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Abstract

Multiuser downlink beamforming under quality of service (QoS) constraints has attracted

considerable interest in recent years, because it is particularly appealing from a network operator’s

perspective (e.g., UMTS, 802.16e). When there are many co-channel users and/or the service

constraints are stringent, the problem becomes infeasible and some form of admission control

is necessary. We advocate a cross-layer approach to joint multiuser transmit beamforming and

admission control, aiming to maximize the number of users that can be served at their desired

QoS. It is shown that the core problem is NP-hard, yet amenable to convex approximation

tools. Two computationally efficient convex approximation algorithms are proposed: one is based

on semidefinite relaxation of an equivalent problem reformulation; the other takes a penalized

second-order cone approach. Their performance is assessed in a range of experiments, using both

simulated and measured channel data. In all experiments considered, the proposed algorithms work

remarkably well in terms of the attained performance-complexity trade-off, consistently exhibiting

close to optimal performance at an affordable computational complexity.
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I. I NTRODUCTION

Transmit antenna arrays are nowadays commonly employed or provisioned in cellular wireless

networks (e.g., UMTS and the emerging UMTS-LTE [Long-Term Evolution]), wireless local area

networks, and fixed wireless back-haul solutions (e.g., 802.16e). In the context of the cellular

downlink (or point-to-multipoint distribution for fixed wireless), a transmit antenna array can be

beneficial in a number of ways, depending on the available grade of channel state information at the

transmitter (CSI-T). When accurate CSI-T is available, it becomes possible to multiplex a number

of user streams in space, by appropriately designing transmit beamformers that steer energy in the

directions of the intended users [2]. Transmit beamforming is also beneficial when there is only

statistical CSI-T, in the form of channel correlation matrices; see [2] and Section IX where we

revisit this issue.

Consider a single transmitter withN antenna elements andK receivers, each with a single

antenna. Lethk denote theN × 1 complex vector that models the propagation loss and phase shift

of the frequency-flat quasi-static channel from each transmit antenna to receiverk, andwH
k denote

the1×N weight vector used to beamform towards receiver (user)k, k ∈ {1, · · · , K}. Here and in

the sequel,T denotes transpose, andH denotes Hermitian (conjugate) transpose. WhenN ≥ K, and

assuming that the channel matrixH := [h1, · · · ,hK ]T is full row-rank, it is possible to right-invert

it at the transmitter, thus creatingK separate streams. This is indicative of the spatial multiplexing

potential, but channel inversion has drawbacks. In practiceK >> N (e.g.,N = 4, K = 40 are

typical for the cellular downlink), giving rise to a difficult user selection problem [5]. As we will

see, it is often possible to simultaneously serveK > N users, but this cannot be accomplished

using channel inversion. Transmit power limitations are also an issue when channel inversion is

used.
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A more flexible alternative to channel inversion is to ensure a certain Signal to Interference

plus Noise Ratio (SINR) at each receiver. This is well-motivated for voice, streaming media, and

other interactive applications, and it is the prevailing design approach in cellular wireless today.

The following joint multiuser transmit beamforming problem under individual SINR constraints as

Quality of Service (QoS) metric has been considered in [7], and [2]:

min
{wk∈CN}K

k=1

K∑

k=1

‖wk‖2
2 (1)

subject to : SINRk :=
|wH

k hk|2∑
` 6=k |wH

` hk|2 + σ2
k

≥ ck, ∀k ∈ {1, · · · ,K} , (2)

where || · ||2 denotes the Euclidean norm,σ2
k is the additive noise power at receiverk, andck is

the SINR requirement of receiverk. For a fixed modulation and coding scheme, a target error rate

requirement can be mapped to an appropriateck. Alternatively, log(1 + 1
ΓSINRk) is a measure of

the practically attainable link capacity, where theΓ reflects the SINR loss due to modulation and

coding.

As shown in [2] (see also [7]), the problem in (1)-(2) is convex (in fact, asecond-order

cone program- SOCP); it can be efficiently solved using modern interior-point methods [16],

or specialized iterative algorithms [7]. The main difficulty with the formulation in (1)-(2) is that

the problem can easily become infeasible, e.g., when the channel vectors of two or more users are

co-linear or highly correlated, and/or the SINR targets are too high, or simply when the number

of users,K, is much larger than the number of antennasN - which is the typical scenario in

practice. In such a situation, interior point solutions provide aninfeasibility certificate, whereas the

custom-made algorithm in [7] diverges. Either way, infeasibility implies that some user(s) should

be dropped (admission control) or rescheduled in orthogonal dimensions (time, frequency, code

slot); or the SINR targets should be relaxed.

If users must be dropped / rescheduled, it makes sense to maximize the number of users that can
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be served at their desired QoS. A brute-force way of doing this is enumeration, each time solving

a SOCP problem for a subset of users. This has prohibitive complexity for all practical purposes.

In fact, we will show that the problem is NP-hard, which motivates the pursuit of approximate

solutions of manageable complexity.

From a complexity point of view, it is appealing to consider a greedy approach: given already

admitted users, consider adding one more user, until the problem becomes infeasible. This is still

complex, becausetestingeach candidate requires solving a separate SOCP problem from scratch.

A low-complexity algorithm for admitting a new user was recently proposed in [4]. In order to

keep complexity low, [4] advocates fixing the beampatterns of previously admitted users, and jointly

optimizing the beampattern of the new user along with power control. This reduces to a generalized

eigenvalue problem which can be efficiently solved. The algorithm in [4] can be iterated to grow

the pool of admitted users, until the problem becomes infeasible. The overall algorithm is appealing

from a complexity point of view. Its performance (in terms of the number of users served and the

power required to do so) will be assessed in section VIII.

Practical and regulatory considerations typically dictate a non-trivial upper bound on transmission

power, which is not enforced in (1)-(2). An explicit sum power constraint can be added to account

for this, and the problem becomes

min
{wk∈CN}K

k=1

K∑

k=1

‖wk‖2
2 (3)

subject to :
K∑

k=1

‖wk‖2
2 ≤ P, (4)

|wH
k hk|2∑

` 6=k |wH
` hk|2 + σ2

k

≥ ck, ∀k ∈ {1, · · · ,K} . (5)

The problem of interest can now be concisely stated as follows: find a largest subset of users

and associated optimum beamforming configuration for which (3)-(5)restricted to the said subset
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of usersadmits a feasible solution. Mathematically, the problem can be described in two stages. In

the first stage,

So = argmaxS⊆{1,··· ,K},{wk∈CN}K
k=1
|S| (6)

subject to :
∑

k∈S

‖wk‖2
2 ≤ P, (7)

|wH
k hk|2∑

` 6=k, `∈S |wH
` hk|2 + σ2

k

≥ ck, ∀k ∈ S, (8)

where|S| denotes the cardinality ofS, while in the second stage one solves

min
{wk∈CN}k∈So

∑

k∈So

‖wk‖2
2 (9)

subject to :
∑

k∈So

‖wk‖2
2 ≤ P, (10)

|wH
k hk|2∑

` 6=k, `∈So
|wH

` hk|2 + σ2
k

≥ ck, ∀k ∈ So. (11)

In this work we propose to solve the problem of transmit beamforming and admission control

jointly by simultaneously maximizing the total number of users that can be served in the same slot

at their desired QoS and minimizing the power required to serve them. In particular, we aim to

approximate the original non-convex and NP-hard problem by means of a convex problem whose

solution can be used to generate a feasible, close to optimal solution of the original problem.

