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Abstract

Spoken dialogue systems are widely used both by adults and by children. Dialogue
systems for children are used in educational and entertainment applications, as well
as in health care for the diagnosis and therapy of speech-related dis
uencies. However
speech-technology resources designed for the adult population are not directly usable
for children users since linguistic and acoustic characteristics of spontaneous children's
speech di�er signi�cantly from those of adults'. Actually children's speech characteris-
tics exhibit great variance even among ages and genders.

In this thesis, we investigated the duration, lexical and linguistic properties of chil-
dren's spontaneous speech for children ages 8 to 14 interacting with animated characters
in a computer game. The corpus used here was collected during CHIMP Wizard of Oz
experiment based on a spoken dialogue system with multimodal input. Out data was
organized in 3 age groups in order to preserve statistical signi�cance. Age and gender
trends are studied for 
uency, lexical and syntactical parameters, such as number of
mispronounciations and hesitations, sentence duration, phone duration, speaking rate,
vocabulary size, number of words per utterance and linguistic variability measured via
bigram language model perplexity. Statistical signi�cance of the results is tested using
2-way ANOVA models. The analysis shows signi�cant di�erences between read- and
spontaneous children speech in terms of absolute values of acoustic and linguistic pa-
rameters, as well as linguistic variability. Variations in children linguistic characteristics
according to age are also spotted. In addition, spontaneous data present clear gender-
speci�c trends, e.g., increased `language exploration' by girls in the 12-14 age group and
a clear di�erence between males and females, as far as language use is concerned.

Finally, the meaning of the results acquired and the applicability of these results
for acoustic and linguistic modeling and spoken dialogue systems interface design is
discussed.

x



Ðåñßëçøç

Ôá äéáëïãéêÜ óõóôÞìáôá ÷ñçóéìïðïéïýíôáé óÞìåñá åõñÝùò ü÷é ìüíï áðü åíÞëéêåò áëëÜ
êáé áðü ðáéäéÜ. Óôçí ðåñßðôùóç ôùí ðáéäéþí ôá óõóôÞìáôá áõôÜ åöáñìüæïíôáé ôüóï ãéá
åêðáéäåõôéêïýò üóï êáé ãéá øõ÷áãùãéêïýò óêïðïýò, êáèþò êáé óôçí éáôñéêÞ ãéá äéÜãíùóç
êáé èåñáðåßá äéáôáñá÷þí ðïõ ó÷åôßæïíôáé ìå ôçí ïìéëßá êáé ôçí ãëþóóá. ÐáñïëáõôÜ ïé
åöáñìïãÝò öùíÞò ðïõ Ý÷ïõí ó÷åäéáóôåß ãéá åíÞëéêåò äåí ìðïñïýí íá ÷ñçóéìïðïéçèïýí
Üìåóá êáé ãéá ðáéäéÜ, êáèþò ôá ãëùóóïëïãéêÜ êáé öùíçôéêÜ ÷áñáêôçñéóôéêÜ ôùí ðáéäéþí
äéáöÝñïõí óçìáíôéêÜ áðü åêåßíá ôùí åíçëßêùí. ÌÜëéóôá ðáñáôçñåßôáé ìåãÜëç äéáöïñï-
ðïßçóç ôùí ÷áñáêôçñéóôéêþí áõôþí óå ðáéäéÜ äéáöïñåôéêþí çëéêéþí êáé öýëïõ.

Óôçí åñãáóßá áõôÞ ìåëåôÞèçêáí êáé áíáëýèçêáí ãëùóóïëïãéêÜ, ëåêôéêÜ êáé áêïõ-
óôéêÜ ÷áñáêôçñéóôéêÜ ôïõ áõèüñìçôïõ ðáéäéêïý ëüãïõ ðáéäéþí çëéêßáò 8-14 ÷ñïíþí,
êáôÜ ôç äéÜñêåéá äéÜäñáóçò ìå êéíïýìåíïõò ÷áñáêôÞñåò ðáé÷íéäéþí. Ôá äåäïìÝíá ðïõ
÷ñçóéìïðïéÞèçêáí åß÷áí óõëëå÷èåß óôá ðëáßóéá ôïõ Project CHIMP, åíüò Wizard of Oz
ðåéñÜìáôïò ðïõ ðåñéåëÜìâáíå ôçí ÷ñÞóç åíüò ðïëõôñïðéêïý äéáëïãéêïý óõóôÞìáôïò. Ôá
äåäïìÝíá ìáò ïñãáíþèçêáí óå 3 çëéêéáêÝò ïìÜäåò, ðñïêåéìÝíïõ íá äéáóöáëßóïõìå ôçí
óôáôéóôéêÞ óçìáóßá ôùí áðïôåëåóìÜôùí ìáò. Ç äéÜñêåéá ôùí öùíçìÜôùí êáé ôùí ðñï-
ôÜóåùí, ï ñõèìüò ïìéëßáò, ç åõ÷Ýñåéá ëüãïõ, ôï ìÝãåèïò ôïõ ëåîéëïãßïõ êáé ç ãëùóóéêÞ
ðïëõðëïêüôçôá ìÝóù bigram ãëùóóéêþí ìïíôÝëùí ìåëåôÞèçêáí óå óõíÜñôçóç ìå ôçí
çëéêßá êáé ôï öýëï. ¸ãéíå åðßóçò óýãêñéóç ìåôáîý ôïõ áõèüñìçôïõ ðáéäéêïý ëüãïõ êáé
ôïõ ðáéäéêïý ëüãïõ êáôÜ ôçí áíÜãíùóç . Ôá áðïôåëÝóìáôá ôçò ìåëÝôçò áõôÞò åëÝã÷èç-
êáí ùò ðñïò ôçí óôáôéóôéêÞ ôïõò óçìáóßá ìÝóù 2-way ANOVA ìïíôÝëùí. Ç áíÜëõóÞ
ìáò êáôáäåéêíýåé óçìáíôéêÝò äéáöïñÝò ìåôáîý ôïõ áõèüñìçôïõ ðáéäéêïý ëüãïõ êáé ôïõ
ëüãïõ ðáéäéþí ðïõ äéáâÜæïõí Ýíá êåßìåíï. Ðáñáôçñåßôáé åðßóçò Ýíôïíç äéáöïñïðïßçóç
ôùí ãëùóóïëïãéêþí ÷áñáêôçñéóôéêþí ôùí ðáéäéþí áðü çëéêßá óå çëéêßá, üðùò åðßóçò êáé
ìåôáîý áãïñéþí-êïñéôóéþí. Ãéá ðáñÜäåéãìá ôá êïñßôóéá çëéêßáò 12-14 ÷ñïíþí öáßíïíôáé
áðü ôçí áíÜëõóÞ ìáò íá åîåñåõíïýí ðïëý ðåñéóóüôåñï ôçí ãëþóóá êáé ôéò äïìÝò ôçò óå
óýãêñéóç ìå ôá áíôßóôïé÷çò çëéêßáò áãüñéá, ôá ïðïßá öáßíïíôáé íá ÷ñçóéìïðïéïýí ôçí
ãëþóóá êõñßùò ùò åñãáëåßï ãéá íá ïëïêëçñþóïõí ãñçãïñüôåñá ôï ðáé÷íßäé êáé ü÷é ùò
ìÝñïò ôïõ ðáé÷íéäéïý.

Ôá óõìðåñÜóìáôá ôçò áíÜëõóçò áõôÞò ìåëåôÞèçêáí åðßóçò ùò ðñïò ôçí óçìáóßá ôïõò
ãéá ôïí ó÷åäéáóìü áêïõóôéêþí êáé ãëùóóéêþí ìïíôÝëùí ãéá ðáéäéÜ êáèþò êáé ãéá ôï
ó÷åäéáóìü åîåéäéêåõìÝíùí äéáëïãéêþí óõóôçìÜôùí .
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Chapter 1

Spoken Dialogue Systems and
Children Speech

1.1 Introduction

Spoken dialogue systems are widely used nowadays both by adults and children. With
the remarkable improvements in computer performance and speech recognition, spoken
dialogue systems are applied to various areas, such as voice portal services, car nav-
igation systems, and input for controlling PC operations. These applications assume
that the users are mainly adults and the adult speech databases are easily available.
However creating spoken dialogue systems speci�cally aimed at children is of great im-
portance since children form a crucial segment of customer population for interactive
multimedia systems and they are also eager and quick to embrace and use new technolo-
gies. Moreover speech-technology resources designed for the adult population are not
directly usable for children users since linguistic and acoustic characteristics of spon-
taneous children's speech di�er signi�cantly from those of adults'. Actually children's
speech characteristics exhibit great variance even among ages and genders, while there
are also social factors that interfere. Moreover human-human dialog and child-computer
interaction exhibit di�erent linguistic and acoustic characteristics. Other factors also
interfere, such as the emotional state of the child [57], the nature of the interaction
(task to be accomplished), etc. Lastly, spontaneous children speech and `read' children
speech also di�er signi�cantly.

1.2 Spoken Dialogue Systems for Children

The ease of children in adopting technology [39] has stimulated and boosted interest.
The improvement of human-machine interaction (HMI) for young children has become
an issue of great importance as youth have grown more comfortable with using new
technologies. Recently, children's speech has been gaining growing attention from the
research community and in industry. The potential contributions of automatic inter-
active systems for children are tremendous, especially in areas such as education and
entertainment. The three main speech related �elds where research on children speech
has acquired considerable momentum are health care (aids for diagnostic and therapy),

1
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edutainment (aids for pronunciation, understanding), and entertainment (computer
games). Children are not just another group of users. Speech and multimedia tech-
nologies are still far from perfection for adults and children's speech poses even more
compelling questions to solve. Di�erences in cognitive development and application-
speci�c domain mismatches demand that children are examined separately.

Early spoken dialogue application prototypes that were speci�cally aimed at chil-
dren included word games for pre-schoolers [50], aids for reading [36] and pronunciation
tutoring [48]. Recently a number of systems have been implemented with advanced
spoken dialogue interfaces, multimodal interaction capabilities and/or embodied con-
versational characters [39, 26, 5, 6]. Data collected from these systems as well as new
available corpora [3, 56, 4] have improved our understanding of verbal child-machine
interaction.

One of the reasons why research on children's speech has not been as extensive as
that on adults' is that it is more di�cult to collect the children's speech. Most of the
databases of children recordings focus on the 6-18 age group (or a subset thereof) where
collection conditions can be more easily controlled and the subjects are collaborating.
Examples of corpora (`read speech') that is mostly used for acoustic analysis and mod-
eling are the American English CID children corpus [33], the KIDS corpus [12], the CU
Kids' Audio Speech Corpus [26] and the PF-STAR corpus available in the following
languages: British English, Italian, German and Swedish [3]. These corpora consist of
prompted speech and monologues where children recount stories.

As far as child-machine spontaneous speech interaction (dialogue data) is concerned
a handful of corpora has been recently collected and analyzed. In [5], the NICE fairy-
tale corpus is presented, where children use open-ended spoken dialogue to interact
with animated characters in a game setting. In [4], a child-robot interaction corpus is
presented; children interacted with an AIBO robot is open-ended scenarios. However,
since the AIBO did not answer back, the children's utterances mostly consisted of short
commands and little dialogue interaction took place.

As far as interaction with computer animated characters is concerned, in [5] a
high degree of social involvement of the children with the characters was observed.
In CHIMP, it was found that using animated sequences to communicate information
and adding `personality' to the interface signi�cantly improved the user experience.

1.3 Multimodal Dialogue Systems

A limiting feature of modern interfaces that has also become increasingly evident is their
reliance on a single mode of interaction-a mouse movement, key press, speech input,
or hand motion. Even though it may be adequate in many cases, the use of a single
interaction mode proves to be inadequate in HCI.

Recently, there has also been increasing interest in the design of multimodal inter-
faces that combine speech with a variety of other input modalities such as text, touch,
mouse clicks, handwriting, and gestures [49]. Results of these investigations suggest
that the use of multiple modalities, rather than a single modality, leads to more ef-
�cient and natural interaction and enhances the overall user experience (for example,
[9]). Multimodality is attractive in the creation of conversational interfaces for children
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in the sense of both overcoming inherent limitations in speech technology and exploiting
the ubiquitous availability and/or familiarity with conventional modalities such as the
computer mouse, keyboard, joystick and pen.

There are numerous potential bene�ts in integrating multiple modalities into HCI.
As stated and analysed in [49], the reasons range from the fact that natural human
interaction itself has a multimodal character to the statistical advantages of combining
multiple observations.

• Practical Reasons
Some inherent drawbacks of current advanced single-modality HCI systems under-
mine their e�ectiveness and call for multimodal HCI. Single-modality HCI lacks
robustness and accuracy. However, concurrent use of two or more interaction
modalities may loosen the strict restrictions needed for accurate and robust inter-
action with the individual modes and can help reduce the complexity and increase
the naturalness of the interface for HCI.

• Biological Reasons
Almost any natural communication among humans involves multiple, concurrent
modes of communication. Thus, any HCI system that tries to have the same nat-
uralness should be multimodal. Indeed, studies have shown that people prefer to
interact multimodally with computers, since among other things, such interaction
eases the need for specialized training.

