) is applied in [41]. 

The problem of model selection is how to choose the best one among a set of 

candidate models (we assume as model in this case each clustering result in X-

Means). 



MSc THESIS    25 
 

NIKOLAOS HOURDAKIS 

 

 

Let D  be a set of documents 1 2{ , ,..., }nx x x . D  can be partitioned into disjoint 

subsets 1 2, ,..., KD D D . In the case of Bisecting K-Means 2K = . Let jµ  be the 

centroid of the thj  cluster (1 j K≤ ≤ ). Let ( )i  be the index of the centroid which is 

closest to the i th−  data point. For example, ( )iµ  is the centroid nearest to the i th−  

data point during an iteration (1 i n≤ ≤ ). Let jD D⊆  be the set of data points that 

have jµ  as their closest centroid. Let R D=  and j jR D= . The number of 

dimensions is M. Notice that, in our case the initial data set is partitioned into two 

clusters.  

The BIC of the model jM  (i.e., in our case the parent cluster or the two 

children clusters) is given by [29]: 

 ( )ˆ( ) log
2

j
j j

p
BIC M l D R= −                          (2.18) 

where ( )ĵl D  is the log-likelihood of the data according to the model jM , while 

( 1)jp K M= +  is the number of independent parameters in jM .  

 The BIC, according to Equation 2.18 contains two components. The first term 

(log-likelihood of the data points) can be used as a measure of the cohesiveness of a 

cluster in order to denote whether a cluster should split or not. We estimate how close 

to the centroid are the documents of the cluster. More specific, given a cluster of 

points, drawn from a Gaussian distribution 2( , )N µ σ , log-likelihood is the 

probability that a neighborhood of points follows this distribution. The second term 

penalizes the complexity of the model [4]. We assume that some data points belong to 

the cluster. However, due to the complexity of the model (many parameters or many 

data points), the data points, in addition to Gaussian, may follow other distributions. 

For this reason, we give a penalty by the second term of Equation 2.18.    

The maximum likelihood estimate (MLE) for the variance is given by: 

( )

2
2 1ˆ i i

in

x
R K

σ µ= −
− ∑                                        (2.19) 

where nR  denotes the number of  documents in cluster nD .Given a cluster of data 

points, ( )iP x  is the probability that a point ix  follows the distribution 2( , )N µ σ  

produced by the cluster.  
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                 (2.20) 

Thus, the log-likelihood of the data in cluster iC  can be calculated as the logarithm of 

the product of probabilities:     
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2
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=
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−
= − − − + −

∏

∑          (2.21)      

To extend the formula in Equation 2.18 for all centroids instead of one, we use the 

fact that the log-likelihood of the data points that belong to all centroids is the sum of 

the log-likelihood of the individual centroids. Thus, Equation 2.18 can be re-written 

as: 

           ( ) ( )
1

ˆ log
2

K
j

j j
j

p
BIC M l C R

=

= −∑                            (2.22) 

The number of free parameters jp  is the sum of: 

♦ 1K −  class probability 

♦ *M K  centroid coordinates 

♦ One variance estimate 

The variance (Equation 2.19) estimates the average of the square of the 

distance of each document from the centroid (mean) of the cluster. This is a measure 

of the cohesiveness of the cluster. By computing BIC we estimate how close to the 

centroid are the documents of the cluster. 

Given a set of clustering results, the one with the highest BIC score, 

( )arg max i jBIC M , is selected. X-Means uses the BIC in order to determine the 

number of clusters K in K-Means method.  
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Chapter 3 

 

Clustering Algorithms Implemented 

 

In this chapter, we present our methodology for efficient document clustering. We 

describe in detail our implemented clustering algorithms and suggest methods that 

improve their performance. We deal with K-Means which is the basic partitional 

clustering technique. We focus on a variant of the standard K-Means algorithm, the 

so-called Incremental K-Means which is combined with a Bisecting K-Means 

algorithm for obtaining hierarchical clustering solutions. Finally, we suggest 

incorporating the Bayesian Information Criterion (BIC) as a splitting criterion within 

the above Bisecting Incremental hierarchical clustering approach. All these suggested 

techniques are integrated in a new proposed algorithm, called here-after “BIC-Means” 

and is described in detail in this chapter. 
  

3.1 Proposed Methods 

In this study, our main objective is to develop a highly efficient algorithm for 

clustering very large document collections (such as OHSUMED), We focus on 

partitional clustering techniques due to their low time complexity (which is linear on 

the number of documents). Partitional methods have advantages in applications with 

large data sets for which the construction of a dendrogram using hierarchical 

clustering with agglomerative method is computationally prohibitive. We 

implemented and evaluated various partitional clustering methods. Our method can 

organize large collections of documents into a hierarchical binary tree. To prevent 

over-splitting of clusters (and termination at singleton clusters) we propose a strategy 

based on Bayesian Information Criterion (BIC) to stop the divisive procedure. The 

cluster splitting stops when meaningful clusters are reached. The combination of 

Bisecting Incremental K-Means with Bayesian Information Criterion is the main 
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contribution of this work. All methods are implemented and evaluated using standard 

document collections (such as Reuters and OHSUMED) 

We implemented several variants of the original K-Means method and we 

proposed the so-called “Incremental K-Means” a variant of the original K-Means 

method that differs from K-Means in the way that the centroids are updated during 

each clustering iteration. In Incremental K-Means each cluster centroid is adjusted 

after each document is assigned to a cluster rather than recomputing each cluster 

centroid after each iteration when all documents have been assigned to clusters. The 

experimental results indicated that the Incremental K-Means algorithm performs 

better than K-Means and needs less iterations to produce a good clustering result.  

Despite their linear time complexity, the main disadvantage of K-Means and 

Incremental K-Means is that K must be known in advance. An incorrect estimation of 

the number of clusters K may lead to poor clustering accuracy. Both K-Means and its 

variants produce a flat partition of the data collection. As mentioned in the 

introductory chapter, methods which are able to provide effective navigation and 

organization of information (like hierarchical clustering) are preferred. Thus, we are 

led to organize information in a hierarchical structure.  

In the following we present our version of Bisecting K-Means algorithm, 

which combines the strengths of partitional and hierarchical clustering methods. 

Furthermore, it is not as sensitive to initialization issues. A hierarchy is built by 

recursively applying our version of Incremental K-Means algorithm. For this reason, 

we call our implemented algorithm “Bisecting Incremental K-Means”. The so-

obtained clusters are structured as a hierarchical binary tree (or a binary taxonomy). 

This is the reason why the bisecting approach is very suitable and effective in many 

applications (e.g. document retrieval, indexing, browsing, navigation systems). The 

algorithm proceeds until each leaf node of the cluster hierarchy contains one 

document.   

The experimental results indicated that Bisecting K-Means outperforms basic 

K-Means and our variant Incremental K-Means in terms of accuracy and efficiency. 

This confirms the results of [55] and [63]. 

An important issue in divisive clustering approaches is to determine a strategy 

to terminate the divisive procedure of the Bisecting algorithm. In most cases there is 

no prior knowledge about the desired number of clusters. For this, a stopping 

condition must be defined. 
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We propose the use of Bayesian Information Criterion (BIC) or Schwarz 

Criterion [52] to build a strategy to stop the divisive procedure. We suggest using BIC 

as the splitting criterion of a cluster. We compute the BIC score to measure the 

improvement of a cluster when it is split. If the BIC score of the new cluster structure 

is less than the BIC score of the parent cluster we do not split the initial cluster. In 

such cases we keep the parent cluster as is and we do not select it as a candidate 

cluster to split in the next iteration of the algorithm. Consequently, we terminate the 

bisecting algorithm when there is no separable cluster according to the BIC function.  

Overall, we propose the so-called BIC-Means clustering algorithm. BIC-

Means produces a hierarchical clustering solution and combines all these ideas: 

1. Bisecting algorithm to build a hierarchy of clusters effectively. 

2. Incremental K-Means as the proposed partitional algorithm to bisect the 

selected leaf cluster at each bisecting step. 

3. A stopping criterion for terminating the divisive procedure using the 

Bayesian Information Criterion (BIC). 

Our proposed method is described in detail below.  

 

3.2 Preliminaries on Document Modeling 

Representing documents for clustering and other text mining tasks is fundamental in 

the process of knowledge discovery. We define the similarity measure which is used 

to compute the similarity between two documents. 

 

3.2.1 Document Representation 

The various clustering algorithms are described and implemented based upon the 

Vector Space Model (VSM) [50] for measuring document similarity. In this model, 

each document d is considered to be a vector in a multi-dimensional term space. Each 

dimension of the space corresponds to a unique word from the corpus. 

 Let D a collection of documents and 1 2{ , ,..., }nT t t t=  the set of unique terms 

appearing in at least one document in D. Firstly, individual words are further 

processed by stop-word removal. Using this preprocessing technique we remove 
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words without inherent meaning, such as articles or pronouns (“a”, “the”, “and”, etc). 

For sample lists of stop-words, see [2].  

 Each document d D∈  is represented as a vector 1 2{ , ,..., }md w w w= , where 

iw is the weight of the term it  within document d. In this work, a variant of tf idf−  

weighting scheme is used. The weight tw  for each term t in document id  is defined as: 

 
,

2 2
,

(1 log( )) log )

(1 log ) (log( ))

i t
t

t

i ss t
s

Ntf
dfw

Ntf
df≠

+ ×
=

+ ×∑
 (3.1) 

where ,i ttf  is the number of times word t occurs in document id  and tdf  is the number 

of documents in the data set in which the word t occurs. To account for documents of 

different lengths, we scaled the length of each document vector so that it is of unit 

length.  

 Accordingly, a cluster, which is a set of documents, is represented in the 

similar way such as a document. A cluster is represented by its centroid vector (i.e., 

the mean vector of all its contained documents). 

 

3.2.2 Similarity computation  

Document clustering is based on the definition of document similarity. We measure 

the similarity between two documents id  and jd  (or between a document and a 

centroid vector) using the cosine formula [50]: 

 cos( , ) i j
i j

i j

d d
d d

d d
•

=
∗

 (3.2) 

If the document vectors are of unit length, the above formula can be simplified 

to cos( , )i j i jd d d d= •  (by normalizing by document length). 

 

3.3 Methods Implemented 

In Section 2.2.2, we determined that a cluster is represented by the centroid 

vector which is the mean or the median point of a cluster. Given a set S of documents 

and their corresponding vector representation, we define the centroid vector SC  as:  
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S
d S

C d
S ∈

= ∑  (3.3)  

The centroid vector is the vector obtained by averaging the weights of the various 

terms in the document set. The centroid vector has the following properties: 

♦ Computing the cosine measure between a document and a centroid vector 

is equivalent to computing the similarity between the document and every 

other document within the same cluster: 

 1 1 1 1
d d

1 1cos( , ) d • c = d d = cos(d ,d)
| | | |S S

d c
S S∈ ∈

= •∑ ∑  (3.4) 

♦ The square of the length of the centroid vector is the average pairwise 

similarity between all documents in a cluster: 

 
'

' ' 2
2

d' dd
d

1 1 1cos(d ,d) = d * d = c • c =|| c ||
| | | | | |S SS

S
S S S∈ ∈∈

∈

∑ ∑ ∑  (3.5) 

Notice that Equation 3.5 includes the pairwise similarities involving the 

same pairs of vectors. In section 2.3 (where methods for evaluating the 

clustering quality were described) we used the average pairwise similarity 

within a cluster (“overall similarity”) as a measure for cluster compactness 

or cluster quality. 

 

3.3.1 K-Means Implementation 

Experimental results have shown that partitional clustering methods always lead to 

better clustering solutions than agglomerative algorithms. Moreover, those are well 

suited for clustering large document data sets [55].  
K-Means creates a flat, non-hierarchical clustering solution that is consisted of 

K clusters. It takes as input a data set and a parameter K which is the number of 

clusters desired. Then K-Means typically finds all K-Clusters. 

We will use the symbol S to denote the set of n documents that we want to 

cluster. Let 1 2, ,..., kS S S  be the K desired clusters and 1 2, ,..., kn n n  be the sizes of the 

corresponding clusters. 

Initially, the algorithm picks K documents (at random) as initial centroids. 

Then the algorithm assigns each document to each one of these random centroids. The 

clusters (and their centroids) are adjusted iteratively by the algorithm until 
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convergence (i.e., the centroids do not change significantly). Clustering results can 

vary based on the selection of initial centroids. For this, there are more sophisticated 

methods for selecting starting centroids. These methods use a heuristic or the results 

of another method. Buckshot and Fractionation are the most popular seed selection 

approaches. We explained these methods in section 2.2.2. However, experimental 

results published by Larsen and Aone [32] indicated that random seed selection is 

significantly faster than the other two methods. In the following, we chose the random 

seed selection in the implementation of K-Means.  

 Once K seeds are selected as centroids, we compute the similarity between 

each document and all cluster centroids. The similarity is computed according to 

Equation 3.2. Each document is assigned to the closest cluster centroid. Notice that 

even though the document vectors are of length one, the centroids vectors will not 

necessarily be of unit length. The similarity between a document d  and a centroid c  

is computed as:  

 cos( , )d c d c d c d c c= • / || || ∗ || ||= • / || ||  (3.6) 

 The next step is the “centroid re-computation”. All docs assigned to the same 

centroid are averaged to compute a new centroid using Equation 3.3. This results to K 

new centroids.  

We repeat the above procedure for ITER times (ITER is user defined) and take 

the k-way clustering result that produces the clustering with the highest overall 

similarity. The overall similarity of a resulting clustering is defined as the sum of the 

average pairwise similarities between all documents assigned to each cluster and is 

given by: 

 2
1 ,

1 cos( , )
i j r

K

i j
r d d Sr

Clustering Overall Similarity d d
n= ∈

− − =∑ ∑  (3.7) 

The above formula can be re-written as: 

 
2

1

K

r

Clustering Overall Similarity c
=

− − =∑  (3.8) 

Therefore, the clustering overall similarity is simplified as the sum of the square of the 

length of each centroid vector. After the K-Means algorithm has been executed ITER 

times we take the clustering result which has the maximum overall similarity. This is 

the final k-way partition. The experimental results indicated that satisfactory results 

are obtained when the parameter ITER is set to 5 or 6. 
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 In most applications, K-Means algorithm continues until the centroids do not 

change significantly between iterations. However, due to the fact that the centroids 

rarely stop moving entirely and extra time is required to check for minimal 

movement; more advantages are obtained from determining when to stop. For this 

reason we chose to use the parameter ITER in our implemented version of K-Means.   

Figure 3.1 summarizes the K-Means clustering algorithm. 

 

 Input:    K: Number of Clusters, ITER: Number of iterations,  

              S: ( 1 2, ,..., nd d d ) document collection  

 Output:  K clusters 1 2, ,..., KS S S  
 
Step 1. Initialize clustering. Randomly select K documents as the initial 

centroids of K clusters. 

Step 2. Assign each document id  to the cluster iS  with the most similar 

centroid. The similarity is computed according to Equation 3.4 for 

all clusters 1 2, ,..., KS S S . 

Step 3. Re-calculate the cluster centroids from assigned documents. 

Step 4. Repeat steps 2 and 3 for ITER times and take the split that produces 

the clustering with the highest overall similarity. 

Figure 3.1: Our implementation of K-Means algorithm 
 

Figure 3.2 demonstrates an example of K-Means clustering algorithm. We 

show the initialization phase and how the iterations proceed. 

 
Figure 3.2: Example of K-Means Clustering algorithm 
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K-Means has linear time complexity on the number of documents (much more 

effective when compared to the quadratic computation time of hierarchical clustering 

techniques).  

 

3.3.2 Incremental K-Means 

In this section, we present a partitional clustering method, which we call “Incremental 

K-Means”. Incremental K-Means is based on our implementation of K-Means 

clustering algorithm. The main point of this method is that the centroid is updated 

incrementally, as each document is assigned to a cluster. This has been shown to 

improve the effectiveness of basic K-Means algorithm in both execution time and 

clustering quality. 

 In K-Means during an iteration the centroid remains fixed. New centroids are 

computed after each iteration (after all documents have been examined). Incremental 

K-Means updates centroids after a document is assigned to a cluster. This way the 

cluster adjusts to information collected during an iteration and the centroid better 

reflects properties of the documents collected so far within a cluster. The following 

formula is used to update the centroid of a cluster with centroid oldC  after a new 

document assignedd  is assigned to the same cluster.  