Although this convex approximation approach can only generate suboptimal solutions due to NP-

hardness of the original problem, it is well motivated theoretically1 and in certain cases can provide

provably high quality approximate solutions [11].

In closing this section, we remark that there is considerable literature on the closely related topic

of joint power and admission control when the coupling between communicating pairs of nodes is

fixed (e.g., see [1], [6] and references therein). This is the case, for example, when code-division

1For example, admits a Lagrange dual interpretation, as we will see in section IV.
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multiple access (CDMA) is used, and the spreading codes are fixed or long and pseudo-random. The

same situation arises in our context, when the beampatterns of all users are fixed beforehand, and

only power and admission control can be optimized. By the same token, the algorithms developed

here can be used for joint design of spreading codes, power allocation, and admission control in

CDMA wireless networks.

II. SINGLE-STAGE REFORMULATION

In the following, we say that a user isservedif the user is scheduled and its QoS target is

supported. Our objective in this section is to come up with a convenientsingle-stagereformulation

(cf. Claim 1 below) of the two-stage optimization problem in (6)–(11). Towards this end, introduce

auxiliary binary scheduling variablessk ∈ {−1, +1}, and consider

min
{wk∈CN ,sk∈{−1,+1}}K

k=1

ε
K∑

k=1

‖wk‖2
2 + (1− ε)

K∑

k=1

λk(sk + 1)2 (12)

subject to :
K∑

k=1

‖wk‖2
2 ≤ P, (13)

|wH
k hk|2 + δ−1(sk + 1)2∑

` 6=k |wH
` hk|2 + σ2

k

≥ ck, ∀k ∈ {1, · · · , K} (14)

Here, theλk > 0 denote normalized weights2, and ε, δ are suitably small positive constants. In

particular, we take

δ ≤ min
k

4c−1
k

P maxm ‖hm‖2
2 + σ2

k

,

which ensures (cf. the Cauchy-Schwartz inequality) that the constraint in (14) is satisfied whensk =

+1 even forwk = 0N×1 and irrespective of the otherw`, ` 6= k. Sincemink
4c−1

k

P maxm ‖hm‖22+σ2
k
≤

mink
4c−1

k

σ2
k

, this choice ofδ also implies thatwk = 0N×1, sk = 1, ∀k, is always admissible, i.e.,

the problem in (12)-(14) isalways feasible. We also selectε < mink λk

P/4+mink λk
- this ensures that a

user is not dropped unless it is necessary, cf. Claim 1.

2e.g., usingλk proportional to the queue length of userk is throughput-optimal [18].
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The binary slack / scheduling variablessk play a key role: with
{
w̌k ∈ CN , šk ∈ {−1, +1}}K

k=1

denoting a solution of (12)-(14), it is easy to see thatšk = −1 implies that userk is served,

whereašsk = +1 implies that userk is dropped:w̌k = 0N×1. This comes from the choice ofδ

and the cost function, and it also means that there is no need to explicitly account for dropped

users in the denominator of (14). Formally:

Claim 1: With λk = 1, ∀k, δ ≤ mink
4c−1

k

P maxm ‖hm‖22+σ2
k
, and ε < 1

P/4+1 , solution of (12)-(14)

maximizes the number of users served and simultaneously yields the associated minimum sum-

power beamforming vectors.

Proof of the above and all subsequent claims is deferred to the Appendix. A ruler analogy

is useful for intuition. We wish to minimize two cost functions simultaneously. The important

observation is that one is discrete-valued and the other is bounded. By proper weighting of the

two, the weighted sum takes values on a ruler whose decimal ticks correspond to the discrete part,

whereas the intervals in-between are (partially) spanned by the continuous part. Proper choice of

weight ensures that these intervalsdo not overlap, i.e., there is an unattainable guard band between

any two successive decimal ticks. In our context, this can be interpreted as follows: dropping any

user costs more than can possibly be saved in terms of power by means of beamvector optimization

for the remaining users.

Claim 1 shows that (12)–(14) provides a single stage optimization reformulation of the two-stage

joint admission control and optimum beamforming problem described in (6)–(11). One advantage

of this single stage reformulation is that it allows a convenient convex relaxation which can

generate high quality approximate solutions efficiently (see Section IV). Another is that it facilitates

complexity analysis, as discussed next.
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III. C OMPLEXITY ANALYSIS

Claim 2: With δ ≤ mink
4c−1

k

P maxm ‖hm‖22+σ2
k

and ε < mink λk

P/4+mink λk
, the problem in (12)-(14) is

NP-hard forN > 1. For N = 1, the problem is polynomial time solvable.

To prove Claim 2, we will need a few definitions and an intermediate claim, which is of interest

in its own right.

Let G = (V, E) be an undirected graph, with|V | = K vertices, one for each user, and edges

ek,` ∈ E, whereek,` denotes an edge between verticesk and`.

Definition 1: A subset of verticesS ⊆ V of G = (V, E) is independentwhen no two vertices

in S are connected by an edge inE.

Finding a largest independent subset in a graph is themaximum independent setproblem, known

to be NP-hard [8].

Definition 2: A subset of verticesS ⊆ V of G = (V, E) forms independent two-hop neighbor-

hoodswhen every pair of vertices inS are separated by at least three hops (edges inE) from each

other, i.e., no two vertices inS have a common one-hop neighbor.

Finding a largest subset of vertices that forms independent two-hop neighborhoods will be called

the maximum independent two-hop neighborhoodsproblem (and thetwo hop qualifier will be

dropped henceforth for brevity).

Claim 3: The maximum independent neighborhoods problem is NP-hard.

The proof of Claim 2 shows that an arbitrary instance of the maximum independent neighbor-

hoods problem can be transformed to an instance of problem (12)-(14) withδ ≤ mink
4c−1

k

P maxm ‖hm‖22+σ2
k

and ε < mink λk

P/4+mink λk
.

It is interesting to contrast the polynomial time solvability result for theN = 1 case with the

NP-hardness of the joint power and admission control problem for CDMA wireless networks [6].

