
Technical University of Crete, Greece

School of Electronic and Computer Engineering

Real-time Stream Data Processing with

FPGA-Based SuperComputer

Sofia Maria Nikolakaki

Thesis Committee

Professor Apostolos Dollas (ECE)

Professor Minos Garofalakis (ECE)

Associate Professor Ioannis Papaefstathiou (ECE)

Chania, July 2015

http://www.tuc.gr
http://www.ece.tuc.gr

Sofia Maria Nikolakaki ii July 2015

Πολυτεχνειο Κρητης

Σχολη Ηλεκτρονικων Μηχανικων και Μηχανικων Υπολογιστων

Επεξεργασία Δεδομένων Πραγματικού

Χρόνου με Υπερυπολογιστή Βασισμένο σε

Αναδιατασσόμενη Λογική

Σοφία Μαρία Νικολακάκη

Εξεταστική Επιτροπή

Καθ. Απόστολος Δόλλας (ΗΜΜΥ)

Καθ. Μίνως Γαροφαλάκης (ΗΜΜΥ)

Αναπλ. Καθ. Ιωάννης Παπευσταθίου (ΗΜΜΥ)

Χανιά, Ιούλιος 2015

http://www.tuc.gr
http://www.ece.tuc.gr

Sofia Maria Nikolakaki iv July 2015

Abstract

It is a foregone conclusion that contemporary applications are bounded by massive com-

putational demands. The semiconductor industry has announced that physical con-

straints restrict the community from surpassing the currently upper frequency limit of

modern processors, thus leading to the emergence of multi-core platforms. This thesis ex-

plores the recently emergent paradigm of the Maxeler multi-FPGA platform for dataflow

computing to efficiently map computationally intensive algorithms on modern hardware.

We tackle two challenging problems within this framework, the first being classification

by focusing on the kernel computation of the broadly used Support Vector Machines

(SVM) classifier, and the second being time-series analysis by focusing on the calculation

of the Mutual Information (MI) value between two time-series. Prior art on modern

hardware has indicated the parallelism opportunities offered by the SVM method, but

mainly for low-dimensional datasets, while no work has contemplated the performance

of the algorithm on dataflow processors. Moreover, the problem of MI computation be-

tween two time-series on special-purpose platforms has been addressed by the research

community for low-precision arithmetic applications, and again the performance of the

specific method has not been evaluated on the emerging dataflow platforms. This is the

first work to extensively study the pros and cons of using the Maxeler platform, by iden-

tifying the most essential dataflow elements and describing how they can be efficiently

utilized. Thus, it can be employed as an independent point of reference for similar future

endeavors. In terms of results, while the SVM kernel computation reached the same

performance as the reference software for high-dimensional data, the know-how acquired

during this process was leveraged towards the design of the MI FPGA-based architecture

that yielded 9.4x speedup using two parallel cores and 32-precision arithmetic.

Sofia Maria Nikolakaki vi July 2015

Acknowledgements

Foremost, I would like to express my sincere gratitude to my advisor, Prof. Apostolos

Dollas, for his trust, enthusiasm, continuous guidance from the very beginning and for

our fruitful discussions concerning my future steps. I would also like to thank Prof. Minos

Garofalakis and Prof. Ioannis Papaefstathiou for accepting to be in my committee.

I am also deeply grateful to Prof. Stavros Christodoulakis for inspiring me throughout

the first years of my studies and for providing me the right incentives to excel.

Furthermore, I would like to thank Pavlos Malakonakis for his assistance whenever

needed and for our cooperation. He did not only stand by me as a good friend, but he

also offered me fine suggestions regarding my thesis.

My parents, Souzana and Ioannis, as well as my beloved younger brother, Emmanouil

for always being my role models in matters of morals and principles, for loving me and

for supporting my decisions.

I am thankful to my dear Ioannis Demertzis for encouraging and supporting me

unconditionally, in the last few years.

This work was partially supported by EU FP7 project QualiMaster (Contract No.

619525).

http://qualimaster.eu/

Sofia Maria Nikolakaki viii July 2015

Contents

1 Introduction 1

1.1 Thesis Contribution . 2

1.2 Thesis Outline . 3

2 Background 5

2.1 Maxeler . 5

2.1.1 Data flow Programming Model 5

2.1.1.1 Basic Principles . 7

2.1.1.2 Dataflow Graphs . 7

2.1.1.3 Dataflow Languages . 9

2.1.2 Dataflow Engines (DFEs) . 10

2.1.3 Data Flow Applications . 12

2.1.4 Maxeler System Description . 13

2.1.5 LMem . 15

2.2 Support Vector Machines - Binary Classification Case 16

2.2.1 Introduction to SVMs . 17

2.2.2 Linear Case . 20

2.2.2.1 Maximal Margin . 20

2.2.2.2 Quadratic Optimization Problem 22

2.2.2.3 The Lagrangian Formulation 22

2.2.2.4 The Dual Problem . 23

2.2.3 Nonlinear Case . 24

2.2.3.1 Kernels . 25

2.2.3.2 Kernel Trick . 30

2.2.3.3 Nonlinear Formulation 31

Sofia Maria Nikolakaki ix July 2015

CONTENTS

2.2.4 LIBSVM . 32

2.2.4.1 Data Preprocessing . 33

2.2.4.2 C-Support Vector Classification 34

2.2.4.3 Code Organization . 35

2.2.4.4 Performance Measure 35

2.3 Mutual Information . 36

2.3.1 Entropy . 36

2.3.2 Joint Entropy and Conditional Entropy 39

2.3.3 Relative Entropy and Mutual Information 41

2.3.4 Relationship between Entropy and Mutual Information 43

3 Related Work 45

3.1 Support Vector Machines . 45

3.1.1 FPGA . 45

3.1.2 Graphical Processing Unit . 50

3.1.3 Multi-Core . 53

3.2 Mutual Information . 55

3.2.1 FPGA . 55

3.2.2 GPU . 56

4 Implementation 59

4.1 Support Vector Machine . 59

4.1.1 Modeling for Hardware . 60

4.1.1.1 Inputs and Outputs . 60

4.1.1.2 Algorithm Profiling . 61

4.1.1.3 Important Data Structures 65

4.1.1.4 Performance Opportunities and Considerations 65

4.1.2 Training SVM . 66

4.1.3 First Hardware Architecture . 67

4.1.3.1 CPU and FPGA Integrated System 67

4.1.3.2 Problem Partitioning . 68

4.1.3.3 Data Movement on Host Side 70

4.1.3.4 Dataflow Kernel Computation on Hardware Side 71

4.1.3.5 Memory Allocation . 74

4.1.3.6 Throughput Utilization 75

Sofia Maria Nikolakaki x July 2015

CONTENTS

4.1.3.7 Observations on the First Architecture 75

4.1.4 Second Hardware Architecture . 77

4.1.4.1 CPU and FPGA Integrated System 77

4.1.4.2 Problem Partitioning . 78

4.1.4.3 Data Movement on Host Side 79

4.1.4.4 Dataflow Kernel Computation on Hardware Side 80

4.1.4.5 Memory Allocation . 83

4.1.4.6 Throughput Utilization 84

4.1.4.7 Observations on the Second Architecture 84

4.1.5 Improvements on Second Architecture 86

4.2 Mutual Information . 88

4.2.1 Modeling for Hardware . 88

4.2.1.1 Inputs and Outputs . 88

4.2.1.2 Algorithm Profiling . 88

4.2.1.3 Important Data Structures 90

4.2.2 Hardware Architecture . 90

4.2.2.1 CPU and FPGA Integrated System 90

4.2.2.2 Problem Partitioning . 92

4.2.2.3 Data Movement on Host Side 92

4.2.2.4 Dataflow Kernel Computation on Hardware Side 93

4.2.2.5 Memory Allocation . 95

4.2.2.6 Throughput Utilization 95

5 Experimental Results 97

5.1 Support Vector Machines . 97

5.1.1 Setup . 97

5.1.2 Results . 98

5.1.2.1 First Architecture . 98

5.1.2.2 Second Architecture . 100

5.1.2.3 Improved Second Architecture 101

5.2 Mutual Information . 104

5.2.1 Setup . 104

5.2.2 Results . 104

Sofia Maria Nikolakaki xi July 2015

CONTENTS

6 Conclusion and Future Work 109

6.1 Conclusion . 109

6.2 Future Work . 110

References 119

Sofia Maria Nikolakaki xii July 2015

List of Figures

2.1 Maxeler dataflow system architecture . 14

2.2 LMem Controller Architecture . 16

2.3 Linear and Nonlinear Data . 26

2.4 Linear and Nonlinear Data Separation 26

4.1 First SVM Training Top level Architecture 68

4.2 Initial Problem Partitioning . 69

4.3 First DFE Kernel Computation Hardware Core 72

4.4 First Dot-Product Hardware Core . 72

4.5 Second SVM Training Top level Architecture 78

4.6 Second Dot-Product Computation Hardware Core 81

4.7 Mutual Information Basic System Architecture 91

4.8 Mutual Information Hardware Core Architecture 94

Sofia Maria Nikolakaki xiii July 2015

LIST OF FIGURES

Sofia Maria Nikolakaki xiv July 2015

Chapter 1

Introduction

It is a foregone conclusion that contemporary applications are bounded by massive com-

putational demands. However, according to the semiconductor industry the introduced

physical constraints restrict the community from surpassing the currently upper frequency

limit of modern processors. Yet, this observation led to the emergence of multi-core plat-

forms. In this thesis we explore a multi-FPGA platform to tackle computationally inten-

sive algorithms. More specifically, we study the paradigm of Dataflow supercomputing

implemented on the Maxeler systems. Unlike Control Computing, Dataflow Computing

focuses on data processing instead of scheduling by configuring lower level elements, such

as gates and wires, and thereby it constitutes a setting appropriate for time and energy

efficient implementations. The main challenge in Dataflow computing is to identify and

modify trending algorithms based on the properties of the Dataflow architecture plat-

form that is being used to yield efficiency. Geophysics, data mining and finance are a few

of the scientific fields that have effectively used Dataflow architectures. The potential

of Dataflow computing on the Maxeler Supercomputing platform led to the main focus

of this thesis. In particular we derived a methodology to efficiently map on hardware

dataflow algorithmic parts that comprise thousands of simple computational operations

with dependent values in between.

The scientific area of Machine Learning has introduced certain imperative operations,

such as semantic text classification and object recognition. A common characteristic that

the majority of these algorithms shares is the immense amount of data and the multiple

opportunities for data processing parallelism. The aforementioned properties along with

the lack of relevant research on the specific topic led to our decision to create an efficient

Sofia Maria Nikolakaki 1 July 2015

1. INTRODUCTION

training Support Vector Machines dataflow architecture. In general, the SVM Training

phase involves quadratic programming and general-purpose solvers can only handle a

relatively small number of elements. Thus, the scientific community turned to special-

purpose solvers to address large-scale instances. Given that Dataflow architectures are

efficiently utilized when they dedicate several cores for parallel processing of simple com-

putations, we aimed at accelerating the kernel computation in the SVM Training phase

which mainly requires matrix-vector operations. In addition kernel functions constitute a

significant percentage of the overall execution run-time, and are promising to yield accel-

eration based on previous findings. However, now we are evaluating a completely different

setting, and thereby challenges such as the streaming nature of the data processing need

to be tackled. Our main purpose is to investigate, if similar to graphics processors and

FPGAs, dataflow architectures can become efficient for kernel computations.

The statistical analysis of financial time series has resulted ins the possibility of pre-

dicting unobserved values of time series. The interest in forecasting future stock values

does not only stem from the fact that it is a very challenging research problem but also

from the people’s desire to make money. From an algorithmic perspective, identifying

time series with the highest probability to reveal information about themselves and most

importantly about other time series is a very challenging problem, especially when time

is of critical importance, such as in risk analysis. Banks and financial enterprises apply

correlation functions on streams to perform such real-time analysis. In this work we aim

at accelerating the computation of the Mutual Information statistical measure between

two time-series to identify dependence. We considered this computation suitable for a

data flow architecture, as similarly to the kernel computation, it involves accumulations

and multiplications, and is also a metric that has produced impressive results in real-time

problems such as image processing. Yet, we also used this second computation function

to evaluate the performance and generic nature of the methodology followed to devise

data flow algorithms that involve a big amount of simple operations and also dependent

values during computation.

1.1 Thesis Contribution

Dataflow architectures have been proven redemptive for several scientific fields with mas-

sive amounts of data to be processed and high computational requirements. Experi-

Sofia Maria Nikolakaki 2 July 2015

1.2 Thesis Outline

mental results showed that dataflow computing can reach orders of magnitude better

performance compared to other parallel implementations, with significant power savings.

Yet, this type of computing lacks detailed implementation descriptions and experimen-

tal evaluations in order for interested scientists to exploit its benefits, thus inducing a

significant learning curve. We utilized the MAX3A Vectis card, provided by Maxeler

technologies to present the basic elements of a dataflow technology and how they can be

efficiently utilized. To the best of our knowledge, this is the first work that addresses

the whole problem of designing a dataflow architecture from the beginning until the end.

We considered two dataflow architectures, the first being the kernel computation compo-

nent of the Support Vector Machines method and the second being the calculation of the

statistic measure Mutual Information. The problem of accelerating the training phase

of Support Vector Machines has been tackled by several research groups. In the FPGA

community the state-of-the-art approaches produce approximate results with the use of

low-precision arithmetic and evaluate their performance in small dimensional datasets.

The GPU community achieved better results, and more specifically achieved 32x speedup

implementations compared to the LIBSVM reference software. Still once again the final

accuracy was not optimal and datasets with small feature space were evaluated. Thus,

given that the Maxeler supercomputer system offers a large off-chip memory and high

bandwidth we decided to create a system that produces the exact same solution as the

widely accepted reference software LIBSVM and evaluates high-dimensional datasets.

Our research was not limited to the implementation of a single dataflow system due to

the fact that we wanted to evaluate the acquired knowledge on another case. Hence,

we considered the problem of calculating the Mutual Information statistic value between

time-series and achieved 5x speedup compared to the respective software implementation.

1.2 Thesis Outline

Chapter 2 initially introduces us to the Dataflow Programming concept and then em-

phasizes on the Maxeler System platform. The goal of these descriptions is to provide

a deep comprehension regarding the outcomes of modifying an algorithm based on a

dataflow architecture, and specifically based on the properties of the Maxeler platform.

Furthermore, we present the theoretical background of the algorithms studied in this

thesis, i.e. the Support Vector Machines (SVM) classification method and the Mutual

Sofia Maria Nikolakaki 3 July 2015

1. INTRODUCTION

Information (MI) computation. This overview indicates and analyzes important algo-

rithmic parts that are also considered during the hardware implementation. Chapter 3

briefly presents related works that have been proposed for the acceleration of the SVM

and MI computations with the use of hardware-based platforms or multi-core processors.

Chapter 4 consists of two parts. The first is algorithmic analysis and profiling from a

hardware designer’s perspective. The second part presents how the software source codes

of the two algorithms were modified in order to become integrated with the Maxeler data

flow system, as well as the methodology followed to efficiently map these algorithms to

the FPGA platform. In Chapter 5 we evaluate the performance of our hardware-based

systems in terms of space and time with the use of differently sized datasets. Finally, in

Chapter 6 a conclusion about the presented work is provided, followed by future work

directions that are worth considering.

Sofia Maria Nikolakaki 4 July 2015

Chapter 2

Background

2.1 Maxeler

In the race of developing novel chip technologies to accelerate special-purpose designs,

several companies have attempted to propose specialized solutions. One of these enter-

prises is the London-based company Maxeler which from the very beginning focused on

what we call data flow computing, a term introduced in the early 1970s. Briefly, the Max-

eler platforms are data flow environments, targeted for performance increase in terms of

acceleration and energy efficiency. In order to do so, they provide a high-level language

which makes them more convenient and easy to use by a wide audience. In addition,

even though substantial work has been conducted regarding high-level languages with

the most representative works being [1] and [2], none is designed specifically for streams,

whereas Maxeler was developed for this purpose.

2.1.1 Data flow Programming Model

The Data flow Programming Model is actually a graph execution model and repre-

sents an alternative to the conventional control flow programming model. A control flow

model depends on task completion. In general, tasks are executed in series if connected

based on precedence, or otherwise they are executed in parallel. For example, if the pro-

gram is sequential task 2 will begin only after task 1 has completed, and only then will the

data be allowed to move from one task to the other. More specifically, in software appli-

cations the source code is translated to a sequence of instructions for a specific processor

Sofia Maria Nikolakaki 5 July 2015

https://www.maxeler.com/

2. BACKGROUND

which are loaded to the memory. These instructions guide the processor and sometimes

allow reading and writing data from and to the memory respectively to complete cer-

tain commands. It is well known that contemporary processors do not simply function

based on the traditional method we previously described, but have integrated several

optimization techniques, including forwarding and prediction logic, as well as caching in

order to speed up the process. Nevertheless, regardless of the possible improvements the

control flow programming model remains sequential, and thereby its latency depends on

the time required for a CPU clock cycle, as well as the number of memory accesses. To

conclude, control flow programming implies designating the order in which the individual

statements, function calls or instructions are executed or assessed.

On the other hand, data flow computing is a simple, yet powerful model mainly used

for parallel computing. In particular, it deviates significantly from typical computer

architectures, due to the fact that the order of execution is controlled only by the flow of

the data. Unlike control flow programming where instructions are executed sequentially

according to a program counter, data flow instruction are performed immediately when

the respective resources necessary for the execution are available. More specifically, in

a data flow environment any two enabled instructions can be executed in any order, or

simultaneously due to the fact that the they do not affect one another. Hence, data flow

computing is an efficient tool for parallel programming, as its performance is restricted

primarily by data dependencies.

In addition, when thinking of data flow programming it is useful to consider data as

streams rather than batches. Usually, we consider a stream of data to be a sequence

of instances which are being processed one at a time rather than several together, and

which require independent processing. Also, it is often desirable to process streaming

data in near-real time. On the other hand batches are a set of data which are processed

as a unit, and thereby all the data that belong to the batch are visible to the processing

system. That said, unlike control flow modeling, dataflow programming models comprise

multiple components that can process input data at the same time. Also, the smallest

unit of dataflow models is a component, whereas the smallest unit of control flow models

is the task. An analogy that could illustrate the difference between control and data flow

is the case of an artisan and a manufacturing enterprise. In the former case the artisan

sequentially completes one task after another, whereas in the latter case each worker

Sofia Maria Nikolakaki 6 July 2015

2.1 Maxeler

undertakes a small task so that all workers can work in parallel on different parts of an

object.

This section presents an overview of data flow modeling for the purposes of this thesis.

The reader is referred to, among many others, the following texts [3], [4], [5], [6].

2.1.1.1 Basic Principles

A data flow model does not contain typical notions such as variables and memory up-

dates. Instead, it functions in terms of objects, which can either be data structures or

scalars. These objects are inserted and processed by an actor whose functionality is

similar to the one of an instruction. In particular, an actor may correspond to a single

instruction or a sequence of instructions. The computational complexity and size of an

actor is designed by the programmer, rather than the system. An actor fires when all

the input its expecting is available to him. Then, the produced result object is outputted

and passed to subsequent actors. Many actors may be ready to be triggered concurrently,

given that the necessary operands are available. Thus, it is useful to consider them as

asynchronous concurrent computation events. Note that some data flow architectures

offer the functionality of variables and memory updates to be more convenient, applica-

ble and user-friendly. Partially, the Maxeler Dataflow platform satisfies these operations.

Also, the replacement of instructions with actors leads to elimination of instruction de-

code logic, branch prediction and dynamic scheduling, and thereby the resources on the

chip are available for computation purposes only. Now that we have presented the prin-

ciple notions of data flow models, we can further discuss about how such models are

represented.

2.1.1.2 Dataflow Graphs

The term data flow architecture appeared in the 1970s [7], [8], [9] along with the term

Dataflow Graph, since together they led to the exploitation and illustration of paral-

lelism. Data flow program graphs were initially utilized as a description of a machine

language. The definition of a Dataflow Graph is as follows:

- A directed graph that indicates data dependencies between a number of functions.

- G = (V,E):

Sofia Maria Nikolakaki 7 July 2015

2. BACKGROUND

- V: Nodes which depict instructions with input/output data ports.

- E: Arcs which represent connections of the output ports with the input ports.

- Semantics:

- Fire when input data are available.

- Consume data from input port and produce data to output port.

- Many nodes may be ready to fire simultaneously.

In general, a data flow graph is a directed graph, G(V,E) where nodes V (actors) repre-

sent primitive instructions such as arithmetic or comparison operations and arcs E show

data dependencies among the instructions. It is useful to envision data flowing along the

arcs, as tokens. Thus, the arcs operate as unbounded first-in, first-out (FIFO) queues.

Those directed towards a node are the input arcs of the node, whereas those leaving from

a node are respectively the output arcs.

Now that we have introduced the notion of data flow graphs we can present the two

main structures of data flow architectures that have prevailed. The first concerns static

architectures. More specifically, in this type of architecture each arch of the graph can

only carry a single result value, called a token, from the source instruction and there

can be only one instance of each actor running at any time. The other commonly used

architecture, is the dynamic data flow scheme. This scheme introduces tags which are

associated with tokens in order to be able to distinguish those who have derived from the

same actor but in different firings. Thus, arcs can concurrently contain numerous tokens

and data parallelism is favored. Note the convenience and effectiveness of describing

parallel computation with data flow graphs. At this point we need to stress out the

difficulty of designing data flow hardware architectures mainly because the data flow

model is theoretical, which renders it impossible to be carried out in the exact same

way in the real world. To begin with, the arcs of the graph cannot be FIFO queues of

unbounded capacity, since such thing does not exist. In addition, it also assumes that

any number of instructions can be performed concurrently, which actually depends on the

available number of processing units. Hence, no hardware data flow models can replicate

precisely the theoretical corresponding model.

Sofia Maria Nikolakaki 8 July 2015

2.1 Maxeler

2.1.1.3 Dataflow Languages

The idea of data flow has been used in a wide range of applications, such as allowing a

massive number of computations on data or providing visual languages to facilitate the

programming process. In this section we focus on the latter type of application which is

data flow languages. Inevitably, the development of data flow hardware would lead to the

imperative need of being able to program such machines. Hence, the design of appropriate

programming language was necessary in order to exploit the possibilities offered by data

flow computing. This triggered the search not only for the specific language, but also for

a suitable compiler to produce it, which led to the emerge of the data flow languages.

Due to the fact that data flow languages are based on data flow graphs, it seems

convenient to express them graphically. However, in contrast to this assumption the

majority of languages designed to operate on data flow platforms are not graphical and

this is mainly due to two reasons. The first is that when a low-level and complex de-

scription of a data flow architecture is required, the process of graphically representing it

becomes unnecessarily time-consuming and complicated. Instead, with the use of textual

languages the same process becomes much easier and faster [10]. The second reason for

which text-based data flow languages have endured lies in the fact that the appropriate

hardware for displaying graphics was not available until relatively recently. At this point,

we are ready to present what distinguishes Data flow languages from other programming

languages. This is not an easy task, as it is common for programming languages to over-

lap. For example, it is not necessary that a data flow language will only be applied on a

data flow environment and vice versa, another type of programming language might be

proved to be quite effective in a data flow setting [11], [12]. Conclusively, the boundary

that distinguishes data flow languages from others is transparent. Yet, there are certain

properties that all data flow languages must exhibit, which are listed in detail in [13].

Briefly, some of these features are the following:

• Insensitive to side effects

• Single variable assignment without possibility of reassigning

• Locality of effects

• Scheduling determined based on data dependencies

Sofia Maria Nikolakaki 9 July 2015

2. BACKGROUND

• Independence from historical processes

The fact that scheduling is defined based on data dependencies implies the prerequisite

that the value of variables remains stable between their definition and their use. Thereby,

the possibility of reassignment is eliminated. Also, the single variable assignment changes

the way we perceive and handle variables, as now it is more convenient to consider them

as values. Furthermore, insensitivity to side effects and historical procedures is crucial

in order to guarantee that scheduling is only determined by data dependencies. Data

flow languages achieve this feature by not allowing global variables, or even parameter

modifications within functions. However, there are cases, such as when we are processing

an array, when it is imperative to modify it. Then, each new version of the array is

actually considered a new input instance with the respective positions modified. Taking

everything into consideration, we might reach the conclusion that data flow languages are

basically invariably functional. Some examples of data flow languages are LabVIEW [14],

VHDL [15], LUSTRE [16].

2.1.2 Dataflow Engines (DFEs)

There are two broad types of contemporary computer architectures, the first being

general-purpose computing, and the second being problem-specific computing. The first

class of architectures was originally delivered by John von Neuman and has remained

the most prevalent. Yet nowadays, the appearance of challenging computational prob-

lems, as well as the abundance of available data has urged researchers to focus on the

second class of architectures. The main benefit of special-purpose architectures is that

they can be optimally configured based on the requirements and properties of the respec-

tive problem, leading to much faster performances. Thus, problems that were previously

unresolved due to lack of eligible solutions have been addressed and acceleration of a va-

riety of applications has been achieved. The first special-purpose architectures originated

from mapping custom solutions into hardware, by creating application specific integrated

circuits (ASICs).

Even though this approach is the most effective one, it is also not amenable to changes

and completely hardware specific. Therefore, it is quite expensive to create and not con-

venient for use. This changed when Field Programmable Gate Arrays were introduced,

which can be considered as programmable ASICs. Their main drawback compared to

Sofia Maria Nikolakaki 10 July 2015

2.1 Maxeler

ASICs is that they cannot reach the same performance in terms of speed and energy

efficiency. However, they are still a lot more user friendly and flexible due to the fact

that they are programmable, and achieve highly parallel and accelerated implementa-

tions. FPGAs are also called reconfigurable computing architectures, as they combine

software specific and hardware specific approaches, thus providing the programmer with

the liberty to reprogram hardware architectures. Note that although FPGAs can reach

extremely high performances by achieving massive parallelism, they also have a major

drawback compared to traditional computer architectures which is a slow clock. Hence,

either of the two types of computer architectures should be used based on the properties

of the application, and usually the most efficient way to benefit is by combining them.

Moreover, FPGAs are a fundamental component of the Maxeler technologies, and thereby

we will provide a more detailed definition and description. In the previous section we

presented a brief description of the functionality of FPGAs. To be more precise, FP-

GAs are reconfigurable logic chips that can be reprogrammed in seconds to implement

customized designs. However, the size of an FPGA, or in other words the amount of

resources it offers (BRAM, flip-flops, LUTs, DSPs) determine the designs that can be

supported. Moreover, their main advantages compared to other types of conventional

architectures (GPUs, multi-core CPU, ASICs) are basically the following:

- Flexibility, which is much greater than the one offered by ASICs.

- Potential to optimize low-level elements

- Power efficiency compared to multi-core CPU and GPUs.

We briefly presented the FPGAs because they play a crucial part in the Maxeler archi-

tecture. In particular, they are the key component of the Dataflow Engines which we are

about to discuss.