 
( ( 1))old assigned

updated
C S d

C
S

∗ − +
=  (3.9) 

where updatedC  is the new centroid, oldC  is the centroid before the assignment of the 

new document, assignedd  is the document which is added to the cluster and S  is the 

new size of the cluster. The time requirement to update the centroid is constant.               

After all iterations of the algorithm, new updated centroids have been 

computed. Then, all documents are removed from the clusters and we iterate over all 

documents in sequence assigning each document to the closest centroid. 

 Figure 3.3 summarizes Incremental K-Means: 
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   Input:  K: Number of Clusters, ITER: Number of iterations,  

              S: ( 1 2, ,..., nd d d ) document collection  

   Output:  K clusters 1 2, ,..., KS S S  
     

Step 1. Initialize clustering. We randomly select K documents as the initial 

centroids of the K clusters. 

Step 2. The documents are visited in a random order. When a document is 

assigned to a cluster, we update the corresponding centroid.         

Step 3. We “clean” the clusters and iterate over the documents assigning 

each document to the closest centroid. 

Step 4. Repeat steps 2 and 3 for ITER times and take the split with the 

highest overall similarity.  

Figure 3.3: Incremental K-Means algorithm 
 

Notice that step 2 examines documents in a random order. Otherwise, in a 

given data set the clustering will always generate the same cluster solution. 

An important advantage of Incremental K-Means over K-Means is that it 

requires less iterations to produce an acceptable clustering result. As we shall see in 

the experiments, one or two iterations are sufficient. Furthermore, Incremental K-

Means is not as susceptible to the seed selection technique. Experiments by Larsen 

and Aone [32] have indicated that Incremental K-Means creates equally good 

clustering results with random, buckshot or fractionation seed selection algorithm.    

Similarly to K-Means, the time complexity of Incremental K-Means is ( )O n , 

where n is the number of documents. 

 

3.3.3 Bisecting Incremental K-Means 

K-Means and Incremental K-Means create a flat, non-hierarchical clustering of a data 

set. Due to the tremendous growth in classic document collections and the internet 

there is an increased need for effective clustering allowing also for faster browsing 

through the contents of a data set. For this hierarchical clustering is more appropriate 

than partitional clustering. Hierarchical clustering also provides effective navigation, 

data summarization and organization of information by organizing large data 

collections into any given number of clusters which are structured as a hierarchical 
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binary tree. Agglomerative clustering is often thought as the best quality clustering 

approach for this purpose. However, it is not as effective due to its quadratic time 

complexity. Experimental results in [55] indicated that Bisecting K-Means always 

lead to better hierarchical solutions than agglomerative algorithms. 

 In this section, we present our implementation of the Bisecting K-Means 

clustering algorithm. It is derived from the standard approach. In our approach, we 

suggest some modifications.  

We produce a hierarchical clustering solution via a sequence of repeated 

bisections. We chose to use our version of Incremental K-Means, as described in 

section 3.3.2, to bisect a cluster at each bisecting step. For this reason, we call our 

method “Bisecting Incremental K-Means”. The choice of this algorithm instead of 

basic K-Means is based on our experimental results which are presented in chapter 4. 

These show that Incremental K-Means is better than the standard K-Means clustering 

technique. 

The algorithm starts with a single cluster with all documents. Initially, we use 

our Incremental K-Means algorithm to bisect the entire collection into two clusters. 

Then, one of two clusters is selected and is further bisected, leading to a total of three 

clusters. This process of selecting and bisecting a leaf cluster continues 1n −  times, 

until n  leaf clusters are obtained. In this case, each leaf cluster will contain a single 

document. Note that n  is the number of documents of the entire collection. 

There are a number of different ways to choose which cluster to split from the 

list of leaf clusters. In our approach, we choose to split the cluster with the least 

overall similarity. Overall similarity is often called “intra cluster similarity” and is 

given by: 

 '
2

d'
d

1 cos(d ,d)
| | S

S
S ∈

∈

∑  (3.10) 

where S is the set of documents in the cluster. However, as is derived from Equation 

3.5, we can calculate the overall similarity of a cluster by just computing the squared 

length of the cluster centroid, 2c . This simplification decreases the time 

requirements to compute overall similarity before each bisecting step. Therefore, we 

can quickly choose the cluster to split.  

 Figure 3.4 summarizes Bisecting Incremental K-Means algorithm: 
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 Input     K=2 in Incremental K-Means, S: ( 1 2, ,..., nd d d ) document collection  

 Output: A hierarchy of clusters (leaf clusters contain a single documents)  
 

Step 1. Treat all the documents as one initial cluster. 

Step 2. Pick a leaf cluster C (or initial) to split. Choose the cluster with the 

least overall similarity. 

Step 3. Bisecting Step: Use Incremental K-Means, as described in section 

3.3.3 to split cluster C into two sub-clusters, 1C  and 2C . 

Step 4. Add the two clusters that are produced from the partition to the list 

of leaf clusters (candidate clusters to split). 

Step 5. Repeat steps 2, 3 and 4 until each cluster at the bottom of the 

hierarchy contains a single document.  

Figure 3.4: Bisecting Incremental K-Means algorithm 
 

The basic Bisecting K-Means stops when the desired number of clusters is 

reached. Bisecting Incremental K-Means terminates when each leaf cluster contains a 

single document. The reason of this modification is that usually there is no prior 

knowledge on the desired number of clusters. 

Figure 3.5 demonstrates an example of Bisecting Incremental K-Means. We 

use a small data set consisting of five documents and show how our method can be 

applied to this collection. The algorithm generates a hierarchical binary tree step-by-

step. At each step the hierarchical tree is expanded by adding two new leafs. The 

process starts with a single cluster C , which consists of all the documents and 

continues until five leaf clusters are obtained, each containing one document. The 

final five leaf clusters are the 4 5 6 7, , ,C C C C  and 8C . At each step, the leaf clusters 

with the least overall similarity is split in two new clusters (leaf nodes in Figure 3.5). 

For example, among leaf clusters 1 3,C C  and 4C  we assume that 1C  is the one with the 

least overall similarity, so we bisect it into clusters 5C  and 6C . Then, we continue the 

procedure likewise. In Figure 3.5, the clusters which are selected for bisection are 

highlighted orange.  
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Figure 3.5: Bisecting Incremental K-Means produce a hierarchical tree 

 

It is obvious that Bisecting Incremental K-Means is a divisive hierarchical 

clustering procedure. It builds a hierarchical binary tree from top (i.e. a cluster of all 

the documents) to bottom (each cluster contains a single document), as opposed to 

agglomerative approaches which build the hierarchy bottom-up.  
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 The run time of Bisecting Incremental K-Means method is 2( log ( ))O n n , 

where n  is the number of documents in the entire collection. Thus, it is appropriate 

technique for clustering large datasets and producing hierarchy of clusters. 

 

3.4 The Bayesian Information Criterion (BIC) 

In the previous section, we described that the Bisecting Incremental K-Means 

algorithm continues until n  leaf clusters are obtained, each containing a single 

document. In this case, n  is the number of documents in the collection. We 

exhaustively execute the algorithm, because usually there is no prior knowledge on 

the desired number of clusters. However, terminating the procedure when each leaf 

cluster has one document is time-consuming. Moreover singleton clusters are 

meaningless. To prevent over-splitting of clusters we must define a strategy to stop 

the Bisecting algorithm when meaningful clusters are reached. 

 Toward this goal, we propose the use of Bayesian Information Criterion (BIC) 

or Schwarz Criterion [52] as the splitting criterion of a cluster. As discussed in section 

2.5, X-Means [42] (a variant of the K-Means algorithm) first adapted the BIC to 

clustering algorithms for estimating the best K in a given range of values. The 

algorithm searches over many values of K and scores each clustering result using the 

so-called Bayesian Information Criterion. X-Means choose the clustering result with 

the best BIC score in the data (i.e., the K  clusters with the highest BIC score). 

In this study, we use the BIC to perform a splitting test at each cluster in order 

to decide whether a cluster should split or not. The BIC score is used to measure the 

improvement of the cluster structure between the parent cluster and its two children 

clusters. We compute the BIC score to initial cluster and to the resulting (child) 

clusters. If the BIC score of the produced children clusters is less than the BIC score 

of their parent cluster we do not accept the split. We keep the parent cluster as it is 

(we do not select it again). Otherwise, we accept the split and the algorithm proceeds 

similarly at lower levels. 
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3.4.1 Computing the BIC Score 

In our case we have a collection of documents and we partition it into two clusters. 

The parent cluster can be considered as a model and the resulting cluster structure 

(with the two children clusters) as a second model. For each model, we compute the 

BIC score. We compare the BIC score of the two models and we accept the split if the 

BIC score of the second model is higher than the BIC score of the first model. Below, 

we describe how BIC is computed. 

 Let D  be a set of documents 1 2{ , ,..., }nx x x . D  can be partitioned into disjoint 

subsets 1 2, ,..., KD D D . In the case of Bisecting K-Means 2K = . Let jµ  be the 

centroid of the thj  cluster (1 j K≤ ≤ ). Let ( )i  be the index of the centroid which is 

closest to the i th−  data point. For example, ( )iµ  is the centroid nearest to the i th−  

data point during an iteration (1 i n≤ ≤ ). Let jD D⊆  be the set of data points that 

have jµ  as their closest centroid. Let R D=  and j jR D= . The number of 

dimensions is M. Notice that, in our case the initial data set is partitioned into two 

clusters.  

The BIC of the model jM  (i.e., in our case the parent cluster or the two 

children clusters) is given by [29]: 

  ( )ˆ( ) log
2

j
j j

p
BIC M l D R= −  (3.11) 

where ˆ ( )jl D  is the log-likelihood of the data according to the model jM , while 

( 1)jp K M= +  is the number of independent parameters in jM . 

 The BIC, according to Equation 3.11, contains two components. The first term 

(log-likelihood of the documents) can be used as a measure of the cohesiveness of a 

cluster in order to denote whether a cluster should split or not. We estimate how close 

to the centroid are the documents of the cluster. More specific, given a cluster of 

points, that produces a Gaussian distribution 2( , )N µ σ , log-likelihood is the 

probability that a neighborhood of data points follows this distribution. The second 

term penalizes the complexity of the model [4]. We assume that some documents 

belong to the cluster. However, due to the complexity of the model (many parameters 
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or many data points), some data points, in addition to Gaussian may follow and other 

distributions. For this reason, we give a penalty by the second term of Equation 3.11.    

 In the case of BIC score of the parent cluster K is set to 1, while in case of the 

two resulting clusters K  is set to 2. M  is the number of terms in the representations 

of documents. The maximum likelihood estimate for the variance is given by: 

 ( )

2
2 1ˆ i i

i
x

R K
σ µ= −

− ∑  (3.12) 

The variance (Equation 3.12) estimates the average of the square of the 

distance of each document from the centroid (mean) of the cluster. This is a measure 

of the cohesiveness of the cluster. 

According to Equation 2.21 the maximum log-likelihood of the data in cluster 

nD  can be computed as:  

 

 ( ) ( ) ( )2ˆ ˆlog 2 log log log
2 2 2

n n n
n n n n

R R M R Kl D R R R Rπ σ −
= − − − + −  (3.13) 

nR  denotes the number of  documents in cluster nD . The maximum log-likelihood is 

computed separately for the parent cluster and for each one of the two children 

clusters. In Equation 3.13, we always set the variable K  to 1, as we pertain to the log-

likelihood of a single cluster. The maximum likelihood estimate (MLE) for the 

variance 2σ̂  is computed separately for each cluster according to Equation 3.12. 

 To extend the formula in Equation 3.11 for two centroids (two children 

clusters) instead of one, we use the fact that the log-likelihood of the data points that 

belong to the two centroids is the sum of the log-likelihood of the individual 

centroids. Thus, Equation 3.11 can be re-written as: 

 ( ) ( )
2

1

ˆ log
2

j
j j

j

p
BIC M l C R

=

= −∑  (3.14) 

The number of free parameters jp  is the sum of: 

♦ 1K −  class probability 

♦ *M K  centroid coordinates 

♦ One variance estimate 

We can see in Equation 3.13 that, as 2σ̂  increases, the likelihood decreases 

and therefore the BIC score (see Equation 3.11) decreases. As a result the parent 
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cluster must be partitioned. We can conclude that 2σ̂  mostly determines the BIC 

score of a cluster as it provides a measure of the cohesiveness of the cluster. 

As far as Equation 3.12 is concerned, computationally significant 

simplifications can be applied. This allows for a fast and memory efficient 

implementation of BIC. Particularly, we rewrite the sum ( )

2

i i
i

x µ−∑  in Equation 

3.12. By some simple algebraic manipulations this sum can be re-written as: 

( )( )2

( )
, ,

1 1 2 1 cos ,
i n i j n i j n

i i i j i j
x D x x D x x Dn n

x x x x x
R R

µ
∈ ∈ ∈

− = − = −∑ ∑ ∑  

        ( )
, ,

2 21 cos ,
i j n i j n

i j
x x D x x Dn n

x x
R R∈ ∈

= −∑ ∑  

        ( )
,

2 2 cos ,
i j n

n n
i j

x x Dn n

R R x x
R R ∈

= − ∑  

 ( )
,

22 cos ,
i j n

n i j
x x Dn

R x x
R ∈

= − ∑  (3.15) 

By using Equation 3.5 the above formula can be re-written as:  

 ( )2

( ) 2
,

12 2 cos ,
i n i j n

i i n n i j
x D x x Dn

x R R x x
R

µ
∈ ∈

− = −∑ ∑  

22 2n nR R c= −  

 ( )22 1nR c= −  (3.16) 

where 2c  is the square of the length of the centroid vector. Thus, the Equation 3.12 

after the modifications can be re-written as: 

 22 1ˆ 2 (1 )n
n

R c
R K

σ = ∗ ∗ −
−

 (3.17) 

 Summarizing, the value of  2σ̂  for a cluster, as defined in Equation 3.17, is 

used in Equation 3.13 for computing the maximum log-likelihood of a cluster. In case 

of the parent cluster, the value of log-likelihood is applied in Equation 3.11 to 

compute the BIC score of the initial cluster. In case of the two resulting clusters, we 

compute the log-likelihood value separately for each cluster. Then, the two computed 

values are added, as we can see in Equation 3.14 and the BIC score of the resulting 

model (two children clusters) is computed. 
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Figure 3.6 demonstrates an example of the use of BIC as splitting criterion of a 

cluster. We assume cluster C  is a leaf cluster in the hierarchy and according to its 

overall similarity (see Equations 3.5 and 3.10) we select to bisect it. Cluster C  is 

bisected into clusters 1C  and 2C .  

 
Figure 3.6: BIC as splitting Criterion of a cluster 

 
We use the BIC to determine if the bisection is acceptable. It can be seen in 

Figure 3.6 that we have computed two distinct BIC scores. One for the parent cluster 

and another for the two children clusters. We compare these scores to decide if we 

split the initial cluster. It is shown in Figure 3.6 that the BIC score of the parent 

cluster is less than BIC score of the generated cluster structure. Thus, we accept the 

bisection. 

 

3.5 BIC-Means 

In this section, all techniques presented in the previous sections are integrated in a 

new proposed algorithm, which we call “BIC-Means”. It is a partitional clustering 

method which structures the resulting clusters as a hierarchical binary tree by 

recursively applying the Incremental K-Means algorithm presented in section 3.3.2. 

Moreover, a significant modification in our proposed final algorithm as compared 

with the basic Bisecting approach is the use of a stopping criterion in order to stop 

bisecting the clusters. Instead of continuing the algorithm until each leaf cluster 

contains one document, BIC-Means uses a strategy for terminating the divisive 

procedure. The BIC plays the most important role towards this goal.  

1C  2C  

C  

Two resulting 
clusters: 
BIC(K=2) =2245  

Parent cluster: 
BIC(K=1) =1980  
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 In the following, we propose a strategy for terminating the divisive procedure 

in BIC-Means, when meaningful cluster are reached. Let Incremental K-Means 

method, as is described in section 3.3.2, be repeatedly applied in a data set which 

contains n  documents. When this process has been executed 1m −  times, a hierarchy 

of m  leaf clusters is obtained, where m n< .  