Although in both problems the coupling coefficients between communicating pairs of users are fixed,
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there is a key difference between the two. In a wireless CDMA network, the coupling constants

between users are determined by the correlation coefficients between the users’ spreading codes and

therefore can be arbitrary and unequal, while in our context, the (normalized) coupling constants

between all users are equal to1 (cf. (38)). Hence, allowing arbitrary and unequal coupling constants

can turn an otherwise polynomial time solvable joint power and admission control problem into a

NP-hard problem which is computationally intractable.
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IV. A SEMIDEFINITE RELAXATION APPROACH

The interest in the reformulation in (12)-(14) stems in part from its suitability for the application

of Lagrangian relaxation tools. In particular, note that

(sk + 1)2 =


[sk 1]




1

1







2

= Tr







1 1

1 1







sk

1


 [sk 1]


 = Tr (12×2Sk) ,

where Tr(·) denotes matrix trace,Sk := sksT
k , and sk := [sk 1]T . By construction,Sk is

positive semidefinite (denotedSk ≥ 0), rank(Sk) = 1, andSk(2, 2) = 1; if we further insist that

Sk(1, 1) = 1, then there are only two possibilities forSk:

Sk =




1 1

1 1


 → Tr (12×2Sk) = 4; or Sk =




1 −1

−1 1


 → Tr (12×2Sk) = 0.

As a result, the scalar binary variablessk can be replaced by the2×2 real matrix variablesSk, and

the±1 constraints can be replaced by positive semidefinite, rank-one, and linear equality constraints

(see also [12]). Of the latter, only the rank-one constraint is non-convex, and thus difficult to handle.

In the same spirit, we may define rank-one positive semidefinite matrix variablesWk := wkwH
k ,

andHk := hkhH
k , and rewrite the optimization problem in (12)-(14) equivalently as

min
{Wk∈CN×N ,Sk∈R2×2}K

k=1

ε
K∑

k=1

Tr(Wk) + (1− ε)
K∑

k=1

λkTr(12×2Sk) (15)

subject to :
K∑

k=1

Tr(Wk) ≤ P, (16)

Tr(HkWk) + δ−1Tr(12×2Sk)∑
` 6=k Tr(HkW`) + σ2

k

≥ ck, ∀k, (17)

Wk ≥ 0, rank(Wk) = 1, ∀k, (18)

Sk ≥ 0, rank(Sk) = 1,Sk(1, 1) = Sk(2, 2) = 1, ∀k. (19)
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Dropping the rank-one constraints, we obtain the following convex semidefinite relaxation (SDR)

of (15)-(19):

min
{Wk∈CN×N ,Sk∈R2×2}K

k=1

ε

K∑

k=1

Tr(Wk) + (1− ε)
K∑

k=1

λkTr(12×2Sk) (20)

subject to :
K∑

k=1

Tr(Wk) ≤ P, (21)

Tr(HkWk) + δ−1Tr(12×2Sk) ≥ ck

∑

` 6=k

Tr(HkW`) + σ2
k, ∀k, (22)

Wk ≥ 0, ∀k, (23)

Sk ≥ 0,Sk(1, 1) = Sk(2, 2) = 1, ∀k, (24)

where we have also used the fact that the denominator in (17) is positive.

We note that problem (15)-(19) is a quadratically constrained quadratic program, and rank

relaxation can be interpreted as its bi-dual problem [20], which further motivates rank relaxation

from a Lagrangian perspective.

The problem in (20)-(24) is a semidefinite program, which can be efficiently solved using modern

interior point solvers such as SeDuMi [3], [16]. Being a relaxation of (12)-(14), the problem in

(20)-(24) is always feasible, provided that the constantsε, δ are chosen as in Claim 1.

It is interesting to recall that rank relaxation of the matricesWk for the original problem (without

user selection) is not a relaxation after all, as shown in [2]. It is also interesting to note that the

matricesSk are of rank at most two, hence the associated rank relaxation step is far milder than

usual. In particular, the following can be shown by direct examination of eigenvalues:

Property 1: Consider a real symmetric positive semidefinite matrix with diagonal elements equal

to one, i.e.,

S =




1 x

x 1


 ≥ 0.
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Then rank(S) = 1 ⇐⇒ x ∈ {−1, +1}, whereas rank(S) ∈ {1, 2} ⇐⇒ x ∈ [−1, +1].

Thus rank relaxation ofSk amounts to relaxing the{−1, +1} constraint on its off-diagonal element

to a [−1,+1] interval constraint. The associated penalty (sum of elements) is always non-negative,

in [0, 4]. These observations suggest that (20)-(24) is a relatively tight relaxation of (15)-(19).

Gaussian randomization coupled with multiuser power control (MPC) can be used to convert the

optimal solution of (20)-(24) into an approximate solution of (15)-(19); e.g., see related approaches

in [17], [10]. As an alternative to randomization / MPC, we may proceed as follows. The difficult

part of the problem is the determination of which users to drop. Once this part is solved, the rest is

SOCP. One idea is to try to determine this from the solution of the relaxed problem, by examining

the 2 × 2 matrix variablesSk, and/or the optimum of the cost function itself. For example, the

optimum value can yield an upper bound on the maximum number of admissible users. From the

various approaches that we tried, the following appears to work best in practice:

Algorithm 1: Deflation based on SDR (D-SDR):

1) SetU := {1, ...,K};

2) Solve problem (20)-(24) for the users inU . Let
{
W̌k

}
k∈U denote the resulting optimal

transmit covariance matrices;

3) For eachk ∈ U , extract the principal component of̌Wk, and scale it to powerTr(W̌k); i.e.,

set w̌k :=
√

Tr(W̌k)ǔk, whereǔk is the unit-norm principal component of̌Wk.

4) For eachk ∈ U , check whether |w̌H
k hk|2P

6̀=k |w̌H
` hk|2+σ2

k

≥ ck holds; if so, stop (a feasible solution

has been found); else pick the user with largest gap to its target SINR (smallest attained

SINR if all the SINR targets are equal), remove fromU , and go to step 2.

