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“It doesn't matter how beautiful your
theory is, it doesn't matter how smart you

are. If it doesn't agree with experiment, it's
wrong.”

Richard P. Feynman (1918-1988)
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Abstract

During recent years, computer graphics techniques such as Free-Form
Deformation (FFD), have become extremely useful and widely employed in the field
of Aerodynamic Shape Optimization and particular throughout the design of airfoil
sections. Although FFD is a powerful parameterization and deformation technique of
any given arbitrary two- or three-dimensional shape, there is no guarantee that provides
the preservation of the shape’s enclosed area or volume respectively, after its
application. Given the importance of the structural integrity required by aerodynamic
shapes, such as aircraft wings and wind turbine blades, the necessity of including a
cross-sectional area preservation constraint (among several other geometrical and
aerodynamic ones) arises during the optimization process of the airfoil sections forming
the aforementioned applications. Even though previous works exist, where a cross-
sectional area constraint is utilized, the implementation is done by either non-linear
time consuming expressions or by penalty function approaches, which are not always
sufficient and do not guarantee the exact satisfaction of a strict equality constraint
throughout the design process. In this work an airfoil optimization scheme is presented,
based on Area-Preserving Free-Form Deformation technique, which serves as an
alternative approach for the handling and satisfaction of a strict cross-sectional area
equality constraint, while a parallel Differential Evolutionary (DE) algorithm is utilized
for the optimization procedure. The DE algorithm is combined with two Artificial
Neural Networks (ANNSs), a multilayer perceptron (MLP) feed-forward ANN and a
Radial Basis Functions (RBF) network, which serve as surrogate models, to decrease
the computational cost of the optimization procedure. In each iteration of the DE
algorithm, before the evaluation of the fitness function for each candidate solution, an
area preservation step is applied to that solution in order to meet the cross-sectional area
constraint. The area preservation step is achieved by solving an area correction sub
problem, which consists of computing and applying the minimum possible offset to
each free-to-move control point of the FFD lattice, subject to the area conservation.
Due to the linearity of the area constraint in each axis, the extraction of an inexpensive
closed-form solution to the sub problem is possible by using Lagrange Multipliers
method. The proposed technique overcomes the disability of Evolutionary Algorithms
(EAs) to effectively treat strict equality constraints such as exact area preservation one.

Throughout the optimization process both structural and aerodynamic requirements can



be taken into account, as constraints while the objective function is focused on the
improvement of aerodynamic efficiency. Additionally, the use of multiple surrogate
models, in conjunction with the inexpensive solution to the area correction sub problem,
render the optimization process time saving. This thesis demonstrates the applicability

and effectiveness of the proposed methodology.

VI



Hepiinyn

Koatd m didprelo Tov TEAELTOOV ETOV, TEYVIKES TPOEPYOUEVES OO TOV TOUEN
TOV VTOAOYIGTIK®V YPAPIK®V, 6w 1 nEBodog EAevBepng [Tapapdppwong, Exovv yivel
eEAPETIKA YPNOUES KOl EVPEMG EQOPUOGIIES KaTd TN drodikacio felTioTomoinong ev
YEVEL 0EPOSVVOUIKDOV GYNUATOV KOl GUYKEKPEVA 0epOTOpdV. AV Ko 11 EAgvBepn
[Moapapdpewon givar pio Tavioyvpn TEXVIKN TOPAUETPOTOINCNS KOl TOPOUOPPOONG
OTOOLONTOTE GYNUOTOG aBaipeTng YeOUETPIOC, VOTEPA ATO TNV TOPAUOPPMOOCT] TOV
EKOOTOTE OVTIKELEVOL 1) O10TNTA NG OTpnons tov gupadod 1 Tov OyKov, Tov
nepikAeietar omd 10 oyfua Yo 01d1doTaTo 1 TPWACTATO GY LT OVTIGTOLO, OEV
mopéyetal. Aedouévng TG OmOLTOVUEVNG OOMIKNG OKEPALOTNTOS KOl OVIOYNG amd
0EPOSVVAUIKES O1ATAEEIS OTIMG TTEPVYLM, TPOKVITEL 1] AVAYKOLOTNTO TG CLUTEPIANYNG
eVOC TePLOPIOUOV, HE OKOMO TNV dwdtpnon Tov eufadod, katd Tn ddikacio
BeAtiotomoinong m.y. aepotopmv. [Moapd 10 yeyovog g vmapéng epyacidv émov o
TEPLOPICUOG TNG OTHPNONG TOL €UPadov ypnopomoleiton Katd Tn dodkoacio
BeAtioTomoinonC, N EPAPLOYT TOV TPOYLOTOTOEITOL EITE E UN-YPOUUIKES GYECELS, Ol
omoieg av&Avouy Tov VTOAOYIGTIKO YPOVO, EITE e GLVOPTNGELS TILMPIOG, OL OTTOlEG OEV
elvol TAVTO OMOTEAEGLATIKES KOl OEV €YYVOVTOAL OTL O AVGTNPOG TEPLOPIOUOG 1IGOTNTOG
Ba elvor evepydg katd Tn Odpkeld ™G OOKACIOG. XTNV TAPOVCH OITAMUOTIKN
gpyacio mopovoraletor g véo pebodoroyio Peitiotomoinong, Paciouévn oty
teyvikn ¢ EAevBepng [apapdpomong pe Awatipnon tov Epfadod Awatopng, n oroio
Aertovpyel ®G évol EVOALOKTIKO HEGO YEPIGUOV KOl IKAVOTOINGNG TOL TOPOTAVE®
MEPLOPICUOD  100TNTOS, EVO €vag TopdAAnioc Awapopwkog E&ehktikdg (AE)
alyopiBuog ypnotpomoteitat yioo T dwdikacio Pertiotronoinong. O AE aAydpiBuog
ovvovaletar pe 6v0 Teyvntd Nevpovikd Aiktva (TNA), éva [Tolveninedo Perceptron
(Multi-Layer perceptron - MLP) kot éva TNA Aktivikev Zuvaptioemv Baong (Radial
Basis Function — RBF ANN), ta omoio A&rtovpyodv ®G vwokotdoToto, (LOVTEAQ
(surrogate models) pe okomd ™ UEIWON TOL VTOAOYIGTIKOD KOGTOVS TNG SLOOIKOGIOG
BeAtiotomoinong. Xe kabe emavainyn tov AE adyopiBuov, mpotov Tov vToroyiopd e
OVTIKEEVIKNG oLUVAPTNONG Yl KABe vmoynelo Avom, €va Prua dopbBmong tov
euPadov oatouns epopudleton oty Vo eEétacm yewUeTplo pE OKOmMO TNV
Kavomoinon Tov oavtiotoryov meplopicpov. H viomoinon tov mopamdve Pruoatog
EMTLYYAVETOL PECH TNG EMIAVLONG €VOG LIO-TPOPANLatog dopBwong tov epfadov

JTOUNG, TNG Lo €EETAIOT YEMUETPIOG, TO OTOI0 OOTEAEITOL TG TOV VTOAOYIGUO Ko
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TNV EPAPLOYT] TOV EAAYICTOV OLVOTAOV HETOTOTICEMV OTA CNUElD EAEYXOL TOL MO
mopapopeouévov mAéypatog e ExevBepng Tapapdppmong, dote 10 guPaddv g
TOPAYOUEVIC YEMUETPIOG VOTEPO OO TNV EQPOPUOYN TOV  TPOoovapepHEVTOV
LETATOTIGEWV VO, 1600TOL e TO €UPAOOV avapopds. AOY® NG YPOLLKOTNTOS TOV
TEPLOPIOHOV 160TNTOG TOL gUPadov oe kAbe €vav amd Tovg KOplovg GEovec, ival
dvvatn M e€aywyn A0ong KAEIGTAG LOPPNG GTO LITO-TTPOPAN LA, YPNOLOTOIDVTOS TV
TEYVIKY] TV  molamiacwaotdv Lagrange. H  mpotewvopevn  pebodoroyia
aviutapépyetar v advvapio tov EgMktikdv AlyopiBuov oyetwkd pe v
ATOTEAEGUATIKY Olayeiplon TOV avoTnpdV Teplopiopdv wodttas. Katd ) obpkela
™m¢ Peltiotomoinong TOCO TO OEPOOLVOKA OAAA KOl TO OQOUIKE OOUTOOUEVH
YOPAKTNPIOTIKG oo pio aepotoun Aapfdavovtal vroéyy. EmmAéov, n ypnoipomroinon
TOALOTADY VTOKOTACTATOV HOVIEA®MY, GE GLVOVLAGUO LE TNV VTOAOYICTIKG TOAD
amodoTIK] AVom o610 VIO-TPOPANUe S10pBwong Tov eufadod, kabioTovv TNV
ddkacio BEATIOTONTOINGNG XPOVIKE OITOSOTIKT. TNV TOPOVCH SITAMUATIKT EpYAcia,
N ¥PNON NG TPOTEWOUEVNC HEBOOOAOYING OTOOEIKVIEL TNV EPAPLOGILOTNTO KOl TNV

OTOTEAECUATIKOTNTA TNC.
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Chapter 1

Introduction

1.1 Airfoil Shape Optimization

Since the early 80s, the systematic exploitation of wind turbines systems, as an
alternative source of renewable energy, combined with the ever increasing demand of
aviation industries for efficient aerodynamic shapes, extracted by automated and well-
organized design cycles, has pushed researchers end engineers to the limits in order to
develop powerful numerical optimization schemes for the design of high performance
airfoil sections, employed to the aforementioned applications.

The direct airfoil optimization approach (Figure 1.1) refers to the design of high
performance airfoils with respect to specific criteria, usually generated by the
modification of a reference airfoil section having good performance to the selected
criteria of the final design. Although the objectives of each problem typically diverse,
depending on the application of interest, the most frequently utilized criteria concern
the maximization or minimization of aerodynamic properties, such as the lift coefficient
(maximization), the drag coefficient (minimization), the lift-to-drag ratio
(maximization) as well as the smooth reaction after stall effects, subject to a variety of

aerodynamic and geometrical constraints [1-6].

Initial :> Optimization |:> Optimal
Geometry Process Geometry

Objective .
Rk Constraints
Function
. Check
Evaluation

Fig. 1.1: Direct Airfoil Optimization

o1-



On the Optimal Design of Airfoils Introduction

All the way through the design of an airfoil, aerodynamic efficiency and structural
integrity are two strongly competitive properties acting in conflict. An optimization
procedure concerned with high aerodynamic performance, leads the design in thin
geometries with inadequate structural characteristics, while on the other hand, the
opposite case leads in relatively thick geometries with no practical utilization in
applications in which augmented aerodynamic efficiency is required. Hence, during the
optimization process of an airfoil section, a fine compromise between the two
aforementioned features has to be made, depending on the necessities of the application
under study. In particular, structural requirements have higher priority than the
aerodynamic ones, concerning airfoil sections which form the inner parts of a blade or
wing, near the base, due to the enormous torsional stresses they go through, whereas
increased aerodynamic properties are essential for airfoil sections located in the outer
part, near the tip (Figure 1.2). The usual approach dictates the establishment of a
proficient and adequate set of non-conflicting geometrical constraints, throughout the
optimization process, to ensure the preservation of the necessary structural properties
and guarantee the manufacturing feasibility of the final design, given a direct numerical
optimization scheme focused on the improvement of aerodynamic performance [4, 7—

11].