As mentioned in section 3.4, the BIC score is applied locally as the splitting 

criterion of a leaf cluster. It measures the improvement of a cluster when it is split. If 

the BIC score of the two new clusters is less than the BIC score of their parent node 

we do not accept the split. In such cases, the proposed strategy defines that we keep 

the parent cluster as is and we do not select it as a candidate cluster to split in the next 

iteration of the algorithm. Consequently, the BIC-Means terminates when there is no 

separable cluster according to the BIC function, instead of terminating at meaningless 

singleton clusters.  

Overall, BIC-Means produces a hierarchical clustering solution and combines 

all the following ideas: 

 

1. Bisecting clustering approach to build a hierarchy of clusters effectively. 

2. Incremental K-Means as the proposed partitional method to bisect the 

selected leaf cluster at each bisecting step. 

3. A termination criterion for preventing clustering from over-splitting using 

the Bayesian Information Criterion (BIC). 

 

Step-by-step, the proposed BIC-Means algorithm is presented in Figure 3.7: 



MSc THESIS    45 
 

NIKOLAOS HOURDAKIS 

 

 

    Input:   K=2 in Incremental K-Means method, S: ( 1 2, ,..., nd d d ) document    

                  collection, BIC formula.     

    Output: A hierarchy of clusters (consist of meaningful leaf clusters) 
 

Step 1. Treat all the documents as one initial cluster. 

Step 2. Pick a leaf cluster C (or initial) to split from the list of leaf clusters. 

Choose the cluster with the least overall similarity which is the 

average pairwise similarity between all documents in the cluster. 

Step 3. Bisecting Step: Use Incremental K-Means, as described in section 

3.3.2 to split cluster C into two sub-clusters, 1C  and 2C . 

Step 4. Calculate two BIC scores for the two distinct models. One for the 

initial cluster C  and another for the two resulting clusters 1C  and 

2C . We define two possible cases: 

♦ If the BIC score of the parent cluster is less than the BIC score 

of the new cluster structure: We accept the split and add the 

two generated clusters to the list of leaf clusters (candidate 

clusters to split). 

♦ Otherwise: we keep the cluster C  as it is and do not select it 

as a candidate cluster to split in a next iteration of the BIC-

Means method. In other words, we remove cluster C  from the 

list of leaf clusters. 

Step 5. Repeat steps 2, 3 and 4, until there is no leaf cluster in the 

hierarchy which is separable according to the BIC score. Then, the 

BIC-Means algorithm terminates.  

Figure 3.7: The proposed BIC-Means algorithm 
 

Figure 3.8 demonstrates an example of BIC-Means. We assume that via a 

sequence of repeated bisections on a document collection, a hierarchy of clusters has 

been obtained. Figure 3.8 illustrates the last level of the hierarchy, where are the leaf 

clusters. We apply the pre-defined strategy on the four leaf clusters which are 

appeared in Figure 3.8 to indicate when the BIC-Means algorithm terminates 

according to our proposed methodology. 1 2 3, ,C C C , 4C  denote the four leaf clusters in 

the initial hierarchy and highlight them orange.  
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Figure 3.8: Algorithm for terminating the BIC-Means method 

 

According to our Bisecting approach, we pick a leaf cluster to split from the 

list of leaf clusters. Let 4C  be the cluster with the least overall similarity. We bisect it 

and assume that its BIC score is greater than the BIC score of the two resulting 

clusters. Thus, as we described in section 3.4, we do not split the cluster 4C  and 

additionally do not select it for further bisections. Also, 4C  is removed from the list of 

leaf clusters and is highlighted gray. 
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We continue by selecting the next cluster for splitting. Let 3C  has the least 

overall similarity. We partition it into two sub-clusters 5C  and 6C  and consider that 

the BIC score is determining that 3C  can be split. Consequently, the list of leaf 

clusters consists of 1 2 5, ,C C C  and 6C . For short, as the remaining leaf clusters are 

concerned, we bisect them sequentially. For each one, we assume that it can not be 

partitioned if we compare its BIC score to the BIC score of the corresponding children 

clusters. Therefore, there is no separable leaf cluster in the hierarchy and as step 4 of 

our proposed method indicates, the BIC-Means algorithm terminates. 



   CHAPTER 3. CLUSTERING ALGORITHMS IMPLEMENTED 
 

TECHNICAL UNIVERSITY OF CRETE 

48 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



  

49 

Chapter 4 

 

Experimental Results 

 

We carried out two different sets of experiments. The first set of experiments focuses 

on the evaluation of the clustering quality of all algorithms presented in chapter 3. F-

Measure was used to measure the overall “goodness” of the generated clusters. 

Clustering techniques have been tested on OHSUMED [21] and Reuters-21578 TP

1
PT [35], 

two standard text corpora widely available on the Web. Both corpora offer a pre-

defined categorization of its content into clusters which can be used to measuring the 

clustering quality of the implemented clustering algorithms. The results demonstrate 

that our proposed BIC-Means algorithm performs at least as good as other state of the 

art clustering techniques. 

The second set of experiments focuses on measuring the effectiveness and 

efficiency of a cluster-based information retrieval system. Having established the 

quality of document clustering algorithms, we applied the suggested BIC-Means on 

OHSUMED (a very large document collection with 233445 medical articles from 

Medline) in order to create a hierarchy of clusters. For the evaluations, we applied a 

subset of 61 queries of the original OHSUMED query set developed by Hersh et al. 

[21]. The correct answers to these queries were compiled by human experts. We 

matched each query against the leaf clusters of the hierarchy and the clusters were 

ranked based on their similarity to the query. We evaluated several cluster-based 

retrieval strategies and compare them against retrieval results by exhaustive search on 

OHSUMED. 

 

4.1 MeSH 

MeSHTP

2
PT (Medical Subject Headings) is a taxonomic hierarchy (ontology) of medical 

and biomedical terms (or concepts) suggested by the U.S National Library of 

                                                 
TP

1
PThttp://www.davidlewis.com/resources/testcollections/reuters21578 

TP

2
PThttp://www.nlm.nih.gov/mesh 
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Medicine (NLM) TP

3
PT. It is used for subject indexing and searching of journal articles in 

MEDLINETP

4
PT database and other databases that are produced by the NLM. MeSH is 

widely used in indexing and cataloging by libraries and other institutions around the 

world. NLM has adopted the Extensible Markup Language (XML) TP

5
PT as the description 

language for MeSH. The MeSH vocabulary file is available in XML (Bray) format. 

There exist 23880 main headings, termed descriptors in 2006 MeSH edition. 

Moreover, MeSH descriptors are organized in a logical “tree” structure. There are 16 

subtrees (taxonomies) or branches in the MeSH ontology (see Figure 4.1), of ISA kind 

of relationship between nodes (concepts) in each subtree. Within each sub-category, 

descriptors are arrayed hierarchically from most general (e.g. “chemicals and drugs”) 

to most specific (e.g. “aspirin”) in up to eleven hierarchical levels. Each MeSH 

descriptor appears in at least one place in the subtree and may appear in several places 

in the hierarchy. MeSH concepts correspond to MeSH objects which are described 

with terms of several properties [see section A.1 in Appendix A]. The most important 

of them being: 

MeSH Headings (MH): MeSH Headings or descriptors are a collection of terms for 

primary themes or topics contained in literature. They are used in MEDLINE as 

the indexing terms for documents. Every journal article is indexed with 10-12 

headings. Its use indicates the topic discussed by the work cited. 

Qualifiers or Subheadings:  In addition to the descriptor’s hierarchy, MeSH contains  

a small number of standard qualifiers, which can be added to descriptors to 

narrow down the topic. There are 83 qualifiers in 2006 MeSH ontology. 

Qualifiers afford a convenient means of grouping together those citations which 

are concerned with a particular aspect of a subject [59]. 

Entry Terms: These terms are used as pointers to the MeSH Headings. Entry 

vocabulary has been thought of as synonyms or very similar terms of the main 

Heading. Entry terms, sometimes called “See cross references”, indicate that 

information related to one term will be found under a different term. Moreover, 

the set of entry terms that points to a MeSH Heading are the terms that indicate 

the concept introduced by the MeSH Heading [22].  

                                                 
TP

3
PThttp://www.nlm.nih.gov 

TP

4
PThttp://www.nlm.nih.gov/pubs/factsheets/medline.html and http://medline.cos.com/ 

TP

5
PThttp://www.w3.org/XML 
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MeSH Tree Number: In the MeSH taxonomy, each MeSH Heading is characterized 

by its MeSH tree number (or code name) indicating the exact position of the 

term in the MeSH tree taxonomy. For example C is the code name of the 

“Diseases” subtree and the term “Slow Virus Diseases” has a tree number 

C02.839 meaning that this MeSH Heading belongs to C subtree (see Figure 2.1). 

MeSH Scope Note: This short piece of free text provides a type of definition in which    

the meaning of the MeSH Heading is circumscribed. 

Names of descriptors reflect the broad meaning of the concepts involved. The 

hierarchical relationships must be intellectually accessible to users of MeSH (e.g., 

clinician, librarian, and indexer). An indexer must be able to assign a given MeSH 

Heading to an article and a clinician must be able to find a specific MeSH Heading in 

the tree hierarchy. 

1 .   Anatomy [A]  
2 .   Organisms [B]  
3 .   Diseases [C]  

o Virus Diseases [C02] 

 Slow Virus Diseases [C02.839]  T+T             

4 .   Chemicals and Drugs [D]  
5 .   Analytical, Diagnostic and Therapeutic Techniques and Equipment [E] 
6 .   Psychiatry and Psychology [F]  
7 .   Biological Sciences [G]  
8 .   Physical Sciences [H]  
9 .   Anthropology, Education, Sociology and Social Phenomena [I]  

1 0 .   Technology and Food and Beverages [J]  
1 1 .   Humanities [K]  
1 2 .   Information Science [L]  
1 3 .   Persons [M]  
1 4 .   Health Care [N]  
1 5 .   Publication Characteristics [V]  
1 6 .   Geographic Locations [Z]  

Figure 4.1: MeSH Tree Structures 2006 
 

4.2 Document Collections 

For evaluating the quality of clustering algorithms document clustering results are 

compared against manually and pre-defined categorization of the corpus. To reduce 
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the risk that our results might be valid only on a particular corpus, we experimentally 

evaluated the performance of the implemented clustering algorithms on two different 

data sets: the Reuters-21578TP

6
PT text categorization test collection [35] and the 

OHSUMED collection [21]. A pre-defined categorization exists for both corpora. We 

created two subsets of each data set to perform the document clustering experiments. 

The entire OHSUMED collection was also used in cluster-based retrieval 

experiments. Issues related to Reuters-21578 and OHSUMED along with the 

description of their subsets are discussed below. 

 

4.2.1 Reuters-21578  

Reuters-21578 is a commonly used document collection for text categorization tasks. 

It consists of 21578 newswire articles from the Reuters news service obtained in 1987 

[35]. Its domain is broad enough to be realistic and the content of the news is 

understandable for non-experts. Reuters-21578 is freely available and is distributed in 

22 files. The files are in SGML format. Each of the first 21 files contains 1000 

documents, while the last contain 578 documents. All Reuters-21578 documents have 

more information than the simple article reference. The structure of a Reuter’s 

document can be found in Appendix A at section A.2.1. The most commonly used 

attributes in a Reuter’s article are the title, the abstract and the topic. 

Reuters-21578 collection comprises an “a priori” categorization of documents.  

They were annotated and indexed with categories by personnel from Reuters Ltd. and 

Carnegie Group, Inc. in 1987. The topic field is used to classify each document in a 

pre-define category. Documents have been categorized into 135 distinct topics 

(categories). Each article may be labeled with none, one or with many pre-defined 

topics. The lack of a label indicates that the human annotator could find an adequate 

topic. In our experiment we used the most commonly used split of Reuter’s 

documents, the so-called “Mod-Apte” where the 21578 documents are separated into 

9603 training documents, 3299 test documents and 8676 unused documents. 

To experimentally evaluate the implemented clustering algorithms we formed 

two subsets of Reuters-21578. For both subsets we have selected articles that belong 

                                                 
TP

6
PThttp://www.davidlewis.com/resources/testcollections/reuters21578 
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to exactly one of 135 topics (categories). Additionally, documents with an empty 

body field were also discarded.  

The first subset, which we call reuters1, contains documents in which the 

value of LEWISSPLIT attribute is “TEST” and attribute TOPIC = ”YES” according 

to “Mod-Apte” split. Each article classified with a single topic. Reuters1 contains 

2583 documents into 59 categories. In this categorization, categories with extremely 

few documents (less than 10) have been discarded. Thus, “outlier categories” are 

ignored in the evaluation. The resulting subset consists of 2442 documents which 

have been classified in 24 classes (categories). The distribution of documents per 

topic is shown in Table 4.1. At each cell we note the name of the topic and the 

number of documents that are contained in the corresponding category. 

 

Reuters1 – 2442 documents (Category: No. of Documents) 

earn: 1081 ship: 36 cpi: 17 reserves: 12 

acq: 696 money-supply: 28 cocoa: 15 jobs: 12 

crude: 121  sugar: 25 gnp: 15 ipi: 11  

money-fx: 87  coffee: 22 copper: 13 veg-oil: 11 

interest: 81 gold: 20 iron-steel: 12 grain: 10 

trade: 76  alum: 19 nat-gas: 12 tin: 10 

Table 4.1: reuters1 - Category Distribution 
 

We call reuters2 the second subset of Reuters-21578. It is larger than reuters1 

containing 9120 documents into 66 distinct classes (categories). The only difference 

between the two subsets is the value of LEWISSPLIT attribute. In reuters2 this value 

can be set either “TEST” or “TRAIN”. The other settings are the same as in reuters1. 

The categories which contain less than 31 documents were discarded from this subset 

as well. Thus, reuters2 contains 8712 documents into 24 classes. Category 

distribution is shown in Table 4.2. In both subsets the majority of the documents have 

been labeled with “earn” topic. 
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Reuters2 – 8712 documents (Category: No. of Documents) 

earn: 3920 money-supply: 151 cpi: 71 ipi: 44 

acq: 2290 ship: 144 Cocoa: 61 cooper: 44 

crude: 374  sugar: 122 grain: 51 iron-steel: 38  

trade: 327 coffee: 111 alum: 50 nat-gas: 35 

money-fx: 291 gold: 90 reserves: 49 veg-oil: 30  

interest: 270 gnp: 73  jobs: 49 tin: 27 

Table 4.2: reuters2 - Category Distribution 
 

4.2.2 OHSUMED  

OHSUMED document collection was compiled by William Hersh et al. [21] at the 

Oregon Health Sciences University. It is a clinically oriented subset of Medline. 

Medline is the bibliographic database of the U.S. National Library of Medicine 

(NLM). It contains more that 15 million references (version 2006) to journal articles 

in life sciences, medicine and bio-medicine. OHSUMED consists of 348566 Medline 

documents from 270 medical journals taken between the years 1987-1991. 233445 of 

the references contain abstracts and can be downloaded from 

HTftp://medir.ohsu.edu/pub/OHSUMEDTH. OHSUMED has become an evaluation 

benchmark in text categorization and IR research since 1994 [60], [61].  

OHSUMED stores a rich set of metadata associated with each article. The 

structure of an OHSUMED document can be found in Appendix A at section A.2.2. 

Publications in OHSUMED are manually indexed by NLM using MeSH Headings 

(MH), with typically 10-12 descriptors assigned to each reference. Title (TI), abstract 

(AB) and MeSH Headings (MH) are the most commonly used fields of OHSUMED 

references. We used these fields in our document clustering evaluation. 

To evaluate implemented clustering algorithms pre-classified sets of 

documents are needed. For this reason, two OHSUMED subsets were formed.     

We assume that OHSUMED documents belong to categories related to the 

MeSH Headings that are manually assigned to them. The produced subsets which we 

call ohsumed1 and ohsumed2 contain documents from the risk factors, tomography, 

prognosis, pregnancy, receptors, molecular sequence data, in-vitro, DNA, carcinoma, 
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and antibodies categories. This OHSUMED categorization has also been used for 

document clustering evaluations in [63]. The two subsets differ in the number of 

documents they contained. Ohsumed1 consists of 32230 documents classified in 10 

categories (classes). Ohsumed2 contains 10902 documents into 10 classes and was 

produced from Medline documents of the year 1990. Category distribution of both 

subsets is shown in Table 4.3: 

 

Ohsumed1 – 32230 Documents Ohsumed1 – 10902 Documents 

Category No. docs in this cat. Category No. docs in this cat. 