D-SDR returns a feasible solution for the subset of selected users, which however need not
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be optimal in terms of sum power. Interestingly, our experiments indicate that further beamvector

optimization by means of SOCP for the selected users does not improve the result of D-SDR.
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V. A PENALIZED SECOND-ORDER CONE PROGRAMMING APPROACH

Exploiting the freedom to choose the phase of each beamvector, the problem in (3)-(5) can be

equivalently formulated as an equivalent Second Order Cone Programming (SOCP) problem, as

shown in [2]

min{wk∈CN}K
k=1

K∑

k=1

‖wk‖2 (25)

subject to:wH
k hk ≥

√
ck

∑

` 6=k

|wH
` hk|2 + ckσ

2
k, ∀k, (26)

K∑

k=1

‖wk‖2 ≤ P, Im(wH
k hk) = 0, ∀k, (27)

where Im(·) extracts the imaginary part of its argument. The above problem is convex and can

be solved efficiently via interior point methods. Another way towards accounting for infeasibility

/ admission control issues is to consider the following relaxed problem:

min
{wk,∈CN ,sk∈R}K

k=1

K∑

k=1

‖wk‖2 + M
K∑

k=1

s2
k (28)

subject to:wH
k hk + sk ≥

√
ck

∑

` 6=k

|wH
` hk|2 + ckσ

2
k, ∀k, (29)

K∑

k=1

‖wk‖2 ≤ P, Im(wH
k hk) = 0, ∀k, (30)

whereM is a large positive constant. Notice that thesk’s here are different from those in (12)-(14):

the former are unconstrained real variables, whereas the latter are binary before relaxation, and in

the interval[−1, 1] after relaxation. Problem (28)-(30) is a SOCP, and it is always feasible due to

the presence of the auxiliary variables{sk}K
k=1. To see the latter, we only need to choose large
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enoughsk’s to satisfy all the constraints, regardless of whether (25)-(27) is feasible or not. In fact,

since thewk’s are bounded, it follows that the set of achievable SINRs is also bounded:

|wH
k hk|2∑

` 6=k |wH
` hk|2 + σ2

k

≤ γ, ∀ k andwk with
K∑

k=1

‖wk‖2 ≤ P

for someγ > 0. Thus, even if the problem in (25)-(27) is infeasible, we can always choose finite

sk (say, sk =
√

ck/γ) to satisfy all the constraints in (28)-(30). Also notice that, if (25)-(27) is

feasible, thensk = 0, ∀k is feasible in (28)-(30).

For any M > 0, let {wk(M) ∈ CN , sk(M) ∈ R}K
k=1 denote the global optimal solution of

(28)-(30). Clearly,{wk(M) ∈ CN , sk(M) ∈ R}K
k=1 can be found efficiently using interior point

methods.

Claim 4: Let

K =
{

k | lim
M→∞

sk(M) > 0
}

.

Then, the formulation in (25)-(27) is feasible if and only if|K| = 0. Moreover, if |K| 6= 0, then

dropping the constraints inK will lead to a feasible beamforming problem; that is, the reduced

problem

min
{wk,∈CN}K

k=1

K∑

k=1

‖wk‖2 (31)

subject to:wH
k hk ≥

√
ck

∑

6̀=k

|wH
` hk|2 + ckσ

2
k, ∀ k 6∈ K (32)

K∑

k=1

‖wk‖2 ≤ P, Im(wH
k hk) = 0, ∀ k 6∈ K (33)

is always feasible.

The above claim suggests that we may want to solve the relaxed problem (28)-(30) for some

sufficiently largeM , and admit only those users for whichsk(M) is small. Using a threshold is

one possibility, but choosing the right threshold is not straightforward. A reasonable alternative is

to sort{sk(M)} and prune one user at a time, until the problem becomes feasible. When a user is
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dropped, however, the remaining beamvectors are no longer optimal. This suggests the following

deflation algorithm:

Algorithm 2: Deflation based on SOC programming (D-SOC):

1) SetU := {1, ...,K};

2) Solve problem (28)-(30) for the users inU . Let {w̌k}k∈U denote the resulting beamforming

vectors, which are optimal for problem (28)-(30).

3) For eachk ∈ U , check whether |w̌H
k hk|2P

6̀=k |w̌H
` hk|2+σ2

k

≥ ck holds; if so, stop (a feasible solution

has been found); else pick the user with largest gap to its target SINR (smallest attained

SINR if all the SINR targets are equal)3, remove fromU , and go to step 2.

3In our experiments, we have observed that dropping the user with the largestsk(M) yields identical (in most cases)

or slightly worse results compared to using the SINR gap.
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VI. I MPLEMENTATION COMPLEXITY

Due to the Cartesian product structure of the2 × 2 SDP cones, the worst case complexity of

solving the SDP in (20)-(24) isO(K3.5 log(1/ε)), where ε is the required relative accuracy of

the duality gap at termination [19]. Similarly, the SOCP problem in (28)-(30) also has Cartesian

structure, so its worst case complexity is of orderO(K3.5 log(1/ε)) as well. The worst-case

complexity of D-SDR and D-SOC is scaled up by a factor ofK (total number of users), since

we’re using deflation. The final worst-case count for both algorithms is thereforeO(K4.5 log(1/ε)).

VII. A SIMPLER ALTERNATIVE

It is possible to conceive of simpler suboptimal solutions. From a complexity point of view,

it is appealing to consider a greedyinflation (as opposed to deflation) approach: given already

admitted users, consider adding one more user, until the problem becomes infeasible. Optimal

new user admission entails solving the beamforming problem in (3)-(5) from scratch for each

candidate new user, thereby leading to unacceptable complexity. For this reason, [4] suggests a

simpler approach, namely, fixing the beampatterns (normalized beamvectors) of already admitted

users and jointly optimizing the beampattern of the candidate user along with the powers of all

(admitted and candidate) users. In on-line mode, this also has the benefit of minimizing service

disruption for already admitted users.

When there is more than one option regarding which new user to admit, it makes sense to add

the user that minimizes the overall power (albeit this strategy is not necessarily optimal in terms

of the total number of users admitted at the end of the process). Putting everything together yields

the following algorithm.

Algorithm 3: Inflation based on the Butussi - Bengtsson approach (I-BB):
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1) SetU := {1, ...,K} andA := ∅ (empty set);

2) Find ko ∈ U whose QoS constraint
|wH

ko
hko |2

σ2
ko

≥ cko
(in the absence of interference from other

users) can be satisfied at minimum power. This is the user with the largest channel norm,

and the associated optimum beamvector is a scaled spatially matched filter. If the required

power is less thanP , setA = A⋃ {ko}, U = U − {ko} (i.e., admit the said user), and store

its beampattern (normalized beamvector) and power; else exit (the problem is infeasible).

3) If U = ∅ exit; else, for each candidate user inU , fix the beampatterns of already admitted

users inA and jointly optimize the beampattern of the candidate user along with the powers

of all (admitted and candidate) users. This can be accomplished by solving a generalized

eigenvalue problem, as shown in [4]. If no feasible solution can be found for the latter

problem for any of the candidate users inU , exit (no more users can be added); else pick

the candidate, sayk∗, which results in the smallest total transmit power. If this power is less

thanP , setA = A⋃ {k∗}, U = U − {k∗}, store the new user beampattern and all powers,

and return to step 3; else exit.