Fig. 1.2: Wind turbine blade and the respective airfoil sections

Under this prism, a strict cross-sectional area preservation constraint is commonly
necessary, combined with further geometrical constraints to insure the required rigidity
as well as the ability of the new blade/wing to sustain the expected loads without
performing a detailed elastic analysis of each candidate geometry [8], having a
structurally integral, as the initial one. Consequently, the development of efficient
methods for the satisfaction of the mentioned constraints is rendered vital for the

success of the design procedure.
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1.2 Geometrical Constraints

The establishment of proficient geometrical constraints, in order to ensure the
required structural properties, concerning a specific aerodynamic application, is a quite
challenging task with significant impact to the effectiveness of the final design.
Although finding geometric quantities related to structural integrity requires a simple
literature overview, it is the proper importation of the mentioned parameters into
applicable constraints along with the fine non-conflicting combination of the different
constraints into an adequate set that requires a delicate handling by the designer. In
Table 1.1 the most frequently placed under restriction geometrical characteristics, are

presented [8], while in Figure 1.3 the geometry of an airfoil section is illustrated .

Geometrical Characteristics Under Restriction

Cross-Sectional Area

Minimum Thickness

Maximum Thickness

Thickness at Specific Location

Leading Edge Radius

Tab. 1.1: Frequent geometrical characteristics under restriction

chord line
_——__camber line

Fig. 1.3: Geometry of an airfoil section
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Leading edge: is the point at the front of the airfoil that has maximum curvature.
Trailing edge: is defined similarly as the point of maximum curvature at the rear of the
airfoil.

Chord line: A straight line from leading edge to trailing edge.

Mean _camber line (MCL): The line midway between upper and lower surfaces. The

MCL for a cambered airfoil necessarily rises above the chord line. The MCL for a
symmetric airfoil is coincidental (same as) the chord line itself.

Maximum thickness: Maximum thickness of the airfoil is the maximum distance from

the bottom edge to the top edge.

Maximum thickness location: The maximum thickness location is the point along the

chord line where maximum thickness occurs.

Maximum_camber: The maximum separation of the MCL from the chord line.

Maximum camber is normally expressed as a percentage or fraction of the chord.

1.2.1 The Cross-Sectional Area Constraint in Airfoil Optimization

In the works of Leifsson and Koziel, Lee and Eyi [3,12], a cross-sectional area
inequality constraint is utilized in conjunction with lift and pitching moment ones,
during the optimization of transonic airfoils in order to ensure that the cross-sectional
area of the final design will not be smaller than a limit value while Jeong et al. [13]
proposed a drag minimization scheme for transonic airfoils subject to a cross-sectional
area equality constraint coupled with PARSEC parameterization technique. Zingg et al.
[14] imposed a combination of several thickness constraints to prevent crossover
between the upper and the lower curves of the airfoil, along with a cross-sectional area
inequality constraint, to provide suitable internal volume for fuel storage as well as
adequate structural properties, while the control points correspond to leading and
trailing edges were set fixed so the chord length not to change. Furthermore, Ahn et al.
[10] proposed an optimization scheme that utilizes either a cross-sectional area
constraint or a maximum thickness one, combined with a constraint that concerns the
minimum acceptable value of lift coefficient throughout a drag minimization problem.
On the other hand Dennis et al. [8] established a mix of geometrical constraints,
including an equality cross-sectional area one, during the redesign of an existing two-
dimensional cascade of supersonic exit turbine airfoils while Nikolos [4] suggested the

combination of a cross-sectional area equality constraint, with an inequality one
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regarding the coordinate of the center of gravity of the airfoil in the chord direction, as
long as concerns the geometric point of view, in a study for high-lift airfoil design.
Finally, Driver and Zingg [15] imposed an area preservation constraint on a lift-to-drag
ratio maximization problem by using a NACA-0012 as the baseline airfoil.

Although the cross-sectional area of the final design approximated the cross-
sectional area of initial model in the most of the aforementioned cases, however a strict
area preservation was not achieved. It is therefore obvious that the handling and the
satisfaction of the required constraints is a truly challenging endeavor in numerical
optimization, arising from the strong nonlinearity and complexity usually found in real-
world problems and involves the cooperation of both the optimization algorithm and

the geometrical parameterization technique for its overcoming.

1.3 Evolutionary Algorithms and Equality Constraints

During the last years, Evolutionary Algorithms (EAs) have been extensively
applied in constrained engineering optimization problems [4,16—19] as a quite versatile,
effective and robust optimization technique, capable of global searching and dealing
with complicated and very demanding real-world problems [20]. However, despite the
unquestionable advantages of EAs, the handling of strict nonlinear equality constraints,
such an area preservation one, has been proved as a major drawback related to the
efficiency of evolutionary methods in optimization. In order to overcome this barrier,
several approaches have been developed, which can be grouped as [21]: penalty
functions, special representations and operators, repair algorithms, separation of
objectives and constraints, and hybrid methods. Among them, penalty function is the
most commonly utilized approach to handle so inequality as equality constraints.

A penalty method replaces a constrained optimization problem by a series of
unconstrained problems whose solutions ideally converge to the solution of the original
constrained problem. The unconstrained problems are formed by adding a term, called
a penalty function, to the objective function that consists of a penalty factor multiplied
by a measure of violation of the constraints. The measure of violation is nonzero when
the constraints are violated and is zero in the region where constraints are not violated.
Though, the utilization of penalty functions requires the proper establishment of

specific penalty factors, depending on the optimization problem under consideration,
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which constitutes a major disadvantage concerning the robustness of the whole
optimization method [22,23].

Consequently the utilization of penalty functions is not always sufficient and does
not guarantee the exact satisfaction of a strict equality constraint. Nevertheless, penalty
function approaches have been widely employed in the field of airfoil optimization to
ensure the met of cross-sectional area constraints, either in an equality or an inequality

form, where a minimum acceptable value is set [3,4,8,10,13—15,24].

1.4 Literature Survey on Parameterization Techniques

In this section, at first a comprehensive literature overview is conducted, on the
most frequently utilized geometric parameterization techniques for multidisciplinary
optimization and subsequently, a brief introduction to the basic ideas behind the Free-
Form Deformation (FFD) methodology, including its use as a parameterization
technique in Aerodynamic Shape Optimization, is presented. Finally the shortcoming
FFD methodology to preserve the area or volume enclosed by the initial shape after its

application, is highlighted.

1.4.1 Geometrical Parameterization Approaches

At the very starting point of an optimization procedure, the designer has to deal
with a vital question, which will affect the entire process. The quest concerns the
selection of the parameterization technique in order to describe the shape of interest
with a small but sufficient number of parameters. According to Andreoli et al. [25] the

selected parameterization technique should be:

= yersatile: possibility to describe quite a broad spectrum of potentially complex

2D or 3D shapes.

= concise: it should use as few parameters as possible, because the number of

design parameters heavily affect the CPU cost of the optimization process.

Herein, an introduction to nine major parameterization methodologies is implemented,

as presented in the work of Samareh [26].
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Basis Vector Approach
Picket et al. [27] proposed a technique that combines three partial derivative terms
into a set of basis vectors. The geometry of the shape changes according to the following

equation (Eq. (1.1)):
R=r+ZunUn (1.1)
n

where R, r are the resulting and the initial shapes respectively, u, are the design
variables and U,, the design perturbations based on several proposed shapes. Assuming
that the basis vectors remain constant throughout the optimization cycle, this technique
is a good approach. However, it is difficult to generate a set of consistent basis vectors
for multiple disciplines. As a result, this method can be applied only to problems

involving a simple discipline with simple geometry changes.

Domain Element Approach

The technique is based on linking a set of grid points to a macro element, called
domain element that controls the shape of the model. In Figure 1.4a a domain element
formed by 4 nodes (4, B, C, D) is presented, while in Figure 1.4b the movement of the
grid points belonging to the element is illustrated, caused by the displacement of the 4

nodes (A',B’,C',D").

v |

——-———u
L
D D’
Fig. 1.4a: Initial model [26] Fig. 1.4b: Deformed model [26]

The connection between the grid points and the domain element is implemented

through an inverse mapping. The parametric coordinates of each grid point with respect
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to domain element remain constant during the alteration of the element’s shape. The
domain element approach, as well as the aforementioned Basis Vector Approach, are

capable to handle only simple geometry deformations, so their utilization is limited.

Partial Differential Equation Approach

Bloor and Wilson [28] presented a compact and effective technique for the
parameterization of the surfaces of an airplane. The method transforms the surface
generation into a boundary value problem and produces surfaces as solutions to elliptic

Partial Differential Equations (PDE).

Discrete Approach
The discrete approach dictates the utilization of the coordinates of the boundary

points of the shape as design variables (Figure 1.5).

Fig. 1.5: Airfoil defined by a set of boundary points

This approach is easy to implement, and the geometry changes are limited only by the
number of design variables. However, it is difficult to maintain a smooth geometry and
the optimum solution may be impractical to manufacture. Additionally, for a model
with a large number of boundary points, the number of design variables becomes very

large, which leads to high cost and a difficult optimization problem to solve.

Polynomial and Spline Approach

In this approach, the geometry of the interested shape is represented by a compact
polynomial curve, which could be defined by a relative small number of control points.
Therefore, by the utilization of the coordinates of the control points as design variables
during the optimization procedure, a significant reduction of the design variables is
achieved. In Figure 1.6 an airfoil section formed by a 3™ degree B-Spline curve,

consisted by 7 control points, is illustrated.
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Fig. 1.6: Airfoil represented by a B-Spline curve

Thus, the geometry of the airfoil section presented in Figure 1.6 could be totally
described by the maximum number of 14 design variables, which are the x and y
coordinates of the 7 control points. Additionally, further reduction of the design
variables is possible by enforcing movement constraints to particular control points. As
long as airfoil parameterization by polynomial curves is concerned, the control points
corresponding to leading and trailing edges are usually fixed in order to maintain the
chord length unchanged during the optimization procedure. Also, a common approach
is to utilize only the y coordinates of the control points as design variables.

A p*™ degree B-Spline curve is defined by

n
C(u) = Z N,(WP;, a<u<b (12)
i=0
where P; = (x;,y;) are the control points and N; ,, () are the p™" degree B-Spline Basis

Functions defined over the nonperiodic knot vector [29]:

U = {a,...,a,up+1,...,um_p_l, b,...,b} (1 3)
p+1 p+1 ’

Instead of B-Spline curves, Non-Uniform Rational B-Splines (NURBS) and
Bézier curves could be used as well for the parameterization of two-dimensional shapes.
The Bézier form is an effective and accurate representation for shape optimization of
simple curves, however, complex curves require a high degree Bézier curve. Given that
a Bézier curve consisted by p control points is a polynomial of p — 1 degree, the
representation of complex shapes, with many control points, render the computational

procedure of the curve inefficient.
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A nt" degree Bézier curve [29] is defined by:

Cw) = zBi,n(u) P, 0<u<1 (1.4)
i=0

The basis function B; ,, (1) are the classical n*"* degree Bernstein polynomial given by:

Bin(w) = T '_ B ut(1—u) "t (1.5)
Although B-Spline curves offer great properties such as partition of unity,
flexibility and convenient geometrical deformation via control points, they are
incapable of representing any conic section (hyperbola, parabola, ellipse, etc.)
accurately. In order to overcome this particular shortcoming, an extension of B-Spline
theory is necessary. NURBS curves are a special form of B-Splines, which can
represent virtually any desired shape, from points, straight lines, and polylines to conic
sections and free-form curves with arbitrary shapes [26]. A pt"* degree NURBS curve
is defined by:
eoNip (W) wiP;

C(u) — i=0 )
o Nip(uW)w;

a<u<hb (1.6)

where P; = (x;,y;) are the control points, w; is the weight of the i** control point and
N; » (w) are the p™" degree B-Spline Basis Functions defined over the nonperiodic knot

vector U, defined in Eq. (1.3). Other types of knot vectors can be used as well.