In-Vitro 5172 In-Vitro 1194 

Carcinoma 323 Carcinoma 723 

Antibodies 375 Antibodies 1327 

Molecular Sequence 
Data 6049 Molecular Sequence 

Data 1051 

DNA 245 DNA 797 

Receptor 419 Receptor 306 

Prognosis 6145 Prognosis 1045 

Tomography 345 Tomography 1397 

Risk Factors 5896 Risk Factors 1251 

Pregnancy 7261 Pregnancy 1811 

Table 4.3: Ohsumed1 & Ohsumed2 – Category Distribution 
 

The entire OHSUMED collection was used in our information retrieval 

experiments. The basic reason for this choice is that OHSUMED is a domain specific 

collection. A set of 106 queries have also been defined on OHSUMED along with the 

set of documents which are relevant to each query. Apart from the original 

OHSUMED query set developed by Hersh et al, a subset of 63 queries were used in 

TREC-9TP

7
PT (Trec Retrieval Conference) IR experiments. 

                                                 
TP

7
PThttp://trec.nist.gov/data/t9_filtering.html 
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4.3 MeSH-Based Document Representation in OHSUMED 

An important consideration for document clustering is the representation of 

documents. Traditionally, documents are represented by extracting individual words 

from text (abstract, title). In OHSUMED, each document is represented by abstract, 

title and MeSH terms (MeSH Headings) fields. MeSH is a control vocabulary offering 

a hierarchical categorization of medical concepts. In OHSUMED (the same every 

document in Medline) each document has been indexed manually by a set of MeSH 

terms.   

 One of the goals in our experiments was to explore the MeSH terms as 

features for document representation. A summary of MeSH is given in section 2.6. In 

a part of our experiments, instead of obtaining the term collection of a document from 

single word terms in title and abstract, MeSH terms were extracted and used to 

represent the document. They were extracted from title and abstract fields. In this 

MeSH term collection we added the MeSH terms accompanying each document. The 

use of MeSH terms is important for two reasons. First, they are assigned to 

OHSUMED references by trained indexers, thus many issues involved with natural 

language processing may be avoided. Second, they are multi-word representations 

corresponding to medical concepts and as such they are directly comprehensive by 

humans. 

A MeSH term is often consisted of two or more words. For example, 

“abdominal pain” is a MeSH term. It is consisted of the words “abdominal” and 

“pain”. An issue that needs special attention here is how MeSH terms can be extracted 

from OHSUMED documents. 

For this, we check if a word combined with its next one that come across in 

the document consists a MeSH term. If they do, then we check both of them with the 

next one if they consist a MeSH term, and so on. If they do not, then a) if a MeSH 

term was found until then, we keep the term and continue checking words after this 

term, b) if a MeSH term was not found until then, we keep the word as is and continue 

checking with the others. For example,  

 

“Abdominal pain in children” 

 Stopwords to remove: in 

check: abdominal? NO 
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check: abdominal pain? YES 

check: abdominal pain children? NO (END of text) 

 Found MeSH term? YES (keep term) 

 Continue checking after MeSH term 

check: children? NO (END of text) 

 Found MeSH term? NO (keep word) 

Checked text: “abdominal pain children” 
 

4.4 Evaluation Method  

One of the most important issues in document clustering experiments is to find an 

algorithm-independent measure to evaluate the quality of the clustering result. As 

presented in section 2.3, several measures have been proposed in the literature. They 

include “entropy”, “purity”, “overall similarity”, “F-Measure” and more. 

 In this study, F-Measure was used to evaluate the quality of the generated 

clusters. We examine how closely the clusters produced by each clustering algorithm 

match the set of categories previously assigned to the documents. This requires the 

preparation of the data sets so that at each document is assigned a single topic label. 

The category distribution for the two subsets of Reuters-21578 was shown in Table 

4.1 and Table 4.2. The categories assigned to the documents of two OHSUMED 

subsets were presented in Table 4.3. Each table shows the topic labels and the number 

of documents that belong to the specific category. 

 In section 2.3.3, we presented in detail how F-Measure is computed given a set 

of generated clusters and a pre-defined categorization of the documents. The overall 

F-Measure for a clustering solution is computed according to Equation 2.15. A perfect 

clustering solution will be one that leads to clusters which contain documents solely 

from a single category (class). In such case the F-Measure score will be one. In 

general, the higher the F-Measure values, the better the clustering result is. 
 We continue giving a simple example of evaluating F-Measure on a cluster 

hierarchy. Figure 4.2 illustrates a hierarchical clustering solution. We assume that 

, , ,A B C D  and E  are five documents which constitute a small data set. Suppose, we 

apply on this collection the Bisecting Incremental K-Means algorithm as described in 

section 3.3.3. Each leaf cluster at the bottom of the hierarchy contains one document. 
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We assume that documents ,B C  and D  are in fact members of a real class T . Thus, 

the number of documents in the category T  is 3T = .  

We want to find which cluster in the tree hierarchy corresponds to T . To find 

this cluster we traverse the hierarchy of the clusters, calculating precision, recall and 

F-Measure for each cluster with respect to topic T . Initially, we meet the root cluster 

at the top, which contains all documents ( 5C = ). There are three common documents 

in root cluster and category T . Thus, we calculate precision, recall and F-Measure 

according to Equations 2.12, 2.13 and 2.14. 

 

Pr ( _ , ) 3 / 5ecision Root Cluster T =  

Re ( _ , ) 3 / 3call Root Cluster T =  

0.75F Measure− =                

                                                                                             

 

                                                                    

 

 

 

  

         

 

A               B          C         D         E                  

Figure 4.2: A representative evaluation example 
 
 

We apply the same computation to each cluster in the tree hierarchy. The 

highest F-Measure is 0.85 and is obtained in cluster 1. Cluster 1 contains the 

documents , ,A B C  and D . Therefore, we consider the cluster 1 to be the cluster C  

corresponding to category T  and 0.85 is the final F-Measure for category T . The 

overall F-Measure, as given by Equation 2.15 is used to indicate the quality of the 

whole hierarchy. It is the weighted average of the F-Measures for each category T . 

 

 

1 

2

3 

Root 
cluster 
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4.5 Document Clustering Experiments 

In this section we present our first set of experiments evaluating the quality of the 

clustering solutions produced by the clustering algorithms implemented in this thesis. 

Specifically, we evaluate and compare results obtained by the K-Means, Incremental 

K-Means and Bisecting Incremental K-Means methods. These are results obtained 

from documents represented by simple (single words) terms. For OHSUMED 

documents we also experimented with documents represented by MeSH terms (multi-

word terms). 

 

4.5.1 Experimental Setup 

The main features of the four document collections were used in our experiments are 

summarized in Table 4.4. 

 

Data Source No of Doc. No of Classes 

reuters1 Reuters-21578 2442 24 

reuters2 Reuters-21578 8712 24 

ohsumed1 OHSUMED-233445 32230 10 

ohsumed2 OHSUMED-233445 10902 10 

Table 4.4: Summary of the data sets 
 

All clustering methods were implemented on top of LuceneTP

8
PT (see section A.3 

in Appendix A) which is a Java-based open source toolkit for text indexing. In both 

data sets the documents sets were indexed by the Lucene utility. Reuters-21578 

documents were indexed by title, body and topic fields. Additionally, we created a 

field with all distinct terms in title, body and topic. Reuters-21578 documents were 

indexed by this field as well. OHSUMED documents were indexed by title, abstract 

and MeSH terms (MeSH Headings) fields. Similarly to Reuters, one more field was 

indexed consisted of the distinct terms in title, abstract and MeSH field. In case of 

experiments in section 4.4.3, OHSUMED documents were represented only by MeSH 

terms extracted from title, abstract and MeSH terms fields.  

                                                 
TP

8
PThttp://lucene.apache.org 



CHAPTER 4. EXPERIMENTAL RESULTS 
 

TECHNICAL UNIVERSITY OF CRETE 

60 

 

The fields of each document were syntactically analyzed and reduced into 

separate term vectors (or MeSH vectors in case of MeSH-based representation).Each 

term in this vector was represented by its weight. The tf idf−  weighting scheme was 

used for computing the weight of each term. Each term vector was normalized by 

document length so that it is of unit length. On two data sets, we used a stop-list to 

remove common words (stop-words) (i.e. insignificant words like ‘a’, ‘the’, ‘and’, 

‘or’) [2]. F-Measure was used as a measure of cluster “goodness”. Additionally, we 

discuss the results in terms of clustering time required by each algorithm. 

 As mentioned in chapter 2, the main disadvantage of partitional clustering 

methods is that their performance is sensitive to the selection of the initial cluster 

centroids (i.e., clustering the same set of documents more than once with the same 

parameter values will generate a different clustering result). This is the reason why 

multiple trials are needed. Consequently, we carried out ten separate runs for each 

document clustering evaluation. The experimental results on partitional algorithms 

reported in this section correspond to the average F-Measure over ten runs.  

 All algorithms are implemented in Java programming language, and 

experiments were run on a PC with a Pentium 4 3.2GHz processor, with 2GB RAM, 

running Linux. 

 

4.5.2 Evaluation and Comparison of our K-Means, Incremental K-
Means and Bisecting Incremental K-Means algorithms 

Experimental results on K-Means, its variant Incremental K-Means and the Bisecting 

Incremental K-Means method are presented below. 

 

Evaluation and comparison of K-Means and Incremental K-means  

First in our experiments we evaluated the effectiveness and efficiency of K-Means 

and Incremental K-Means clustering algorithms in terms of F-Measure and clustering 

time. In parallel, we examined for each method how the vector representation of a 

document can affect the clustering quality. We used reuters1 (see Table 4.1) test 

corpus and assumed three different ways that a document can be represented: 

♦ By the terms from BODY field of Reuters-21578 texts,  
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♦ By the terms from TITLE field in a first vector, the terms from BODY field in 

a second vector and the TOPIC in a third vector and 

♦ By all distinct terms from body, title and topic in a single vector. 

For example, in the second case, when we want to compute the similarity between 

two documents we compute it separately for each field and then we sum the three 

computed values. 

 We set K=24, as 24 are the categories of reuters1 subset. As far as K-Means is 

concerned, we set the parameter ITER (number of iterations) of the algorithm equal to 

6. For Incremental K-Means ITER was set to 4. As described in section 3.3.2, this 

value determines the number of iterations in K-Means and Incremental K-Means 

techniques. The resulting F-Measure values for the various document vector 

representations are shown in Figure 4.3. We call this experiment 1a. 

 

K-Means - Incremental K-Means
Different Document Vectors -Reuters1 collection 
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Figure 4.3: Experiment 1a – Experiments varying document vector representations 

 

Incremental K-Means performs significantly better than basic K-Means 

algorithm. We can see that independently of the type of the document representation 

Incremental K-Means outperforms the standard implementation of K-Means method 

by 20-32%. The performance of Incremental K-Means method fluctuates between 

62% and 80%, whereas F-Measure values for K-Means are between 34% and 47%. 

The results indicate that the continuously center adjustment and the last re-assignment 
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of the documents to clusters, (as suggested in section 3.3.2), produce better clustering 

results than the naive K-Means procedure. 

Regarding different document vector representations, Figure 4.2 illustrates that 

for both algorithms the best F-Measure values are obtained in case of documents are 

represented by three distinct vectors (body, title and topic), instead of a single unified 

vector. This observation was expected due to the structure of the reuters1 test set. The 

likelihood that a document will be assigned to the correct cluster increases when the 

topic field is included in the vector. Notice that, in Reuters-21578 the topic of each 

document is used to classify it in a pre-defined category. Also because the topic 

determines the class that a Reuters document belongs to, having the topic in a separate 

document vector would be unfair to the other two cases presented in Figure 4.3 (this 

would increase the performance of algorithm drastically). For this reason we decided 

to use topic only as part of a single vector, together with all other fields and not as a 

separate vector. In the following each document in Reuters-21578 is represented by a 

single vector formed by all distinct terms from title, body ant topic. 

 We indicated that Incremental K-Means is much more effective than regular 

K-Means in terms of F-Measure. In the second experiment (experiment 1b), we 

evaluate the performance of Incremental K-Means under different values of the 

number ITER of iterations. The number of iterations of continuous center adjustment 

examined is 1, 2, 3, and 4. Similarly to experiment 1a, we used reuters1 subset and set 

K equal to 24, as 24 is the number of the hand-labeled classes in this set. Figure 

4.4.indicates the quality of the clustering solutions produced by Incremental K-Means 

algorithm setting different number of iterations 
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Figure 4.4: Experiment 1b – Examine the number of iterations of continuous center 

adjustment 
 

As we can see in Figure 4.4, F-Measure is relatively independent on the 

number of iterations. Incremental K-Means method showed a stabilized accuracy at 

about 68% regardless of the number of iterations. The most significant observation is 

that it is sufficient only a single iteration of center adjustment to produce equally good 

partitions. This is an important conclusion, because we can efficiently reduce the 

clustering time of our Incremental K-Means technique. It is obvious that quadruple 

time could be required in case of 4 iterations as compared to a single iteration. While 

this time comparison may not be noticeable for small data sets like reuters1, it 

becomes much more significant for clustering on large document collections. Notice 

that [32] also examined the effects of the number of iterations of centroid adjustment 

in clustering quality. They also suggested that multiple iterations are not necessary. 

 

Evaluation of Bisecting Incremental K-Means algorithm 

Given the good performance of Incremental K-Means algorithm, we then examined 

its performance against our proposed Bisecting Incremental K-Means clustering 

technique. We compared it to K-Means and Incremental K-Means methods. 
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 Prior to the evaluation of our Bisecting algorithm we run the following 

experiment. We investigated the behaviour of our hierarchical algorithm under 

different values of K in Incremental K-Means method. As described in section 3.3.3, 

repeated applications of Incremental K-Means algorithm produces a hierarchy of 

clusters. Different cluster hierarchies are produced with different values of K. Notice 

that different K affects the number of clusters that a given cluster is split and therefore 

the higher the value of K the lower the depth of the hierarchy. The larger the value of 

K, the broader and shallower is the resulting hierarchy. 

 To conduct this evaluation (experiment 1c), we set the K equal to 2, 10 and 25 

and used the reuters1 test set. Incremental K-Means method terminated as each leaf 

cluster contained a single document. According to the results in experiment 1b (see 

Figure 4.4), at each bisecting step the parameter ITER in Incremental K-Means 

technique was set to 1. F-Measure scores for the various values of K are shown in 

Figure 4.5, whereas the Figure 4.6 reports a comparison of the Incremental K-Means 

with different K (various-secting clustering at each step) in terms of clustering time 

(experiment 1d). 
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Figure 4.5: Experiment 1c - Various Secting Incremental K-Means – F-Measure 

 

As we can see in Figure 4.5, the F-Measure of the generated cluster hierarchy 

increases as the value of K decreases. Notice that F-Measure is rather independent on 
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K (increases slightly for K=2). The best F-Measure score was obtained in Bisecting 

Incremental K-Means method. However, there are no significant differences in the 

effectiveness of clustering results using one of the three values of K.   
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Figure 4.6: Experiment 1d - Various Secting Increm. K-Means – Clustering time 

 

 As far as the clustering time is concerned, Figure 4.6 shows that the time 

(minutes) required building a cluster hierarchy increases with K. Thus, bisecting is the 

approach which requires the less clustering time.  

We conclude that results in experiment 1c and 1d confirmed our initial 

decision to apply our proposed methodology on Bisecting Incremental K-Means 

algorithm, instead of other K-Secting techniques. 

 The main goal of the following document clustering experiment (experiment 

1e) is to evaluate Bisecting Incremental K-Means algorithm and compare its 

performance against K-Means and Incremental K-Means. In this experiment 

(experiment 1e) we used reuters1 and ohsumed1 (see Table 4.4). As far as Bisecting 

Incremental K-Means is concerned, the experiments were done by using the same 

parameter values discussed in experiment 1c regarding the number ITER of iterations 

at each bisecting step and the terminating procedure. In K-Means and Incremental K-

Means algorithms, the number of iterations was set equal to 6 and 1 respectively. 
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Figure 4.7 shows the results from the comparison of the three clustering methods in 

terms of clustering quality. 
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Figure 4.7: Experiment 1e – Comparison of K-Means, Incremental K-Means and 

Bisecting Incremental K-Means 
 

Figure 4.7 illustrates that our Bisecting Incremental K-Means algorithm 

achieves significantly better F-Measure than the other two clustering methods on both 

data sets (reuters1 and ohsumed1). Specifically, our Bisecting algorithm outperformed 

the basic K-Means and our Incremental version by 42% and 12% respectively on 

reuters1 and by 28% and 13% respectively on ohsumed1. 