Algorithm I-BB has the lowest complexity among all algorithms considered. It is included as a

reasonable low-complexity baseline in our experiments.
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VIII. E XPERIMENTS

Setup: We conducted experiments using both simulated and measured channel data. In both cases,

we used SOCP enumeration (i.e., solving the problem in (3)-(5) using SeDuMi [16] for all possible

user combinations) as a benchmark. SOCP enumeration provides the optimum solution(s), but its

complexity grows exponentially inK. The maximum problem size that we could solve this way

wasK = 18 users, requiring over7 hours of computation. We compared SOCP enumeration, the

two proposed convex approximation algorithms (D-SDR, D-SOC), and I-BB. In all experiments

reported, the number of transmit antennas is set toN = 4. Monte-Carlo results for a pool of

K = 14 users and30 channel matrices are presented in Tables I, II. The parameters of the various

algorithms and the problem setup are listed in the table captions, for ease of reference.

Choice of parameters: For D-SDR, the choice of parametersε, δ is governed by the respective

upper bounds in Claim 1. The parameterε can be taken to be smaller than the upper bound in

Claim 1; the choice does not seem to be critical, so long asε is not too small. For D-SOC, Claim

4 does not directly provide guidance on the choice ofM . In practice,M should be large but not

too large, because in the latter case the problem becomes badly conditioned and this slows the

Newton iteration (increases the number of Newton steps) in the interior point algorithm [16]. We

have observed that a factor of10 change inM does not have significant performance/complexity

effects.

Rayleigh channels: For Table I, the channel gains were i.i.d. complex normal with zero-mean and

unit-variance (CN (0, 1)), and independent from realization to realization. For ease of visualization

of the results in Table I, Figure 1 is a plot of the average number of users served by each algorithm

versus target SINR, and Figure 2 is a plot of the average power per user served by each algorithm

versus target SINR. Note that power does not scale linearly with the number of users served, due to
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interference; I-BB uses less power per user when serving a smaller number of users than the other

algorithms. Also note that Table I contains additional information that cannot be easily conveyed

in graphical form (average execution times, percentages in the number of users served).

Measured channels: Measured channel data (downloaded from the iCORE HCDC Lab web site,

University of Alberta in Edmonton [9], http://www.ece.ualberta.ca/∼mimo/) were used for Table II.

The site contains detailed descriptions of numerous measurement campaigns in the 902–928 MHz

(ISM) band. The most pertinent scenario for our purposes is the stationary outdoor one, called

Quad and illustrated in Figure 3. Quad is a 150 by 60 meters lawn surrounded by buildings with

heights ranging from 15 to 30 meters. The transmitter (Tx) location was fixed while the receiver

(Rx) was placed in 6 different locations (no measurements are actually provided for location 4).

Both Tx and Rx were equipped with antenna arrays, each comprising four vertically polarized

dipoles spacedλ/2 (≈ 16 cm) apart. The channels are frequency-flat, slowly time-selective fading,

due to pedestrian movement and other factors (the chip rate used for sounding was low enough

to safely assume that the channels are not frequency selective). For every Rx location, 9 different

measurements were taken by shifting the Rx antenna array on a3×3 square grid withλ/4 spacing.

Each measurement contains about 1004 × 4 channel snapshots, recorded 3 per second. We took

K = 14 users (all depicted in Fig. 3 except 7, 10, 12, and 17), and took every third temporal

channel snapshot, starting from the first one. For ease of comparison with the simulated Rayleigh

case, all channel gains were normalizedby the same constant(average amplitude over all channels

and all snapshots). Note that this normalization maintains differences in path loss. Figure 4 (Figure

5) plots the average number of users served (average power per user served) by each algorithm

versus target SINR, for the data in Table II.



24

A. Discussion of experimental results

In the vast majority of cases considered (99% for i.i.d. Rayleigh,95% for measured channel data)

D-SDR and D-SOC serve the maximum possible number of users at a small power penalty relative

to the optimal solution provided by SOCP enumeration. In the remaining cases, both D-SDR and

D-SOC serve one user less than the maximum. This is remarkable, given the associated reduction

in execution time relative to SOCP enumeration, which is roughly by a factor of103 for K = 14.

There is no clear winner in terms of performance between D-SDR and D-SOC, albeit D-SOC

does appear to be somewhat more effective in terms of the number of users served, especially at

high target QoS. On the other hand, the run-time of D-SOC is triple that of D-SDR. This may

seem curious at first sight, because solving a second-order cone program is generally simpler than

solving a semidefinite program, and D-SDR actually entails more optimization variables than D-

SOC. However, the constants hidden in complexity analysis depend on problem conditioning, which

also affects average complexity. We stress that theM parameter for D-SOC has been manually

tuned for best performance in our experiments.

I-BB further reduces the run-time by a factor of10 − 102 relative to D-SDR and D-SOC, but

its performance is considerably worse, especially at high target QoS where it typically serves two

users versus four served by D-SDR and D-SOC. Even at low target QoS (e.g.,3 dB), I-BB incurs

∼ 6 dB power penalty relative to D-SDR, D-SOC, and the optimum solution.

It is worth noting that the performance (number of users served, required power) of all algorithms

- including optimum SOCP enumeration - is somewhat worse in the case of measured channels

compared to the case of simulated i.i.d. Rayleigh channels. There are reasons for this. Despite the

presence of multipath, the measured channels exhibit directional selectivity and temporal correlation

(slow fading); certain nodes are (approximately) behind others in the line of sight to the transmit
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antenna array. In this sense, the measured channels represent a more difficult scenario, and it is

natural to expect that the number of users served will be smaller and the required power higher

relative to the isotropic i.i.d. Rayleigh scenario.
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IX. CONCLUDING REMARKS

We have proposed two computationally efficient joint multiuser transmit beamforming and admis-

sion control algorithms. The objective is to maximize the number of users that can be supported

at their desired SINR (and then minimize the total transmitted power) which is appealing from

a network operator’s perspective. The core problem is NP-hard, yet we have shown that it is

well-suited to convex approximation tools. For a moderate user population, our experiments with

simulated and measured channel data indicate that the proposed algorithms yield high-quality

feasible solutions at a low computational cost.

There are some related problem formulations that can be easily dealt with using the tools that

we developed. For example, we may adopt a min-max power criterion in place of the min-sum

in (1). In this case, we can minimize an auxiliary optimization variable,t, subject to||wk||22 ≤ t,

∀k, in addition to sum-power and individual SINR constraints. The resulting problem can again

be reformulated as SOCP. The single-stage reformulation of the joint beamforming and admission

control problem can be worked out in a similar fashion, and the NP-hardness proof can be modified

to accommodate the min-max formulation, provided that we keep the sum-power constraint. After

semidefinite relaxation, which is again the Lagrange bi-dual problem, the newly added quadratic

constraints become linear inequality constraints, so the resulting problem can again be solved via

SDP.