To begin with, each Data flow engine (DFE) is a reconfigurable chip with lots of

memory. Even though DFEs can be implemented with the use of any suitable subtrate,

Maxeler uses as building blocks FPGAs due to their popularity and flexibility. We stress

out from the beginning of the DFE description that Data flow engines do not perform

calculations in time, but in space since they are built with the use FPGAs. More specif-

ically, data are streamed on the chip of the DFE from some memory. The interesting

part is that the movement of the data is specific and driven from one functional unit

Sofia Maria Nikolakaki 11 July 2015

2. BACKGROUND

to the other without requiring the interference of an external off-chip memory, until the

completion of the execution. Recall that in control flow platforms operations executed

on the same functional unit should be performed at different time instances. However,

in data flow environments, such as Maxeler, space is used to allow concurrent execu-

tions. Furthermore, note that the DFE itself is a computational unit whose resources are

only used for computation purposes. Note that in order to reach maximum performance

in terms of speed and efficiency, both hardware and software are needed. Thus, DFEs

are not independent, but they are integrated with the conventional CPU for balanced

systems.

Regarding its internal architecture, a DFE implements one or more Kernels and a

Manager. A Kernel simply contains the computation we intend to perform, whereas the

Manager controls the data movement within the DFE. Then, the MaxCompiler utilizes

the information provided by the aformentioned components to produce the corresponding

Data flow implementations. These implementations can be directly called from the CPU

by using the SLiC (Simple Live CPU) interface. The SLiC interface is automatically

built based on the current Data flow program and allows easy access to DFEs from the

attached CPU. Furthermore, the DFE has access to two types of Memories. The first one

is called FMem and it is an on-chip memory, which can store up to several megabytes

of data, whereas the second is called LMem and is an off-chip memory, which can store

several gigabytes of data. The fact that FMem is an on-chip memory implies that the

distance between the computation units and the FMem itself is short. Thus, applications

exploit the fact that data in memory are close to the computation units. Moreover, FMem

offers a broad bandwidth that can reach 21TB/s within the chip. This is a significant

advantage compared to traditional CPUs with multi-level caches since there only the

fastest cache memory level is close to the computational unit and data are duplicated

through the cache hierarchy. Finally, DFEs are controlled by the system manager, who

assigns one, or more in case there are more than one DFEs, for a specific application and

sets them free whenever they have completed their task.

2.1.3 Data Flow Applications

Indisputably, Data flow computing has substantially affected various scientific areas. The

reasons for its wide applicability during the past few decades are mainly due to its ability

Sofia Maria Nikolakaki 12 July 2015

2.1 Maxeler

to radically increase performance, to provide solutions to problems that could not be

previously solved, or even because their has been an amazing development of tools.

Some examples of applications which have benefited from the existence of data flow

models are Monte Carlo simulations, financia tree-based PDE solvers and finite difference

solvers. Specifically for the example of finite difference solvers, we have the following

problem. In general, finite difference constitutes a numerical method which is commonly

used for wave modeling. More specifically, modeling high wave frequencies such as 70

Hz, may require hundreds of gigabytes of memory. However, with the use of a data flow

platform such as Maxeler, which is integrated with a host CPU this can be avoided and

an equivalent accelerated mwave model can be constructed. In order to do so, the CPUs

can orchestrate the general flow of the application by instructing the DFEs to compute

the implementation’s steps. On their part the DFEs can work together on the whole

problem by splitting it into sub-problems.

We have presented a detailed description of the general notion data flow, in order to

introduce the user to the concepts and goal of our work. In case the reader desires to

further study data flow notions we refer him to [17], [18], [5], [19].

2.1.4 Maxeler System Description

The Maxeler data flow architecture can comprise up to 8 DFEs described in 2.1.2 which

are interconnected with the use of a MaxRing high-bandwidth connector. This allows the

applications’ performance to linearly scale with the number of DFE used, while allowing

full overlap of communication and computation. The respective Figure is shown in 2.1.

Experiments were conducted on a specific product of Maxeler Technologies, which

belongs to the MPC C Series. The MPC permits standalone development of data flow

models with fixed combinations of coupled CPUs and DFEs. More specifically, the DFE

used in our application is built on Virtex 6 FPGA. It also provides 4 megabytes of on-chip

BRAM located on the FPGA and 24 gigabytes of off-chip DRAM. However, the same

Maxeler platform provides four available such DFEs.

To deploy an application on a Maxeler data flow system, one must use MaxJ. MaxJ is

a high-level language which is build on Java, but which has also imported instructions to

define data flow graphs. In order to provide a better understanding of MaxJ we present

some representative functionalities it offers.

Sofia Maria Nikolakaki 13 July 2015

2. BACKGROUND

Figure 2.1: Maxeler dataflow system architecture

- The communication between the kernel and the rest of the system is achieved with

an I/O interface. In particular, this interface allows the declaration of kernel input

and output instances.

- A stream does not only offer access to the current instance, but to previous or

following ones too. This is accomplished by using the stream offset, which is actually

an offset window stored in the FPGA’s BRAM. Thus, it can retrieve at most few

hundreds of elements.

- Useful components for data flow designs are also provided. For example, counters

are offered by the API since they are very helpful to enumerate loops.

- In order to select between values of streams Maxeler offers multiplexers which are

declared by the conditional operator. Other overloading arithmetic operations are

also provided.

Note that the MaxJ hybrid language allows instructing the kernel about the operations

it will perform.

Sofia Maria Nikolakaki 14 July 2015

2.1 Maxeler

Another crucial component of the Maxeler data flow platform is the MaxCompiler.

The MaxCompiler is basically a high-level compiler specifically designed for Maxeler

Technologies. Similarly to the I/O interface provided by MaxJ, MaxCompiler consists

of a Java-based API with which the user defines the hardware design that he intends to

assign to a DFE. This design will initially be compiled and then uploaded to the declard

DFE. It also offers a C runtime interface targeted for the part of the application which

runs on the host. The above are implemented in the Manager which controls the inputs

and outputs of the kernel, the relation between different kernels (multi-kernel designs)

and the communication of kernels with the DRAM memory, or the CPU interface (via

PCI). Thus, the manager creates the complete design by connecting its different pieces

(kernels), which is then compiled to a Xilinx bitstream ready to be downloaded to the

FPGA.

Moreover, the MaxCompilerRT API that interfaces with MaxelerOS is the host ap-

plication which enqueues the input streams and runs the hardware design. Finally, each

MaxCard features a large external memory called LMem. The LMem memory was stud-

ied while implementing our applications, and thereby we will describe this component in

more detail in the following section.

2.1.5 LMem

As its name implies, LMem is an off-chip memory which stores several gigabytes of data.

More specifically, our Maxeler platform contains four FPGAs with 24 GB each, thus large

amounts of data can be stored there. These data can be traversed by the DFE but in

terms of streams. Also, the parts that need to be iterated over should be declared as part

of the hardware design. Thus, random accesses are not applicable. Furthermore, when

defining memory addresses the LMem visually appears as a contiguous memory element.

The maximum number of streams that can be connected to LMem, which also shows the

number of available ports, is equal to 15.

In order to access the LMem memory, the DFE component contains a memory con-

troller which offers the respective interface. The streams connected to the LMem are

defined in the manager and the host and each stream has its own command queue and

data buffer. We can write to or read from the LMem from the manager, the CPU, or

both. The memory controller uses the first of the two structures to read a command.

Sofia Maria Nikolakaki 15 July 2015

2. BACKGROUND

Then, based on the type of command it either reads a stream of data from the data buffer

to write it to a specific memory location or it reads a stream from a specific part of the

memory and writes it to the data buffer. The respective LMem controller architecture is

illustrated in 2.2.

Figure 2.2: LMem Controller Architecture

For further details regarding the Maxeler technologies we refer the user to [20], [21]

and the official site of Maxeler.

2.2 Support Vector Machines - Binary Classification

Case

Support Vector Machines (SVMs) were first introduced by Vapnik et al. in the

early 90s [22] and [23]. The proposed method has become one of the most influential

Machine Learning algorithms of the decade by yielding high classification accuracy, thus

finding setting in various scientific areas. Few examples of its wide applicability are

Sofia Maria Nikolakaki 16 July 2015

https://www.maxeler.com/

2.2 Support Vector Machines - Binary Classification Case

presented in [24], [25], [26], [27], [28], [29], as well as countless other applications. In

this thesis we will emphasize our study on the case of binary classification using SVMs,

which is a simple, yet very effective version of the specific algorithm. Like other binary

classifiers, binary SVMs have shown impressive performance in many applications such

as speaker identification [30], text classification [31] and face recognition [32]. Significant

features which have established the success of SVMs are the following. First, the specific

method is based on a theoretical method of learning, and therefore comes with theoretical

guarantees concerning its performance. Also, it consists of discrete parts which can be

implemented individually and uses the quadratic optimization problem to avoid local

minima. Finally, SVMs do not suffer from the curse of dimensionality.

2.2.1 Introduction to SVMs

In general, Support Vector Machines are the best known algorithm of the family of ker-

nel methods. Due to the fact that SVMs are a linear approach, they can only classify

data when these are linearly separable. The basic idea is that by using an optimization

algorithm, SVMs find the optimal hyperplane which linearly classifies patterns. Specifi-

cally, for the case of binary SVMs the hyperplane divides data into two classes. However,

SVMs have captured the attention of the research community mainly because they can

be seamlessly extended to non-linearly separable input data by mapping these data to a

higher-dimensional space. This is achieved with the use of kernels. In order to be able to

present the essence of the SVMs method, in this section we provide certain fundamental

notions.

The Classification Problem: It is widely accepted that the problem of classi-

fication is one of the most significant problems in the field of Machine Learning.

Briefly, there is a set of objects M and each of these objects can be assigned to

one of N distinct classes. The goal of classification is to create a machine that will

correctly determine to which class c ∈ N will each object o ∈M be assigned when

provided with previous observations about this object. The area of Machine Learn-

ing provides solutions to this problem by focusing on learning from previous data

observations. In order to do so, an initial machine receives training data from a

finite set of samples and learns how new (actual) data should be classified correctly.

Sofia Maria Nikolakaki 17 July 2015

2. BACKGROUND

Note that this approach does not require any prior knowledge regarding the nature

of the problem, or the values of the training data.

Linear Models: Linear Models for classification divide input data into classes

with the use of decision boundaries. Specifically for two dimensions, this decision

boundary is a line. Now, let us assume that we are examining the binary classifica-

tion problem which only requires two classes, a positive and a negative one. Then,

a linear binary classifier defines a plane in the space which separates positive from

negative inputs.

Hyperplane: We mentioned that for a two-dimensional linear classification prob-

lem the decision boundary is a straight line. However, in a higher-dimensional

problem > 2 the decision boundary is called a hyperplane. More specifically, a

hyperplane comprises all points that belong in a d-dimensional space which meet

the following equation:

w1x1 + w2x2 + ...+ wdxd + b = 0

where each of wi denotes a weight on the respective feature x1. From the perspective

of geometry the weight coefficients are normal vectors of the separating hyperplane,

i.e. they are perpendicular to the plane. Given the above equation about which

datapoints belong to the hyperplane we can conclude how the hyperplane can be

used for binary classification. More specifically:

For f(x) = w1x1 + w2x2 + ...+ wdxd + b

Then

y(x) = sign(f(x)) =

{
+1 if f(x) ≥ 0

−1, otherwise

In other words, if the sign of function f(x) is positive, the input vector belongs

to the positive class, while if the sign of function f(x), then it belongs to the

negative class. Note that the value of f(x) can also be zero, which means that the

datapoint is part of the hyperplane. Furthermore, the hyperplane’s slope is defined

by coefficients wi. The bias b shows the perpendicular distance of the hyperplance

to the origin and can be included in the weights’ vector in order to get:

f(x) =
d∑
i=0

wixi = wx. Note that for linearly separable data an infinite number of

hyperplanes exist. Thus, selecting the optimal one is one of our main concerns.

Sofia Maria Nikolakaki 18 July 2015

2.2 Support Vector Machines - Binary Classification Case

The Binary Classification Setting: The input of the classification problem

is a dataset which comprises data samples x1, x2, ..., xn, where x ∈ X of arbitrary

number which can be any type of objects, numerical or non-numerical. For example,

these input instances can be string sequences, time-series, previous actions and

others. The output corresponds to a real number y1, y2, ..., yk, where y ∈ Y and

specifically for the case of binary classification this becomes y1, y2, where y ∈ Y.

The values y1 and y2 denote the corresponding class of the input instance xi. A real

and quite popular example of binary classification is that of separating emails to

spam and non-spam, where xi corresponds to an email and yi is the value defining

if the respective mail is spam or not. Now, recall that in order to achieve successful

data classification for inputs that have not been observed yet, a machine needs to

learn how to assign each of them correctly to a discrete class. Thus, it requires a

training dataset containing several data instances. Typically there can be lots of

training data samples depending on the model complexity and noise ration in the

data. A training dataset consists of input/output pairs x, y ∈ XxY, where similarly

to the actual classification problem x is an input object and y is its respective label.

Note that the training set contains both the input and the answer vectors in order

to ”train” the machine to correctly predict the output y value for a new input

x. The goal of the training process it to configure a satisfying set of weights w,

that were presented in the Hyperplane description 2.2.1. Briefly, a weight vector

corresponds to each x sample and their linear combination computes the value of y.

Hence, the learning phase will utilize the training samples towards this objective.

Support Vectors: The Support Vectors are the essence of the SVM algorithm and

are nothing more than the data points located closest to the decision surface. Due

to the fact that their correct output may not be straightforward, these instances

are the hardest to classify. However, this also renders them the main factors of the

optimal location of the classifier. We will describe in detail their functionality to

the SVM algorithm in section 2.2.2.

Feature Space: In general, an object is described by one or more characteristics.

For example, a car may be described by its price, size, brand, age and others. These

numerical representations of an object are called features and determine the length

of the n-dimensional input vector x. The fact that the size of the vector is directly

Sofia Maria Nikolakaki 19 July 2015

2. BACKGROUND

associated with its respective features, leads to naming the corresponding vector

space, feature space.

2.2.2 Linear Case

This section describes how to find the optimal binary classifier between linearly separable

input instances with the use of the SVM method. In section 2.2.3.1 we illustrated the

difference between linearly separable and non-linearly separable data. Briefly, data are

linearly separable if there exists at least one straight line that divides them in such way

that all common points are gathered in the same side of the line. Let us assume that

we are trying to predict whether the values of different stocks will rise or fall in the next

minute. If a linear binary classifier exists to separate these data to those whose price

will rise and to those whose price will fall, then we consider these inputs to be linearly

separable. This would lead to perfect classification.

So far, we have generally described the binary classification problem, along with

fundamental notions necessary for the SVM method. From now on we will be focusing

on the algorithm we are studying, and thereby we expect the reader to be familiar with

the terms presented in the previous sections. Support Vectors were concisely described

in 2.2.1. Even though these datapoints are the most difficult instances to classify, at

the same time they are the most critical ones regarding the computation of the optimal

hyperplane. In particular, Support Vectors are the elements of the training dataset

that would alter the position of the optimal hyperplane, if removed. Thus, in the SVM

method the eventual optimal decision boundary is solely defined by the Support Vectors.

We stress out that the overall goal of SVM is to devise a computationally inexpensive

approach to discover good hyperplanes in a high-dimensional feature space. In order to

do so, SVM utilizes the following techniques.

2.2.2.1 Maximal Margin

labelmaxmargin In the attempt to construct the optimal hyperplane, SVM uses the

Maximum Margin Classifier as an example of a linear classifier. In 2.2.1 we defined

the classification hyperplane as:

xiw + b ≥ +1, foryi = +1 (2.1)

Sofia Maria Nikolakaki 20 July 2015

2.2 Support Vector Machines - Binary Classification Case

xiw + b ≤ −1, foryi = −1 (2.2)

Both constraints can be combined into one set of inequalities:

yi(xiw + b) ≥ +1

Consider the limiting cases:

xiw + b = +1

xiw + b = −1

equal to the hyperplanes H1 and H2 respectively. We also denote d+ as the distance

between H1 and H, and d− as the distance between H2 and H. In other words, d+ is the

shortest distance of the decision boundary to the closest positive point and similarly d− is

the shortest distance of the decision boundary to the closest negative point. Furthermore,

the sum of d+ and d− i.e. the distance between the closest positive and negative points

is the margin of the hyperplane H. Intuitively, we aim at maximizing the margin of the

plane (the distance between the two classes) to avoid making erroneous classifications.

That said, it is clear that SVM wants to compute the maximal margin.

Even though we presented the basic idea of the maximal margin we did not define it

in computational terms. For this purpose we need to express distances in terms of the

input instances x, the weight vector w and the bias b. Recall that the distance between

a point (x0,y0) and a line Ax+By + c is given by the following formula:
|Ax0+By0+c|√

A2+B2

Then, the distance between H1 and H is:
|wx+b|
‖w‖ = 1

‖w‖

Note that the lines H1 and H2 are parallel, and therefore they share parameters w and b.

Hence, the distance between H1 and H2 is 2
‖w‖ . Given that ‖w‖ is in the denominator,

one realizes that in order to maximize the above quantity he needs to minimize ‖w‖.
Hence, instead of maximizing the margin we minimize the Euclidean norm of the weight

vector w. However, we should also bear in mind that no points should lie between H1

and H2. This is a constraint we need to take into account during the process of maximiz-

ing the margin. The aforementioned considerations are transformed into a constrained

optimization problem which is described just below.

Sofia Maria Nikolakaki 21 July 2015

2. BACKGROUND

2.2.2.2 Quadratic Optimization Problem

The optimization problem derived from the necessity to maximize the margin can be

stated as follows:

max 2
‖w‖ subject to

{
xiw + b ≥ +1, for yi = +1

xiw + b ≤ −1, for yi = −1

However, the same problem can be transformed into an equivalent minimization one due

to the fact that the Euclidean norm of w is in the denominator. In particular, we have

an optimization problem where we minimize function f subject to g(x) = 0:

min f :
1

2
‖w‖2 subject to g : yi(xiw + b) ≥ +1 (2.3)

This is a quadratic optimization problem subject to certain restrictions and there is

a unique minimum to be found. The solution to this problem is computed using the

Lagrangian multiplier method.

2.2.2.3 The Lagrangian Formulation

In the constrained optimization problem described in 2.2.2.2 consists of two parts, the

problem and the constraints. More specifically, the quantity we intended to minimize is

called a cost function, and specifically in this case it is quadratic and convex. Further-

more, the constraints are linear. Due to the nature of this problem, we can introduce

Lagrange multipliers in order to solve it. The number of Lagrange multipliers ai ≥ 0

depends on the number of equality constraints as there is a one-to-one correspondence

between them. So, in our case there is only one Lagrange multiplier.

In order to formulate the Lagrangian we need to combine f and g to get the following

general formulas:

L(x, λ) = f(x)− λg(x)

∂(x, λ) = 0

The two partial derivatives wrt x and λ retrieve the linear constraint and g(x, λ) = 0

respectively. In general we have the following formula:

L(x, α) = f(x)−
∑

i aigi(x)

So, by substituting the variable values with the appropriate ones of our problem we get:

L = 1
2
‖w‖2 −

∑l
i=1 ai[yi(xiw + b)− 1] =

Sofia Maria Nikolakaki 22 July 2015

2.2 Support Vector Machines - Binary Classification Case

L = 1
2
‖w‖2 −

∑l
i=1 ai[yi(xiw + b)] +

∑l
i=1 ai, with ai ≥ 0,∀i

Or equivalently:

L =
1

2
‖w‖2 −

l∑
i=1

aiyixiw − b
l∑

i=1

aiyi +
l∑

i=1

ai (2.4)

2.2.2.4 The Dual Problem

The above quantity should be minimized with respect to primal variables w and b and

maximized with respect to the dual variable a. In such optimization problems the Duality

Problem [33] states that the solution to the dual problem sets a lower bound to the

solution of the original minimization (primal) problem. So, if the primal-minimization

problem has an optimal solution, then the dual-maximization problem will also have an

optimal solution. However, it is not necessary for the optimal values to be equal, and

their in between difference is called the duality gap. Still in convex optimization problems

that satisfy a constraint qualification (our case) this gap equals zero and by solving the

dual optimization problem, we find the optimal value of the primal problem. Moreover,

we compute the solution for our primal problem by differentiating the primal Lagrangian

wrt w and b. Hence, we need to equate the corresponding partial derivatives to 0:

w =
l∑

i=1

aiyixi (2.5)

ai ≥ 0,∀i (2.6)

Note that with 2.6 the third term in 2.4 is zero. Now, we are going to apply the Lagrangian

trick which means that the constraints will be replaced by equivalent constraints on the

Lagrange multipliers and the input data will appear only in the form of dot-products.

Recall, the significance of dot-products for the Kernel computation described in 2.2.3.1.

Finally, after taking into account 2.5, 2.6, 2.4 and the Lagrangian trick we get the for-

malization of our dual problem:

Ld(a) =
l∑

i=1

ai −
l∑

i=1

l∑
j=1

aiajyiyjxixj (2.7)

Sofia Maria Nikolakaki 23 July 2015

2. BACKGROUND

Now, according to the duality problem we need to maximize quantity 2.7 by computing

the optimal Lagrange multipliers ai subject to the constraints:

l∑
i=1

aiyi = 0 (2.8)

l∑
i=1

aiyi = 0 (2.9)

At this point we have formulated our final problem, which however cannot be solved

with simple mathematical techniques. Instead, we need to use quadratic optimization

techniques. In addition, notice that each input vector xi will correspond to its own

Lagrangian multiplier ai. That said, we can now describe the critical Support Vector

datapoints described in 2.2.1 in terms of the unknown Lagrangian multipliers ai. More

specifically, the points for which ai > 0 comprise the set of Support Vectors and are

either located in H1 or H2 2.2.1. The rest of the datapoints lie either beyond H1 or

beyond H2 but not between them, so that the strict inequality constraint 2.3 is met. The

final step, is to write the equation which finds the optimal hyperplane (maximum margin

classifier) 2.1 and 2.2 in terms of the duality problem. Then we get:

wox + bo =
l∑

i=1

a(i, o)yixix + bo = 0 (2.10)

where o denotes optimal and the bold characters show vectors. Similarly the decision

function becomes:

sign(wox + bo) = sign(
l∑

i=1

a(i, o)yixix + bo) (2.11)

On finding the values of ai we assume that these are given to us as it is not in the scope

of this thesis to explore optimization.

2.2.3 Nonlinear Case

Until now we only studied linearly separable input vectors. However, we mentioned that

in real datasets researchers encounter high-dimensional and non-separable data. In order

to deal with this more complex problem, the idea of Nonlinear SVM was proposed. The

Sofia Maria Nikolakaki 24 July 2015

2.2 Support Vector Machines - Binary Classification Case

general idea is to map the original input data into a higher-dimensional space to gain

linearity with the use of kernels. The organization of this section is as follows. First, we

will provide a detailed description along with necessary definitions about kernels. Then

we will present how do kernels get involved with SVM as well as the final formulation of

the SVM problem for the Nonlinear case.

2.2.3.1 Kernels

Kernels a.k.a kernel functions are a key component of significant pattern analysis al-

gorithms due to their effectiveness when operating on real world data and relations. In

particular, it is common for an actual data analysis problem to involve non-separable

data, thus making it hard to extract even discrete dependencies that would allow suc-

cessful prediction of properties of interest. However, despite the necessity for efficient

non-separable pattern analysis methods, most Machine Learning algorithms have been

developed and implemented on linearly separable data, which renders the use of kernels

essential. Our ultimate goal is to use kernels in order to learn a decision function which

will reasonably classify unseen input data to known classes. In this section we will first

introduce the reader to the problem of non-linearly separable data by illustrating the

problem. Then, we will describe the approach of kernels in more detail by providing all

necessary mathematical notations and definitions.

Prior to posing a formal definition of kernels we illustrate the difference between

linearly and non-linearly separable data in Figure 2.3 which stresses out the importance

of kernels.

The above figure presents linear and non-linear data that can be divided into two

classes i.e. can be binary classified. The former are shown in the left figure, whereas the

latter are depicted in the right one. In the very next Figure 2.4 we show some of these

separators which are denoted by the letters H1, H2, H3. It is clear from Figure 2.4 that in

both cases the data can be classified by an infinite number of classifiers. However, certain

issues arise such as finding the best separators from an infinite set, or computing non-

linear classifiers when dealing with non-linearly separable data. In this section we will

focus on the second question which tackles the computationally difficulty of representing

data in a higher space.

Sofia Maria Nikolakaki 25 July 2015

2. BACKGROUND

Figure 2.3: Linear and Nonlinear Data

Figure 2.4: Linear and Nonlinear Data Separation

Definitions

In general, kernel functions (kernels) map datapoints to an alternative higher-

dimensional vector where linear relations exist and linear separation is feasible.

Note that representing data in a higher space is computationally difficult. More

specifically, let us assume we have the following setting with X and Y being vector

spaces usually in RN and R respectively:

X := {x1, x2, ..., xi} ⊂ X

Y := {y1, y2, ..., yi} ⊂ Y

The domain X is some nonempty set which contains training datapoints and in-

cludes inputs xi, so xi ∈ X. The domain Y denotes target values and includes inputs

Sofia Maria Nikolakaki 26 July 2015

2.2 Support Vector Machines - Binary Classification Case

yi, thus yi ∈ Y. We also encounter inputs xi and yi in the following brief form:

(x1, y1), (x2, y2), ..., (xi, yi) ∈ XxY

Specifically for the case of binary classification, which is of our main interest the

above declaration becomes:

(x1, y1), (x2, y2), ..., (xi, yi) ∈ Xx{+1,−1}

Note that we have not assumed anything about the set X. Given that our initial

goal was to address the problem of learning we use the above setting to formulate

this problem better. More specifically, in data analysis learning for a new input

xj ∈ X we want to predict the respective yj ∈ Y, which specifically for the binary

classification case is yj ∈ {+1,−1}. From now on we will only address the problem

of binary classification, as it is not in the scope of this thesis to study more complex

output domains Y. This new xj datapoint is not a training one as those described

in the previous paragraph, but is usually referred to as actual or testing datapoint.

That said, the assignment of a yj value to input xj should be as similar as possible

to the training examples, and therefore we need an indication of similarity in X

and {+1,−1}. For binary classification, finding the similarity between the target

values is easy as there are only two possible values +1 and −1, and therefore they

can be either identical or different. However, in the former case and for the same

purpose we seek a better representation of the data by mapping their respective

vectors from the original space to an alternative higher-dimensional space, called

the feature space. Now, the similarity between xi and xj is calculated in the feature

space. In other words we perform the following mapping:

(xi, xj) 7−→ Φ(xi),Φ(xj), ∀xi, xj ∈ X (2.12)

We define k(xi, xj) =< Φ(xi),Φ(xj) >, as a kernel function. Note that the func-

tional forms of the mappings Φ(xi) and Φ(xj) do not concern us because they are

defined by the selection of the kernel k(xi, xj) = Φ(xi)∗Φ(xj) or by the dot-product

in the feature space. We can reformulate the above mapping to the following:

Sofia Maria Nikolakaki 27 July 2015

2. BACKGROUND

k : XxX→ R, (xi, xj) 7−→ k(xi, xj), ∀xi, xj ∈ X

The kernel functions follow the following properties:

– They are symmetric,i.e., k(xi, xj) = k(xj, xi)

– They are positive semi-definite for every finite set datapoints.

– They are continuous.

In particular, we define a kernel function as follows based on [34]: For any set X

a function K:X2 → R is a kernel, i.e. it is symmetric and positive semi-definite,

if and only if there is a mapping Φ from X into a Hilbert space H with a scalar

product h < ., . > such that k(xi, xj) = < Φ(xi),Φ(xj) > ∀ xi,xj ∈ X

Intuitively, one can consider kernel functions as similarity metrics in the feature

space Φ, due to the fact that they are equal to dot products. Note that the dot-

product xi ∗ xj is maximized when xi = xj and minimized when the two vectors

point to opposite directions. When xi, xj are orthogonal the dot-product equals

0. In section 2.2.3.2 we will see that replacing a dot-product with a kernel is very

useful and is referred too as the kernel trick.