 As we can see in Figure 4.7, the resulting F-Measure values for K-Means and 

Incremental K-Means on ohsumed1 are consistent with those obtained on reuters1 and 

presented in Figure 4.3. We observe that on both data sets the Incremental method 

performs noticeably better than the standard K-Means algorithm.    

 Finally, experimental results in Figure 4.7 indicated that for each one of the 

three evaluated algorithms the F-Measure score was less on ohsumed1 as compared to 

the corresponding value obtained on reuters1. Thus, we could make the 

supplementary conclusion that in document clustering evaluation the OHSUMED 

collection gives lower F-Measure values as compared to Reuters-21578 data set. 

Results in [63] confirm this observation. 
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 Summarizing, Bisecting Incremental K-Means algorithm performs 

significantly better than K-Means and its variant Incremental K-Means on both 

reuters1 and ohsumed1. Incremental K-Means outperforms basic K-Means by 17-30% 

in terms of F-Measure. Incremental K-Means also requires only a single iteration for 

center adjustment to produce a good clustering solution. Finally, in experiment 1c we 

observed that our version of Bisecting Incremental K-Means performs better than the 

other Various-Secting algorithms. 

 

4.5.3 Evaluation of MeSH based Representation on Clustering 
Quality 

We showed that Bisecting Incremental K-Means method outperforms the other two 

partitional clustering techniques on both data sets. In this experiment, we evaluated 

how the clustering quality is affected by the way the documents are represented.  

We examined the performance of Bisecting Incremental K-Means method 

using vector representation of documents consisting of MeSH terms. Then, we 

compared these results with those obtained by representation with single word terms. 

The latter approach was evaluated in subsection 4.5.2 on reuters1 and ohsumed1. In 

this experiment, we used the ohsumed2 data set which contains 10902 documents. We 

selected an OHSUMED subset, as it is a medical corpus which contains articles from 

Medline published. As described in section 4.2.2, 10-12 MeSH terms are assigned to 

each OHSUMED document by human indexers and constitute a specific field. 

MeSH terms are extracted from the title and the abstract field of each Medline 

reference using the technique described in section 4.3. Then, we added the existing 

(within each document) MeSH terms to obtain a vector of MeSH terms for each 

OHSUMED document.  

To conduct this experiment (experiment 2a), we used ohsumed2 subset (see 

table 4.3). The number of parameter ITER in Incremental K-Means method was set 

equal to 1 and the divisive procedure terminated when each leaf cluster contained a 

single document.  Figure 4.8 shows the F-Measures scores obtained by using MeSH 

and single word terms to represent the OHSUMED documents. In terms of clustering 

time the evaluation is shown in Figure 4.9. We called this experiment 2b. 
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Bisecting Incremental K-Means- OHSUMED2 
MeSH terms Vs Single Word Terms Representation
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Figure 4.8: Experiment 2a – F-Measure corresponding to Bisecting Incremental K-

Means. Document representation with single word terms and MeSH terms 
 

 We observe that our Bisecting Incremental K-Means method yields better F-

Measure when the OHSUMED documents represented by MeSH terms rather than by 

single word terms. Figure 4.8 indicates an 8% increase in F-Measure. 
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Figure 4.9: Experiment 2b – The effects of document representation on clustering 

quality in terms of Clustering Time 
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 In terms of clustering time, experimental results in Figure 4.9 show that our 

version of Bisecting algorithm needs much less execution time when the document 

vectors contain only MeSH terms. On ohsumed2 the clustering time for the MeSH-

based representation of documents was 14 minutes whereas for single word terms 

representation the clustering hierarchy was obtained in 97.6 minutes. Therefore, 

significant decrease in execution time was observed.  This happened due to the size of 

the document vectors. In case of the document representation by single word terms 

the size of each document vector is about 80-100 terms, while in case of MeSH based 

representation each vector contains about 20 distinct MeSH terms. 

Summarizing, the MeSH-based representation of documents as compared to 

single word terms representation improves the performance of our Bisecting 

Incremental K-Means algorithm. The results showed that the F-Measure increases 

while the clustering time decreases notably. Moreover, MeSH terms form a more 

meaningful representation for documents and clusters. The set of MeSH terms 

contained in each document specifies well the subject of the document. In case of 

clusters the centroid is consisted of MeSH terms and can satisfactorily gives the 

semantic content of the cluster. 

 

4.5.4 Evaluation of BIC-Means - Experiments on BIC 

In section 3.5, we proposed the BIC-Means, a hierarchical clustering algorithm based 

on Bisecting Incremental K-Means method. This set of experiments focused on 

evaluating the quality of the hierarchical clustering solution produced by BIC-Means. 

We examined the use of BIC and evaluated how the clustering quality is affected by 

the proposed technique for terminating the divisive procedure. 

The performance of BIC-Means was evaluated in terms of clustering quality 

and clustering time. The values obtained in this experiment were compared to the 

corresponding results of Bisecting Incremental K-Means method where the procedure 

terminates as each leaf cluster contains a single document. To conduct this evaluation 

the document collections were selected are ohsumed2, reuters1 and reuters2. With 

regard to ohsumed2, we used vector representation of documents based on MeSH 

terms. Experiments in subsection 4.5.3 showed that this representation outperforms 

the representation by single word terms. At each bisecting step the parameter ITER 

was set to 1. 
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The resulting F-Measures for BIC-Means and Bisecting Incremental K-Means 

are presented in Figure 4.10 (experiment 3a). For each of the three test corpora the 

corresponding scores are compared. The comparison in terms of clustering time 

(experiment 3b) is shown in Figure 4.11. 
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Figure 4.10: Experiment 3a – Comparison of BIC-Means and Bisecting Incremental 

K-Means on clustering quality 
 

As we can see in Figure 4.10, in ohsumed2 the proposed BIC-Means 

algorithm achieved similar F-Measure value as Bisecting Incremental K-Means 

method. Results on reuters1 and reuters2 indicated that BIC-Means performed slightly 

worse as compared to initial Bisecting approach. In terms of F-Measure, for reuters1 

the decrease in clustering quality was 14%, whereas in reuters2 collection was 8%.   

 Thus, we observe that BIC-Means does not yield better F-Measures values 

than Bisecting Incremental K-Means. However, these results were prospective. From 

the beginning BIC-Means was not expected to improve the clustering quality of our 

basic Bisecting technique as the last is exhaustive producing the entire clustering 

hierarchy (terminating in singleton clusters) while BIC-Means was introduced here as 

a means for non-exhaustive clustering aiming at terminating at rather meaningful 

clusters. However, the performance sacrifices compared to Bisecting Incremental K-

Means is negligible. As described in section 3.5, BIC-Means expands the 
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functionality of Bisecting Incremental K-Means method. It uses BIC as the splitting 

criterion of a leaf cluster and then, a strategy is applied to terminate the divisive 

procedure.  

We can conclude that the basic advantage of BIC-Means is the automatic way 

for terminating the Bisecting technique rather than executing the algorithm until each 

leaf cluster contains a single document. Figure 4.10 indicates that on the three test 

corpus F-Measure values of BIC-Means decreased slightly or were the same as 

compared to the corresponding values of Bisecting Incremental K-Means. Only on 

reuters1 is observed a high decrease in F-Measure score. This can be explained as 

follows. First, the BIC which is used as the splitting criterion of a cluster needs a large 

collection in order its application to be more effective. In our case, reuters1 contains 

2442 documents. As a result, the use of BIC in the specific collection produced a 

small number of clusters and thereby F-Measure score was decreased as compared to 

initial Bisecting algorithm. Contrary to Reuters, on ohsumed2 BIC-Means achieves F-

Measure value similar to this obtained by our initial Bisecting approach. This is 

because OHSUMED is fairly big data set and the hierarchy obtained by BIC-Means 

was quite deep due to the many bisections done.  
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Figure 4.11: Experiment 3b – Comparison of BIC-Means and Bisecting Incremental 

K-Means on clustering time 
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In terms of clustering time, the experimental results in Figure 4.11 indicate 

that BIC-Means runs much faster than Bisecting Incremental K-Means method on 

both document collections. For the three test collections were used in this set of 

experiments it took much more time for basic Bisecting technique than proposed BIC-

Means algorithm to build a hierarchy of clusters. On reuters1 the clustering time of 

BIC-Means was about 9 times less than that of initial Bisecting method (3 - 31.5 

minutes). On reuters2 the clustering time of BIC-Means was about 3 times less as 

compared to the basic Bisecting approach (58 - 167 minutes). Finally, on ohsumed2 it 

took 9.5 minutes for BIC-Means to produce the cluster hierarchy, whereas Bisecting 

Incremental K-Means required 14 minutes.  

Regarding reuters1 the too much difference in clustering time can be explained 

due to the small number of bisections applied on this subset. We discussed this fact 

earlier in this subsection. Thus, the algorithm terminated much more quickly and had 

a small decrease in clustering quality as compared to basic Bisecting method. For 

ohsumed2 the clustering time was short because only 20-25 MeSH terms were 

contained at document vectors. 

Summarizing, BIC-Means is a hierarchical clustering approach which 

incorporates a strategy for terminating the divisive procedure. Its main advantage is 

that requires significantly less time to run compared to Bisecting Incremental K-

Means method. Thus, it is an appropriate algorithm for clustering very large document 

collections since it does not execute the procedure exhaustively. Finally, the automatic 

way that BIC-Means uses to stop the algorithm keeps F-Measure scores at the same 

levels or causes a slight decrease in clustering quality as shown in Figure 4.10. 

 

4.5.5 Summary of Document Clustering Experimental Results 

In this section we presented our experiments and results on document clustering. This 

evaluation revealed strengths and weakness of the different clustering algorithms 

implemented in this study. First in our experiments we evaluated and compared the 

clustering quality of K-Means and Incremental K-Means. F-Measures scores were 

computed for different vector representations of documents on reuters1. The results 

showed that Incremental K-Means yielded noticeably better F-Measure values than K-

Means. Additionally, we showed that Incremental K-Means needs only a single 

iteration of center adjustment to produce a good clustering partition.  
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 Then, on reuters1 and ohsumed1 we compared the Bisecting Incremental K-

Means with basic K-Means and Incremental K-Means. The results indicated that 

Bisecting Incremental K-Means performs much better than the two other techniques 

on both data sets.  

 We continued our evaluation by examining the performance of Bisecting 

Incremental K-Means method using MeSH-based representation of documents on 

ohsumed2. We compared these results with those obtained by using single word terms 

to represent a document. The comparison showed that MeSH-based representation 

improves significantly the performance of Bisecting Incremental K-Means algorithm 

in terms of F-Measure and clustering time. 

 Finally, we evaluated (on three data sets) the quality of the hierarchical 

clustering solution produced by BIC-Means algorithm. BIC-Means incorporates a 

strategy to stop the divisive procedure. We computed F-Measure scores and clustering 

time and then compared them to the corresponding values obtained from Bisecting 

Incremental K-Means method which is executed exhaustively. Experimental results 

indicated that BIC-Means requires much less time to build a cluster hierarchy as 

compared to initial Bisecting approach (see Figure 4.11). This is important in case of 

large document collections. In terms of F-Measure, BIC-Means achieves the same or 

slightly decreased values as compared to Bisecting Incremental K-Means algorithm. 

 

4.6 Retrieval using Document Clusters 

In the following we demonstrate that it is possible to apply clustering to reduce the 

size of the search (and therefore retrieval response times) on large data sets. We 

propose several cluster-based retrieval strategies and evaluated their performance. In 

parallel, we examined the use of MeSH terms in document, cluster and query vector 

representation.  

 The majority of the document retrieval systems which have been described in 

the literature match the query against documents in the entire collection. They do an 

exhaustive search (document-based retrieval). Similarity scores between the query 

and each document are computed and the documents are then ranked in order of 

decreasing similarity with the query. However, the computation of similarities 

between user’s request and all the documents is time consuming due to the exhaustive 
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search is done. For this reason an alternative approach is required, mostly for retrieval 

on large document collections.  

Below, we examined how this goal could be achieved by incorporating of 

document clustering into the information retrieval process (cluster-based retrieval). 

Cluster-based retrieval incorporates the application of a clustering technique on a 

document collection in order to group documents into clusters, matches the query with 

a representative representation of each cluster and then ranks clusters based on their 

similarity to the query. We search the documents which are contained in the N top-

ranked clusters and not all the documents exhaustively. This is the general approach 

of the examined retrieval strategies based on clusters. We evaluated the efficiency and 

effectiveness of cluster-based retrieval as compared to exhaustive retrieval method. 

A number of studies [26], [46], [47] have been proposed in the literature on 

applying clustering to improve retrieval results. Some experimental results [5], [26] 

have shown that cluster-based retrieval using static clustering outperforms retrieval by 

exhaustive search. Other results [58] have indicated that exhaustive retrieval is 

generally more effective.   

In most experiments the size of document collections used was small. This is 

due to the time and space performance of hierarchical clustering approaches. There 

are no conclusive results on large data sets. In this study, we examined how cluster-

based retrieval can perform across collection of realistic size. Experimental results in 

subsection 4.5.4 showed that BIC-Means can be applied on large document 

collections. As described in the following subsection, in our evaluation in addition to 

documents, the queries contained only MeSH terms. We examined how MeSH-based 

document and query representation affect cluster-based retrieval.  

Jardine and van Rijsbergen [26] first suggested that the associations between 

documents contain information about the relevance of documents to user’s requests. 

They formulated and examined the cluster hypothesis. “Closely associated documents 

tend to belong to the same clusters and are expected to be relevant to the same 

queries”. Correspondingly, dissimilar documents are unlikely to be relevant to the 

same requests.    
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4.6.1 Cluster-based Retrieval on OHSUMED using MeSH  

We examine the cluster-based retrieval on OHSUMED which contains 233445 

Medline articles. All documents include abstract. In order to build the document 

vectors we extracted MeSH terms from title, abstract and MeSH terms fields. The 

MeSH term extraction technique was presented in section 4.3. We chose the MeSH 

based representation due to the clustering results presented in subsection 4.5.3. They 

indicated that MeSH terms improve the performance of our Bisecting algorithm in 

terms of F-Measure and clustering time. Additionally, using MeSH terms much less 

time is required to compute similarities between the documents or clusters and the 

query due to the small size of document or cluster term vectors. OHSUMED 

documents were indexed by the Lucene utility. The weights of all MeSH terms in 

OHSUMED documents are computed by tf idf− . 

The experiments required that documents be first organized into clusters. We 

applied our proposed BIC-Means algorithm on entire OHSUMED and a static 

hierarchy of clusters was produced. Each cluster was represented by the centroid 

vector which is the vector obtained by averaging the weights of the various terms in 

cluster. 

To examine the retrieval performance a test collection of 106 queries was 

used. A group of novice physicians generated these queries using Medline. Each 

document has been judged by physicians as relevant, possibly relevant or not relevant 

to a query. In our experiment we consider the possibly relevant documents as relevant. 

Each OHSUMED query contains patient and topic information, in the format: 

.I Sequential identifier 

.B Patient Description 

.W Information Request 

We present an example of a query: 

. .I   6 

.B 55 yo female, postmenopausal 

.W does estrogen replacement therapy cause breast cancer 

In our evaluation the MeSH terms are extracted from each query in order to 

represent it. We used the extraction technique presented in section 4.3. The reason for 

this extraction was the MeSH based-representation of OHSUMED documents. Each 



CHAPTER 4. EXPERIMENTAL RESULTS 
 

TECHNICAL UNIVERSITY OF CRETE 

76 

 

MeSH term had a unique participation at each query. After this process the above 

query was converted as follows: 

  “Breast_neoplasms female estrogen_replacement_therapy” 

The words which are connected with “_” constitute a MeSH term. 