Another variation emerges when the actual channel vectorshk are not accurately known at

the transmitter, e.g., due to mobility or delayed / low-rate feedback. In such cases, the channel

correlation matricesRk := E[hkhH
k ] may be available, in which case it is possible to guarantee

average SINRs. D-SDR works verbatim in this case, simply replacingHk (previously defined as

hkhH
k ) by Rk.
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X. A PPENDIX

Proof of Claim 1:Let
{
w̌k ∈ CN , šk ∈ {−1,+1}}K

k=1
be a solution of (12)-(14), and let

{
w̃k ∈ CN ,

s̃k ∈ {−1, +1}}K
k=1 denote a feasible4 alternative with

∑K
k=1 1(s̃k = −1) >

∑K
k=1 1(šk = −1),

where1(·) stands for the indicator function. Then
{
w̃k ∈ CN , s̃k ∈ {−1, +1}}K

k=1
serves at least

one more user than
{
w̌k ∈ CN , šk ∈ {−1, +1}}K

k=1, and so
∑K

k=1(s̃k +1)2 ≤ ∑K
k=1(šk +1)2−4.

From the total power constraint in (13) it follows that
∑K

k=1 ‖w̃k‖2
2 ≤ P , and soε

∑K
k=1 ‖w̃k‖2

2 +

(1−ε)
∑K

k=1(s̃k+1)2 ≤ εP +(1−ε)
∑K

k=1(šk+1)2−(1−ε)4. Now, ε < 1
P/4+1 ⇔ εP−(1−ε)4 < 0,

thereforeε
∑K

k=1 ‖w̃k‖2
2 + (1 − ε)

∑K
k=1(s̃k + 1)2 < (1 − ε)

∑K
k=1(šk + 1)2 ≤ ε

∑K
k=1 ‖w̌k‖2

2 +

(1 − ε)
∑K

k=1(šk + 1)2, which contradicts optimality of
{
w̌k ∈ CN , šk ∈ {−1, +1}}K

k=1
for the

problem in (12)-(14). Therefore no other solution exists that serves a higher number of users under

(13)-(14).

Given {šk ∈ {−1, +1}}K
k=1, it follows from the choice ofδ and the cost function in (12) that

šk = +1 ⇒ w̌k = 0N×1, thus the cost function becomesε
∑

k | šk=−1 ‖wk‖2
2 + constant, the

constraint in (13) becomes
∑

k | šk=−1 ‖wk‖2
2 ≤ P , the constraints in (14) corresponding to

{k | šk = +1} are automatically satisfied (recallδ ≤ mink
4c−1

k

P maxm ‖hm‖22+σ2
k
), and those corre-

sponding to{k | šk = −1} become

|wH
k hk|2∑

` 6=k | š`=−1 |wH
` hk|2 + σ2

k

≥ ck, ∀ {k | šk = −1} . (34)

It follows that solution of (12)-(14) also yields optimal beamforming vectors for the admitted users.

Proof (of Claim 3): Given a connected graphG = (V,E), construct a graphG
′

= (V
′
, E

′
) as

follows:

• Begin with V
′
= V , E

′
= ∅.

4i.e., satisfying (13)-(14).
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• Replace each edgeek,` ∈ E by a a new vertex (node)sk,` that is added inV
′

and two new

edges that are added inE
′
: (k, sk,`) and (sk,`, `).

• Add edges inE
′

betweenall newly created nodessk,`, for ek,` ∈ E .

It is simple to verify the following observations (see Fig. 6 for an illustration):

• All old nodes (inV ⊂ V
′
) are either two or three hops away from each other inG

′
(paths

via newly created nodes).

• Two old nodes are two hops away inG
′

if and only if they are adjacent (one hop away) inG.

• Any newly created node is at most two hops away from any old node inG
′

(again, due to

paths via new nodes).

We will show the following: Any independent set of size|S| > 1 in G corresponds to an

independent neighborhoods set of the same size inG
′
, and vice-versa.

The forward direction is easy, since, by construction ofG
′
, every two disjoint nodes (separated

by more than one hop) inG will be exactly three hops away inG
′
, so S is also an independent

neighborhoods set inG
′
.

The converse can be seen as follows. Given an independent neighborhoods setS in G
′

with

|S| > 1, write S = S1 ∪ S2, whereS1 ⊆ V contains only old nodes andS2 ⊆ V
′ − V contains

only new nodes. We will show thatS2 is empty. Since the newly added nodes are all connected,

S2 can contain at most one node. This also implies that|S1| ≥ |S| − 1 ≥ 1, so S1 is non-empty.

Moreover, ifS2 contains exactly one node, then any node inS1 will be at most two hops away in

G
′

from the node inS2, contradicting the assumption thatS is an independent neighborhoods set

in G
′
. SoS2 must be empty, i.e.,S consists solely of old nodes which are three hops away inG

′
.

It follows that S is an independent set inG, and the proof is complete.

Proof (of Claim 2): Consider the following simplified version of problem (12)-(14), withλk =
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σ2
k = ck = 1, ∀k, andP ≥ 1

A : min
{wk∈CN ,sk∈{−1,+1}}K

k=1

ε
K∑

k=1

‖wk‖2
2 + (1− ε)

K∑

k=1

(sk + 1)2

subject to :
K∑

k=1

‖wk‖2
2 ≤ P,

|wH
k hk|2 + δ−1(sk + 1)2∑

` 6=k |wH
` hk|2 + 1

≥ 1, ∀k ∈ {1, · · · ,K}

with εP < (1− ε)4 ⇔ ε < 1
P/4+1 , andδ ≤ 4

P maxm ‖hm‖22+1 . From P ≥ 1 it follows that ε < 4/5.

We will show that an arbitrary instance of the maximum independent neighborhoods problem

can be transformed to an instance of problemA.

Given a graphG = (V, E) with |V | = K vertices, construct an instance of problemA, denoted

A(G), by setting

hk(`) =





1√
d(k)

, ek,` ∈ E

0, otherwise

k, ` = 1, 2, ...,K, (35)

whered(k) is the degree of nodek ∈ V (i.e., the number of edges adjacent to nodek). It can be

seen that‖hk‖2 = 1 for all k ∈ V and hH
k h` = 0 if and only if nodesk and ` do not have a

common one-hop neighbor, i.e., they are separated by at least three hops.

Remark 1:Note the relationship betweenG andA(G): vertices correspond to users and edges

correspond to user interaction/interference. Also note that for‖hk‖2 = 1, ∀k, as above,P ≥ 1 is

needed to ensure thatA(G) is not trivial (in the sense thatsk = 1, wk = 0, ∀k is the only feasible

solution). On the technical side,P ≥ 1 ensures thatε < 4/5 which we need to invoke later in the

proof.

