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Abstract 

During recent years, computer graphics techniques such as Free-Form 

Deformation (FFD), have become extremely useful and widely employed in the field 

of Aerodynamic Shape Optimization and particular throughout the design of airfoil 

sections. Although FFD is a powerful parameterization and deformation technique of 

any given arbitrary two- or three-dimensional shape, there is no guarantee that provides 

the preservation of the shape’s enclosed area or volume respectively, after its 

application. Given the importance of the structural integrity required by aerodynamic 

shapes, such as aircraft wings and wind turbine blades, the necessity of including a 

cross-sectional area preservation constraint (among several other geometrical and 

aerodynamic ones) arises during the optimization process of the airfoil sections forming 

the aforementioned applications. Even though previous works exist, where a cross-

sectional area constraint is utilized, the implementation is done by either non-linear 

time consuming expressions or by penalty function approaches, which are not always 

sufficient and do not guarantee the exact satisfaction of a strict equality constraint 

throughout the design process. In this work an airfoil optimization scheme is presented, 

based on Area-Preserving Free-Form Deformation technique, which serves as an 

alternative approach for the handling and satisfaction of a strict cross-sectional area 

equality constraint, while a parallel Differential Evolutionary (DE) algorithm is utilized 

for the optimization procedure. The DE algorithm is combined with two Artificial 

Neural Networks (ANNs), a multilayer perceptron (MLP) feed-forward ANN and a 

Radial Basis Functions (RBF) network, which serve as surrogate models, to decrease 

the computational cost of the optimization procedure. In each iteration of the DE 

algorithm, before the evaluation of the fitness function for each candidate solution, an 

area preservation step is applied to that solution in order to meet the cross-sectional area 

constraint. The area preservation step is achieved by solving an area correction sub 

problem, which consists of computing and applying the minimum possible offset to 

each free-to-move control point of the FFD lattice, subject to the area conservation. 

Due to the linearity of the area constraint in each axis, the extraction of an inexpensive 

closed-form solution to the sub problem is possible by using Lagrange Multipliers 

method. The proposed technique overcomes the disability of Evolutionary Algorithms 

(EAs) to effectively treat strict equality constraints such as exact area preservation one. 

Throughout the optimization process both structural and aerodynamic requirements can 
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be taken into account, as constraints while the objective function is focused on the 

improvement of aerodynamic efficiency. Additionally, the use of multiple surrogate 

models, in conjunction with the inexpensive solution to the area correction sub problem, 

render the optimization process time saving. This thesis demonstrates the applicability 

and effectiveness of the proposed methodology. 
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Περίληψη 

Κατά τη διάρκεια των τελευταίων ετών, τεχνικές προερχόμενες από τον τομέα 

των υπολογιστικών γραφικών, όπως η μέθοδος Ελεύθερης Παραμόρφωσης, έχουν γίνει 

εξαιρετικά χρήσιμες και ευρέως εφαρμόσιμες κατά τη διαδικασία βελτιστοποίησης εν 

γένει αεροδυναμικών σχημάτων και συγκεκριμένα αεροτομών. Αν και η Ελεύθερη 

Παραμόρφωση είναι  μια πανίσχυρη τεχνική παραμετροποίησης και παραμόρφωσης 

οποιουδήποτε σχήματος αυθαίρετης γεωμετρίας, ύστερα από την παραμόρφωση του 

εκάστοτε αντικειμένου η ιδιότητα της διατήρησης του εμβαδού ή του όγκου, που 

περικλείεται από το σχήμα για διδιάστατα ή τριδιάστατα σχήματα αντίστοιχα, δεν 

παρέχεται. Δεδομένης της απαιτούμενης δομικής ακεραιότητας και αντοχής από 

αεροδυναμικές διατάξεις όπως πτερύγια, προκύπτει η αναγκαιότητα της συμπερίληψης 

ενός περιορισμού, με σκοπό την διάτρηση του εμβαδού, κατά τη διαδικασία 

βελτιστοποίησης π.χ. αεροτομών. Παρά το γεγονός της ύπαρξης εργασιών όπου ο 

περιορισμός της διατήρησης του εμβαδού χρησιμοποιείται κατά τη διαδικασία 

βελτιστοποίησης, η εφαρμογή του πραγματοποιείται είτε με μη-γραμμικές σχέσεις, οι 

οποίες αυξάνουν τον υπολογιστικό χρόνο, είτε με συναρτήσεις τιμωρίας, οι οποίες δεν 

είναι πάντα αποτελεσματικές και δεν εγγυόνται ότι ο αυστηρός περιορισμός ισότητας 

θα είναι ενεργός κατά τη διάρκεια της διαδικασίας. Στην παρούσα διπλωματική 

εργασία παρουσιάζεται μια νέα μεθοδολογία βελτιστοποίησης, βασισμένη στην 

τεχνική της Ελεύθερης Παραμόρφωσης με Διατήρηση του Εμβαδού Διατομής, η οποία 

λειτουργεί ως ένα εναλλακτικό μέσο χειρισμού και ικανοποίησης του παραπάνω 

περιορισμού ισότητας, ενώ ένας παράλληλος Διαφορικός Εξελικτικός (ΔΕ) 

αλγόριθμος χρησιμοποιείται για τη διαδικασία βελτιστοποίησης. Ο ΔΕ αλγόριθμος 

συνδυάζεται με δύο Τεχνητά Νευρωνικά Δίκτυα (ΤΝΔ), ένα Πολυεπίπεδο Perceptron 

(Multi-Layer perceptron - MLP) και ένα ΤΝΔ Ακτινικών Συναρτήσεων Βάσης (Radial 

Basis Function  – RBF ANN), τα οποία λειτουργούν ως υποκατάστατα μοντέλα 

(surrogate models) με σκοπό τη μείωση του υπολογιστικού κόστους της διαδικασίας 

βελτιστοποίησης. Σε κάθε επανάληψη του ΔΕ αλγορίθμου, προτού τον υπολογισμό της 

αντικειμενικής συνάρτησης για κάθε υποψήφια λύση, ένα βήμα διόρθωσης του 

εμβαδού διατομής εφαρμόζεται στην υπό εξέταση γεωμετρία με σκοπό την 

ικανοποίηση του αντίστοιχου περιορισμού. Η υλοποίηση του παραπάνω βήματος 

επιτυγχάνεται μέσω της επίλυσης ενός υπο-προβλήματος διόρθωσης του εμβαδού 

διατομής, της υπο εξέταση γεωμετρίας, το οποίο αποτελείται από τον υπολογισμό και 
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την εφαρμογή των ελάχιστων δυνατών μετατοπίσεων στα σημεία ελέγχου του ήδη 

παραμορφωμένου πλέγματος της Ελεύθερης Παραμόρφωσης, ώστε το εμβαδόν της 

παραγόμενης γεωμετρίας ύστερα από την εφαρμογή των προαναφερθέντων  

μετατοπίσεων να ισούται με το εμβαδόν αναφοράς. Λόγω της γραμμικότητας του 

περιορισμού ισότητας του εμβαδού σε κάθε έναν από τους κύριους άξονες, είναι 

δυνατή η εξαγωγή λύσης κλειστής μορφής στο υπό-πρόβλημα, χρησιμοποιώντας την 

τεχνική των πολλαπλασιαστών Lagrange. Η προτεινόμενη μεθοδολογία 

αντιπαρέρχεται την αδυναμία των Εξελικτικών Αλγορίθμων σχετικά με την 

αποτελεσματική διαχείριση των αυστηρών περιορισμών ισότητας. Κατά τη διάρκεια 

της βελτιστοποίησης τόσο τα αεροδυναμικά αλλά και τα δομικά απαιτούμενα 

χαρακτηριστικά από μία αεροτομή λαμβάνονται υπόψιν. Επιπλέον, η χρησιμοποίηση 

πολλαπλών υποκατάστατων μοντέλων, σε συνδυασμό με την υπολογιστικά πολύ 

αποδοτική λύση στο υπο-πρόβλημα διόρθωσης του εμβαδού, καθιστούν την 

διαδικασία βελτιστοποίησης χρονικά αποδοτική. Στην παρούσα διπλωματική εργασία, 

η χρήση της προτεινόμενης μεθοδολογίας αποδεικνύει την εφαρμοσιμότητα και την 

αποτελεσματικότητά της. 
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Chapter 1 

Introduction 

 

 

 

1.1 Airfoil Shape Optimization 

   Since the early 80s, the systematic exploitation of wind turbines systems, as an 

alternative source of renewable energy, combined with the ever increasing demand of 

aviation industries for efficient aerodynamic shapes, extracted by automated and well-

organized design cycles, has pushed researchers end engineers to the limits in order to 

develop powerful numerical optimization schemes for the design of high performance 

airfoil sections, employed to the aforementioned applications. 

The direct airfoil optimization approach (Figure 1.1) refers to the design of high 

performance airfoils with respect to specific criteria, usually generated by the 

modification of a reference airfoil section having good performance to the selected 

criteria of the final design. Although the objectives of each problem typically diverse, 

depending on the application of interest, the most frequently utilized criteria concern 

the maximization or minimization of aerodynamic properties, such as the lift coefficient 

(maximization), the drag coefficient (minimization), the lift-to-drag ratio 

(maximization) as well as the smooth reaction after stall effects, subject to a variety of 

aerodynamic and geometrical constraints [1–6].  
 

 

 

Fig. 1.1: Direct Airfoil Optimization
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All the way through the design of an airfoil, aerodynamic efficiency and structural 

integrity are two strongly competitive properties acting in conflict. An optimization 

procedure concerned with high aerodynamic performance, leads the design in thin 

geometries with inadequate structural characteristics, while on the other hand, the 

opposite case leads in relatively thick geometries with no practical utilization in 

applications in which augmented aerodynamic efficiency is required. Hence, during the 

optimization process of an airfoil section, a fine compromise between the two 

aforementioned features has to be made, depending on the necessities of the application 

under study. In particular, structural requirements have higher priority than the 

aerodynamic ones, concerning airfoil sections which form the inner parts of a blade or 

wing, near the base, due to the enormous torsional stresses they go through, whereas 

increased aerodynamic properties are essential for airfoil sections located in the outer 

part, near the tip (Figure 1.2). The usual approach dictates the establishment of a 

proficient and adequate set of non-conflicting geometrical constraints, throughout the 

optimization process, to ensure the preservation of the necessary structural properties 

and guarantee the manufacturing feasibility of the final design, given a direct numerical 

optimization scheme focused on the improvement of aerodynamic performance [4, 7–

11].  
 

 

Fig. 1.2: Wind turbine blade and the respective airfoil sections 

 

Under this prism, a strict cross-sectional area preservation constraint is commonly 

necessary, combined with further geometrical constraints to insure the required rigidity 

as well as the ability of the new blade/wing to sustain the expected loads without 

performing a detailed elastic analysis of each candidate geometry [8], having a 

structurally integral, as the initial one. Consequently, the development of efficient 

methods for the satisfaction of the mentioned constraints is rendered vital for the 

success of the design procedure. 
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1.2 Geometrical Constraints 

The establishment of proficient geometrical constraints, in order to ensure the 

required structural properties, concerning a specific aerodynamic application, is a quite 

challenging task with significant impact to the effectiveness of the final design. 

Although finding geometric quantities related to structural integrity requires a simple 

literature overview, it is the proper importation of the mentioned parameters into 

applicable constraints along with the fine non-conflicting combination of the different 

constraints into an adequate set that requires a delicate handling by the designer. In 

Table 1.1 the most frequently placed under restriction geometrical characteristics, are 

presented [8], while in Figure 1.3 the geometry of an airfoil section is illustrated . 

 

Geometrical Characteristics Under Restriction 

Cross-Sectional Area 

Minimum Thickness 

Maximum Thickness 

Thickness at Specific Location 

Leading Edge Radius 

Tab. 1.1: Frequent geometrical characteristics under restriction 

 

 

Fig. 1.3: Geometry of an airfoil section 



On the Optimal Design of Airfoils  Introduction 

 

- 4 - 

Leading edge: is the point at the front of the airfoil that has maximum curvature. 

Trailing edge: is defined similarly as the point of maximum curvature at the rear of the 

airfoil. 

Chord line: A straight line from leading edge to trailing edge.  

Mean camber line (MCL): The line midway between upper and lower surfaces. The 

MCL for a cambered airfoil necessarily rises above the chord line. The MCL for a 

symmetric airfoil is coincidental (same as) the chord line itself.  

Maximum thickness: Maximum thickness of the airfoil is the maximum distance from 

the bottom edge to the top edge. 

Maximum thickness location: The maximum thickness location is the point along the 

chord line where maximum thickness occurs. 