Examples of Kernels:

Throughout the years several kernel functions have been presented by researchers.

However, simply choosing a kernel is not sufficient as the majority of kernel functions

also require fine-tuning their respective parameters which can be a time-consuming

process. For this purpose several works have proposed solutions to ease this pro-

cess [35], [36], [37],[38], [39]. Works [40] and [41] by Ali et al. and Li et al. even

discuss automatic kernel selection with the use of statistical measures derived from

the data sets, as well as with extensive empirical performance outcomes. Still, de-

spite the popularity of kernels this scientific area lacks an effective method to guide

the selection of a kernel function and parameters. It is not in the scope of this

thesis to study proposed kernel functions and parameter selection techniques. We

will however introduce basic kernels, due to the fact that they should be known to

anyone interested in deepening his knowledge in kernel methods.

Finding an effective kernel significantly depends on the input data and the problem

we are examining. For example, different kernel functions have been implemented

Sofia Maria Nikolakaki 28 July 2015

2.2 Support Vector Machines - Binary Classification Case

for numeric and non-numeric data, such as sequences and structures. Also, depend-

ing on the number of features of the data the user might select a less computationally

expensive kernel. The following kernels have been proved to be practical for general

applications:

Radial Basis Function: The Radial Basis Function (RBF) a.k.a Gaussian

kernel function is one of the most popular kernels, broadly used in many kernel-

based algorithms and especially in Support Vector Machines. More specifically

given two feature vectors xi and xj which are actually datapoints in an origin

input space, the RBF kernel equals:

k(xi, xj) = exp(−‖xi−xj‖
2

2σ2)

where σ2 is a free parameter called variation and ‖xi − xj‖ is the Euclidean

distance between xi and xj. Note that tuning σ appropriately is very impor-

tant for the performance of the kernel. On one hand, if overestimated then the

exponential will approach a linear behavior. On the other hand, if underesti-

mated then the decision boundary will be highly sensitive to noise in training

data. It is common to encounter the RBF function in the following form too:

k(xi, xj) = exp(−γ ‖xi − xj‖2), γ > 0

where γ is an adjustable kernel parameter that controls the width of the RBF

kernel. The value of RBF ranges from 0 to the limit to 1. The higher the RBF

value, the more similar the two input vectors.

Polynomial: The Polynomial function is frequently used in Natural Language

Processing. More specifically given two feature vectors xi and xj which are

actually datapoints in an origin input space, the Polynomial kernel equals:

k(xi, xj) = (xTi xj + c)d

where c ≥ 0 is an adjustable parameter and d is the degree of the polynomial.

The degree is usually set to 2, since for greater values it tends to overfit.

Linear: The Linear kernel is the simplest known kernel function as it only

consists of a dot-product plus, sometimes, a constant factor. More specifically

given two feature vectors xi and xj which are actually datapoints in an origin

input space, the Linear kernel equals:

k(xi, xj) = xTi xj + c

Even though using a Linear kernel, instead of using an RBF kernel, solves the

Sofia Maria Nikolakaki 29 July 2015

2. BACKGROUND

optimization problem much faster, it has been shown in [42] that the Linear

kernel is actually a degenerated version of the RBF kernel. Hence, if the model

selection of the RBF kernel has been performed optimally, then it is impossible

for the Linear kernel to yield more accurate results than the RBF kernel.

Other popular kernels are the Fisher Kernel [43] for statistical classification, the

Graph Kernel [44] for computing similarity between graphs and the String Kernel

for finding similarity between pairs of strings. The aforementioned description of

kernel methods is by no means complete. For further details we refer the reader

to the books of ShaweTaylor and Nello Christianini in [45], Smola and Schölkopf

in [46] and Joachims in [31]

2.2.3.2 Kernel Trick

In section 2.2.3.1 we presented kernel functions which are efficient methods for computing

the similarity between non-linearly separable datapoints. These kernels allow the configu-

ration of the kernel trick; a tool of great importance which links linearity and non-linearity

in any algorithm that can be written using only dot-products between vectors. The in-

terest of the kernel trick derives from the fact that by mapping a linear method’s input

data (vectors) into the feature space, then the same algorithm will operate non-linearly

in the original space and linearly in the feature space.

In order to clarify our point we provide the following example. Let us assume we are

using the polynomial kernel for input vectors xi and xj. We are going to show that the

polynomial kernel k(xi, xj) = (xTi xj + c)d, with constant value c equal to 0 and degree

d equal to 3 for simplicity reasons, yields the same result as the explicit mapping and

dot-product.

Φ : R2 → R3

Φ : (xi1, xi2) 7−→ (zi1, zi2, zi3) := (x2i1,
√

(2)xi1xi2, x
2
i2)

Then the dot-product of the two mappings equals:

Φ(xi1, xi2) ∗ Φ(xj1, xj2) = (x2i1,
√

(2)xi1xi2, x
2
i2) ∗ (x2j1,

√
(2)xj1xj2, x

2
j2)

= x2i1x
2
j1 + 2xi1xi2xj1xj1 + x2i2x

2
j2

This is the same as:

k(xi, xj) = (xixj)
2 = ((xi1, xi2)(xj1, xj2))

2 = (xi1xj1 + xi2xj2)
2

= x2i1x
2
j1 + 2xi1xi2xj1xj1 + x2i2x

2
j2

Sofia Maria Nikolakaki 30 July 2015

2.2 Support Vector Machines - Binary Classification Case

Note that in a case where the dimension d is very big the explicit computation of the

mapping and the dot-product may not fit in memory. However, the kernel computation

will still only require n multiplications, where n is the size of vectors xi, xj.

2.2.3.3 Nonlinear Formulation

The significance of non-linearly separable data, the applicability of the key components

called kernels to gain linearity and the simplicity of computing dot-products using the

kernel trick led to the possibility of extending linear SVM to the non-linear case.

More specifically, by transforming input datapoints of an original space to a higher-

dimensional one by mapping 2.12 and by recomposing the Dual Lagrangian Problem

presented in 2.7, we get the following optimization problem:

Ld(a) =
l∑

i=1

ai −
l∑

i=1

l∑
j=1

aiajyiyjΦxiΦxj (2.13)

The optimal hyperplane is 2.10:

wox + bo =
l∑

i=1

a(i, o)yiΦxiΦx + bo = 0 (2.14)

Then, the optimal decision function becomes 2.11

sign(wox + bo) = sign(
l∑

i=1

a(i, o)yiΦxiΦx + bo) (2.15)

Note that equations 2.14 and 2.15 only depend on dot-products between the input data

in some feature space. The actual dimensions of the specific feature space, as well as the

mapping function are considered indifferent to us due to the kernel function definition

k(xi, xj) =< Φ(xi),Φ(xj) >. Recall that the kernel function allows us to directly compute

the dot-product of the mapped data without explicitly expressing in terms of the map

function and the dot-product. Hence, the kernel computation is only dependent of the

dimensions of the input space and disregards the dimensions of the feature space.

Finally, with the use of the kernels the dual lagrangian equation 2.13 and the equation

of the optimal plane 2.14 become:

Ld(a) =
l∑

i=1

ai −
l∑

i=1

l∑
j=1

aiajyiyjk(xi, xj) (2.16)

Sofia Maria Nikolakaki 31 July 2015

2. BACKGROUND

wox + bo =
l∑

i=1

a(i, o)yik(xi,x) + bo = 0 (2.17)

We have describe the method of SVM in order to provide a sufficient understanding of how

the specific method works, since it is one of the state-of-the-art classification algorithms.

For further details we refer the reader to the following works [47], [48], [22].

2.2.4 LIBSVM

As its name implies, LIBSVM is library for Support Vector Machines, i.e. an integrated

software tool targeted for Support Vector classification (two-class and multi-class), re-

gression and distribution-estimation. The specific project began in 2000 and ever since it

has gained wide acceptance by machine learning applications. At the time this thesis is

being written, the LIBSVM publication written by Chang and Lin [49] has 22028 citations

and more than 250, 000 downloads, whereas the next most popular SVM tool called SVM

Light [50] has 6685. In addition to the high number of citations, there are also several

representative works in various domains which show the applicability of LIBSVM. Some

of these works are [51] in Computer Vision, [52] in Natural Language Processing, [53] in

Neuroscience and [54] in Bioinformatics.

The LIBSVM package is based on the two basic steps that any supervised learning

method follows, the first being the training phase and the second being the classification

phase. In brief, first we insert a training set with data samples to create the classifi-

cation or regression model, and then we use the created model to predict information

about actual data. Moreover, the structure of LIBSVM is as follows. There is a main

directory composed by C/C++ source codes and the required datasets, a sub-directory

which comprises tools to guarantee that the input datasets have the appropriate format,

as well as other sub-directories with pre-built binary files and interfaces for integration

with other software environments and languages. This thesis focuses on Support Vec-

tor Classification. Thus, we will only present technical details concerning this part of

LIBSVM.

Sofia Maria Nikolakaki 32 July 2015

2.2 Support Vector Machines - Binary Classification Case

2.2.4.1 Data Preprocessing

Prior to executing the training phase, the user has to format his datasets based on the

requirements of the LIBSVM package. More specifically, LIBSVM requires that each

input data is depicted on a corresponding vector. Note that the input vectors can only

contain real numbers, and thereby categorical types of instances must be mapped to

numbers. An informative description of a categorical data would use m numbers, for m

respective attributes. In particular, the creators of LIBSVM recommend that number 1

denotes the actual value of the data instance and the rest of the values have value equal

to 0. For example, a five-category instance with attributes (tourist, standard, comfort,

fist class, luxury) can be represented as (1, 0, 0, 0, 0), (0, 1, 0, 0, 0), (0, 0, 1, 0, 0) and so on.

They also mention that in cases where the number of categories is not too big, then the

aforementioned categorization may yield better results. Moreover, the precise LIBSVM

training dataset format is the following:

<label> <index1> : <value1><index2> : <value2>...<indexn> : <valuen> (2.18)

where label indicates the feature’s corresponding class, each of the indexes index1, index2, ..., indexn

show the attribute id of the instance with respective values index1, index2, ..., indexn.

The reason for which LIBSVM uses indexes in addition to values, is because this allows

efficient representation of sparse datasets. For example, let us assume that we have the

following two data instances of an object:

−1 5 : 0.4 9 : 1.5 20 : −0.34 49 : −1.25

+1 5 : 1.7 12 : 0.35 14 : −1.4 36 : 0.1 49 : −1.25

Note that in the first case only indexes, i.e. attributes, 5, 9, 20 and 49 have a value.

This implies that the rest of the indexes 1 to 4, 6 to 8 and so on have a value equal to 0

and this is represented with little information. Similarly, the second data instances has

nonzero values for attributes 5,12,14,36,49 which means that it shares with the previous

data instance nonzero values only for attributes 5 and 49.

Another factor that could improve performance is scaling the data samples during the

preprocessing phase. The most significant advantage of scaling is that it balances bigger

numerical values with smaller ones, thus none of two dominates the other. Furthermore,

Sofia Maria Nikolakaki 33 July 2015

2. BACKGROUND

scaling renders computation easier. In particular, the fact that kernel computations

require producing the inner product between vectors, indicates that large numbers could

hamper this process. In order to overcome this difficulty, the creators of LIBSVM suggest

linear scale of each attribute to the range [−1,+1] or [0, 1]. Note that if a model is trained

on scaled data instances, then it can be applied only to corresponding data. Thus, both

the training and actual dataset should be scaled. For instance, if we scale the training

attribute from [−10,+10] to [−1,+1], then an actual sample in the range [−12,+5] needs

to be scaled to [−1.2,+0.5].

2.2.4.2 C-Support Vector Classification

As we mentioned when introducing LIBSVM, this package allows utilizing various SVM

formulations for classification, regression and distribution estimation. The formulation

that we have considered is the C-Support Vector Classification (C-SVC) which is

based on the Support Vector Machines method that we described in 2.2.1. More specifi-

cally, LIBSVM solves the following dual problem:

min
1

2
αTQα− eTα (2.19)

subject to yTα = 0 (2.20)

0 ≤ αi ≤ C, i = 1, ..., l (2.21)

where e = [1, ..., 1]T denotes the all-ones vector, Q is an l by l positive semi-definite matrix,

Qij ≡ yiyjK(xi,xj), and K(xixj) ≡ φ(xi)
Tφ(xj) is the kernel function 2.2.3.1. The

transformation of the above problem to the primal-dual relationship yields the following

optimal w:

w =
l∑

i=1

yiαiφ(xi) (2.22)

and therefore the decision function of the C-SVC formulation is:

sign(wTφ(x) + b) = sign(
l∑

i=1

yiαiK(xi,x) + b) (2.23)

The program needs to store values yiαi∀i, b, as well as all label names, support vectors,

and kernel parameters.

Sofia Maria Nikolakaki 34 July 2015

2.2 Support Vector Machines - Binary Classification Case

2.2.4.3 Code Organization

Now that we have described the exact problem that C-SVC solves, we are briefly going

to describe the source code’s organization. All of the implemented LIBSVM methods

are included in the svm.cpp file, which has two basic sub-routines, svm train and

svm predict. The training phase is the most complex among the two as it is respon-

sible for finding the support vectors with the use of an optimization method. More

specifically, in the case of classification svm train calls the svm train one function

multiple times. Then, svm train one subsequently calls the function that corresponds

to the SVM formulation that the user desires to use. For example, for classification

svm train one, either calls solve c svc or solve nu svc. All of the sub-routines that

correspond to specific SVM formulations, simply initialize certain parameters with suit-

able values for the next phase, which is the phase of solving. As implied by its name,

the function solve, comprises of several steps which are the execution of the quadratic

optimization problem with the use of two implementation tricks called Shrinking and

Cashing to improve performance. However, this thesis neither focuses on the algorithm

of optimization, nor on shrinking and caching. For further details regarding the imple-

mentation of the aforementioned components we refer the reader to [49]. However, we are

particularly interested in the dot-product computation during the optimization process,

which was described in 2.2.3.1.

2.2.4.4 Performance Measure

Like every other prediction algorithm, the performance of the LIBSVM package has

been evaluated based on certain performance metrics. In particular, recall that once

the optimization problem which solves the primal-dual problem has been completed,

the outputted decision function can be applied to newly observed data (testing data)

to predict their respective target labels. In particular, let us assume that x1, ..., xl are

the unseen input instances and f(x1), ..., f(xl) are the predicted labels. Then, given that

y1, ..., yl are the actual true labels we appraise the success of predictions with the following

metric of accuracy:

Accuracy =
of correctly predicted data

of total testing data
x100% (2.24)

Sofia Maria Nikolakaki 35 July 2015

2. BACKGROUND

Accuracy is computed only for classification tasks. In the case of regression LIBSVM

uses other metrics which are the mean squared error [55] and the squared correlation

coefficient [56].

2.3 Mutual Information

In this section we present a brief tutorial on Mutual Information (MI) as formulated

in [57]. It is beyond the scope of this thesis to thoroughly study the specific term and

its variations. However, it is worthwhile to provide a comprehensive background, and

therefore we will also make short references to other fundamental notions of Information

Theory closely related to MI, in order to yield a better overall understanding. In case the

reader is interested in detailed descriptions, then they are referred to [57], [58], [59], [60]

from which much of the content of this section is derived.

Indisputably, information is a very broad and abstract notion. In the attempt of

formalizing it is crucial to quantify certain concepts such as how meaningful or relevant is

a piece of information. Such concerns were not part of Information Theory initially. More

specifically, the founder of Information Theory, Claude E. Shannon [61] emphasized on

efficient data transmission rather relevance of data content. The approach that Shannon

followed regarding Information Theory led to the misconception that the specific field

is unrelated to denoting meaningful information, and is only targeted to the area of

communication. Yet, we will describe why this is a mistaken belief based on the fact

that the single information theoretic principle has been applied as a particular case in a

variety of problems, such as prediction, filtering and learning.

2.3.1 Entropy

This section presents the notion of entropy, which quantifies uncertainty of a random

variable. It is considered the most fundamental notion of Information Theory. Prior to

formally defining Entropy we are going to present a quantified description of information.

In particular, let E be an event which occurs with probability P (E). Then, if event E

has been observed we say that:

I(E) = log2

1

P (E)
(2.25)

Sofia Maria Nikolakaki 36 July 2015

2.3 Mutual Information

bits of information have been received. Note that the base of the log function is 2 because

we are transmitting and receiving bits. For example, the outcome of a flipped coin is

log2 2 = 1 bit, whereas for a rolled dice it is log2 6 ≈ 2.585. If the base changes to b, then

entropy is denoted as Hb(S), whereas if we have the natural logarithm with base equal

to e then the entropy is computed in nuts. Moreover, information is additive, so for k

fair coin tosses we get:

I(k) = log
1
1
2k

= k bits (2.26)

Thus, a random word belonging to a 100, 000 word alphabet requires I(symbol) =

log2 100, 000 = 16.61 bits of information. Based on 2.26, a 1000 word piece of infor-

mation produced from the same source requires 16, 610 bits. Moving to another domain,

a 480x640 pixel, 16-gray scale picture needs I(picture) = 480 ∗ 640 log2 16 = 1, 228, 800

bits.

Now, regarding entropy suppose we have a source S with no memory. Also, let random

variable X with corresponding alphabet X. If this variable is discrete then we have,

p1(x1) = prob(X = x1), x1 ∈ X, p(x2) = prob(X = x2), x1 ∈ X, and so on, probability

mass functions. So the source S emits statistically independent symbols s1, ..., sn, si ∈ S

with probabilities p1, ..., pn respectively. Then, we define Entropy as:

H(S) =
∑
i

piI(si) =
∑
i

pi log
1

pi
(2.27)

which shows the average amount of observed information at the output of source S. Note

that entropy is a functional of the distribution of X, and therefore does not depend on

actual values but on possibilities. Also, notice that information reduces uncertainty

and should not be confused with knowledge, since it does not reveal meaning. Let

us assume that an observer is about to watch the result of a flipped coin, or a rolled

dice. Then, once he has observed the final outcome the uncertainty of the result has

become zero, given that he is aware of what was sent. Moreover, note that usually the

logarithms in Information Theory have base 2, and thereby entropies are measured in

bits. Recall that the complete characterization of source S includes probabilities p1, ..., pn

of corresponding symbols. The domain to which these symbols belong to, i.e. what they

actually are, is indifferent to entropy, as this notion clearly shows the average uncertainty

in the probability distribution of the symbols in source S. Therefore, equation 2.27 can

Sofia Maria Nikolakaki 37 July 2015

2. BACKGROUND

be re-written as:

H(S) = H(P) = H(p1, ..., pn) =
∑
i

pi log
1

pi
(2.28)

The above equation can be similarly formulated for continuous distributions. Even though

an axiomatic definition of entropy has been formulated, we will discuss it towards the end

of this section. Instead, we will approach the specific concept based on certain quantities

that are directly correlated to it. More specifically, given the formulation of entropy 2.28

we can derive useful quantities which are the following:

- The average amount of information provided by sending a single symbol.

- The average amount of unexpectedness when observing the output of a symbol.

- The uncertainty an observer has prior to seeing the sent symbol.

- The average number of bits required to communicate a symbol. Then, the maximum

efficiency can approach H(S) but cannot be < H(S) bits/symbol

At this point we present certain important properties of entropy:

- Entropy is always a non-negative value, i.e. H(S) ≥ 0. Note that 0 ≤ pi ≤ 1,

and therefore log 1
pi
≥ 0. It is zero only when the random value is certain to be

predicted.

- Invariant with respect to permutation of its inputs

- Given any other probability distribution q1, ..., qn:

H(S) =
∑

i pi log 1
pi
<

∑
i pi log 1

qi

- The further the probability distribution is from the uniform distribution, the lower

the entropy.

- H(S) ≤ log k, with equality iff pi = 1
k
, ∀i

- In order to change the base of the entropy multiply the original entropy with the

appropriate factor: Hb(S) = (logb α)Hα(S)

Sofia Maria Nikolakaki 38 July 2015

2.3 Mutual Information

At this point we are going examine an actual example of entropy in a real setting. More

specifically, we are interested in finding the true entropy of the English language, which

has an alphabet of 27 characters. Then, a document of 100, 000 words with 5.5 average

characters each, we can compute the following. Assuming independence from one charac-

ter to the next and that these characters follow a uniform distribution, then the entropy

required for each character equals − log 1
27

= 4.75 bits/character. However, the above en-

tropy is computed under the assumption that all characters are equally likelly and this is

the zero-order model of English which provides an approximation of the English entropy

but is false. In particular, some English characters are used much more frequently that

others. For example, the character e has frequency 0.12702, whereas the character z has

frequency 0.00074. Hence, we need to assume that all letters are independent but the ac-

tual probabilities are used. This is called the first-order model of English which produces

entropy equal to 4.219. However, this number is also false as assuming independence

between characters is non-realistic. More specifically, certain letters follow others with

high probability. Such sequences are for example, ”ON”, ”AND”, ”TH”, and others. The

last English model that was presented is called the higher-order model, which comprises

the second-order model, the third-order model, and so on, based on whether we take into

account the likelihood of digrams, or trigrams respectively. A third-order model produces

2.77 bits/symbol and this number reduces as the order of the model increases.

2.3.2 Joint Entropy and Conditional Entropy

The previous section presented the entropy of a single random variable X. The same

formula 2.28 can be extended to pairs of random variables (X, Y), as pairs can actually

be perceived as single random variable vectors. That said, the joint entropy H(X, Y)

of a pair of discrete random variables (X, Y) with joint distribution p(x, y) is defined as:

H(X, Y) =
∑
x∈X

∑
y∈Y

p(x, y) log
1

p(x, y)
(2.29)

For example, let us assume that we have two random variables the first being T depicting

temperature with values hot,mild and cold, and the second being N denoting humidity

with values low and high. Furthermore, for random variable T , we have probabilities

P (T = hot = 0.3, P (T = mild) = 0.5, P (T = cold) = 0.2, whereas for random variable

Sofia Maria Nikolakaki 39 July 2015

2. BACKGROUND

N the probabilities are P (N = low) = 0.6 and P (N = high) = 0.4. In addition we

also need the joint probabilities in order to compute the joint entropy. These are P (T =

hot,N = low) = 0.1, P (T = hot,N = high) = 0.1, P (T = mild,N = low) = 0.4, P (T =

mild,N = high) = 0.1, P (T = cold,N = low) = 0.1, P (T = cold,N = high) = 0.2.

Then, the entropies are H(T) = H(0.3, 0.5, 0.2) = 1.48548, H(N) = H(0.6, 0.4) =

0.970951 and the joint entropy in the space of (t, n) is:

H(T,N) =
∑
t,n

P (T = t, N = n) log
1

P (T = t, N = n)
(2.30)

or

H(0.1, 0.4, 0.1, 0.2, 0.1, 0.1) = 2.32193 (2.31)

Note that H(T,N) < H(T) + H(N). Also, recall that two events T,N are independent

if the joint probability mass function satisfies P (T = t, N = n) = P (T = t)P (N = n).

Thus, one realizes that in our example T,N are not independent.

In addition to the joint entropy of two random variables X and Y we also define the

conditional entropy of the first given the second. Conditional entropy is the expected

value of the entropies of the conditional distributions, averaged over the conditioning

random variable. More specifically the conditional entropy H(Y |X) is defined as:

H(Y |X) =
∑
x∈X

p(x)H(Y |X = x) =
∑

x∈X,y∈Y

p(x, y) log
1

p(y|x)
(2.32)

Once again, consider the previous example with the two random variables of temperature

T and humidity N . However, now we need the conditional probabilities in order to

compute the conditional entropy. Thus, let us assume that we are given the following

conditional probabilities P (N = low|T = hot) = 1
2
, P (N = high|T = hot) = 1

2
, P (N =

low|T = mild) = 4
5
, P (N = high|T = mild) = 1

5
, P (N = low|T = cold) = 1

3
, P (N =

high|T = cold) = 2
3
. Then substituting formula 2.32 with the appropriate values results

the following conditional entropies H(N |T = cold) = H(1
3
, 2
3
) = 0.918296, H(N |T =

mild) = H(4
5
, 1
5
) = 0.721928, H(N |T = hot) = H(1

2
, 1
2
) = 1.0 as well as the average

conditional entropy:

H(N |T) =
∑
t

p(T = t)H(N |T = t) = 0.3H(N |T = cold) + 0.5H(N |T = mild) + 0.2H(N |T = hot)

(2.33)

Sofia Maria Nikolakaki 40 July 2015

2.3 Mutual Information

≈ 0.8364 (2.34)

The joint entropy H(X, Y) and conditional entropy H(Y |X) are correlated by the chain

rule which says that the entropy of a pair of random variables is equal to the entropy of

one variable plus the conditional entropy of the other:

H(X, Y) = H(X) +H(Y |X) (2.35)

In addition, note that H(Y |X) 6= H(X|Y), but H(X) − H(X|Y) = H(Y) − H(Y |X).

Prior to moving to the next section where Mutual Information is introduced, recall that

Shannon’s definition of entropy measured the information that was transmitted in a

quantitative but not context related way. So, it only showed the uncertainty that was

inserted in the message. The notion of meaningful context appears in the next section.

2.3.3 Relative Entropy and Mutual Information

Once again, we stress out that the entropy of a random variable is a metric that computes

the amount of the average information required to represent the random variable. Now

that we have presented entropy we are going to describe the notion of relative entropy.

More specifically, relative entropy D(p||q) is a numeric indication of the distance

between two distributions. In statistics, the respective formula equals the expected loga-

rithm of the likelihood ratio. The descriptive explanation of this measure is that it shows

inefficiency of considering that our data follow distribution q when they actually follow

distrubtion is p. Making a correct assumption about the true distribution of a random

variable would allow to create a corresponding encoding with average descriptive infor-

mation H(p). However, if we associate distribution q with the random variable, then we

would need on average H(p) + D(p||q) bits of descriptive information. In particular the

definition of relative entropy is:

D(p||q) =
∑
x∈X

p(x) log
p(x)

q(x)
(2.36)

where for the extreme cases 0 log 0
q

= 0 and p log p
0

= inf based on the arguments for

the continuity principle. Similarly to entropy, relative entropy is a non-negative measure

which is equal to 0 if and only if the assumed distribution is exactly the same as the

true distribution, i.e. p = q. Still, we cannot regard relative entropy as a true distance

Sofia Maria Nikolakaki 41 July 2015

2. BACKGROUND

between distributions due to the fact that it neither satisfies the triangle inequality, nor

it is symmetric. Yet it is convenient to contemplate this measure as a distance measure.

At this point we are going to present mutual information, which is our main interest.