• Mathematical Reasons
The disadvantage of using a single modal system is that it may not be able ad-
equately to reduce the uncertainty for decision making. Uncertainty arises for
example when features are missing or when observations are ambiguous. On the
other hand, it is well known that it is statistically advantageous to combine mul-
tiple observations from the same source because improved estimates are obtained
using redundant observations.

In [39], a corpus was collected in a Wizard-of-Oz, scenario where children used
speech to play an interactive computer game using voice commands or keyboard and
mouse and interact with animated characters on screen. The CHildren's Interactive
Multimedia Project (acronym: CHIMP) aimed at providing essential guidelines for en-
gineering successful multimodal-input multimodal-output applications for children with
an emphasis on the spoken dialog interface. The resulting corpus (also used in our
analysis) was used to create novel language models and understanding strategies for di-
alogue systems aimed towards young users. The authors found that user experience was
improved by adding `personality' to the interface, allowing for multimodal interaction
and using animated sequences to convey information. Examining the dialog strategies
of the children, the belief that, although speech might not be the most e�cient modality
always, it is a more natural modality, was reinforced. This agrees with the observations
in the NICE project [5], where most users reported that it was quite natural to use
speech in games and many expected that games will be like this in the future. In fact,
in the CHIMP project, it was found that the children tended to switch modalities from
voice to mouse clicks either when there was repeated ASR errors or when there was
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a need for dialogue disambiguation. In addition, the 
exible choice of input modality
(any of speech, natural language, commands or buttons) made the application easy to
use even for novice users. Children enjoyed interacting with the computer using voice
but also preferred combining interface modalities.

Moreover, in [56], a corpus of child-machine interaction via a multimodal voice and
pen interface was collected and analyzed.

1.4 Children's Speech Speci�cs

Recent research using both naturalistic and experimental methods has found that the
vast majority of young children's early language is organized around concrete, item
based linguistic schemas. From this beginning, children then construct more abstract
and adult-like linguistic constructions, but only gradually. Children imitatively learn
concrete linguistic expressions from the language they hear around them, and then,
using their general cognitive and social-cognitive skills, categorize, schematize and cre-
atively combine these individually learned expressions and structures [52].

Both acoustic and linguistic characteristics of children's speech di�er from those
of adults: pitch, volume, formant positions, and co-articulations vary strongly due to
anatomical and physiological development [33],[21]; the linguistic structure of the chil-
dren's utterance is not too uniform, and lapses, short or not well-constructed sentences,
repetitions, and dis
uencies are generally frequent, mainly depending on age and socio-
economic factors [33].

The acoustic characteristics of children for `read speech' have been �rst analyzed
in [11, 30] and later on in [33] for American English. Recently such studies have been
carried out for other languages as well, e.g., Italian [21]. In all studies, children demon-
strate larger fundamental and formant frequency, as well as, higher acoustic variability.
In general, it is considered that variability converges to adult values around 13-14 years
of age [33]. A detailed comparison of temporal features and speech segment durations
for children vs adults (for `read speech') can be found in [31, 33]. Again, distinct age-
related di�erences were found. On average, the speaking rate of children is slower than
that of adults. Further, children speakers display higher variability in speaking rate,
vocal e�ort, and degree of spontaneity.

In [13] and [14],detailed analysis of the way di�erent kinds of pausing strategies,
such as empty and �lled pauses, and phoneme lengthening are used by children to shape
the discourse structure in spontaneous speech (narrations) are presented. Spontaneous
speech, as well as other types of speech, is characterized by the presence of silent inter-
vals (empty pauses) and vocalizations (�lled pauses) that do not have a lexical meaning.
These pausing means play several communicative functions and their occurrence is de-
termined by several factors such as build up tension, signal anxiety, emphasis, syntactic
complexity, degree of spontaneity, gender, and educational and socio-economical infor-
mation. Cognitive psychologists suggest that pausing strategies re
ect the complexity
of neural information processing. Pauses will surface in the speech stream as the end
product of a `planning' process that cannot be carried out during speech articulation
and the amount and length of pausing re
ects the cognitive e�ort related to lexical
choices and semantic di�culties for generating new information. However, pauses are
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not only generated by psychological motivations but also as a linguistic mean for dis-
course segmentation. The reported data showed that children pause, like adults, to
recover from their memory the new information they try to convey. Higher is the recov-
ery e�ort, longer is the pausing time. As a linguistic mean for discourse segmentation,
pauses are used by children to mark words, clause, and paragraph boundaries.

Phonological characteristics of imitative (repeat-after-me) and spontaneous children
speech are compared in [34].The �ndings of this study suggest that the relationship be-
tween the phonological characteristics of children's imitative and spontaneous speech is
not static, but varies as children proceed through the course of acquiring their language.
Initially, children seem to learn words and, more incidentally, corresponding articula-
tions. Such words are not strictly phonemically principled and variability may be seen
in a child's production of di�erent words with the same sounds. Imitations occurring
at this time appear to re
ect this same variability. That is, the productions of words
imitated may not be in close correspondence with the child's spontaneous productions
of other words with the same target sounds.

In an attempt to explain the di�erences between female and male children's speech
[32] introduces two factors: the frequency hypothesis and the role-model hypothesis.
Children of di�erent gender speak di�erently either because they are usually spoken
to di�erently or because they model on their same-sex parent or same-sex peers. The
�ndings of this analysis support mainly the second hypothesis. Moreover in [32], it is
argued that social factors like early instutionalisation of children lead to increased peer
group in
uence and help explain why gender di�erences occur at an earlier age among
children of di�erent cultures.

There is no detailed analysis in the literature of the acoustic and linguistic char-
acteristics of spontaneous children's speech due to the lack of large corpora. However,
there are limited studies of child-machine spontaneous speech interaction using smaller
corpora. In [5], signi�cant di�erences in the duration and language usage where found
in child-machine dialogue compared to human-human dialogue. Speci�cally children
ages 8-15 communicated with fairy-tale characters in a computer game scenario, using
shorter utterances, slower speaking rate and much less �lled pauses, �ller words and
phrases, compared to human-human dialogue. In [2], politeness and frustration mark-
ers were analyzed for the CHIMP database (the database also analyzed in this thesis).
Younger children used politeness markers more commonly and expressed frustration
verbally more often than older children. In [56], the multimodal integration patterns of
children ages 7-10 were investigated for a speech and pen interface. It was found that
the modality usage was similar between children and adults, although children tend to
use both input modes simultaneously rather than sequentially.

In this study, we analysed the linguistic and acoustic characteristics of spontaneous
children speech while interacting with a computer animated character in a WoZ ex-
periment (CHIMP). Duration, 
uency and lexical statistics were acquired as well as
linguistic variabilities. A comparison with previous acquired results for read speech was
also performed. The results of the this analysis lead to interesting conclusions regarding
children spontaneous speech's characteristics.

The rest of the thesis is organized as follows:
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In Chapter 2 basic elements of Language Modeling theory and n-gram statistical models
are presented.
In Chapter 3 Acoustic Models and their underlying characteristics are described.
In Chapter 4 we describe the CHIMP game scenario for collecting data and the corpus
used in our analysis
In Chapter 5 our method for calculating the results is presented, as well as the tools we
used.
In Chapter 6 the most representative results are shown and discussed.
Finally, in Chapter 7 general conclusions and future research directions are discussed.



Chapter 2

Statistical Language Modeling

2.1 Introduction

The notion of `word' in linguistics is denoted by the term `lexeme', the minimal unit
of language, which has one or more semantic interpretations. A word exists with other
words and these units build more larger comprehensive units: phrases, sentences, para-
graphs, etc. It is reasonable to claim that a word preserves a kind of conceptual rela-
tionship with its neighboring words, in some way. From this point of view each word
contains an amount of information about the other words of its lexical environment.
We can say that the occurrence of a word is dependent to the context words . Thus, it
is possible to utilize the surface statistics of language in order to proceed to a deeper
level.

Modeling a word sequence can be useful for various reasons, for example for pre-
dicting the next word in a sequence. The prediction becomes applicable when it can be
measured. By treating words as events and distributing to them a probability mass we
can create a probabilistic language model that will be able not only to predict the next
word in a sequence but also to estimate the probability even for a completely unknown
word.

The simplest language probabilistic model lets any word to follow any other word
with equal probability. A more complex language model uses the frequency of occurrence
of a word. For example, consider a paragraph that has totally 100 words, in which the
words `example' and `a' occur 5 and 12 times, respectively. According to the simple
language model the words `example' and `but' have 5

100 and 12
100 probability, respectively,

to follow any word. But we also have to consider the following: In a given phrase, for
example in the phrase `this is a nice', not all of the words of the vocabulary have the
same probability to follow the word `nice'. For example the word `example' is more
reasonable than `a' to follow the word `nice'. This observation shows that we have to
consider the conditional probability of a word given the previous word, instead of using
the relative word frequency.

7
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2.2 Language modeling

In few words, a language model gives the probability P (s) of a sentence s. Let S be a
word sequence. In general, statistical language modeling estimates P (S).

The majority of the language models decomposes the sentence probability, P (s),
into a product of conditional probabilities

P (s) = P (w1 : : : wn) =
N∏
i=1

P (wi|hi) (2.2.1)

where wi is the i
th word in the sentence and hi = {w1; w2; : : : ; wi−1} is the sequence of

preceding words (the history of wi).

2.3 N-gram language modeling

An n-gram is a sequence of n symbols (e.g. words, syntactic categories, etc) and an
n-gram language model (LM) is used to predict each symbol in the sequence given its
n − 1 predecessors. It is built on the assumption that the probability of a speci�c
n-gram occurring in some unknown test text can be estimated from the frequency of
its occurrence in some given training text. Thus, as illustrated by the picture above,
n-gram construction is a three stage process. Firstly, the training text is scanned and
its n-grams are counted and stored in a database of gram �les. In the second stage
some words may be mapped to an out of vocabulary class or other class mapping may
be applied, and then in the �nal stage the counts in the resulting gram �les are used to
compute n-gram probabalities which are stored in the language model �le. Lastly, the
goodness of a language model can be estimated by using it to compute a measure called
perplexity on a previously unseen test set. In general, the better a language model then
the lower its test-set perplexity.

Although the basic principle of an n-gram LM is very simple, in practice there are
usually many more potential n-grams than can ever be collected in a training text
in su�cient numbers to yield robust frequency estimates. Furthermore, for any real
application such as speech recognition, the use of an essentially static and �nite training
text makes it di�cult to generate a single LM which is well-matched to varying test
material. For example, an LM trained on newspaper text would be a good predictor
for dictating news reports but the same LM would be a poor predictor for personal
letters or a spoken interface to a 
ight reservation system. A �nal di�culty is that the
vocabulary of an n-gram LM is �nite and �xed at construction time. Thus, if the LM is
word-based, it can only predict words within its vocabulary and furthermore new words
cannot be added without rebuilding the LM.

2.3.1 General

The N-gram language model considers the language as a Markov process of order N−1.

P (wi|hi) = P (wi | wi−N+1; : : : ; wi−1) ≈ P (wi | wi−1
i−N+1) (2.3.1)
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Figure 2.1: Language Modeling Diagram.

Equation 2.3.1 states that the probability of word wi given all the previous words of the
sentence can be approximated by the probability given only the previous N − 1 words.

N-gram probabilities are computed by counting and normalizing the N-gram occur-
rences. For the bigram case the conditional probability of word wi−1 given that it is
followed by word wi is computed as

P (wi|wi−1) =
C(wi−1wi)∑
w C(wi−1w)

=
C(wi−1wi)
C(wi−1)

(2.3.2)

Equation 2.3.2 takes the count C of wi−1wi bigram and divides it by the sum of all
bigrams that have wi−1 as �rst word. Note that the latter sum is equal to the count of
wi−1 unigram. For the general case of N-gram model the above equation is written as

P (wi|wi−1
i−N+1) =

C(wi−1
i−N+1wi)

C(wi−1
i−N+1)

(2.3.3)

Equations 2.3.2 and 2.3.3 use the frequency interpretation of probability [1], applying
the technique of Maximum Likelihood Estimation (MLE). Even with large corpora
many N-grams occur only once or they have low counts, so the computation of N-gram
probabilities remains a sparse estimation problem. Thus, it is preferable not to apply
MLE of N-gram probabilities in a straightforward way, based on counts. Instead, several
smoothing approaches [20] can be used in order to smooth the ML estimates.

2.3.2 Smoothing

The N-gram models are trained from corpora. In practice, every training corpus is
of �nite size, so, naturally some acceptable N-grams are bound to be absent. This
intrinsic characteristic of corpora leads to zero and low counts of N-grams. Using the
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MLE approach the absent N-grams are assigned zero probability, while the probabilities
of low-count N-grams are underestimated.

Consider the sentence `put language back into language modeling' If the bigram `put
language' has never occurred in the training corpus, then

P (language | put) =
C(put language)∑

w C(put w)
=

0
a
; a > 0 (2.3.4)

The probability of sentence P (put language : : :modeling) = 0. Clearly, this is an
underestimate for the sentence probability, since in real life there is an `amount' of
probability by which the sentence is likely to occur.

Smoothing battle the problem of data sparseness by re-evaluating the zero- and low-
probabilities and assigning them non-zero values. The name of this strategy describes
what is actually happens. Smoothing techniques make the probability distributions
more uniform: adjust low probabilities upward and high probabilities downward [20].
Next, we brie
y survey some of the most widely-used smoothing strategies in order to
outline the underlying ideas.