Maximum camber: The maximum separation of the MCL from the chord line. 

Maximum camber is normally expressed as a percentage or fraction of the chord.  

 

1.2.1 The Cross-Sectional Area Constraint in Airfoil Optimization 

In the works of Leifsson and Koziel, Lee and Eyi [3,12], a cross-sectional area 

inequality constraint is utilized in conjunction with lift and pitching moment ones,  

during the optimization of transonic airfoils in order to ensure that the cross-sectional 

area of the final design will not be smaller than a limit value while Jeong et al. [13] 

proposed a drag minimization scheme for transonic airfoils subject to a cross-sectional 

area equality constraint coupled with PARSEC parameterization technique. Zingg et al. 

[14] imposed a combination of several thickness constraints to prevent crossover 

between the upper and the lower curves of the airfoil, along with a cross-sectional area 

inequality constraint, to provide suitable internal volume for fuel storage as well as 

adequate structural properties, while the control points correspond to leading and 

trailing edges were set fixed so the chord length not to change. Furthermore, Ahn et al. 

[10] proposed an optimization scheme that utilizes either a cross-sectional area 

constraint or a maximum thickness one, combined with a constraint that concerns the 

minimum acceptable value of lift coefficient throughout a drag minimization problem. 

On the other hand Dennis et al. [8] established a mix of geometrical constraints, 

including an equality cross-sectional area one, during the redesign of an existing two-

dimensional cascade of supersonic exit turbine airfoils while Nikolos [4] suggested the 

combination of a cross-sectional area equality constraint, with an inequality one 
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regarding the coordinate of the center of gravity of the airfoil in the chord direction, as 

long as concerns the geometric point of view, in a study for high-lift airfoil design. 

Finally, Driver and Zingg [15] imposed an area preservation constraint on a lift-to-drag 

ratio maximization problem by using a NACA-0012 as the baseline airfoil.  

Although the cross-sectional area of the final design approximated the cross-

sectional area of initial model in the most of the aforementioned cases, however a strict 

area preservation was not achieved. It is therefore obvious that the handling and the 

satisfaction of the required constraints is a truly challenging endeavor in numerical 

optimization, arising from the strong nonlinearity and complexity usually found in real-

world problems and involves the cooperation of both the optimization algorithm and 

the geometrical parameterization technique for its overcoming. 

 

1.3 Evolutionary Algorithms and Equality Constraints  

During the last years, Evolutionary Algorithms (EAs) have been extensively 

applied in constrained engineering optimization problems [4,16–19] as a quite versatile, 

effective and robust optimization technique, capable of global searching and dealing 

with complicated and very demanding real-world problems [20]. However, despite the 

unquestionable advantages of EAs, the handling of strict nonlinear equality constraints, 

such an area preservation one, has been proved as a major drawback related to the 

efficiency of evolutionary methods in optimization. In order to overcome this barrier, 

several approaches have been developed, which can be grouped as [21]: penalty 

functions, special representations and operators, repair algorithms, separation of 

objectives and constraints, and hybrid methods. Among them, penalty function is the 

most commonly utilized approach to handle so inequality as equality constraints.  

A penalty method replaces a constrained optimization problem by a series of 

unconstrained problems whose solutions ideally converge to the solution of the original 

constrained problem. The unconstrained problems are formed by adding a term, called 

a penalty function, to the objective function that consists of a penalty factor multiplied 

by a measure of violation of the constraints. The measure of violation is nonzero when 

the constraints are violated and is zero in the region where constraints are not violated. 

Though, the utilization of penalty functions requires the proper establishment of 

specific penalty factors, depending on the optimization problem under consideration, 
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which constitutes a major disadvantage concerning the robustness of the whole 

optimization method [22,23].  

Consequently the utilization of penalty functions is not always sufficient and does 

not guarantee the exact satisfaction of a strict equality constraint. Nevertheless, penalty 

function approaches have been widely employed in the field of airfoil optimization to 

ensure the met of cross-sectional area constraints, either in an equality or an inequality 

form, where a minimum acceptable value is set [3,4,8,10,13–15,24]. 

 

1.4 Literature Survey on Parameterization Techniques 

In this section, at first a comprehensive literature overview is conducted, on the 

most frequently utilized geometric parameterization techniques for multidisciplinary 

optimization and subsequently, a brief introduction to the basic ideas behind the Free-

Form Deformation (FFD) methodology, including its use as a parameterization 

technique in Aerodynamic Shape Optimization, is presented. Finally the shortcoming 

FFD methodology to preserve the area or volume enclosed by the initial shape after its 

application, is highlighted.   

 

1.4.1 Geometrical Parameterization Approaches 

At the very starting point of an optimization procedure, the designer has to deal 

with a vital question, which will affect the entire process. The quest concerns the 

selection of the parameterization technique in order to describe the shape of interest 

with a small but sufficient number of parameters. According to Andreoli et al. [25] the 

selected parameterization technique should be: 

 

 versatile: possibility to describe quite a broad spectrum of potentially complex 

2D or 3D shapes. 

 

 concise: it should use as few parameters as possible, because the number of 

design parameters heavily affect the CPU cost of the optimization process. 

 

Herein, an introduction to nine major parameterization methodologies is implemented, 

as presented in the work of Samareh [26]. 
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Basis Vector Approach 

Picket et al. [27] proposed a technique that combines three partial derivative terms 

into a set of basis vectors. The geometry of the shape changes according to the following 

equation (Eq. (1.1)): 

  

ܴ ൌ ݎ ൅෍ݑ௡ܷ௡
௡

 (1.1)

  
where ܴ, ݎ are the resulting and the initial shapes respectively,  ݑ௡ are the design 

variables and ܷ௡ the design perturbations based on several proposed shapes. Assuming 

that the basis vectors remain constant throughout the optimization cycle, this technique 

is a good approach. However, it is difficult to generate a set of consistent basis vectors 

for multiple disciplines. As a result, this method can be applied only to problems 

involving a simple discipline with simple geometry changes. 

 

Domain Element Approach  

The technique is based on linking a set of grid points to a macro element, called 

domain element that controls the shape of the model. In Figure 1.4a a domain element 

formed by 4 nodes	ሺܣ, ,ܤ ,ܥ  ሻ is presented, while in Figure 1.4b the movement of theܦ

grid points belonging to the element is illustrated, caused by the displacement of the 4 

nodes	ሺܣ′, ,′ܤ ,′ܥ  .ሻ′ܦ

 

     Fig. 1.4a: Initial model [26]                               Fig. 1.4b: Deformed model [26] 

 

The connection between the grid points and the domain element is implemented 

through an inverse mapping. The parametric coordinates of each grid point with respect 
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to domain element remain constant during the alteration of the element’s shape. The 

domain element approach, as well as the aforementioned Basis Vector Approach, are 

capable to handle only simple geometry deformations, so their utilization is limited. 

 

Partial Differential Equation Approach 

Bloor and Wilson [28] presented a compact and effective technique for the 

parameterization of the surfaces of an airplane. The method transforms the surface 

generation into a boundary value problem and produces surfaces as solutions to elliptic 

Partial Differential Equations (PDE). 

 

Discrete Approach 

The discrete approach dictates the utilization of the coordinates of the boundary 

points of the shape as design variables (Figure 1.5).  

 

Fig. 1.5: Airfoil defined by a set of boundary points 

 

This approach is easy to implement, and the geometry changes are limited only by the 

number of design variables. However, it is difficult to maintain a smooth geometry and 

the optimum solution may be impractical to manufacture. Additionally, for a model 

with a large number of boundary points, the number of design variables becomes very 

large, which leads to high cost and a difficult optimization problem to solve. 

 

Polynomial and Spline Approach 

In this approach, the geometry of the interested shape is represented by a compact 

polynomial curve, which could be defined by a relative small number of control points. 

Therefore, by the utilization of the coordinates of the control points as design variables 

during the optimization procedure, a significant reduction of the design variables is 

achieved. In Figure 1.6 an airfoil section formed by a 3rd degree B-Spline curve, 

consisted by 7 control points, is illustrated. 
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Fig. 1.6: Airfoil represented by a B-Spline curve 

 

Thus, the geometry of the airfoil section presented in Figure 1.6 could be totally 

described by the maximum number of 14 design variables, which are the x and y 

coordinates of the 7 control points. Additionally, further reduction of the design 

variables is possible by enforcing movement constraints to particular control points. As 

long as airfoil parameterization by polynomial curves is concerned, the control points 

corresponding to leading and trailing edges are usually fixed in order to maintain the 

chord length unchanged during the optimization procedure. Also, a common approach 

is to utilize only the y coordinates of the control points as design variables.  

A ݌௧௛ degree B-Spline curve is defined by 

  

ሻݑሺ࡯ ൌ෍ ௜ܰ,௣ሺݑሻ
௡

௜ୀ଴

࢏ࡼ , ܽ ൑ ݑ ൑ ܾ (1.2)

  
where ࢏ࡼ ൌ ሺݔ௜, ܰ ௜ሻ are the control points andݕ ௜,௣ሺݑሻ are the ݌௧௛ degree B-Spline Basis 

Functions defined over the nonperiodic knot vector [29]: 

  

ࢁ ൌ ሼܽ,… , ܽᇣᇤᇥ
௣ାଵ

, ,௣ାଵݑ … , ,௠ି௣ିଵݑ ܾ, … , ܾᇣᇤᇥ
௣ାଵ

ሽ (1.3)

  

Instead of B-Spline curves, Non-Uniform Rational B-Splines (NURBS) and 

Bézier curves could be used as well for the parameterization of two-dimensional shapes. 

The Bézier form is an effective and accurate representation for shape optimization of 

simple curves, however, complex curves require a high degree Bézier curve. Given that 

a Bézier curve consisted by ݌ control points is a polynomial of ݌ െ 1 degree, the 

representation of complex shapes, with many control points, render the computational 

procedure of the curve inefficient.  
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A ݊௧௛ degree Bézier curve [29] is defined by: 

  

ሻݑሺ࡯ ൌ෍ܤ௜,௡ሺݑሻ
௡

௜ୀ଴

࢏ࡼ , 0 ൑ ݑ ൑ 1 (1.4)

  
The basis function ܤ௜,௡ሺݑሻ are the classical ݊௧௛ degree Bernstein polynomial given by: 

  

ሻݑ௜,௡ሺܤ ൌ
݊!

݅! ሺ݊ െ ݅ሻ!
௜ሺ1ݑ െ ሻݑ ௡ି௜ (1.5)

  
Although B-Spline curves offer great properties such as partition of unity, 

flexibility and convenient geometrical deformation via control points, they are 

incapable of representing any conic section (hyperbola, parabola, ellipse, etc.) 

accurately. In order to overcome this particular shortcoming, an extension of B-Spline 

theory is necessary. NURBS curves are a special form of B-Splines, which can 

represent virtually any desired shape, from points, straight lines, and polylines to conic 

sections and free-form curves with arbitrary shapes [26]. A ݌௧௛ degree NURBS curve 

is defined by: 

  

ሻݑሺ࡯ ൌ
∑ ௜ܰ,௣ሺݑሻ
௡
௜ୀ଴ ࢏ࡼ௜ݓ
∑ ௜ܰ,௣ሺݑሻ௡
௜ୀ଴ ௜ݓ

, ܽ ൑ ݑ ൑ ܾ (1.6)

  
where ࢏ࡼ ൌ ሺݔ௜,  ௜ is the weight of the ݅௧௛ control point andݓ ,௜ሻ are the control pointsݕ

௜ܰ,௣ሺݑሻ are the ݌௧௛ degree B-Spline Basis Functions defined over the nonperiodic knot 

vector ࢁ, defined in Eq. (1.3). Other types of knot vectors can be used as well. 

 

CAD-Based Approach 

Most solid modeling CAD systems use either a boundary representation (B-Rep) 

or a constructive solid geometry method to represent a physical, solid object [30]. The 

parameterization of a given model constitutes so far a difficult task for CAD software 

given that any inaccuracy on the parametric model causes significant problems 

concerning the automated computational grid generation procedure. 

 

Analytical Approach 

Hicks and Henne [31] introduced a compact parameterization of airfoil sections. 

The formulation was based on adding shape functions (analytical functions) linearly to 

the baseline shape. The contribution of each parameter is determined by the value of 
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the participating coefficients (design variables) associated with that function. All 

participating coefficients are initially set to zero, so the first computation gives the 

baseline geometry. The shape functions are smooth functions based on a set of previous 

airfoil designs. This method is very effective for wing parameterization, but it is 

difficult to generalize it for a complex geometry. 