Even though conditional entropy 2.32 shows when two random variables are com-

pletely independent, it does not sufficiently describe dependency. If H(Y |X) equals to a

relatively small value, this either implies that X contains a lot of information regarding Y ,

or that H(Y) was from the beginning too small. In brief, mutual information I(X;Y)

computes the amount of information a random variable includes about another random

variable, or in terms of entropy it is the decrease of uncertainty in a random variable due

to existing knowledge about the other. For example, suppose discrete random variable

X represents the roll of a fair six-sided dice, whereas Y shows whether the roll is odd or

even. Then, it is clear that the two random variables share information, as by observing

one we receive knowledge about the other. On the other hand, if we have a third discrete

random variable Z denoting the role of another dice, then variables X and Z or Y and Z

do not share mutual information. More formally, for a pair of discrete random variables

X, Y with joint probability function P (x, y) and marginal probability functions P (x)

and P (y) respectively, the mutual information I(X;Y) is the relative entropy between

the joint distribution and the product distribution:

I(X;Y) =
∑
x∈X

∑
y∈Y

p(x, y) log
p(x, y)

p(x)p(y)
= D(p(x, y)||p(x)p(y)) (2.37)

Note that mutual information is symmetric in the arguments, that is I(X;Y) = I(Y ;X),

but H(Y) 6= H(X) and H(X|Y) 6= H(Y |X). Furthermore, it is a non-negative measure,

which yields zero I(X;Y) = 0 if and only if random variables X and Y are indepen-

dent. The above formula 2.37 can be easily used for continuous random variables, by

substituting the summation with an integration.

Sofia Maria Nikolakaki 42 July 2015

2.3 Mutual Information

2.3.4 Relationship between Entropy and Mutual Information

Note that we can re-write the definition of mutual information 2.37 as follows:

I(X;Y) =
∑
x∈X

∑
y∈Y

p(x, y) log
p(x, y)

p(x)p(y)
(2.38)

=
∑
x∈X

∑
y∈Y

p(x, y) log
p(x|y)

p(x)
(2.39)

= −
∑

x∈Xy∈Y

p(x, y) log p(x) +
∑

x∈Xy∈Y

p(x, y) log p(x|y) (2.40)

= −
∑
x∈X

p(x) log p(x)− (−
∑

x∈Xy∈Y

p(x, y) log p(x|y)) (2.41)

= H(X)−H(X|Y) (2.42)

Formula 2.38 shows that mutual information is the decrease of the uncertainty of discrete

random variable X given knowledge about the discrete random variable Y . With the use

of the property of symmetry:

I(X;Y) = H(Y)−H(Y |X) (2.43)

Furthermore, equation 2.35 yields the following:

I(X;Y) = H(X) +H(Y)−H(X, Y) (2.44)

Finally, note that:

I(X;X) = H(X)−H(X|X) = H(X) (2.45)

Note that mutual information I(X;Y) is the intersection of information in X with the

information in Y .

The chain rule does not apply to entropy, but also relative entropy and mutual infor-

mation. More specifically, in the case of entropy the general chain rule says that assuming

X1, ..., Xn are drawn according to p(x1, ..., xn), then:

H(X1, ..., Xn) =
n∑
i=1

H(Xi|Xi−1, ..., X1) (2.46)

Sofia Maria Nikolakaki 43 July 2015

2. BACKGROUND

Similarly, the chain rule for relative entropy between two joint distributions on a pair

of random variables can be expanded as the sum of a relative entropy and a conditional

relative entropy:

D(p(x, y)||q(x, y)) = D(p(x)||q(x)) +D(p(y|x)||q(y|x)) (2.47)

Finally, Mutual information also satisfies the chain rule which yields:

I(X1, ..., Xn;Y) =
n∑
i=1

I(Xi;Y |Xi−1, ..., X1) (2.48)

Sofia Maria Nikolakaki 44 July 2015

Chapter 3

Related Work

3.1 Support Vector Machines

Research efforts towards developing efficient parallel Support Vector Machines implemen-

tations span FPGA, GPGPU and cluster technologies. In this section we present a brief

overview of these works.

3.1.1 FPGA

Among the first FPGA-based SVM implementations was the work of Anguita et al.

in [62] who implemented the Fibs algorithm. More specifically, they presented a novel

algorithm for the SVM Training phase targeted for special-purpose platforms. Recall that

the training phase requires solving a constrained quadratic optimization problem (CQP)

in order to find the necessary optimal values 2.2.2.2. Furthermore, the proposed algorithm

is based on the digital SVM algorithm which they claim has been proved effective for

real-world settings. In general, the DSVM algorithm solves the CQP by considering the

threshold to be fixed, but this neither follows the general SVM principle, nor is practical

for the general class of kernel functions. Thus, in addition to implementing the SVM

Training phase on an FPGA, they also extend the initial DSVM version to a more general

by adding another step to the algorithm. In particular, initially they also solve the CQP

by assuming that the threshold is a priori known. Hence, the inputs of the first step are

the kernel matrix Q, a fixed parameter b and an initial value α0, and the output is an

intermediate α′ value. This leads to the second step of their algorithm which is to find b*.

Sofia Maria Nikolakaki 45 July 2015

3. RELATED WORK

So they substitute the α parameter in the decision function 2.11 which yields the range

[bdown, bup] where the optimal b* belongs to. Then, an iterative bisection process begins

and in each iteration of this process the values of bdown and bup are updated, again based

on function 2.11. This process continuous until the range is smaller than an error e. From

the perspective of hardware, they present an initial architecture of Fibs specialized for the

RBF-SVM Training phase. Their architecture comprises three main stages load, learn

and output and each of these stages has its own controller. More specifically, the loading

stage stores the values of the target vector y and the kernel matrix Q, and subsequently

the learning stage runs the Fibs algorithm until it finishes. Finally, the output phase

outputs the values of b* and ai∗. The most significant computing blocks are the counter

blocks required for indexing and counting, the dvsm block which contains the memory

required for the Q matrix, as well as the digital components for Fibs, the bias block which

comprises the necessary registers and logic to update values bdown and bup, and finally

the s-blocks which consist of registers that store target values y and logic components

to compute the decision value. Regarding their experimental results, the evaluate their

performance on the Sonar dataset and on channel equalization with the use of a Xilinx

Virtex II FPGA. They mention that they achieve accuracy close to the one yielded by

the SMO algorithm, however they do not provided the exact numbers. Furthermore,

the maximum number of support vectors found by their architecture was 32, a relatively

small number compared to real-world datasets. Thus, the overall conclusions of this work

was that they achieved effective resource utilization, but convergence was not compared

with the one of SMO and it was only tested for small problems.

A more recent work was presented in [63] where Cadambi et al. proposed an FPGA-

based architecture to address the massive parallelism opportunities provided by the SVM

Training phase, as well as the requirements to be able to support vast amounts of data.

Due to the fact that contemporary datasets do not fit into on-chip caches, high-bandwidth

communication between the processor and off-chip memories is needed. Another way to

address this problem is with the use of Embedded systems. In this particular work,

Cadambi et al. focus on accelerating the standard SMO SVM algorithm with the use of

an FPGA platform. However, note that in order to gain acceleration they significantly

reduce precision which yields their implementation impractical. Still, they propose an

efficient solution for large problems which constituted the basis for our architecture as

we were also interested in handling big datasets but with high precision. In brief, they

Sofia Maria Nikolakaki 46 July 2015

3.1 Support Vector Machines

created an FPGA-based co-processor to achieve SVM Training hardware acceleration

with low precision arithmetic. The computationally expensive and precision tolerant

part of the algorithm is executed on the FPGA, whereas the rest and sequential part

is performed by the host CPU. In particular, the host runs the original SMO algorithm

and the FPGA co processor computes the kernel functions i.e. dot-products. In each

iteration of the optimization algorithm, the training data are inputted in the FPGA

with a host DMA and the output is the kernel dot-products. Since SMO is a gradient-

descent algorithm it stores both certain initial values, as well as the required updated

ones. These values are the α values and the gradients are on the host side, whereas

the training instances and support vectors on the FPGA. Regarding the computations

performed during the execution of the algorithm, the host produces the next working

set, the α updates and the gradients, whereas the FPGA is responsible for implementing

the kernel functions. In particular, their infrastructure consists of four vector processor

clusters each one containing P chained VPE arrays with N parallel functional units,

two data inputs called DataA and DataB from which the first is stored in an off-chip

memory and the second in a cache, an instruction bus and a registered output. The

two input streams are in different memories because DataA contains the large training

dataset which is a big and invariable matrix, while DataB is dynamic and small so it

is efficient to keep it in cache. Regarding the algorithm, DataA is distributed among

the different clusters by the bus, whereas DataB is inserted to all clusters. Each cluster

uses the VPE arrays to pipeline the calculation of dot-products and final outputs are

stored in a single output bus. Furthermore, they conceal the FPGA stalling by creating

non-blocking functionality. This means that while a chunk is being prepared to be sent to

the FPGA, the host side undertakes dot-product computation, and therefore latency is

hidden. For their experiments they used an FPGA from the Xilinx Virtex 5 family. They

tested their implementation with 4-bit, 8-bit and 16-bit precision and used the RBF SVM

Kernel. Furthermore, the software reference was the MiLDE library and the dataset was

MNIST containing 60K and 2M data instances. For small numerical precision (4 and 8

bit) they achieve double clocking i.e. each memory element is multiplied with two cache

instances in a single clock cycle. Briefly, in the training phase their architecture achieved

18.2x for 4-bit precision, whereas for higher precision they mention that the FPGA is

slower. However, they claim that even though their implementation is not as fast as other

GPU implementations, still the respective energy per watt that is required is much less.

Sofia Maria Nikolakaki 47 July 2015

3. RELATED WORK

Another work that combined software with hardware was described in [64]. More

specifically, similarly to [63] Pedersen et al. utilized the Sequential Minimal Optimiza-

tion (SMO) method for the training phase. They also move the time-consuming kernel

computation part of the algorithm to the FPGA, but in contrast to [63] they study 32-bit

integers using fixed-point arithmetic. Apart from that they use multiple and accumulate

processing units to compute the kernel function. Their experimental results, which ran

on an Cyclone FPGA showed that for certain test cases the hardware kernel computa-

tion required the same execution time as the software kernel computation and for other

test cases even less. However, they do not provide any information about the software

reference. Also, the fixed point resolution provoked non-tolerable errors in finding all of

the support vectors, which respectively affected classification accuracy.

All works of Bouganis et al. [65], [66] and [67] accelerate the classification phase of

the SVM algorithm by implementing the Cascade SVM classifier on an FPGA. In order

to do so they take advantage of the property of FPGAs to be reconfigurable. How-

ever, their main contribution is that they have created an architecture that adapts to

heterogeneous datasets, i.e. datasets with different types of attributes, based on their

precision requirements. Thus, they have implemented a fully-customized processing unit

targeted for the heterogeneous resources of the FPGA. The combination of applying the

cascade classification method with custom precision arithmetic units, led to an at least

x7 speedup compared to other FPGA and GPU implementations. They attribute this

success primarily to the fact that GPUs cannot be configured based on the exact precision

requirements, and thereby they always assume floating point precision. More specifically,

regarding their design they start by loading the support vectors in an internal memory

and the classification dataset in RAM memories between the FPGA board and the host.

Then they encode the attributes according to the minimum required precision that is

required to represent them. The values of these attributes are normalized to limit the

effect of outliers and subsequently they are sorted in descending order based on the re-

quired bits so that they can be inputted to precision targeted adders. The size of each

adder depends on the minimum precision bit of the decimal part of the two inputs of the

adder. Once this is found the tree adder is constructed which outputs the dot-product.

They also compute the initial ratio between the DSPs and the LUTs, since they support

that by preserving a balance between the two they achieve maximum performance. Thus,

they calculate this ratio continuously to guarantee balance. Now, in order to accelerate

Sofia Maria Nikolakaki 48 July 2015

3.1 Support Vector Machines

classification, they follow the cascade scheme which basically assumes the existence of

multiple SVM classifiers. These classifiers combine their results to yield the output of

the classification decision function. For their experiments they used an Altera’s Stratix

III FPGA board and their designs achieved operating frequency between 200-250 MHz.

Regarding accuracy the FPGA-based cascade classifier reached good accuracy, but still

remains an approximate method. In terms of acceleration they compared their imple-

mentation to other hardware-based SVM classification applications (FPGA and GPU)

and achieved at least an x7 speedup, whereas compared to software implementations they

accomplished 2-3 orders of magnitude better performance.

At this point we will briefly present other works that assigned some part of the SVM

algorithm to an FPGA platform. However, similarly to works [62], [66] and [67] all of the

following works reach approximate solutions. For specific datasets these solutions may be

very close to the precise ones, but they still remain sub-optimal. Moreover, the authors

of [68] of Khan et al. use the Logarithmic Linear System (LNS) to achieve compression in

arithmetic computations, thus efficiently using the hardware resources. Using the LNS is

an alternative of fixed point arithmetic to avoid multiplications and divisions. However,

there is an overhead to convert the original number to and from the LNS. In addition,

they also created an architecture specifically for the linear kernel classification due to the

fact that the linear kernel is simply a dot-product. Hence, it is not required to store both

the support vectors and the values of α as storing the weight vector is sufficient. Also, in

order to produce the decision about an input instance they compute the kernel function

using multiply and accumulate (MAC) processing units. Yet, they use as many MAC as

the number of attributes. For the experiments they used a Xilinx Spartan 3 FPGA. The

accuracy yielded by this application was similar to the one produced by the identical LNS

software implementation. Nevertheless, when the word precision increased to 20-bit that

caused a prohibitive error and the design could not fit in the FPGA. In [69] Irick et al.

present a Gaussian Radial Basis classification implementation in order to achieve real-

time extraction of objects from grey-scaled images. In order to perform classification they

compute the euclidean norm of the support vectors with the input data. In addition, they

perform computations in the Logarithmic Number System (LNS) for the same reasons

that the authors of [68] did. The experimental results showed that their architecture yields

88.6% accuracy when the testing dataset is a 30x30 image window with 8-bit arithmetic

precision. In particular, in 1 sec they support that they can classify 1,100 30x30 pictures

Sofia Maria Nikolakaki 49 July 2015

3. RELATED WORK

but they do not mention the FPGA platform that they are using. Ramos et al. in [70]

describe they implementation of a whole speaker identification system implemented on

a special-purpose hardware platform. In particular, they perform binary classification to

distinguish whether a speaker is male or female. Their whole algorithm is executed on

the FPGA and comprises two phases, the first being feature extraction based on mel-

frequency coefficients and the second being the SVM classification phase. In the proposed

architecture they consider fixed point numbers which provokes discrepancy between the

real and fixed value. In their experiments they used a small FPGA, the Xilinx Spartan 3

platform with operating frequency 50 MHz. Their execution time and the classification

accuracy was comparable to the one of an Intel Pentium IV processor running at 1.5GHz

but the testing dataset was small with few samples and only 26 attributes. Finally, the

work proposed by Llata et al. in [71] also addresses deploying the svm classification

phase to a low-cost small FPGA, but they focus on multi-classification and regression.

More specifically, they claim that the same hardware can be used for both algorithms.

The kernel of the decision function is hardware-friendly, i.e. a not commonly used one.

It contains several sv blocks whose number is equal to the number of support vectors.

Each sv receives as input a support vector and a sample, and outputs the estimated y

target. Regarding their experimental results, they test 8-bit precision images with the

use of Cyclone II FPGA. No acceleration comparisons are made, and their work presents

a certain error rate which they presume will become zero for a big number of SVs and

floating point arithmetic.

3.1.2 Graphical Processing Unit

In this section we present the most significant implementations of SVM Training and

classification, implemented with the use of GPUs. Due to the fact that our architecture

is deployed on an FPGA we will not describe each work in detail. We will provide however

their main contribution and experimental results as Grapical Processing Units (GPUs)

have been proven to be more effective for general SVM computations.

To begin with, until recently the fastest GPU-based training and classification ap-

proach was proposed by Catanzaro et al. in [72]. More specifically, in their work par-

allelism derives from creating one thread for each data sample to compute a value that

reflects the impact of the optimization step on the optimality conditions of the remaining

Sofia Maria Nikolakaki 50 July 2015

3.1 Support Vector Machines

data instances. For both the training and classification stages they used the Map Reduce

model. In particular, in the former case the Map function computes the optimality con-

dition vector based on the Karush-Kuhn-Tucker condition of the SMO algorithm. Then,

the Reduce function summarizes these results and derives the final boundaries. Reduc-

tion is performed in a tree-structure manner to yield maximum parallelism. Note that

for each data point the optimality condition is computed, and this task is undertaken by

a dedicated thread. Regarding the classification step, the final decision is also computed

based on the Map Reduce model. Results showed very good performance compared to

the fastest LIBSVM software, as they reached 32x speedup in training and 154x in test-

ing. For their experiments they used an Nvidia GeForce 8800 GTX graphics processor.

However, the overall results of their implementation are not the exact same ones with

those of LIBSVM.

Furthermore, in work [73] Carpenter provides a software package called cuSVM that

accelerates the training and classification steps of the SVM method. Among their contri-

butions was that they modified the standard SMO decomposition method, by integrating

the second-order working set selection heuristic which requires a reduced number of it-

erations to produce results. In addition, they neither used single-precision floating point

arithmetic in order to optimize the results of classification, nor did they use double-

precision floating point arithmetic which could be pointless. In fact, they used a mixed

precision arithmetic to reach maximum performance and as good accuracy as possible.

Moreover, similarly to the previous GPU-based implementations, Carpenter also performs

the batch processing kernel computation on the hardware side based on Volkov’s highly

optimized CUDA matrix multiplication algorithm. Finally, they use kernel caching, i.e.

kernel computations that are probable to be repeated are stored in the GPU cache mem-

ory. The cuSVM package was executed on an NVIDIA GTX 260 GPU. Experimental

results showed that it could achieve 12-73x faster performance for the training phase and

22-172x acceleration for the classificaton phase compared to the LIBSVM package. In

terms of classification accuracy they achieved an outcome close to the optimal one.

In [74] Herrero-Lopez et al. describe an multi-class SVM classifier on a GPU. The main

contribution of this work besides yielding similar speedups with other fast GPU-based

applications, is that it performs multiple cooperative binary PSMO SVM instances at

the same time. This approach is called Parallel-Parallel SMO (P2PSMO) and as implied

by its name it is based on the PSMO algorithm. Once again the basis of the proposed

Sofia Maria Nikolakaki 51 July 2015

3. RELATED WORK

implementation is the SMO algorithm, due to its popularity and also because it supports

data re-usability patterns. Regarding the mapping of their method to the GPU, given P

subsets and N binary tasks a grid including PxN blocks is utilized to address the most

computationally demanding portion of the SVM Training step. Then, each thread withing

the block works only for a single dimension of the block. The vertical dimension denotes

specific tasks that are processed by the block, while the horizontal dimension depicts

an occurrence of the PSMO algorithm. So, the concurrent interconnected execution of

rows results to the eventual P2PSMO method. Their experiments were carried out in an

NVIDIA Tesla C1060 GPU card using single-floating point arithmetic and the software

reference was LIBSVM. In terms of classification accuracy, they achieved the exact same

accuracy as the software benchmark but there were differences in the number of support

vectors and the offset value. Furthermore, in terms of performance acceleration they

reached x32 improved speed for binary training and x57 for multi-class training.

The recent work of Cotter et al. presented in [75] provides a convenient to use library

for kernalized SVM Training on GPUs. Their main contribution compared to previously

proposed GPU-based implementations is that they have designed a n algorithm particu-

larly efficient for sparse datasets, which are often encountered in real-world applications.

This is achieved with the novel sparsity clustering method. Similar to other GPU-based

works the time-consuming parallel computation is performed on hardware, whereas the

sequential steps are carried out on software. More specifically, the CPU calculates the

Gram matrix and solves the constrained optimization problem, while the GPU carries out

the kernel matrix computation for a small part of the working set (16 working sets). In

order to address sparse datasets, they perform coarse clustering by sparsity pattern with

the use of a greedy heuristic so that memory accesses are coalesced. Regarding experi-

mental results they tested their performance on an NVIDIA Tesla C1060 graphics card.

Compared to the performance of LIBSVM they achieved an at most x78 acceleration

speedup and compared to the fastest GPU implementation an at most x3 acceleration

speedup, depending on the dataset.

Moreover, in work [76] Do et al. present an extended parallel version of the fast Least

Squares SVM (LS-SVM) method. In general, LS-SVM substitutes the standard SVM

optimization inequality constraints with equalities in least squares error, and thereby the

training task only requires solving a system of linear equations instead of a quadratic

program. This transformation allows having very short training time. The proposed

Sofia Maria Nikolakaki 52 July 2015

3.1 Support Vector Machines

extension of the original LS-SVM method follows two directions. The first is towards

creating an incremental approach that scales up to allow large dataset classification (bil-

lions of data instances) by loading only subsets of data in memory and updating the

solutions of the growing training set. The incremental version of the LS-SVM approach

yielded the exact same accuracy as the original one. The second direction focuses on

creating a parallel extension of the incremental algorithm. They split the dataset into

small blocks. For each incremental step, a data block is loaded into the CPU memory. A

data transfer task copies this block from CPU to GPU memory and then GPU computes

all matrix multiplications in parallel. The results are transferred back to the CPU mem-

ory where the linear equation system is solved. The experiments were executed on an

NVIDIA GeForce 8800 GTX GPU and the results showed that the parallel incremental

implementation is up to 70 times faster than the respective non-parallel one.

In addition to the aforementioned works, others have also been proposed which present

similar or worse results. Some of these are the approaches are described in [77], [78], [79].

3.1.3 Multi-Core

This section presents multi-core approaches for the Support Vector Machines algorithm.

Due to the fact that this thesis studies the parallelism offered by the SVM method from

a hardware-based perspective we will not be providing detailed descriptions.

To begin with, a broadly used parallel SVM approach is the Cascade SVM [80] pro-

posed by Graf et al. The novelty of this approach is that it considers SVMs as filters

in the following way. It initializes the problem with a number of independent, optimiza-

tion sub-problems and combines the partial results in further stages in an hierarchical

manner. In addition to a description of their approach, they provide a formal proof of

convergence. More specifically, in the case of binary Cascade SVM the sets of support

vectors produced by two SVMs are combined and the optimization proceeds by finding

the support vectors in each of the combined subsets. This continues until only one set

of vectors is left. If the global optimum has to be reached, the result of the last layer is

fed back into the first layer. Each of the SVMs in the first layer receives all the support

vectors of the last layer as inputs and tests its fraction of the input vectors, if any of them

have to be incorporated into the optimization. If this is not the case for all SVMs of the

input layer, the Cascade has converged to the global optimum, otherwise it proceeds with

Sofia Maria Nikolakaki 53 July 2015

3. RELATED WORK

another pass through the network. The experimental results were tested on both a single

processor and a cluster of processors. A good indication of the inherent efficiency of the

proposed method is obtained by counting the number of kernel evaluations required for

one pass. For example, a single pass requires only about 30% as many kernel evalua-

tions as a single SVM for 100,000 training instances. Thus, a simulation on less than 8

processors can produce a speed-up of 10x or more, depending on the available memory

size.

In [81] Cao et al. propose a parallel version of SMO for training SVM, developed with

the message passing interface (MPI). The main idea is that they divide the total training

dataset into equal subsets each of which is assigned to a CPU processor. Then, the CPU

processors perform independent tasks in parallel, which in particular are updating a

different subset of training data patterns, and calculating bup, blow as well as the Duality

Gap at each step. Therefore, assuming that the sequential SMO algorithm requires t

time to perform the same task, the time reduces approximately to t
p
, where p depicts the

number of available processors. Their experiments were conducted on 1.3 GHz processors

and the accuracy achieved was the same as the one yielded by the sequential SMO

algorithm. For this specific setting their approach reached approximately x23 speedup

when 32 processors where used, but efficiency decreased with the increase of the number

of processors. Thus, they concluded the proposed parallel version of SMO is useful for

large datasets.

One

Moreover, in [82] Chang et al. proposed the Parallel SVM implementation (PSVM)

which is available open source. The first step of the algorithm is based on the parallel

row-based ICF (PICF) algorithm, which loads training instances onto parallel machines

and performs factorization simultaneously on these machines. Then, once n training data

instances are distributed on m machines and the size of the kernel matrix has been reduced

via factorization, the Interior-Point method is solved on parallel machines concurrently.

The experiments were carried out on 500 machines with each of these machines having

a CPU faster than 2 GHz and memory bigger than 4 GBytes. Results showed that the

accuracy of PSVM can approach the one achieved by LIBSVM for higher ranks of the

ICF matrix, but is still worse than other approximate solutions. Nevertheless, in terms of

acceleration when PSVM is executed on 500 machines, it can reach up to x170 speedup

for certain datasets.

Sofia Maria Nikolakaki 54 July 2015

3.2 Mutual Information

A more recent work presented in 2011 [83] by Zhao et al. utilizes the Map-Reduce

parallel framework and applies decomposition to configure a parallel version of SVM.

Their goal is to particularize the general Map-Reduce framework for Machine Learning

methods proposed in [84] for SVM. That is achieved as follows. The variables in the

working set B and the computation of the appropriate function f are partitioned into

parts in the same manner. Each of these parts is assigned to a map process, and subse-

quently each map process calculates the value of Qij. The distributed values yield the

optimal value f ∗ in the reduce phase. In addition, they cache the kernel elements as

much as possible which significantly improves the method’s performance. Regarding the

experimental setting, they used two computers with different hardware architectures to

evaluate different hardware effects. The first had 4 cores with a shared L2 cache and

memory, whereas the second was a dual-processor system with 4 cores in each processor.

Furthermore, results showed that the proposed implementation was at most 4 times and

at least 2 times faster than LIBSVM, while it always outperformed a similar MPI-based

implementation presented in [85]. In terms of accuracy it yielded results quite similar to

those of LIBSVM, with the difference lying in the number of support vectors. However,

results also showed that the specific approach worked efficiently for smaller datasets due

to locality and overheads of reduction.

3.2 Mutual Information

Unlike SVM, few hardware-based approaches have been proposed for Mutual Information

which are presented in this section

3.2.1 FPGA

The first FPGA-based approach for Mutual Information computation was presented

in [86] by Castro-Pareja and Shekhar. The proposed architecture was called FAIR-II and

achieved hardware acceleration of mutual information-based image registration. More

specifically, they aim at real-time computation of image registration but without the use

of supercomputers. Furthermore, their architecture consists of two discrete steps both

of which are carried out on hardware. In the first step hardware creates the mutual

and individual histograms based on an algorithm that transforms the floating image’s

Sofia Maria Nikolakaki 55 July 2015

3. RELATED WORK

coordinates to the respective reference ones with the use of Partial volume interpolation.

Subsequently, during the second part of their approach the partial joint histogram val-

ues are sent to the accumulator and the total mutual information calculation is derived.

Their system was tested on an Altera Stratix EP1S40 FPGA and it was able to process

50 million reference image voxels per second. Compared to an optimized software im-

plementation on a 3.2-GHz Xeon workstation with 1 GB of 266 MHz DDRAM FAIR-II

delivered x30 speedup for linear registration and x100 speedup for elastic registration.

Furthermore, in [87] Shao et al. propose the first reconfigurable computing solution

to accelerate transfer entropy computation. Even though we are not studying transfer

entropy in this thesis, it is worth describing this architecture as transfer entropy is a

measure quite similar to mutual information and also the Maxeler tool is being used.

The main difference between mutual information and transfer entropy is that the second

captures the amount of uncertainty reduced in a time series’,Y, future values by know-

ing the past values of another time series, X, given the past values of Y. During the

pre-processing phase of the transfer entropy calculation and based on Laplace’s rule of

succession, they associate each possible pattern between two time series with an imagi-

nary count to obtain the necessary probability estimates. Note that the aforementioned

process is carried out on software. Regarding their hardware implementation they achieve

optimized memory allocation by mapping small and medium-sized tables to the on-chip

BRAM and by streaming large tables to the FPGA at runtime. Furthermore, they utilize

the bit-width narrowing technique to guarantee efficient memory allocation and to reduce

I/O overhead. The computation of the transfer entropies of both X to Y and Y to X are

carried out on the FPGA in parallel based on the available resources. The experiments

were conducted on a Xilinx Virtex-6 FPGA and was compared to a single and 6-core

Xeon CPU. Their implementation achieved x100 and x18 speedup respectively.

