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Analysis of One-Dimensional Solute Transport Through Porous Media

With Spatially Variable Retardation Factor

CONSTANTINOS V. CHRYSIKOPOULOS, PETER K. KITANIDIS, AND PAUL V. ROBERTS
Department of Civil Engineering, Stanford University, Stanford, California

A closed-form analytical small-perturbation (or first-order) solution to the one-dimensional advec-
tion-dispersion equation with spatially variable retardation factor is derived to investigate the transport
of sorbing but otherwise nonreacting solutes in hydraulically homogeneous but geochemically
heterogeneous porous formations. The solution is developed for a third- or flux-type inlet boundary
condition, which is applicable when considering resident (volume-averaged) solute concentrations,
and a semi-infinite porous medium. For mathematical simplicity it is hypothesized that the sorption
processes are based on linear equilibrium isotherms and that the local chemical equilibrium
assumption is valid. The results from several simulations, compared with predictions based on the
classical advection-dispersion equation with constant coefficients, indicate that at early times, spatially
variable retardation affects the transport behavior of sorbing solutes. The zeroth moments correspond-
ing to constant and variable retardation are not necessarily equal. The impact of spatially variable
retardation increases with increasing Péclet number. The center of mass appears to move more slowly,
and solute spreading is enhanced in the variable retardation case. At late times, when the travel
distance is much larger than the correlation scale of the retardation factor, the zeroth moment for the
variable retardation case is identical to the case of invariant retardation. The small-perturbation

solution agrees closely with a finite difference numerical approximation.

INTRODUCTION

The impact of spatially variable hydraulic parameters on
the transport and spreading of conservative, nonreacting
solutes in natural subsurface systems has been the focus of
many recent studies. Gelhar et al. [1979), Matheron and de
Marsily [1980], Simmons [1982], Gelhar and Axness [1983],
Dagan, [1982, 1984, 19871, Koch and Brady [1987), Neuman
et al. [1987], and Kitanidis [1988), among others, have
provided methodologies for improving the description and
prediction of nonreacting solute transport in complex-
structured formations, compared with the prediction based
on the classical advection-dispersion equation with constant
coefficients. On the other hand, the transport of sorbing
solutes in geochemically as well as hydraulically heteroge-
neous porous media has received little attention.

For the important case of transport of sorbing solutes in
geochemically homogeneous porous media, the effects of
sorption are commonly accounted for by a dimensionless
retardation factor [Hashimoto et al., 1964], which may be
defined as the ratio of the average interstitial fluid velocity to
the propagation velocity of the solute. Excluding the possi-
bilities of mass transport limitations and solute transforma-
tion or decay, any observed fluctuations on the retardation
factor are attributed solely to the variability of the distribu-
tion coefficient, which is an experimentally obtained mea-
sure of sorption or solute retention by the solid formation.
Sorption processes can be complex and depend on many
variables, including temperature, pressure, solution pH, and
ionic strength, sorbent surface charge, sorbent sorptive
capacity, and the presence of species that compete for
sorption sites. Spatial or temporal fluctuations in any of
these variables accordingly affect the distribution coefficient
and, consequently, the movement of sorbing solutes in
subsurface porous media. For example, the distribution
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coefficient of nonpolar organic solutes (synthetic organic
chemicals, major constituents of groundwater toxic pollut-
ants) is correlated with the organic carbon content of the
sorbent [Karickhoff, 1984]. Although such a correlation is
not fully reliable for every solute-sorbent system [Curtis and
Roberts, 1985; Curtis et al., 1986; Mackay et al., 1986], it
can explain to some extent the variable retardation observed
in field experiments [Roberts et al., 1986].

Garabedian [1987] employed spectral methods to analyze
reactive solute macrodispersion under the assumption that
the log-hydraulic conductivity is linearly related to both the
porosity and the distribution coefficient. His results indicate
that solute spreading is enhanced when there is negative
correlation between the log-hydraulic conductivity and the
distribution coefficient. Also, van der Zee and van Riemsdijk
[1987] derived an expression for the field-averaged profile of
sorbed solute concentration, assuming that spatially variable
soil formations can be represented by a bundle of noninter-
acting parallel homogeneous columns which differ with
respect to fluid velocity, retardation factor, and time period
of solute input. These parameters are assumed lognormally
distributed. Finally, Valocchi [1989] recently employed Tay-
lor-Aris spatial moment analysis to study the long-time
asymptotic behavior of kinetically sorbing solute transport in
perfectly stratified porous media, assuming that pore water
velocity, dispersion coefficients, distribution coefficient, and
adsorption rate coefficient are vertically distributed. The
results of this study confirm that negative correlation be-
tween the vertical profiles of pore water velocity and retar-
dation factor may increase solute dispersion.