 

Free-Form Deformation Approach 

Free-Form Deformation is a powerful deformation and parameterization 

technique introduced by Sederberg and Parry [32], established on the work of Barr [33], 

for the deformation of solid geometric models. The original version was based on the 

indirect manipulation of the object by enclosing it into a parametric 3D space, formed 

by trivariate Bernstein polynomials. Then, by deforming the parametric lattice, a 

deformation of the embedded model is achieved. Since then, numerous different 

versions of FFD have been proposed, with major applications in a great variety of 

technological fields. Although FFD was first presented in order to handle 3D entities in 

the field of computer graphics, during the last decades there is an intense utilization of 

FFD versions concerning aerodynamic shape parameterization. 

 

Multidisciplinary Aero/Struc Shape Optimization Using Deformation  

(MASSOUD) Approach 

MASSOUD is a novel parameterization approach for complex shapes suitable for 

a multidisciplinary design optimization application. The approach is an extension of 

FFD in which the design variables acquire physical significance. The proposed 

methodology is implemented into three main steps; initially the shape’s perturbation is 

parameterized rather that the geometry itself, then Soft Object Animation (SOA) 

algorithms are used and finally the deformation is related to the aerodynamic shape’s 

physical design variables. 

 

1.4.2 Parameterization Techniques in Aerodynamic Shape Optimization 

Regarding the field of Aerodynamic Shape Optimization, Oyama and Fujii [34] 

utilized B-Spline curves to parameterize the geometry of the airfoil, setting the control 

points on the leading and trailing edges to be fixed  and using the ݔ and ݖ coordinates 

of the control points as design variables.  



On the Optimal Design of Airfoils  Introduction 

 

- 12 - 

Secanell and Suleman [35] chose a uniform cubic B-Spline with 15 control points 

to represent the airfoil section, while from the 15 control points, the y coordinates of 

control points numbered 1–5 and 7–11 in Figure 1.7, are used as design variables. 

 

 

Fig. 1.7: Airfoil section formed by a B-Spline with 15 control points [35] 

 

In [36] the airfoil shape is parameterized using  two Bézier curves, one for the upper 

and one for lower surface with the ݕ coordinates of the free-to-move control points in 

the role of design variables (Figure 1.8), while the control points representing the 

leading and trailing edge were fixed. 

 

 

Fig. 1.8: Bezier curves representation of NACA4412 airfoil [36] 

  

Grasso [5] used a composite parameterization based on Bezier curves; the airfoil 

is separated into four different segments, each one represented by a cubic Bezier curve 

(Figure 1.9), with continuity constraints in order to achieve local control and easy 

handling. 
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Fig. 1.9: Bezier approach used by Grasso [5] 

 

In the recent works of Della Vecchia et al. [37] a different approach is presented 

by the utilization of PARSEC parameterization technique introduced by Sobieczky 

[38,39], where 11 design variables with physical meaning concerning the geometry of 

the airfoil are used (Figure 1.10). While, earlier, Kharal and Saleem [40] combined the 

Bezier-PARSEC method with a Genetic Algorithm and three different neural networks 

to extract the parameters which describe the airfoil with respect to a given pressure 

distribution. 

Liang et al. [41] took advantage of the beneficial properties of Non-Uniform 

Rational B-Splines (NURBS) to separately parameterize the upper and the lower 

surface of the airfoil (Figure 1.11). The design variables were formed by the ݔ,  ݕ

coordinates and the weights of the 14 free-to-move control points. 

 

 

    Fig. 1.10: The 11 PARSEC design variables [37] 
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Fig. 1.11: Upper and lower airfoil’s curve parameterized by NURBS [41] 

 

1.4.3 Free-Form Deformation in Aerodynamic Shape Optimization 

FFD was first introduced to model simple deformations of rigid objects in the 

field of computer graphics. Since then, the utilization of the FFD methodology as 

parameterization and deformation technique has spread in a variety of scientific fields 

due to its great versatility and applicability. Although the first proposed version of FFD 

by Sederberg and Parry [32] referred to the manipulation of 3D shapes by using 

Bernstein polynomials to form the control grid (lattice), during the last years many 

different versions have been proposed regarding the developments of 2D versions along 

with the alteration of the parametric curves forming the FFD lattice. 

Samareh [42] used a NURBS-based FFD (NFFD), which was first introduced by 

Lamousin and Waggenspack [43], in order to parameterize aerodynamic CSM 

(Computational Structural Mechanics) models. The FFD lattice (Figure 1.12) is formed 

by trivariate B-Spline basis functions defined over non-uniform knot vectors.  
 

 

Fig. 1.12: 3D NFFD parametric lattice [42] 
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Later on, Amoiralis and Nikolos [44] performed a comparative study between 

FFD and B-Spline representation. The tests were been carried out during inverse airfoil 

design procedures, showing that FFD approach outperformed the classic B-Splines one 

concerning the achieved accuracy in the approximation of the reference pressure 

distributions. 

Ghisu et al. [45] used a FFD formed by a tensor product trivariate Bernstein 

polynomial in order to handle airfoil sections during an optimization process with 

respect to ice accretion. The FFD lattice consisted by 12 control points (6x2x1), while 

both displacements in the x and y axis were permitted for the control points that were 

not at the extreme left and right positions (leading and trailing edges) in order to 

maintain the chord length during the design process. For the control points 

corresponding to the extreme (right and left) positions, a movement only along the y 

axis was permitted. In Figure 1.13a, the airfoil embedded to the initial FFD lattice is 

illustrated, while in Figure 1.13b the deformation of the airfoil caused by the movement 

of the control points is presented. 

 

 

     Fig. 1.13a: Initial Lattice (white dots)[45]      Fig. 1.13b: Deformed Lattice (black dots)[45] 

 

In [46], a NFFD approach was utilized as parameterization technique during the 

design process of natural laminar flow supercritical airfoils, while the non-dominated 

sorting genetic algorithm II (NSGA-II) served as the optimizer. In the particular 

application, the FFD lattice formed by 26 (2x13) control points (Figure 1.14a) and the 

design variables set as the y coordinates of the control points, excluding those which 

were located at the leading and trailing edges of the airfoil, as shown in Figure 1.14b. 
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   Fig. 1.14a: Initial FFD lattice and airfoil [46]  Fig. 1.14b: Deformed airfoil (New) [46] 

 

Amoignon et al. [47] at first, examined the influence of the basis function’s 

degree on the performance of a smooth airfoil, parameterized with a NFFD, showing 

that the highest possible degree improves the performance of the airfoil through a 

specific optimization scheme, keeping constant the number of design parameters. 

Subsequently, a combination of the FFD technique with Radial Basis Functions (RBF) 

was implemented, in order to handle more effectively the deformations of shapes with 

complex geometries and finally an adaptive FFD lattice method was proposed to 

achieve a greater reduction to the cost function.  

 

1.4.4 Free-Form Deformation and Area Preservation 

Even though FFD is a versatile deformation tool, the area (2D version) or volume 

(3D version) preservation property after its application is not provided. This is a 

drawback throughout the optimization process of airfoil sections (or other objects), 

where the baseline cross-sectional area should be preserved mainly for reasons 

concerning structural integrity, as described above. 

 

1.5 The proposed approach 

In this thesis an alternative technique for the exact preservation of the cross-

sectional area enclosed by an airfoil or by any given 2D shape, called Area-Preserving 

Free-Form Deformation (AP FFD), is developed by coupling a classic 2D B-Spline-

based FFD with an area correction step, based on the work of Hahmann et al. about a 

Volume-Preserving FFD [48]. The proposed technique takes action after the application 

of a typical 2D FFD, which usually produces deformed geometries with no respect on 

area preservation. The AP FFD utilizes the Lagrange Multipliers optimization method 

to compute the minimum required displacements, which have to be applied at the 

control points of the deformed lattice, in order to preserve the enclosed area of the initial 
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(non-deformed) model whereas the adjustment to the FFD lattice should be minimal in 

order to respect the deformation prescribed by the user or the optimizer. 

 

1.6 The Structure of the Diploma Thesis  

 

The rest of this diploma thesis is organized as follows: 

 
 

 In Chapter 2, at first a brief introduction to the major FFD variations is conducted 

and then an extensive presentation of a 2D B-Spline-based FFD is included. 

 
 

 In Chapter 3 a detailed demonstration and formalization of the utilized AP FFD 

methodology is implemented. 

 
 

 In Chapter 4 the surrogate-assisted Differential Evolution algorithm as well as the 

whole optimization scheme are outlined.  

 
 

 In Chapter 5 the AP FFD methodology is integrated within a numerical 

optimization scheme and is tested, to prove its efficiency and effectiveness. 

 
 

 In Chapter 6 the conclusions resulting from the application of the proposed 

methodology are presented and discussed.
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Chapter 2 

Free-Form Deformation 

 

 

 

2.1 Introduction to FFD Technique 

Free-form Deformation is considered as one of the most powerful, versatile and 

applicable parameterization and deformation techniques of two- as well as three- 

dimensional shapes with major applications in a wide range of scientific and 

technological fields such as aerodynamic design, computer graphics and medicine, 

related to cancer detection procedures. 

The fundamental idea of FFD is the indirect handling of the interested object by 

enclosing it into a parametric space (2D or 3D). Then, by deforming the parametric 

lattice, a deformation of the embedded model is achieved. Based on this idea, a large 

number of different FFD versions was developed during the last years. 

 

2.1.1 Basic FFD Variations 

Barr [33], at first, studied and developed new hierarchical solid modeling 

operations in order to simulate transformations of geometric objects. A bit later, 

Sederberg and Parry [32], based on [33], introduced the first version of FFD (classic 

FFD) for the deformation of solid geometric objects in a free-form manner. In their 

approach, the lattice is defined as trivariate tensor product of Bernstein polynomials 

and the control parameters are actually the coefficients of the polynomials. By altering 

these control parameters, the object embedded in the lattice is deformed, as shown in 

Figure 2.1. 
 

 

Fig. 2.1: Classic FFD application [32]
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Griessmair and Purgathofer [49] modified the classic FFD approach proposed by 

Sederberg and Parry by using B-Spline instead Bernstein polynomials for the 

construction of the parametric space.  

Coquillart [50] proposed the Extended Free-Form Deformation (EFFD) 

technique to model cloth-like surfaces with natural characteristics. In order to achieve 

the aforementioned goal, Coquillart was the first to propose the utilization of arbitrary 

topology lattices for the fittest combination between the object under deformation and 

the FFD lattice.  

Lamousin and Waggenspack [43] introduced the NURBS-based FFD (NFFD) 

technique, in which the construction of the lattice was implemented by B-Spline basis 

functions defined over non-uniform knot vectors. The combination of rational B-Spline 

basis functions with the non-uniform knot vectors provides additional functionality for 

controlling the deformations of the enclosed object. 

In the work of MacCracken and Joy [51] a new free-form deformation technique 

is presented that generalizes previous methods by allowing 3-dimensional deformation 

lattices of arbitrary topology, based on the work of Coquillart [50]. The technique uses 

an extension of the Catmull-Clark subdivision methodology to successively refine a 3-

dimensional lattice into a sequence of lattices that converge uniformly to a region of 3-

dimensional space. In Figure 2.2a the initial lattice structures are illustrated, while in 

Figure 2.2b are presented the defined Catmull-Clark volumes by the respective lattices. 

 

 

          Fig. 2.2a: Lattice Structures [51]                       Fig. 2.2b Catmull-Clark volumes [51] 

 

In the work of Ilic and Fua [52], the utilization of the powerful DFFD (Dirichlet 

FFD) extension instead of the conventional FFD shape deformation approach to fit 

deformable surface models to noisy 3D image data, is proposed. DFFDs provide to the 

user the ability to place control points at arbitrary locations rather than on a regular 

lattice, and thus leads to a much greater flexibility. 
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Kobayashi and Ootsubo [53] proposed a new version of FFD, called t-FFD. In 

this approach, an initial shape of large-scale polygonal mesh or point cloud is deformed 

by using a control mesh, which is composed of a set of triangles with arbitrary topology 

and geometry as the control lattice (Figure 2.3). 

Later on, Song and Yang [54], based on the work of Sederberg et al. [55] 

concerning T-Splines theory, introduced a novel FFD version, called weighted-TFFD 

(w-TFFD). In this particular approach, the FFD lattice is formed by trivariate weighted 

T-Spline volumes which permit T-junctions. Weighted T-spline volumes are a natural 

generalization of NURBS volumes but permit more flexible control lattices. Thus, w-

TFFD holds many virtues of traditional FFDs and is more adaptive to objects with 

arbitrary topology or complex shape. In Figures 2.4a and 2.4b the difference between a 

complete control lattice (red) and a w-TFFD lattice (green), is illustrated. 