To the best of our knowledge, no other FPGA-based approach has been proposed for

the computation of Mutual Information.

3.2.2 GPU

To begin with, in 2007 Shams and Barnes presented an efficient method for mutual infor-

mation computation between images for NVIDIA compatible devices [88]. The execution

flow of their approach is as follows. First, as a pre-processing step they transform the 2D

Sofia Maria Nikolakaki 56 July 2015

3.2 Mutual Information

joint histogram calculation to a 1D code. Then, the probability mass function calculation

is distributed to L thread blocks each with N threads. Each block maintains a partial

histogram of its own in the global memory for the portion of the input data assigned

to the block. Partial histograms are finally summed up using a multithreaded reduction

function. The experimental results of the aforementioned implementation were carried

out on an NVIDIA 8800 GTX platform. Moreover, results indicated that in the case of a

3D image with approximately 7x106 voxels and 256 threads the GPU-based registration

was around 25 times more efficient.

Another approach was presented in [89] by Lin and Medioni, who proposed a GPU

implementation to compute both mutual information and its derivatives. More specifi-

cally, in order to estimate the probability density for the mutual information computation

they use the Parzen Window method, which directly utilizes the samples drawn from an

unknown distribution and applies the Gaussian Mixture model to estimate the probabil-

ity’s density. Furthermore, they address the image registration problem by estimating

the transformation T that best aligns two images. In order to do so they maximize

mutual information by approximating its derivative with respect to T. The opportunity

for parallelism is offered by the inner summations in the required equations since the

statistics associated with each element are independent from the ones of the others, as

well as parallel shared memory access. The experiments of the aforementioned work were

conducted on an Nvidia GeForce 8800 GTX platform. For 1000 samples the computation

time for both mutual information and its derivatives is reduced up to a factor of 170 and

400 respectively compared with a work station level CPU.

In addition to the aforementioned implementations, other works have also been pro-

posed for hardware-based Mutual Information computation [90], [91]. However, apart

from [87], all these approaches focus on accelerating specifically the image registration

problem.

Sofia Maria Nikolakaki 57 July 2015

3. RELATED WORK

Sofia Maria Nikolakaki 58 July 2015

Chapter 4

Implementation

The two following algorithms, Support Vector Machines and Mutual Information were

profiled with respect to computational characteristics, available parallelism, Input/Output

(I/O) requirements, and suitability for hardware implementation. This leads to the op-

timization of the computationally intensive part, or computationally equivalent mathe-

matical transformations for more hardware parallelizable versions of the algorithm. SVM

proved to be less suitable for translation to FPGA whereas Mutual Information proved

to be highly suitable.

4.1 Support Vector Machine

Data Classification aims at categorizing data objects into distinct classes with the use of

labels. In particular, statistical classification receives new data inputs and identifies their

respective classes. An example would be assigning a post derived from the social media

into ”relevant” or ”irrelevant”. It is confirmed by the bibliography that the Support

Vector Machines (SVM) algorithm is a commonly used approach for data classification

and is also highly parallelizable 3.1. Furthermore, traditionally SVM have been used

for binary classification scenarios, but it can be used for multiclass cases as well, with

an extension of the binary case. In our work, we built binary classifiers using the SVM

methods from the LIBSVM package [49]. We integrated parallelizable LIBSVM functions

to our hardware implementation and used the LIBSVM tool as a point of reference for

SVM translation to hardware. Note that quadratic programming optimization problems

are computationally expensive. In cases where the datasets are high-dimensional and

Sofia Maria Nikolakaki 59 July 2015

4. IMPLEMENTATION

voluminous, such as in text classification, the kernel and inner product computations

require a massive number of matrix-vector operations. On hardware however, these

operations can be performed in parallel and produce the same outcomes much faster.

However, it is of essential importance to study the properties of an algorithm from the

hardware designer’s perspective before implementing it to a special-purpose platform. A

thorough analysis shows the acceleration opportunities and bottlenecks provided by each

of the algorithms.

4.1.1 Modeling for Hardware

It is common practice for hardware designers to analyze the hardware-friendly properties

of an algorithm, prior to mapping it to hardware. More specifically, from a designer’s

point of view the most significant characteristics are the inputs and outputs of the algo-

rithm, performance issues and the basic data structures and operations that constitute

the respective algorithm. In addition, the communication overhead for the synchroniza-

tion of the portions of the algorithm which run in specialized hardware with the aspects

that run in software has to be considered, as excessive fragmentation may lead to poor

performance. This analysis is performed in the specific section.

4.1.1.1 Inputs and Outputs

The SVM Training algorithm receives as input a two dimensional structure and outputs

the SVM model. More specifically, the input of the LIBSVM library is a file containing

training data, with a specific format. The goal of our implementation was to apply

the classification phase of SVM on streaming data, if the algorithm yielded significant

acceleration. However, the training phase which precedes classification was applied on

training datasets. In these datasets each row represents a data instance and each column

denotes a feature. The only exception is the first column of each data instance that

depicts the target class of the data instance defined as the label of the data instance. In

binary classification, this label can value 1 or -1, whereas in multi-class classification the

number of possible labels depends on the number of classes. A detailed description of

the input format of the training dataset was provided in 2.2.4.1 as it is the same with

the one required by LIBSVM. In brief the input file contains a:b expressions, where a

denotes the number of the feature and b represents the value of the respective feature.

Sofia Maria Nikolakaki 60 July 2015

4.1 Support Vector Machine

Note that it is not necessary for all data instances to share the same features. Absence of

a feature implies that it has zero-value, thus allowing an efficient representation of sparse

datasets.

The output of the SVM Training phase is a file that contains the SVM model. The

SVM model comprises certain variables computed by the SVM Training algorithm which

are necessary to determine the final classifier. More specifically, it contains the optimal

objective value of the dual SVM problem, the bias term in the decision function, as well

as the number of support vectors. In addition, following the aforementioned parameters

are the support vectors that are ordered based on their target labels. Specifically for the

binary classification case, the support vectors belonging to the first class are grouped first

and those corresponding to the second class, follow.

4.1.1.2 Algorithm Profiling

In this section we present critical points of the LIBSVM software code that indicate

hardware opportunities. In order to do so, we performed profiling of the source code

using the Linux GNU GCC profiling tool (gprof) so as to detect potential parallelism.

Quadratic programming optimization problems, such as the SVM classification algo-

rithm are expensive. In cases where the data sets are high-dimensional and large, the ker-

nel and dot-product computations require a massive number of matrix-vector operations.

This can be observed in table 4.1 since all functions that appear assume matrix-vector

operations. A brief description of each function is given in the specific table and a more

detailed one follows.

Dot-Product function (1)

This function receives as input two equal-length vectors x and y and outputs a

single number which denotes the dot-product of the two vectors. A dot-product is

defined as the sum of the products of the corresponding entries of the two sequences

of numbers. Moreover, in the SVM algorithm these vectors x and y represent data

instances or in other words rows of the training dataset file. In software, computing

the dot-product of two vectors of length l implies an lxl number of computations

and produces l dot-products. Nevertheless computing simply the product of two

entries is independent of computing the product of two other entries. Therefore the

multiplication task could be performed in parallel and as a result we would have

Sofia Maria Nikolakaki 61 July 2015

4. IMPLEMENTATION

Description Time Percentage LIBSVM Function

Computes the dot-product between two

data instances, i.e. xi ∗ xj
72% dot product() (1)

Computes the kernel function, i.e.

K(xi, xj)

8% kernel computation() (2)

Finds sub-problem to be minimized in

each iteration

8% select working set() (3)

Computes part of the dual lagrangian

equation
∑l

i=1

∑l
j=1 yiyjk(xi, xj)

6% get Q() (4)

Solves the optimization problem. 4% solve() (5)

Table 4.1: SVM profiling analysis

l multiplications performed concurrently. Once we have produced the products

we can add them in pairs and in parallel. Note that the computation of addition

is independent of computing another addition and this allows parallelization. In

particular, the sum of products 1 and 2, the sum of products 3 and 4 and so on can

be performed concurrently. For example, in our l length vectors l
2

addition pairs are

formed, so that l
2

additions are produced simultaneously. Then, the outcomes that

are produced can also be added in pairs and at the same time and this procedure

continues until we are left with a single number, which is the final dot-product

outcome.

An illustration of the aforementioned dot-product computation follows. Given two

vectors A and B with length n A = [A1, A2, ... , An] and B = [B1, B2, ... ,Bn] a

parallel version of the dot-product is defined as:

The parallel version of the above dot-product computes in parallel all products from

1 to n. Once these are produced, the sum of 1 and 2 (5) is calculated in parallel

Sofia Maria Nikolakaki 62 July 2015

4.1 Support Vector Machine

with the sum of 3 and 4 (6) and so on.

Furthermore, we know that in the LIBSVM software implementation every sequen-

tial step, i.e. loop, of the optimization solver requires the computation of the

dot-product between two selected data instances (working set) with the rest of the

data instances of the input file. It is worth mentioning that producing in parallel

the maximum allowed number of possible dot-products is much more efficient than

only computing a single dot-product.

Kernel Computation function (2)

The dual formulation of the SVM optimization problem introduces the notion of

the kernel 2.2.3.1. Recall that in the case of linearly separable data, the kernel

of two vectors is equivalent to the dot-product of these two vectors, whereas for

non-linearly separable data the kernel can be selected from a variety of kernel

functions 2.2.3.1. Note that the efficiency of a kernel function is determined by the

nature of the training and tested input data, as well as other factors such as speed

and accuracy. That said, we selected the radial basis function which according to

the equivalent software implementation of this function is computed based on the

following formula:

k(xi, xj) = exp(−γ ‖xi − xj‖2), γ > 0 (4.1)

which in terms of the LIBSVM functions in table 4.1

k(xi, xj) = exp(−γ(dot product(xi, xi)+dot product(xj, xj)−2dot product(xi, xj)), γ > 0

(4.2)

In the above formula γ denotes a constant selected by the user and function

dot product() yields the dot-product of the given vectors. What can be derived

from the above formula is that the three parallel dot-products can be computed in

parallel too given that we know indicators i and j. However, the result of dot(xi, xi)

has constant value during the dot-product computation of data instance i with the

rest of the data instances, and thereby we do not need to compute this dot-product

every time. The same does not apply for indicator j since it receives all values from

0 up to the last data instances for a specific value i.

Sofia Maria Nikolakaki 63 July 2015

4. IMPLEMENTATION

- Select Working Set function (3):

The Q matrix of the dual optimization problem which is defined in LIBSVM as:

l∑
i=1

l∑
j=1

yiyjk(xi, xj) (4.3)

is usually dense and too big to be stored. Therefore, decomposition methods have

been proposed to effectively process this matrix. In general, optimization methods

update the whole vector a in each iteration. However, with the use of decomposition

methods only a subset is processed and modified. This subset is called a working set

and allows handling sub-problems in each iteration instead of the whole vector. This

LIBSVM approach is based on the sequential minimal optimization algorithm [92]

which considers as a sub-set two Lagrange multipliers ai, aj in each optimization

step.

- Get Q function (4):

This function produces the outcome Q 4.3 a matrix with length size equal to the

total number of data instances. Note that within a step of the optimization solver

we compute the formula presented in the description of the kernel computation.

During this step, index i remains constant and j receives all values from 0 up

to the number of data instances. Thus, the kernel computation is performed as

many times as the number of rows (data instances) of the input file. However, in

the computation of the get Q() function we also add the labels of the respective

vectors based on formula 4.3.

- Solve function (5):

This function is called once during the execution of the program. As indicated

by its name, it outputs the complete solution of the SVM optimization problem.

Thus, it contains the entire process of the algorithm within which consists of the

arbitrary number of steps of the dual formulation optimization problem. Due to

the fact that in each step, certain variables of the algorithm are updated and these

updated values affect further computations, we cannot avoid leaving the execution

of the optimization problem to the host.

Sofia Maria Nikolakaki 64 July 2015

4.1 Support Vector Machine

4.1.1.3 Important Data Structures

This section describes all the important data structures of the SVM Training phase, which

are required by our hardware-based architecture. As mentioned in the beginning of the

SVM modeling section 4.1.1.1 and the background of LIBSVM 2.2.4.1, the LIBSVM

software receives as input a file that follows a specific format. The information contained

in this file is copied to an appropriate data structure so as to be able to utilize the given

information. Recall that it is not necessary for each data instance to have all its respective

features equal to a non-zero value. In other words, this representation illustrates how

sparse a dataset is. LIBSVM transforms the input information into a compact data

structure that only contains the useful information <indexi> : <valuei> where valuei

is non-zero. More specifically, each of the <indexi> : <valuei> pairs is by itself an

individual data structure that contains an integer number to denote the identification

number of the feature and a number of type double that corresponds to the respective

value of the same feature. In order to represent the complete set of data instances another

data structure contains a list of <indexi> : <valuei> pairs which belong to the inputs.

An input instance is separated from the next by assigning the value −1 to an index. In

addition, the same data structure contains a list of target labels, one for each training

data instance and the number of data instances in the file. The data structure that

contains the complete dataset is essential to the algorithm, as all the important functions

of the implementation need it to produce outcomes.

Note that the aforementioned data structure is two-dimensional NxM . The first

dimension N remains static during the training phase as it denotes the number of input

data instances. However, the second dimension M is dynamic, since it depends on the

number of non-zero features that correspond to as specific instance. Thus the value of

M ranges from zero to the maximum feature index.

4.1.1.4 Performance Opportunities and Considerations

So far we have presented the most significant parallelization opportunities offered by

the SVM Training phase, and subsequently the SVM classification phase as in both

stages the time-consuming process is the matrix-vector computations. However, besides

parallelization, we also need to take into account several other factors that can affect

our design, introduced by the nature of the technology we are using and the software

Sofia Maria Nikolakaki 65 July 2015

4. IMPLEMENTATION

reference we are comparing our implementation to. Since we have described the Maxeler

technology platform in 2.1, the reference software LIBSVM in 2.2.4 and the hardware

analysis in 4.1.1 we are ready to present several critical points that were taken into

account when designing the SVM Training phase hardware implementation.

4.1.2 Training SVM

The Support Vector Machines Training implementation of LIBSVM was thoroughly de-

scribed in section 2.2.4. In brief, it is based on the sequential minimal optimization

algorithm introduced by Platt in [92]. SMO is a gradient descent method which implies

that when the difference in gradients from successive iterations is small enough, the algo-

rithm converges. The basic principle of SMO is that a single pair of Lagrange multipliers

ai and aj is being optimized at a time. Due to the fact that computing ai and aj is

not the main focus of this thesis, for a detailed description of this method we refer the

reader to woks [92] and [49]. Yet, recall that for each xi and xj selected, the gradient

computation requires the calculation of kernel functions K(xi, xt) and K(xj, xt), for all

t. Hence, it is clear that the dot-product of data instances xi and xj with the rest of the

training samples should be computed in each step of the optimization process. Note that

LIBSVM uses 64-bit precision arithmetic, and therefore the hardware processing was also

performed on 64-bit precision data instances to avoid accuracy loss. Furthermore, once

again we stress out that successive iterations of the LIBSVM training implementation

cannot be parallelized due to the fact that the updated working set is based on the gradi-

ents calculated in the previous iteration. Thus, the focus of our SVM Training approach

is to evaluate whether we can implement a faster hardware-based kernel function using

Maxeler than the LIBSVM software-based kernel computation written in C++.

In the following sections, we present our dataflow FPGA-based co-processor for train-

ing Support Vector Machines. Our system is designed to efficiently exploit available

FPGA logic resources, to approach the theoretical bandwidth of the tool, to optimize

memory allocation and to yield the exact same accuracy as the LIBSVM software for

dataflow SVM Training computing. These are achieved by optimizing memory alloca-

tion, by utilizing to the maximum possible bandwidth and by performing appropriate

data management. Recall that we aim at training massive and dense dataflow datasets,

Sofia Maria Nikolakaki 66 July 2015

4.1 Support Vector Machine

to configure the optimal classifier; a problem that has not been yet addressed for FPGA-

based designs due to the problem complexity.

4.1.3 First Hardware Architecture

This section describes our first attempt to accelerate the kernel computation of the LIB-

SVM SMO implementation with the use of the Maxeler platform. It allowed us to get

acquainted with the tool, comprehend its benefits and drawbacks, as well as to create

the basis for the further improved architectures.

4.1.3.1 CPU and FPGA Integrated System

This section presents how we partitioned the complete LIBSVM SMO algorithm between

the CPU host and the FPGA platform. Restricting the whole execution of the algorithm

exclusively to either of the two does not allow splitting the parallel from the sequential

part of SMO. Figure 4.1 illustrates an overview of our system. The CPU (LIBSVM) host

depicts the training SMO-based software which is written in C and C++. In brief, the

host performs the sequential part of the optimization, and thereby executes step-by-step

(iteration per iteration) the sequential minimization optimization method. For further

details we refer the reader to sections 2.2.4 and 4.1.1.

At this point we will briefly describe the high-level view of our first architecture. More

specifically, in each iteration CPU provides the hardware platform with the selected work-

ing set data instances i and j. In this first attempt we did not define these data instances

(i and j) as streams, but we declared each feature of the data instance as an individual

scalar factor (input number). Hence, if the maximum number of features in a dataset is

n, then n scalar factors are sent from the host to the DFE during the whole hardware

processing. The DFE consists of the Manager and the Kernel as described in 2.1.2. Re-

call that the Manager provides an interface for configuring connectivity between Kernels

and I/O, while identifying possible violations. Furthermore, it is clear that the host and

the FPGA should interact in order to exchange information. The first should provide all

necessary data in order for the latter to carry out the appropriate computations, whereas

the latter should return the final outcome. The FPGA co-processor performs the kernel

function computations. In order to do so the training data instances are fed from the

host to the Kernel. More specifically, a single data element (feature of an instance) is

Sofia Maria Nikolakaki 67 July 2015

4. IMPLEMENTATION

Figure 4.1: First SVM Training Top level Architecture

inserted in the FPGA per time instance. Thus, if the training dataset consists of NxM

data instances, where N is the number of samples and M shows the maximum number

of features, then the Kernel will require NxM time instances to process all data. Fi-

nally, the Kernel produces parts of the radial-basis function (RBF), which are suitable

for hardware implementation that are returned to the host in each step. Note that we

implemented the RBF function due to its popularity and efficiency.

4.1.3.2 Problem Partitioning

Given that our main goal was to accelerate the kernel function computation, we carried

out the necessary problem partitioning. Recall that the input of the training algorithm

is a dataset which comprises several data instances and whose size ranges from a few

Megabytes to several Gigabytes. Furthermore, this dataset is transformed into a two-

dimensional data structure with dimensions mxn, where m denotes the number of data

instances and n shows the maximum number of features. In each step of the SMO

problem 2*m dot-products are produced from the multiplication of the mxn array with

two 1xn vectors, the first corresponding to the data instance i and the second to the data

instance j (working set). This kernel computation architecture separately produces the

total number of dot-products for the two aforementioned data samples.

Sofia Maria Nikolakaki 68 July 2015

4.1 Support Vector Machine

Due to the fact that producing one dot-product is completely independent from pro-

ducing another, we divided the mxn dataset into chunks as shown in Figure 4.2. Each of

these chunks is processed in parallel with the others.

Figure 4.2: Initial Problem Partitioning

However prior to sending a chunk to the DFE, pre-processing occurs as the Maxeler

platform only allows the exchange of streams of one-dimensional data or constant num-

bers. Therefore, the two-dimensional matrix is divided to f one-dimensional vectors all

of equal size 1xk ∗ n, where f denotes the number of chunks, k shows the number of

data instances that correspond to a chunk and n is the maximum feature identification

number. Note that Maxeler does not allow inserting one-dimensional arrays of different

size, and therefore dataset mxn should be equally divided. In our first implementation

the chunks equaled to 4, for reasons that we will discuss in the following sections.

Moreover, we exploited the parallelization opportunities offered by the dot-product

computation. In particular, calculating the dot-product between two 1xn vectors requires
n
2

multiplications and n
2

additions. As shown in Figure 4.4 all multiplications are simul-

taneously computed and the results are inserted into a balanced adder tree. Then, the

adder tree produces the final dot-product outcome in log n/2 stages.

Finally, a single RBF kernel function does not only require the result of the dot-

product of a data instance with another, but also the dot-product of each data instance

with itself. These separate dot-products are also produced in parallel to reduce the total

Sofia Maria Nikolakaki 69 July 2015

4. IMPLEMENTATION

kernel function computation time from t approximately to t
3
. Yet, this is not exactly the

case as we will see later on.

4.1.3.3 Data Movement on Host Side

Prior to any FPGA-based computations the involved data structures should be created

and initialized. The Maxeler platform interface only allows one-dimensional vectors which

are defined as streams. Furthermore, each hardware call may not necessary include input

and output streams, but the number of ticks (similar to clock cycles) is mandatory to

be defined in advance. However, in order for hardware to yield an output the number of

ticks should be completely consistent with the input number of elements. Thus, if the

declared number of ticks is N then each input and output vector should contain exactly

N elements. Figure 4.1 shows how data move from software to hardware and vice versa.

More specifically, in our initial attempt the input and output number of streams was 4

and 4 respectively according to the number of chunks we created 4.1.3.2. We selected the

specific number due to the fact that processing 4 streams concurrently was the maximum

number we could reach given the available amount of hardware logic resources. As shown

in 4.2 each stream comprises M
4

elements which follow one another. Note that the Maxeler

platform only allows stream vectors whose size is a multiple of 16.

The 4 input streams contain the entire training data set, whereas the 4 output streams

consist of the output of the kernel. The former does not require any further analysis as we

have already described the inputs in 2.2.4.1. Regarding the latter however, the output

streams do not contain the final outcome of the Q function 4.3 which was our initial

goal. The reasons that led to this decision were two. The first was due to the fact

that the dot-products of elements i and j with themselves remain constant during the

hardware processing, and therefore their computation is only performed once on software.

The second derives from the exponent involved in the RBF kernel function, since the

exponent is a computationally expensive function and precise accuracy is the main goal

of our implementation. Thus, the output streams include the outcomes of:

k(xi, xj) = dot product(xj, xj)− 2dot product(xi, xj) (4.4)

and the rest of the Q function 4.2 computation is carried out by the host processor. This

allows us to dedicate all hardware resources to the pipeline dot-product calculations.

Sofia Maria Nikolakaki 70 July 2015

4.1 Support Vector Machine

Finally, the i and j instances of the working set are not inserted in the DFEs as vec-

tors but as scalars, i.e. constant values. We decided our first architecture to follow this

direction because at first we aimed at testing datasets with small feature spaces. On one

hand, replacing streams with scalars values is more simple for a sketch implementation

as it does not require any synchronization or alignment, and also is faster since no initial-

ization and setup time overheads are in need. On the other hand however, the number

of possible features, i.e. scalars, is limited by the number of available registers, and in

addition each time this number changes (usually for each test dataset) several software

and hardware modifications should occur. Note that all input values are doubles, i.e.

8-byte elements.

4.1.3.4 Dataflow Kernel Computation on Hardware Side

Figure 4.1 does not only show the movement of data from software to hardware and back,

but also a top level architecture of our system. The system begins with initializing the

streams, scalar factors and corresponding clock counters (number of ticks) as described

in 4.2.2.3 on the host side. Next, the streaming values are passed to the reconfigurable

hardware one-by-one per tick to allow the kernel computation. The scalar inputs are

stored in registers on the FPGA, and thereby are always visible to the design. The com-

puted corresponding results return back to the CPU for the final Q function calculation.

We stress out the notion and impact of data flow movement. Data flow means that

the input streams are pipelined into the hardware, which implies that each clock cycle

a single element of a data instance is processed per stream. Hence, in our case the 4

input streams that are utilized in each clock cycle lead to 4 elements being processed

concurrently.

Our Kernel architecture is shown in Figure 4.4 with control logic omitted. All inputs

are inserted into the Kernel module which is responsible for sending each one of the

inputs to the corresponding Dot-Product module. The Dot Product module denotes a

dot-product function. The total number of Dot-Product modules is 8 since for each

chunk, two dot-products need to be computed based on 4.4, and thereby a total of 8 dot-

products can be computed concurrently. In addition, according to the aforementioned

formula each stream is inserted in two Dot-Product modules out of the 8, whereas all

scalars are inputted in 4 of these modules according to the same formula.

Sofia Maria Nikolakaki 71 July 2015

4. IMPLEMENTATION

Figure 4.3: First DFE Kernel Computation Hardware Core

Figure 4.4: First Dot-Product Hardware Core

The core of the Dot-Product module is shown in Figure 4.4 module.

This figure illustrates the datapath of the kernel. In general, our first hardware

system is quite similar to the respective parallel dot-product version described in ??.

Sofia Maria Nikolakaki 72 July 2015

4.1 Support Vector Machine

The boxes in Figure (X1, X2, ..., XN−1, XN) stand for different instances of the stream

X, whereas the boxes (I1, I2, ..., IN−1, IN) show scalars, where N is the feature space,

i.e. the maximum number of features. It is clear that for N features N
2

multipliers are

needed for a single Dot-Product module. Thus, for the total number of Dot-Product

modules 8 ∗ N
2

multipliers are required. The same applies for accumulations, as each

Dot-Product module uses N
2

summations, and thereby 8 ∗ N
2

accumulators should exist.

The number of multiplications and accumulations is better presented in the following real

dataset example. The gisette scale dataset that was presented in the NIPS 2003 Feature

Selection Challenge [93] is a 5M-dimensional problem with 6M training vectors. Thus,

each optimization step requires the computation of 6M dot-products for the selected

instance i and 6M dot-products instance j respectively. In computational terms this

is equivalent to 30 ∗ 1012 multiplications and accumulations for both samples i and j.

Also, note that the SMO typically converges after thousands of iterations which leads to

a massive number of multiplications and accumulations, thus indicating that the kernel

computation is the most computationally expensive part of the algorithm.

On each cycle (kernel tick), 4+N elements are sent from CPU to FPGA, a number

which is equivalent to the number of streams sent plus the number of scalars. These

elements feed 8 pipelines. In order to navigate the streams of data we used the stream

offset property provided by Maxeler. A core concept of dataflow computing is operating

on windows of input streams. Maxeler holds a defined data window on an on-chip memory

on the DFE, thus allowing to access data elements within a stream relative to the current

location (input instance of current clock cycle). The distance from the largest to the

smallest offset forms the window of data that is hold on the engine. More specifically,

in the dot-product pipeline the window size equals the number of features to be able to

correctly compute the result. Yet, imagine the data flowing in and out of the DFE. Let

us consider in Figure ?? that data instance X1 is the current instance, X2 is the instance

with offset −1, X3 is the instance with offset −2 and so on, until the last element of the

window XN with offset −(N − 1). On each tick, the data in the stream moves through

the window. Thus, in the immediate next tick instance X2 will become the reference

current instance, and all following elements will have the same offset as before added by

1. Note that element X1 has exited the window and that a new element XN+1 will be the

last element of the window. Recall that stream X contains subsequent data instances of

the training dataset. Hence, if we assume that in clock cycle k all N elements of a data

Sofia Maria Nikolakaki 73 July 2015

4. IMPLEMENTATION

instance are in the window, then in N cycles the window will contain the next entire

data instance. All results produced in between do not have any meaning, but in the first

architecture we could not overlap this time with useful processing time. Consequently, a

useful kernel computation is produced every N cycles where, N shows the feature space

of the training set. Note that the pipeline still produces one result per cycle, but it takes

a number of ticks for the result of a given input to propagate to the output, which is the

latency of the pipeline.