The present work is focused on the transport of sorbing
but otherwise nonreacting solutes under local equilibrivm
conditions in a one-dimensional hydraulically homogeneous
but geochemically heterogeneous porous medium. Analyti-
cal procedures are employed to solve the one-dimensional
advection-dispersion equation with uniform, steady fluid
flow conditions and spatially variable retardation factor, for
a semi-infinite medium and flux-type inlet boundary condi-
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tion. Although an exponential autocovariance function is
used in this study, the analytical expression derived here is
sufficiently general that any other autocovariance function
for the perturbed retardation factor can be readily employed.
The impact of spatially variable sorption on solute transport
in porous media is investigated. The analytical first-order
solution is compared with a numerical approximation based
on a finite difference scheme.

The results of this investigation are well suited for design

and interpretation of experiments in laboralory packed col-

of one-dimensional flow under constant velocity and con-
stant dispersion coefficient is valid. Our experience with
solute transport experiments in an induced flow field be-
tween an injection-extraction well pair suggests that in some
cases one-dimensional transport models with constant coef-
ficients are adequate for the field scale [Chrysikopoulos et
al., 1990]. The methodology of this work can provide a
starting point for generalization to the solution of more
complicated physical systems and multidimensional solute
transport models.

TRANSPORT MODEL

The transport of a sorbing solute through a one-
dimensional porous medium under steady state flow condi-
tions is governed by the following partial differential equa-
tion [Lapidus and Amundson, 1952}:

ate(t, x) ac(t, x)

ac(t, x)  p ac*(t, x)
+ = = — -
ax ax

ot 8 ar

0)]

where ¢(t, x) is the volume-averaged or resident liquid-phase
solute concentration, which is defined as the solute mass per
unit volume of interstitial fluid, as opposed to the flux-
averaged concentration which corresponds to the solute
mass per unit volume of fluid flowing through a given cross
section per unit time, c*(¢, x) is the solid-phase concentra-
tion of the sorbed solute per unit mass of solids, D is the
hydrodynamic dispersion coefficient, U is the average inter-
stitial fluid velocity, x is the spatial coordinate in the direc-
tion of flow, ¢ is time, pis the bulk density of the solid matrix,
and 0 is porosity. For linear, reversible, instantaneous
sorption, the equilibrium relationship between the solute
substance in the aqueous and solid phases is given by

c*(t, x) = Kx)c(t, x) 2

where K 4(x) is the partition or distribution coefficient. The
distribution coefficient is expressed as the ratio of solute
concentration on the adsorbent to solute aqueous concentra-
tion at equilibrium. Combining (1) and (2) leads to

ac(t, x) aZe(t, x) dc(t, x)
at ax? ax

()

R(x)

The dimensionless variable R(x) is the retardation factor,
introduced by Hashimoto et al. [1964], defined as

R(x)=1+ g Ki(x) 4)

Traditionally, in solute transport mathematical modeling the
retardation factor is considered constant throughout the

porous medium. However, in the present analysis it is
assumed that the retardation factor fluctuates along the
spatial coordinate.

For a semi-infinite system, the appropriate initial and

boundary conditions that lead to correct evaluation of resi-
dent concentrations are [van Genuchten and Parker, 1984]

(0, x) = (5a)
ac(t, 0)
-D +Uclt, ) =Uc, 0<r=1,
aclt, 0) (3b)
- +Uc(t,0)= 0 1>1,
ac(t, =)
= (5¢)
ax

where c, is the pulse-type injection concentration and 1, is
the duration of the solute pulse. The condition (5a) corre-
sponds to the situation in which the solute is initially absent
from the one-dimensional porous medium. The third- or
flux-type boundary condition (54) for pulse injection implies
concentration discontinuity at the inlet and leads to material
balance conservation [Brigham, 1974; Choi and Perlmutter,
1976; Kreft and Zuber, 1978; Parker and van Genuchten,
1984]. The downstream boundary condition (5¢) preserves
concentration continuity for a semi-infinite system.