CAD-Based Approach

Most solid modeling CAD systems use either a boundary representation (B-Rep)
or a constructive solid geometry method to represent a physical, solid object [30]. The
parameterization of a given model constitutes so far a difficult task for CAD software
given that any inaccuracy on the parametric model causes significant problems

concerning the automated computational grid generation procedure.

Analytical Approach
Hicks and Henne [31] introduced a compact parameterization of airfoil sections.
The formulation was based on adding shape functions (analytical functions) linearly to

the baseline shape. The contribution of each parameter is determined by the value of

-10 -
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the participating coefficients (design variables) associated with that function. All
participating coefficients are initially set to zero, so the first computation gives the
baseline geometry. The shape functions are smooth functions based on a set of previous
airfoil designs. This method is very effective for wing parameterization, but it is

difficult to generalize it for a complex geometry.

Free-Form Deformation Approach

Free-Form Deformation is a powerful deformation and parameterization
technique introduced by Sederberg and Parry [32], established on the work of Barr [33],
for the deformation of solid geometric models. The original version was based on the
indirect manipulation of the object by enclosing it into a parametric 3D space, formed
by trivariate Bernstein polynomials. Then, by deforming the parametric lattice, a
deformation of the embedded model is achieved. Since then, numerous different
versions of FFD have been proposed, with major applications in a great variety of
technological fields. Although FFD was first presented in order to handle 3D entities in
the field of computer graphics, during the last decades there is an intense utilization of

FFD versions concerning aecrodynamic shape parameterization.

Multidisciplinary Aero/Struc Shape Optimization Using Deformation
(MASSOUD) Approach

MASSOUD is a novel parameterization approach for complex shapes suitable for
a multidisciplinary design optimization application. The approach is an extension of
FFD in which the design variables acquire physical significance. The proposed
methodology is implemented into three main steps; initially the shape’s perturbation is
parameterized rather that the geometry itself, then Soft Object Animation (SOA)
algorithms are used and finally the deformation is related to the aerodynamic shape’s

physical design variables.

1.4.2 Parameterization Techniques in Aerodynamic Shape Optimization
Regarding the field of Aerodynamic Shape Optimization, Oyama and Fujii [34]

utilized B-Spline curves to parameterize the geometry of the airfoil, setting the control

points on the leading and trailing edges to be fixed and using the x and z coordinates

of the control points as design variables.

-11 -
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Secanell and Suleman [35] chose a uniform cubic B-Spline with 15 control points
to represent the airfoil section, while from the 15 control points, the y coordinates of

control points numbered 1-5 and 7-11 in Figure 1.7, are used as design variables.

1
=4
258,
T
1

Fig. 1.7: Airfoil section formed by a B-Spline with 15 control points [35]

In [36] the airfoil shape is parameterized using two Bézier curves, one for the upper
and one for lower surface with the y coordinates of the free-to-move control points in
the role of design variables (Figure 1.8), while the control points representing the

leading and trailing edge were fixed.

Bezier curve representation
—&— Upper control points
—& — - Lower control points i

Fig. 1.8: Bezier curves representation of NACA4412 airfoil [36]

Grasso [5] used a composite parameterization based on Bezier curves; the airfoil
is separated into four different segments, each one represented by a cubic Bezier curve
(Figure 1.9), with continuity constraints in order to achieve local control and easy

handling.

-12 -
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Fig. 1.9: Bezier approach used by Grasso [5]

In the recent works of Della Vecchia et al. [37] a different approach is presented
by the utilization of PARSEC parameterization technique introduced by Sobieczky
[38,39], where 11 design variables with physical meaning concerning the geometry of
the airfoil are used (Figure 1.10). While, earlier, Kharal and Saleem [40] combined the
Bezier-PARSEC method with a Genetic Algorithm and three different neural networks
to extract the parameters which describe the airfoil with respect to a given pressure
distribution.

Liang et al. [41] took advantage of the beneficial properties of Non-Uniform
Rational B-Splines (NURBS) to separately parameterize the upper and the lower
surface of the airfoil (Figure 1.11). The design variables were formed by the x,y

coordinates and the weights of the 14 free-to-move control points.

Zy Xup

ZxXlo

Fig. 1.10: The 11 PARSEC design variables [37]
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Fig. 1.11: Upper and lower airfoil’s curve parameterized by NURBS [41]

1.4.3 Free-Form Deformation in Aerodynamic Shape Optimization

FFD was first introduced to model simple deformations of rigid objects in the
field of computer graphics. Since then, the utilization of the FFD methodology as
parameterization and deformation technique has spread in a variety of scientific fields
due to its great versatility and applicability. Although the first proposed version of FFD
by Sederberg and Parry [32] referred to the manipulation of 3D shapes by using
Bernstein polynomials to form the control grid (lattice), during the last years many
different versions have been proposed regarding the developments of 2D versions along
with the alteration of the parametric curves forming the FFD lattice.

Samareh [42] used a NURBS-based FFD (NFFD), which was first introduced by
Lamousin and Waggenspack [43], in order to parameterize aerodynamic CSM
(Computational Structural Mechanics) models. The FFD lattice (Figure 1.12) is formed

by trivariate B-Spline basis functions defined over non-uniform knot vectors.

Fig. 1.12: 3D NFFD parametric lattice [42]

- 14 -
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Later on, Amoiralis and Nikolos [44] performed a comparative study between
FFD and B-Spline representation. The tests were been carried out during inverse airfoil
design procedures, showing that FFD approach outperformed the classic B-Splines one
concerning the achieved accuracy in the approximation of the reference pressure
distributions.

Ghisu et al. [45] used a FFD formed by a tensor product trivariate Bernstein
polynomial in order to handle airfoil sections during an optimization process with
respect to ice accretion. The FFD lattice consisted by 12 control points (6x2x1), while
both displacements in the x and y axis were permitted for the control points that were
not at the extreme left and right positions (leading and trailing edges) in order to
maintain the chord length during the design process. For the control points
corresponding to the extreme (right and left) positions, a movement only along the y
axis was permitted. In Figure 1.13a, the airfoil embedded to the initial FFD lattice is
illustrated, while in Figure 1.13b the deformation of the airfoil caused by the movement

of the control points is presented.
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Fig. 1.13a: Initial Lattice (white dots)[45]  Fig. 1.13b: Deformed Lattice (black dots)[45]

In [46], a NFFD approach was utilized as parameterization technique during the
design process of natural laminar flow supercritical airfoils, while the non-dominated
sorting genetic algorithm II (NSGA-II) served as the optimizer. In the particular
application, the FFD lattice formed by 26 (2x13) control points (Figure 1.14a) and the
design variables set as the y coordinates of the control points, excluding those which

were located at the leading and trailing edges of the airfoil, as shown in Figure 1.14b.

-15-
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Fig. 1.14a: Initial FFD lattice and airfoil [46] Fig. 1.14b: Deformed airfoil (New) [46]

Amoignon et al. [47] at first, examined the influence of the basis function’s
degree on the performance of a smooth airfoil, parameterized with a NFFD, showing
that the highest possible degree improves the performance of the airfoil through a
specific optimization scheme, keeping constant the number of design parameters.
Subsequently, a combination of the FFD technique with Radial Basis Functions (RBF)
was implemented, in order to handle more effectively the deformations of shapes with
complex geometries and finally an adaptive FFD lattice method was proposed to

achieve a greater reduction to the cost function.

1.4.4 Free-Form Deformation and Area Preservation

Even though FFD is a versatile deformation tool, the area (2D version) or volume
(3D version) preservation property after its application is not provided. This is a
drawback throughout the optimization process of airfoil sections (or other objects),
where the baseline cross-sectional area should be preserved mainly for reasons

concerning structural integrity, as described above.

1.5 The proposed approach

In this thesis an alternative technique for the exact preservation of the cross-
sectional area enclosed by an airfoil or by any given 2D shape, called Area-Preserving
Free-Form Deformation (AP FFD), is developed by coupling a classic 2D B-Spline-
based FFD with an area correction step, based on the work of Hahmann et al. about a
Volume-Preserving FFD [48]. The proposed technique takes action after the application
of a typical 2D FFD, which usually produces deformed geometries with no respect on
area preservation. The AP FFD utilizes the Lagrange Multipliers optimization method
to compute the minimum required displacements, which have to be applied at the

control points of the deformed lattice, in order to preserve the enclosed area of the initial
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(non-deformed) model whereas the adjustment to the FFD lattice should be minimal in

order to respect the deformation prescribed by the user or the optimizer.

1.6 The Structure of the Diploma Thesis

The rest of this diploma thesis is organized as follows:

e In Chapter 2, at first a brief introduction to the major FFD variations is conducted

and then an extensive presentation of a 2D B-Spline-based FFD is included.

e In Chapter 3 a detailed demonstration and formalization of the utilized AP FFD

methodology is implemented.

e In Chapter 4 the surrogate-assisted Differential Evolution algorithm as well as the

whole optimization scheme are outlined.

e In Chapter 5 the AP FFD methodology is integrated within a numerical

optimization scheme and is tested, to prove its efficiency and effectiveness.

e In Chapter 6 the conclusions resulting from the application of the proposed

methodology are presented and discussed.

-17 -
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Chapter 2

Free-Form Deformation

2.1 Introduction to FFD Technique

Free-form Deformation is considered as one of the most powerful, versatile and
applicable parameterization and deformation techniques of two- as well as three-
dimensional shapes with major applications in a wide range of scientific and
technological fields such as aerodynamic design, computer graphics and medicine,
related to cancer detection procedures.

The fundamental idea of FFD is the indirect handling of the interested object by
enclosing it into a parametric space (2D or 3D). Then, by deforming the parametric
lattice, a deformation of the embedded model is achieved. Based on this idea, a large

number of different FFD versions was developed during the last years.

2.1.1 Basic FFD Variations

Barr [33], at first, studied and developed new hierarchical solid modeling
operations in order to simulate transformations of geometric objects. A bit later,
Sederberg and Parry [32], based on [33], introduced the first version of FFD (classic
FFD) for the deformation of solid geometric objects in a free-form manner. In their
approach, the lattice is defined as trivariate tensor product of Bernstein polynomials
and the control parameters are actually the coefficients of the polynomials. By altering
these control parameters, the object embedded in the lattice is deformed, as shown in

Figure 2.1.

Fig. 2.1: Classic FFD application [32]
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Griessmair and Purgathofer [49] modified the classic FFD approach proposed by
Sederberg and Parry by using B-Spline instead Bernstein polynomials for the
construction of the parametric space.