4.1.3.5 Memory Allocation

Optimized memory allocation is always a target of hardware designers. In particular, the

Maxeler platform used in our implementation offers a DRAM off-chip memory bank of 48

gigabytes per DFE and an on-chip Static RAM that holds some megabytes. An essential

part of dataflow design implementations is to choreograph the data motion to allow the

reuse of data while it is on the chip and limit unnecessary movement of data in and out

of the chip.

The formula of the RBF kernel function is shown in 4.1, with the respective analytic

expression being 4.2. In order to compute the dot-product of i with all other data samples

a 2-level nested loop is required as MxN dot-products are produced, where M shows the

number of data instances and N the maximum number of features. Due to the fact that

the kernel functions computed in parallel presume that the necessary dot-products are

produced we consider the inner loop to be the dot-product and the outer loop to be the

kernel function.

Ideally, an optimization in memory allocation would be to reduce as much as possible

the data streams sent real-time. This would be achieved by initializing on-chip SRAM

with small-sized vectors that are constantly traversed, and thereby more bandwidth would

be available during the hardware processing. In any case, in the specific version of our

architecture we could only utilize a small portion of the PCI bandwidth due to the fact

that a small amount of vectors could be processed at a time due to limited resources.

Moreover, the only data vector that is continuously traversed during the 2-level nested

loop is data instance i. Thus, only mapping i to the SRAM could be meaningful and

possible.

Sofia Maria Nikolakaki 74 July 2015

4.1 Support Vector Machine

Nevertheless, the necessity to pipeline data transfer and computing is essential for

a hardware design. In order to provide a better understanding of the dataset sizes we

are considering let us present such an example. Recall that the gisette scale dataset

described in 4.2.2.4 is a 5M-dimensional problem with 6M training vectors. Given that

LIBSVM involves 64-bit precision arithmetic the total size of training vectors equals 240

megabytes. Note that if we increase the training vectors of this dataset from 6M to 25M

or the number of features from 5M to 20M then the size of training vectors reaches 1

gigabyte. Thus, in each iteration of the optimization step 2 gigabyte of data should be

processed. We concluded that due to the fact that we could not approach the theoretical

PCI bandwidth, as we had reached the maximum utilization of FPGA resources, it was

sufficient to stream the chunks of data real-time into the DFE. We decided to not send

the dataset to the DRAM to avoid the initialization cost induced by the data transfer

time which could not be overlapped with computation.

Finally, data instance i and j are neither stored in the on-chip SRAM nor are retrieved

from the off-chip DRAM. We decided to split the instance into individual features and

pass each one of them to the DFE as a scalar. These are stored to the DFE in registers

and with this practice we avoid any stream initialization cost and data transfer delay.

Also, declaring the features as scalars in registers implies that the kernel will continuously

have access to these registers.

4.1.3.6 Throughput Utilization

The MPC-C series of Maxeler provides up to 8 input and 8 output streams from CPU

to the DFE and vice versa. In this first architecture we only used 4 input and output

streams which implies that half of the PCI bandwidth was used. However, we could not

utilize the rest of the offered bandwidth as the bottleneck of this architecture was the

full utilization of available logic resources.

4.1.3.7 Observations on the First Architecture

The design and implementation of the first FPGA-based architecture on the dataflow

platform allowed us to comprehend the notion of data flow computing, as well as the op-

portunities and difficulties introduced by the Maxeler platform. In order to assist future

data flow designs we present the observations made during this process which also led to

Sofia Maria Nikolakaki 75 July 2015

4. IMPLEMENTATION

the second version of our implementation.

Observations

• The presented architecture exploited the available FPGA resources to the fullest,

but the same did not apply for the available PCI bandwidth which reaches 2 GB/sec.

In particular, we barely used the 50% of this bandwidth. This observation allowed

us to understand that with better resource utilization we could significantly increase

the number input pipelines and achieve balance between throughput and resources.

• In addition to the unexploited available bandwidth, in the first architecture we did

not utilize the large off-chip memory located in the DFE. Simply streaming vectors

from CPU to the FPGA and back was sufficient as we only considered small datasets

in our first implementation. However, the off-chip DRAM is a tool that is essential

for massive data processing.

• The Manager component of the DFE which provides the interface that connects

the software and hardware is convenient to use. More specifically, defining inputs

and outputs with the use of the API allows testing several cases and evaluating the

overall performance. This is particularly important when we aim at reducing the

learning curve of a new tool.

• We have stressed out that Maxeler is a data flow platform. In general, few hardware-

oriented tools are specialized on data flow computing. If the target platform is an

FPGA or a GPU card then the respective interface that will handle the continuous

input should be implemented and tested, whereas Maxeler provides a simple API

for tick-by-tick (cycle-per-cycle) input pipeline. In addition, it also offers the stream

offset feature which provides easy access to data instances that precede or follow the

current one. However, due to the nature of data flow computing we receive an actual

result every N cycles which means that N − 1 cycles produce indifferent outcomes.

Thus, even if the stream offset property allows easy data access, it does not assist the

programmer to overlap the aforementioned overhead with computationally useful

time.

Sofia Maria Nikolakaki 76 July 2015

4.1 Support Vector Machine

• It is clear that our first data flow SVM Training system did not perform efficient

resource allocation. This limitation was primarily due to the big amount of mul-

tipliers and accumulations that are required even for relatively small datasets. In

order to achieve maximum throughput utilization the number of arithmetic units

had to radically decrease.

• Until now we have not mentioned the simulation mode offered by the data flow

tool. It proved to be accurate, with results very close to the actual ones, both

in terms of resource utilization and final arithmetic outcomes. Also, due to the

fact that mapping an implementation to the DFE usually requires more than an

hour, according to the size of the design, evaluating the design’s performance using

simulation is essential.

• Each hardware call introduces an overhead to the overall hardware processing time.

We noticed that in the case of Maxeler this time equals 0.03 sec and in order to

configure an efficient hardware design, the overall FPGA execution time should be

significantly bigger than 0.03 sec, and more specifically should be 1% of the total

hardware runtime thus being a negligible amount of time.

4.1.4 Second Hardware Architecture

In this section we describe our second attempt to create an accelerated hardware-based

data flow architecture for the SVM Training phase. The novelties of the specific im-

plementation were based on the observations made in the previous one 4.1.3.7. The

organization of the second architecture’s description follows the one of the previous ar-

chitecture, thus allowing to indicate comparisons and differences more clearly.

4.1.4.1 CPU and FPGA Integrated System

This section is not a lot different than the respective one presented in 4.1.3.1. Once again,

the host performs the sequential minimization optimization method and the hardware

undertakes the kernel function computations. One of the main differences in a high-level

perspective of the second architecture compared to the first is that now data instances i

and j of the selected working set are not split into scalars, but are streams. Thus, the re-

configurable system does not depend on the feature space of the training dataset, but is

Sofia Maria Nikolakaki 77 July 2015

4. IMPLEMENTATION

fully parameterized; it changes dynamically the dimensions the data structures according

to the needs of the application. Another high-level modification is that now the training

dataset is not inserted into the DFE from the CPU in streams. More specifically, the

training data samples are stored in the beginning of the program execution into the off-

chip DRAM (LMem) which is also hosted in the DFE 2.1.5. Then, the LMem feeds the

Kernel with a data element per time instance, whereas previously this task was carried

out by the host. The modified top-level architecture is shown in Figure 4.5.

Figure 4.5: Second SVM Training Top level Architecture

4.1.4.2 Problem Partitioning

Recall that in 4.1.3.2 we could only divide the problem into 4 chunks that consumed all

the available resources. Nevertheless in the second, improved architecture we achieve a

more efficient resource utilization, and thereby the allowed number of chunks becomes 7.

This shows that we process more elements in parallel and there is also better throughput

utilization.

More specifically, the same data pre-processing as in 4.1.3.2 is performed , yet for 7

chunks. Hence, 7 one-dimensional vectors are created all of equal size. These streams are

pipelined into the DFE and produce simultaneously 7 kernel computations, instead of 4.

Sofia Maria Nikolakaki 78 July 2015

4.1 Support Vector Machine

4.1.4.3 Data Movement on Host Side

This section significantly differs from the respective previous one 4.2.2.3 due to the fact

that we aimed at achieving dynamic data structure initialization and processing, as well

as faster data transfer.

We first focused on how to replace the limited number of input scalars with a more

efficient and convenient structure. Given that the only alternative choice was the use

of streams it was our final selection. Recall that scalars are constant numbers stored in

registers, as well as that all input and output streams in Maxeler should have the same

length. However, neither can streams be stored in registers, nor can data instances i

and j have the same length as the rest of the input streams. Based on these observa-

tions, the appropriate adjustments were carried out. More specifically, both problems

were addressed by creating a stream of equal size as the other streams that contained

consecutive replicas of the i or j instance. In other words, instead of storing each feature

of these instances in a register, we continuously feed the DFE with the same values. Note

that we need to stream i and j as many times as the size of the training set to produce

the respective dot-products, and thereby the new vector will contain exactly the same

number of elements as the rest of the streams. One one hand this approach is not limited

to the feature space dimension and allows the kernel to ”remember” the features of i and

j. On the other hand however, an initialization overhead is introduced that cannot be

hidden.

Furthermore, the input streams are no longer transferred from CPU to the FPGA

device, but from LMem which is located on the DFE to the re-configurable platform. We

compared the required time to transfer data from the two different sources for different

sized datasets. In brief, results showed that data transfer which origins from the off-chip

memory is always faster. Still, this does not necessarily imply that the use of LMem

is always efficient as one should also take into account the overhead required to write

and read from the off-chip memory. Based on our findings regarding data transfer and

on the fact that our implementation only requires writing on the off-chip memory which

occurs few times, we decided to stream the data samples from the LMem to the DFE.

The described top-level architecture is illustrated in Figure 4.5. The different data origin

is defined in the Manager interface. Moreover, the kernel still considers the input as

a stream and receives a data element per cycle, regardless of the source. The main

Sofia Maria Nikolakaki 79 July 2015

4. IMPLEMENTATION

difference compared to streams coming from the CPU is that in order to write a vector

into memory it must be a multiple of the number 384 for memory alignment purposes

that we are not aware of. To conclude the exact interaction between the host, the off-chip

memory and the FPGA is that the 7 streams containing the partitioned training data

samples are written few times from the CPU into the LMem, and in each hardware call

the entire streams are sequentially inserted tick-by-tick in the FPGA.

Note that even though we designated a data path from the LMem to the FPGA, it

is a one-way path as the results produced by the hardware implementation are returned

to the host and are not written into the memory. Writing the results back to the LMem

would yield a prohibitive overhead as results should be written for each hardware call.

On the contrary, the same training dataset is traversed multiple times, and thereby the

respective writing overhead is negligible compared to the entire runtime of the program.

Moreover, writing back to the LMem would also allocate additional memory ports which

could be exploited more efficiently. Thus, it is efficient to read the training data samples

from the LMem, but not to read the produced results from the memory.

4.1.4.4 Dataflow Kernel Computation on Hardware Side

The hardware design of the second architecture significantly differs from the first. As we

have already mentioned our main goal was to achieve efficient resource allocation in order

to allow further throughput utilization. The modified system is illustrated in Figure 4.5.

Due to the fact that we pipeline 7 streams in this architecture, instead of 4 we have 7

parallel processing units to reach maximum performance. Each of these units produces

a partial kernel computation that is sent back to the host in order for the final output to

be carried out.

More specifically, recall that in the previous architecture we needed n
2

multiplications

and totals for the computation of each product, where n denotes the feature space of the

training set. The new core of the Kernel, which will be discussed in detail is illustrated

in Figure 4.6.

Unlike 4.2.2.4, in the new architecture we replace the n
2

number per dot-product with

1. Given that we pipeline 7 streams into the kernel, the hardware produces 7 partial

kernel functions similarly to 4.2.2.4 where we inputted 4 streams and produced 4 sub-

kernels. In order to do so the FPGA carries out 14 dot-products in parallel, and therefore

Sofia Maria Nikolakaki 80 July 2015

4.1 Support Vector Machine

Figure 4.6: Second Dot-Product Computation Hardware Core

a total of 14 multiplications and 14 sums will be required for the whole design. Note that

in the previous architecture for the same purpose we would need 14 ∗ n
2

such numerical

functions.

In order to achieve practical resource utilization we completely modified the core of

the Kernel. In the trivial loop used for the dot-product computation we have looked at so

far, each iteration of the loop relies on a previous value. In particular, the appearance of a

new feature of a data instance leads to a multiplication of this feature with the respective

feature of instance i, as well as to an aggregation of the computed value with the rest of

the subtotal, i.e. sum = sum + in ∗ xn, where sum is the remainder of the dot-product

computation, and in and xn show the features of data instances i and x respectively.

Sofia Maria Nikolakaki 81 July 2015

4. IMPLEMENTATION

Recall, that the kernel computation also requires computing value sum = sum+xn ∗xn,

which denotes the dot-product of a data instance with itself. Hence, since we have 2

partial aggregations for each parallel instance, and given that there are 7 parallel units

running on the DFE , we have to preserve 14 such partial aggregations. However, each of

these aggregations creates a pipeline where each stage of the pipeline calculates a value

of sum based on the value of sum from the previous stage of the pipeline. Due to the

fact that there is dependence from one iteration to the next, and thus a cycle is created

in the data flow graph.

In our first architecture we removed the cycle of the data flow graph by fully-unrolling

the innermost loop, but a big number of features led to a prohibitively large amount of

logic. This approach would have been efficient if the innermost loop was as small as at

most 10 loops. In the respective improved version, we pass the subtotal back into the

adder, creating a cycle. The backward edge is shown as a dotted red line in Figure 4.6.

In order to keep track of the current position of the input data instance we utilize an

advanced counter which resets all values when a new data instance appears in the kernel

to begin the computation of a new dot-product. The cycle in the kernel data path causes

an overhead in the beginning of the hardware execution, and therefore the first useful

output will be produced some ticks after the other useful results.

Furthermore, we need a variable that will carry the value from the previous iteration.

This variable can be considered as a wire that connects the result of the previous iteration,

which is stored in a register, with the adder, thus creating the cycle in the data flow.

The hardware-based loop comprises three parts. The first is a multiplexer that selects

the initial value of an iteration. In our case this value is initialized with 0 every time

that a dot-product computation is completed and a new data instance flows into the

kernel. During the dot-product computation the multiplexer selects the dependent value

produced step-by-step in the previous loops to be used in the following ones. Hence, the

second part of the loop computes the updated new value. Finally, the third part of the

hardware-based loop is responsible for connecting the new value back.

In section 4.2.2.4 we used the stream offset property of the data flow programming

tool to access future elements. In our new approach we also need to access an element

other than the current one, as we need to ”remember” the previously generated value.

However, there are two main differences compared to the first architecture, which are the

number of stream offsets used and the range of the window. The first modification is easy

Sofia Maria Nikolakaki 82 July 2015

4.1 Support Vector Machine

to comprehend as instead of N − 1 stream offsets for the subsequent N − 1 features of a

data instance , we only require one that will access the previous updated subtotal. On

the other hand, understanding the window length is not as trivial since it is not easy to

comprehend when will the old subtotal be updated with a new value as by the system. In

order to achieve a parameterized architecture and to avoid mistakes introduced by human

observations that may lead to unnecessary delay we used the autoloop offset feature of

Maxeler that automatically calculates the lowest valid offset for a cycle in the graph.

Specifically, in our example the adder of double-precision is a multi-stage pipeline with

the results being available after 13 ticks from the beginning of the function. Given, that

prior to the sum we introduced a multiplexer which has a pipeline depth of 1. Thus, the

pipeline created has depth equal to 14 and setting the stream window respectively yields

valid outcomes.

Finally, the 14 clock cycles delay introduces the need to control the stream output.

Let us assume that we do not monitor the outputs of the kernel and send all produced

elements to CPU. Then, given that we need N features of a data instance to flow in and

out of the kernel, as well as 14 additional ticks per feature to update the previous value

with the new, it is clear that N ∗ 14 results would be outputted in total for a single data

sample. However, the number of kernel clock cycles should equal the number of elements

in the training data set since we need each feature of every data instance to be pipelined

to the kernel. Hence, instead of producing N ∗ 14 results per data sample, we control the

output stream to yield an outcome every 14 cycles.

4.1.4.5 Memory Allocation

In section4.2.2.4 we provided an example of a 5M-dimensional problem with 6M training

vectors. We also mentioned that with the use of 64-bit precision arithmetic the total size

o this dataset equals 240 megabytes. Hence, mapping the entire dataset to the BRAM

to achieve the fastest data transfer is not possible. We considered updating the on-chip

memory with blocks of the training set at runtime. However, transferring data from the

CPU to the BRAM for each hardware call requires essentially longer time than writing

the data from the CPU to the off-chip memory few times during the execution of the

program. Based on the same observation we concluded that writing the outputs of the

Kernel back to the LMem would also introduce a significant overhead compared to simply

Sofia Maria Nikolakaki 83 July 2015

4. IMPLEMENTATION

streaming them to the CPU via the PCI. However, in case an application reuses data

during a single hardware call it is definitely more efficient to update either the on-chip

or the off-chip memory respectively depending on the size of the data.

Moreover, ideally we would retrieve data instances i and j by addressing the LMem

appropriately and repeatedly traversing and sending the same instance to the FPGA.

Addressing the elements of the working set in such way would only insert a negligible

stream initialization cost since the stream would have length exactly N , where N denotes

the feature space of the data set. However, the Maxeler tool does not allow random

accessing the memories of the DFE. It only permits sequential traverse that is declared

prior to the program execution in the Manager API. Yet indexes i and j change in each

iteration of the optimization problem, and thereby it is impossible to retrieve them from

the off-chip memory. Thus, we create a vector in the host program that contains the

instance i or j replicated several times, as described in 4.1.4.3 and stream this structure

at runtime. The overhead introduced equals the time required to initialize the vector

with the appropriate values plus the time to initialize the stream that will be sent to the

FPGA.

4.1.4.6 Throughput Utilization

Our main concern in the previous architecture that led to a completely different hardware

approach was the limited throughput utilization offered by the PCI. By reducing the

arithmetic operators we were able to pipeline 3 additional input streams to the FPGA

which overall yielded the production of 7 kernel functions concurrently. Each element

streamed either from the LMem or from the host, is inserted once in the DFE and then

it is discarded. It is this challenging I/O ratio that makes it difficult to create parallel

instances of independent units. Hence, focusing on utilizing adequate memory access

bandwidth is crucial for any data flow computing architecture.

4.1.4.7 Observations on the Second Architecture

Even though the majority of the second architecture was designed based on the observa-

tions made during the implementation of the first approach, still the new system resulted

in a new set of remarks. Some of these could be addressed, thus leading to an enhanced

Sofia Maria Nikolakaki 84 July 2015

4.1 Support Vector Machine

second version implementation, while others can only be used as considerations for simi-

lar future hardware designs.

Observations

• The first architecture requires M ∗N kernel clock cycles to produce the total ker-

nel functions, where M the training set size and N the respective feature space.

However, although the second architecture was improved in terms of efficient logic

resources and throughput utilization, it also introduced an additional delay of 14

ticks per data instance. Thus, in order to output all results the second architecture

needs 14 ∗M ∗N clock cycles. Furthermore, note that the number 14 corresponds

to the pipeline of a 64-bit adder. It is an arbitrary number whose number increases

for more complex functional units. We cannot avoid waiting M ∗ N clock cycles

to produce all outcomes, since it is necessary that the entire dataset floats through

the DFE. In addition, waiting as much time multiplied by 14, eliminates our efforts

to enhance parallelism and the efficiency of our design. Therefore, it is clear that

the overlap of the 14 cycle delay with beneficial computational time is critical for

the second architecture.

• The maximum number of possible input and output streams that can be trans-

ferred from and to the CPU via the PCI is 8 and 8 respectively. Recall that for

each input stream we also produce a respective output stream, and thereby given

that we pipeline 7 streams from the LMem into the DFE we also need to stream

back to the CPU 7 streams through the PCI. Hence, 7 out of 8 output streams

are being used which is very close to the optimal. We do not need to use the 8

input streams since our findings showed that transferring data from the LMem was

faster, thus allocating 7 streams from the LMem to the DFE instead. However, the

LMem allows a maximum of 15 streams to be connected which implies even better

throughput utilization can be achieved, if supported by the implemented algorithm.

• Note that we could partition the problem into 8 chunks instead of 7, since the

maximum number of streams is 8. Yet, even though we did so the debugger did

not permit as to continue by claiming that we had reached the maximum number

of possible output streams. This was an inconsistency that could not be easily

Sofia Maria Nikolakaki 85 July 2015

4. IMPLEMENTATION

interpreted as no other message appeared. We assume that it is due to the fact

that we use 64-bit precision and more than 7 streams of the PCI were eventually

required internally to send all of the data.

• In general, inconsistency was a matter that we encountered several times while

creating the second architecture. The simplicity of the design itself was not reflected

during the implementation. For example, we had completed a design that used the

Advanced Dynamic SLiC interface, instead of the default Manager interface. The

advanced interface allowed us to control the data movement and hardware calls

more efficiently as the programmer specifies the properties of the interface himself.

Yet, in the actual DFE execution the advanced interface presented several bugs

when the dataset size increased which were not caused from our part as the same

bugs also appeared in their own examples. Another example was encountered when

the second design was performed on relatively small datasets where each hardware

call required at most 10 sec. In these cases we noticed that the hardware execution

time for a constant and pre-defined number of cycles initially was very small (0.03

sec) and increased until it reached a peak (0.15 sec) to decrease to the initial time

again (0.03 sec). This process continues repeatedly throughout the entire program

runtime and shows that there is probably some buffer that fills gradually and then

empties. In order to only keep the small execution times we loaded and unloaded

the max file, which is similar to a bit stream, on and off the DFE before and

after the hardware call respectively. Other problems regarding the pre-defined

number of cycles, the accuracy of the simulator and others were also met during

the implementation, thus showing that several properties provided by the Maxeler

platform are still under development.

4.1.5 Improvements on Second Architecture

Recall that even though the second design achieved efficient memory and resource alloca-

tion, as well as adequate bandwidth utilization, there was a prohibitive overhead induced

by the the cycle in the data flow graph. More specifically, due to this cycle the required

time to produce an output was not equal to M ∗N clock cycles as expected, where M the

number of data samples in the training dataset and N the corresponding feature space.

Sofia Maria Nikolakaki 86 July 2015

4.1 Support Vector Machine

In fact, it became 14 ∗M ∗ N , where the number 14 denotes the depth of the pipeline

required to update the previous dependent value with the new. Our main goal was to

improve the second architecture by eliminating this multiplier.

In order to do so we basically modified the order of the data sequence in the soft-

ware, without affecting anything on the hardware side. More specifically, in 4.1.3.2 and

in 4.1.4.2 each chunk was transformed into a one dimensional vector. This vector com-

prised concatenated rows, where each row depicted a data instance of the training set.

To overlap the delay of the cycle with useful computational time we basically changed

the sequence according to which the 2-dimensional matrix is transformed into a vector,

thereby changing the sequence of the data flow. The 14-depth pipeline yields a 14 cycle

delay per data element in the DFE. We continuously feed this pipeline with new data

elements so that it is never empty, as it was in the first version of the second architec-

ture. Let us assume that feature1 of instance1 is inserted in the pipeline. We know in

advance that this pipeline has 14 stages, and therefore the updated value will be pro-

duced after 14 clock cycles. Thus, feature2 of instance1 should be inserted to the FPGA

14 clock cycles later to produce the next partial result. In between, immediately after

feature1 and its updated value is in the second stage of the pipeline, we feed the first

stage with a new partial value which belongs to feature1 of instance2. Next, feature1 of

instance3 follows until the pipeline is full with the last element inserted being feature1

of instance14. Then, the exact next clock cycle the updated dot-product of instance1

will be ready and feature2 of instance1 is inserted to the pipeline and the same process

continuous. Once all the dot-products of the first 14 data samples have been produced,

feature1 of instance15 flows into the DFE and so long. Thus, starting from the first

element of the 2-dimensional matrix, the sequence of the data flow is vertical until the

element which fills the pipeline of the cycle in the graph is met (in this case 14). Then,

the next data element is the second feature of the initial data instance and the elements

are again traversed in the same vertical manner. The final data traversal is similar to a

zigzag. This process is completed once the entire chunk has been transformed to a vector.

Note that the pipeline is continuously fed. Thus, the first dot-product result is pro-

duced after N ∗ 13 clock cycles, the second after N ∗ (13 + 1) and so on. Yet, the

total amount of clock cycles required to produce all the partial kernels of a chunk in the

improved second architecture is approximately N∗M
7

since all the features of each data

instance should be processed by the FPGA.

Sofia Maria Nikolakaki 87 July 2015

4. IMPLEMENTATION

4.2 Mutual Information

We perform the software code analysis of the Mutual Information (MI) computation from

the hardware designer’s perspective, following the same steps as those followed for the

SVM Training phase analysis 4.1.1. This allows us to estimate the hardware opportunities

and bottlenecks induced by the MI calculation.

4.2.1 Modeling for Hardware

The structure of the MI hardware modeling section is exactly the same as the one in the

respective SVM Training one.

4.2.1.1 Inputs and Outputs

Mutual Information receives as input two random variables in the form of time-series and

produces a single arithmetic value which is the result of the MI computation. The input

time-series can have various sizes provided that they fit into memory. The arithmetic

precision of MI depends on the type of the input time-series that are being considered,

and therefore by the application’s arithmetic requirements.

4.2.1.2 Algorithm Profiling

In order to calculate the final Mutual Information statistic value between two random

variables, the mutual and joint Probability Density Functions (PDF) need to be estimated

based on formula 2.3. Yet, the time required to produce the PDF estimations directly

depends on the length of the time-series, i.e. the size of the input data. Table ?? depicts

this dependence by showing how the execution time for the PDF estimation scales with

time-series of different sizes. More specifically, the results in Table 4.2 show that the

execution time for PDF estimation increases linearly with the input size.

Furthermore, due to the fact that all MI computations sought to estimate densities

given a finite number of data points an appropriate estimator should be used. We used the

equi-distant histogram estimator which is the simplest non-parametric density estimator

and is easy to produce and comprehend. Note that regarding the resolution R of a

histogram, when this becomes higher for a specific application then granularity becomes

smaller and MI accuracy is improved. This resolution shows the number of bins used

Sofia Maria Nikolakaki 88 July 2015

4.2 Mutual Information

Time-Series Size(elements) Execution Time (ms)

10000 0.23 (1)

100000 1.53 (2)

1000000 14.3 (3)

10000000 143 (4)

Table 4.2: Dependency between the execution time required for PDF estimation and the

size of the inputs.

Number of Bins Execution Time (ms)

100 0.11 (1)

500 24.5 (2)

1000 98.2 (3)

5000 2460 (4)

10000 9870 (5)

Table 4.3: Dependency between the execution time required to compute MI and the

number of the bins in the histogram.

to quantify the time-series into sets. Yet, the increase of resolution also causes the

squared increase of the execution time required to compute the MI value, as the time

complexity for the MI computation is O(R2). This is reflected in the MI formula presented

in 2.38 which requires iterating over the two PDF estimations P(X) and P(Y). The

aforementioned dependency between resolution R and PDF estimation execution time is

illustrated in Table 4.3.