It is generally more convenient to work with models
written in dimensionless variables. By employing the follow-
ing definitions,

C:..C_ 6)
Cp
X
== 7
X=- )
T-Ut 8
- ®)
Ut
T,=— ©)
I}
P ‘Ul 10
e—D (

where [ is the correlation scale of the retardation factor, the
model equations (3) and (5) become

aC(T, X) 1 a*C(T, X) aC(T, X)
R(X) =— - an
aT Pe aX ax
c0, X) = (12a)
1 aC(T, 0) a0
—_—— e} = <
Po ax (T.00=1 0<T=T, .
| ocT. 0 C(T, 0 T>T 1
_ + ) =
Pe X (7, 0) =1y
aC(T, =)
Prae (12¢)
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ANALYTICAL SMALL-PERTURBATION SOLUTION

The retardation factor and, consequently, the solute con-
centration are considered to be stochastic processes. The
retardation factor is assumed stationary with mean (R) =
E[R(X)], where the angle brackets signify ensemble mean or
expected value. The concentration is both rionstationary and
time dependent. In this work we solve for the concentration
mean (CX(T, X) = E[C(T, X)}. The retardation factor and the
solute concentration are expressed as

R(X)=(R)+ R'(X) (13a)

(T, X) =(CNT, X) + C'(T, X) (13b)

where the prime signifies fluctuations, and E[C'(T, X)] = 0
and E[R'(X)] = 0. Substituting (13) into (11) yields

oCNT, X) aC'(T, X)
(R)+R'(X)] T T ar

1 [a%CXT, X) 8°C(T, X)

=— +

Pe ax? ax?
(a<C>(T,X) aC'(T,X)>

- + (14)

aX X

The stochastic partial differential equation of interest is
obtained by taking the ensemble averages of all terms in (14).
This equation is

o(CONT, X) aC(T, X)
R) — +{ R'(X) —7

1 9XONT, X)  a(CXT, X)
“Pe  ax? | ax

(15)

Similarly, the ensemble-averaged initial and boundary con-
ditions are attained by substituting (13b) into (12) and taking
expected values

{C)0,X)=0 (16a)
1 a(CXT, 0) B
—;);T-F(C)(T,O)—l 0<T5Tp
(16b)
1 a(CXT, 0) 3
—E__B:Y—_+<C)(T’ 0)=0 T> Tp
HCXT, =)
—_—=90 (16¢)
oX

If the (R'(X)oC'(T, X)/dT) term were a given function of T
and X, the general solution to (15) subject to initial/boundary
conditions (16) could be obtained from the work of Ito
[1957a, b], as summarized by Sato and Ueno [1965], and is
given by

(T, X) = QT, X) 0<T=<T,
(17a)
(AT, X)=QT,X)-Q(T-T,, X) T>T,

where
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oT, X) = deT fm F(T— 1, X, M®(r, A) dA
0 0

+ fr F(T -7, X, 0¥(r, 0) dr (17b)
0

<R’(X) aC'(T, X)>
ST, X)= ( — ——— 17¢)
(R) aT
(T, 0) = : (17d)
"R

and F(T, X, £) is known as the “fundamental solution™ to the
point-source homogeneous form of the equation [Zauderer,
1983] that satisfies the following partial differential equation
and initial/boundary conditions

)aF(T, X, 86 13T, X, & oFT, X, &

aT ~ Pe ax? axX (18a)
FO, X, §) =8X- ¢ (18b)

1 8F(T, 0, §) 0 £ =0 8
PeT+F(T’ , €)= (18¢c)

dF(T, =, &) 0 8
X = (184d)

The function F(T, X, £) is obtained by straightforward but
laborious procedures. Taking the Laplace transforms with
respect to time and space of (18a)—(184d), using the trans-
formed boundary conditions and applying inverse transfor-
mations yields (see Appendix A)

<Pe (R)> 12 [Pe(x - 6)]
F(T, X, &= exp | ———

47T 2

Pe (RXX — &) PeT
P T &R)

<Pe <R)> 12 [Pe(X - 5)]
+ exp | ——
4T 2

Pe (RXX + &% PeT
exp 4T T AR)

Pe Pe T\ '?
“\7 exp [Pe X ] erfc :1—(-R—)
Pe(R) l/ZX
+ T X +¢

Thus the problem reduces to how to evaluate the term
{R'(X)aC'(T, X)/3T). This term accounts for the effects of
spatial variability in the retardation factor. Readers familiar
with the study of turbulence will recognize that this term
plays a role similar to that of Reynolds stresses. The
remaining part of this section is devoted to the derivation of
this term.