Additive smoothing

This is a simplistic technique of smoothing, since it pretends that an N-gram occurs �
times more than it does, where 0 < � ≤ 1 [22, 55, 24]. For example, for the bigram case
we have [20]

PAdd(wi | wi−1) =
� + C(wi−1 wi)

� | V | +
∑

wi
C(wi−1 wi)

(2.3.5)

where set V is the vocabulary of the training corpus and |V | denotes the cardinality of
V . In general, the additive smoothing has poor performance [53, 54].

Good-Turing estimate

The key idea of Good-Turing smoothing is the exploration of N-grams of high counts
in order to re-estimate the amount of probability mass that is to be given to N-grams
with zero or low counts [28]. The Good-Turing estimate feigns that for any N-gram
that occurs r times we can feign that it occurs r? times:

r? = (r + 1)
kr+1

kr
(2.3.6)

where kr+1 and kr is the number of N-grams that occur exactly r + 1 and r times,
respectively. For instance, if a bigram occurs r times, the corresponding probability is

PGT (wi | wi−1) =
r?∑r=1
∞ rkr

(2.3.7)

In particular, the Good-Turing estimate is applied as stand alone N-gram smoothing
approach, because does not combine high- and low-order models that obtain better
performance [20].
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Deleted interpolation

It is fruitful to interpolate higher-order N-gram models with lower-order N-gram models,
because there are cases whereas there is no su�cient data to compute probabilities for
the higher-order models [16]. So, the lower-order models is more trustworthy, providing
supplementary useful information.

PDelInt(wi|wi−1
i−N+1) = �1(wi−1

i−N+1)PML(wi|wi−1
i−N+1) + �2(wi−1

i−N+1)PDelInt(wi|wi−1
i−N+2)
(2.3.8)

The smoothed model of Equation 2.3.8 use recursion as interpolates linearly an N th-
order model estimated with maximum likelihood and an N th−1-order smoothed model
[18]. Note that the � weights sum to 1:∑

i

�i = 1 (2.3.9)

Each � value is a function of the context. The optimal �(w
i−1
i−N+1) is di�erent for

di�erent histories. For example, a context that have been occurred for many times
should be given a high weight since its' distribution tends to be reliable. In contrast,
for a history of low frequency, a lower � weight will be reasonable. For the training of
the � parameters many approaches have been proposed in the literature [16, 47, 19, 20].

Witten-Bell smoothing

The Witten-Bell smoothing can be considered as an instance of deleted interpolation
[27].

As Equation 2.3.8, the N th-order maximum likelihood model is linearly interpolated
with the N th−1-order smoothed model:

PWB(wi|wi−1
i−N+1) = �(wi−1

i−N+1)PML(wi|wi−1
i−N+1) + (1− �(wi−1

i−N+1))PWB(wi|wi−1
i−N+2)
(2.3.10)

The computation of �(wi−1
i−N+1) parameter requires the number of unique words that

follow the history wi−1
i−N+1. This number is denoted as U1+(wi−1

i−N+1•). Using a more
formal notation we write [20]

U1+(wi−1
i−N+1•) =| {wi : C(wi−1

i−N+1wi) > 0} | (2.3.11)

The number of words that occur one or more times (1+) are denoted by U1+. The
symbol • is used for a free variable (in our case, word) that is summed over. The
parameter �(wi−1

i−N+1) is calculated as

�(wi−1
i−N+1) = 1−

U1+(wi−1
i−N+1•)

U1+(wi−1
i−N+1•) +

∑
wi
C(wii−N+1)

(2.3.12)

Substituting Equation 2.3.12 into Equation 2.3.10, we have

PWB(wi|wi−1
i−N+1) =

C(wii−N+1) + U1+(wi−1
i−N+1•)PWB(wi|wi−1

i−N+2)∑
wi
C(wii−N+1) + U1+(wi−1

i−N+1•)
(2.3.13)
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According to Equation 2.3.10, we use the higher-order model with probability �(wi−1
i−N+1),

while the lower-order model is used with 1 − �(wi−1
i−N+1) probability. The probability

mass that equals to the 1− �(wi−1
i−N+1) probability, is the probability of a word that is

not observed immediately after the wi−1
i−N+1 history in the training data, but appears in

any later position.

Absolute smoothing

In absolute smoothing [25] a higher-order model is interpolated with a lower-order
model. However, instead of multiplying the higher-order distribution by a factor �(i−1

i−N+1),
the higher-order distribution is derived by subtracting a �xed discount D 6 1 from each
non-zero count.

PAbs(wi|wi−1
i−N+1) =

max{C(wii−N+1)−D; 0}∑
wi
C(wii−N+1)

+ (1− �(wi−1
i−N+1))PAbs(wi|wi−1

i−N+2)

(2.3.14)
In order to make the distribution sum to 1, the �(wi−1

i−N+1) factor is computed as

�(wi−1
i−N+1) = 1− D∑

wi
C(wii−N+1)

U1+(wi−1
i−N+1•) (2.3.15)

In [25], a suggested value for D is

D =
n1

n1 + 2n2
(2.3.16)

where n1 and n2 are the total number of N-grams of the higher-order distribution with
exactly one and two counts, respectively.

Kneser-Ney smoothing

In Kneser-Ney smoothing [46] the higher-order model is interpolated with a lower-order
model and the higher distribution is discounted as in absolute smoothing. The di�er-
ence between absolute and Kneser-Ney smoothing is in the lower-order distribution.
In Kneser-Ney method, the lower-order distribution is proportional to the number of
di�erent words that it follows. Consider for example a language model trained over
a corpus about computer industry and the word \Packard". If the frequency of this
word is high, then the MLE of the unigram probability will, also, be high. The idea of
Kneser-Ney smoothing is that the unigram probability of word \Packard"must be low,
since it folows only one di�erent word, \Packard".

PKN (wi|wi−1
i−N+1) =

max{C(wii−N+1)−D; 0}∑
wi
C(wii−N+1)

+

+
D∑

wi
C(wii−N+1)

U1+(wi−1
i−N+1•)PKN (wi|wi−1

i−N+2)
(2.3.17)

In order to make the distribution sum to 1, we take

PKN (wi|wi−1
i−N+2) =

U1+(•wii−N+2)

U1+(•wi−1
i−N+2•)

=
| {wi−N+1 : C(wii−N+1) > 0} |
| {wi−N+1; wi : C(wii−N+1) > 0} |

(2.3.18)
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2.3.3 Backo�

One main contribution of the discussed smoothing methods is the solution of the prob-
lem caused by the zero-count N-grams. Moreover, there is another methodology that
tackle this problem. Suppose that there are no occurrences of a particular trigram,
wi−2 wi−1 wi, in the training corpus. In this case we can estimate the trigram probabil-
ity P (wi | wi−2 wi−1) using the bigram probability P (wi | wi−1). In the same manner,
if there are no counts of the bigram wi−1 wi, we can estimate P (wi | wi−1) using the
unigram probability P (wi). This strategy is called backo�. According to the above
description of backo� method, an amount of probability mass is taken away from the
higher-order models and is distributed to the lower-order models [7, 10, 15]. Of course,
the resulted probability estimation must remain valid, i.e., sums to one.

The backo� model was introduced by Katz [37] and is similar to the deleted interpo-
lation in the sense that the construction of an N-gram model is based on an N-1 model.
The di�erence between backo� and deleted interpolation is that in backo�, for example,
if there are non-zero frequency trigarm, we use only these counts without interpolating
the bigram and unigram models [10]. The \back o�" step downwards to a lower-order
model is followed if there are zero counts for the higher-order model

For a trigram language model, the backo� method is de�ned as [10]

P (wi | wi−2 wi−1) =


PML(wi | wi−2 wi−1); if C(wi−2 wi−1 wi) > 0

�1PML(wi | wi−1); if C(wi−2 wi−1 wi) = 0

and C(wi−1 wi) > 0

�2PML(wi); otherwise

(2.3.19)
Some smoothing techniques assume that the unseen N-grams are all equally probable
and an amount of probability mass is distributed ti them according to an even scheme.
A more neat and fair way is to combine smoothing with backo� for distributing the
probability mass to the unseen events. The smoothing quanti�es the total mass of
probability that must be reserved for the unseen events and the backo� procedure
de�nes how to assign the reserved probability.

Let's consider Equation 2.3.19. The presence of � parameters ensures that the
computed probability is a valid probability. This can be explained as follows. If the
frequency of the trigram of interest is non-zero, then the PML(wi | wi−2 wi−1) prob-
ability that is computed over relative frequencies is a true probability. Otherwise, we
have to back o� to a lower-order model, and, then, we will add extra probability mass,
resulting to a non-true probability. So, the backo� model must be smoothed. Using
these considerations, the PML(·) probabilities of Equation 2.3.19 must be substituted
by smoothed probabilities P̃ (·). The use of smoothing saves an amount of probability
mass for the lower-order models. Moreover, the � parameters guarantee that the sum of
the distributed (to the lower-order models) portions of probability mass is equal to the
initially saved amount of probability [10]. In the general N-gram case, the probability
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mass that must be given form an N-gram to an N-1-gram is de�ned as follows [10].

�(wi−1
i−N+1) =

1−
∑

wi:C(wi
i−N+1)>0 P̃ (wi | wi−1

i−N+1)

1−
∑

wi:C(wi
i−N+1)>0 P̃ (wi | wi−1

i−N+2)
(2.3.20)

Note that the � parameter is a function of the history wi−1
i−N+1. Also, recall that the P̃ (·)

probabilities are estimated using smoothing. In �nal, Equation 2.3.19 is reformulated
as [10]

PBo(wi | wi−2 wi−1) =


P̃ (wi | wi−2 wi−1); if C(wi−2 wi−1 wi) > 0

�(wi−1
i−2)P̃ (wi | wi−1); if C(wi−2 wi−1 wi) = 0

and C(wi−1 wi) > 0

�(wi− 1)P̃ (wi); otherwise

(2.3.21)
Some approaches when apply the backo� method treat N-grams of only one occurrence
as zero-frequency events.

2.4 N-gram language modeling toolkits

Two widely-used toolkits for N-gram language modeling that are freely available are:

• CMU-Cambridge Statistical Language Modeling toolkit:a suite of UNIX
software tools to facilitate the construction and testing of statistical language
models. The �rst version was written by Roni Rosenfeld at Carnegie Mellon
University[45] and

• HTK toolkit: originally developed at the Machine Intelligence Laboratory of the
Cambridge University Engineering Department . The toolkit is primarily used for
building and manipulating HMMs for speech recognition, although a component
for N-gram language modeling is also included.1

2.5 Evaluation of language models

The �eld of information theory [8] provides some useful notions in order to measure
the performance of a language model. Entropy and perplexity are used to evaluate a
language model.

Natural language is a kind of information source and a natural language sentence
can be considered as a emitted signal, being a sequence of words. The distribution
of the next word is highly dependent to the previous words. There is a great deal of
variability and uncertainty in natural language. Entropy is a measure of information.
Alternatively, entropy can be considered as a measure of `uncertainty' of a random

1In this thesis, CMU was used for acquiring Linguistic Variability Metrics and HTK for Duration
Metrics.
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variable. Let W be a random variable that ranges over the corpus vocabulary V and
has a probability function Pw. The entropy of the random variable is

H(W ) = −
∑
w∈V

P (w) log2 P (w) (2.5.1)

If log base 2 is used, the resulting units called binary digits. If the base 10 is used, the
resulting units are expressed in decimal digits. Intuitively, entropy can be interpreted
as a lower bound of bits that are required in order to encode a chunk of information
according to an optimal encoding [10].

Given that a language model uses all possible vocabulary words to predict the next
words, it follows that the model embodies a per-word entropy (entropy rate). The per-
word entropy of a language model, L, for all possible sequences of words w1; w2; : : : ; wm
is as follows [58]

H(L) = − lim
m→∞

1
m

∑
w1;w2;:::;wm

P (w1; w2; : : : ; wm) log2 P (w1; w2; : : : ; wm) (2.5.2)

If the language being modeled is ergodic [38], the summation in Equation 2.5.2 can be
omitted and H(L) becomes [58]

H(L) = − lim
m→∞

1
m

log2 P (w1; w2; : : : ; wm) (2.5.3)

It is interesting to note that if we have a long enough sequence of words (given the
ergodicity), then H(L) can be approximated as [58]

Ĥ(L) = − 1
m

log2 P (w1; w2; : : : ; wm) (2.5.4)

Equation 2.5.4 has a suitable form for measuring the quality of a language model in
terms of per-word entropy. This measurement is achieved by the notion of perplexity
as [58]

PP = 2Ĥ(L) (2.5.5)

If we substitute Equation 2.5.4 into Equation 2.5.5, we have [58]

PP = P̂ (w1; w2; : : : ; wm)−
1
m (2.5.6)

that is the perplexity of a language model. P̂ (w1; w2; : : : ; wm) denotes the estimated
probability that the language model, L, assigns to the sentence w1; w2; : : : ; wm.

Perplexity can be seen as a measurement giving the average number of the most
probable words ,which can follow any word, with equal probability. It follows that more
qualitative language models have lower perplexities.