In our experiments we ignored some queries from the OHSUMED query set 

due to three reasons. First, several queries do not contain MESH terms so that to 

extract them and represent the corresponding query. Second, a query does not have 

relevant documents in the judged pool. Finally, some queries were removed from the 

set because in an initial exhaustive search done no relevant documents were retrieved 

for these queries. As a result we removed 45 queries. The final query set consisted of 

61 queries. Each query contained between 1 and 6 MeSH terms. Section A.4.1 of the 

Appendix A shows the 61 OHSUMED queries while section A.4.2 illustrates their 

corresponding MeSH-based representation. Apart from the original OHSUMED query 

set developed by Hersh et al, a sub-set of 63 queries were used in TREC-9TP

9
PT (Trec 

Retrieval Conference) IR experiments. Similarly to original queries, relevance 

judgements provided by NIST (National Institute of Standards and Technology) 

determine OHSUMED relevant documents to each query. We observed that 40 of the 

61 queries used in our retrieval experiments are contained in TREC-9 query set. 

 Vector Space Model (VSM) was used for retrieval of documents in 

OHSUMED. This state-of-the-art method uses the classic dot product between 

centroids of clusters and queries as the matching function. The retrieval system was 

built upon Lucene. Notice that in addition to text indexing, Lucene is a full-featured 

text search engine library in Java. All retrieval strategies were implemented on top of 

Lucene. The weight of each query term was initialized to 1, because a MeSH term can 

be contained only once in a query. Each query retrieved the 100 highest ranked 

answers due to the tendency of users to examine only the top-ranked documents 

retrieved by the system. 

 As presented in the following subsection we examined several search 

strategies. In all cases in order to find the clusters that best match a query we searched 

the bottom-level clusters (leaf clusters). Experimental results in [5], [18], [46] 

indicated that this method instead of searching all the clusters of the hierarchy gives 

the best retrieval results. The 633 leaf clusters of our produced hierarchy are non-

                                                 
TP

9
PThttp://trec.nist.gov/data/t9_filtering.html 
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singleton clusters due to the stopping strategy we use in BIC-Means algorithm. They 

were scanned and the most relevant to the query were retrieved according to the 

corresponding search strategy. 

 Efficiency and effectiveness are usually the measures used for the evaluation 

of an IR system. The former measure looks at the time and space requirements of the 

algorithms used by the system. It checks operations such indexing and searching in 

terms of functionality. On the other hand, the effectiveness of an IR system addresses 

the quality of the retrieval results. The measures used to examine the effectiveness of 

our retrieval system are recall (R) (the ratio of relevant documents that are retrieved) 

and precision (P) (the ratio of retrieved documents that are relevant). We computed 

averaged precision which is the value of precision averaged over the 61 queries and 

averaged recall which is the value of recall averaged over the 61 queries.  

 

4.6.2 Experimental Results:  Precision/Recall and Evaluation 

As cluster hierarchy has been built, a search for the clusters that best match the query 

was done. We introduced several retrieval strategies which are based on the bottom- 

level clusters of the hierarchy (leaf clusters). Each search strategy incorporates 

different criteria in order to match the query against leaf clusters and retrieve them. 

We evaluated the effectiveness and efficiency of each of these search strategies and 

compared the results with the retrieval results obtained by exhaustive search on 

OHSUMED. 

The results of each method are represented by a precision/recall curve. Each 

point on a curve is the average precision and recall over all queries. As mentioned we 

selected the 100 highest ranked answers for each query, so the precision/recall plot of 

each method contains exactly 100 points representing the average precision and recall 

over the 61 queries. Precision and recall values are computed from each answer set 

after each answer. The top-left points of a precision/recall curve corresponds to the 

precision/recall values for the best answer or best match while, the bottom right point 

corresponds to the precision/recall values for the entire answer set. A method is better 

than another if it achieves better precision and recall. 

First in our experiments we performed an exhaustive search (document-based 

retrieval) on all OHSUMED documents. Similarities between each query and each 

document were computed. Then, the documents were ranked and a list of the top 100 
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documents was produced. The generated precision/recall curve compared with all the 

cluster-based retrieval strategies are suggested below. 

 

Experiment 1: Retrieve and Search the N highest Ranked Clusters 

We start describing the most simple of the implemented cluster-based retrieval 

strategies. Each leaf cluster was represented as a vector of MeSH terms. We computed 

the similarity between the query and each leaf cluster. The clusters were ranked based 

on their similarity to the query. The issue examined in this strategy was how many 

best match clusters to select in order to search the documents of that clusters. We 

evaluated seven cases. To select 1, 3, 10, 30, 50, 100 and 150 of the top-ranked leaf 

clusters. We chose these values as considered to be representative in indicating the 

behaviour of the retrieval system. We called these retrieval strategies top_1Cluster, 

top_2Clusters, top_10Clusters, top_30Clusters, top_50Clusters, top_100Clusters and 

top_150Clusters. 

In each case, the documents of the selected clusters were collected. Thus, a 

new document collection was produced. It was a very small subset of the initial data 

set. Any document in this subset was considered more likely to be relevant to the 

query than documents from clusters ranked lower and were not contained in the 

selected list of clusters (1, 3, 10, 30, 50, 100 or 150). Then, we computed the 

similarity between the queries and the documents of the produced collection. The 

documents were order by decreasing similarity. We selected the 100 highest ranked 

documents for each query to evaluate precision and recall.   

 Figure 4.12 shows the averaged precision and recall values obtained by these 

retrieval experiments. For each evaluation (1, 3, 10, 30, 50, 100 and 150 top-ranked 

clusters) we present a precision/recall curve. We compare these curves with the 

retrieval result by exhaustive search (document-based retrieval).    

 As we can see in Figure 4.12, document-based retrieval performed better than 

all the examined cases of cluster-based retrieval. The best results of cluster-based 

retrievals obtained as the number of the selected clusters was 150 and 100. We 

observe in Figure 4.12 that top_100Clusters and top_150Clusters strategies achieve 

almost the same precision and recall. Notice that performance improves with N (in 

this experiment N=150 and N=100 achieve better precision and recall). The reason for 

this behavior is that more relevant documents are revealed even within less similar 
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clusters and their number of similar documents increases with N. Notice though, that 

as N approaches K (total number of clusters), the cluster-based retrieval approaches 

exhaustive search. The overall performance of cluster-based retrieval depends on 

whether top-ranked clusters contain relevant documents.  

 

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

recall

pr
ec

is
io

n

top_1Cluster
top_3Clusters
top_10Clusters
top_30Clusters
top_50Clusters
top_100Clusters
top_150Clusters
Exhaustive Search

 
Figure 4.12: Precision-recall diagrams of exhaustive search on OHSUMED and 

cluster-based retrieval strategy using the n top-ranked clusters for retrievals 
 
 

The better performance of document-based retrieval is reasonable due to the 

smaller number of documents contained in the top 150 ranked clusters and the other 

cases of top clusters. We counted that in top_150Clusters experiment the averaged 

number of documents searched over the 61 queries was only 88806, while the 

corresponding number in top_100Clusters experiment was 67648. On the contrary, in 

document-based retrieval were exhaustively searched 233445 articles. As a result, in 

case of cluster-based retrieval experiments the number of similarity computations 

between the query and the documents was significantly decreased. On the other hand, 

we observe that retrieval by exhaustive search as compared to top_150Clusters and 

top_100Clusters retrieval strategies achieved about up to 5% better precision and up 

to 5% better recall. We conclude that top_100Clusters and top_150Clusters retrieval 

methods improve noticeably the computation efficiency of the retrieval while the 
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effectiveness was slightly decreased as compared to retrieval results by exhaustive 

search on OHSUMED documents. 

 

Experiment 2: Use the 20 Highest Weighted MeSH terms of the 
Centroid and Search the N Top-Ranked Clusters 

The first retrieval experiment used all the centroid terms to compute the similarity 

scores between the clusters and the query. The second set of experiments examined 

the effectiveness of cluster-based retrieval using the 20 highest weighted MeSH terms 

of the centroid. The centroid terms were sorted by decreasing frequency and the top 

20 MeSH terms were selected to represent the cluster. Then, the clusters were ranked 

by decreasing similarity with the query. In this experiment we evaluated four cases. 

To select the 10, 50, 100 or 150 of highest ranked clusters. We called these retrieval 

strategies 20Terms-top_10clusters, 20Terms-top_50clusters, 20Terms-

top_100clusters and 20Terms-top_150clusters. Similarly to first set of retrieval 

experiments, we computed the similarity between the queries and the documents 

contained in the top 10, 50, 100 or 150 ranked clusters. We used the cosine similarity 

function to match each query against documents of top retrieved clusters. A ranked 

document list was produced for each experiment. We selected the 100 highest ranked 

documents to evaluate the retrieval process. 

 Figure 4.13 illustrates the precision-recall curves for the methods tested in 

these retrieval experiments. We compare them with the document-based retrieval 

(exhaustive search) on OHSUMED and the top_150Clusters retrieval strategy 

presented in Experiment 1 (first set of retrieval experiments).  

Figure 4.13 indicates that document retrieval by exhaustive search on 

OHSUMED is more effective than the search based on leaf clusters and use the 20 

highest weighted MeSH terms of the centroid. Comparing the precision-recall 

diagrams obtained in the first set of experiments (Experiment 1) with them illustrated 

in Figure 4.13 we observe that the use of the 20 highest weighted MeSH terms of 

cluster’s centroid did not improve the cluster-based retrieval results on OHSUMED. 

More specifically, Figure 4.13 shows that top_150clusters retrieval method (uses all 

the MeSH terms of the centroid) performs better than 20Terms-top_150Clusters (uses 

the 20 highest weighted MeSH terms of the centroid). 
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Figure 4.13: Precision-recall diagram of exhaustive search on documents and search 

based on leaf clusters using the 20 highest weighted centroid terms and the N top 
ranked clusters for retrievals on OHSUMED 

 

Also, we observe that the efficiency of the retrieval does not noticeably 

increase with the number of clusters searched. 20Terms-top_150Clusters retrieval 

strategy performs slightly better than 20Terms-top_100Cluster and 20Terms-

top_50Cluster methods. This may occur because for some queries there were not 100 

or 150 clusters that contained one or more of the query terms in their centroid vectors. 

This conclusion can be confirmed by examining the number of documents searched 

over the 61 queries. In case of 20Terms-top_50Clusters retrieval strategy 33607 

documents were searched whereas for 20Terms-top_100Clusters and 20Terms-

top_150Clusters the searched documents were 46786 and 54991 correspondingly. We 

observe that while the number of retrieved clusters were doubled or trebled, the 

searched documents were not increased significantly.  

 

Experiment 3: Retrieve the Clusters with all Query Terms in 
Centroids and Search them  

The last set of experiments evaluated the performance of cluster-based retrieval using 

an alternative strategy for selecting the leaf clusters that best match the query. For a 

specific query we examined only the leaf clusters which contained all the MeSH 
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query terms in their centroid vectors. Then, the retrieved clusters were ranked 

according to their similarity to the query. Regarding the number of finally selected 

ranked clusters we examined three cases. To select all the retrieved clusters, the top 

50, the top 30 or the top 15 from the ranked list. We called these experiments 

AllQinCen_AllClusters, AllQinCen_Top_50Clusters AllQinCen_Top_30Clusters and 

AllQinCen_Top_15Clusters. For each case a ranked list of documents was produced 

by computing the cosine similarity between the documents of the selected clusters and 

the query. To conduct each experiment we selected the 100 top-ranked documents 

from the list. 

 In Figure 4.14, we present the precision-recall diagram for the third set of 

experiments. We compare the results with the curve produced by exhaustive search on 

OHSUMED documents. 

Analyzing the results in Figure 4.14 we observe that retrieval based on leaf 

clusters of the hierarchy that contained all the query terms in their centroids is almost 

as effective as the retrieval done by exhaustive search on OHSUMED. Document-

based retrieval achieved just up to 2% better precision and up to 2% better recall than 

AllQinCen_AllClusters retrieval strategy. 
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Figure 4.14: Precision-recall curves using the leaf clusters which contains all the 
query terms in their centroids and a precision/recall curve produced by exhaustive 

search 
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The other three examined retrieval methods (AllQinCen_50Clusters, 

AllQinCen_30Clusters and AllQinCen_15Clusters) performed slightly worse than 

AllQinCen_AllClusters and document-based retrieval strategy. 

Additionally, we evaluated the efficiency of our proposed retrieval strategies 

in terms of required similarity computations between the documents and the query. In 

large document collections the computational overhead matching all documents with 

the query is a major drawback in the retrieval process. Figure 4.15 shows for each 

retrieval strategy the average number of documents searched over the 61 queries. 

Regarding the exhaustive search on OHSUMED, 233445 documents were compared 

to the query to produce the ranked document list. As far as AllQinCen_AllClusters 

retrieval strategy is concerned, the corresponding average number of documents over 

all queries was 71649, while for AllQinCen_50Clusters, AllQinCen_30Clusters and 

AllQinCen_15Clusters retrieval methods were 46262, 34759 and 21606 respectively. 
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Figure 4.15: The average number of searched documents over the 61 queries for the 

four retrieval strategies examined in this set of experiments 
 

Summarizing, Figure 4.15 indicate that the three proposed cluster-based 

retrieval strategies achieved a significant decrease in time and space requirements as 

compared to retrieval by exhaustive search. Mostly, AllQinCen_AllClusters retrieval 

method not only saves a huge amount of computation but does so without significant 
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loss in precision and recall. We observe that among all the cluster-based information 

retrieval strategies suggested in this section the best results are obtained in case of 

AllQinCen_AllClusters method. This method is as effective as document-based 

retrieval on OHSUMED and much more efficient.  

Figure 4.16 presents a summary of the best proposed cluster-based retrieval 

strategy (AllQinCen_AllClusters). 

 

Input:    Bottom Level Clusters of the hierarchy (leaf clusters), Query q, 

             Document d (MeSH-based representation), Cosine Similarity     

             Function 

Output: Documents ordered by decreasing similarity with the query. 

 

1. MeSH terms extraction from query using the extraction technique 

presented in section 4.3. 

2. Match the query against the leaf clusters which contain all the MeSH 

query terms in their centroid vector. Use cosine similarity function. 

3. Rank clusters by decreasing similarity with the query. 

4. Match the query against documents in all retrieved clusters using cosine 

similarity function.  

5. Return a ranked list of documents to the user. (by decreasing similarity to 

the query). 

Figure 4.16: “AllQinCen_AllClusters” cluster-based retrieval method 
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Chapter 5 

 

Conclusions 

 

We present a short summary of the research conducted in this thesis and provide 

possible directions for future research. 

 

5.1 Summary 

The main objective of this thesis was to develop a highly efficient algorithm for 

clustering large document collections. We focused on partitional clustering algorithms 

mainly due to their low time complexity (i.e. linear on the number of documents) as 

opposed to hierarchical clustering methods which have quadratic time complexity. 

Therefore partitional techniques are well-suited for clustering large document 

collections.  

 Initially, we focused on the standard K-Means clustering approach. We 

implemented several variants of the original K-Means and we proposed a new variant, 

the so-called “Incremental K-Means”. Incremental K-Means differs from basic K-

Means in the way the centroids are updated during each clustering iteration. In K-

Means new centroids are computed after each iteration (after all documents have been 

examined and assigned to clusters). Incremental K-Means updates centroids after a 

document is assigned to a cluster.  

 Due to the very large size of document collections and the tremendous 

explosion of electronic information available on the internet, there is an increased 

need for effective and efficient clustering algorithms that would aim in reasonable 

time even on such large document collections and create clusters that correspond to 

real classes. However, both K-Means and Incremental K-Means produce a flat 

partition of the data while a construction of a hierarchy of clusters using traditional 

hierarchical clustering methods is computational prohibitive. 
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 In the following we examined the so-called Bisecting Incremental K-Means 

which produces a hierarchical clustering solution by recursively applying the 

Incremental K-Means on a document collection: All documents are initially 

partitioned into two clusters. Then, the algorithm iteratively selects and bisects each 

one of the bottom-level clusters until singleton leaf clusters are reached. Bisecting 

Incremental K-Means can be thought as a divisive hierarchical clustering approach. 

The so-obtained clusters are structured as a hierarchical binary tree. The run time of 

the algorithm is ( log( ))O n n  where n is the number of documents. 