The solution is derived by the method of small-
perturbations or first-order approximation. This method is

(19)



440

described elsewhere [e.g., Van Dyke, 1975] and has been
applied in numerous groundwater flow and solute transport
studies [e.g., Gelhar and Axness, 1983; Dagan, 1985; Hoek-
sema and Kitanidis, 1984]. The method is as follows. The
fluctuations are assumed to be small. To keep track of what
are the small terms, a dimensionless scalar ¢, is introduced.
Thus the fluctuations are written
/ _ g
R'(X) =& Ri(X) 20)
C(T,X)=¢'C{T, X) +---

and the mean values

_ .0
(R) = e (Rp) an

(CHT, X) = e XCHT, X) + e (\CNT, X)+ -+~

where the subscript zero indicates zero-order terms, the
subscript 1 first-order terms, etc. Note that only a zero-order
perturbation is performed for the mean retardation factor,
because R(X) is assumed stationary. The introduction of ¢ is
solely a mathematical artifice which permits separation of
the ‘‘small” high-order terms from the larger low-order
terms, and bookkeeping of terms of the same order. Substi-
tuting (20) and (21) into the governing equation (14) leads to

[e%Rp)+ ¢ 'Ri(X)]

H{CoX(T, X) H{CINT, X) aCi(T, X)
o € +¢! +g!

oT aT ar

182<C|>(T~ X)
0X?

+e €

1 ( o 3XCoT, X)
= €

] *C|(T, X))
Pe ax?

aX?

 HCHT, X) O, X) | CI(T, X)
i I + € + €

). 4 ax aX

(22)

This is equation must be satisfied separately for terms of
each order. Equating coefficients of % into (22) yields the
familiar deterministic advection-dispersion equation with
constant coefficients

HCHT, X) 1 aXCNT. X)  &CoMT, X)
aT  Pe  aX? X

0
23)

The solution to (23), subject to initial and boundary condi-
tions (16a)~(16¢), where (C)XT, X ) is replaced by (Co)XT, X),
has been presented by Lindstrom et al. [1967] and Gershon
and Nir [1969]:

{CoXT, X) = A(T, X) 0<T=T,
(24a)
(CHT, X)= AT, X)-A(T-T,,X) T>T,
where
Pe 12
=1 R —
AT, X) =} erfc [( y <R0>T> (R)X —T)

Pe T\ Pe({Rp)X — T)?
+ eEXp|\—————F""-—
(R 4R T
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[ PeT
=3 1+PeX+-——) exp[Pe X]

{Rp)
-erfc [(

LA

12
\) ((Ro)X + T)] (24b)
4

4

e
4R)T

Equating coefficients of €' into (22) yields the stochastic
parabolic partial differential equation

HCNT, X)
aT

HCIXT, X) aCi(T, X)
) + Ri(X)

+(R ;
0 aT LY !

1 3XCXT, X) 1 3°C{(T, X) C\XT, X) aCiT, X)
=— +— —
Pe ax? Pe  3X? X ax

(25)
Taking expected values of all terms leads to

HCOT, X) 1 a%CHT, X)  Ci)T, X)
T  Pe  oX? ax

0 (26)

This is a deterministic boundary value problem with homo-
geneous initial/boundary conditions obtained from (12) by
keeping first-order terms and taking expected values. By
inspection, we can deduce that the solution is (C\XT, X) =
0.

Subtracting (26) from (25), we obtain the stochastic partial
differential equation which relates the fluctuation C{(T, X) to
the fluctuation R{(X)

aC|(T, X) HCoXT, X)
————— + R{X) ————

{Ro T

Ry

1 93C{(T, X) aC|(T, X)
ax? ). ¢

" Pe

27

subject to the following initial and boundary conditions

Ci(0,X)=0 (28q)
L 3CiT. 0) Ci(T, 0)=0 (28b)
- + C! =
Pe X (7, 0)
aC|T, =)
——=0 (28¢)
ax

If we consider R{(X) given, the general solution to the
boundary value problem is [Sato and Ueno, 1965]

T %
Ci(T, X)= f dr f F(T— 7, X, A)h(r, A) dA 29
0 0

where F(T, X, ) is defined in (19), A(T, X) is given by

R{(X) o(CNT, X) _ Ri(X)
(Ro) oT {Ro)

T, X)= - W7, X) (30)

and the term T, X) = #(CyXT, X)/aT in (30) is obtained by
differentiating (24) with respect to dimensionless time
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HCoXT, X)
Q(T,X)=——6—T——=AT(T,X) 0<TST,,
3la)
HCNT, X)
Q(T, X):T:AT(T’ X)_AT(T-TP!X)
T>T,
where

A )= Pe 2 Pe((R))X — T)?
O\ Tror) TP amaT

Pe pe \'? .
— 2Ry exp [Pe X] erfc HROT (R)X+T)

(31b)

Employing (20), (29), and (30), the expression for the
second term on the left-hand side of (15) can be approxi-
mated by the second-order term:

e'CiT, X)J

ac(T, X
<R’(X) —(aT—)> = E[e RI(X) pre

d T x
e2E| Ri{(X) — dr F(T— 7, X, Mhir, A) dA
aT J, o

€2 Td x
(R())jg fo

AF(T — 7, X, A)
aT

I

E[RI(X)R{(M)]U7, A) dA (32)

where expectation was interchanged with integration and,
subsequently, Leibniz’s theorem for differentiation of an
integral was employed [Abramowitz and Stegun, 1972]. The
term aF(T — 7, X, A)/aT is obtained by differentiating (19)
with respect to dimensionless time variable T, with the result
given in Appendix B. Therefore the small-perturbation solu-
tion (17) to the stochastic partial differential equation (15) is
now complete. Since analytical evaluation of the integrals in
(17b) and (32) is not straightforward, numerical integration
techniques must be employed.