The results of the software profiling analysis in Tables 4.2 and 4.3 indicated that the

most time-consuming part of the process followed to calculate the MI value between two

random variables with the use of histograms, was the final computation of this statistic

value. The only exception is observed for a small histogram resolution and a great number

of input data. In such cases density estimation consumes more time than MI calculation.

One such example is when the number of bins equals 500 (24.5 ms) and the number

of input data is equal to 107 elements (143 ms). Still, even though in a few cases the

PDF estimation execution time is the majority of the entire program runtime, these cases

Sofia Maria Nikolakaki 89 July 2015

4. IMPLEMENTATION

are met in a limited amount of applications. Thus, we address the general case which

suggests that in order to accelerate the MI calculation between two random variables,

formula 2.38 needs to be parallelized and mapped to hardware. For example, for 1000

bins and 105 input elements, the MI computation requires 98.2 ms, whereas the creation

of the histogram only needs 1.53 ms. Hence, the former constitutes 98% of the overall

execution time of the program, while the latter requires only 2%.

4.2.1.3 Important Data Structures

In this work equi-distance histograms were used to estimate density, due to their popu-

larity, fast performance and convenient use. Note that configuring optimal algorithmic

solutions to yield maximum accuracy is not the scope of this thesis as we aim in MI

acceleration. The outputs produced from the histogram construction are probabilities

P(X), P(Y) and P(X,Y), which correspond to the PDF functions of random variables X,

Y and joint variable of X and Y respectively. The first two functions are one-dimensional

vectors, whereas the third is depicted by a two-dimensional matrix. Moreover, the in-

put time-series are stored in one-dimensional structures of type float whose sizes depend

on the number of the window we have selected. This window basically represents what

percentage of the time-series we are studying at a time.

4.2.2 Hardware Architecture

The hardware implementation of the MI computation was significantly based on the

observations made during the SVM Training hardware-based implementation. Naturally

certain points were adapted to the requirements of the new problem, but the main body of

the new special-purpose approach was built based on the previously derived observations.

4.2.2.1 CPU and FPGA Integrated System

The MI system architecture is illustrated in Figure 4.7.

In general, the MI processing is divided into two basic stages, the probability density

function (PDF) estimation and the final calculation of Mutual Information based on for-

mula 2.38. Our findings during profiling showed that a histogram-based PDF estimation

is not sufficiently computationally intensive to be mapped to hardware, and thereby this

Sofia Maria Nikolakaki 90 July 2015

4.2 Mutual Information

Figure 4.7: Mutual Information Basic System Architecture

task was carried out on the host side. Unlike PDF estimation, the profiling results pre-

sented that MI calculation execution time can reach 98% of the total program runtime.

Thus, the core MI computation was assigned to the hardware side. Calculating the fi-

nal MI value on hardware would result in reduced performance as it would disrupt the

pipeline flow by introducing controlled inputs and outputs. Hence, the results produced

by the DFEs are streamed back to CPU which accumulates the individual parts to yield

the MI value. We resorted to this approach because it was the most efficient one, given

the Maxeler system.

Sofia Maria Nikolakaki 91 July 2015

4. IMPLEMENTATION

4.2.2.2 Problem Partitioning

Given that our main goal was to accelerate the kernel function computation, we carried

out the necessary problem partitioning. More specifically, given the produced density

estimations P(X), P(Y) and P(X,Y) the final outcome is ready after R2 clock cycles,

since all streams have length size equal to R2. In order to reduce this time to R2

2
we

simply considered splitting P(Y) and P(X,Y) into two streams. Then, each half of P(Y)

and P(X,Y) is processed simultaneously as there is not dependence between the different

levels (bins) of the distribution function. Note that we do not have to split P(X) due to

the fact that index y in the sum formula remains constant, thus allowing us to divide the

vector, whereas index x receives all possible values in the range from 1 to R for a constant

y. Therefore, the hardware produces concurrently two partial MI, the first produced from

the first half R
2

levels and the second produced from the second half R
2

levels that are

summed on hardware and streamed back to the host. Hence instead of the original R2

clock cycles required to produce a MI result , with the aforementioned partitioning we

divide this time by the factor of 2, i.e.R
2

2
clock cycles.

4.2.2.3 Data Movement on Host Side

Based on 4.2.2.1 we need to stream the PDF functions P(X,Y), P(X) and P(Y) from the

host side to the hardware side in order for the MI calculation to take place. The length

of each of these streams is defined by the maximum length that needs to be sent. Given

that P(X,Y) is a two-dimensional structure 4.2.1.3 of size R2, where R denotes resolution,

we know in advance that the length of the streamed vectors will also be R2. However, the

fact that distribution estimations P(X) and P(Y) are one-dimensional vectors of size R

led to the decision to stream each one of them R times into the DFE so as to match the

size of P(X,Y). This introduced an additional consideration, to stream P(X) and P(Y) in

the correct order. The distribution estimation of random variable X is simply streamed R

times with the use of a R single loop. However, re-ordering P(Y) appropriately induced

an initialization cost as it could not be replicated R times. Furthermore, the hardware

processing is fully pipelined, meaning that to produce correct partial MI values each

cycle, the respective P(X), P(Y) and P(X,Y) estimations should arrive simultaneously at

the DFE component.

Sofia Maria Nikolakaki 92 July 2015

4.2 Mutual Information

4.2.2.4 Dataflow Kernel Computation on Hardware Side

The basic hardware architecture that corresponds to the substance of the MI calcula-

tion 2.38 is shown in 4.8. Note that our system uses two parallel special-purpose units

to compute an MI value twice as fast compared to a single hardware core. Thus, the

aforementioned architecture represents each one of these cores shown in Figure 4.7.

We stress out that the MI hardware-based architecture is fully pipelined, and thereby

an iteration of the MI accumulation is performed every clock cycle. The three PDF

estimation vectors are initially inserted in the pipeline, one value of each vector per clock

cycle. Then, these values are processed in the pipeline and the respective results are

accumulated in the Sum module. The basic arithmetic functions, illustrated in 4.8 with

circles use single-precision floating-point, whereas more complex arithmetic operations

denoted with squares utilize ready floating point hardware cores. In particular, the two

square arithmetic components perform log approximation and accumulation, and are

described in detail in the following paragraphs.

The logarithm base 2 approximation component was designed based on the fastlog2

work. This approach was selected due to the fact that it was proved very efficient with re-

spect to resource utilization and computation overhead. In addition, the relative accuracy

of this log approximation is approximately equal to 2.09352 exp−05 which does not yield

substantial differences. However, the existence of such accuracy propagates a bigger error

to the final MI computation as this error is accumulated during the sum calculation of

formula 2.38. In particular, for a high histogram resolution value R the accuracy reaches

1.0564 exp−02. In order to implement a hardware-friendly log approximation module,

we also considered two other methods, the first being the construction of Look Up Tables,

and the second being Taylor Series. Although the former technique produced relatively

good results in terms of accuracy , its utilization was limited by the BRAM resources

required. For massive datasets and high resolution, the PDF estimations contained very

small values which could not be addressed by the LUT method. Similar observations were

also noticed in the Taylor Series technique for log approximation, since it only performed

well and required limited resources allocation for specific inputs. More specifically, if

a bigger time-series was inserted into the Taylor series method, then the computation

required a lot of iterations to converge, and subsequently significant hardware resource

Sofia Maria Nikolakaki 93 July 2015

http://www.machinedlearnings.com/2011/06/fast-approximate-logarithm-exponential.html

4. IMPLEMENTATION

Figure 4.8: Mutual Information Hardware Core Architecture

allocation due to the fact that the Maxeler systems do not provide an efficient way to

address operations with feedback loops.

Another optimization was made regarding the aggregating operator in 2.38. Recall

that the Sum module is responsible for accumulating the partial results. Similarly to

Sofia Maria Nikolakaki 94 July 2015

4.2 Mutual Information

the kernel computation in SVM we need to store the previous partial value, and thereby

a floating point adder is used. Thus, the same delay pipeline is introduced, only now

it requires 13 clock cycles instead of 14 to be ready for the next accumulation. Note

that in order to produce the correct hardware-based result one value per each of P(X,Y),

P(X) and P(Y) density functions had to be streamed every 13 clock cycles, as we did

in 5.1.2. Yet, this would create a 13 times slower system architecture. This overhead was

prevented by rearranging the dataset in such way that an instance per stream is inputted

every clock cycle, accumulated and stored in the 13-depth pipeline buffer, but with the

first slot of the buffer containing the results of instances 1 + 14 + 26 + ... and so on.

Similarly the second slot of the buffer contains the partial results of inputs 2 + 15 + 28

and so on. This applies for all the 13 slots of the feedback buffer. Thus, by the end

of the hardware execution the 13 slots will contain the final 13 partial sums that are

streamed out to the host in order to be accumulated. Finally, the CPU sums the 13 last

elements of each received stream and produces the final MI outcome. When two parallel

MI cores are implemented on hardware we receive two output streams, leading to the

final accumulation of 26 partial results, 13 introduced by each core.

4.2.2.5 Memory Allocation

In the Mutual Information computation hardware-based approach we did not utilize the

properties of the off-chip memory as we did in SVM. The reason is because there was

no dataset that was continuously traversed. Recall that in the case of SVM a specific

dataset which was loaded in the LMem from the beginning of the program, was read

twice in each iteration. However, for each MI calculation each time-series is read once

with a single call to hardware, and thereby there was no need to use the on-chip and

off-chip memories.

4.2.2.6 Throughput Utilization

The single core MI computation utilizes 3 out of the 8 available streams of the dataflow

architecture. In order to further accelerate the application the PDF estimations were

divided into half, and in this case 5 streams were used instead of 3. Note that the

new number of streams is not 6, because once again the same vector P(X) is streamed

continuously. Thus, we only had to divide P(Y) and P(X,Y). The use of two parallel

Sofia Maria Nikolakaki 95 July 2015

4. IMPLEMENTATION

cores instead of one resulted in better bandwidth utilization, and consequently better

performance. However, mapping on hardware two cores instead of one only allocated

10% of the available resources. Further exploitation of the FPGA platform is bounded

by the number of available PCI streams.

Sofia Maria Nikolakaki 96 July 2015

Chapter 5

Experimental Results

5.1 Support Vector Machines

5.1.1 Setup

We implemented parallel kernel computations on a MAX3A Vectis PCI Express card

version of a Maxeler Dataflow Supercomputing System. The MAX3A Vectis card is

inserted into an Intel-based workstation with an Intel XEON 2 6-core processor running

at a clock rate of 3.2 GHz with 50GB RAM. MAX3A Vectis card is equipped with a

Xilinx Virtex-6 FPGA device and 24 GB of DDR RAM. Connection to the host was

via PCI express and all designs were compiled to run at 200 MHz. We used datasets

of various dimensions as one of the goals of this thesis was to study the behavior of the

parallel kernel computation for large datasets.

For our experimental results we utilized the ijcnn1 dataset [94] with 49, 900 data

instances and 22 features, the gisette dataset [93] with 6, 000 data instances and 5, 000

features and the colon-cancer dataset [95] with 62 data instances and 2, 000 features. We

also created a small dataset with 4, 320 data instances and 4 features based on tick-by-tick

financial stock values called financial stock. Furthermore, in order to increase the com-

putational demands of the specific datasets we enlarged them by various factors. Thus,

if dataset colon-cancer corresponds to a dataset of size 62x2, 000, where 62 shows the

number of data samples and 2, 000 denotes the feature space, then we refer to the corre-

sponding augmented by a factor of 70 dataset 70*62x2, 000 as colon-cancer 70. Moreover,

Sofia Maria Nikolakaki 97 July 2015

5. EXPERIMENTAL RESULTS

the software reference is the LIBSVM implementation which is widely accepted as one of

the fastest and more accurate open source packages for SVM Training.

5.1.2 Results

5.1.2.1 First Architecture

In this section we present and interpret the results produced by our first SVM Training

architecture. More specifically, Table 5.1 presents the resource summary.

Used Maximum Percentage

LUTs 231414 297600 77.76%

FFs 282627 297600 94.97%

BRAMs 59 2128 25.19%

DSPs (Multipliers) 1760 2016 87.30%

Table 5.1: MAX3A Vectis Resource Utilization of First Architecture

Note that as described in 4.1.3.7 this architecture significantly utilizes the resources

offered by the FPGA. For example, our first architecture occupies 87% of the available

DSP units and 94.9% of the offered flip flops. Thus, it can be derived that additional

parallel units could not be inserted in the specific FPGA, even though approximately

only half of the available bandwidth was used.

Moreover, Table 5.2 presents the experimental results of our first approach for datasets

with relatively small feature space. Recall that the specific system could not be tested on

bigger datsets due to lack of available registers. It is clear that the software implemen-

Dataset Size SW (sec) HW (sec) Speedup

financial stock 1.12 12.65 0.08

financial stock 2 4.47 34.08 0.13

ijcnn1 27.19 276.26 0.09

ijcnn1 2 130 982.74 0.13

ijcnn1 6 1804 9555.84 0.18

Table 5.2: Performance of First SVM Training Dataflow Architecture

Sofia Maria Nikolakaki 98 July 2015

5.1 Support Vector Machines

tation is significantly faster than the first hardware-based approach. In particular for

smaller datasets financial stock the special-purpose implementation begins from being

approximately 11 times slower, whereas for bigger datasets ijcnn1 6 it becomes 5 times

slower. These results can be interpreted based on the following observations. To begin

with, we have computed that a call to the hardware platform requires at least 5 to 30 ms.

We also calculated the actual hardware processing time in order to evaluate the percent-

age of the total hardware execution time it constitutes. Specifically for the biggest dataset

ijcnn1 6 the hardware processing time was approximately equal to 23 ms, while the total

hardware runtime was around 50 ms. This shows that half the time was consumed to

tasks irrelevant to the kernel computation. Therefore, we concluded that by evaluating

bigger datasets where the hardware initialization overhead will be insignificant compared

to the total hardware run-time, the overall performance could significantly improve.

In addition, the software time required to produce a single kernel computation was

equal to 17 ms for dataset ijcnn1 6. Given that the hardware initialization time is ap-

proximately 27 ms, one concludes that it is impossible for hardware to overcome software

for datasets of similar sizes. We had to evaluate datasets whose software kernel com-

putation time significantly exceeded the maximum possible hardware initialization cost

which is 30 ms. The reason why the call requires so much time can be attributed to the

stream initialization cost, the operation system workload, data transfer from the CPU

memory to hardware and other reasons that are attributed to the Maxeler system. In

particular, the reason why the 4-core parallelization did not work is because the runtime

was already completely dominated by set-up overhead. We noticed that even though

increasing the number of streams allowed more parallel processing units, it also led to

increasing the set-up overhead. This could only be overcome by inserting meaningful

chunks of computation that require dozens of milliseconds.

Furthermore, in order to exploit the maximum possible throughput utilization more

parallel kernel computation units had to be added to the architecture. Thus, process-

ing more memory intensive streams in parallel could respectively accelerate the overall

computation time. Thus, it was useful to explore different architectures as with the spe-

cific one we could not evaluate the system’s potential for big datasets which are usually

addressed by dataflow systems.

Sofia Maria Nikolakaki 99 July 2015

5. EXPERIMENTAL RESULTS

5.1.2.2 Second Architecture

The second architecture aimed at improving the available bandwidth utilization to achieve

better throughput. The new resource summary is presented in 5.3.

Used Maximum Percentage

LUTs 68025 297600 22.86%

FFs 98118 297600 32.97%

BRAMs 536 2128 25.19%

DSPs (Multipliers) 140 2016 6.94%

Table 5.3: MAX3A Vectis Resource Utilization of Second Architecture

Note that resource utilization is carried out less efficiently compared to our first

approach since approximately the 39% of the FPGA is occupied. Of course we would

like to allocate more resources thus allowing more hardware-based processing, but in our

second approach resource utilization is bounded by the available PCI express bandwidth

due to the fact that we use these lanes to return the results of the 7 parallel processing

units.

Even though our goal was to improve our first approach by utilizing more throughput,

Table 5.4 shows that the second architecture yielded worse results. Note that although

Dataset Size SW (sec) HW (sec) Speedup

financial stock 1.12 32.76 0.034

financial stock 2 4.47 95.42 0.046

ijcnn1 27,19 686.58 0.04

ijcnn1 2 130 2500.86 0.052

ijcnn1 6 1804 21021 0.04

Table 5.4: Performance of Second SVM Training Dataflow Architecture

our second approach could evaluate datasets with feature space bigger than 22, we did not

conduct such experiments. We reached this conclusion because it was clear that compared

to the first architecture the second architecture’s performance was substantially worse,

and therefore considering datasets with higher dimensions would not yield any substantial

observations or results.

Sofia Maria Nikolakaki 100 July 2015

5.1 Support Vector Machines

The main reason that led to this deterioration was the fact that the double-precision

adder required 14 clock cycles to update the previous partial sum with the updated one.

Recall that this introduced a 14 clock cycle delay to the overall hardware execution time,

due to the fact that the 14-depth pipeline produces a useful result every 14 clock cycles.

Again, we computed the total hardware execution time, the hardware processing time

and the hardware initialization time, with values 58 ms, 46 ms and 12 ms respectively.

Yet, note that the 14 clock cycle delay is not reflected in the hardware execution time, as

it increased from 9555 sec (first architecture) to 21021 sec (second architecture). In fact

the overall execution time of the first approach hardly increased by a factor of 3. This

can be attributed to two main reasons, the first being that we introduced three additional

parallel units and the second being that Maxeler only needs to initialize one stream, as

the rest are inputted from the off-chip memory. In addition, another suggestion is that

the off -chip memory and the CPU use different buffers that handle data more efficiently

when these are less. In other words, it is different to send all streams from the CPU than

to partition this task among the DRAM and the host.

Nevertheless, again we noticed that as the dimensions of the dataset increased, the

difference between the software and hardware execution times became smaller. The

smaller dataset financial stock requires 1.12 sec overall execution time on software and

32.76 sec on hardware which implies that the hardware is around 31 times slower. On

the other hand the biggest dataset ijcnn1 6 requires 1804 sec software execution time

and 21021 on hardware, i.e. it is 11 times slower. However, neither this design allowed

us to draw safe conclusions due to the 14 clock cycle delay overhead.

5.1.2.3 Improved Second Architecture

Our third and final approach was an improved version of the second architecture. More

specifically, we aimed at hiding the 14 clock cycle delay by rearranging the data sequence,

thus achieving a fully pipelined implementation. Recall that resource utilization was

reduced, but at the same time we reached maximum possible throughput utilization.

We do not present a table with resource summary for the improved architecture as it is

exactly the same as in 5.3.

Even in our last attempt to create an accelerated SVM Training system by utilizing

the maximum bandwidth and by performing in parallel as many operations as possible,

Sofia Maria Nikolakaki 101 July 2015

5. EXPERIMENTAL RESULTS

we did not manage to accelerate the respective LIBSVM software execution time. Our

final experimental results are presented in Table 5.5.

Dataset Size SW (sec) HW (sec) Speedup

ijcnn1 27.19 145.56 0.18

ijcnn1 6 1804 5733 0.31

ijcnn1 12 6795 19536 0.34

gisette 16*105 44*105 0.36

gisette 3 5*106 134*105 0.37

gisette 8 102*105 352*105 0.28

colon-cancer 70 2.71 8.8 0.3

Table 5.5: Performance of Improved Second SVM Training Dataflow Architecture

In particular, let us compare the common biggest dataset among the three architec-

tures, which is gisette 6. The first implementation required 2.6 hours to produce the SVM

Training model, whereas the second and improved second systems required 5.83 and 1.6

hours respectively. It is clear that the improved architecture is more efficient than all

previous systems. The comparison between the first architecture and the final one shows

that the modifications we studied and carried out actually improved our system. In par-

ticular, our final system was approximately 2 times faster than the initial one, due to the

additional parallel units, the further utilization of the available bandwidth, the exploita-

tion of LMem and the rearrangement of the order of the data. In addition, compared to

the second architecture, the improved one is 4 times faster as we have overlapped the 14

clock cycle delay with useful pipeline computations.

Regarding the comparison between LIBSVM and our more efficient hardware imple-

mentation we observed that our overall system’s performance was approximately 3 times

slower. This number corresponds to the time required by both systems to complete the

SVM Training phase. Thus, it does not reflect the exact time required to perform the

kernel computation which is the task that was mapped on hardware. More specifically,

it also includes the overhead of writing to the off-chip memory and of initializing the

streams that are inputted into the FPGA. In fact, we calculated that the core that per-

forms the kernel computation for small datasets ijcnn1 was 10 times slower on hardware

than on software, but for bigger datasets gisette this number approached 1.

Sofia Maria Nikolakaki 102 July 2015

5.1 Support Vector Machines

At this point we will analyze why the hardware-based kernel computation did not

surpass the respective software computation. Firstly, we stress out that in a software im-

plementation efficient data structures can be used, whereas the same is not possible in a

Maxeler system. More specifically, recall that LIBSVM transforms the input dataset into

a list that contains all non-zero values, therefore efficiently depicting a sparse dataset.

However, on Maxeler we need to declare a single constant size for our inputs, which is

inevitably the maximum possible number of features in a data sample. This also de-

termines the number of clock cycles required by the hardware side to yield the final

outcomes. Thus, while on software operations are only performed between non-zero val-

ues, on hardware zero values are also considered which leads to a significant unavoidable

overhead, especially for sparse datasets. Moreover, recall that 61% of the FPGA’s space

remains unexploited. Yet, we could not map additional parallel units (kernel computa-

tion cores) to the FPGA because the PCI express only allows 8 input and 8 output lanes

to and from the host to hardware respectively. In case we could utilize the whole FPGA

we would expect better performance due to more parallelism. In addition to the limited

number of inputs and outputs, our system significantly approached the maximum possi-

ble bandwidth provided by a stream. More specifically, the PCI express used by MAX

3A Vectis provides 250 MB/s per lane. For dataset gisette we computed that 285 MB/s

per lane were transferred. Note that this number exceeds the theoretical maximum one.

This can be attributed to the fact that when certain streams remain unused, then the

Maxeler controller utilizes them to increase bandwidth. In order for the hardware kernel

computation time to reach the respective software one, instead of sending 258 MB/s we

had to transfer around 400 MB/s and even more to achieve acceleration.

Finally, again for dataset gisette we compared the hardware processing time with the

overall hardware execution time. These numbers were equal to 20 and 120 ms respectively.

We know in advance that 5 to 30 ms are used for the DFE initialization process. Even if we

assume that this overhead is 30 ms, there are another 70 ms which are uncorrelated with

the processing. We assume that these additional ms reflect time required by the Maxeler

memory controller and for other processes not known to the programmer. However, also

notice that the actual hardware processing is 4 times faster than the respective software

processing time, 20 and 80 ms respectively. This led to the conclusion that the hardware

core processing time should dominate the overall hardware runtime to yield efficiency.

Sofia Maria Nikolakaki 103 July 2015

5. EXPERIMENTAL RESULTS

5.2 Mutual Information

5.2.1 Setup

We implemented parallel kernel computations on a MAX3A Vectis PCI Express card

version of a Maxeler Dataflow Supercomputing System. The MAX3A Vectis card is

inserted into a base workstation with an Intel XEON 2-6 core processor running at a

clock rate of 3.2 GHz and with 50GB RAM. MAX3A Vectis card is equipped with a

Xilinx Virtex-6 FPGA device and 24 GB of DDR RAM. Connection to the host was via

PCI express and all designs were compiled to run at 200 MHz. In the Mutual Information

computation we used artificial time-series due to the fact that at the time this thesis

was written we wanted to be able to evaluate whether the final MI result was correct.

Furthermore, the reference software was of our own creation, but its proper functioning

was evaluated by Maxeler Technologies with their own test cases.

5.2.2 Results

To begin with, this section presents the performance of the hardware-based MI calcu-

lation. Table 5.6 presents the results derived from the comparison between the Mutual

Information (MI) software and the respective one-core hardware approach. In this com-

parison the hardware architecture contained a single MI calculation core, whereas in

Table 5.7 another comparison takes place between the reference software and a two-core

hardware implementation.

Resolution SW (sec) HW (sec) Speedup

100 0.002 0.031 0.06

500 0.025 0.036 0.69

1000 0.095 0.046 2

2000 0.4 0.1 4

5000 2.5 0.45 5.6

10000 10.3 1.8 5.7

20000 41.5 7.1 5.8

40000 159 30.5 5.3

Table 5.6: Performance of One-Core MI Calculation Dataflow Architecture

Sofia Maria Nikolakaki 104 July 2015

5.2 Mutual Information

Resolution SW (sec) HW (sec) Speedup

100 0.002 0.036 0.05

500 0.025 0.037 0.68

1000 0.095 0.047 2

2000 0,4 0.077 5.2

5000 2.5 0.31 8

10000 10.3 1.1 9.4

20000 41.5 4.9 8.5

40000 159 19.7 8.1

Table 5.7: Performance of Two-Core MI Calculation Dataflow Architecture

Regarding the results of 5.6, one draws the conclusion that for a small histogram

resolution, i.e. few bins, the software implementation is much faster than the hardware

one. This is attributed to the 5 to 30 ms hardware call delay, depending on the sizes of the

input and output streams. Similar observations were also presented in the experimental

analysis of the hardware-based SVM system. Yet, the main difference compared to SVM

is that now as the histogram resolution increases, i.e. the streams become bigger, the

hardware performance also improves and surpasses the software implementation. This is

due to the fact that the percentage of the hardware call gradually becomes a smaller and

smaller fraction of the overall hardware runtime. Thus, unlike the results of the kernel

computation 5.1.2.3 in this case the calculations performed on the FPGA are sufficiently

computationally intensive. In this first comparison we only used one MI calculation

hardware core in order to evaluate the potential of reaching better performance. Note

that for the second biggest allowed resolution (20000) we achieved a hardware system 5.8

times faster compared to the software-based one, while for resolution equal to 1000 and

further the hardware implementation yielded speedup. In our first hardware approach 3

out of 8 lanes of the PCI express were used and only 5% of the available FPGA resources.

As we have already mentioned several times, there are 8 lanes available for data

transferring between the host and the DFE. In order to utilize more of the available

bandwidth, the PDF estimations of random variables Y and (X,Y) were divided into two,

which immediately led to the use of 5 streams 4.2.2.2. Increasing the number of data

vectors that can be processed in parallel, led to the increase of the number of meaningful

Sofia Maria Nikolakaki 105 July 2015

5. EXPERIMENTAL RESULTS

parallel units. More specifically, we doubled the number of processing units by using two

MI cores instead of one, and therefore the hardware processing is also doubled.

The resource summary of our special-purpose architecture with two cores is shown

in Table 5.8.Note that the 2-core implementation utilizes 10% of the available FPGA

resources and transfers data by using 5 of the 8 available PCI lanes. Assigning more

Used Maximum Percentage

LUTs 18887 297600 6.35%

FFs 22808 297600 7.66%

BRAMs 739 2128 2.77%

DSPs (Multipliers) 4 2016 0.20%

Table 5.8: MAX3A Vectis Resource Utilization for Mutual Information Computation

with Two Cores

parallel processors to the hardware side affected the overall performance. Table 5.9

shows the comparison between the single and double core hardware-based approaches.