 

 

Fig. 2.3: Global deformation using a t-FFD [53] 

 

 

                   Fig. 2.4a: Classic FFD Lattice [54]      Fig. 2.4b: w-TFFD lattice [54] 
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2.1.2 FFD Methodology Steps   

Despite the numerous different FFD versions, either for 2D or 3D geometric 

models, according to Lamousin and Waggenspack [43] there are four main steps to 

implement any FFD technique. 

 

Step 1: Construction of the Parametric Lattice 

The shape of interest, is embedded into a two- or three- dimensional parametric 

space (lattice) consisted by an ordered or arbitrary mesh of control points, depending 

on the particular FFD version and application. The topology of the parametric lattice 

should be such that it wraps the embedded shape under study, while the nature of the 

basis function that form the FFD lattice has a significant impact on the handing of the 

embedded model.  

 

Step 2: Embedding the Object within the Lattice 

This stage consist of the assignment of a unique set of parametric coordinates (u, 

v, w) to each point (x, y, z) of the enclosed shape, where ݑ, ,ݒ  are the parametric ݓ

variables that define the parametric coordinates system. Herein, it is useful to note that 

the parametric coordinates of each point of the model do not change during the 

deformation stage, respect to the specific parametric coordinates system. Due to a lack 

of analytical methodologies for the aforementioned assignment problem, approximate 

methodologies have developed such as Quadtree and Octree for 2D and 3D problems 

respectively. 

 

Step 3: Deforming the Parametric Space 

The deformation of the parametric space is implemented by the movement of the 

points of the control grid. Especially as long as concern the weighted FFD versions, a 

deformation could be also achieved only by the modification of the weights of the 

control points. 

 

Step 4: Evaluating the Effects of the Deformation 

The parametric coordinates of the points (Step 2) are used with the deformed 

control lattice (Step 3) to evaluate the new locations of the embedded point set. The 

topology of the original model is then used to reconstruct the deformed object.  

 



On the Optimal Design of Airfoils  Free-Form Deformation 
 

 

- 23 - 

2.2 Two-Dimensional B-Spline FFD 

In this diploma thesis, due to the nature of Airfoil Optimization Problem, a 2D B-

Spline-based FFD version is utilized, which is defined as a mapping from a 

subspace	ܸ ⊂ ܴଶ → 	 തܸ ⊂ ܴଶ. The main idea behind FFD is not to directly deform the 

shape of interest, but to achieve an indirect manipulation by embedding the object into 

a parametric control grid (lattice) ܸ ; then by transforming the geometry of the particular 

lattice, every object enclosed to it undergoes the same deformation തܸ .  

 

2.2.1 The Implementation Procedure 

Step 1: Construction of the Parametric Lattice 

In this application of FFD, a 2D lattice, formed by a two-variate B-Spline, is 

chosen to take advantage of the benefits B-Splines offer, such as partition of unity, 

flexibility and convenient geometrical deformation via control points. Additionally, by 

using a B-Spline lattice the alteration of a control point does not modulate the entire 

geometry of the enclosed object, so a focused deformation can be achieved. A planar 

B-Spline surface is obtained by taking a bidirectional net of control points, two knot 

vectors, and the products of the univariate B-Spline functions [29] 

  

ܵሺݑ, ሻݒ ൌ෍෍ ௜ܰ,௣ሺݑሻ ௝ܰ,௤ሺݒሻ࢐࢏ࡼ ,

௠

௝ୀ଴

௡

௜ୀ଴

࢐࢏ࡼ ൌ ൫ݔ௜௝, ௜௝൯ (2.1)ݕ

  
where ࢐࢏ࡼ are the control points of the FFD lattice, ݊ ൅ 1,݉ ൅ 1 are the number of 

control points on each parametric direction and ݑ,  are the parametric variables that ݒ

define the parametric coordinates system. Let ௜ܰ,௣ሺݑሻ	be a B-Spline Basis function of 

p degree in u parametric direction and ௝ܰ,௤ሺݒሻ be a B-Spline Basis function of q degree 

in v parametric direction defined over the open and uniform knot vectors ࢂ,ࢁ 

respectively 

  
ࢁ ൌ ሼݑ଴, ,ଵݑ … , ௡ା௣ାଵሽ (2.2)ݑ

  
ࢂ ൌ ሼݒ଴, ,ଵݒ … , ௠ା௤ାଵሽ (2.3)ݒ

  
Concerning the degrees ݌,  of the Basis functions, they must satisfy the following ݍ

inequalities 

	  
1 ൑ ݌ ൑ ݊, 1 ൑ ݍ ൑ ݉    (2.4),  (2.5) 
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The value of each knot of the ࢁ knot vector is calculated by the following formula: 

  

௜ݑ ൌ ൝
0, 0 ൑ ݅ ൑ ݌ ൅ 1

݅ െ ,݌ ݌ ൅ 1 ൑ ݅ ൑ ݊ ൅ 1
݊ െ ݌ ൅ 1, ݊ ൅ 1 ൑ ݅ ൑ ݊ ൅ ݌ ൅ 1

 (2.6)

   
while the calculation of the values of the ܸ knot vector is implemented respectively. 

The i-th B-spline basis function of degree ݌, written as ௜ܰ,௣ሺݑሻ, is defined by the 

utilization of the Cox-de Boor recursion formula, as follows: 

 

௜ܰ,௣ሺݑሻ ൌ
ݑ െ ௜ݑ

݌െ݅ݑ െ ݅ݑ
௜ܰ,௣ିଵ ൅

௜ାଵ,௣ିଵݑ െ ݑ
൅1݌൅݅ݑ െ ൅1݅ݑ

 

 
 

௜ܰ,଴ሺݑሻ ൌ ቄ1 ݂݅ ௜ݑ ൑ ݑ ൏ ௜ାଵݑ
0 ݁ݏ݅ݓݎ݄݁ݐ݋

 

(2.7)

  
Given that the parametric coordinates ሺݑ௧,  ௧ሻ of a point inside the parametric space areݒ

known, then the vector of the respective Cartesian coordinates ሺݔ௧,  ௧ሻ is calculated byݕ

the following equation: 

  

ܴሺݑ, ሻݒ ൌ
∑ ∑ ௜ܰ,௣ሺݑሻ ௝ܰ,௤ሺݒሻ࢐࢏ࡼ

௠
௝ୀ଴

௡
௜ୀ଴

∑ ∑ ௜ܰ,௣ሺݑሻ ௝ܰ,௤ሺݒሻ
௠
௝ୀ଴

௡
௜ୀ଴

 (2.8)

  
Step 2: Embedding the Object within the Lattice 

After the construction of the FFD lattice, a quadtree algorithm has to be 

implemented, so a unique parametric pair of coordinates ሺݑ௧,  ௧ሻ to be assigned in everyݒ

single point ሺݔ௧,  ௧ሻ  of the shape to be deformed (the airfoil in our case). For each pointݕ

of the object, the following algorithm is repeatedly applied [44]. 

 

a. The parametric area is divided into four equal subareas. 

b. The Cartesian coordinates of each subarea vertex are calculated using 

Eq. (2.8) 

c. These coordinates are compared to the Cartesian coordinates of the 

object’s point under consideration, in order to identify the subarea in which 

the corresponding point lies. 

d. The latter subarea is divided into four new equal subareas and steps b-d 

are repeated for a prescribed number of subdivisions, or until a desirable 

accuracy is achieved. The desired parametric coordinates of the searched 
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point are defined as the parametric coordinates of the center of the subarea, 

in which the point resides, resulting from the last subdivision [56]. 

 

In Figure 2.5, a reference airfoil (DU-06-W-200) is embedded into an initial 2D 

FFD lattice formed by a two-variate B-Spline function. The parametric space is defined 

by the parametric coordinates ሺݑ,  ሻ while a unique pair of parametric coordinatesݒ

ሺݑ௧,   .௧ሻ has been assigned to each one of the ݇ boundary points of the airfoilݒ

 

Fig. 2.5: DU-06-W-200 airfoil in a 2D FFD lattice 

 

Step 3: Deforming the Parametric Space 

In Figure 2.6 the deformation of the initial FFD lattice caused by the movement 

of the B-Spline control points is presented.  
 

 

Fig. 2.6: The movement of the control points causes the deformation of the lattice 
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Step 4: Evaluating the Effects of the Deformation 

The recovery of the deformed shape, i.e. the calculation of the Cartesian 

coordinates of the deformed airfoil, is achieved by importing the new Cartesian 

coordinates of the control points from Step 3 into Eq. (2.8) and implementing Eq. (2.8) 

for each one of the airfoil’s boundary points, whose parametric coordinates are known 

from Step 2. 

 

Fig. 2.7: Deformed airfoil section 

 

2.2.2 Cross-Sectional Area Inequality 

As highlighted in Chapter 1, after the deformation of a two-dimensional shape by 

utilizing the FFD technique, the cross-sectional area of the deformed model is not 

equivalent to the cross-sectional area of the initial (reference) model. In order to prove 

our case, in Table 2.1, the cross-sectional area of the reference DU-06-W-200 airfoil 

along with the one of the deformed shape (Figure 2.6) after the application of the FFD, 

are compared. 
 

Model Cross-Sectional Area 

Initial Airfoil (DU-06-W-200)  0.1223 

Deformed Airfoil (Fig. 2.7) 0.1050 
 

Tab. 2.1: Cross-sectional area comparison 

 

As noted, a decrease by 14.14% occurred to the cross-sectional area of the baseline 

airfoil after the implementation of the FFD.
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Chapter 3 

Area-Preserving Free-Form Deformation 

 

 

 

3.1 Introduction to Area-Preserving FFD 

So far, the significance of preserving cross-sectional area throughout the 

production of the candidate geometries during an airfoil optimization procedure, along 

with the inability of the FFD technique to provide the particular feature, have been 

clearly understood. The AP FFD supplements a classic FFD, described in Chapter 2, in 

order to handle and satisfy a strict area preservation constraint throughout an airfoil 

optimization procedure. The methodology is based on the work of Hahmann et al. [48], 

concerning the application of a Volume-Preserving FFD after the deformation of 3D 

models.   

The aim of the proposed AP FFD methodology is to conserve the area ܣ௥௘௙ 

enclosed inside a given planar 2D shape ܴ௥௘௙, after the model is deformed by a classic 

FFD prescribed in Section 2.2. The AP FFD technique is consisted by two main parts. 

At first, a classical 2D FFD is applied to the model, which results to a deformed shape 

denoted as ܴௗ௘௙. After that, the area ܣௗ௘௙ embedded into ܴௗ௘௙ usually differs, 

compared to the cross-sectional area ܣ௥௘௙ of the reference shape ܴ௥௘௙. Subsequently an 

area correction step is implemented; the control points of the FFD lattice are adjusted 

in order to recover the baseline cross-sectional area. The adjustment to the FFD grid 

should be minimal in order to respect the deformation prescribed by the optimizer, 

given that the AP FFD is joined within a shape optimization scheme.  

 

3.2 Mathematical Analysis 
The objective of the following analysis is the computation of the minimum 

required offsets ࢐࢏ࣂ ൌ ሺߠ௜௝
௫ , ௜௝ߠ

௬ሻ, whose application to the control points ࢐࢏ࡼ of the 

deformed FFD lattice will result into a new deformed geometry (airfoil), having a value 

of cross-sectional area ̅ܣ equal to the reference one, ܣ௥௘௙.
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3.2.1 The Area Preservation Problem 

The Area Preservation Problem (APP) that has to be solved is formed as follows: 

݉݅݊෍෍ฮ࢐࢏ࣂฮ
ଶ

௠

௝ୀ଴

௡

௜ୀ଴

 (3.1) 

  
subject to ܣ̅ െ ௥௘௙ܣ ൌ 0 (3.2) 

The APP consists of the minimization of the squared distance ฮ࢐࢏ࣂฮ
ଶ
 between the 

FFD control points, provided that the cross-sectional area ̅ܣ, after the application of the 

particular offsets will be equal to the reference one. Instead of that, a minimization of 

the squared distance between the shape’s boundary points, before and after the 

application of the area correction step could be also possible, however that would 

involve the solution of a linear system of equations. During an airfoil optimization 

process, an AP FFD has to be applied to each candidate geometry (airfoil), so the area 

preservation constraint to be meet. Therefore, the APP needs to be solved numerous 

thousand times, which render the extraction of a time-efficient solution to the 

aforementioned problem vital for the efficiency of the whole design procedure. Herein, 

the developed method is based on the minimization of the distance between the FFD 

control points, which enables the possibility of extracting a time-saving closed-form 

solution as an alternative to a linear system. 