Equation (32) represents the general result so that any
autocovariance function of R’(X) can be employed. How-
ever, in this work the fluctuation of the retardation factor
about its mean value (R} is considered to be characterized by
the commonly used exponential autocovariance function

Cr(X:, X) =E[R'(X)R'(X)] = ok exp [-1X;~ X;] (33

where o} is the variance of R'(X).

NUMERICAL METHODOLOGY

In order to verify the small-perturbation solution, a nu-
merical approximation to the transport model has been
developed, so that model simulations obtained by the two
different solution procedures can be compared. The advec-
tion-dispersion partial differential equation with spatially
variable retardation factor (11) is approximated numerically,
for a step or continuous solute injection (T, — =), by the

Pes72

08

[X:3d

02r

0.0
0

Fig. 1. Breakthrough curves at several values of Pe for solute
transport with spatially variable (solid lines) and invariant (dotted
lines) retardation factor, representing the system response to a
broad pulse solute injection ((R) = 1.8.7, =2, X = 0.83, and o =
0.1).

well-known finite difference scheme of Crank and Nicolson
[1947]. The variable retardation factor at each discrete nodal
point is evaluated by

R;=(R) + R/ (34)

where R; is the zero-mean random fluctuation of (R) at node
i. These fluctuations are obtained by the Markovian gener-
ating scheme [Fiering and Jackson, 1971]

R/ =R} + e,-[o,ze,(l - e (35)
where the ¢; are independent standard normal sampling
variates with zero mean and unity standard deviation and r is
the lag-one serial correlation coefficient defined by

r=exp[-AX] (36)

where AX is the uniform spatial grid size. Equation (35) is
appropriate when the exponential autocovariance model of
(33) is used.

DiscussioN

We have studied the problem of transport of sorbing
solutes in a porous medium which is heterogeneous with
respect to partition coefficients. This problem has similar-
ities to the extensively studied case of transport in a medium
with variable advective velocity, caused by heterogeneity
with respect to hydraulic conductivity [e.g., Gelhar and
Axness, 1983]. In either case, the rate of transport of a solute
“‘particle”” varies with its location. The presence of high and
low mobility zones results in an increase in the rate of
dispersive flux.

Using the analytical small-perturbation solution to the
one-dimensional advection-dispersion equation with spa-
tially variable retardation factor, we have simulated concen-
tration histories for several values of Pe. The integrals in
(17b) and (32) have been evaluated numerically by the
extended Simpson’s rule [Press et al., 1986]. Figures 1 and 2
illustrate the effect of the spatially variable retardation factor
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Pe-72
08} 1
24
08}
] 8
04} 1
0.2t
0'%.0 0.4 0.8 1.2
X
Fig. 2. Solute concentration snapshots at several values of Pe

for transport with spatially variable (solid lines) and invariant
(dotted lines) retardation factor, representing the system response to
a broad pulse solute injection ({(R) = 1.8, T,=2,T=3,and ch
0.1).

at several values of Pe, for solute concentration profiles
distributed through time (breakthrough curve) and space
(snapshot of solute concentration), respectively, by compar-
ison with the advection-dispersion equation with constant
coefficients. These illustrations indicate that the impact of
spatially variable retardation increases with increasing Pe.
This result was expected because an increase in Pe implies
an increase in /. Furthermore, Figures 1 and 2 suggest that
the variable retardation leads to a decrease in solute mobil-
ity; the movement of the center of mass is delayed. This may
not be true at large values of time, an issue which is currently
being investigated by the method of moments. It should be
noted that the areas under the curves corresponding to
constant and variable retardation are not necessarily equal.
The reason is that, as the solute samples all locations
through a one-dimensional porous medium with spatially
variable retardation, the mass sorbed onto sites with R'(X)
= 0 plus the mass sorbed onto sites with R‘(X') > 0 may not
equal the mass sorbed in an equivalent system with constant
retardation (R). The zeroth moment of spatially distributed
solute concentration data is a measure of the total mass in
solution at a given time and is defined as

mo(T) = fw C(T, X) dX G7)
0

Integrating with respect to X equations (11) and (15), and
employing the appropriate initial and boundary conditions
for the integral-limit evaluation lead to the following zeroth
moments:

L 38
M()(T)a = <_R—) ( )
R(A ) oC’ (r A) "
my(T)p = <_R_) - f j R o
(39)
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1.2 T T T T ~—

Fig. 3. Breakthrough curves plotted, at various points in time,
for solute transport with spatially variable (solid lines) and invariant
(dotted lines) retardation factor, representing the system response to
a step or continuous solute injection (Pe = 24, (R) = 1.8, and 012;- =
0.1).

where T = T, and subscripts @ and b indicate the cases of
homogeneous (R(X) = (R)) and heterogeneous (R(X) = (R)
+ R'(X)) retardation, respectively. For large times (7 — ),
in view of (32), the second term on the right-hand side of (39)
vanishes. Therefore, asymptotically, the mass in solution
predicted by the two zeroth moments is essentially identical.
At early times, m(T), could be fluctuating about the value
of my(T),. These fluctuations are caused by the liquid phase
solute concentration changes associated with the movement
of early time concentration profiles through regions of in-
creasing/decreasing retardation. For example, the total mass
in solution of a steep concentration front will be lower if it
moves through a region of decreasing retardation than a
region of increasing retardation. However, at late times
when the solute plume is much larger than the integral scale
of R'(X), so that the solute concentration in solution can be
considered position-independent constant, it is easy to verify
that the total mass in the liquid phase is the same as if the
spatial variability of retardation were neglected, It may not
be unrealistic to expect that at large times the effects of the
spatially variable retardation can be simulated by the classi-
cal advection-dispersion equation with constant *‘effective’’
coefficients. However, justification of such an assumption,
and furthermore, attainment of the required adjustments in
the coefficients of the advection-dispersion equation, de-
mands a better investigational procedure than visual inspec-
tion. Such analysis will not be attempted in this work.

The response of the system to a step or continuous solute
injection (T, — =), at several points in time, is illustrated in
Figure 3. The impact of spatially variable retardation on the
simulated behavior of solute transport is shown to be depen-
dent on the distance traveled from the upstream boundary.
Careful inspection of Figure 3 reveals that solute spreading is
increased. The enhancement of solute spreading depends
critically on the correlation scale and variance of R'(X). The
prominent effect of the variance in the retardation factor is
shown in Figure 4. An increase in o 3. expands the spreading
of the solute front. The broadening of the predicted solute
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2.0

Fig. 4. Effect of 0'12( in temporally distributed solute concentra-
tions profiles (Pe = 24, (R) = 1.8, and T = L.5).

concentration curves is influenced by an enhancement of the
dispersive flux. Therefore, by increasing the spatial variabil-
ity of retardation, the transport model becomes more of the
parabolic type, and predictions of solute concentration his-
tories present more extended tailing. This effect is analogous
to the increase in dispersivity caused by an increase in the
variability of hydraulic conductivity [e.g., Gelhar et al.,
1979; Smith and Schwartz, 1980].

The analytical solution derived in this paper describes the
dependence of ensemble mean solute concentration on sta-
tistical parameters of the retardation random process. In
other words, the analytical small-perturbation solution is
based on the average of individual realizations of the spatial
distribution of retardation factor. The numerical approxima-
tion, however, depends on individual realizations of spatially
discretized retardation values. The numerical approximation
has been developed only for verification purposes. To com-
pare the analytical small-perturbation solution to the numer-
ical approximation, it is necessary to obtain several numer-
ical simulations based on different realizations. The average
of a large number of such numerical simulations should be
identical to the response predicted by the analytical small-
perturbation solution. Figure Sa presents 15 numerical sim-
ulations based on different realizations of the spatial varia-
tion of R'(X). As a verification exercise, the estimate of the
ensemble mean response based on the 15 numerical simula-
tions is plotted in Figure 5b together with the breakthrough
curve obtained by the small-perturbation solution. The two
predictions clearly agree closely. For the special case of
R'(X) = 0, in view of (17¢), the first term on the right-hand
side of (17b) vanishes. Furthermore, F(7, X, 0) (defined in
(19)) multiplied by W(T, 0) (defined in (17d)) is identical to
T, X) (defined in (31)). Since YT, X') is the derivative of
(CoXT, X) with respect to T, the expression (17) reduces to
the familiar solution of the advection-dispersion equation
with constant coefficients (24).