2.6 Summary

In this chapter we discussed brie
y the main aspects of N-gram statistical language
modeling. Some of the smoothing and backo� techniques were presented and an evalu-
ation measurement for the quality of language models was de�ned.



Chapter 3

Acoustic Models and Acoustic
Analysis Fundamentals

3.1 Introduction

The acoustic models play an important - if not the most important - role within any
speech recognizer. Their task is to allow the recognizer to derive a measure, usually a
probability, of the incoming stream of feature vectors corresponding to some elementary
unit of speech. Three overall choices are associated with acoustic modeling:

• The choice of basic units of speech to be modelled

• The choice of model architecture taking into account the speech units and the
selected feature estimation scheme

• The choice of training- and decoding algorithms

The units of speech to be modelled are usually linguistically motivated and in most
cases context dependent phonemes are chosen, in particular when large or non-�xed
vocabularies are to be recognized. In the last decade the dominant model architecture
has been Hidden Markov Models (HMM) as impressive performance has been achieved
across a number of sites, tasks and languages. HMMs model the sequence of feature vec-
tors as a piecewise stationary process in which an utterance is considered as a sequence
of discrete stationary states with instantaneous transitions between them. The HMM
approach de�nes two concurrent stochastic processes: the sequence of states (modeling
the temporal structure of speech) and a set of state output processes modeling the fea-
ture distribution in each state. The HMM is called hidden because the state sequence
is not observable. State of the art speech recognition typically makes use of context
dependent HMMs in the form of triphones or even quinphones, i.e. phonemes de�ned
also from their context. However, to model all existing contexts for many speakers
would be impossible, and parameters are therefore shared between several context de-
pendent models to achieve robust training for all possible contexts. Decision trees are
often used to cluster model parameters with respect to context and equally important,
they provide useful structures for predicting unseen triphones (for exible vocabulary
applications).

16
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3.2 System Overview

The goal of speech recognition can be formulated as follows: for a given acoustic obser-
vation X = X1; X2; :::Xn, �nd the corresponding sequence of words Ŵ = w1; w2; :::; wm
with maximum a posteriori probability P (W |X). Using Bayes' decision rule, this can
be expressed as:

Ŵ = arg max
w

P (W |X) = arg max
w

P (X|W )P (W )
P (X)

(3.2.1)

Since the acoustic observation X is �xed, equation 3.2.1 is equal to:

Ŵ = arg max
w

P (X|W )P (W ) (3.2.2)

Probability P (W ) is the a priori probability of observing W independent of the
acoustic observation and is referred to as a language model. Probability P (X|W ) is
the probability of observing acoustic observation X given a speci�c word sequence W
and is determined by an acoustic model. In pattern recognition theory, the probability
P (X|W ) is referred to as the likelihood function. It measures how likely it is that the
underlying parametric model of W will generate observation X.

In a typical speech recognition process, a word sequence W is postulated and its
probability determined by the language model. Each word is then converted into a
sequence of phonemes using a pronunciation dictionary, also known as the lexicon. For
each phoneme there is a corresponding statistical model called a hidden Markov model
(HMM). The sequence of HMMs needed to represent the utterance are concatenated
to a single composite model and the probability P (X|W ) of this model generating
observation X is calculated. This process is repeated for all word sequences and the
most likely sequence is selected as the recognizer output.

Figure 3.1: A general system for training and recognition.

Most contemporary speech recognition systems share an architecture as illustrated
in Fig. 3.1. The acoustic observations are represented by feature vectors. Choosing
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appropriate feature vectors is essential to good speech recognition. The process of
extracting features from speech waveforms will be described in detail in the next section.
Hidden Markov models are used almost exclusively for acoustic modeling in modern
speech recognition systems.

3.3 Basic Elements of Speech Recognition and Acoustic Anal-

ysis

The acoustic analysis is the process of extracting feature vectors from input speech
signals (i.e. waveforms). A feature vector is essentially a parametric representation of
a speech signal, containing the most important information and stored in a compact
way. In most speech recognition systems, some form of preprocessing is applied to the
speech signal (i.e. applying transformations and �lters), to reduce noise and correlation
and extract a good set of feature vectors. In Fig. 3.2 the process of extracting feature
vectors is illustrated. The speech signal is divided into analysis frames at a certain frame
rate. The size of these frames is often 10 ms, the period that speech is assumed to be
stationary for. Features are extracted from an analysis window. The size of this window
is independent of the frame rate. Usually the window size is larger than the frame rate,
leading to successive windows overlapping, as is illustrated in Fig. 3.2. Much work
is done in the �eld of signal processing and several methods of speech analysis exist.
Two of the most popular will be discussed: linear predictive coding and Mel-frequency
cepstral analysis.

Figure 3.2: Feature Extraction.

3.3.1 Linear Predictive Coding

Linear predictive coding (LPC) is a fast, simple and e�ective way of estimating the main
parameters of speech. In linear predictive coding the human vocal tract is modeled
as an in�nite impulse response �lter system that produces the speech signal. This
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modeling produces an accurate representation of vowel sounds and other voice speech
segments that have a resonant structure and a high degree of similarity over time shifts
that are multiples of their pitch period. The linear prediction problem can be stated
as �nding the coe�cients ak, which result in the best prediction (that minimizes the
mean-square prediction error) of speech sample s[n] in terms of past samples s[n− k],
with k = 1; 2; :::; P . The predicted sample ŝ[n] is given by:

ŝ[n] =
P∑
k=1

aks[n− k] (3.3.1)

with P the required number of past sample of s[n]. The prediction error can be formu-
lated as:

e[n] = s[n]− ŝ[n] = s[n]−
P∑
k=1

aks[n = k] (3.3.2)

To �nd the predictor coe�cients several methods exist, such as the Covariance
method and the Autocorrelation method. In both methods the key to �nding the
predictor coe�cients involves solving large matrix equations.

3.3.2 Mel-Frequency Cepstral Analysis

In contrast to linear predictive coding, Mel-frequency cepstral analysis is a perceptually
motivated representation. Perceptually motivated representations include some aspect
of the human auditory system in their design. In the case of Mel-frequency cepstral
analysis, a nonlinear scale, referred to as the Mel-scale, is used that mimics the acoustic
range of the human hearing. The Mel-scale can be approximated by:

Mel(f) = 2595 log10

(
1 +

f

700

)
(3.3.3)

The process of obtaining feature vectors based on the Mel-frequency is illustrated in
Fig. 3.3. First, the signal is transformed to the spectral domain by a Fourier transform.
The obtained spectrum of the speech signal is then smoothed by integrating the spectral
coe�cients with triangular frequency bins arranged on the non-linear Mel-scale.

Next, a log compression is applied to the �lter bank output, in order to make the
statistics of the estimated speech power spectrum approximately Gaussian. In the �nal
processing stage, a discrete cosine transform (DCT) is applied. It is common for feature
vectors derived from Mel-frequency cepstral analysis to contain �rst-order and second-
order di�erential coe�cients besides the static coe�cients. Sometimes a measure of the
signal energy is included. A typical system usings feature vectors based onMelfrequency
cepstral coe�cients (MFCCs) can have the following con�guration:

• 13th-order MFCC ck

• 13th-order 1st-order delta MFCC computed from 4ck = ck+2 − ck−2

• 13th 2nd-order delta MFCC computed from 44ck = 4ck+1 −4ck−1
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Figure 3.3: Mel-frequency cepstral coe�cients.

3.3.3 Hidden Markov Models

In this section the hidden Markov model (HMM) will be introduced. The HMM is
a powerful statistical method of characterizing data samples of a discrete time-series.
Data samples can be continuously or discretely distributed and can be either scalars or
vectors. The HMM has become the most popular method for modeling human speech
and is used successfully in automatic speech recognition, speech synthesis, statistical
language modeling and other related areas. As an introduction to hidden Markov
models, the Markov chain will be described �rst.

Markov chains

A �rst order Markov Chain of N states is a triplet (S;A; �), S is a set of N states, A is
the N x N matrix of the transition probabilities between states, � is an N-dimensional
row vector of the probability to be in a state at the �rst time. A Markov Chain property
is that the sum of each row of A is one. Another property that holds for Markov Chains
is that initial probabilities �i must sum up to one. The Markov chain is a state model
of a process where one can observe the state transitions that for a �rst-order Markov
Chain depend only on the state at the previous discrete time.

Hidden Markov Models

A Hidden Markov Model is a Markov Chain where output symbols or probabilistic func-
tions describing output symbols are associated to the states. This result to a model with
embedded stochastic process with an underlying stochastic process that is not directly
observable but can be observed only through another set of stochastic processes that
produce the sequence of observations.

An HMM with discrete symbol observations is characterized by:
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1. The number of states in the model. Although the states of the model are hidden,
there is some signi�cance attached to the states, such as in speech signals. These
states are labeled as 1; 2; ::; N .

2. The number of distinct observation symbols,M, per state, for example a set of
phonemes. These symbols are denoted as V = v1; v2; :::; vM .

3. The state-transition probability distribution A = aij where

aij = P [qt+1 = j|qt = i], 1 ≤ i; j ≤ N

4. The observation symbol probability distribution B = bj(k), in which

bj(k) = P [ot = vk|qt = j], 1 ≤ k ≤M

de�nes the symbol distribution in state j.

5. The initial distribution in state � = {�t}, in which

�t = P [q1 = i], 1 ≤ i ≤M

To summarize, HMM speci�cation requires two model parameters N and M, speci-
�cation of the observation symbols and the speci�cation of the three sets of probability
measures A, B and �, described by the compact notation:

� = (A;B; �)

3.3.4 Basic Algorithms on HMMs

Given the de�nition of an HMM above, there are three basic problems that need to be
addressed:

1. The Evaluation Problem : Given an HMM � and a sequence of observations
O = o1;o2; : : : ;oT , what is the probability that the observations are generated
by the model, p{O|�}?

2. The Decoding Problem: Given a model � and a sequence of observations
O = o1;o2; : : : ;oT , what is the most likely state sequence in the model that
produced the observations?

3. The Learning Problem: Given a model � and a sequence of observations O =
o1;o2; : : : ;oT , how should we adjust the model parameters Λ; B; � in order to
maximize p{O|�}?
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Evaluation problem can be used for isolated (word) recognition. Decoding problem is
related to the continuous recognition as well as to the segmentation. Learning problem
must be solved, if we want to train an HMM for the subsequent use of recognition tasks.

The Evaluation Problem and the Forward Algorithm

Let the forward probability �j(t) for some model M with N states be de�ned as

�j(t) = P (o1; : : : ;ot; x(t) = j|M): (3.3.4)

That is, �j(t) is the joint probability of observing the �rst t speech vectors and being in
state j at time t. This forward probability can be e�ciently calculated by the following
recursion

�j(t) =

[
N−1∑
i=2

�i(t− 1)aij

]
bj(ot): (3.3.5)

This recursion depends on the fact that the probability of being in state j at time t
and seeing observation ot can be deduced by summing the forward probabilities for all
possible predecessor states i weighted by the transition probability aij . The slightly odd
limits are caused by the fact that states 1 and N are non-emitting.The initial conditions
for the above recursion are

�1(1) = 1 (3.3.6)

�j(1) = a1jbj(o1) (3.3.7)

for 1 < j < N and the �nal condition is given by

�N (T ) =
N−1∑
i=2

�i(T )aiN : (3.3.8)

Notice here that from the de�nition of �j(t),

P (O|M) = �N (T ): (3.3.9)

Hence, the calculation of the forward probability also yields the total likelihood P (O|M).
The backward probability �j(t) is de�ned as

�j(t) = P (ot+1; : : : ;oT |x(t) = j;M): (3.3.10)

As in the forward case, this backward probability can be computed e�ciently using the
following recursion

�i(t) =
N−1∑
j=2

aijbj(ot+1)�j(t+ 1) (3.3.11)

with initial condition given by
�i(T ) = aiN (3.3.12)

for 1 < i < N and �nal condition given by

�1(1) =
N−1∑
j=2

a1jbj(o1)�j(1): (3.3.13)
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Notice that in the de�nitions above, the forward probability is a joint probability
whereas the backward probability is a conditional probability. This somewhat asym-
metric de�nition is deliberate since it allows the probability of state occupation to be
determined by taking the product of the two probabilities. From the de�nitions,

�j(t)�j(t) = P (O; x(t) = j|M): (3.3.14)

Hence the probability of state occupation Lj(t) is

Lj(t) = P (x(t) = j|O;M) (3.3.15)

=
P (O; x(t) = j|M)

P (O|M)

=
1
P
�j(t)�j(t)

where P = P (O|M).

The Decoding Problem and the Viterbi Algorithm (Recognition)

The previous section has described the basic ideas underlying HMM parameter re-
estimation using the Baum-Welch algorithm. In passing, it was noted that the e�cient
recursive algorithm for computing the forward probability also yielded as a by-product
the total likelihood P (O|M). Thus, this algorithm could also be used to �nd the
model which yields the maximum value of P (O|Mi), and hence, it could be used for
recognition.