 

3.2.2 Cross-Sectional Area Calculation 

Let ܴ௥௘௙	be the initial (reference) airfoil, consisted of ݇	points, where the 1st and 

the ݇௧௛ points are coincidental. The area inside a planar free form closed polygon is 

given as: 

௥௘௙ܣ ൌ
1
2
෍ሺݕ௧ݔ௧ାଵ െ ௧ሻݔ௧ାଵݕ
௞ିଵ

௧ୀଵ

 (3.3)

 
where ሺݔ௧,  ௧ሻ are the Cartesian coordinates of the ܴ௥௘௙ (undeformed model). Denotingݕ

as ሺݔ෤௧,  ௗ௘௙ of theܣ ෤௧ሻ the Cartesian coordinates of the deformed airfoil ܴௗ௘௙, the areaݕ

deformed object is computed by: 

  

ௗ௘௙ܣ ൌ
1
2
෍ሺݕ෤௧ݔ෤௧ାଵ െ ෤௧ሻݔ෤௧ାଵݕ
௞ିଵ

௧ୀଵ

 (3.4)
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In general, after the application of a classic FFD, ܣ௥௘௙ ്  ௗ௘௙ occurs as shownܣ

in Table 2.1 for the example of Section 2.2. Let ̅ܣ be the area of the airfoil after the 

implementation of the AP FFD, after the application of the, unknown yet, offsets to the 

control points of the deformed lattice.  

  

ܣ̅ ൌ
1
2
෍ቤ

ሺݕ෤௧ ൅ ௧ߠ
௬ሻ ሺݔ෤௧ ൅ ௧ߠ

௫ሻ

ሺݕ෤௧ାଵ ൅ ௧ାଵߠ
௬ ሻ ሺݔ෤௧ାଵ ൅ ௧ାଵߠ

௫ ሻ
ቤ

௞ିଵ

௧ୀଵ

 (3.5)

  

where ࢚ࣂ ൌ ሺߠ௧
௫, ߠ௧

௬ሻ	are the resulting displacements of the airfoil boundary points due 

to the offsets ࢐࢏ࣂ ൌ ሺߠ௜௝
௫ , ௜௝ߠ

௬ሻ applied to the control points of the deformed lattice in order 

to correct the area of ܴௗ௘௙. In Figure 3.1, the application of the displacements ࢐࢏ࣂ ൌ

ሺߠ௜௝
௫ , ௜௝ߠ

௬ሻ to every control point ሺ݅, ݆ሻ of the deformed lattice along with the new AP FFD 

lattice formation are presented, while in Figure 3.2, a comparison between the deformed 

by a classic FFD airfoil (red dashed) and the new airfoil geometry (green line), after the 

application of the offsets, with cross-sectional area equal to the reference airfoil, is 

illustrated. As observed, no displacement has been applied to the control points located 

at the extreme left and extreme right (leading and trailing edges) positions. This is to 

maintain the chord length unchanged. The capability of the methodology to provide the 

particular feature will be demonstrated later through the analysis. 
 

 
Fig. 3.1: The positions of the control points and the lattice formation after the 

application of AP FFD 
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Fig. 3.2: The resulting airfoil (green) after the application of the AP FFD 
 

The equations connecting the offsets applied to the control points ࢐࢏ࣂ ൌ ሺߠ௜௝
௫ , ௜௝ߠ

௬ሻ and 

the displacements of the model’s points ሺߠ௧
௫, ߠ௧

௬ሻ due to ࢐࢏ࣂ, are extracted based on 

the B-Spline theory: 

  

௧ߠ
௫ ൌ෍෍ ௜ܰ,௣ሺݑ௧ሻ ௝ܰ,௤ሺݒ௧ሻ

௠

௝ୀ଴

௡

௜ୀ଴

௜௝ߠ
௫  (3.6)

  

௧ߠ
௬ ൌ෍෍ ௜ܰ,௣ሺݑ௧ሻ ௝ܰ,௤ሺݒ௧ሻ

௠

௝ୀ଴

௡

௜ୀ଴

௜௝ߠ
௬ (3.7)

  
where ሺݑ௧,  .boundary point of the airfoil	௧௛ݐ are the parametric coordinates of the	௧ሻݒ

 

3.2.3 The Area Constraint 

By inserting Eq. (3.6) and Eq. (3.7) into Eq. (3.5) and by substituting Eq. (3.5) 

into Eq. (3.2) the area constraint ̅ܣ െ ௥௘௙ܣ ൌ 0	 is formulated as 

  

ௗ௘௙ܣ ൅෍෍ߠ௜௝
௫ߙ௜௝ ൅෍෍ߠ௜௝

௬ܾ௜௝

௠

௝ୀ଴

െ

௡

௜ୀ଴

௠

௝ୀ଴

௡

௜ୀ଴

௥௘௙ܣ ൌ 0   
(3.8)

  
where: 

௜௝ߙ ൌ
1
2
෍ൣݕ෤௧ ௜ܰ,௣ሺݑ௧ାଵሻ ௝ܰ,௤ሺݒ௧ାଵሻ െ ෤௧ାଵݕ ௜ܰ,௣ሺݑ௧ሻ ௝ܰ,௤ሺݒ௧ሻ൧

௞ିଵ

௧ୀଵ

  (3.9) 

  

ܾ௜௝ ൌ
1
2
෍ൣݔ෤௧ାଵ ௜ܰ,௣ሺݑ௧ሻ ௝ܰ,௤ሺݒ௧ሻ െ ෤௧ݔ ௜ܰ,௣ሺݑ௧ାଵሻ ௝ܰ,௤ሺݒ௧ାଵሻ൧

௞ିଵ

௧ୀଵ

 (3.10)
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Hence, the area constraint of the APP is a bilinear function of the offsets ߠ௜௝
௫ , ௜௝ߠ

௬. 

Consequently in order to extract a solution to APP, a nonlinear minimization problem 

has to be solved, composed by a quadratic objective function (Eq. (3.1)) and a linear 

area constraint (Eq. (3.2) or Eq. (3.8)). In this work, instead of trying to solve the 

particular nonlinear problem, which could be proved a quite time-consuming process, 

a different approach is utilized. As long as Eq. (3.8) is a bilinear function of the 

unknowns ߠ௜௝
௫ , ௜௝ߠ

௬, a separation to ݔ and ݕ axis is proposed; this separation leads to the 

generation of two Area Correction Sub Problems, to be solved successively. Each one 

of them consists of the computation of the minimum displacements according to one 

axis at a time, subjected to a linear local area constraint, by setting the displacement in 

the other axis equal to zero, ࢐࢏ࣂ ൌ ሺߠ௜௝
௫ , 0ሻ for the computation of the ߠ௜௝

௫  and ࢐࢏ࣂ ൌ

ሺ0, ௜௝ߠ
௬ሻ for the computation of the ߠ௜௝

௬. Thus, separating the area correcting deformation 

according to the axes makes it linear in each axis, which permit the extraction of a 

closed-form solution by using Lagrange multipliers method. The combination of the 

solutions extracted by the two sub problems is totally equal to the solution of the APP. 

 

3.2.4 The Area Correction Sub Problems 

Letting	ݓ௫ ൌ ௬ݓ ൌ 0.5ሺܣ௥௘௙ െ  ௗ௘௙ሻ, the two Area Correction sub problems areܣ
formed as follows. 

 

Area Correction Sub Problem in x-axis (SPx): 

݉݅݊෍෍൫ߠ௜௝
௫൯

ଶ
௠

௝ୀ଴

௡

௜ୀ଴

 (3.11) 

݋ݐ	ݐ݆ܾܿ݁ݑݏ ෍෍ߠ௜௝
௫ߙ௜௝

௠

௝ୀ଴

௡

௜ୀ଴

ൌ  ௫   (3.12)ݓ

  
Area Correction Sub Problem in y-axis (SPy): 

݉݅݊෍෍൫ߠ௜௝
௬൯

ଶ
௠

௝ୀ଴

௡

௜ୀ଴

 (3.13) 

݋ݐ	ݐ݆ܾܿ݁ݑݏ ෍෍ߠ௜௝
௬ߙ௜௝

௠

௝ୀ଴

௡

௜ୀ଴

ൌ  ௬   (3.14)ݓ
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Note that the combination of the two local area constraints (3.12), (3.14) is equal 

with the utilization of the area constraint (3.8) of the initial APP. Additionally, the 

separation of the main area preservation problem to the two axes provides extra 

advantages; by modulating the coefficients ݓ௫ and ݓ௬ the user is able to define the 

percentage of lost or gained area to be corrected as well as the percentage of the 

contribution of ߠ௜௝
௫  and ߠ௜௝

௬ to the magnitude of the displacement vector ࢐࢏ࣂ. For 

example, by setting ݓ௫ ൌ 0.3ሺܣ௥௘௙ െ ௬ݓ ௗ௘௙ሻ andܣ ൌ 0.7൫ܣ௥௘௙ െ  ௗ௘௙൯, the total areaܣ

of the initial model is preserved	ሺ0.3 ൅ 0.7 ൌ 1ሻ, while the displacement of each 

control point in x direction will be a 30% fraction of the total displacement. 

Furthermore, in many applications concerning the handle and deformation of airfoil 

sections, a movement of the control points only in the normal to chord (y) direction is 

desirable. In cases like that the AP FFD can be customized by setting ݓ௫ ൌ 0 and ݓ௬ ൌ

൫ܣ௥௘௙ െ  ௗ௘௙൯ and solving only the SPy problem, so that the extracted solution to beܣ

formed as ࢐࢏ࣂ ൌ ሺ0, ௜௝ߠ
௬ ). Additionally, there is an option of setting the displacements 

of specific control points equal to zero. This feature finds an application in airfoil 

optimization as it applies to the control points that affect the positions of leading and 

trailing edges. Due to the necessity of keeping those positions fixed, in order to keep 

the chord length unchanged, the control points that affect the pre-mentioned positions 

have to be fixed, at least at the chord-wise direction. The implementation of the AP FFD 

with fixed control points is achieved by solving the same sub problems, while setting 

௥௦௫ߠ , ௥௦ߠ
௬ , ,௥௦ߙ ܾ௥௦ equal to zero for the control points and direction(s) of interest. In 

Figures 3.3 – 3.6, the application of an AP FFD to a NACA 0012, as reference airfoil, 

only in y direction is presented, while the control points located in positions ݔ ൌ 0 and 

ݔ ൌ 1 are set fixed. In Figure 3.3, a NACA 0012 airfoil inside a 2D B-Spline FFD 

lattice consisted of 5 control points in the chordwise direction (x direction) and 3 control 

points in the normal to chord direction (y direction), is illustrated. The degree of the 

basis function in the chordwise direction (u parametric direction) is 4 while the degree 

of the basis function in the normal to chord direction (v parametric direction) is 2. 
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Fig. 3.3: NACA 0012 airfoil inside an initial FFD lattice 

 

In Figure 3.4, the deformation of the parametric space (lattice) caused by the 

movement of the control points, dictates an indirect deformation to the initial airfoil 

(FFD). The cross-sectional area of the resulting airfoil is 26.8% greater than the 

reference one. 
 

Fig. 3.4: The resulting airfoil after the application of a classic FFD 
 

In Figure 3.5 the application of the AP FFD only in y direction is illustrated. The 

displacement of the control points is permitted only in the normal to the chord direction. 

Finally, in Figure 3.6 the airfoil geometry (green) after the application of the AP FFD is 

compared with the one of Figure 3.4, which emerged by the implementation  of a classic 

FFD. 
 

 
Fig. 3.5: The positions of the control points and the lattice formation after the 

application of AP FFD, only in y direction 
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Fig. 3.6: The resulting airfoil (green) after the application of the AP FFD, only in y 

direction 

 

3.2.5 Closed-form Solution 

By separating the main APP into SPx and SPy a Lagrange Multipliers method can 

be applied to each one of them to extract a closed-form solution. The Lagrangian 

function for the SPx is formed as: 

  

௜௝ߠ൫߉
௫ , ௫൯ߣ ൌ෍෍ሺߠ௜௝

௫ሻଶ
௠

௝ୀ଴

௡

௜ୀ଴

൅ ௫ߣ ቌ෍෍ߠ௜௝
௫ߙ௜௝

௠

௝ୀ଴

௡

௜ୀ଴

െ  ௫ቍ (3.15)ݓ

  
The partial derivatives of the Lagrangian function are formulated below: 

  
߉߲
௫ߣ߲

ൌ 0 ⇔෍෍ߠ௥௦௫ ௥௦ߙ

௠

௦ୀ଴

௡

௥ୀ଴

ൌ  ௫ (3.16)ݓ

  

߉߲
௜௝ߠ߲

௫ ൌ 0 ⇔ ௜௝ߠ2
௫ ൅ ௫ܽ௜௝ߣ ൌ 0 ⇔ ௜௝ߠ

௫ ൌ െ
௫ߣ
2
ܽ௜௝ (3.17) 

  
Substituting (3.17) into (3.16) results in: 

  

௫ߣ ൌ െ
௫ݓ2

∑ ∑ ሺܽ௥௦ሻଶ௠
௦ୀ଴

௡
௥ୀ଴

 (3.18) 

  
Therefore, by combining (3.17) and (3.18), the solution of the SPx problem results as: 

  

௜௝ߠ
௫ ൌ

ܽ௜௝ݓ௫
∑ ∑ ሺܽ௥௦ሻଶ௠

௦ୀ଴
௡
௥ୀ଴

 
(3.19) 

By applying the same methodology, a closed-form solution results for the SPy as well. 