The physical significance of the synthetic experiments
presented may be criticized because there is a dearth of
experimental results to support the validity of the autocova-
riance function used. Actually, Durant and Roberts [1986]
reported that the vertical distribution of K (x) for organic
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Fig. 5a. Numerical approximations for several realizations of the

spatial distribution of R'(x).

solute sorption on Borden aquifer material is not well
described by an exponential function; instead a combination
of spherical/linear model was suggested. However, it should
be noted that the fundamental results of this study will not be
affected qualitatively if another autocovariance function had
been used. Although an exponential autocovariance function
is assumed to represent the spatial structure of the retarda-
tion factor fluctuations, any other function can easily be
employed in (32).

SUMMARY

The primary contribution of this work is the development
of an analytical small-perturbation solution to the stochastic
advection-dispersion partial differential equation that relates
the ensemble solute concentration to the statistics of a
stationary retardation factor. The solution is derived for a
one-dimensional semi-infinite porous medium with a flux-
type inlet boundary condition, under the assumption that

Cc

Fig. Sb. Comparison between analytical solution (dashed line)
and numerically estimated ensemble mean response (solid line)
(Pe =24, T=12, and ¢} = 0.1).
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sorption is governed by a linear equilibrium isotherm. Any
applicable autocovariance function can be employed to
describe the spatially distributed fluctuations of the retarda-
tion factor.

We have demonstrated through synthetic examples that
spatially variable retardation affects the transport of sorbing
but otherwise nonreacting solutes in homogeneous porous
media. Comparing the advection-dispersion equation with
constant coefficients demonstrates that at early times the
center of mass moves more slowly in the variable retardation
case and the impact of spatially variable retardation in-
creases with increasing Pe. At larger values of time, when
the travel distance is much larger than the correlation scale
of the retardation factor, the zeroth moment for the variable
retardation case is identical to the case where the spatial
variability of retardation is neglected. Furthermore, an in-
crease in (r,%: yields an increase in spreading of the solute
front. The impact of spatially variable retardation is ex-
pected to become significantly more pronounced if R(x) is
allowed to vary several orders of magnitude and the Péclet
number is large. However, such cases have not been exam-
ined in the results shown in this work because of the
limitations of the small-perturbation technique employed
and inaccuracy of the numerical method used for compari-
son. Good agreement was shown between the average of
several numerically calculated realizations of the spatially
distributed fluctuations of the retardation factor, and the
analytical small-perturbation solution.

APPENDIX A: DERIVATION OF THE F(T, X, &) Funcrion

The function F(T, X, £) is the solution to the problem
described by the following partial differential equation and
initial boundary conditions:

R OF(T, X, §) 1 (T, X, &) oF(T, X, &

aT Pe ax? ) ¢ (Ala)
0=X<w

FO, X, 6)=8X-¢§ (Alb)
L AT, 0. 9) F(T, 0 0 Al

P ox  n08=0 Alo
=8 _ 0 Al

5% = (Ald)

The solution is obtained with the methods of Lindstrom and
Boersma [1971], and Chrysikopoulos et al. [1990]. Taking
Laplace transforms with respect to time variable T and space
variable X leads to the following set of algebraic equations:

(R)[SF(S, Y. g) - F(o’ Y §)]

1 ) )
=5 [y3E(s, v, &) — vF(s5, 0, &) — F (s, 0, &)]

~[vF(s, v, &) = F(s, 0, §)] (A2a)
FO,v,6)=e77 (A2b)

—F (5,0, &)+ Pe (5,0, £)=0 (A2c)
Fis, =, £ =0 (A2d)
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where
FGs, . &) = f ) [ TFTL X, e Te™dXdT  (A3)
[} 0

the ‘‘tilde” signifies Laplace transform, and s, vy are the
Laplace domain time and space variables, respectively.
Substituting initial condition (A2b) into (A2a), employing
boundary condition (A2c), and solving for F(s, vy, £) yields

‘}’F(S, 0’ f) — Pe (R)e_‘yf

F y =
o v VRS TEu i B
where
M= Pe AS
=-7 (A5)
Pez 172
N= (Pe(R)s + T) (A6)

Using Laplace transforms from the tabulation of Roberts
and Kaufman [1966] and employing the convolution theo-
rem, the inverse of (A4) with respect to yis determined to be

F(s, X, &)

—(M — N)e " M-NX 4 (M 4+ Nye M+ NX
2N

=F(s, 0, §)

Pe (R>[e—(M—N)(X—§) - e*(M+N)(X—§J]

- 2N (A7)

Applying boundary condition (A2d) in (A7), and taking the
limit x 1 o, F(s, 0, £) is evaluated to be

i —Pe (R)
F(s,0, §) = ———— oMM A8
(5,0, §) M- (A8)
Substituting (A8) into (A7) yields
. Pe (R)
E(s, X, £) = ——— g~ M+N)XX-8)
(s, X, &) N €
B Pe (R)(M + N) M-8 ,~NX+) (A9)