Coquillart [50] proposed the Extended Free-Form Deformation (EFFD)
technique to model cloth-like surfaces with natural characteristics. In order to achieve
the aforementioned goal, Coquillart was the first to propose the utilization of arbitrary
topology lattices for the fittest combination between the object under deformation and
the FFD lattice.

Lamousin and Waggenspack [43] introduced the NURBS-based FFD (NFFD)
technique, in which the construction of the lattice was implemented by B-Spline basis
functions defined over non-uniform knot vectors. The combination of rational B-Spline
basis functions with the non-uniform knot vectors provides additional functionality for
controlling the deformations of the enclosed object.

In the work of MacCracken and Joy [51] a new free-form deformation technique
is presented that generalizes previous methods by allowing 3-dimensional deformation
lattices of arbitrary topology, based on the work of Coquillart [50]. The technique uses
an extension of the Catmull-Clark subdivision methodology to successively refine a 3-
dimensional lattice into a sequence of lattices that converge uniformly to a region of 3-
dimensional space. In Figure 2.2a the initial lattice structures are illustrated, while in

Figure 2.2b are presented the defined Catmull-Clark volumes by the respective lattices.

Fig. 2.2a: Lattice Structures [51] Fig. 2.2b Catmull-Clark volumes [51]

In the work of Ilic and Fua [52], the utilization of the powerful DFFD (Dirichlet
FFD) extension instead of the conventional FFD shape deformation approach to fit
deformable surface models to noisy 3D image data, is proposed. DFFDs provide to the
user the ability to place control points at arbitrary locations rather than on a regular

lattice, and thus leads to a much greater flexibility.
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Kobayashi and Ootsubo [53] proposed a new version of FFD, called t-FFD. In
this approach, an initial shape of large-scale polygonal mesh or point cloud is deformed
by using a control mesh, which is composed of a set of triangles with arbitrary topology
and geometry as the control lattice (Figure 2.3).

Later on, Song and Yang [54], based on the work of Sederberg et al. [55]
concerning T-Splines theory, introduced a novel FFD version, called weighted-TFFD
(w-TFFD). In this particular approach, the FFD lattice is formed by trivariate weighted
T-Spline volumes which permit T-junctions. Weighted T-spline volumes are a natural
generalization of NURBS volumes but permit more flexible control lattices. Thus, w-
TFFD holds many virtues of traditional FFDs and is more adaptive to objects with
arbitrary topology or complex shape. In Figures 2.4a and 2.4b the difference between a

complete control lattice (red) and a w-TFFD lattice (green), is illustrated.

Fig. 2.3: Global deformation using a t-FFD [53]

Fig. 2.4a: Classic FFD Lattice [54]  Fig. 2.4b: w-TFFD lattice [54]
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2.1.2 FFD Methodology Steps
Despite the numerous different FFD versions, either for 2D or 3D geometric
models, according to Lamousin and Waggenspack [43] there are four main steps to

implement any FFD technique.

Step 1. Construction of the Parametric Lattice

The shape of interest, is embedded into a two- or three- dimensional parametric
space (lattice) consisted by an ordered or arbitrary mesh of control points, depending
on the particular FFD version and application. The topology of the parametric lattice
should be such that it wraps the embedded shape under study, while the nature of the
basis function that form the FFD lattice has a significant impact on the handing of the
embedded model.

Step 2: Embedding the Object within the Lattice

This stage consist of the assignment of a unique set of parametric coordinates (u,
v, w) to each point (x, y, z) of the enclosed shape, where u, v, w are the parametric
variables that define the parametric coordinates system. Herein, it is useful to note that
the parametric coordinates of each point of the model do not change during the
deformation stage, respect to the specific parametric coordinates system. Due to a lack
of analytical methodologies for the aforementioned assignment problem, approximate
methodologies have developed such as Quadtree and Octree for 2D and 3D problems

respectively.

Step 3: Deforming the Parametric Space

The deformation of the parametric space is implemented by the movement of the
points of the control grid. Especially as long as concern the weighted FFD versions, a
deformation could be also achieved only by the modification of the weights of the

control points.

Step 4: Evaluating the Effects of the Deformation

The parametric coordinates of the points (Step 2) are used with the deformed
control lattice (Step 3) to evaluate the new locations of the embedded point set. The

topology of the original model is then used to reconstruct the deformed object.
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2.2 Two-Dimensional B-Spline FFD

In this diploma thesis, due to the nature of Airfoil Optimization Problem, a 2D B-
Spline-based FFD version is utilized, which is defined as a mapping from a
subspace V € R? - V < R?. The main idea behind FFD is not to directly deform the
shape of interest, but to achieve an indirect manipulation by embedding the object into
a parametric control grid (lattice) V; then by transforming the geometry of the particular

lattice, every object enclosed to it undergoes the same deformation V.

2.2.1 The Implementation Procedure

Step 1: Construction of the Parametric Lattice

In this application of FFD, a 2D lattice, formed by a two-variate B-Spline, is
chosen to take advantage of the benefits B-Splines offer, such as partition of unity,
flexibility and convenient geometrical deformation via control points. Additionally, by
using a B-Spline lattice the alteration of a control point does not modulate the entire
geometry of the enclosed object, so a focused deformation can be achieved. A planar
B-Spline surface is obtained by taking a bidirectional net of control points, two knot

vectors, and the products of the univariate B-Spline functions [29]

S@v) = ) > Np@Nj )Py, Py = (xi5,71)) @.1)

=0 j=0

where Pl-j are the control points of the FFD lattice, n + 1,m + 1 are the number of
control points on each parametric direction and u, v are the parametric variables that
define the parametric coordinates system. Let N;,,(u) be a B-Spline Basis function of
p degree in u parametric direction and N; ,(v) be a B-Spline Basis function of ¢ degree
in v parametric direction defined over the open and uniform knot vectors U,V

respectively

U= {uO' Upy ey un+p+1} (22)

V ={vo, V1, ..., Vmsq+1} (2.3)

Concerning the degrees p, g of the Basis functions, they must satisfy the following

inequalities

1<p<n 1<qg<m 2.4, (2.5)
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The value of each knot of the U knot vector is calculated by the following formula:

0, 0<isp+1
u; = i—p, ptl<i<n+l1 (2.6)
n—p+1, n+l<is<n+p+1

while the calculation of the values of the V knot vector is implemented respectively.
The i-th B-spline basis function of degree p, written as N;,(u), is defined by the

utilization of the Cox-de Boor recursion formula, as follows:

Uu—1u; Uiy1p-1 — U
Nip(u) = —Nip1+————
Ui—p — Ui Uitp+1 — Uit

2.7)

1 if u; <u<uy
N - i i+1
10w {0 otherwise

Given that the parametric coordinates (u;, v;) of a point inside the parametric space are
known, then the vector of the respective Cartesian coordinates (x;, y;) is calculated by

the following equation:

=0 Xm0 Nip WN; o (V) Py;
?:0 Z;rl:() Ni,p (u)Nj,q (v)

R(u,v) = (2.8)

Step 2: Embedding the Object within the Lattice

After the construction of the FFD lattice, a quadtree algorithm has to be
implemented, so a unique parametric pair of coordinates (u;, v;) to be assigned in every
single point (x;, y;) ofthe shape to be deformed (the airfoil in our case). For each point

of the object, the following algorithm is repeatedly applied [44].

a. The parametric area is divided into four equal subareas.

b. The Cartesian coordinates of each subarea vertex are calculated using
Eq. (2.8)

c. These coordinates are compared to the Cartesian coordinates of the
object’s point under consideration, in order to identify the subarea in which
the corresponding point lies.

d. The latter subarea is divided into four new equal subareas and steps b-d
are repeated for a prescribed number of subdivisions, or until a desirable

accuracy is achieved. The desired parametric coordinates of the searched
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point are defined as the parametric coordinates of the center of the subarea,

in which the point resides, resulting from the last subdivision [56].

In Figure 2.5, a reference airfoil (DU-06-W-200) is embedded into an initial 2D
FFD lattice formed by a two-variate B-Spline function. The parametric space is defined
by the parametric coordinates (u,v) while a unique pair of parametric coordinates

(us, v¢) has been assigned to each one of the k boundary points of the airfoil.

0.18

0 0.2 0.4 0.6 0.8 1

Undeformed Airfoil ® [Initial FFD Lattice

Fig. 2.5: DU-06-W-200 airfoil in a 2D FFD lattice

Step 3: Deforming the Parametric Space

In Figure 2.6 the deformation of the initial FFD lattice caused by the movement

of the B-Spline control points is presented.

0.18
..,.. .................. :.. ................ PR TRLELI A :... .....
0.12 peweestt 0 o e,
4 ‘e
0.06 } :.'. .......... P . . ::,‘- ......... K i
b e L « e 6. 5
0.00 ?’ .‘.. .‘. ...... ... .o .‘:
-0.06 "”;y' &, :
R T T T é
-0.12
0 0.2 0.4 0.6 0.8 1
® Deformed FFD Lattice

Fig. 2.6: The movement of the control points causes the deformation of the lattice
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Step 4: Evaluating the Effects of the Deformation

The recovery of the deformed shape, i.e. the calculation of the Cartesian
coordinates of the deformed airfoil, is achieved by importing the new Cartesian
coordinates of the control points from Step 3 into Eq. (2.8) and implementing Eq. (2.8)
for each one of the airfoil’s boundary points, whose parametric coordinates are known

from Step 2.

0 0.2 0.4 0.6 0.8 1

Deformed Airfoil ® Deformed FFD Lattice

Fig. 2.7: Deformed airfoil section

2.2.2 Cross-Sectional Area Inequality

As highlighted in Chapter 1, after the deformation of a two-dimensional shape by
utilizing the FFD technique, the cross-sectional area of the deformed model is not
equivalent to the cross-sectional area of the initial (reference) model. In order to prove
our case, in Table 2.1, the cross-sectional area of the reference DU-06-W-200 airfoil
along with the one of the deformed shape (Figure 2.6) after the application of the FFD,

are compared.

Model Cross-Sectional Area
Initial Airfoil (DU-06-W-200) 0.1223
Deformed Airfoil (Fig. 2.7) 0.1050

Tab. 2.1: Cross-sectional area comparison

As noted, a decrease by /4.14% occurred to the cross-sectional area of the baseline

airfoil after the implementation of the FFD.
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Chapter 3

Area-Preserving Free-Form Deformation

3.1 Introduction to Area-Preserving FFD

So far, the significance of preserving cross-sectional area throughout the
production of the candidate geometries during an airfoil optimization procedure, along
with the inability of the FFD technique to provide the particular feature, have been
clearly understood. The AP FFD supplements a classic FFD, described in Chapter 2, in
order to handle and satisfy a strict area preservation constraint throughout an airfoil
optimization procedure. The methodology is based on the work of Hahmann et al. [48],
concerning the application of a Volume-Preserving FFD after the deformation of 3D
models.