In practice, however, it is preferable to base recognition on the maximum likelihood
state sequence since this generalizes easily to the continuous speech case whereas the
use of the total probability does not. This likelihood is computed using essentially
the same algorithm as the forward probability calculation except that the summation
is replaced by a maximum operation. For a given model M , let �j(t) represent the
maximum likelihood of observing speech vectors o1 to ot and being in state j at time
t. This partial likelihood can be computed e�ciently using the following recursion (cf.
equation 3.3.5)

�j(t) = max
i
{�i(t− 1)aij} bj(ot): (3.3.16)

where
�1(1) = 1 (3.3.17)

�j(1) = a1jbj(o1) (3.3.18)

for 1 < j < N . The maximum likelihood P̂ (O|M) is then given by

�N (T ) = max
i
{�i(T )aiN} (3.3.19)

As for the re-estimation case, the direct computation of likelihoods leads to under-

ow, hence, log likelihoods are used instead. The recursion of equation 3.3.16 then
becomes

 j(t) = max
i
{ i(t− 1) + log(aij)}+ log(bj(ot)): (3.3.20)
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This recursion forms the basis of the so-called Viterbi algorithm. As shown in Fig. 3.4,
this algorithm can be visualised as �nding the best path through a matrix where the
vertical dimension represents the states of the HMM and the horizontal dimension
represents the frames of speech (i.e. time). Each large dot in the picture represents
the log probability of observing that frame at that time and each arc between dots
corresponds to a log transition probability. The log probability of any path is computed
simply by summing the log transition probabilities and the log output probabilities
along that path. The paths are grown from left-to-right column-by-column. At time t,
each partial path  i(t− 1) is known for all states i, hence equation 3.3.20 can be used
to compute  j(t) thereby extending the partial paths by one time frame.

Figure 3.4: The Viterbi Algorithm for Isolated Word Recognition.

The Learning Problem and the Baum-Welch Re-Estimation

To determine the parameters of a HMM it is �rst necessary to make a rough guess at
what they might be. Once this is done, more accurate (in the maximum likelihood
sense) parameters can be found by applying the so-called Baum-Welch re-estimation
formulae.

Here the basis of the formulae will be presented in a very informal way. Firstly, it
should be noted that the inclusion of multiple data streams does not alter matters sig-
ni�cantly since each stream is considered to be statistically independent. Furthermore,
mixture components can be considered to be a special form of sub-state in which the
transition probabilities are the mixture weights

Thus, the essential problem is to estimate the means and variances of a HMM in
which each state output distribution is a single component Gaussian, that is

bj(ot) =
1√

(2�)n|�j|
e−

1
2
(ot−�j)′�−1

j (ot−�j) (3.3.21)

If there was just one state j in the HMM, this parameter estimation would be easy. The
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maximum likelihood estimates of �j and �j would be just the simple averages, that is

�̂j =
1
T

T∑
t=1

ot (3.3.22)

and

�̂j =
1
T

T∑
t=1

(ot − �j)(ot − �j)′ (3.3.23)

In practice, of course, there are multiple states and there is no direct assignment of ob-
servation vectors to individual states because the underlying state sequence is unknown.
Note, however, that if some approximate assignment of vectors to states could be made
then equations 3.3.22 and 3.3.23 could be used to give the required initial values for the
parameters.

Since the full likelihood of each observation sequence is based on the summation of
all possible state sequences, each observation vector ot contributes to the computation
of the maximum likelihood parameter values for each state j. In other words, instead
of assigning each observation vector to a speci�c state as in the above approximation,
each observation is assigned to every state in proportion to the probability of the model
being in that state when the vector was observed. Thus, if Lj(t) denotes the probability
of being in state j at time t then the equations 3.3.22 and 3.3.23 given above become
the following weighted averages

�̂j =
∑T

t=1 Lj(t)ot∑T
t=1 Lj(t)

(3.3.24)

and

�̂j =
∑T

t=1 Lj(t)(ot − �j)(ot − �j)′∑T
t=1 Lj(t)

(3.3.25)

where the summations in the denominators are included to give the required normali-
sation.

Equations 3.3.24 and 3.3.25 are the Baum-Welch re-estimation formulae for the
means and covariances of a HMM. A similar but slightly more complex formula can be
derived for the transition probabilities.

In equations 3.3.24 and 3.3.25, the probability of state occupation Lj(t) is given by
equation 3.3.15.

All of the information needed to perform HMM parameter re-estimation using the
Baum-Welch algorithm is now in place. The steps in this algorithm may be summarised
as follows

1. For every parameter vector/matrix requiring re-estimation, allocate storage for
the numerator and denominator summations of the form illustrated by equa-
tions 3.3.24 and 3.3.25. These storage locations are referred to as accumulators

2. Calculate the forward and backward probabilities for all states j and times t.

3. For each state j and time t, use the probability Lj(t) and the current observation
vector ot to update the accumulators for that state.
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4. Use the �nal accumulator values to calculate new parameter values.

5. If the value of P = P (O|M) for this iteration is not higher than the value at
the previous iteration then stop, otherwise repeat the above steps using the new
re-estimated parameter values.

All of the above assumes that the parameters for a HMM are re-estimated from a
single observation sequence, that is a single example of the spoken word. In practice,
many examples are needed to get good parameter estimates. However, the use of
multiple observation sequences adds no additional complexity to the algorithm. Steps
2 and 3 above are simply repeated for each distinct training sequence.

One �nal point that should be mentioned is that the computation of the forward and
backward probabilities involves taking the product of a large number of probabilities.
In practice, this means that the actual numbers involved become very small.

3.4 Acoustic Modeling

This section focuses on the application of hidden Markov models to modeling human
speech. First, the selection of appropriate modeling units will be described, after which
model topology will be discussed.

3.4.1 Selecting Model Units

When considering using hidden Markov models to model human speech, an essential
question is what unit of language to use. Several possibilities exist, such as: words,
syllables or phonemes. Each of these possibilities has advantages as well as disadvan-
tages. At a high level, the following criteria need to be considered when choosing an
appropriate unit:

• The unit should be accurate in representing the acoustic realization in di�erent
contexts.

• The unit should be trainable. Enough training data should exist to properly
estimate unit parameters.

• The unit should be generalizable, so that any new word can be derived.

A natural choice to consider is using whole-word models, which have the advantage of
capturing the coarticulation e�ects inherent within these words. When properly trained,
word models in small-vocabulary recognition systems yield the best recognition results
compared to other units. Word models are both accurate and trainable and there
is no need to be generalizable. For large-vocabulary continuous speech recognition,
however, whole word models are a poor choose. Given a �xed set of words, there is
no obvious way to derive new words, making word models not generalizable. Each
word needs to be trained separately and thus a lot of training data is required to
properly train each unit. Only if such training data exists, are word models trainable
and accurate. An alternative to using whole-word models is the use of phonemes.
English and other European language typically have between 40 and 50 phonemes.
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Acoustic models based on phonemes can be trained su�ciently with as little as a few
hundred sentence, satisfying the trainability criterium. Phoneme models are by default
generalizable as they are the principle units all vocabulary can be constructed with.
Accuracy, however, is more of an issue, as the realization of phonemes is strongly a�ected
by its neighboring phonemes, due to coarticulatory e�ects. Phonetic models can be
made signi�cantly more accurate by taking context into account, which usually refers
to the immediate left and right neighboring phonemes. This leads to biphone and
triphone models. A triphone phoneme model takes into consideration both its left
and right neighbor phone thus capturing the most important coarticulatory e�ects.
Unfortunately trainability becomes an issue when using triphone models, as there can
be as many as 50x50x50 = 125000 of them.

3.4.2 Model Topology

Speech is a non-stationary signal that evolves over time. Each state of an HMM has the
ability to capture some stationary segment in a non-stationary speech signal. A left-
to-right topology thus seems the natural choice to model the speech signal. Transition
from left-to-right enable a natural progression of the evolving signal and self-transition
can be used to model speech features belonging to the same state. Fig. 3.5 illustrates
a typical 3-state HMM common to many speech recognition systems. The �rst state,
the entry-state, and the �nal state, the exit-state are so called null-states. These states
do not have self loops and do not generate observations. Their purpose is merely to
concatenate di�erent models.

Figure 3.5: Basic structure of a phonetic HMM.

The number of internal states of an HMM can vary depending on the model unit.
For HMMs representing a phoneme, three to �ve states are commonly used. If the
HMM represents a word, a signi�cantly larger number of internal states is required.
Depending on the pronunciation and duration of the word, this can be 15 to 25 states.
More complex transitions between states than the simple topology illustrated in Fig. 3.5
are also possible. If skipping states is allowed, the model becomes more 
exible, but



28

also harder to train properly.
The choice of output probability function bj(ot) is essential to good recognizer de-

sign. Early HMM systems used discrete output probability functions in conjunction with
vector quantization. Vector quantization is computationally e�cient but introduces
quantization noise, limiting the precision that can be obtained. Most contemporary
systems use parametric continuous density output distributions. Multivariate Gaussian
mixture density functions, which can approximate any continuous density function, are
popular among contemporary recognition systems. Given M Gaussian mixture density
functions: {bj(ot)}

Most continuous density HMM systems, represents output distributions by Gaussian
Mixture Densities. However, a further generalization can be made. Each observation
vector at time t is split into a number of S independent data streams ost.

The formula for computing bj(ot) is then

bj(ot) =
S∏
s=1

[
Ms∑
m=1

cjsmN (ost;�jsm;�jsm)

]
s
(3.4.1)

where Ms is the number of mixture components in stream s, cjsm is the weight of the
m'th component and N (·;�;�) is a multivariate Gaussian with mean vector � and
covariance matrix �, that is

N (o;�;�) =
1√

(2�)n|�|
e−

1
2
(o−�)′�−1(o−�) (3.4.2)

where n is the dimensionality of o.
The exponent 
s is a stream weight_It can be used to give a particular stream more

emphasis, however, it can only be set manually.
Multiple data streams are used to enable separate modeling of multiple information

sources.

3.5 Forced Alignment-Forced Segmentation

A speech recognition system uses a search engine along with an acoustic and language
model which contains a set of possible words, phonemes, or some other set of data to
match speech data to the correct spoken utterance. The search engine processes the
features extracted from the speech data to identify occurences of the words, phonemes,
or whatever set of data it is equipped to search for and returns the results.

Figure 3.6: General Decoding.
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Forced alignment is similar to this process, but it di�ers in one major aspect. Rather
than being given a set of possible words to search for, the search engine is given an exact
transcription of what is being spoken in the speech data. The system then aligns the
transcribed data with the speech data, identifying which time segments in the speech
data correspond to particular words in the transcription data. Forced alignment can
also be used to align the phonemes of the transcription data to the speech data given,
as shown in Fig. 3.7, although with more explicitly de�ned boundaries on where each
phoneme begins and ends.

Figure 3.7: Forced Alignment.

In this case, the recognition network is constructed from a word level transcription
and a dictionary. The compiled network may include optional silences between words
and pronunciation variants. Forced alignment is often useful during training to auto-
matically derive phone level transcriptions. It can also be used in automatic annotation
systems.

Using the HTK speech recognition software we can generate forced alignments by
computing a new network for each input utterance using the word level transcriptions
and the dictionary. By default, the output transcription will just contain the words and
their boundaries. With HTK however we can determine the actual pronunciations used
in the utterances used to train the HMM system. Initially models are trained on the
basis of one �xed pronunciation per word. Then HTK tools are used in forced alignment
mode to select the best matching pronunciations. The new phone level transcriptions
can then be used to retrain the HMMs.

3.6 Summary

In this chapter we discussed Hidden Markov Models and the fundamentals of speech
analysis. We also presented the main design characteristics of acoustic models and the
idea behind forced segmentation method.



Chapter 4

The CHIMP Experiment

4.1 Introduction

The `CHildren's Interactive Multimedia Project' (acronym: CHIMP)aimed at provid-
ing essential guidelines for engineering successful multimodal-input multimedia-output
applications for children with an emphasis on the spoken dialog interface. The `Agent
CHIMP' prototype[42, 39, 2] was developed in order to investigate how children converse
with interactive systems and to collect speech data, dialog interaction and user experi-
ence data in a realistic spoken language application environment. It combines speech,
keyboard and mouse input modalities and uses text, graphics, speech and animation
for output presentation. The application is controlled by animated agents.

Since increased acoustic and linguistic variability are typical of spontaneous speech,
a Wizard of Oz (WoZ) experiment was designed. This means that there was no ac-
tual ASR in the system just a person operating the computer. The children were not
informed of the existence of a wizard and an observation room. Further, for approxi-
mately half of the experimental runs the player was alone in the game room without a
moderator present.

4.2 Game Description

About 160 children, aged 6 to 14 years, participated in the study by playing an in-
teractive computer game using voice commands, or keyboard and mouse control. The
software selected for this WoZ experiment was the popular computer game `Where in
the U.S.A. is Carmen Sandiego?' (WITUICS) by Broderbund Software. WITUICS is
an interactive detective game for children ages eight years and older. The game was
rich in dialog subtasks including navigation and multiple queries, database entry, and
database search. During the game, the children engaged in conversations with animated
cartoon characters on the screen, thus the dialog is more natural and human-like. As a
result spontaneous speech could be elicited.