2N(M - N)

Resubstituting (AS5) and (A6) into (A9), inversion from
Laplace time variable s to real dimensionless time T is
straightforward, and all necessary transforms can be found
in the tabulation of Roberts and Kaufman [1966]. The
Laplace inversions for each term on the right-hand side of
(A9) are given by the following expressions:

o " MHNIX—§) 1 12
L =
- (7w

Pe(X — §) _Pe RX—-8° PeT
exp 5 exp a7 - R (A10)

| Me ME-8) ,-NX+§)
L~
NM — N)

} = 2<R)n:xp [Pe X]



CHRYSIKOPOULOS: ONE-DIMENSIONAL TRANSPORT IN PoroUS MEDIA 445

. Pe 172 Pe <R> I/ZX |
erfc XR) + a7 (X + £) (Al1)

{ ,—MX-§) ,—NX+£Y) / 1 N\ 12
[ € I

} Sl Y (R G—
M-N

[Pe(x - g)} { Pe (R)X + &) Pe T]
eXp | ——— | exp | — =
2 4T A(R)

1 [ (Pe T) 12 (Pe (R)) 17
—— exp [Pe X] erfc + (X + 8

Pe (R)wT

Z(R) ARy 4T

(A12)

where L' is the Laplace inverse operator. Utilizing (A 10)-
(A12) in (A9) leads to

Pe (R)\ 7 Pe(X —
F(T. X, g):< e >> exp {Lﬁ]

47T 2

Pe (RYX— &7 PeT
exp 4T T AR)

(Pe (R)) 172 [Pe(X - .5)]
+ exp|{————
4nT 2

Pe (RYX + &% PeT| [Pe
exp T - 2R - 7 exp [Pe X ]

(:(Pé’ T) 12 (Pe <R>) 112
-erfc + (X + ¢
4R) 4T

APPENDIX B: PARTIAL DERIVATIVE OF F(T — 7, X, A)
Wirn Respecr 10 T

AF(T— 1, X, A) Pe(R) \'
aT e - 7)?

Pe (R) 12/ pe
* 4m(T — 7) 4 (R)

(A13)

[Pe (X—A) Pe(T- r)]
. exp —
2 AR)
{ [ Pe (RMX — ».)2] [ Pe (RMX + .\)2]}
yeXp | ——————— | t+exp| ———F7—
4T - 1) HT - 71)
( Pe (R) )”2 {Pe(X —A) Pe(T - 'r)jl
+ exp -
4m(T — 7) 2 4(R)

Pe (R){(X — A)? Pe(R{X ~ A)*
S EER e T

AT -
[ Pe(R}X + A) ]}
exp
AT - 7)2

Pe\ [Pe'HRIX + A) —
\2 <w<R>)"2<T )‘f’

[Pe"X(T — 7) + Pe " R)X + N)]?
N 4(RXT

Pe(RYX + A)?
4T - 7')2

exp [Pe X

< exp (B1)

—T)

where the following expression has been employed:

d 2
T erfe[e]= ——zexp [-2%] (B2)

dz

NOTATION

¢ liquid phase solute concentration (solute mass/

liquid volume), M/L?.

pulse-injected solute concentration, ML,

¢* solid phase concentration of sorbed solute (solute
mass/solids mass), M/M.

C dimensionless liquid phase solute concentration.
expected value of the dimensionless liquid phase
solute concentration.

C' zero-mean random fluctuation of (C).
hydrodynamic dispersion coefficient, L2/t.

¢; standard normal variates: N(0, I).

expectation.

complementary error function, equal to 1 — (2/
78 7T dg,

w' ) [ e

K, partition or distribution coefficient (liquid

volume/solid mass), L*/M.

{ correlation scale, L.

Laplace inverse operator.

mg zeroth spatial moment.

Pe Péclet number.
r lag-one serial correlation coefficient,

R spatially variable retardation factor.

(R) expected value of the retardation factor.

R; R value at node i.

R' zero-mean random fluctuation of (R).

R! R' value at node .

s Laplace transform variable.
t time, T.
duration of the solute pulse, T.

dimensionless time.

dimensionless duration period of solute pulse.

average interstitial velocity, L/t.

spatial coordinate in the direction of flow, L.

dimensionless length.

Laplace transform variable.

Dirac delta function.

size of uniform spatial grid.

mathematical artifice, scalar.

porosity (liquid volume/aquifer volume), L3/L>.

bulk density of the solid matrix (solid

mass/aquifer volume), M/L>.

integration variables.

variance of R'.

integration variable, T.

<3 ~S

4
tmmsvikat

>
q
9 Ry
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