The aim of the proposed AP FFD methodology is to conserve the area A,.r
enclosed inside a given planar 2D shape R, after the model is deformed by a classic
FFD prescribed in Section 2.2. The AP FFD technique is consisted by two main parts.
At first, a classical 2D FFD is applied to the model, which results to a deformed shape
denoted as Rger. After that, the area A, embedded into Rger usually differs,
compared to the cross-sectional area A,.. of the reference shape R,..r. Subsequently an
area correction step is implemented; the control points of the FFD lattice are adjusted
in order to recover the baseline cross-sectional area. The adjustment to the FFD grid
should be minimal in order to respect the deformation prescribed by the optimizer,

given that the AP FFD is joined within a shape optimization scheme.

3.2 Mathematical Analysis
The objective of the following analysis is the computation of the minimum

required offsets 6;; = (67}, 6;;), whose application to the control points Py; of the

deformed FFD lattice will result into a new deformed geometry (airfoil), having a value

of cross-sectional area A equal to the reference one, A,, £
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3.2.1 The Area Preservation Problem

The Area Preservation Problem (APP) that has to be solved is formed as follows:

miniill%llz (3.1)

i=0 j=0
subjectto A —Aper =0 (3.2)

: e : 2
The APP consists of the minimization of the squared distance || 0 || between the

FFD control points, provided that the cross-sectional area 4, after the application of the
particular offsets will be equal to the reference one. Instead of that, a minimization of
the squared distance between the shape’s boundary points, before and after the
application of the area correction step could be also possible, however that would
involve the solution of a linear system of equations. During an airfoil optimization
process, an AP FFD has to be applied to each candidate geometry (airfoil), so the area
preservation constraint to be meet. Therefore, the APP needs to be solved numerous
thousand times, which render the extraction of a time-efficient solution to the
aforementioned problem vital for the efficiency of the whole design procedure. Herein,
the developed method is based on the minimization of the distance between the FFD
control points, which enables the possibility of extracting a time-saving closed-form

solution as an alternative to a linear system.

3.2.2 Cross-Sectional Area Calculation

Let Ryf be the initial (reference) airfoil, consisted of k points, where the /* and

the k" points are coincidental. The area inside a planar free form closed polygon is

given as:
k-1
1
Aref = EZ(ytxt+1 = Ve+1Xt) (3.3)
t=1

where (x;, y;) are the Cartesian coordinates of the R,..r (undeformed model). Denoting
as (X, J;) the Cartesian coordinates of the deformed airfoil Ry s, the area Ag.f of the

deformed object is computed by:

k-1
1 - . .
Ager = EZ(tht+1 — Ver1Xe) (3.4)
t=1
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In general, after the application of a classic FFD, A,..r # Ager occurs as shown
in Table 2.1 for the example of Section 2.2. Let A be the area of the airfoil after the
implementation of the AP FFD, after the application of the, unknown yet, offsets to the

control points of the deformed lattice.

e +6) (% + 67)

. y 5 . (3.5)
Fe41 +0741)  Ker +0854)

k-1
Q=2

2
t=1

where 0, = (67, th ) are the resulting displacements of the airfoil boundary points due

to the offsets 8;; = (67, 6’3]’-) applied to the control points of the deformed lattice in order

to correct the area of Rg.r. In Figure 3.1, the application of the displacements 6;; =

Gt 91-3]’-) to every control point (i, j) of the deformed lattice along with the new AP FFD
lattice formation are presented, while in Figure 3.2, a comparison between the deformed
by a classic FFD airfoil (red dashed) and the new airfoil geometry (green line), after the
application of the offsets, with cross-sectional area equal to the reference airfoil, is
illustrated. As observed, no displacement has been applied to the control points located
at the extreme left and extreme right (leading and trailing edges) positions. This is to

maintain the chord length unchanged. The capability of the methodology to provide the

particular feature will be demonstrated later through the analysis.

0.0 0.2 0.4 0.6 0.8 1.0

® FFD Control Points ¢ AP FFD Control Points Control Point Offset

Fig. 3.1: The positions of the control points and the lattice formation after the
application of AP FFD
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0.18

0.12

0.06

0.00

-0.06

-0.12
0.0 0.2 0.4 0.6 0.8 1.0

——— AP FFD cececes FFD

Fig. 3.2: The resulting airfoil (green) after the application of the AP FFD

The equations connecting the offsets applied to the control points 8;; = (657, 913]' ) and

the displacements of the model’s points (67, th ) due to 8, are extracted based on

the B-Spline theory:

oy =) Z Ny ()N 4 (v0) 03 (3.6)
=O =0
Y= Nip(uNo(v) 6} (3.7)
i=0 j=0

where (ug, v;) are the parametric coordinates of the t** boundary point of the airfoil.

3.2.3 The Area Constraint
By inserting Eq. (3.6) and Eq. (3.7) into Eq. (3.5) and by substituting Eq. (3.5)
into Eq. (3.2) the area constraint A — A,, 5 = 0 is formulated as

n m n om
Adef+229ixja'ij+Zzeijj{bif_‘4ref =0 (3.8)

i=0 j=0 i=0 j=0
where:
k 1
ajj = > Z[Yt lp(ut+1)N q(Vt+1) }’t+1sz(ut)N q(vt)] (3.9)
L k—1
bij = EZ[’ztﬂNi,p(ut)Nj,q(Vt) - Jthi,p(ut+1)Nj,q(vt+1)] (3.10)
t=1
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Hence, the area constraint of the APP is a bilinear function of the offsets Hixj, 93]’
Consequently in order to extract a solution to APP, a nonlinear minimization problem
has to be solved, composed by a quadratic objective function (Eq. (3.1)) and a linear
area constraint (Eq. (3.2) or Eq. (3.8)). In this work, instead of trying to solve the
particular nonlinear problem, which could be proved a quite time-consuming process,

a different approach is utilized. As long as Eq. (3.8) is a bilinear function of the

xgy

unknowns 67, 6; 7> a separation to x and y axis is proposed; this separation leads to the

generation of two Area Correction Sub Problems, to be solved successively. Each one
of them consists of the computation of the minimum displacements according to one

axis at a time, subjected to a linear local area constraint, by setting the displacement in

X

the other axis equal to zero, 8 = (6;},0) for the computation of the 6;; and 8;; =

(o, 91.3;-) for the computation of the 93]'. . Thus, separating the area correcting deformation

according to the axes makes it linear in each axis, which permit the extraction of a
closed-form solution by using Lagrange multipliers method. The combination of the

solutions extracted by the two sub problems is totally equal to the solution of the APP.

3.2.4 The Area Correction Sub Problems

Letting wy = w), = 0.5(Ay¢f — Ager), the two Area Correction sub problems are
formed as follows.

Area Correction Sub Problem in x-axis (SPx):

minii(ei’; : (3.11)

i=0 j=0

n m
subject to ZZ Oia;; = wy (3.12)

i=0 j=0
Area Correction Sub Problem in y-axis (SPy):
n m
) 2
min " (6] (3.13)
i=0 j=0

m

Zegaij = w, (3.14)

n
subject to
i=0 j=0
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Note that the combination of the two local area constraints (3.12), (3.14) is equal
with the utilization of the area constraint (3.8) of the initial APP. Additionally, the
separation of the main area preservation problem to the two axes provides extra
advantages; by modulating the coefficients w, and w,, the user is able to define the
percentage of lost or gained area to be corrected as well as the percentage of the
contribution of Hi’;- and 91.3;. to the magnitude of the displacement vector 8;;. For
example, by settingw, = 0.3(A,¢f — Ager) and wy, = O.7(Aref - Adef), the total area
of the initial model is preserved (0.3 + 0.7 = 1), while the displacement of each
control point in x direction will be a 30% fraction of the total displacement.
Furthermore, in many applications concerning the handle and deformation of airfoil
sections, a movement of the control points only in the normal to chord (y) direction is

desirable. In cases like that the AP FFD can be customized by setting w, = 0 and w,, =
(Aref — Age f) and solving only the SPy problem, so that the extracted solution to be
formed as 6;; = (0, 91.3;. ). Additionally, there is an option of setting the displacements

of specific control points equal to zero. This feature finds an application in airfoil
optimization as it applies to the control points that affect the positions of leading and
trailing edges. Due to the necessity of keeping those positions fixed, in order to keep
the chord length unchanged, the control points that affect the pre-mentioned positions
have to be fixed, at least at the chord-wise direction. The implementation of the AP FFD
with fixed control points is achieved by solving the same sub problems, while setting
6%, 67,

Figures 3.3 — 3.6, the application of an AP FFD to a NACA 0012, as reference airfoil,

Qrs, brg equal to zero for the control points and direction(s) of interest. In

only in y direction is presented, while the control points located in positions x = 0 and
x =1 are set fixed. In Figure 3.3, a NACA 0012 airfoil inside a 2D B-Spline FFD
lattice consisted of 5 control points in the chordwise direction (x direction) and 3 control
points in the normal to chord direction (y direction), is illustrated. The degree of the
basis function in the chordwise direction (u parametric direction) is 4 while the degree

of the basis function in the normal to chord direction (v parametric direction) is 2.
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0 0.25 0.5 0.75 1
Fig. 3.3: NACA 0012 airfoil inside an initial FFD lattice

In Figure 3.4, the deformation of the parametric space (lattice) caused by the
movement of the control points, dictates an indirect deformation to the initial airfoil
(FFD). The cross-sectional area of the resulting airfoil is 26.8% greater than the

reference one.

0 0.25 0.5 0.75 1

Fig. 3.4: The resulting airfoil after the application of a classic FFD

In Figure 3.5 the application of the AP FFD only in y direction is illustrated. The
displacement of the control points is permitted only in the normal to the chord direction.
Finally, in Figure 3.6 the airfoil geometry (green) after the application of the AP FFD is
compared with the one of Figure 3.4, which emerged by the implementation of a classic

FFD.

0.15

0.10

0.05

0.00

-0.05

-0.10

0 0.25 0.5 0.75 1

Fig. 3.5: The positions of the control points and the lattice formation after the
application of AP FFD, only in y direction
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0.00

-0.05

-0.10

Fig. 3.6: The resulting airfoil (green) after the application of the AP FFD, only in y

direction

3.2.5 Closed-form Solution
By separating the main APP into SPx and SPy a Lagrange Multipliers method can
be applied to each one of them to extract a closed-form solution. The Lagrangian

function for the SPx is formed as:

n m

n
i=0 j=0 i=0 j=0

The partial derivatives of the Lagrangian function are formulated below:

n m
4 .
r=05=0
= =06208+La; =0 0 =—"q; (3.17)

Substituting (3.17) into (3.16) results in:

2w,

YT o (ars)? (3.18)

Ay =

Therefore, by combining (3.17) and (3.18), the solution of the SPx problem results as:

Cll'ij
r=0 Ls=o(ars)? (3.19)

X —
Gl-j—

By applying the same methodology, a closed-form solution results for the SPy as well.

Note that the two sub problems have to be solved and applied successively, but not in a
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particular order. In this case, the computation of b;; has to be performed after the
application of displacements 6]} to the control points, due to the dependency of b;; to

the Cartesian coordinates of the deformed model. Thereafter the solution of the SPy is

given as:

bijwy
r=0 Xsto(brs)?