Resolution HW1 (sec) HW2 (sec) Speedup

100 0.031 0.036 0.86

500 0.036 0.037 0.97

1000 0.046 0.047 0.98

2000 0.1 0.077 1.3

5000 0.45 0.31 1.45

10000 1.8 1.1 1.6

20000 7.1 4.9 1.45

40000 30.5 19.7 1.55

Table 5.9: Performance Comparison between One-Core and Two-Core MI Calculation

Dataflow Architectures

We observe that for resolution smaller than 2000 bins the two-core based approach is

slower than the one-core system. Recall that the former architecture requires inputting

two additional streams compared to the latter one. Yet, the hardware initialization cost

of these two additional streams leads to a noticeable overhead. However as resolution in-

creases, the two-core approach performance reaches being approximately 1,5 times faster

Sofia Maria Nikolakaki 106 July 2015

5.2 Mutual Information

than the one-core approach, since for higher resolution, and thus more computational de-

mands, the initialization streams’ overhead becomes a small fraction of the total hardware

runtime.

Moreover, in Table 5.10 we depict the transfer rates from the host to the DFEs. Note

that the throughput presented in Table 5.10 is not the actual PCI throughput but the

application’s general throughput because the initialization of the DFE is also taken into

account. For a small number of bins we observe that the two-core implementation reaches

lower throughput compared to the one-core approach, as the hardware initialization over-

head remains a significant percentage of the overall hardware execution time. Specifically

in the two-core architecture, throughput reaches 900MB/sec, a number close to the theo-

retical PCI bandwidth that corresponds to 5 PCI lanes which is 1250MB/sec (250MB/sec

per lane). The one-core implementation also approaches the theoretical PCI bandwidth

for 3 streams, with the former being 670MB/sec and the latter being 750MB/sec.

Resolution HW1 (MB/sec) HW2 (MB/sec)

100 3.8 2.8

500 83 68

1000 261 213

2000 480 519

5000 667 806

10000 667 909

20000 676 816

40000 629 812

Table 5.10: Throughput comparison between architectures utilizing 3 and 5 streams.

Sofia Maria Nikolakaki 107 July 2015

5. EXPERIMENTAL RESULTS

Sofia Maria Nikolakaki 108 July 2015

Chapter 6

Conclusion and Future Work

6.1 Conclusion

In this thesis we created two basic dataflow architectures, the first being the kernel com-

putation of the Support Vector Machines method, and the second being the calculation

of the Mutual Information statistical value. During the process of designing and imple-

menting these two architectures we explored and reached several conclusions about the

Maxeler platform as well as about similar dataflow tools. To begin with, our experimen-

tal results showed that dataflow architectures are more likely to be efficient when they

address a massive amount of data, that is over a gigabyte. Applications that do not deal

with such sizes are more likely to achieve increased performance with the use of other

platforms, such as GPUs and FPGAs. Moreover, dataflow computing is convenient to

use only in algorithms that require little control logic. This is attributed to the fact

that the system itself is designed to process streams of data using multiple parallel units,

but not to control their flow. Furthermore, even though the Maxeler system offers large

off-chip memory, this memory cannot be randomly accessed. Thus, such systems should

be primarily addressed by applications that traverse the same massive amount of data

continuously. Among our other findings, we also reached the conclusion that when creat-

ing a dataflow architecture the following factors should be definitely taken into account

in the early stages of the development. In particular, the hardware initialization time

should be negligible compared to the overall hardware execution runtime, the number

of hardware calls should be reduced to the smallest possible number, the utilization of

both the on-chip and off-chip memories allows faster data transfer rates, the system’s

Sofia Maria Nikolakaki 109 July 2015

6. CONCLUSION AND FUTURE WORK

pipeline should always be full, even if data rearrangement is necessary to avoid clock

cycle delays, and the special-purpose platform should contain a big amount of simple

processing elements in order for it to be occupied to the fullest. Finally, it is clear that

the difficulty in using Maxeler lies in the fact that the studied algorithm needs to be

reconsidered from the beginning based on the properties of the tool and not based on

related works, as well as that the Maxeler supercomputer presents unpredictable behav-

ior in certain simple functionalities that cannot be known in advance. In the case where

all the aforementioned conclusions are taken into account, dataflow computing can easily

yield increased performance and resolve problems that previously seemed non-resolvable.

6.2 Future Work

The time for completing a diploma thesis is always too short for implementing all ideas

that arise during the work. At the end, three of them are outlined as outlook for future

work.

The Maxeler supercomputer platform provides four Xilinx Virtex 6 FPGAs. Due to the

fact that the scope of this thesis was to focus on yielding efficiency by exploiting the

properties of dataflow architectures we only used one of the four available FPGAs. We

assume that by mapping our already implemented hardware cores to all the FPGAs we

will achieve higher performances.

Furthermore, we described our two core hardware-based Mutual Information computa-

tion. It was not in the scope of this thesis to improve the accuracy of the MI calculation

itself, but rather to utilize the findings derived from the hardware-based kernel compu-

tation efficiently. As future work we could focus on achieving further acceleration by

assigning more parallel units to the FPGA and on exploring other methods for PDF

estimation.

Finally, it would be useful to study other algorithms especially in the fields of finance, geo-

physics and data mining to further evaluate our acquired knowledge and achieve higher

speedups.

Sofia Maria Nikolakaki 110 July 2015

References

[1] Feist, T.: Vivado design suite. White Paper (2012) 5

[2] Xu, J., Subramanian, N., Alessio, A., Hauck, S.: Impulse c vs. vhdl for accelerating

tomographic reconstruction. In: Field-Programmable Custom Computing Machines

(FCCM), 2010 18th IEEE Annual International Symposium on, IEEE (2010) 171–

174 5

[3] Najjar, W.A., Lee, E.A., Gao, G.R.: Advances in the dataflow computational model.

Parallel Computing 25(13) (1999) 1907–1929 7

[4] Johnston, W.M., Hanna, J., Millar, R.J.: Advances in dataflow programming lan-

guages. ACM Computing Surveys (CSUR) 36(1) (2004) 1–34 7

[5] Sousa, T.B.: Dataflow programming concept, languages and applications. In: Doc-

toral Symposium on Informatics Engineering. (2012) 7, 13

[6] Hurson, A.R., Kavi, K.M.: Dataflow computers: Their history and future. Wiley

Encyclopedia of Computer Science and Engineering (2008) 7

[7] Dennis, J.B.: First version of a data flow procedure language. In: Programming

Symposium, Springer (1974) 362–376 7

[8] Gostelow, K., et al.: The u-interpreter. Computer 15(2) (1982) 42–49 7

[9] Davis, A.L., Keller, R.M.: Data flow program graphs. (1982) 7

[10] Whiting, P.G., et al.: A history of data-flow languages. Annals of the History of

Computing, IEEE 16(4) (1994) 38–59 9

Sofia Maria Nikolakaki 111 July 2015

REFERENCES

[11] Ashcroft, E.A., Wadge, W.W.: Lucid, a nonprocedural language with iteration.

Communications of the ACM 20(7) (1977) 519–526 9

[12] Ashcroft, E.A., Wadge, W.W.: Lucid, the dataflow programming language. APIC

Studies in Data Processing, Academic Press (1985) 9

[13] Ackerman, W.B.: Data flow languages. In: Managing Requirements Knowledge,

International Workshop on, IEEE Computer Society (1899) 1087–1087 9

[14] Travis, J., Kring, J.: LabVIEW for Everyone: Graphical Programming Made Easy

and Fun (National Instruments Virtual Instrumentation Series). Prentice Hall PTR

(2006) 10

[15] Sjoholm, S., Lindh, L.: VHDL for Designers. Prentice Hall PTR (1997) 10

[16] Halbwachs, N., Caspi, P., Raymond, P., Pilaud, D.: The synchronous data flow

programming language lustre. Proceedings of the IEEE 79(9) (1991) 1305–1320 10

[17] Sharp, J.A.: Data flow computing: theory and practice. Intellect Books (1992) 13

[18] Hurson, A., Hurson, A., Lee, B., Lee, B.: Issues in dataflow computing. Adv. in

Comput 37(285-333) (1993) 38–39 13

[19] Yip, A., Wang, X., Zeldovich, N., Kaashoek, M.F.: Improving application security

with data flow assertions. In: Proceedings of the ACM SIGOPS 22nd symposium

on Operating systems principles, ACM (2009) 291–304 13

[20] Pell, O., Averbukh, V.: Maximum performance computing with dataflow engines.

Computing in Science & Engineering 14(4) (2012) 98–103 16

[21] Grigoras, P., Luk, W., Weston, S.: Aspect oriented design for dataflow engines.

(2013) 16

[22] Vapnik, V.: The nature of statistical learning theory. Springer Science & Business

Media (2000) 16, 32

[23] Cortes, C., Vapnik, V.: Support-vector networks. Machine learning 20(3) (1995)

273–297 16

Sofia Maria Nikolakaki 112 July 2015

REFERENCES

[24] Furey, T.S., Cristianini, N., Duffy, N., Bednarski, D.W., Schummer, M., Haussler,

D.: Support vector machine classification and validation of cancer tissue samples

using microarray expression data. Bioinformatics 16(10) (2000) 906–914 17

[25] Tong, S., Koller, D.: Support vector machine active learning with applications to

text classification. The Journal of Machine Learning Research 2 (2002) 45–66 17

[26] Tong, S., Chang, E.: Support vector machine active learning for image retrieval. In:

Proceedings of the ninth ACM international conference on Multimedia, ACM (2001)

107–118 17

[27] Hua, S., Sun, Z.: Support vector machine approach for protein subcellular localiza-

tion prediction. Bioinformatics 17(8) (2001) 721–728 17

[28] Cao, L.J., Tay, F.E.H.: Support vector machine with adaptive parameters in finan-

cial time series forecasting. Neural Networks, IEEE Transactions on 14(6) (2003)

1506–1518 17

[29] Zien, A., Rätsch, G., Mika, S., Schölkopf, B., Lengauer, T., Müller, K.R.: Engi-

neering support vector machine kernels that recognize translation initiation sites.

Bioinformatics 16(9) (2000) 799–807 17

[30] Schmidt, M.S.: Identifying speakers with support vector networks. Computing

Science and Statistics (1997) 305–316 17

[31] Joachims, T.: Learning to classify text using support vector machines: Methods,

theory and algorithms. Kluwer Academic Publishers (2002) 17, 30

[32] Osuna, E., Freund, R., Girosi, F.: Training support vector machines: an application

to face detection. In: Computer Vision and Pattern Recognition, 1997. Proceedings.,

1997 IEEE Computer Society Conference on, IEEE (1997) 130–136 17

[33] Boyd, S., Vandenberghe, L.: Convex optimization. Cambridge university press

(2004) 23

[34] Campbell, C.: An introduction to kernel methods. Studies in Fuzziness and Soft

Computing 66 (2001) 155–192 28

Sofia Maria Nikolakaki 113 July 2015

REFERENCES

[35] Amari, S.i., Wu, S.: Improving support vector machine classifiers by modifying

kernel functions. Neural Networks 12(6) (1999) 783–789 28

[36] Gomes, T.A., Prudêncio, R.B., Soares, C., Rossi, A.L., Carvalho, A.: Combining

meta-learning and search techniques to select parameters for support vector ma-

chines. Neurocomputing 75(1) (2012) 3–13 28

[37] Staelin, C.: Parameter selection for support vector machines. Hewlett-Packard

Company, Tech. Rep. HPL-2002-354R1 (2003) 28

[38] Soares, C., Brazdil, P.B., Kuba, P.: A meta-learning method to select the kernel

width in support vector regression. Machine learning 54(3) (2004) 195–209 28

[39] Jebara, T.: Multi-task feature and kernel selection for svms. In: Proceedings of the

twenty-first international conference on Machine learning, ACM (2004) 55 28

[40] Ali, S., Smith-Miles, K.A.: A meta-learning approach to automatic kernel selection

for support vector machines. Neurocomputing 70(1) (2006) 173–186 28

[41] Li, C.H., Lin, C.T., Kuo, B.C., Ho, H.H.: An automatic method for selecting

the parameter of the normalized kernel function to support vector machines. In:

Technologies and Applications of Artificial Intelligence (TAAI), 2010 International

Conference on, IEEE (2010) 226–232 28

[42] Keerthi, S.S., Lin, C.J.: Asymptotic behaviors of support vector machines with

gaussian kernel. Neural computation 15(7) (2003) 1667–1689 30

[43] Jaakkola, T., Haussler, D., et al.: Exploiting generative models in discriminative

classifiers. Advances in neural information processing systems (1999) 487–493 30

[44] Kondor, R.I., Lafferty, J.: Diffusion kernels on graphs and other discrete input

spaces. In: ICML. Volume 2. (2002) 315–322 30

[45] Shawe-Taylor, J., Cristianini, N.: Kernel methods for pattern analysis. Cambridge

university press (2004) 30

[46] Smola, A.J., Schölkopf, B.: Learning with kernels. Citeseer (1998) 30

Sofia Maria Nikolakaki 114 July 2015

REFERENCES

[47] Hofmann, M.: Support vector machinesb•”kernels and the kernel trick. Hauptsem-

inar report (2006) 32

[48] Burges, C.J.: A tutorial on support vector machines for pattern recognition. Data

mining and knowledge discovery 2(2) (1998) 121–167 32

[49] Chang, C.C., Lin, C.J.: Libsvm: a library for support vector machines. ACM

Transactions on Intelligent Systems and Technology (TIST) 2(3) (2011) 27 32, 35,

59, 66

[50] Joachims, T.: Making large scale svm learning practical. Technical report, Univer-

sität Dortmund (1999) 32

[51] Grauman, K., Darrell, T.: The pyramid match kernel: Discriminative classification

with sets of image features. In: Computer Vision, 2005. ICCV 2005. Tenth IEEE

International Conference on. Volume 2., IEEE (2005) 1458–1465 32

[52] Nivre, J., Hall, J., Nilsson, J., Chanev, A., Eryigit, G., Kübler, S., Marinov, S.,

Marsi, E.: Maltparser: A language-independent system for data-driven dependency

parsing. Natural Language Engineering 13(02) (2007) 95–135 32

[53] Hanke, M., Halchenko, Y.O., Sederberg, P.B., Hanson, S.J., Haxby, J.V., Pollmann,

S.: Pymvpa: A python toolbox for multivariate pattern analysis of fmri data.

Neuroinformatics 7(1) (2009) 37–53 32

[54] Dorff, K.C., Chambwe, N., Srdanovic, M., Campagne, F.: Bdval: reproducible

large-scale predictive model development and validation in high-throughput datasets.

Bioinformatics 26(19) (2010) 2472–2473 32

[55] Allen, D.M.: Mean square error of prediction as a criterion for selecting variables.

Technometrics 13(3) (1971) 469–475 36

[56] Lee Rodgers, J., Nicewander, W.A.: Thirteen ways to look at the correlation coef-

ficient. The American Statistician 42(1) (1988) 59–66 36

[57] Cover, T.M., Thomas, J.A.: Entropy, relative entropy and mutual information.

Elements of Information Theory (1991) 12–49 36

Sofia Maria Nikolakaki 115 July 2015

REFERENCES

[58] Cover, T.M., Thomas, J.A.: Elements of information theory. John Wiley & Sons

(2012) 36

[59] Shannon, C.E.: Prediction and entropy of printed english. Bell system technical

journal 30(1) (1951) 50–64 36

[60] Kraskov, A., Stögbauer, H., Andrzejak, R.G., Grassberger, P.: Hierarchical cluster-

ing using mutual information. EPL (Europhysics Letters) 70(2) (2005) 278 36

[61] Shannon, C.E.: A mathematical theory of communication. ACM SIGMOBILE

Mobile Computing and Communications Review 5(1) (2001) 3–55 36

[62] Anguita, D., Boni, A., Ridella, S.: A digital architecture for support vector machines:

theory, algorithm, and fpga implementation. Neural Networks, IEEE Transactions

on 14(5) (2003) 993–1009 45, 49

[63] Cadambi, S., Durdanovic, I., Jakkula, V., Sankaradass, M., Cosatto, E., Chakrad-

har, S., Graf, H.P.: A massively parallel fpga-based coprocessor for support vector

machines. In: Field Programmable Custom Computing Machines, 2009. FCCM’09.

17th IEEE Symposium on, IEEE (2009) 115–122 46, 48

[64] Pedersen, R., Schoeberl, M.: An embedded support vector machine. In: Intelligent

Solutions in Embedded Systems, 2006 International Workshop on, IEEE (2006) 1–11

48

[65] Kyrkou, C., Theocharides, T., Bouganis, C.S.: An embedded hardware-efficient ar-

chitecture for real-time cascade support vector machine classification. In: Embedded

Computer Systems: Architectures, Modeling, and Simulation (SAMOS XIII), 2013

International Conference on, IEEE (2013) 129–136 48

[66] Papadonikolakis, M., Bouganis, C.: Novel cascade fpga accelerator for support vector

machines classification. Neural Networks and Learning Systems, IEEE Transactions

on 23(7) (2012) 1040–1052 48, 49

[67] Papadonikolakis, M., Bouganis, C.: A heterogeneous fpga architecture for support

vector machine training. In: Field-Programmable Custom Computing Machines

(FCCM), 2010 18th IEEE Annual International Symposium on, IEEE (2010) 211–

214 48, 49

Sofia Maria Nikolakaki 116 July 2015

REFERENCES

[68] Khan, F.M., Arnold, M.G., Pottenger, W.M.: Hardware-based support vector ma-

chine classification in logarithmic number systems. In: IEEE International Sympo-

sium on circuits and systems. Volume 5., Citeseer (2005) 5154 49

[69] Irick, K.M., DeBole, M., Narayanan, V., Gayasen, A.: A hardware efficient support

vector machine architecture for fpga. In: Field-Programmable Custom Computing

Machines, 2008. FCCM’08. 16th International Symposium on, IEEE (2008) 304–305

49

[70] Ramos-Lara, R., López-Garćıa, M., Cantó-Navarro, E., Puente-Rodriguez, L.: Svm

speaker verification system based on a low-cost fpga. In: Field Programmable Logic

and Applications, 2009. FPL 2009. International Conference on, IEEE (2009) 582–

586 50

[71] Ruiz-Llata, M., Guarnizo, G., Yébenes-Calvino, M.: Fpga implementation of a sup-

port vector machine for classification and regression. In: Neural Networks (IJCNN),

The 2010 International Joint Conference on, IEEE (2010) 1–5 50

[72] Catanzaro, B., Sundaram, N., Keutzer, K.: Fast support vector machine training

and classification on graphics processors. In: Proceedings of the 25th international

conference on Machine learning, ACM (2008) 104–111 50

[73] Carpenter, A.: cusvm: A cuda implementation of support vector classification and

regression. patternsonscreen. net/cuSVMDesc. pdf (2009) 51

[74] Herrero-Lopez, S., Williams, J.R., Sanchez, A.: Parallel multiclass classification

using svms on gpus. In: Proceedings of the 3rd Workshop on General-Purpose

Computation on Graphics Processing Units, ACM (2010) 2–11 51

[75] Cotter, A., Srebro, N., Keshet, J.: A gpu-tailored approach for training kernel-

ized svms. In: Proceedings of the 17th ACM SIGKDD international conference on

Knowledge discovery and data mining, ACM (2011) 805–813 52

[76] Do, T.N., Nguyen, V.H., Poulet, F.: Speed up svm algorithm for massive classifica-

tion tasks. In: Advanced Data Mining and Applications. Springer (2008) 147–157

52

Sofia Maria Nikolakaki 117 July 2015

REFERENCES

[77] Collobert, R., Bengio, S., Bengio, Y.: A parallel mixture of svms for very large scale

problems. Neural computation 14(5) (2002) 1105–1114 53

[78] Athanasopoulos, A., Dimou, A., Mezaris, V., Kompatsiaris, I.: Gpu acceleration

for support vector machines. In: WIAMIS 2011: 12th International Workshop on

Image Analysis for Multimedia Interactive Services, Delft, The Netherlands, April

13-15, 2011, TU Delft; EWI; MM; PRB (2011) 53

[79] Dey, S., Kedia, M., Agarwal, N., Basu, A.: Embedded support vector machine:

Architectural enhancements and evaluation. In: VLSI Design, 2007. Held jointly with

6th International Conference on Embedded Systems., 20th International Conference

on, IEEE (2007) 685–690 53

[80] Graf, H.P., Cosatto, E., Bottou, L., Dourdanovic, I., Vapnik, V.: Parallel support

vector machines: The cascade svm. In: Advances in neural information processing

systems. (2004) 521–528 53

[81] Cao, L.J., Keerthi, S.S., Ong, C.J., Zhang, J.Q., Lee, H.P.: Parallel sequential

minimal optimization for the training of support vector machines. Neural Networks,

IEEE Transactions on 17(4) (2006) 1039–1049 54

[82] Zhu, K., Wang, H., Bai, H., Li, J., Qiu, Z., Cui, H., Chang, E.Y.: Parallelizing sup-

port vector machines on distributed computers. In: Advances in Neural Information

Processing Systems. (2008) 257–264 54

[83] Zhao, H., Magoules, F.: Parallel support vector machines on multi-core and multi-

processor systems. In: 11th International Conference on Artificial Intelligence and

Applications (AIA 2011), IASTED (2011) 55

[84] Chu, C., Kim, S.K., Lin, Y.A., Yu, Y., Bradski, G., Ng, A.Y., Olukotun, K.: Map-

reduce for machine learning on multicore. Advances in neural information processing

systems 19 (2007) 281 55

[85] Brugger, D.: Parallel support vector machines. (2006) 55

[86] Castro-Pareja, C.R., Shekhar, R.: Hardware acceleration of mutual information-

based 3d image registration. Journal of Imaging Science and Technology 49(2)

(2005) 105–113 55

Sofia Maria Nikolakaki 118 July 2015

REFERENCES

[87] Shao, S., Guo, C., Luk, W., Weston, S.: Accelerating transfer entropy computation.

In: Field-Programmable Technology (FPT), 2014 International Conference on, IEEE

(2014) 60–67 56, 57

[88] Shams, R., Barnes, N.: Speeding up mutual information computation using nvidia

cuda hardware. In: Digital Image Computing Techniques and Applications, 9th

Biennial Conference of the Australian Pattern Recognition Society on, IEEE (2007)

555–560 56

[89] Lin, Y., Medioni, G.: Mutual information computation and maximization using

gpu. In: Computer Vision and Pattern Recognition Workshops, 2008. CVPRW’08.

IEEE Computer Society Conference on, IEEE (2008) 1–6 57

[90] Teßmann, M., Eisenacher, C., Enders, F., Stamminger, M., Hastreiter, P.: Gpu

accelerated normalized mutual information and b-spline transformation. In: VCBM.

(2008) 117–124 57

[91] Shams, R., Sadeghi, P., Kennedy, R., Hartley, R.: Parallel computation of mu-

tual information on the gpu with application to real-time registration of 3d medical

images. Computer methods and programs in biomedicine 99(2) (2010) 133–146 57

[92] Platt, J., et al.: Fast training of support vector machines using sequential minimal

optimization. Advances in kernel methodsb•”support vector learning 3 (1999) 64,

66

[93] Guyon, I., Gunn, S., Ben-Hur, A., Dror, G.: Result analysis of the nips 2003 feature

selection challenge. In: Advances in Neural Information Processing Systems. (2004)

545–552 73, 97

[94] Prokhorov, D.: Ijcnn 2001 neural network competition. Slide presentation in IJCNN

1 (2001) 97

[95] Alon, U., Barkai, N., Notterman, D.A., Gish, K., Ybarra, S., Mack, D., Levine,

A.J.: Broad patterns of gene expression revealed by clustering analysis of tumor and

normal colon tissues probed by oligonucleotide arrays. Proceedings of the National

Academy of Sciences 96(12) (1999) 6745–6750 97

Sofia Maria Nikolakaki 119 July 2015

	1 Introduction
	1.1 Thesis Contribution
	1.2 Thesis Outline

	2 Background
	2.1 Maxeler
	2.1.1 Data flow Programming Model
	2.1.1.1 Basic Principles
	2.1.1.2 Dataflow Graphs
	2.1.1.3 Dataflow Languages

	2.1.2 Dataflow Engines (DFEs)
	2.1.3 Data Flow Applications
	2.1.4 Maxeler System Description
	2.1.5 LMem

	2.2 Support Vector Machines - Binary Classification Case
	2.2.1 Introduction to SVMs
	2.2.2 Linear Case
	2.2.2.1 Maximal Margin
	2.2.2.2 Quadratic Optimization Problem
	2.2.2.3 The Lagrangian Formulation
	2.2.2.4 The Dual Problem

	2.2.3 Nonlinear Case
	2.2.3.1 Kernels
	2.2.3.2 Kernel Trick
	2.2.3.3 Nonlinear Formulation

	2.2.4 LIBSVM
	2.2.4.1 Data Preprocessing
	2.2.4.2 C-Support Vector Classification
	2.2.4.3 Code Organization
	2.2.4.4 Performance Measure

	2.3 Mutual Information
	2.3.1 Entropy
	2.3.2 Joint Entropy and Conditional Entropy
	2.3.3 Relative Entropy and Mutual Information
	2.3.4 Relationship between Entropy and Mutual Information

	3 Related Work
	3.1 Support Vector Machines
	3.1.1 FPGA
	3.1.2 Graphical Processing Unit
	3.1.3 Multi-Core

	3.2 Mutual Information
	3.2.1 FPGA
	3.2.2 GPU

	4 Implementation
	4.1 Support Vector Machine
	4.1.1 Modeling for Hardware
	4.1.1.1 Inputs and Outputs
	4.1.1.2 Algorithm Profiling
	4.1.1.3 Important Data Structures
	4.1.1.4 Performance Opportunities and Considerations

	4.1.2 Training SVM
	4.1.3 First Hardware Architecture
	4.1.3.1 CPU and FPGA Integrated System
	4.1.3.2 Problem Partitioning
	4.1.3.3 Data Movement on Host Side
	4.1.3.4 Dataflow Kernel Computation on Hardware Side
	4.1.3.5 Memory Allocation
	4.1.3.6 Throughput Utilization
	4.1.3.7 Observations on the First Architecture

	4.1.4 Second Hardware Architecture
	4.1.4.1 CPU and FPGA Integrated System
	4.1.4.2 Problem Partitioning
	4.1.4.3 Data Movement on Host Side
	4.1.4.4 Dataflow Kernel Computation on Hardware Side
	4.1.4.5 Memory Allocation
	4.1.4.6 Throughput Utilization
	4.1.4.7 Observations on the Second Architecture

	4.1.5 Improvements on Second Architecture

	4.2 Mutual Information
	4.2.1 Modeling for Hardware
	4.2.1.1 Inputs and Outputs
	4.2.1.2 Algorithm Profiling
	4.2.1.3 Important Data Structures

	4.2.2 Hardware Architecture
	4.2.2.1 CPU and FPGA Integrated System
	4.2.2.2 Problem Partitioning
	4.2.2.3 Data Movement on Host Side
	4.2.2.4 Dataflow Kernel Computation on Hardware Side
	4.2.2.5 Memory Allocation
	4.2.2.6 Throughput Utilization

	5 Experimental Results
	5.1 Support Vector Machines
	5.1.1 Setup
	5.1.2 Results
	5.1.2.1 First Architecture
	5.1.2.2 Second Architecture
	5.1.2.3 Improved Second Architecture

	5.2 Mutual Information
	5.2.1 Setup
	5.2.2 Results

	6 Conclusion and Future Work
	6.1 Conclusion
	6.2 Future Work

	References