Although the children believe that they are working with a piece of software, they
are in fact just interacting with the investigator (the wizard) who is located at another
terminal, carefully manipulating the computer agent and conducting the games. This
makes it appear as though the child is speaking with and giving commands to the
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computer and facilitates a natural child-computer agent interaction.
To successfully complete the game, i.e., arrest the appropriate suspect, two subtasks

had to be completed:

1. Determine the physical characteristics of the suspect and complete a pro�le sketch
to issue an arrest warrant, and

2. Track the suspects whereabouts and apprehend him.(by traveling through at least
�ve of the 50 U.S. states every game)

During the game the player could talk to various characters appearing on the game
screen seeking clues about the suspect's whereabouts and physical appearance. Addi-
tional aids to interpret the clues, such as geographical databases that could be queried
using single or multiple word searches. Overall, the game was rich in dialog subtasks
including: navigation and multiple queries, database entry, and database search.

Successful ending of the game resulted when the player travelled to the correct
location and identi�ed the suspect correctly (using the constructed pro�le information)
from among several cartoon characters on the screen.

Game Procedure

The investigator leads the child and parent into the testing room. This room is relatively
empty and contains only a couch designated for the parent of the child, two chairs, a
desk, and a computer monitor that sits on top of the desk. A one-way mirror connects
this room to the adjacent room that serves as the control center and viewing area for
the investigators. The parent is instructed to sit on the couch while the child and
investigator sit at the computer. The investigator asks the child a brief series of open-
ended questions that illicit a sampling of the child's natural, person-to-person behavior.
The investigator then introduces the on-screen agent and begins to play one of the
games, demonstrating how the games should be played and showing the child that
the computer responds to voice commands. After this demonstration, the investigator
suggests that the child interacts with the machine. The investigator sits out of the
way and makes sure that the child is properly positioned in front of the screen. When
everything is set, the agent welcomes the child and begins a conversation based on a set
of questions similar to those asked by the investigator. After the conversation section,
the agent leads the child into the game section. The child works through the various
exercises until all are completed. The agent thanks the child for playing and then says
goodbye. Before the child leaves, the investigator asks a series of debrie�ng questions
regarding the child's experience with the computer and agent.

4.3 Experimental Design

The Wizard of Oz (WoZ) experimental setup is shown in Fig. 4.1
In the preparatory stages of the study, short video clips of the realistically animated

on-screen teenager agent were created that depict him asking questions, giving encour-
agement, and making other statements that could potentially arise in the conversations
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with the child. The wizard simply cues these video clips whenever appropriate during
the interaction. Through this process, the wizard can manipulate the agent so that it
appears to the child that the agent is actually responding and commenting in real time.

All of the software runs on a single system that is located in the control room. The
system that the child interacts with is actually just a second monitor stemming from the
control system. The child views and reacts to the events that are put on screen and the
wizard manipulates the software accordingly. The audio of the experiment is recorded
by a set of microphones and stored on computer. A camcorder that is mounted above
the mirror records a frontal view of the child while the on-screen events are recorded
onto a separate video.Neither the loudspeaker nor the video camera was reported as
being intrusive by any of the children.

4.4 Description of Database

Data from a total of 160 children and 7 adult players were collected using the speech
WoZ scenario (with no recognition errors). Most players played the game twice. The
total number of games played per age group and gender are shown in Tbl. 4.1:

Age
Gnd 8 9 10 11 12 13 14 8-14 >21
F 18 23 32 24 10 8 4 119 5
M 21 51 16 23 21 25 14 171 8

Table 4.1: Number of games per age group.

There was also a limited amount of data collected for 6 and 7 year-olds; these data
were excluded from our study

A total of about 50000 utterances were collected. In order to obtain statistically
signi�cant results, our analysis focused on three age and gender groups, namely: 8-9,
10-11 and 12-141.

In addition, each utterance was annotated with the emotional state of the child [2].
Child-computer interaction turns were also manually categorized into a set of prede�ned
`dialogue states'. Dialog states roughly corresponded to one (or a group of similar) game
actions taken by the wizard in response to a voice command.

The data was transcribed and annotated for dis
uencies and hesitation phenomena.
Child-computer interaction turns were also manually assigned to a set of prede�ned
`dialog states' according to the game actions they triggered [42]. Dialog states roughly
corresponded to one (or a group of similar) game actions taken by the wizard in response
to a user input(voice command).

For example, the dialog state `Talk2Him' incorporated voice commands asking for a
cartoon character's attention, while states `WhereDid' and `TellMeAbout' correspond
to queries about the suspect's whereabouts and physical characteristics, respectively.

1However detailed results for all ages were calculated although not presented here
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Figure 4.1: The experimental WoZ setup.

User input/System output Dialogue State

User: Tell me about the suspect?
System: She is neither long- nor short-legged St−3 : TellmeAbout

U: Her height is average
S: ... [updating suspect's drawing] St−2 : EnterFeature
U: Where did the suspect go?

S: She is picking peonies in Bloomington St−1 : WhereDid
U: Go to Indiana
S: ... [travel theme] St : GoToState

Table 4.2: Transcript of a sample interaction along with dialog state tags.
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Spoken utterances were assigned to prede�ned dialog states by the wizard's assistant
while the game was being played and were later veri�ed by a group of human labelers.
In Tbl. 4.2 a sample interaction illustrating dialog state is presented.

A total of about 30 dialog states were identi�ed for this application. The 
ow
through the task was characterized by a sequence of dialog state transitions. In Fig 4.2
shows the dialog 
ow diagram for the navigation/query subdialog.

Figure 4.2: Dialog state and state transition diagram (with counts) for all children
players for the navigation/query subdialog (`MergedState' denotes combination of all
dialog states not shown in plot).

The total number of times a state is visited (in parenthesis) and the total number
of state transitions (arrow labels) are shown for all games played by children players
(total of 290 games).

Useful information about problem-solving and dialog strategies of children can be
drown by such graphs. For example, consider the state marked `Tellme-About' in
Fig 4.2. It can be seen that only about 20% of the time (785/3804) the child re-
quested a second piece of clue; instead, the child preferred to utilize the �rst piece of
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information obtained about 72% (2768/3804) of the time this state was visited. In other
words, most children preferred to concentrate on a single task per turn.

4.5 Summary

In this chapter, we presented the basic aspects of the WoZ experiment contacted and
the main characteristics of our database, i.e. the database acquired by the experiment.
We are now ready to proceed with the presentation of the calculated metrics and the
method we used in order to acquire our results.



Chapter 5

Linguistic Analysis of the Corpus

5.1 Introduction

Our linguistic analysis of spontaneous children speech was based on the CHIMP database,
as described in the previous chapter. Data from the `game' sessions was excluded as
well as the data for children aged 6-7. While performing our analysis we also spotted
and excluded certain outliers (children with distinctive regional pronunciation)

5.2 Metrics Calculated

The list of acoustic and linguistic correlates measured and method of measurement
follows:

• Duration metrics: Phone and sentence durations, rate of speech information,
and between-word silence duration were computed from automatically estimated
phone-level corpus segmentation. Average durations were computed per speaker
and plotted per age and gender. Intra- and inter-speaker duration variability were
also computed.

1. Phone duration: computed per phone, age and gender group.

2. Sentence duration: computed per age and gender group (average of all sen-
tences in the corpus).

3. Sentence duration per dialogue state: computed per dialogue state, age and
gender group.

4. Between-word silence duration: computed per age and gender group.

5. Speaking rate: computed as the average number of phones/sec, per age and
gender group.

6. Speaking rate excluding silence: computed as the average number of phones/sec
(excluding between word silence segments), per age and gender group.

• Fluency metrics: False-starts, mispronunciations, hesitations and �lled pauses
were manually labeled on the spontaneous speech corpus.

36
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1. False-starts and mispronunciations: per age and gender group.

2. Hesitations and �lled-pauses: per age and gender group.

• Lexical and Syntactic metrics: Sentence length, vocabulary size and lexical-variation
were estimated on the manually transcribed corpus.

1. Sentence Length (in words): per age and gender group.

2. Vocabulary size (unique words): per age and gender group.

3. Vocabulary size (total words): per age and gender group.

4. Linguistic variability (perplexity): computed as bigram language model per-
plexity per age and gender group.

5. Linguistic variability (perplexity) within dialogue state: computed as bigram
language model perplexity per dialogue state, age and gender group.

6. Intra- vs inter- speaker linguistic perplexity: computed as the average ratio of
the perplexity of the bigram language model of the one speaker's utterances
vs all speaker's utterances (in an age and gender group).

7. Linguistic variability turn to turn (within a dialogue state) : computed as the
Levenshtein distance between two adjacent utterances in the same dialogue
state, age and gender group.

All the metrics presented here were calculated both for all ages and gender and for
the 3 age-gender groups. Thew were plotted per age and gender group using MATLAB
and statistical signi�cance of the results was tested using 2-way ANOVA analysis.

5.3 Duration Metrics

5.3.1 Preparing Corpus

In order to calculate the duration metrics we needed a transcribed corpus identical
to the acoustic data (the acoustic model was trained in clean data). We removed all
utterances that contained special labels or dashes (indication of false start) (this left us
with 26655 out of the 35988 original utterances, 74%) and the empty utterances (leaving
us with 25719 utterances). We didn't change words that contain an apostrophe ('), like
don't, since they are included in our lexicon. We also removed outlier users and ended
up with 25502 utterances of clean data.

In order to check whether, in our cleaned corpus, there are words that do not appear
in our lexicon, we created a list of all the words of our clean corpus and another one
with all the words in the lexicon, we compared these two lists and we created a `missing
words' list. This �rst missing words list was quite long, including both uppercase and
lowercase characters. We lowercased the corpus and the lexicon and compared the lists
again. We also added manually a few words (about 5) from a di�erent lexicon, one used
in AURORA4 database. Finally the missing words were narrowed down to 512 (most
of them very rare). We then removed all the utterances that contain at least one of the
`missing words', and we ended up with 24395 utterances out of the original 25502 clean
utterances.



38

5.3.2 Forced Segmentation and HTK

In order to compute the desired metrics we performed automatically estimated phone-
level corpus segmentation using HTK Toolkit. We used a context-independent phone-
level acoustic model 1 (three-state per phoneme with eight Gaussians per state, Ham-
ming window 25 ms and a frame update of 10 ms, 16KHz sampling frequency) and
hand-labeled word-level transcriptions. The model was trained on the whole sponta-
neous corpus.

We used the HVITE tool to compute forced alignments. Fig. 5.2 illustrates the way
HVITE performs this.

Figure 5.1: Forced Alignment with HTK.

After the above mentioned preparation of the corpus, we ended up with three �les:
the �le words.mlf, that contains the word-level transcriptions of the utterances, the dic-
tionary dict, which contains phone level transcriptions of the words and a �le containing
a list of the utterances and the path to the audio �les. These three �les are the input
for HVITE. The decoder uses the list of �les to locate the corresponding �le.mfc (for
each audio �le), list them in a .scp �le, �nds the best matching path through the net-
work and constructs a lattice which includes model alignment information. Finally the
lattice is converted to a transcription. An output.mlf �le with both model and word
level transcriptions of all the utterances is returned. For example, a fragment of our
output, for the utterance `read that note' was:

`*/august01.cristina.sub148.1.1 0107.rec'
0 2900000 r -2770.488525 read
2900000 3800000 iy -831.825256
3800000 5100000 d -1246.907349
5100000 5100000 sp -0.215807
5100000 5400000 dh -315.434052 that

1The acoustic model used was trained and tested by Michail Maragakis as part of his MSc[35].
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5400000 6000000 ae -664.818726
6000000 6300000 t -333.542114
6300000 6300000 sp -0.215807
6300000 6800000 n -566.184448 note
6800000 9400000 ow -2504.242188
9400000 11600000 t -1999.376099
11600000 11700000 sp -72.969818

This shows the start and end time of each word and the total log probability. For
example this sentence's duration including the silence fragment at the end is 117 frames,
i.e. 1170 msec or 1.17 sec (10msec/frame). We were now able to calculate the desired
duration metrics.

The segmentation information was obtained using the HTK speech recognition soft-
ware; the hand-labeled word-level transcriptions of the corpus and a context-independent
phone-level acoustic model (trained on the whole spontaneous corpus) were used for this
purpose.

5.3.3 Phone Durations

We computed the duration of each one of the ten monophthongal vowels (`aa', `ae',
`ah', `ao', `eh', `er', `ih', `iy', `uh', `uw') averaged per age and gender group. We also
computed the average duration of all these vowels.

5.3.4 Sentence Duration

We computed the duration of all the sentences in the corpus with and without the
silence segments at the end of each sentence and averaged this numbers per age and
gender group. We also computed the averaged per age-gender group sentence duration
(with and without the silence segments at the end of each sentence) for �ve dialog
states: \Goodbye", \Talk2Him", \TellmeAbout", \Travel", \WhereDid". These are
the dialogue states with the largest number of utterances.

Furthermore we computed the averaged sentence duration for speci�c phrases (with
and without the silence segments at the end of each sentence). In order to choose which
phrases to process, we divided the corpus in �les, one for each phrase and counted the
appearances of each phrase, choosing the most common ones. However it seems that
we do not have a lot of data and in some cases, we have age and gender groups with no
data. A larger corpus is necessary for calculating sentence duration of speci�c phrases.

5.3.5 Between Word Silence duration

We computed the averaged over age and gender duration of between word silence frag-
ments. However in our corpus the non-zero between-word silence fragments are only
2.4% of all between-word silence fragments (1389=57796).