 The main drawback of the Bisecting Incremental K-Means algorithm was that 

terminates when each leaf cluster contains a single document. This is because there is 

no prior knowledge on the desired number of clusters and moreover there is not a 

criterion for stopping bisections before singleton clusters are reached. In case of large 

document collections terminating at singleton clusters is time-consuming and the 

clustering result does not correspond to real classes (mainly at leaf levels and close to 

the meaningless leaf clusters). 

 To prevent over-splitting of clusters we proposed a strategy based on the 

Bayesian Information Criterion (BIC) (introduced earlier in the literature [42]) to stop 

the divisive procedure. We use BIC to perform a splitting test at each leaf cluster in 

order to decide whether a cluster should split or not. The BIC score is computed to 

measure the improvement of a cluster when it is split. If the BIC score of the produced 

cluster structure is less than BIC score of the parent cluster we do not split the initial 

cluster. We terminate the divisive procedure when there is no separable leaf cluster 

according to the BIC function  

 “BIC-Means”, a novel hierarchical clustering algorithm, is the main 

contribution of this thesis. Building upon Bisecting Incremental K-Means and BIC, 

BIC-Means combines the advantages of all these ideas. Specifically, BIC-Means has 

the following characteristics: 

 

1. It is a Bisecting clustering approach which can be used to build a hierarchy of 

clusters effectively. 

2. It incorporates Incremental K-Means as the partitional method for bisecting 

the selected leaf cluster at each bisecting step. Incremental K-Means 

efficiently updates cluster’s centroids. 
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3. It uses BIC as the splitting criterion of a cluster and proposes a strategy to stop 

the divisive procedure based on the Bayesian Information Criterion (BIC). 

 

As a result, BIC-Means produces clusters which are more meaningful as 

compared to the singleton clusters of Bisecting Incremental K-Means. Overall the 

proposed algorithm combines the strengths of partitional and hierarchical clustering 

methods. 

 We run several sets of experiments. In the first set, we focused on the 

evaluation of the document clustering algorithms proposed in this thesis. All methods 

were tested using standard document collections (such as Reuters-21578 and 

OHSUMED). F-Measure was used to measure the overall “goodness” of the 

generated clusters. We examined how good the clusters produced by each clustering 

method match the set of categories (or classes) assigned to the documents (by human 

experts).  

 Experimental results on Reuters-21578 [35] indicated that the proposed 

Incremental K-Means yielded noticeably better F-Measure than the standard K-

Means. Additionally, we showed that Incremental K-Means needs only a single 

iteration of center adjustment to produce a good clustering partition. Then, we 

examined the performance of Bisecting Incremental K-Means. The results indicated 

that our Bisecting approach performs significantly better than Incremental K-Means 

in terms of F-Measure on both data sets. We continued our experiments by examining 

the performance of Bisecting Incremental K-Means method using vector 

representation of OHSUMED documents consisting of MeSH terms. We compared 

these results with those obtained by representation with single word terms. The results 

indicated that Bisecting Incremental K-Means yields significantly better F-Measure 

when the OHS0UMED documents are represented by MeSH terms rather than by 

single word terms. 

 Then, we evaluated the proposed BIC-Means algorithm in terms of clustering 

quality and clustering time and compared it with Bisecting Incremental K-Means. 

Experimental results on both data sets showed that a main advantage of BIC-Means is 

that requires significantly less time to build a cluster hierarchy than Bisecting 

Incremental K-Means method (the algorithm does not have to reach at singleton 

clusters at the leafs). In terms of F-Measure, BIC-Means achieved approximately the 

same performance with Bisecting Incremental K-Means. Notice though that BIC-
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Means was not expected to improve the clustering quality of our initial Bisecting 

technique (the exhaustive approach). It was introduced as an algorithm that 

incorporates a criterion for terminating the divisive procedure and for preventing from 

reaching meaningless leaf clusters. Therefore, BIC-Means is more suited than its 

competitors for clustering very large document collections effectively. This is due to 

not only its low computational requirements, but also comparable performance. 

Notice that, BIC-Means produces meaningful leaf clusters.  

 The second set of experiments focused on examining the effectiveness and 

efficiency of a cluster-based information retrieval system. We applied the proposed 

BIC-Means on OHSUMED (a very large document collection with 233445 medical 

articles from Medline) in order to create a hierarchy of clusters. We demonstrated that 

it is possible to apply clustering to reduce the size of the search (and therefore 

retrieval response times) on large data sets such OHSUMED.  

The search strategy relied on searching for the clusters that best match the 

query. We tested several variants of the above idea. All searched clusters at the leaf 

level of the hierarchy (intermediate clusters need not be searched as they contain 

documents which are also combined by the leaf clusters). Each search strategy 

incorporates different criteria for matching the query against leaf clusters. We 

evaluated the cluster-based retrieval strategies and compared them against retrieval 

results by exhaustive search on OHSUMED. In parallel, we examined the retrieval 

strategies using MeSH terms in document and cluster representation. These are more 

compact than single word representations and produce better clustering solutions on 

medical data sets. 

The experimental results indicated that among all cluster-based retrieval 

strategies proposed in this thesis the best results are obtained in case we examined 

only the leaf clusters which contained all the MeSH terms of the query in their 

centroid vectors (we searched the documents which were contained in the retrieved 

clusters). The best proposed cluster-based retrieval strategy searched only 30% of all 

OHSUMED documents as opposed to the sequential one which matches all 

documents (one by one) with the query. Experiments also demonstrated that this 

strategy is almost as effective as the retrieval by exhaustive search on OHSUMED. 

Summarizing, this cluster-based retrieval method runs faster without significant loss 

in precision and recall. 
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5.2 Future Work 

We present some open issues for future work in the following sub-sections. 

 

5.2.1 Additional Document Clustering and Retrieval Evaluation 

In this work, we experimentally evaluated our proposed document clustering 

algorithms on two document collections (OHSUMED and Reuters). We plan to 

extend our evaluation using other general or application specific data sets. 

Furthermore, we would like to compare our experimental results with results have 

reported by other hierarchical and partitional clustering algorithms proposed in the 

literature. 

 In addition to document clustering experiments we proposed several cluster-

based retrieval strategies to improve retrieval by exhaustive search on OHSUMED. It 

would be interesting to investigate additional cluster-based retrieval strategies. First, 

“top-down” strategy proposes that the search begins from the root of the tree and 

moves down the tree following the path of maximum similarity. Second, we would 

like to examine the “bottom-up” strategy. The search starts from a bottom-level 

cluster towards the root of the tree. 

5.2.2 Medline Clustering and Browsing 

In this thesis we applied the proposed BIC-Means algorithm on entire OHSUMED 

(subset of Medline) to produce a hierarchy of clusters. In the future, we plan to apply 

BIC-Means on the Medline database. Medline contains more that 15 million 

references (version 2006) to journal articles in life sciences, medicine and bio-

medicine. Due to the huge size of Medline, it would be a challenging task for us to 

organize this enormous amount of documents into meaningful clusters which contain 

related documents. Thus, hierarchical clustering of Medline could be used to improve 

the effectiveness and efficiency of document retrieval. The users will be able to locate 

quickly and accurately relevant information. Moreover, the produced clustering result 

will provide effective and intuitive browsing, navigation and summarization of the 

millions Medline documents.  
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5.2.3 Clustering Dynamic Document Collections 

Modern information systems have vast amount of un-organized data that change 

dynamically. Consider for example the flow of information that arrives incrementally 

on news wires message systems (Reuters, Marketwatch, Yahoo, etc) or a document 

collection that varies over time as new documents arrive continuously, and they need 

to be inserted in the collection. Clustering centroids are updated continuously and 

after a while clustering has to be recomputed.  

 Static clustering algorithms, such BIC-Means, generate a fixed number of 

clusters. We plan to develop the dynamic version of BIC-Means. It might 

incrementally compute clusters of similar documents, supporting both insertions and 

deletions. As a new document is inserted or deleted from the corpus the hierarchy of 

clusters is re-organized. This process would incorporate either new split on leaf 

clusters or merges of existing leaf clusters.  

 Summarizing, the dynamic clustering algorithm will keep dynamic corpora or 

databases organized. So far, dynamic versions of clustering algorithms have not been 

examined adequately in the literature. Dynamic clustering can be applied in research 

areas, such peer to peer systems and sensor networks, as well. 

5.2.4 Semantic Similarity Methods in Document Clustering  

In this study, the similarity between two documents is computed according to the 

Vector Space Model (VSM) [50] as the cosine of the inner product between their 

document vectors. VSM relates documents that use identical terminology. However, 

plain lexicographic analysis and matching between terms is not generally sufficient to 

determine if two terms are similar and consequently whether two documents are 

similar. The lack of common terms in two documents does not necessarily mean that 

the documents are not related. Two terms can be semantically similar (e.g., can be 

synonyms or have similar meaning) although they are lexically different terms in the 

documents. Therefore, computing document similarity by word-based classical 

information retrieval models (e.g., VSM, Probabilistic, Boolean) is not so effective. 

For example, VSM will not recognize synonyms or semantically similar terms (e.g., 

“car”, “automobile”). 

 In order to take advantage of semantically similar terms, we plan to integrate 

semantic knowledge into proposed document clustering algorithms. Several methods 

for determining semantic similarity between terms have been proposed in the 
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literature, most of them using ontologies such as WordNet TP

10
PT and MeSHTP

11
PT. The 

selection of ontology depends on the application domain. In case of natural language 

terms semantic similarity can be implemented and evaluated using WordNet as the 

underlying reference ontology. WordNet is a controlled vocabulary and thesaurus 

offering a taxonomic hierarchy of natural language terms developed at Princeton 

University. In case of medical terms semantic similarity can be computed using the 

MeSH ontology which contains medical and biomedical terms. As we used 

OHSUMED in many document clustering experiments, MeSH ontology will be 

appropriate for computing semantic similarity between medical terms and 

consequently between OHSUMED documents. 

Regarding our cluster-based information retrieval experiments, documents that 

contained related information but their context was described by other terms, were not 

returned to the user. For example, let's say that some documents use the term "ache" 

instead of "pain". Although the two terms are synonyms, if the user's query contains 

just the term "ache", documents that use "pain" instead, won't be returned.  

For this, it would be interesting to investigate cluster-based retrieval methods 

capable for discovering semantic similarities between documents and queries. In our 

retrieval experiments on OHSUMED, retrieval by semantic similarity could be 

applied by using MeSH as the underlying reference ontology and by associating terms 

using semantic similarity methods [33], [36], [37], [44], [45], [49], [56]. 

                                                 
TP

10
PThttp://wordnet.princeton.edu 

TP

11
PThttp://www.nlm.nih.gov/mesh 
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Appendix A 
 

Appendix 

 

A.1 MeSH DTD File 

<!-- MESH DTD files for descriptors desc2006.dtd --> 

 

<!ENTITY  % DescriptorReference "(DescriptorUI, DescriptorName)"> 

<!ENTITY  % normal.date "(Year, Month, Day)"> 

<!ENTITY  % ConceptReference” (ConceptUI, ConceptName, 

          ConceptUMLSUI?)"> 

<!ENTITY  % QualifierReference "(QualifierUI, QualifierName)"> 

<!ENTITY  % TermReference "(TermUI, String)"> 

 

<!ELEMENT DescriptorRecordSet (DescriptorRecord*)> 

<!ELEMENT DescriptorRecord (%DescriptorReference;, 

                            DateCreated, 

                            DateRevised?, 

                            DateEstablished?, 

                            ActiveMeSHYearList, 

                            AllowableQualifiersList?, 

                            Annotation?, 

                            HistoryNote?, 

                            OnlineNote?, 

                            PublicMeSHNote?, 

                            PreviousIndexingList?, 

                            EntryCombinationList?, 

                            SeeRelatedList?, 

                            ConsiderAlso?, 

                            RunningHead?, 
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                            TreeNumberList?, 

                            RecordOriginatorsList, 

                            ConceptList) > 

<!ATTLIST DescriptorRecord DescriptorClass (1 | 2 | 3 | 4)  "1"> 

 

<!ELEMENT ActiveMeSHYearList (Year+)> 

<!ELEMENT AllowableQualifiersList (AllowableQualifier+) > 

<!ELEMENT AllowableQualifier (QualifierReferredTo,Abbreviation )> 

<!ELEMENT Annotation (#PCDATA)> 

<!ELEMENT ConsiderAlso (#PCDATA) > 

<!ELEMENT Day (#PCDATA)> 

<!ELEMENT DescriptorUI (#PCDATA) > 

<!ELEMENT DescriptorName (String) > 

<!ELEMENT DateCreated (%normal.date;) > 

<!ELEMENT DateRevised (%normal.date;) > 

<!ELEMENT DateEstablished (%normal.date;) > 

<!ELEMENT DescriptorReferredTo (%DescriptorReference;) > 

 

<!ELEMENT EntryCombinationList (EntryCombination+) > 

<!ELEMENT EntryCombination     (ECIN, 

                                ECOUT)> 

<!ELEMENT ECIN (DescriptorReferredTo,QualifierReferredTo) > 

<!ELEMENT ECOUT (DescriptorReferredTo,QualifierReferredTo? ) > 

<!ELEMENT HistoryNote (#PCDATA)> 

<!ELEMENT Month (#PCDATA)> 

<!ELEMENT OnlineNote (#PCDATA)> 

<!ELEMENT PublicMeSHNote (#PCDATA)> 

<!ELEMENT PreviousIndexingList (PreviousIndexing)+> 

<!ELEMENT PreviousIndexing (#PCDATA) > 

<!ELEMENT RecordOriginatorsList (RecordOriginator, 

                                 RecordMaintainer?, 

                                 RecordAuthorizer? )> 

<!ELEMENT RecordOriginator (#PCDATA)> 

<!ELEMENT RecordMaintainer (#PCDATA)> 
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<!ELEMENT RecordAuthorizer (#PCDATA)> 

<!ELEMENT RunningHead (#PCDATA)> 

<!ELEMENT QualifierReferredTo (%QualifierReference;) > 

<!ELEMENT QualifierUI (#PCDATA) > 

<!ELEMENT QualifierName (String) > 

<!ELEMENT Year (#PCDATA) > 

<!ELEMENT SeeRelatedList (SeeRelatedDescriptor+)> 

<!ELEMENT SeeRelatedDescriptor (DescriptorReferredTo)> 

<!ELEMENT TreeNumberList (TreeNumber)+> 

<!ELEMENT TreeNumber (#PCDATA)> 

<!ELEMENT ConceptList (Concept+)  > 

<!ELEMENT Concept (%ConceptReference;, 

                   CASN1Name?, 

                   RegistryNumber?, 

                   ScopeNote?, 

                   SemanticTypeList?, 

                   PharmacologicalActionList?, 

                   RelatedRegistryNumberList?, 

                   ConceptRelationList?, 

                   TermList)> 

<!ATTLIST Concept PreferredConceptYN (Y | N) #REQUIRED > 

 

<!ELEMENT ConceptUI (#PCDATA)> 

<!ELEMENT ConceptName (String)> 

<!ELEMENT ConceptRelationList (ConceptRelation+) > 

<!ELEMENT ConceptRelation (Concept1UI, 

                           Concept2UI, 

                           RelationAttribute?)> 

<!ATTLIST ConceptRelation RelationName (NRW | BRD | REL) #IMPLIED > 

<!ELEMENT Concept1UI (#PCDATA)> 

<!ELEMENT Concept2UI (#PCDATA)> 

<!ELEMENT ConceptUMLSUI (#PCDATA)> 

<!ELEMENT CASN1Name (#PCDATA)> 

<!ELEMENT PharmacologicalActionList (PharmacologicalAction+)> 
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<!ELEMENT PharmacologicalAction (DescriptorReferredTo) > 

<!ELEMENT RegistryNumber (#PCDATA)> 

<!ELEMENT RelatedRegistryNumberList (RelatedRegistryNumber+)> 

<!ELEMENT RelatedRegistryNumber (#PCDATA)> 

<!ELEMENT RelationAttribute (#PCDATA)> 

<!ELEMENT ScopeNote (#PCDATA)> 

<!ELEMENT SemanticTypeList (SemanticType+)> 

<!ELEMENT SemanticType (SemanticTypeUI, SemanticTypeName) > 

<!ELEMENT SemanticTypeUI (#PCDATA)> 

<!ELEMENT SemanticTypeName (#PCDATA)> 

<!ELEMENT TermList (Term+)> 

<!ELEMENT Term (%TermReference;, 

                DateCreated?, 

                Abbreviation?, 

                SortVersion?, 

                EntryVersion?, 

                ThesaurusIDlist?)> 

<!ATTLIST Term    ConceptPreferredTermYN (Y | N) #REQUIRED 

                  IsPermutedTermYN (Y | N) #REQUIRED 

                  LexicalTag (ABB|ABX|ACR|ACX|EPO|LAB|NAM|NON|TRD) 

#REQUIRED 

                  PrintFlagYN (Y | N) #REQUIRED 

                  RecordPreferredTermYN (Y | N)  #REQUIRED> 

<!ELEMENT TermUI (#PCDATA)> 

<!ELEMENT String (#PCDATA)> 

<!ELEMENT Abbreviation (#PCDATA)> 

<!ELEMENT SortVersion (#PCDATA)> 

<!ELEMENT EntryVersion (#PCDATA)> 

<!ELEMENT ThesaurusIDlist (ThesaurusID+)> 

<!ELEMENT ThesaurusID (#PCDATA)> 
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A.2 Document Collections 

A.2.1 Reuters-21578 

Figure A.1 presents a Reuters-21578 document to demonstrate its structure and its 

attributes. The Reuters’s document tags are bolded. 