67 = (3.20)

-35-



“Intentionally Blank”

-36 -



Chapter 4
Differential Evolution Algorithm and Optimization

Scheme

4.1 Introduction to Evolutionary Algorithms

Evolutionary Algorithms (EAs) is a general term used to indicate any
metaheuristic optimization algorithm, based on search methods and populations. An
EA uses mechanisms inspired by biological evolution, such as reproduction, mutation,
recombination, and selection. Candidate solutions to the optimization problem play the
role of individuals in a population, and the fitness function determines the quality of
the solutions. Contrary to many other optimization methods, EAs work with a set of
solutions at the same time, the so-called population. Accordingly, they frequently
supply not only one solution when treating multi-modal problems, but also several
different solutions, the quality of which is partly comparable with that of the best.
Evolution of the population then takes place after the repeated application of the above
operators [57].

EAs are a class of search methods with remarkable balance between exploitation
of the best solutions and exploration of the search space. They combine elements of
directed and stochastic search and, therefore, are more robust than directed search
methods. Additionally, they may be tailored easily to the specific problem under
consideration, taking into account its special characteristics [58]. The natural selection
process is simulated in EAs, using a population of individuals to evolve through certain
procedures. Each individual in the population is represented through its chromosome -
a string of numbers (bit strings, integers or floating point numbers), in a similar way to
chromosomes in nature; it contains the encoding of the design variables of the
optimization problem. Each individual’s quality is represented by a fitness function,
which depends on the specific optimization problem under consideration. During the
past decade, evolutionary algorithms have been established in the field of engineering

design as a very versatile, effective and robust optimization technique, capable of
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dealing with complicated and very demanding real-world single/multi-disciplinary,
single/multi-objective,  discontinuous, non-differentiable, multi-modal design
optimization problems [58]. In Figure 4.1 the principle flowchart of Evolutionary
Algorithms is illustrated.

«>

Initialization
Random Generation of Starting Population

v

For every individual of the population:

Partner Selection
(may be omitted depending on the procedure and evolutionary operator)

—> *

Offspring Creation and Evaluation
by evolutionary operators and fithess calculation

v

Offspring Acceptance
(reductionof the parent population according to acceptance rule)

v

Check the Termination Criterion

Fulfilled?

Fig. 4.1: Principle flowchart of an Evolutionary process [59]

4.2 Differential Evolution

Differential evolution (DE), introduced in the work of Storn and Price [60, 61],
is a reliable, versatile and fast EA, which has demonstrated better convergence
performance than other EAs. The DE algorithm is basically a type of Evolutionary
Strategy, with special characteristics, so that it can effectively deal with continuous
optimization problems, which are common in engineering design. The standard DE
algorithm uses a fixed size population of N, chromosomes, which is randomly
initialized; an iterative process then is established and at each generation G, a new
population is produced. At each generation, each element of the population can be

replaced with a new generated one. The new element (the trial vector) is a linear
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combination between a randomly selected element and a scaled difference between two
other randomly selected elements. In the selection stage, the trial vector competes
against the population vector of the same index, in a one-by-one competition, and the
survivors of the N, competitions become the parents for the next generation in the
evolutionary cycle [61].

Herein, a description of the basic elements constitute the DE algorithm follows

as introduced in [60, 61] and presented in [58]. Given a cost function
fX):R* > R 4.1)

where X is a vector of n-dimensional space, containing the n design variables of the
problem under consideration. The objective is the minimization of the cost function f

by modulating the values of the design variables that compose X.

X =(x,%,..,%,) , X; ER (4.2)

Throughout the optimization procedure, each design variable is bounded between a
lower x* and an upper x/ value, which are selected by the designer and determine the

range of each design variable.
xt<x;<x¥,i=12,..,n (4.3)

The N, members of the initial population are randomly generated in the space defined

by the lower and upper limits of the design variables
xpi=r(x! —xt)+xt, i=12..,n,k=12 N, (4.4)

where 7 is a uniformly distributed random value within [0, 1].

The mutation operator of the DE (differential mutation) is based on a triplet of
randomly selected different members of the current population. A new individual is
generated by adding the weighted difference vector between the two members of the
triplet to the third one (the "donor"). This perturbed individual and the initial population
member is then subjected to a crossover operation, which produces the final candidate

solution.

1G+1

X ki

{xgk,i + F(xfk'i - xgk'i) if r<Crori=i" @5)

xg, otherwise
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In the previous equation xgk’l- are the elements of the "donor" vector, G is the current

generation and

k=12,.,N,, i=12,..,n

A €[1,..,N,], Be €[1,..,N,], C € [1, ..., Np]
(4.6)
Ay #Bry #C, #k

Cr €0,1], F € [0,1], » € [0,1]

while i* is a random integer within [1, n], chosen once for all members of the
population. The random number r is seeded for every gene of each chromosome. F and
Cr are DE control parameters for mutation and crossover operations, which (for the
standard DE algorithm) remain constant during the search process and affect the
convergence behavior and robustness of the algorithm. Their values also depend on the
objective function, the characteristics of the problem and the population size. Cr
controls the fraction of design variables that are copied from the mutant. In addition,
the trial design variable with randomly chosen index, i*, is taken from the mutant in
order to ensure that the trial vector does not duplicate the initial one.

The population for the next generation is selected between the current population
and the final candidates by using a one-by-one comparison between all members of the
current population and their candidate replacements. If each candidate vector is better
fitted than the corresponding current one, the new vector replaces the vector with which
it was compared. The DE selection scheme is described as follows [61] (for a

minimization problem):

X6+ = {Xﬁf“ if FOGE) < FXD) wn

X¢ otherwise

4.3 Surrogate models

Most engineering design problems require experiments and/or simulations to
evaluate design objective and constraint functions as function of design variables. For
example, in order to find the optimal airfoil shape for an aircraft wing, an engineer
simulates the air flow around the wing for different shape variables. For many real
world problems, however, a single simulation can take many minutes, hours, or even

days to complete. As a result, routine tasks such as design optimization, design space
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exploration, sensitivity analysis and what-if analysis become impossible since they
require thousands or even millions of simulation evaluations. One way of alleviating
this burden is by constructing approximation models, known as surrogate models that
mimic the behavior of the simulation model as closely as possible while being
computationally cheap(er) to evaluate. Surrogate models are constructed using a data-
driven, bottom-up approach. The exact, inner working of the simulation code is not
assumed to be known (or even understood), solely the input-output behavior is
important. A model is constructed based on modeling the response of the simulator to

a limited number of intelligently chosen data points [62—64].

4.4 A surrogate-assisted DE algorithm

In this thesis, a DE algorithm, presented in Section 4.2, is combined with two
ANNS (Artificial Neural Networks), which serve as surrogate models, in order to reduce
the number of the time-consuming exact evaluations required per generation during a
direct airfoil optimization procedure. Although EAs have been combined with a various
types of surrogate models [62,65-68], based on the results of [4] a Multilayer
Perceptron (MLP) and a Radial-Basis Function ANNSs are chosen as surrogates (Figure
4.2 and 4.3). The multiplicity of different surrogates is a crucial fact, concerning that
the effectiveness of each surrogate varies, depending on the nature of the optimization
model. Therefore in each generation the surrogate with the best performance among the

others takes action.

4.4.1 Artificial Neural Networks

Artificial neural networks are a family of statistical learning models inspired by
biological neural networks and are used to estimate or approximate functions that can
depend on a large number of inputs and are generally unknown. An ANN consists of a
pool of simple processing units, which communicate by sending signals to each other
over a large number of weighted connections [69, 70].

Each unit performs a relative simple job: receive input from neighbors or external
sources and use this to compute an output signal which is propagated to other units.
Apart from this processing, a second task is the adjustment of the weights. The system
is inherently parallel in the sense that many units can carry out their computations at
the same time Artificial neural networks can be most adequately characterized as

"computational models" with particular properties such as the ability to adapt or learn,
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to generalize, or to cluster or organize data, and which operation is based on parallel

processing [69].

4.4.2 Multi-Layer Perceptron ANN

A feed-forward network has a layered structure and the data flow from input to
output units and no feedback connections are present. Each layer consists of units,
which receive their input from units a layer directly below and send their output to units
in a layer directly above the unit. There are no connections within a layer. With i, h and
0, input, hidden and output units are denoted respectively; xyp, is the kt" element of the
p*™ input pattern vector; Yip 1s the activation value of the network when input pattern
vector p was fed into the network; dy, is the k" element of the desired output of the
network when input pattern p was fed into the network; w;; are the weights of the
connection from unit j to unit k. The N; inputs are fed into the first layer of N, ; hidden
units. These neural networks are commonly refer to as multilayer perceptrons. No
processing takes place inside the input units. The activation of a hidden unit is a
function Fj, of the weighted inputs, plus a bias 8. The output of the hidden units is
distributed over the next layer of Nj, , hidden units, until the last layer of hidden units,
of where the outputs are fed into a layer of N, output units [69]. The architectural layout
of a multiplayer perceptron (MLP) is illustrated in Figure 4.2.

[
/\/\

Fig. 4.2: A multilayer perceptron (MLP) artificial neural network with two hidden layers and
a single output
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The network is a fully connected one, which means that a node in any layer of the
network is connected to all the nodes in the previous layer. Each node in the network
includes a nonlinear activation function F (sy,;,) of the total input sy,,, which in this work

is the logistic function:

1

p_ _
Ve = Flsip) = 1+ exp(—s?)

(4.8)

The total input to unit k is simply the weighted sum of the separate outputs from each

of the connected units plus the bias:

sk = Z Wi Vi + 0% (4.9)
j

The synaptic weights are determined in the supervised training procedure,
through successive weight adaptations, using the back-propagation algorithm or other
more efficient algorithms. In order to train the network, a set of input vectors and the
associated output vectors (training examples) are needed (learning samples). These are
“presented” to the network in successive epochs and in randomized order from epoch
to epoch. In our case the training examples consist of chromosome vectors for the input
layer and the corresponding objective functions for the single node of the output layer.
Test samples (other than the learning ones) are used in order to test the validity of the

approximation and the generalization ability of the network [58].

4.4.3 Radial Basis Function ANN

A RBF network (Figure 4.3) is a three layer, fully connected feed-forward ANN
performing a non-linear mapping from the input space to the hidden space, followed by
a linear mapping from the hidden to the output space (L being the number of input

nodes, M being the number of hidden nodes, while the output layer has a single node).

For an input vector xx = [xxq, XX, ..., Xx; | the corresponding output vector yy(xx)
1s given as
M
yy(xx) = ) wigi(xx) (4.10)
i=1

@;(xx) being the output of the i** hidden unit:

p;(xx) =F(lxx—cql])), i=1,...,.M (4.11)
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The connections (weights) to the output unit (w;,i = 1,..., M) are the only adjustable
parameters. The non-linear activation function F in our case is the Gaussian RBF. The
RBF centers in the hidden units cc;, i = 1, ..., M are selected in a way to maximize the
generalization properties of the network. The standard process is to select the input
vectors in the training set as RBF centers, which may lead to bad generalization of the
network. The proposed solution [70] is the selection of M < NR in order to provide a
better generalizing capability. Direct learning is used in this work, based on a matrix
formulation of the governing equations of RBF network. The presentation of the
network with the NR input patterns allows the formulation of a (NR X M) matrix H.

The output unit values result in the form of the matrix product:

H(NR x M)w(M x 1) = yy(NR x 1) (4.12)

where yy is the desired output vector provided by the training data set, w being the
synaptic weights vector consisting of M unknowns. H is inverted through the Gram-
Schmidt technique. It should be mentioned that the computational cost of the neural
networks is the cost of their training, while the use of an already trained network to
evaluate a new candidate adds negligible computation cost to the optimization
procedure.