5.3.6 Speaking Rate excluding Including Silence Fragments

We �nally computed the average number of phones /sec, excluding between word silence
fragments per age and gender group.
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5.4 Fluency Metrics

The manually transcribed corpus contained special labels, indicating dis
uencies of the
speech, hesitations, �lled pauses etc. The most common of these labels are shown in
Tbl. 5.1

Label De�nition

[ .misp ] mispronunciation
[ .brth ] breath noise
[ .nspn ] noise
[ .hst ] hesitation
[ um ] �lled pause
[ uh ] �lled pause
[ .lps ] lips sound

- false start

Table 5.1: Special corpus labels and their meaning.

After listening to the corresponding audio �les we decided to consider as False
Starts and Mispronunciations all the utterances that contained a dash `-' (for ex-
ample, `susp-' instead of `suspect') as well as the utterances containing the label [.misp].
Hesitations and Filled Pauses on the other hand were the utterances that contained
[.brth ], [.nspn ], [.hst], [um], [uh], [.lps]

In order to calculate Fluency Metrics, we focus only on the 132 successful sessions,
i.e. the ones ending in apprehending the suspect (`Arrest' dialogue state), in order
to reduce the e�ect of hesitations due to poor game playing. We computed the av-
erage number of dis
uencies and hesitations as percentage of total number of words
per utterance. We furthermore computed the percentage of utterances that contained
dis
uencies and hesitations per age and gender group.

5.5 Linguistic Complexity and Variability

Corpus Preparation
Our corpus included hesitation, �lled pauses and dis
uency labels, such as [.hst], [.misp],
etc. It also included fragments of words containing a dash and indicating false start, e.g
susp- (instead of suspect). All the above mentioned were removed before calculating
perplexities.

5.5.1 Language Models and CMU Toolkit

In order to calculate Linguistic Complexity and Variability, bigram language models
were built using the CMU Statistical Language Modeling Toolkit. In all three language
models, we applied Witten-Bell discounting and used back-o� weights to compute the
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probability of unseen bigrams.

Fig. 5.2 summarizes the usage of CMU for building each language model.

Figure 5.2: CMU Toolkit Usage.

Given a large corpus of text in a �le a.text, but no speci�ed vocabulary, CMU

• Computes the word unigram counts

cat a.text | text2wfreq > a.wfreq

• Convert the word unigram counts into a vocabulary

cat a.wfreq | wfreq2vocab > a.vocab

• Generate a binary id 3-gram of the training text, based on this vocabulary

cat a.text | text2idngram -vocab a.vocab > a.idngram

• Convert the idngram into a binary format language model

idngram2lm -idngram a.idngram -vocab a.vocab -binary a.binlm

• Compute the perplexity of the language model, with respect to some test text
b.text

evallm -binary a.binlm

An example output of this process would be:

Reading in language model from �le a.binlm
Done.
evallm : perplexity -text b.text
Computing perplexity of the language model with respect to the text b.text
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Perplexity = 128:15, Entropy = 7.00 bits
Computation based on 8842804 words.
Number of 3-grams hit = 6806674 (76.97%)
Number of 2-grams hit = 1766798 (19.98%)
Number of 1-grams hit = 269332 (3.05%)
1218322 OOVs (12.11%) and 576763 context cues were removed from the calcu-
lation.
evallm : quit

CMU built language models were used for calculating Language Model Perplexities
and Speaker Linguistic Variabity, while for Levenshtein Distance we used pure PERL
programming.

5.5.2 Language Model Perplexities

Our corpus was split into subsets that contained the utterances of each age and gender
and the combination of the two. Three di�erent language models were built, with
di�erent training-testing subsets of our data:

1. Train Global - Test Category: This language model was trained to the whole
corpus and tested on each of the subset �les. Average perplexities were calculated
for each age and gender group.

2. Train Category - Test Category: Training and testing of this language model
was done on the same data set, i.e. the �les mentioned beforehead.

3. Partial Train - Partial Testing : 2=3 of each of the above mentioned �les was
used for training this language model and 1=3 for perplexity calculation. We also
repeated this procedure in Round Robin (Leave-one-out cross validation) fashion.

The same procedure was followed for calculating linguistic variability (perplexity)
within dialogue state. We split our corpus into subsets that contained the utterances
of each age and gender and the combination of the two for each dialogue state,for ex-
ample 8.Goodbye, 9.Goodbye, etc,10.WhereDid, M.Talk2Him, F.Talk2Him, etc as well
as M.10.WhereDid, F.10.WhereDid. The �le M.10.WhereDid for example contains the
\WhererDid" dialogue state utterances of all the 10 year old males. These �les were used
for the testing of the language models.The same was done for each age-gender group,
8-9, 10-11, 12-14 We computed perplexities with all 3 models for �ve dialogue states:
\Goodbye", \Talk2Him", \TellmeAbout", \Travel", \WhereDid". However `Travel"
is a rather `special' dialogue state since it contains a lot of state and cities names.
Thus, the measures acquired for this particular dialogue state can not be considered
representative 2.

Corresponding to the above mentioned example on the usage of CMU, results ac-
quired for type 2 language model and using as test �le the utterances of 14 year old
children can be seen below:

2Semantic Analysis could be of great use here
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evallm : perplexity -text 14
Computing perplexity of the language model with respect to the text 14
Perplexity = 7.58, Entropy = 2.92 bits
Computation based on 6040 words.
Number of 2-grams hit = 5684 (94.11%)
Number of 1-grams hit = 356 (5.89%)
0 OOVs (0.00%) and 0 context cues were removed from the calculation.

5.5.3 Speaker Linguistic Variability

Two language models were developed for calculated Inter- and Intra- vs Inter- Speaker
Linguistic Variability. The �rst one was trained over all user utterances while the second
was trained over the utterances of each age group. The testing corpus was the utterances
of each speaker within the group. This way Speaker Linguistic Variability was calculated
as the average ratio of the bigram language model perplexity of one speaker's utterances
vs all speakers utterances (in an age and gender group).The perplexities calculated
di�ered in the absolute value, something totally expected (linguistic variability of the
�rst model is higher), but the age-gender trends ware identical.

5.5.4 Linguistic variability turn to turn

Linguistic Variability turn to turn within a dialogue state was calculated as the Leven-
shtein Distance between two adjacent utterances in the same dialogue state. Levenshtein
distance is the minimum number of required transitions (insertions,deletions and sub-
stitutions) in order to transform one utterance to another, given that insertions and
deletions are given a 0.7 weight while substitutions are given an 1 weight. The Lev-
enshtein distance was calculated by creating an array of transitions costs and selecting
the minimum element[51].

We calculated the average Levenshtein distance for all sessions, only successful ses-
sions and only successful ones, within dialogue states where the user makes the same
type of requests, e.g. \WhereDid".(This metric was also used in [42]).

5.6 Lexical Metrics

Corpus Preparation
All the dis
uencies, hesitations and mispronunciations that were excluded in calculating
perplexities were also excluded while computing the lexical metrics. We also focused
only on the successful sessions.

5.6.1 Vocabularies

Three type of vocabularies were calculated:

1. Vocabulary Size Total : the total number of words used in each session normalized
to the duration of this session (number of utterances)
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2. Unique Vocabulary Size : the number of unique words in a session as a percentage
of the total number of words in this session

3. Stemmed Unique Vocabulary Size : the same as Unique Vocabulary Size, only that
we �rst reduced in
ected words to their stem, base or root form. For stemming,
we used the Porter stemming algorithm, implemented in PERL.[41]

5.6.2 Words Per Utterance

The words per utterance were calculated as: The total number of words in each session
divided by the total number of utterances in the session and averaged per age and
gender group.

5.7 Statistical Signi�cance and ANOVA

In statistics, a null hypothesis (H0) is a hypothesis set up to be nulli�ed or refuted in
order to support an alternative hypothesis. When used, the null hypothesis is presumed
true until statistical evidence, in the form of a hypothesis test, indicates otherwise �
that is, when the researcher has a certain degree of con�dence, usually 95% to 99%,
that the data does not support the null hypothesis. It is possible for an experiment to
fail to reject the null hypothesis.It is also possible that both the null hypothesis and the
alternate hypothesis are rejected if there are more than those two possibilities.

In scienti�c and medical applications, the null hypothesis plays a major role in
testing the signi�cance of di�erences in treatment and control groups. The assumption
at the outset of the experiment is that no di�erence exists between the two groups (for
the variable being compared): this is the null hypothesis in this instance.

The signi�cance level of a test is de�ned as the probability of making a decision
to reject the null hypothesis when the null hypothesis is actually true. The decision is
often made using the p-value: if the p-value is less than the signi�cance level, then the
null hypothesis is rejected. The smaller the p-value, the more signi�cant the result is
said to be.

ANOVA is short for analysis of variance. Analysis of variance is a collection of
statistical models, and their associated procedures, in which the observed variance is
partitioned into components due to di�erent explanatory variables.

In practice, there are several types of ANOVA depending on the number of treat-
ments and the way they are applied to the subjects in the experiment:

• One-way ANOVA is used to test for di�erences among two or more independent
groups.

• One-way ANOVA for repeated measures is used when the subjects are subjected to
repeated measures; this means that the same subjects are used for each treatment.
Note that this method can be subject to carryover e�ects.

• Factorial ANOVA is used when the experimenter wants to study the e�ects of two
or more treatment variables. The most commonly used type of factorial ANOVA
is the 2x2 (read: two by two) design, where there are two independent variables
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and each variable has two levels or distinct values. Factorial ANOVA can also
be multi-level such as 3x3, etc. or higher order such as 2x2x2, etc. but analyses
with higher numbers of factors are rarely done by hand because the calculations
are lengthy and the results are hard to interpret. However, since the introduction
of data analytic software, the utilization of higher order designs and analyses has
become quite common.

• When one wishes to test two or more independent groups subjecting the subjects
to repeated measures, one may perform a factorial mixed-design ANOVA, in which
one factor is a between subjects variable and the other is within subjects variable.
This is a type of mixed e�ect model.

• Multivariate analysis of variance (MANOVA) is used when there is more than one
dependent variable.

We can use N-way ANOVA to determine if the means in a set of data di�er when
grouped by multiple factors. If they do di�er, you can determine which factors or com-
binations of factors are associated with the di�erence.N-way ANOVA is a generalization
of two-way ANOVA. For example, the two-way ANOVA model for perplexity can be
written

yijk = �+ �:j + �i: + 
ij + "ijk (5.7.1)

In this notation

• yijk is a matrix of perplexity observations (with row index i, column index j, and
repetition index k). is a constant matrix of the overall mean gas mileage.

• � is a constant matrix of the overall mean gas mileage.

• �:j is a matrix whose columns are the deviations of each perplexity measure (from
the mean perplexity �) that are attributable to the age.

• �i: is a matrix whose rows are the deviations of each perplexity measure (from the
mean perplexity �) that are attributable to the gender.

• 
ij is a matrix of interactions

• "ijk is a matrix of random disturbances.

The MATLAB anovan function performs N-way ANOVA. Unlike the anova1 and
anova2 functions, anovan does not expect data in a tabular form. Instead, it expects a
vector of response measurements and a separate vector (or text array) containing the
values corresponding to each factor. This input data format is more convenient than
matrices when there are more than two factors or when the number of measurements
per factor combination is not constant.

In MATLAB 2-way ANOVA requires the data to be balanced, which in this case
means there must be the same number of samples for each combination of age and
gender. Since this is not the case, we decided to perform n-way ANOVA, with n=2 and
p=0.05 in order to �nd out whether data from several groups have a common mean.
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We also used 'full' model in order to compute the p-values for null hypotheses on the 2
main e�ects and interactions at all levels.3

5.8 Summary

In this chapter we discussed the process by which we performed our analysis of the
corpus, the tools used (PERL,CMU,HTK,MATLAB) and how we calculated the desired
results for each category, namely: duration statistics, 
uency statistics, lexical metrics
and language perplexity metrics. The results acquired are presented next.

3Although not performed here, a 3-way ANOVA analysis, with success/not success of each session
of the game as third factor, might be interesting.



Chapter 6

Acquired Results and Evaluation

6.1 Introduction

In this chapter, we present the most important results for each category and we discuss
their signi�cance and their interpretation. A lot more results were acquired, but the
ones presented here are the most signi�cant and the ones that, in a way, summarize the
general age and gender trends that were spotted during this analysis. An interesting
observation when looking at the results altogether is that there are no results contra-
dicting each other. This gives us a certain degree of con�dence on the conclusions we
were led to. Each �gure presented here is accompanied with the corresponding 2-way
ANOVA analysis with respect to age and gender group. All statistics presented here
are computed for three age groups: 8-9, 10-11 and 12-14, with the exception of vowel
duration where data are presented (also) for all ages.

6.2 Duration Metrics

In Fig. 6.1(a), the average vowel phone duration is shown for all age and gender groups.
Both the age and the gender trend here are statistical signi�cant, as proved by the
corresponding 2-way ANOVA analysis.

As expected, average vowel duration decreases with age. Speci�cally, there is a
signi�cant reduction in average vowel duration between the younger (8-9) and middle
(10-11) age group, and then the duration levels o� (and increases somewhat) for the
older age group (12-14). The trend is similar for both genders.

The average vowel phone duration for all ages is shown in Fig. 6.2(a) . We should
note here however that the amount of data for ages 6 and 7 is very limited; the data
points are only shown for completeness.The same conclusions as before can be drawn
here, since we can see that the average durations decreases for ages 8 to 11 and then
increases for ages 12-14.