 

<REUTERS TOPICS="YES" LEWISSPLIT="TEST" 

CGISPLIT="TRAINING-SET" OLDID="7485" NEWID="18040"> 

<DATE> 2-JUN-1987 10:54:40.06</DATE> 

<TOPICS><D>acq</D></TOPICS> 

<PLACES><D>usa</D></PLACES> 

<PEOPLE></PEOPLE> 

<ORGS></ORGS> 

<EXCHANGES></EXCHANGES> 

<COMPANIES></COMPANIES> 

<UNKNOWN>  

    F 

    f1270 reute 

d f BC-ORION-BROADCAST-&lt;OBGI   06-02 0079</UNKNOWN> 

<TEXT>  

<TITLE>ORION BROADCAST &lt;OBGI.O> BUYS FORD &lt;F> 

UNIT</TITLE> 

<DATELINE>    DENVER, June 2 - </DATELINE><BODY>Orion Broadcast 

Group Inc said its majority-owned Orion Financial Services Corp subsidiary has 

agreed to purchase FN Realty Services Inc from Ford Motor Co for 1,200,000 to 

1,500,000 dlrs in cash and notes. 

       It said closing is expected within 45 days after receipt of regulatory approvals. 

       FN provides loan collection, accounting, data processing and administrative 

services to the real estate industry. 

 Reuter 

 </BODY></TEXT> 

</REUTERS>  

Figure A.1: A Reuters-21578 document 
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A.2.2 OHSUMED 

Figure A.2 illustrates an OHSUMED document and Figure A.3 presents the field 

(attribute) definitions. 

 

.I 6 

.U 

87049093 

.S 

Am J Emerg Med 8703; 4(6):514-5 

.M 

Abdominal Injuries/ET; Accidents, Occupational; Accidents, Traffic/*; Adult; 

Amputation; Blood Transfusion/*; Case Report; Female; Fractures/ET; Human; 

Pelvic Bones/IN; Shock, Hemorrhagic/ET/*TH; Wounds, Nonpenetrating/*CO. 

.T 

Massive transfusion without major complications after trauma. 

.P 

JOURNAL ARTICLE. 

.W 

A case of massive degloving injury of the trunk, with open pelvic fracture, and 

evisceration of abdominal contents from blunt trauma is presented. The most 

significant aspect of this case was the transfusion of 173 units of packed cells and 176 

units of fresh frozen plasma in the first thirty hours. The patient ultimately recovered 

and returned to work. 

.A 

Brotman S; Lamonica C; Cowley RA. 

Figure A.2: An OHSUMED document 
 

.I sequential identifier (important note: documents should be processed in this   

            order) 

.U MEDLINE identifier (UI) (<DOCNO> used for relevance judgements) 

.M Human-assigned MeSH terms (MH) 

.T Title (TI) 

.P Publication type (PT) 

.W Abstract (AB) 
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.A Author (AU) 

.S Source (SO) 

Figure A.3: Field Definitions 
 

A.3 Lucene 

Lucene is a full-featured (Java-based) open source toolkit for text indexing and 

searching. It is easy to use, flexible, and powerful - a model of good object-oriented 

software architecture. Powerful abstractions and useful concrete implementations 

make Lucene very flexible, and allow new users to get up and running quickly and 

painlessly. We use Lucene in order to perform various operations needed by the 

document clustering and retrieval experiments we conduct as part of this work 

(indexing, searching etc). Lucene is freely available at http://lucene.apache.org. 

 

A.4 Retrieval on OHSUMED – Evaluation Queries 

A.4.1 61 Original OHSUMED Queries 

For the retrieval evaluation we used a subset of 61 queries of the original OHSUMED 

query set. We present them below. 

 

.I  2 

.B 
60 yo male with disseminated intravascular coagulation 
.W 
pathophysiology and treatment of disseminated intravascular coagulation 
 
.I  3 
.B 
prolonged prothrombin time 
.W 
anticardiolipin and lupus anticoagulants, pathophysiology, epidemiology, 
complications 
 
.I  5 
.B 
58 yo with cancer and hypercalcemia 
.W 
effectiveness of etidronate in treating hypercalcemia of malignancy 
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.I  6 
.B 
55 yo female,postmenopausal 
.W 
does estrogen replacement therapy cause breast cancer 
 
.I  9 
.B 
30 year old with fever, lymphadenopathy, neurologic changes and rash 
.W 
t-cell lyphoma associated with autoimmune symptoms 
 
.I  10 
.B 
57yo male with hypercalcemia secondary to carcinoma 
.W 
effectiveness of gallium therapy for hypercalcemia 
 
.I  12 
.B 
30 y old female suvivor of satanic cult 
.W 
descriptions of injuries associated with cult activities 
 
.I  14 
.B 
35 y o male with aids and pancytopenia 
.W 
pancytopenia in aids, workup and etiolog 
 
.I  16 
.B 
chronic fatigue syndrome 
.W 
chronic fatigue syndrome, managment and treatment 
 
.I  17 
.B 
29 yo female 3 months pregnant 
.W 
Rh isoimmunization, review topics 
 
.I  18 
.B 
endocarditis 
.W 
endocarditis, duration of antimicrobial therapy 
 
.I  19 
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.B 
18 yo pregnant woman with hyperthroidism 
.W 
use of beta-blockers for thyrotoxicosis during pregnancy 
 
.I  20 
.B 
cerebral palsy  with depression 
.W 
relationship of cerebral palsy and depression 
 
.I  22 
.B 
35 yo with advanced metastatic breast cancer 
.W 
chemotherapy advanced for advanced metastatic breast cancer 
 
.I  25 
.B 
49 yo B male with hypotension, hypokalemia, and low aldosterone. 
.W 
isolated hypoaldosteronism, syndromes where hypoaldosteronism and hypokalemia 
occur concurrently 
 
.I  29 
.B 
24 y o female g1 p0 9 months pregnant with thrombocytopenia 
.W 
thrombocytopenia in pregnancy, etiology and management 
 
.I  30 
.B 
63 y o male with acute renal failure probably 2nd to aminoglycosides/contrast dye 
.W 
acute tubular necrosis due to aminoglycosides, contrast dye, outcome and treatment 
 
.I  31 
.B 
45 yo wf , chronic lower extremity pain 
.W 
chronic pain management, review article, use of tricyclic antidepressants 
 
.I  32 
.B 
40 y o male with cocaine withdrawal 
.W 
cocaine withdrawal management 
 
.I  33 
.B 
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67 yo wm with hemiballismus 
.W 
carotid endarterectomy, when to perform 
 
.I  35 
.B 
42 YO WITH HEPATOCELLULAR CARCINOMA 
.W 
RISK FACTORS and TREATMENT for HEPATOCELLULAR CARCINOMA 
 
.I  37 
.B 
FATIGUE 
.W 
FIBROMYALGIA/FIBROSITIS, DIAGNOSIS AND TREATMENT  
 
.I  38 
.B 
DIABETIC GASTROPARESIS 
.W 
DIABETIC GASTROPARESIS, TREATMENT 
 
.I  39 
.B 
35 Y O WITH GASTROENTERITIS 
.W 
VIRAL GASTROENTERITIS, CURRENT MANAGEMENT 
 
.I  41 
.B 
46 Y0 NEW ASCITES 
.W 
ASCITES, DIFFERENTIAL diagnosis and work-up 
 
.I  42 
.B 
31yo female with downs syndrome 
.W 
keratoconus, treatment options 
 
.I  43 
.B 
55 yo male with back pain 
.W 
back pain, information on diagnosis and treatment 
 
.I  46 
.B 
64 yo black male 
.W 
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occult blood sceening, need for routine screening 
 
.I  48 
.B 
35 year old with peripheral neuropathy and edema 
.W 
which peripheral neuropathies have associated edema 
 
.I  50 
.B 
62 year old with stroke and systolic hypertension 
.W 
isolated systolic hypertension, shep study 
 
.I  52 
.B 
74 yo man with post-radiation pericardial effusion and near tamponade 
.W 
indications for and success of pericardial windows and pericardectomies 
 
.I  54 
.B 
older male 
.W 
angiotensin converting enzyme inhibitors, review article 
 
.I  55 
.B 
24 y. o. w. f. s/p DVT currently on coumadin 
.W 
course of anticoagulation with coumadin 
 
.I  57 
.B 
22 yo with fever, leukocytosis, increased intracranial pressure, and central herniation 
.W 
cerebral edema secondary to infection, diagnosis and treatment 
 
.I  58 
.B 
65 yo female with a breast mass 
.W 
diagnostic and therapeutic work up of breast mass 
 
.I  60 
.B 
28 yr old male with endocarditis 
.W 
treatment of endocarditis with oral antibiotics 
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.I  62 

.B 
26 y o female with bulimia 
.W 
evaluation for complications and management of bulimia 
 
.I  63 
.B 
migraine 
.W 
treatment of migraine headaches with beta blockers and calcium channel blockers 
 
.I  64 
.B 
30 y o with hypothermia 
.W 
prevention, risk factors, pathophysiology of hypothermia 
 
.I  66 
.B 
35 female with pickwickian syndrome 
.W 
complications of prolonged progesterone 
 
.I  69 
.B 
70 y o female with left lower quadrant pain 
.W 
diverticulitis, differential diagnosis and management 
 
.I  71 
.B 
27 yo with cystic fibrosis and renal failure 
.W 
cystic fibrosis and renal failure, effect of long term repeated use of aminoglycosides 
 
.I  73 
.B 
23 YO male with alcolol abuse here for TIPS procedure. 
.W 
portal hypertension and varices, management with TIPS procedure 
 
.I  74 
.B 
43 y o female with fevers, increased CPK 
.W 
neuroleptic malignant syndrome, differential diagnosis, treatment 
 
.I  75 
.B 
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carcinoid tumors of the liver and pancreas 
.W 
carcinoid tumors of the liver and pancreas, research, treatments 
 
.I  77 
.B 
30 y o with dehydration, hyperthermia 
.W 
heat exhaustion, management and pathophysiology 
 
.I  79 
.B 
25 y o female with anorexia/bulimia 
.W 
complications and management of anorexia and bulimia 
 
.I  81 
.B 
48 y o with culture negative endocarditis suspected 
.W 
culture negative endocarditis, organisms, diagnosis, treatment 
 
.I  82 
.B 
24 y o with HIV 
.W 
aids dementia, workup 
 
.I  83 
.B 
patient s/p renal transplant with fever 
.W 
infections in renal transplant patients 
 
.I  84 
.B 
50 year old with copd 
.W 
theophylline uses--chronic and acute asthma 
 
.I  88 
.B 
lung cancer 
.W 
lung cancer, radiation therapy 
 
.I  89 
.B 
60 year old with lung abscess 
.W 
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surgery vs. percutaneous drainage for lung abscess 
 
.I  90 
.B 
30 year old female with paroxysmal anaphylaxis 
.W 
Catamenorrheal Anaphylaxis 
 
.I  92 
.B 
66 year old male with Guillain-Barre syndrome 
.W 
Guillain-Barre syndrome, Sensitivity and specificity of nerve conduction velocity 
tests 
 
.I  94 
.B 
23 YO W DYSURIA 
.W 
Urinary Tract Infection, CRITERIA FOR TREATMENT AND ADMISSION 
 
.I  96 
.B 
41 yo w f here for new visit healthy otherwise 
.W 
preventive health care for the adult patient 
 
.I  100 
.B 
32 yo schizophrenic patient with peripheral neuropathy 
.W 
association of neuroleptics and peripheral neuropathy 
 
.I  103 
.B 
50 yo woman with breakthrough vaginal bleeding while on estrogen and progesterone 
therapy 
.W 
differential diagnosis of breakthrough vaginal bleeding while on estrogen and 
progesterone therapy 
 
.I  105 
.B 
68 yo woman with anemia of chronic illness 
.W 
review of anemia of chronic illness 
 
.I  106 
.B 
42 yo w/HIV and diarrhea 
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.W 
HIV and the GI tract, recent reviews 
 

A.4.2 MeSH-Based Representations of the 61 OHSUMED Queries 

We present the corresponding MeSH-based representations of the 61 queries 

presented in subsection A.4.1. The number at the left is the identifier of each query. 

 

2. disseminated_intravascular_coagulation male therapeutics  

3. lupus prothrombin_time anticoagulants epidemiology  

5. hypercalcemia neoplasms etidronic_acid  

6. breast_neoplasms female estrogen_replacement_therapy  

9. exanthema fever t-lymphocytes lymphatic_diseases  

10. gallium hypercalcemia carcinoma male  

12. wounds_and_injuries female  

14. acquired_immunodeficiency_syndrome pancytopenia male  

16. fatigue_syndrome,_chronic therapeutics  

17. rh_isoimmunization female  

18. endocarditis  

19. pregnancy thyrotoxicosis pregnant_women  

20. cerebral_palsy depression  

22. breast_neoplasms drug_therapy  

25. syndrome hypotension hypoaldosteronism aldosterone male hypokalemia   

29. pregnancy female thrombocytopenia  

30. necrosis male aminoglycosides kidney_failure kidney_failure,_acute 

therapeutics  

31. pain antidepressive_agents,_tricyclic lower_extremity  

32. cocaine male  

33. dyskinesias endarterectomy,_carotid  

35. carcinoma,_hepatocellular risk_factors therapeutics   

37. fatigue diagnosis therapeutics  

38. gastroparesis therapeutics  

39. gastroenteritis  

41. diagnosis,_differential ascites  
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43. back_pain male diagnosis therapeutics world_health_organization prognosis 

therapeutics  

46. mass_screening male occult_blood  

48. edema peripheral_nervous_system_diseases  

50. hypertension cerebrovascular_accident  

52. pericardiectomy pericardial_effusion  

54. peptidyl-dipeptidase_a enzyme_inhibitors male  

55. warfarin  

57. intracranial_pressure brain_edema leukocytosis fever diagnosis infection 

therapeutics  

58. work breast female therapeutics  

60. male endocarditis anti-bacterial_agents therapeutics  

62. bulimia female evaluation_studies  

63. calcium_channels calcium_channel_blockers migraine_disorders therapeutics  

64. hypothermia risk_factors  

66. obesity_hypoventilation_syndrome progesterone female  

68. blood lupus vasculitis rectum  

69. pain diagnosis,_differential female diverticulitis  

71. cystic_fibrosis aminoglycosides kidney_failure  

73. hypertension,_portal methods male varicose_veins  

75. pancreas liver research carcinoid_tumor therapeutics  

77. fever heat_exhaustion dehydration  

79. bulimia female anorexia  

81. culture diagnosis endocarditis therapeutics  

82. hiv dementia acquired_immunodeficiency_syndrome  

83. patients fever infection transplants  

84. pulmonary_disease,_chronic_obstructive asthma theophylline  

88. lung_neoplasms radiation  

89. surgery lung_abscess drainage  

90. female anaphylaxis  

92. neural_conduction sensitivity_and_specificity guillain-barre_syndrome male  

94. urinary_tract urinary_tract_infections therapeutics  

100. antipsychotic_agents patients peripheral_nervous_system_diseases association  

103. estrogens progesterone diagnosis,_differential hemorrhage women  
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105. chronic_disease anemia women  

106. hiv gastrointestinal_tract diarrhea  
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