Note that the two sub problems have to be solved and applied successively, but not in a 
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particular order. In this case, the computation of ܾ௜௝ has to be performed after the 

application of displacements 	ߠ௜௝
௫  to the control points, due to the dependency of  ܾ௜௝ to 

the Cartesian coordinates of the deformed model. Thereafter the solution of the SPy is 

given as: 

  

௜௝ߠ
௬ ൌ

ܾ௜௝ݓ௬
∑ ∑ ሺܾ௥௦ሻଶ௠

௦ୀ଴
௡
௥ୀ଴

 (3.20) 
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Chapter 4 

Differential Evolution Algorithm and Optimization 

Scheme 

 

 

 

4.1 Introduction to Evolutionary Algorithms 
Evolutionary Algorithms (EAs) is a general term used to indicate any 

metaheuristic optimization algorithm, based on search methods and populations. An 

EA uses mechanisms inspired by biological evolution, such as reproduction, mutation, 

recombination, and selection. Candidate solutions to the optimization problem play the 

role of individuals in a population, and the fitness function determines the quality of 

the solutions. Contrary to many other optimization methods, EAs work with a set of 

solutions at the same time, the so-called population. Accordingly, they frequently 

supply not only one solution when treating multi-modal problems, but also several 

different solutions, the quality of which is partly comparable with that of the best. 

Evolution of the population then takes place after the repeated application of the above 

operators [57]. 

EAs are a class of search methods with remarkable balance between exploitation 

of the best solutions and exploration of the search space. They combine elements of 

directed and stochastic search and, therefore, are more robust than directed search 

methods. Additionally, they may be tailored easily to the specific problem under 

consideration, taking into account its special characteristics [58]. The natural selection 

process is simulated in EAs, using a population of individuals to evolve through certain 

procedures. Each individual in the population is represented through its chromosome - 

a string of numbers (bit strings, integers or floating point numbers), in a similar way to 

chromosomes in nature; it contains the encoding of the design variables of the 

optimization problem. Each individual’s quality is represented by a fitness function, 

which depends on the specific optimization problem under consideration. During the 

past decade, evolutionary algorithms have been established in the field of engineering 

design as a very versatile, effective and robust optimization technique, capable of 
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dealing with complicated and very demanding real-world single/multi-disciplinary, 

single/multi-objective, discontinuous, non-differentiable, multi-modal design 

optimization problems [58]. In Figure 4.1 the principle flowchart of Evolutionary 

Algorithms is illustrated. 

 

 

Fig. 4.1: Principle flowchart of an Evolutionary process [59] 

 

4.2 Differential Evolution 
Differential evolution (DE), introduced in the work of Storn and Price [60, 61], 

is a reliable, versatile and fast EA, which has demonstrated better convergence 

performance than other EAs. The DE algorithm is basically a type of Evolutionary 

Strategy, with special characteristics, so that it can effectively deal with continuous 

optimization problems, which are common in engineering design. The standard DE 

algorithm uses a fixed size population of ௣ܰ  chromosomes, which is randomly 

initialized; an iterative process then is established and at each generation G, a new 

population is produced. At each generation, each element of the population can be 

replaced with a new generated one. The new element (the trial vector) is a linear 
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combination between a randomly selected element and a scaled difference between two 

other randomly selected elements. In the selection stage, the trial vector competes 

against the population vector of the same index, in a one-by-one competition, and the 

survivors of the ௣ܰ  competitions become the parents for the next generation in the 

evolutionary cycle [61]. 

Herein, a description of the basic elements constitute the DE algorithm follows 

as introduced in [60, 61] and presented in [58]. Given a cost function  

  
݂ሺࢄሻ:Թ௡ → Թ (4.1)

  
where ࢄ is a vector of n-dimensional space, containing the n design variables of the 

problem under consideration. The objective is the minimization of the cost function ݂ 

by modulating the values of the design variables that compose	ࢄ. 

  
ࢄ ൌ ሺݔଵ, ,ଶݔ … , ௡ሻݔ , ௜ݔ ∈ Թ  (4.2)

  
Throughout the optimization procedure, each design variable is bounded between a 

lower ݔ௜
௅ and an upper ݔ௜

௎ value, which are selected by the designer and determine the 

range of each design variable. 

  
௜ݔ
௅ ൑ ௜ݔ ൑ ௜ݔ

௎ , ݅ ൌ 1,2, … , ݊ (4.3)
  

The ௣ܰ members of the initial population are randomly generated in the space defined 

by the lower and upper limits of the design variables 

  
௞,௜ݔ
଴ ൌ ௜ݔ൫	ݎ

௎ െ ௜ݔ
௅൯ ൅ ௜ݔ

௅ , ݅ ൌ 1,2, … , ݊ , ݇ ൌ 1,2, … ௣ܰ (4.4)
  

where ݎ is a uniformly distributed random value within [0, 1]. 

The mutation operator of the DE (differential mutation) is based on a triplet of 

randomly selected different members of the current population. A new individual is 

generated by adding the weighted difference vector between the two members of the 

triplet to the third one (the "donor"). This perturbed individual and the initial population 

member is then subjected to a crossover operation, which produces the final candidate 

solution.  

  

௞,௜′ݔ
ீାଵ ൌ ቊ

஼ೖ,௜ݔ
ீ ൅ ஺ೖ,௜ݔ൫ܨ

ீ െ ஻ೖ,௜ݔ
ீ ൯ ݂݅ ሺݎ ൑ ݎܥ ݎ݋ ݅ ൌ ݅∗ሻ

௞,௜ݔ
ீ 	 ݁ݏ݅ݓݎ݄݁ݐ݋

 (4.5)
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In the previous equation ݔ஼ೖ,௜
ீ  are the elements of the "donor" vector, ܩ is the current 

generation and 

  
݇ ൌ 1,2, … , ௣ܰ , ݅ ൌ 1,2, … , ݊  

௞ܣ ∈ ൣ1,… , ௣ܰ൧, ௞ܤ ∈ ൣ1, … , ௣ܰ൧, ௞ܥ ∈ ൣ1,… , ௣ܰ൧  

௞ܣ ് ௞ܤ ് ௞ܥ 	് ݇ 

Cr		∈ ሾ0,1ሿ, F		∈ ሾ0,1ሿ, r ∈ ሾ0,1ሿ 

(4.6)

  
while  ݅∗ is a random integer within [1, n], chosen once for all members of the 

population. The random number r is seeded for every gene of each chromosome. F and 

Cr are DE control parameters for mutation and crossover operations, which (for the 

standard DE algorithm) remain constant during the search process and affect the 

convergence behavior and robustness of the algorithm. Their values also depend on the 

objective function, the characteristics of the problem and the population size. Cr 

controls the fraction of design variables that are copied from the mutant. In addition, 

the trial design variable with randomly chosen index, ݅∗, is taken from the mutant in 

order to ensure that the trial vector does not duplicate the initial one. 

The population for the next generation is selected between the current population 

and the final candidates by using a one-by-one comparison between all members of the 

current population and their candidate replacements. If each candidate vector is better 

fitted than the corresponding current one, the new vector replaces the vector with which 

it was compared. The DE selection scheme is described as follows [61] (for a 

minimization problem): 

  

௞ࢄ
ீାଵ ൌ ቊ

௞ࢄ
ᇱீାଵ ݂݅ ݂ሺࢄ௞

ᇱீାଵሻ ൑ ݂ሺࢄ௞
ீሻ

௞ࢄ
ீ			 ݁ݏ݅ݓݎ݄݁ݐ݋

 (4.7)

  

  

4.3 Surrogate models 

Most engineering design problems require experiments and/or simulations to 

evaluate design objective and constraint functions as function of design variables. For 

example, in order to find the optimal airfoil shape for an aircraft wing, an engineer 

simulates the air flow around the wing for different shape variables. For many real 

world problems, however, a single simulation can take many minutes, hours, or even 

days to complete. As a result, routine tasks such as design optimization, design space 
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exploration, sensitivity analysis and what-if analysis become impossible since they 

require thousands or even millions of simulation evaluations. One way of alleviating 

this burden is by constructing approximation models, known as surrogate models that 

mimic the behavior of the simulation model as closely as possible while being 

computationally cheap(er) to evaluate. Surrogate models are constructed using a data-

driven, bottom-up approach. The exact, inner working of the simulation code is not 

assumed to be known (or even understood), solely the input-output behavior is 

important. A model is constructed based on modeling the response of the simulator to 

a limited number of intelligently chosen data points [62–64]. 

 

4.4 A surrogate-assisted DE algorithm 

In this thesis, a DE algorithm, presented in Section 4.2, is combined with two 

ANNs (Artificial Neural Networks), which serve as surrogate models, in order to reduce 

the number of the time-consuming exact evaluations required per generation during a 

direct airfoil optimization procedure. Although EAs have been combined with a various 

types of surrogate models [62,65–68], based on the results of [4] a Multilayer 

Perceptron (MLP) and a Radial-Basis Function ANNs are chosen as surrogates (Figure 

4.2 and 4.3). The multiplicity of different surrogates is a crucial fact, concerning that 

the effectiveness of each surrogate varies, depending on the nature of the optimization 

model. Therefore in each generation the surrogate with the best performance among the 

others takes action.  

 

4.4.1 Artificial Neural Networks 

Artificial neural networks are a family of statistical learning models inspired by 

biological neural networks and are used to estimate or approximate functions that can 

depend on a large number of inputs and are generally unknown. An ANN consists of a 

pool of simple processing units, which communicate by sending signals to each other 

over a large number of weighted connections [69, 70]. 

Each unit performs a relative simple job: receive input from neighbors or external 

sources and use this to compute an output signal which is propagated to other units. 

Apart from this processing, a second task is the adjustment of the weights. The system 

is inherently parallel in the sense that many units can carry out their computations at 

the same time Artificial neural networks can be most adequately characterized as 

"computational models" with particular properties such as the ability to adapt or learn, 
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to generalize, or to cluster or organize data, and which operation is based on parallel 

processing [69]. 

 

4.4.2 Multi-Layer Perceptron ANN 

A feed-forward network has a layered structure and the data flow from input to 

output units and no feedback connections are present. Each layer consists of units, 

which receive their input from units a layer directly below and send their output to units 

in a layer directly above the unit. There are no connections within a layer. With ݅, ݄ and 

 ௞௣ is the ݇௧௛ element of theݔ ;input, hidden and output units are denoted respectively ,݋

௧௛݌  input pattern vector; ݕ௞௣ is the activation value of the network when input pattern 

vector ݌ was fed into the network; ݀௞௣ is the ݇௧௛  element of the desired output of the 

network when input pattern p was fed into the network; ݓ௜௝	are the weights of the 

connection from unit ݆ to unit ݇. The ௜ܰ  inputs are fed into the first layer of ௛ܰ,ଵ hidden 

units. These neural networks are commonly refer to as multilayer perceptrons. No 

processing takes place inside the input units. The activation of a hidden unit is a 

function ܨ௞  of the weighted inputs, plus a bias ߠ௞. The output of the hidden units is 

distributed over the next layer of ௛ܰ,ଶ hidden units, until the last layer of hidden units, 

of where the outputs are fed into a layer of ଴ܰ output units [69]. The architectural layout 

of a multiplayer perceptron (MLP) is illustrated in Figure 4.2. 