In Fig. 6.2(c), results from previous studies on phone duration for `Read' speech
are shown[33]. Although the two trends seem di�erent at �rst sight, and the phone
duration di�ers signi�cantly for the same age, we should keep in mind that the two plots
correspond to di�erent kind of speech (spontaneous vs. read). This is an interesting
observation that would be discussed further on.
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(a)

(b)

Figure 6.1: (a) Vowels Duration as a function of age and gender, and (b) 2-way ANOVA
results (age-group and gender).
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(a)

(b)

(c)

Figure 6.2: (a) Vowels Duration for all ages as a function of age and gender, and
(b)2-way ANOVA results (age-group and gender).



50

In Fig. 6.3(a), the speaking rate is shown in terms of phones per second (including
between word silence fragments) for all age and gender groups. Speaking rate when
excluding inter-word silences, although not presented here, increases (as expected) but
the trend remains the same. The middle age group (10-11 years) is speaking signi�cantly
faster than the younger and older groups. The di�erences in speaking rate among the
age groups is up to 10% for female speakers. It is interesting to note that there is a
signi�cant reduction in speaking rate between the age groups 10-11 and 12-14. ANOVA
analysis in Fig. 6.3(b) shows that this results are statistically signi�cant both for age
and gender.

(a)

(b)

Figure 6.3: (a) Speaking Rate as a function of age and gender, and (b) 2-way ANOVA
results (age-group and gender).
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6.3 Fluency Metrics

In Fig. 6.4(a), the average number of false starts and mispronounciations are shown
as the percent of the total spoken words. Dis
uencies decrease as a function of age.
Speci�cally, there is a signi�cant relative reduction of 30% between the 8-9 and 10-11
age groups. The reduction is even bigger for female speakers. Dis
uencies decrease from
the 10-11 to the 12-14 age groups, especially for male speakers; however, the reduction
is not statistically signi�cant.

(a)

(b)

Figure 6.4: (a) False starts and Mispronunciations Per Word Per Utterance as a function
of age and gender, and (b) 2-way ANOVA results (age-group and gender).

In Fig. 6.5(a), the average number of hesitations and �lled pauses are shown as
a percent of the total spoken words. Both the age and the gender trends here are
statistically signi�cant as shown in Fig. 6.5(b). Hesitations increase somewhat with
age. This is consistent with the observations in [42]. In addition, boys tend to hesitate
much more than girls in the 10-11 age group(at least twice as much). When looking at
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the breakdown of hesitations vs. �lled pauses (not shown here) hesitations in the form
of breathing noises are signi�cantly higher for younger children, while �lled pauses are
much more common for older children (see also [42]). Breathing noises occurred 60%
more often for younger children. Surprisingly, this trend was reversed for �lled pauses
which occurred almost twice as often for the 12-14 age group.

(a)

(b)

Figure 6.5: (a) Hesitations and Filled Pauses Per Words Per Utterance as a function of
age and gender, and (b) 2-way ANOVA results (age-group and gender).

6.4 Lexical and Syntactic Metrics

In Fig. 6.6(a), the average number of words per utterance is shown as a function of
age group and gender. ANOVA results show that the trends spotted here are clearly
statistically signi�cant. Thus we can con�rm a clear gender trend here: girls tend to be
more verbose than boys after the age of 9 and especially for the older age group. The
average number of words per utterance for boys consistently decreases with age, while
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(a)

(b)

Figure 6.6: (a) Words Per Utterance as a function of age and gender, and (b) 2-way
ANOVA results (age-group and gender).

for girls verbosity increases between the age groups 8-9 and 10-11, and then levels o�.
The relative di�erence in verbosity between age groups is between 10 and 20%.

In Fig. 6.7(a), the average vocabulary size per session is shown as a function of
age group and gender. Although not shown here, the vocabulary trends and statistics
where very similar if stemmed words were used instead of word forms. The average
vocabulary size tends to increase with age but as ANOVA results in Fig. 6.7(b) show,
the age trend is not signi�cant. There is however a statistically signi�cant and maybe
unexpected and surprising gender trend: boys have a richer vocabulary than girls for
the 8-9 and 10-11 age groups.

Three di�erent measures of linguistic complexity and variability are shown as a
function of age group and gender.

Speci�cally in Fig. 6.8(a), the language model perplexity is shown for language
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(a)

(b)

Figure 6.7: (a) Vocabulary Size Unique Per Words Per Session as a function of age and
gender, and (b) 2-way ANOVA results (age-group and gender).

models trained on partial data using round-robin (type III language model) for each
age and gender group. As analyzed in the previous chapter di�erent language models
were used for calculating perplexities.The results acquired di�ered in the absolute values
of perplexities (as the models were trained on di�erent data sets), but the age and gender
trends were the same.

In Fig. 6.9(a), inter- and intra-speaker linguistic perplexity is shown for type I mod-
els. Error bars depict the inter- (within groups) speaker variability while the plotted
curve depicts the intra- (between groups) speaker variability. These results correspond
to the LM trained over group utterances. In Fig. 6.10(a), the average Levenshtein
distance between two adjacent utterances of the same speaker from the \WhereDid"
dialogue state is shown as a function of age and gender. This plot corresponds to per-
plexities acquired over all sessions not only successful ones. Levenshtein distance for
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(a)

(b)

Figure 6.8: (a) Language model perplexity (type II) per user as a function of age and
gender, and (b) 2-way ANOVA results (age-group and gender).

only successful sessions was also calculated, but the results acquired were not statisti-
cally signi�cant.

As ANOVA results show, not all these trends are statistically signi�cant, however
all three linguistic complexity and variability measures follow very similar trends. In
Fig. 6.8, statistically signi�cant is the di�erence in the perplexity for age groups 10-11
and 12-14, in Fig. 6.9 for age groups 8-9 and 10-11 and in Fig. 6.10 for gender groups.
Therefore we can conclude that there is reduction of perplexity as a function of age
for boys, reduction of perplexity between the 8-9 and 10-11 groups for girls and then
a signi�cant increase for the 12-14 age group. The reduction in perplexity between the
8-9 and the 10-11 age groups is larger for girls than for boys, although, this result is
not always statistical signi�cant. Note also that the increase in perplexity between the
girls aged 10-11 and 12-14 holds both within- and across-speakers.
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(c)

(d)

Figure 6.9: (a) Inter- (error-bars) and intra-speaker (plotted curve) language model
perplexity (type I) as a function of age and gender, and (b) 2-way ANOVA results
(age-group and gender).

6.5 Discussion

Linguistic choices of children are not just a function of age and gender. Various other
factors interfere and a�ect them. Children respond di�erently to these factors in di�er-
ent ages. Thus to better interpret the results of this study it is important to broaden
our view. The game itself for example holds an important role. The task to be accom-
plished a�ects the linguistic choices of the children. In general, it is hard to select a task
that is both engaging and challenging for a wide range of age groups. In our case, the
selected game is rated for children 8 years and older. Results from the exit interview
(and the rate of successful games played) indicate that the game is challenging for the
8-9 age group, a good �t for the 10-11 age group, while the game does not provide much
of a challenge for the 12-14 age group[39].
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(e)

(f)

Figure 6.10: (a) Average Levenshtein distance between two adjacent utterances of the
same speaker from the \WhereDid" dialogue state as a function of age and gender, and
(b) 2-way ANOVA results (age-group and gender).

A signi�cant di�erence was noticed between spontaneous and read speech as far
as durations and speaking rates are concerned. Comparing the results reported here
with the ones reported in [33], we notice that vowels duration are signi�cantly lower in
spontaneous speech and speaking rate is higher.

The age trends for spontaneous speech and read speech however are very similar.
Between the 8-9 and 10-11 age group there is a 10% relative reduction in average vowel
duration. Then from 10-11 to 12-14 the durations seem to level o� or even increase
somewhat. Children seem to reach adult-level skill at articulation speed around the age
of 11 year, and girls seem to be somewhat more adept than boys in the 8-9 age group.

Adult-level skills for read speech are reached around 13-14 years, as claimed in [33].
In this study adult level skills for duration metrics, e.g. speaking rate seem to be reached
approximately 2 years later (11-12 in this study).
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This can be explained by taking into account the cognitive load applied to read
speech by the process of reading itself. Extra load on the working memory is imposed
while reading, since the mind has to temporary store and manipulate the information.
(Read speech can be divided into three stages, read the text, understand it and then
speak.) Reading skills evolve with age and gender and a�ect speaking rate and dura-
tions. Thus the durations observed in read speech could be biased by the reading speech
of the child and the maturation of the reading skills with age. The higher absolute val-
ues for read speech could be explained by the additional cognitive load that reading
incurs. However more experiment in larger corpora are needed in order to verify these
claims.

The absolute values of mispronounciations and �lled pauses are higher in human-
machine than in human-human interaction, as reported in the literature [5]. Dis
uencies
decrease with age and children reach adult-skill level at around 12-13 years of age
(somewhat earlier for boys than girls). The age trend is reversed for hesitations. The
high number of hesitations for boys aged 10-11 compared to girls of the same age group
is hard to interpret and could be due to social reasons. Note that the 10-11 age group
is fully engaged by the game and �nd the game most fun. Further research is needed
to interpret this result.

In general, the ability of the children to use language e�ciently to achieve a task
improves with age for all three age groups. Children use less words per utterance to
convey the same message, and, in general, use linguistically simpler constructs as they
become more adept with using language over the years. Speci�cally, note that linguistic
variability is reduced with age. Also older children keep repeating linguistic patterns
that have been successful at achieving the task at hand (see Levenshtein distance).
It is interesting to note that for girls in the 12-14 age-group the linguistic variability
increases as does the average sentence length. In fact, sentence length increases also
for girls aged 10-11 compared to the 8-9 age group. In general, we conclude that girls
show more linguistic exploration than boys in the 12-14 age group. This trend seems to
emerge around 11 years of age. It is unclear if this trend also correlates with the fact
that the game is \easy" for older children, i.e., for girls aged 12-14 game is no longer
challenging and thus the opportunity emerges to explore more complex and interesting
linguistic patterns. One might conclude that girls ages 12 and older consider language
as part of the game not just a tool to successfully complete the game.

6.6 Summary

In this chapter we presented the main results acquired and the ANOVA analysis for
testing their statistical signi�cance. We also discussed their meaning and their inter-
pretation in combination with various other aspects of children's speech and children's
interaction with computers.



Chapter 7

Conclusions and Future Work

The analysis of acoustic, lexical and linguistic characteristics of spontaneous children's
speech has shown signi�cant age and gender trends. Average vowel duration was shown
to be signi�cantly lower for spontaneous speech compared with read speech. The age
trend (reduction in duration, increase in speaking rate) was similar for read and spon-
taneous speech, but adult-level values were reached 1-2 years earlier for read speech.
The additional cognitive e�ort that reading imposes on speech duration was claimed to
be a�ecting these statistics, however further research on this �eld is required. It would
be interesting, for example, to test how speaking rate evolves in time, as the cognitive
load is reduced and the a�ect that cognitive load has on durations as a function of time.

Dis
uencies decreased with age and leveled o� for the 12-14 age group, while hes-
itations increased with age and where especially pronounced for boys in the 10-11 age
group. Older children used simpler linguistic constructs and shorter utterances to com-
plete the task. An important �nding was that girls showed signi�cantly more linguistic
exploration than boys, as was evident, by the increase in average sentence length and
linguistic perplexity for the 12-14 age group.It is clear that girls, as soon as they get
adept to the game, consider language as part of the game rather than just a tool to
complete the game, as boys do. There is a clear di�erence here between exploiting the
language (in order to complete a task) and exploring the language. Another interesting
and rather surprising �nding was that boys seem to have a richer vocabulary than girls
for the 8-9 and 10-11 age groups. This �nding should be further investigated and could
also be related to the game itself.

Future research directions include factor analysis for the acoustic and linguistic mea-
sures. The emotional state of the child playing the game also a�ects the characteristics
of the speech and has to be investigated. Child frustration, politeness or even neutral
attitudes has to be taken into account. Moreover the exit interviews of the children that
played the game will be investigated in order to study the e�ect user satisfaction has
on the characteristics of the speech.It is important to know not only what was said but
also how something was communicated so that the spoken interaction between system
and user will be more natural.

Furthermore a semantic and pragmatic analysis will be performed in order to better
understand the way children use the language to communicate. Computing statistics
such as for the number of semantic attributes �lled per utterance are also of great
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interest.
Apart from the results presented in this thesis, our research led to a rather large

amount of calculated metrics and not all of them were investigated thoroughly and in
detail. Examining these results more closely can possibly lead to additional observations
regarding linguistic characteristics of children speech.

Children 's speech analysis and especially spontaneous children speech is a scien-
ti�c area still developing and open. Since interactive dialogue systems for children are
widely used nowadays and their use increases continuously, research in this �eld is both
extremely interesting and important in order to improve both the acoustic and linguis-
tic models of children speech as well as the interface of such applications. Moreover
adaptive interfaces that change according to age and experience of the child, interfaces
with `intelligence' and personality, as well as interfaces speci�cally designed for children
with disabilities based to their special linguistic characteristics are scienti�c directions
of enormous interest.

At this point, there is only one thing to say: To be continued...
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