In this work the number of hidden units in each one of the two hidden layers of
the MLP network was twice the number of the design variables. For the RBF networks

the number of centers (M) was set equal to 2/3 of the number of training data (NR).

Fig. 4.3: A RBF ANN
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4.4.4 The use of surrogates for accelerating DE algorithm

Through the evaluation stage, each new trial vector is pre-evaluated by the
utilization of the surrogate models. If the trial vector is pre-evaluated as lower-fitted
(i.e., having a higher cost function in minimization problems) than the corresponding
vector of the current population, then no further exact evaluation is performed; the trial
vector is abandoned and the current vector is transferred to the next generation.
Otherwise an exact re-evaluation is performed, followed by a new comparison between
the two vectors. If the trial vector is still better-fitted then it passes to the next
generation. Otherwise the trial vector is abandoned and the current vector will pass to
the next generation [58].

In the first two generations all individuals are exactly evaluated, in order to create
a starting database for the construction of the initial surrogate models (training and
testing procedures). Furthermore, an additional small percentage of the candidate
solutions are selected in each generation with uniform probability to be exactly
evaluated, in order to enhance the robustness of the procedure. The prescribed
procedure results in the fact that only exactly evaluated trial vectors have the
opportunity to pass to the new generation. Consequently, in every generation the current
population always includes exactly evaluated individuals. A flowchart of the described

procedure is illustrated in Figure 4.4.

nialze G=1 m
Population

Evaluate
Population Modified
Evaluation and

Selection
procedure

Add exactly
evaluated
chromosomes to
the Database

Randomiy
chosen
triplet

Mutation and
Crossover

Add exactly and inexactly
evaluated chromosomes
to the database

Select the best
chromosomes fromthe
Database

Retrain the surrogate
model (or models)

Fig. 4.4: Flowchart of the modified DE algorithm [58]

The different surrogate models can be used separately or as an ensemble. In the

first case a single surrogate is used throughout the optimization procedure, while in the
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second case in each generation both surrogates are retrained and tested (on the same
training and testing data sets) and then one is used for the pre-evaluation of the members
of the population. The selected model to be used as surrogate is the one attaining the
minimum value concerning the testing error. Compared to the cost of the exact
evaluations, the training of more than one surrogate models in each generation adds
negligible cost to the computational procedure. During the evolution of the population
the best surrogate for the specific region of the landscape is automatically selected,

based on their predictive capabilities and the adopted selection criterion [4].

4.5 The Optimization Procedure

The optimization process begins with the selection of a reference airfoil achieving
satisfying performance concerning some characteristics of interest, such as high lift
coefficient, high lift-to-drag ratio, low absolute value of pitching moment coefficient
and smooth attribute to stall regions. Then, a 2D parametric FFD lattice is constructed,
that encloses the initial airfoil. The user has the ability of choosing the number of
control points on each parametric direction, which has an impact on the number of
design variables, as well as the degree of the B-Splines Basis functions that form the
FFD lattice. Subsequently, the determination of the design variables as well as their
lower and upper bounds are defined by the user.

At the first generation (G=1) of the DE algorithm, every chromosome of the
fixed size population N,, is randomly initialized, based on upper and lower bounds of
the design variables (genes). Subsequently, at each generation a new population is
produced by replacing (after competition) each member of the population with a new
one, called trial vector. The trial vector is formed as a linear combination of a randomly
chosen chromosome of the current population and a scaled difference between two
other also randomly chosen chromosomes. Then, a one by one competition between the
trial vector and its corresponding chromosome of the current generation is
implemented; this is repeated for all the members of the current population in order to
extract the N, chromosomes that will form the next generation [61]. The assistance of
the surrogate models lies on time-saving, by not exact evaluating each one of the
produced trial vectors, but using a trained neural network instead [71,72]. A detailed
description of the utilized DE algorithm as well as the combination with the surrogate

models in the airfoil optimization is presented in [4].
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Given that a chromosome has been chosen to be exact evaluated, an area
correction step has to be implemented. After the implementation of the Area-Preserving
FFD on the specific chromosome, presented in Chapter 3, an accepted airfoil geometry
is produced, which has the exact same cross-sectional area as the reference airfoil. Then,
the pre-mentioned airfoil is imported to XFOIL (or other evaluation software) to obtain
the desired data for the calculation of the fitness function. The aforementioned function
is formed based on the required characteristics of the optimal airfoil, combined with
penalty functions to satisfy the required constraints. The previously described

procedure is illustrated as a flow chart in Figure 4.5.

Selection of reference
airfoil

Set: FFD and DE
Parameters, Design
Variables

v

Initialize Population
G=1

YES :
s Area Preserving FFD

XFoil

MLP

Calculation of fitness
function

YES
End
NO
Exact evaluation
of chromosome 2,
Generate
Population

Fig. 4.5: Flowchart with the major steps of the optimization process including AP FFD
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4.6 The Evaluation Software — XFoil

XFOIL is an interactive program for the design and analysis of subsonic isolated
airfoils. Given the coordinates specifying the shape of a 2D airfoil, Reynolds and Mach
numbers, XFOIL can calculate the pressure distribution on the airfoil and hence lift and
drag characteristics. The XFOIL software, developed by Drela in the ‘80s [73], is used
to calculate the lift, drag and pitching moment coefficients (C;, Cy4, C,;,) of each exact-
evaluated airfoil in a variety of angles of attack (a). In this thesis the Version 6.99 of
XFOIL, released in 2013, was utilized. In Figure 4.6 a sample XFoil output file is
presented, where “alpha” is the angle of attack, “CL” is the lift coefficient (C;), “CD”

is the drag coefficient (C,) and “CM" is the pitching moment coefficient (C,,).

XFOIL Version 6.99

Calculated polar for: airfoil

1 1 reynolds number fixed Mach number fixed

xtrf = 1.000 (top) 1.000 (bottom)

Mach =  0.000 Re = 7.000 e 6 Ncrit = 9,000
alpha CL D Cop cm Top_Xtr Bot_Xtr
0.000 0.08% 0.00581 0.00126 -0.0200 0.18B63  0.5507
1.000 0.20%7 0.00595 0.00138 -0.0218 0.1481 0.6000
2.000 0.3262 0.00821  0.001537 -0.023% 0.1284 0.6234
3.000 0.4461 0.00637 0.00183 -0.0250 0.1128 0.8311
4,000 0.5365%3 0.00692 0.00212 -0.0265 0.1020 0.6413
5.000  0.6833 0.00736 0.00248 -0.027 0.0916  0.6468
6.000 0.7998 0.00787  0.00290 -0.0289 0.0B18 0.6509
7.000 0.9154 0.00836 0.00336 -0.0298 0.077 0.6587
§.000 1.0292 0.00893 0.00389 -0.0305 0.0715 0.6628
9.000 1.1401 0.00962 0.00451 -0.0308 0.0662 0.6648

10.000 1.2494 0.01029 0.00518 -0.0309 0.0627 0.6702
11.000 1.3531 0.01120 0.00605 -0.0302 0.03%5 0.677
12.000 1.4548  0.01204  0.00690 -0.0293 0.0548 0.6806
13.000 1.5418 0.01320 0.00803 -0.0261 0.0509 0.6821
14,000 1.6231 0.01462 0.00949 -0.0227 0.0485 0.6Bed
15.000 1.7004 0.01lede  0.01138 -0.0197 0.0467 0.6926
16.000 1.7681  0.01908 0.01404 -0.0164 0.0429 0.6968
7.000 1.833%6  0.02188 0.01090 -0.0138 0.0418 0.6990
18.000 1.BE77  0.025%7 0.0208 -0.010e 0.0384 0.7009
19.000 1.9374 0.0299  0.02513 -0.0078 0.0366  0.7085
20.000 1.974 0.03527 0.03054 -0.0051 0.0344  0.7139
21.000 2.0026 0.04181  0.03719 -0.0030 0.0315 0.7170
22.000 2.0099 0.05073 0.04623 -0.0018 0.027 0.7222
23.000 2.0003 0.06214  0.05782 -0.0022 0.0247 0.7298
24,000 1.9663 0.07718 0.07309 -0.0051 0.0218 0.7342
25.000 1.B877 0.09910 0.095%35 -0.0126 0.0197 0.7384
26,000 1.7218 0.13e41  0.13326 -0.0325 0.0195 0.7421

Fig. 4.6: A sample XFOIL output file
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Chapter 5
Validation and Results

5.1 High Lift, High Reynolds Number Airfoil Optimization

Herein, the proposed optimization procedure is put into the test in order to
examine its robustness and effectiveness when the Area-Preserving FFD comes into
play. The optimization process is utilized for the design of a high lift airfoil, operating
at Reynolds number Re = 7 = 108, based on the DU-06-W-200 (DU series) as the
reference one, which was developed in Delft University of Technology with major
applications in the design of wind turbine’s blades sections.

The parameterization technique, used for the manipulation of the geometry, is a
B-Spline-based FFD presented in Section 2.2. The initial 2D FFD lattice was built
around the DU-06-W-200 by setting 6 control points along the x (chordwise) and 3
control points along to the y direction, as shown in Figure 2.5, whereas the degrees of
the B-Spline Basis functions were set as the highest possible, e.g. 5 and 2 respectively
in order to achieve a smooth representation of the airfoil geometry.

Consequently, the number of the design variables is partially determined. As
already mentioned, the control points that correspond to leading and trailing edges (x =
Oand x =1) are fixed, therefore the number of the design variables is 24,
corresponding to the x and y coordinates of the 12 free to move control points of the
FFD lattice (Figure 2.7). The permitted range of the design variables varies between
6% and 20% of the chord, in the direction normal to the chord (y direction), whereas in
the chordwise direction (x direction) was set as 10% of the chord length. The extraction
of the presented ranges was based on a trial and error basis, in order to achieve upper
and lower bounds that do not restrict or magnify inefficiently the search space. In Table
5.1 the employed design variables during this particular optimization process are
presented along with their respective upper and lower bounds. The enumeration of the

control points of the FFD lattice is realized as follows; CP;; refers to the control point
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located in the i*" column and jt* line of the control grid, where i = 0,1,..,n and j =

0,1,..,m, as illustrated in Figure 5.1.