We will prove the following:G contains an independent neighborhoods setS ⊆ V of size |S| if

and only ifA(G) with P = |S| admits a solution of cost less than or equal toε|S|+(1−ε)4(K−|S|)

= (K−|S|)(4−5ε)+εK (note thatε < 4/5 has been assumed, so the leading term is non-negative).
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SupposeG contains an independent neighborhoods setS. ConsiderA(G) with P = |S| and set

sk =





−1, k ∈ S

+1, otherwise,

and wk =





hk, k ∈ S

0, otherwise,

(36)

We first verify that the assignment in (36) is feasible forA(G). For the nodes inV − S, we have

wk = 0 andsk = 1, which together with the choice ofδ implies that the QoS constraint

|wH
k hk|2 + δ−1(sk + 1)2∑

` 6=k |wH
` hk|2 + 1

≥ 1 (37)

is satisfied. Moreover, for nodes inS, we havewk = hk and sk = −1 so that‖wH
k hk‖2

2 =

‖wk‖2
2 = 1. By definition of independent neighborhoods set, there is no intra-group interference

among the nodes inS, and the nodes inV − S have been shut off; thus the interference power

∑
` 6=k |wH

` hk|2 for nodesk ∈ S is zero, again implying that the QoS constraint (37) is satisfied.

Finally, since‖wk‖2 = 1 for k ∈ S andwk = 0 for k 6∈ S, it follows that

K∑

k=1

‖wk‖2 = |S| = P.

We have thus established the feasibility of (36). It can be further verified that the feasible solution

(36) yields an objective value ofε|S| + (1 − ε)4(K − |S|). ThusA(G) with P = |S| admits a

solution of cost less than or equal toε|S|+ (1− ε)4(K − |S|) in this case.

For the converse, suppose thatA(G) with P = |S| (for some positive integer|S|) admits a

solution{w̌k, šk ∈ {−1, +1}}K
k=1 of cost less than or equal toε|S|+(1− ε)4(K−|S|). We show

below that graphG must have an independent neighborhoods set of cardinality at least|S| in this

case. LetŠ := {k | šk = −1} denote the set of served users. Then, for eachk ∈ Š we have

‖w̌k‖2 ≥ |w̌H
k hk|2 ≥

∑

` 6=k

|w̌H
` hk|2 + 1 ≥ 1,

where the first step follows from Cauchy-Schwartz inequality and the second step is due to the

QoS constraint for nodek. This shows that the objective value corresponding to the solution
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{w̌k, šk ∈ {−1,+1}}K
k=1 must be at least

ε
K∑

k=1

‖w̌k‖2
2 +(1−ε)

K∑

k=1

(šk +1)2 ≥ ε
∑

k∈Š

‖w̌k‖2
2 +(1−ε)

∑

k 6∈Š

(šk +1)2 ≥ ε|Š|+4(1−ε)(K−|Š|).

Combining this with our assumption, we obtain

ε|S|+ (1− ε)4(K − |S|) ≥ ε|Š|+ 4(1− ε)(K − |Š|),

yielding |Š| ≥ |S| (sinceε < 4/5). In other words, at least|S| users must be served, for otherwise

the objective value would be higher than the postulated upper bound. On the other hand, the total

transmit power constraint implies that

|S| = P ≥
K∑

k=1

‖w̌k‖2 ≥
∑

s∈Š

‖w̌k‖2 ≥ |Š|.

Therefore, we must have|S| = |Š|, ‖w̌k‖2 = 1 for all k ∈ Š andw̌k = 0 for all k 6∈ Š. It follows

that the corresponding objective value must be exactly equal toε|S| + (1 − ε)4(K − |S|). Since

‖w̌k‖2 = ‖hk‖2 = 1 for k ∈ Š, it follows that |w̌H
k hk|2 ≤ 1 (Cauchy-Schwartz inequality). For

w̌k to be sufficient for satisfying the QoS constraint of userk ∈ Š, i.e.,

1∑
` 6=k |w̌H

` hk|2 + 1
≥ |w̌H

k hk|2∑
` 6=k |w̌H

` hk|2 + 1
≥ 1

the interference term
∑

6̀=k |w̌H
` hk|2 must be zero and|w̌H

k hk| = 1. Since the latter condition

implies that the Cauchy-Schwartz inequality holds with equality, we must havewk = ±hk for all

k ∈ Š. This further shows that

hH
` hk = ±w̌H

` hk = 0, for all k 6= ` andk, ` ∈ Š.

By the definition ofhk in (35), we can conclude that the set of served usersŠ forms an independent

neighborhoods set of size|Š| = |S|. This completes the proof of converse. Thus, problem (12)-(14)

is NP-hard forN > 1.
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It remains to show that for the case ofN = 1 (one transmit antenna), the corresponding single

stage problem (12)-(14) can be solved in polynomial time. Indeed, in this case, the problem reduces

to

min
{pk≥0,sk∈{−1,+1}}K

k=1

ε

K∑

k=1

pk + (1− ε)
K∑

k=1

λk(sk + 1)2

subject to :
K∑

k=1

pk ≤ P,

pk|hk|2 + δ−1(sk + 1)2

|hk|2(
∑

` 6=k p`) + σ2
k

≥ ck, ∀k ∈ {1, · · · ,K}

(38)

Let {pk ≥ 0, sk ∈ {−1, +1}}K
k=1 denote an optimal solution andS = {k | sk = −1} denote the

set of served users. Notice that a userk ∈ S is served means exactly

pk|hk|2
|hk|2(

∑
` 6=k p`) + σ2

k

≥ ck, or equivalently, pk ≥ ck

ck + 1

K∑

`=1

p` +
ckσ

2
k

(ck + 1)|hk|2 .

Thus, by a simple monotonicity argument, there holds

ck

ck + 1
u +

ckσ
2
k

(ck + 1)|hk|2 ≤
c`

c` + 1
u +

c`σ
2
`

(c` + 1)|h`|2 , ∀ k ∈ S, ` 6∈ S,

whereu :=
∑K

`=1 p` denotes the total transmit power. This is true because otherwise user` could be

(and should be) served instead of userk with less total transmit power, contradicting the optimality

of S. For anyu ∈ [0, P ], let us define

pk(u) =
ck

ck + 1
u +

ckσ
2
k

(ck + 1)|hk|2 .

Then, S must be of the form{k | pk(u) ≤ τ} for someτ > 0. For any fixedu ∈ [0, P ] there

are only K such type of subsets ofS, and they can be easily determined by sortingpk(u) in

increasing order. We can then search over theseK subsets to determine which gives the smallest

objective value. Whenu increases monotonically from0 to P , the ordering of{pk(u)} may vary.

But the ordering changes only whenpk(u) = p`(u) for some pair of̀ and k. As a result, there

can be at mostK(K − 1)/2 different orderings ofpk(u) for u ∈ [0, P ]. This implies that there
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are at mostK2(K − 1)/2 different subsets ofS that need to be searched over, asu varies over

[0, P ]. These subsets are all computable in polynomial time (involving simple sorting operations

and thresholding). Picking the smallest overall objective value from these subsets solves the original

problem.