 

 

Fig. 4.2: A multilayer perceptron (MLP) artificial neural network with two hidden layers and 
a single output 
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The network is a fully connected one, which means that a node in any layer of the 

network is connected to all the nodes in the previous layer. Each node in the network 

includes a nonlinear activation function ܨሺݏ௞௣ሻ	of the total input ݏ௞௣, which in this work 

is the logistic function: 

  

௞ݕ
௣ ൌ ௞௣൯ݏ൫ܨ	 ൌ

1

1 ൅ expሺെݏ௞
௣ሻ

 (4.8)

The total input to unit ݇ is simply the weighted sum of the separate outputs from each 

of the connected units plus the bias: 

  

௞ݏ
௣ ൌ෍ݓ௝௞

௣

௝

௝ݕ
௣ ൅ ௞ߠ

௣ (4.9)

The synaptic weights are determined in the supervised training procedure, 

through successive weight adaptations, using the back-propagation algorithm or other 

more efficient algorithms. In order to train the network, a set of input vectors and the 

associated output vectors (training examples) are needed (learning samples). These are 

“presented” to the network in successive epochs and in randomized order from epoch 

to epoch. In our case the training examples consist of chromosome vectors for the input 

layer and the corresponding objective functions for the single node of the output layer. 

Test samples (other than the learning ones) are used in order to test the validity of the 

approximation and the generalization ability of the network [58]. 

 

4.4.3 Radial Basis Function ANN 

A RBF network (Figure 4.3) is a three layer, fully connected feed-forward ANN 

performing a non-linear mapping from the input space to the hidden space, followed by 

a linear mapping from the hidden to the output space (ܮ being the number of input 

nodes, ܯ being the number of hidden nodes, while the output layer has a single node). 

For an input vector ࢞࢞ ൌ ሾݔݔଵ, ,ଶݔݔ … ,  ሻ࢞࢞ሺݕݕ ௅ሿ the corresponding output vectorݔݔ	

is given as 

ሻ࢞࢞ሺݕݕ ൌ෍ݓ௜߮௜ሺ࢞࢞ሻ

ெ

௜ୀଵ

 (4.10)

߮௜ሺ࢞࢞ሻ  being the output of the ݅௧௛ hidden unit: 

߮௜ሺ࢞࢞ሻ ൌ ࢞࢞‖ሺܨ െ ܿܿ௜‖ሻ , ݅ ൌ 1,… (4.11)   ܯ,
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The connections (weights) to the output unit ሺݓ௜, ݅	 ൌ 	1, …  ሻ are the only adjustableܯ,

parameters. The non-linear activation function ܨ in our case is the Gaussian RBF. The 

RBF centers in the hidden units ܿܿ௜, ݅	 ൌ 	1, …  are selected in a way to maximize the ܯ,

generalization properties of the network. The standard process is to select the input 

vectors in the training set as RBF centers, which may lead to bad generalization of the 

network. The proposed solution [70] is the selection of ܯ	 ൏ 	ܴܰ in order to provide a 

better generalizing capability. Direct learning is used in this work, based on a matrix 

formulation of the governing equations of RBF network. The presentation of the 

network with the ܴܰ input patterns allows the formulation of a ሺܴܰ	 ൈ  .ܪ ሻ matrixܯ	

The output unit values result in the form of the matrix product: 

  
ሺܴܰܪ ൈܯሻݓሺܯ ൈ 1ሻ ൌ ሺܴܰݕݕ ൈ 1ሻ   (4.12)

  
where ݕݕ is the desired output vector provided by the training data set, ݓ being the 

synaptic weights vector consisting of ܯ unknowns. ܪ is inverted through the Gram-

Schmidt technique. It should be mentioned that the computational cost of the neural 

networks is the cost of their training, while the use of an already trained network to 

evaluate a new candidate adds negligible computation cost to the optimization 

procedure. 

In this work the number of hidden units in each one of the two hidden layers of 

the MLP network was twice the number of the design variables. For the RBF networks 

the number of centers ሺܯሻ was set equal to 2/3 of the number of training data ሺܴܰሻ. 

 

 

Fig. 4.3: A RBF ANN 
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4.4.4 The use of surrogates for accelerating DE algorithm 

Through the evaluation stage, each new trial vector is pre-evaluated by the 

utilization of the surrogate models. If the trial vector is pre-evaluated as lower-fitted 

(i.e., having a higher cost function in minimization problems) than the corresponding 

vector of the current population, then no further exact evaluation is performed; the trial 

vector is abandoned and the current vector is transferred to the next generation. 

Otherwise an exact re-evaluation is performed, followed by a new comparison between 

the two vectors. If the trial vector is still better-fitted then it passes to the next 

generation. Otherwise the trial vector is abandoned and the current vector will pass to 

the next generation [58]. 

In the first two generations all individuals are exactly evaluated, in order to create 

a starting database for the construction of the initial surrogate models (training and 

testing procedures). Furthermore, an additional small percentage of the candidate 

solutions are selected in each generation with uniform probability to be exactly 

evaluated, in order to enhance the robustness of the procedure. The prescribed 

procedure results in the fact that only exactly evaluated trial vectors have the 

opportunity to pass to the new generation. Consequently, in every generation the current 

population always includes exactly evaluated individuals. A flowchart of the described 

procedure is illustrated in Figure 4.4. 
 

 

Fig. 4.4: Flowchart of the modified DE algorithm [58] 
 

The different surrogate models can be used separately or as an ensemble. In the 

first case a single surrogate is used throughout the optimization procedure, while in the 
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second case in each generation both surrogates are retrained and tested (on the same 

training and testing data sets) and then one is used for the pre-evaluation of the members 

of the population. The selected model to be used as surrogate is the one attaining the 

minimum value concerning the testing error. Compared to the cost of the exact 

evaluations, the training of more than one surrogate models in each generation adds 

negligible cost to the computational procedure. During the evolution of the population 

the best surrogate for the specific region of the landscape is automatically selected, 

based on their predictive capabilities and the adopted selection criterion [4].  

 

4.5 The Optimization Procedure 

The optimization process begins with the selection of a reference airfoil achieving 

satisfying performance concerning some characteristics of interest, such as high lift 

coefficient, high lift-to-drag ratio, low absolute value of pitching moment coefficient 

and smooth attribute to stall regions. Then, a 2D parametric FFD lattice is constructed, 

that encloses the initial airfoil. The user has the ability of choosing the number of 

control points on each parametric direction, which has an impact on the number of 

design variables, as well as the degree of the B-Splines Basis functions that form the 

FFD lattice. Subsequently, the determination of the design variables as well as their 

lower and upper bounds are defined by the user. 

At the first generation (G=1) of the  DE algorithm, every chromosome of the 

fixed size population ௣ܰ is randomly initialized, based on upper and lower bounds of 

the design variables (genes). Subsequently, at each generation a new population is 

produced by replacing (after competition) each member of the population with a new 

one, called trial vector. The trial vector is formed as a linear combination of a randomly 

chosen chromosome of the current population and a scaled difference between two 

other also randomly chosen chromosomes. Then, a one by one competition between the 

trial vector and its corresponding chromosome of the current generation is 

implemented; this is repeated for all the members of the current population in order to 

extract the ௣ܰ chromosomes that will form the next generation [61]. The assistance of 

the surrogate models lies on time-saving, by not exact evaluating each one of the 

produced trial vectors, but using a trained neural network instead [71,72]. A detailed 

description of the utilized DE algorithm as well as the combination with the surrogate 

models in the airfoil optimization is presented in [4].  
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Given that a chromosome has been chosen to be exact evaluated, an area 

correction step has to be implemented. After the implementation of the Area-Preserving 

FFD on the specific chromosome, presented in Chapter 3, an accepted airfoil geometry 

is produced, which has the exact same cross-sectional area as the reference airfoil. Then, 

the pre-mentioned airfoil is imported to XFOIL (or other evaluation software) to obtain 

the desired data for the calculation of the fitness function. The aforementioned function 

is formed based on the required characteristics of the optimal airfoil, combined with 

penalty functions to satisfy the required constraints. The previously described 

procedure is illustrated as a flow chart in Figure 4.5. 

 

 

Fig. 4.5: Flowchart with the major steps of the optimization process including AP FFD  
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4.6 The Evaluation Software – XFoil 

XFOIL is an interactive program for the design and analysis of subsonic isolated 

airfoils. Given the coordinates specifying the shape of a 2D airfoil, Reynolds and Mach 

numbers, XFOIL can calculate the pressure distribution on the airfoil and hence lift and 

drag characteristics. The XFOIL software, developed by Drela in the ‘80s [73], is used 

to calculate the lift, drag and pitching moment coefficients (ܥ௟, ,ௗܥ -௠ሻ of each exactܥ

evaluated airfoil in a variety of angles of attack (a). In this thesis the Version 6.99 of 

XFOIL, released in 2013, was utilized. In Figure 4.6 a sample XFoil output file is 

presented, where “alpha” is the angle of attack, “CL’’ is the lift coefficient ሺܥ௟ሻ, “CD” 

is the drag coefficient ሺܥௗሻ and “CM" is the pitching moment coefficient (ܥ௠ሻ. 

 

 

Fig. 4.6: A sample XFOIL output file 
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Chapter 5 

Validation and Results 

 

 

 

5.1 High Lift, High Reynolds Number Airfoil Optimization 

Herein, the proposed optimization procedure is put into the test in order to 

examine its robustness and effectiveness when the Area-Preserving FFD comes into 

play. The optimization process is utilized for the design of a high lift airfoil, operating 

at Reynolds number ܴ݁ ൌ 7 ∗ 10଺, based on the DU-06-W-200 (DU series) as the 

reference one, which was developed in Delft University of Technology with major 

applications in the design of wind turbine’s blades sections. 

The parameterization technique, used for the manipulation of the geometry, is a 

B-Spline-based FFD presented in Section 2.2. The initial 2D FFD lattice was built 

around the DU-06-W-200 by setting 6 control points along the ݔ (chordwise) and 3 

control points along to the ݕ direction, as shown in Figure 2.5, whereas the degrees of 

the B-Spline Basis functions were set as the highest possible, e.g. 5 and 2 respectively 

in order to achieve a smooth representation of the airfoil geometry. 

Consequently, the number of the design variables is partially determined. As 

already mentioned, the control points that correspond to leading and trailing edges (ݔ ൌ

0	and ݔ ൌ 1ሻ are fixed, therefore the number of the design variables is 24, 

corresponding to the ݔ	and ݕ coordinates of the 12 free to move control points of the 

FFD lattice (Figure 2.7). The permitted range of the design variables varies between 

6% and 20% of the chord, in the direction normal to the chord (ݕ direction), whereas in 

the chordwise direction (ݔ direction) was set as 10% of the chord length. The extraction 

of the presented ranges was based on a trial and error basis, in order to achieve upper 

and lower bounds that do not restrict or magnify inefficiently the search space. In Table 

5.1 the employed design variables during this particular optimization process are 

presented along with their respective upper and lower bounds. The enumeration of the 

control points of the FFD lattice is realized as follows; ܥ ௜ܲ௝ refers to the control point 
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located in the ݅௧௛ column and ݆௧௛ line of the control grid, where ݅ ൌ 0,1, . . , ݊ and ݆ ൌ

0,1, . . , ݉, as illustrated in Figure 5.1. 