0.18
o1 CPo2 CP12 CP22 CP32 CPa2 CPs2
Govvrrccnennns Coovreonnnnnnens @ rrnennnnnnne @ rrrinnnnnnns @ rreeeeennianns P
0.06 :
CPo1 CP11 { CP21 CP31 CPa1 CPs1
0.00 eseseecsaenes Qeoeeennnnnnnnns Qooeeiinnnnne Geoenrennnnanns Gooonrnnnnennnns o
0.06 CPoo CP1o CP20 CP3o0 CP4o CPso
Goorrnrrnnnnnnnn eerrerninenns O rerrinnnannns O rerrerniannnns rerrnnnannnns é
-0.12
0 0.2 0.4 0.6 0.8 1
Fig. 5.1: FFD Control Points enumeration
No. Design Lower Upper No. Design Lower Upper
Variable Bnd Bnd Variable Bnd Bnd
1 CPyy — x Coord 0.15 0.25 13 CP,y—y Coord -0.2 0
2 CP;; — x Coord 0.15 0.25 14 CP,; —y Coord -0.03 0.03
3 CP,;, — x Coord 0.15 0.25 15 CP,, —yCoord 0.1 0.2
4 CP,, — x Coord 0.35 0.45 16 CP,, —y Coord -0.2 0
5 CP,; —x Coord 0.35 0.45 17 CP,; —yCoord  -0.03 0.03
6 CP,, —x Coord 0.35 0.45 18 CP,, —y Coord 0.1 0.2
7 CP;y — x Coord 0.45 0.65 19 CP;y—y Coord -0.1 0.1
8 CP;; — x Coord 0.45 0.65 20 CP;y; —yCoord 0 0.1
9 CP;, — x Coord 0.45 0.65 21 CP;, —y Coord 0.1 0.2
10 CP,y— x Coord 0.65 0.85 22 CP,,—yCoord -0.1 0.1
11 CP,; — x Coord 0.65 0.85 23 CP,; —yCoord 0 0.1
12 CP,, —x Coord 0.65 0.85 24 (CP,, —y Coord 0.1 0.2

Tab. 5.1: Design Variables

The optimization problem examined herein is defined as the design of a new
airfoil with maximum mean lift coefficient in a range of angles of attack between 0°
and 26°, with respect to one geometric and one acrodynamic inequality constraint that
concern the position of airfoil’s centroid in x axis and the maximum allowed absolute

value of pitching moment coefficient respectively, based on the geometry of DU-06-
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W-200. Moreover, during the optimization procedure, a strict area preservation
constraint is utilized by the direct implementation of the AP FFD methodology. The

formation of the aforementioned constraints is presented below.

Centroid constraint:

Xerer — 0.05 < x¢ < Xgpep + 0.05 (5.1)

Moment coefficient constraint:

|Cm| < |Cm,ref| (5-2)
— 1
Cnl = 55 20| cm, | (5.3)
Cross-sectional area constraint:

where x,, |Cp,| and A4 are the x coordinate of the centroid, the mean absolute value of
pitching moment coefficient and the cross-sectional area (after the implementation of
the AP FFD) of each candidate solution respectively. For the DU-06-W-200 airfoil,
examined herein, the reference values are A,.r =0.1223, X.rer = 0.39 and
|Cm,re f| =0.0315 computed based on the XFOIL results in a range between (° and 26°
a.0.a with a step of /° and fixed Reynolds number equal to 7*/0°. The constraints in
Eq. (5.1) and Eq. (5.2) are satisfied utilizing two penalty functions. In that way an
indirect manipulation of the constraints is achieved as the algorithm tries to lead the
design in geometries that produce lower (better) values of the fitness function. By the
utilization of the penalty functions included in the fitness, in conjunction with the
employment of the AP FFD for the satisfaction of the required constraints, the problem
is transposed into an unconstrained minimization one. The formalization of the penalty

functions is as follows:

Centroid penalty function:

1, if Xeref — 0.05<x, < Xeref T 0.05
fe = { (5.5)

1- 2|xc,ref — xC|, otherwise
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Pitching moment penalty function:

fn = 1= X0 fm; (5.6)

0, i 1<
fin, = { if em| < lemrer 5.7)

|cmi| — |cm,ref|, otherwise

Therefore, the fitness function of the under minimization unconstrained problem, is
formed as

f=2- Elfxfm (5.8)

The mean lift coefficient is calculated by computing the area below the C; curve
and dividing this area by 27, which is the number of different angles of attack in which
the airfoil is evaluated. This approach benefits airfoils that converge in more angles of
attack, against others that do not perform in a smooth way with respect to the whole
spectrum of the examined angles.

Regarding the use of the surrogate models, in the current test case a combination
of MLP and RBF ANNSs was utilized. The first two generations of the DE perform exact
evaluations for every chromosome, in order to create an adequate training sample for
the ANNs. Subsequently, in each generation the ANN with the smallest testing error is
chosen to serve as a surrogate model.

Further acceleration was achieved by utilizing a parallel version of the
aforementioned DE on a DELL™ R815 PowerEdge™ server with four AMD
Opteron™ 6380 sixteen-core processors at 2.50 GHz (64 cores in total). The population

size N, of the DE was set equal to 50, while the algorithm was executed for 1000

generations.

5.2 Computational Results

In Figure 5.2 a comparison of the lift coefficient for the initial and the optimized
airfoil is presented. It is becoming quite evident that the produced airfoil has an
improved performance (relating to the adopted design criteria) at the region between
16° to 26° a.o.a. by achieving a maximum lift coefficient at 21° instead of 16°.
Additionally, a maximum lift coefficient increase of 16.57% was achieved while the

mean lift coefficient C;, at the range of (0° — 26°) a.o.a was increased by 28.69 %.
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Consequently, after the optimization process an expansion of the high lift region is
attained as well as the capacity of high lift production in greater a.o.a.

2.2
2.0
1.8
1.6
1.4
1.2
1.0
0.8
0.6
0.4
0.2

0.0
0 2 4 6 8 10 12 14 16 18 20 22 24 26 28

Angle of Attack

Lift Coefficient

----- DU-06-W-200 —— Optimal

Fig. 5.2: Comparison between the lift coefficient of the reference airfoil
DU-06-W-200 and the optimal one as a function of a.o.a.

In Figure 5.3 the optimal and the initial airfoils are presented. It should be noticed
that a relatively small modification to the initial geometry produces quite different
results, highlighting the strong non-linearity of the search space. The cross-sectional
area of the produced airfoil is exactly the same to the initial one, proving that AP FFD
is a versatile methodology that can be easily adopted in optimization schemes in order
to replace other techniques of satisfying a strict area constraint without any loss of the
convergence capability and efficiency that DE offers.

In Figure 5.4 the convergence history of the fitness function for the best and worst
chromosomes of each generation is presented. Additionally, in order to prove that the
proposed AP FFD technique could easily and effectively replace a penalty function
approach, regarding the satisfaction of an exact area preservation constraint, the same
test case was executed for a second time, by utilizing a classic penalty function method
instead an AP FFD one, while all the other parameters maintained identical. In Figure
5.5 a comparison between the convergence histories of the best solution using a AP
FFD and a penalty function approach is illustrated. As shown, the employment of the
proposed AP FFD instead of a penalty function does not cause any loss of the
convergence capability and efficiency that DE provides. On the contrary, it leads to a

better value of the fitness function and produces an airfoil geometry with higher lift
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coefficient than the one produced by the optimization process with the penalty function
approach, as shown in Figure 5.6, regarding the range of high angles of attack (18° —

267), where high lift is more necessary.

0.18

0.12

0.06

-0.06

-0.12
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

------- DU-06-W-200 — Optimal

Fig. 5.3: Initial and optimal airfoil geometries.

Besides the high performance of the optimal airfoil concerning the mean lift
coefficient, a noticeable drag coefficient reduction is achieved within the same region
between 16° and 26° a.o.a., which consequently leads to higher lift-to-drag ratios.
Figures 5.7, 5.8 present a comparison between the initial and the optimal airfoil on drag
coefficient and lift-to-drag ratio respectively, in order to highlight the improved
aerodynamic properties resulted by the optimization procedure without any significant

loss of the structural characteristics.
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Fig. 5.4: The convergence history of the best and worst solution of each generation.
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Fig. 5.5: The convergence history of the best solution of each generation by using an AP
FFD and a penalty function approach for the satisfaction of the cross sectional area
constraint.
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Fig. 5.6: Comparison between the lift coefficient of the optimal airfoil produced by

an optimization scheme that employs AP FFD and the optimal one produced by a
classical optimization scheme utilizing a penalty function approach.
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Fig. 5.7: Comparison between the drag coefficient of the reference airfoil DU-06-W-
200 and the optimal as a function of a.o.a.

In Table 5.2 the total elapsed computation time is presented as well as the number
of exact and total evaluations. Note that using surrogate models results in a reduction
of the total number of exact evaluations by a factor of 0.48. Although in this case the
time required for each exact evaluation is about 1-2 seconds, in cases where costly
Computational Fluid Dynamics (CFD) models are utilized as flow solvers, each exact
evaluation may be last a few hours, so a decrease of computational time at almost in

half is crucial for the efficiency of the design process.

Test Case Wa'll-Clock Exact Evaluations Total Evaluations
Time (s)

DU-06-W-200 8820 25860 50000

Tab. 5.2: Wall-clock computation time, number of exact and total evaluations.

Figure 5.9 contains a comparison between the pitching moment coefficient of the
reference airfoil DU-06-W-200 and the produced one as a function of a.o.a. The value
of moment coefficient is quite important given that airfoil sections that form a specific
blade should have similar values of moment coefficients in order to avoid the
development of high torsional stresses on the blade. Table 5.3 illustrates the resulting

values of the constraint quantities, compared to the reference ones, as well as the upper
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and lower bounds of each constraint. At the end of the optimization procedure both
centroid and pitching moment inequality constraints are satisfied. Concerning the cross-
sectional area preservation, the equality constraint was exactly satisfied by the

application of AP FFD to each candidate solution.

Lift Coefficient

0 0.03 0.06 0.09 0.12 0.15

Drag Coefficient
----- DU-06-W-200 — Optimal

Fig. 5.8: Comparison between the lift-to-drag ratios of the reference DU-06-W-200
airfoil and the optimal one.
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Fig. 5.9: Comparison between the pitching moment coefficient of the reference airfoil
DU-06-W-200 and the optimal one as a function of a.o.a.
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Constraint Satisfaction Optimal Airfoil Reference Lower Upper
Approach Value value Bound Bound

X Penalty Function 0.4165 0.393 0.3430 0.4430
[Conl Penalty Function 0.0200 0.0315 0 0.0315

A AP FFD 0.1223 0.1223 0.1223 0.1223

Tab. 5.3: Output values for the constraints
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Chapter 6

Conclusions

In this diploma thesis, a novel direct numerical airfoil optimization scheme is
proposed, which employs the Area-Preserving FFD as an alternative technique for the
exact satisfaction of a strict cross-sectional area equality constraint, instead of the
classic penalty function approach; it is combined with a 2D B-Spline-based FFD as
geometrical parameterization technique. The exact area preservation is achieved by
solving an area correction sub-problem, which consists of computing and applying the
minimum possible offset to each free-to-move control point of the deformed FFD
lattice, after the application of a typical FFD, subject to the area preservation constraint.
Due to the linearity of the area constraint in each axis, a closed-form solution to the
sub-problem is able to be extracted, which, in conjunction with a surrogate-assisted
Differential Evolution algorithm, renders the optimization procedure time efficient and
effective.

The proposed optimization scheme was tested through a lift coefficient
maximization problem, based on a DU-06-W-200 airfoil as the reference one. The
validation results indicate a fine collaboration between the DE algorithm and the
proposed AP FFD methodology, even though the aforementioned approach alters the
produced by the DE algorithm chromosomes prior to their evaluation. Additionally, the
results show the promising capabilities of the introduced procedure to achieve an
improvement of the aerodynamic airfoil characteristics, without violating the area
preservation constraint.

Finally the AP FFD technique was compared to the classic penalty function
approach, concerning the cross-sectional area constraint, showing that the proposed
methodology is able to attain better values of the objective function without any loss of

the convergence capabilities of the DEVA
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