Proof of Claim 4:First, notice thatsk(M) ≥ 0 for all k and M . This is due to the fact that if

sk(M) < 0, then setting this variable to zero would yield a better solution for the relaxed problem

(28)-(30). Consequently, we have

lim
M→∞

sk(M) ≥ 0, ∀ k.

Let R(M) denote the optimal value of (28)-(30). If (25)-(27) is feasible, then{sk = 0}K
k=1 together

with some{w̄k ∈ CN}K
k=1 will satisfy all the constraints of (28)-(30) for allM . This shows

R(M) ≤
K∑

k=1

‖w̄k‖2, ∀ M,

implying thatlimM→∞R(M) < ∞. This further shows that|K| = 0, for otherwise we would have

limM→∞R(M) ≥ limM→∞M
∑K

k=1 s2
k(M) ≥ limM→∞M

∑
k∈K s2

k(M) = ∞.

Conversely, if|K| = 0, then limk→∞ sk(M) = 0 for all k = 1, 2, ..., K. In this case, we claim

that any limit point of{wk(M) ∈ CN}K
k=1 (whose existence follows from the bounded transmission

power constraint
∑K

k=1 ‖wk‖2 ≤ P ) will be a feasible solution of (25)-(27). This can be seen by

taking limit with M →∞ in the following conditions:




wH
k (M)hk + sk(M) ≥

√
ck

∑

` 6=k

|wH
` (M)hk|2 + ckσ

2
k, ∀ k

K∑

k=1

‖wk(M)‖2 ≤ P, Im(wH
k (M)hk) = 0, ∀k.

To prove the second part of the claim, notice thatlimk→∞ sk(M) = 0 for all k 6∈ K. The above
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limiting argument readily shows that the constraints




wH
k hk ≥

√
ck

∑

` 6=k

|wH
` hk|2 + ckσ

2
k, ∀ k 6∈ K

K∑

k=1

‖wk‖2 ≤ P, Im(wH
k hk) = 0, ∀ k 6∈ K

are satisfied by any limit point of the sequence{wk(M) ∈ CN}K
k=1 whenM →∞. This implies

that the reduced problem (31)-(33) is always feasible, as claimed.
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Fig. 1. Average number of users served versus target SINR: i.i.d. Rayleigh channels, 30 Monte-Carlo runs.
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Fig. 2. Average power per user served versus target SINR: i.i.d. Rayleigh channels, 30 Monte-Carlo runs.
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Fig. 3. Sample wireless channel measurement scenario from http://www.ece.ualberta.ca/∼mimo/
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Fig. 4. Average number of users served versus target SINR: 30 measured channel snapshots.
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Fig. 5. Average power per user served versus target SINR: 30 measured channel snapshots.

      G
 G'


Fig. 6. Illustration of the construction ofG
′

from G in the proof of Claim 3. Original nodes are in black, whereas newly

introduced nodes are shown in white. The top two nodes form an independent set inG, and an independent two-hop

neighborhoods set inG
′
.
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TABLE I

MONTE-CARLO RESULTS(30 i.i.d. Rayleigh channel snapshots): N = 4 TX ANT., K = 14 USERS, P = 100;

σ2
k = σ2 = 1, ck = c, λk = 1, ∀k; e = 0.0001 < 1

P/4+1
, δ = 4c−1

P maxm ‖hm‖22+σ2 ; FOR D-SOC,M = 1010 FOR QOS

TARGET∈ {3, 5, 10} dB; M = 1011 FOR QOS TARGET 15 dB.

QoS target Alg ] users served Avg Min Tx Power Max Min Tx.Power Avg Time

3 SOCP enum 5 6.2043 9.5117 0.728h

3 D-SDR 5 6.6267 11.094 0.89 s

3 D-SOC 5 6.6871 11.202 3.233s

3 I-BB 5@ 93.33% 23.2382 73.3527 0.0534s

4 @ 6.66%

5 SOCP enum 5 26.7524 41.8895 0.612h

5 D-SDR 5@96.66% 33.9469 78.7254 0.822s

4@ 3.33%

5 D-SOC 5 35.7631 80.3822 3.189s

5 I-BB 4 5.9747 15.4648 0.0405s

10 SOCP enum 4 12.812 18.8976 0.505h

10 D-SDR 4 13.311 19.2041 0.8572s

10 D-SOC 4 13.5383 19.2041 3.0324s

10 I-BB 4 @ 96.66% 42.4219 85.039 0.0397s

3 @ 3.33%

15 SOCP enum 4 41.5433 62.712 0.434h

15 D-SDR 4 44.5851 67.2114 0.8372s

15 D-SOC 4 44.5535 62.712 2.556s

15 I-BB 4 @ 3.33% 54.7591 99.1921 0.0202s

2 @ 83.33%

1 @ 13.33%
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TABLE II

MONTE-CARLO RESULTS(30 measured channel snapshots): N = 4 TX ANT., K = 14 USERS(ALL DEPICTED IN

FIG. 3 EXCEPT7, 10, 12,AND 17),P = 100; σ2
k = σ2 = 1, ck = c, λk = 1, ∀k; e = 0.0001 < 1

P/4+1
,

δ = 4c−1

P maxm ‖hm‖22+σ2 ; FOR D-SOC,M = 1010 FOR QOS TARGET 5 DB AND 10 dB; M = 1011 FOR QOS TARGET 3

dB AND 15 dB.

QoS target Alg ] users served Avg Min Tx Power Max Min Tx.Power Avg Time

3 SOCP enum 5 9.5342 13.1834 0.697h

3 D-SDR 5 11.0522 15.7259 0.9978s

3 D-SOC 5 11.5324 15.4238 3.24 s

3 I-BB 5@ 70% 42.1933 96.5993 0.0515s

4 @ 30%

5 SOCP enum 5 40.5392 60.4637 0.554h

5 D-SDR 5@93.33% 44.2296 81.935 0.93 s

4@ 6.66%

5 D-SOC 5@86.66% 57.248 88.882 3.277s

4@13.33%

5 I-BB 4 10.2613 14.9659 0.0407s

10 SOCP enum 4 22.8658 29.5651 0.488h

10 D-SDR 4 26.5837 33.7893 0.8706s

10 D-SOC 4 25.2875 44.7832 3.132s

10 I-BB 4 @ 70% 57.8008 90.9868 0.0339s

3 @ 30%

15 SOCP enum 4 74.4436 95.5118 0.429h

15 D-SDR 4@86.66% 74.2668 98.7509 0.8466s

3@13.33%

15 D-SOC 4@93.33% 76.0445 99.089 2.577s

3@6.66%

15 I-BB 2 18.8126 31.1947 0.0137s