 

Fig. 5.1: FFD Control Points enumeration 

 

No. 
Design 

Variable 
Lower 
Bnd 

Upper 
Bnd 

No. 
Design 

Variable 
Lower 
Bnd 

Upper 
Bnd 

ܥ 1 ଵܲ଴ െ ܥ 13 0.25 0.15 ݀ݎ݋݋ܥ	ݔ ଵܲ଴ െ ݕ  0 0.2- ݀ݎ݋݋ܥ

ܥ 2 ଵܲଵ െ ܥ 14 0.25 0.15 ݀ݎ݋݋ܥ	ݔ ଵܲଵ െ ݕ  0.03 0.03- ݀ݎ݋݋ܥ

ܥ 3 ଵܲଶ െ ܥ 15 0.25 0.15 ݀ݎ݋݋ܥ	ݔ ଵܲଶ െ ݕ  0.2 0.1 ݀ݎ݋݋ܥ

ܥ 4 ଶܲ଴ െ ܥ 16 0.45 0.35 ݀ݎ݋݋ܥ	ݔ ଶܲ଴ െ ݕ  0 0.2- ݀ݎ݋݋ܥ

ܥ 5 ଶܲଵ െ ܥ 17 0.45 0.35 ݀ݎ݋݋ܥ	ݔ ଶܲଵ െ ݕ  0.03 0.03- ݀ݎ݋݋ܥ

ܥ 6 ଶܲଶ െ ܥ 18 0.45 0.35 ݀ݎ݋݋ܥ	ݔ ଶܲଶ െ ݕ  0.2 0.1 ݀ݎ݋݋ܥ

ܥ 7 ଷܲ଴ െ ܥ 19 0.65 0.45 ݀ݎ݋݋ܥ	ݔ ଷܲ଴ െ ݕ  0.1 0.1- ݀ݎ݋݋ܥ

ܥ 8 ଷܲଵ െ ܥ 20 0.65 0.45 ݀ݎ݋݋ܥ	ݔ ଷܲଵ െ ݕ  0.1 0 ݀ݎ݋݋ܥ

ܥ 9 ଷܲଶ െ ܥ 21 0.65 0.45 ݀ݎ݋݋ܥ	ݔ ଷܲଶ െ ݕ  0.2 0.1 ݀ݎ݋݋ܥ

ܥ 10 ସܲ଴ െ ܥ 22 0.85 0.65 ݀ݎ݋݋ܥ	ݔ ସܲ଴ െ ݕ  0.1 0.1- ݀ݎ݋݋ܥ

ܥ 11 ସܲଵ െ ܥ 23 0.85 0.65 ݀ݎ݋݋ܥ	ݔ ସܲଵ െ ݕ  0.1 0 ݀ݎ݋݋ܥ

ܥ 12 ସܲଶ െ ܥ 24 0.85 0.65 ݀ݎ݋݋ܥ	ݔ ସܲଶ െ ݕ  0.2 0.1 ݀ݎ݋݋ܥ

Tab. 5.1: Design Variables 
 

The optimization problem examined herein is defined as the design of a new 

airfoil with maximum mean lift coefficient in a range of angles of attack between 0௢ 

and 26௢, with respect to one geometric and one aerodynamic inequality constraint that 

concern the position of airfoil’s centroid in ݔ axis and the maximum allowed absolute 

value of pitching moment coefficient respectively, based on the geometry of DU-06-
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W-200. Moreover, during the optimization procedure, a strict area preservation 

constraint is utilized by the direct implementation of the AP FFD methodology. The 

formation of the aforementioned constraints is presented below. 

 

Centroid constraint: 

௖,௥௘௙ݔ െ 0.05 ൑ ௖ݔ ൑ ௖,௥௘௙ݔ ൅ 0.05     (5.1) 

  

Moment coefficient constraint: 

௠|തതതതതതܥ| ൑ หܥ௠,௥௘௙ห   (5.2) 

  

௠|തതതതതതܥ| ൌ ଵ

ଶ଻
∑ หܿ௠೔

หଶ଺
௜ୀ଴    (5.3) 

Cross-sectional area constraint: 

ܣ̅ ൌ  ௥௘௙   (5.4)ܣ
  

where ݔ௖, |ܥ௠|തതതതതത and ̅ܣ are the ݔ coordinate of the centroid, the mean absolute value of 

pitching moment coefficient and the cross-sectional area (after the implementation of 

the AP FFD) of each candidate solution respectively. For the DU-06-W-200 airfoil, 

examined herein, the reference values are ܣ௥௘௙ ൌ	0.1223, ݔ௖,௥௘௙ ൌ 0.39 and 

หܥ௠,௥௘௙ห ൌ0.0315 computed based on the XFOIL results in a range between 0o and 26o 

a.o.a with a step of 1o and fixed Reynolds number equal to 7*106. The constraints in 

Eq. (5.1) and Eq. (5.2) are satisfied utilizing two penalty functions. In that way an 

indirect manipulation of the constraints is achieved as the algorithm tries to lead the 

design in geometries that produce lower (better) values of the fitness function. By the 

utilization of the penalty functions included in the fitness, in conjunction with the 

employment of the AP FFD for the satisfaction of the required constraints, the problem 

is transposed into an unconstrained minimization one.  The formalization of the penalty 

functions is as follows: 

 

Centroid penalty function: 

  

௫݂ ൌ ቊ
1, ௖,௥௘௙ݔ	݂݅ െ 0.05 ൑ ௖ݔ ൑ ௖,௥௘௙ݔ ൅ 0.05

1 െ 2หݔ௖,௥௘௙ െ ,௖หݔ ݁ݏ݅ݓݎ݄݁ݐ݋
   (5.5) 
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Pitching moment penalty function: 

  
௠݂ ൌ 1 െ ∑ ௠݂೔

ଶ଺
௜ୀ଴    (5.6) 

  
  

௠݂೔
ൌ ቊ

0, ݂݅ หܿ௠೔
ห ൑ หܿ௠,௥௘௙ห

	หܿ௠೔
ห െ หܿ௠,௥௘௙ห, ݁ݏ݅ݓݎ݄݁ݐ݋

   (5.7) 

  

Therefore, the fitness function of the under minimization unconstrained problem, is 
formed as 

݂ ൌ 2 െ ௟ഥܥ ௫݂ ௠݂   (5.8) 

  

The mean lift coefficient is calculated by computing the area below the ܥ௟ curve 

and dividing this area by 27, which is the number of different angles of attack in which 

the airfoil is evaluated. This approach benefits airfoils that converge in more angles of 

attack, against others that do not perform in a smooth way with respect to the whole 

spectrum of the examined angles.  

Regarding the use of the surrogate models, in the current test case a combination 

of MLP and RBF ANNs was utilized. The first two generations of the DE perform exact 

evaluations for every chromosome, in order to create an adequate training sample for 

the ANNs. Subsequently, in each generation	the ANN with the smallest testing error is 

chosen to serve as a surrogate model. 

Further acceleration was achieved by utilizing a parallel version of the 

aforementioned DE on a DELLTM R815 PowerEdgeTM server with four AMD 

OpteronTM 6380 sixteen-core processors at 2.50 GHz (64 cores in total). The population 

size ௣ܰ of the DE was set equal to 50, while the algorithm was executed for 1000 

generations. 
 

5.2 Computational Results 

In Figure 5.2 a comparison of the lift coefficient for the initial and the optimized 

airfoil is presented. It is becoming quite evident that the produced airfoil has an 

improved performance (relating to the adopted design criteria) at the region between 

16o to 26o a.o.a. by achieving a maximum lift coefficient at 21o instead of 16o. 

Additionally, a maximum lift coefficient increase of 16.57% was achieved while the 

mean lift coefficient	ܥ௟ഥ , at the range of ሺ0௢ െ 26௢ሻ a.o.a was increased by 28.69 %. 
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Consequently, after the optimization process an expansion of the high lift region is 

attained as well as the capacity of high lift production in greater a.o.a. 

 

Fig. 5.2: Comparison between the lift coefficient of the reference airfoil 
DU-06-W-200 and the optimal one as a function of a.o.a. 

 

In Figure 5.3 the optimal and the initial airfoils are presented. It should be noticed 

that a relatively small modification to the initial geometry produces quite different 

results, highlighting the strong non-linearity of the search space. The cross-sectional 

area of the produced airfoil is exactly the same to the initial one, proving that AP FFD 

is a versatile methodology that can be easily adopted in optimization schemes in order 

to replace other techniques of satisfying a strict area constraint without any loss of the 

convergence capability and efficiency that DE offers.  

In Figure 5.4 the convergence history of the fitness function for the best and worst 

chromosomes of each generation is presented. Additionally, in order to prove that the 

proposed AP FFD technique could easily and effectively replace a penalty function 

approach, regarding the satisfaction of an exact area preservation constraint, the same 

test case was executed for a second time, by utilizing a classic penalty function method 

instead an AP FFD one, while all the other parameters maintained identical. In Figure 

5.5 a comparison between the convergence histories of the best solution using a AP 

FFD and a penalty function approach is illustrated. As shown, the employment of the 

proposed AP FFD instead of a penalty function does not cause any loss of the 

convergence capability and efficiency that DE provides. On the contrary, it leads to a 

better value of the fitness function and produces an airfoil geometry with higher lift 
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coefficient than the one produced by the optimization process with the penalty function 

approach, as shown in Figure 5.6, regarding the range of high angles of attack ሺ18௢ െ

26௢ሻ, where high lift is more necessary. 

 

 

Fig. 5.3: Initial and optimal airfoil geometries. 
 

Besides the high performance of the optimal airfoil concerning the mean lift 

coefficient, a noticeable drag coefficient reduction is achieved within the same region 

between 16o and 26o a.o.a., which consequently leads to higher lift-to-drag ratios. 

Figures 5.7, 5.8 present a comparison between the initial and the optimal airfoil on drag 

coefficient and lift-to-drag ratio respectively, in order to highlight the improved 

aerodynamic properties resulted by the optimization procedure without any significant 

loss of the structural characteristics. 
 

 

Fig. 5.4: The convergence history of the best and worst solution of each generation. 
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Fig. 5.5: The convergence history of the best solution of each generation by using an AP 
FFD and a penalty function approach for the satisfaction of the cross sectional area 

constraint. 

 

 

 

Fig. 5.6: Comparison between the lift coefficient of the optimal airfoil produced by 
an optimization scheme that employs AP FFD and the optimal one produced by a 

classical optimization scheme utilizing a penalty function approach. 
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Fig. 5.7: Comparison between the drag coefficient of the reference airfoil DU-06-W-
200 and the optimal as a function of a.o.a. 

 

In Table 5.2 the total elapsed computation time is presented as well as the number 

of exact and total evaluations. Note that using surrogate models results in a reduction 

of the total number of exact evaluations by a factor of 0.48. Although in this case the 

time required for each exact evaluation is about 1-2 seconds, in cases where costly 

Computational Fluid Dynamics (CFD) models are utilized as flow solvers, each exact 

evaluation may be last a few hours, so a decrease of computational time at almost in 

half is crucial for the efficiency of the design process. 

 

Test Case 
Wall-Clock 

Time (s) 
Exact Evaluations Total Evaluations 

DU-06-W-200 8820 25860 50000 

Tab. 5.2: Wall-clock computation time, number of exact and total evaluations. 
 

Figure 5.9 contains a comparison between the pitching moment coefficient of the 

reference airfoil DU-06-W-200 and the produced one as a function of a.o.a. The value 

of moment coefficient is quite important given that airfoil sections that form a specific 

blade should have similar values of moment coefficients in order to avoid the 

development of high torsional stresses on the blade. Table 5.3 illustrates the resulting 

values of the constraint quantities, compared to the reference ones, as well as the upper 
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and lower bounds of each constraint. At the end of the optimization procedure both 

centroid and pitching moment inequality constraints are satisfied. Concerning the cross-

sectional area preservation, the equality constraint was exactly satisfied by the 

application of AP FFD to each candidate solution. 

 

 

Fig. 5.8: Comparison between the lift-to-drag ratios of the reference DU-06-W-200 
airfoil and the optimal one. 

 

 

Fig. 5.9: Comparison between the pitching moment coefficient of the reference airfoil 
DU-06-W-200 and the optimal one as a function of a.o.a. 
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Constraint 
Satisfaction 
Approach 

Optimal Airfoil 
Value 

Reference 
value 

Lower 
Bound 

Upper 
Bound 

 Penalty Function 0.4165  0.393 0.3430 0.4430  ࢉ࢞

 തതതതതത  Penalty Function 0.0200 0.0315 0 0.0315|࢓࡯|

 ഥ  AP FFD 0.1223 0.1223 0.1223 0.1223࡭

Tab. 5.3: Output values for the constraints
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Chapter 6 

Conclusions 

 

 

 

In this diploma thesis, a novel direct numerical airfoil optimization scheme is 

proposed, which employs the Area-Preserving FFD as an alternative technique for the 

exact satisfaction of a strict cross-sectional area equality constraint, instead of the 

classic penalty function approach; it is combined with a 2D B-Spline-based FFD as 

geometrical parameterization technique. The exact area preservation is achieved by 

solving an area correction sub-problem, which consists of computing and applying the 

minimum possible offset to each free-to-move control point of the deformed FFD 

lattice, after the application of a typical FFD, subject to the area preservation constraint. 

Due to the linearity of the area constraint in each axis, a closed-form solution to the 

sub-problem is able to be extracted, which, in conjunction with a surrogate-assisted 

Differential Evolution algorithm, renders the optimization procedure time efficient and 

effective. 

The proposed optimization scheme was tested through a lift coefficient 

maximization problem, based on a DU-06-W-200 airfoil as the reference one. The 

validation results indicate a fine collaboration between the DE algorithm and the 

proposed AP FFD methodology, even though the aforementioned approach alters the 

produced by the DE algorithm chromosomes prior to their evaluation. Additionally, the 

results show the promising capabilities of the introduced procedure to achieve an 

improvement of the aerodynamic airfoil characteristics, without violating the area 

preservation constraint.  

Finally the AP FFD technique was compared to the classic penalty function 

approach, concerning the cross-sectional area constraint, showing that the proposed 

methodology is able to attain better values of the objective function without any loss of 

the convergence capabilities of the DEVA
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