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One-Dimensional Solute Transport in Porous Media With Partial
Well-to-Well Recirculation: Application to Field Experiments

CONSTANTINOS V. CHRYSIKOPOULOS, PauL V. RoBERTS, AND PETER K. KITANIDIS

Department of Civil Engineering, Stanford University, Stanford, California

A solute transport model incorporating well-to-well recirculation was developed to facilitate the
interpretation of pilot-scale field experiments conducted for the evaluation of a test zone chosen for in
situ restoration studies of contaminated aquifers, where flow was induced by recirculation of the
extracted fluid. A semianalytical and an approximate analytical solution were derived to the
one-dimensional advection-dispersion equation for a semi-infinite medium under local equilibrium
conditions, with a flux-type inlet boundary condition accounting for solute recirculation between the
extraction-injection well pair. Solutions were obtained by taking Laplace transforms to the equations
with respect to time and space. The semianalytical solution is presented in Laplace domain and
requires numerical inversion, while the approximate analytical sofution is given in terms of a series of
simple nested convolution integrals which are easily determined by numerical integration techniques.
The applicability of the well-to-well recirculation model is limited to field situations where the actual
flow field is one dimensional or where an induced flow field is obtained such that the streamlines in the
neighborhood of the monitoring wells are nearly parallel. However, the model is fully applicable to
studies of solute transport through packed columns with recirculation under controlled laboratory
conditions. The model successfully simulated tracer breakthrough responses at a field solute transport
study, where an induced flow field superimposed on the natural gradient within the confined aquifer

was created by a well pair with extraction to injection rates of 10: 1.4.

INTRODUCTION

Solute transport through porous media is of practical
importance in diverse applications: saltwater intrusion of
coastal aquifers, tertiary oil recovery processes, and move-
ment of adsorbing or reacting species in packed beds or in
aquifers. Mathematical modeling of transport processes has
increasingly captured the attention of many researchers,
particularly hydrogeologists and environmental engineers,
because of the public concern and the widespread attention
on the disposal, movement, and fate of toxic contaminants in
natural subsurface systems.

The transport of nonreactive solutes through homoge-
neous porous media consisting of impermeable grains has
been commonly characterized by the classical advection-
dispersion equation, which is based on the empirical relation
of Fick’s diffusion law [Fried and Combarnous, 1971; Bear,
1972]. For sorbing solutes the advection-dispersion equation
has been modified to incorporate the effects of adsorption
[Hashimoto et al., 1964; Lindstrom et al., 1967], and hyster-
esis [van Genuchten et al., 1974]., However, in order to
simulate the asymmetry and tailing of breakthrough curves
observed in several experimental studies of solute transport,
models have been developed to account for solute exchange
between zones of mobile and completely mixed immobile
water [Deans, 1963; Coats and Smith, 1964; van Genuchten
and Wierenga, 1976} and physical nonequilibrium models
that incorporate solute transfer by the second law of diffu-
sion into immobile regions of various geometries [Rasmuson
and Neretnieks, 1980; Goltz and Roberts, 1986a; van Genu-
chten and Dalton, 1986]. The majority of the mathematical
models in current use for solute transport with sorption
processes are based on chemical equilibrium isotherms
rather than on kinetic sorption relationships because of their
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computational simplicity. However, it must be pointed out
that the validity of the local chemical equilibrium assumption
has been questioned in studies of sorbing solute transport
through laboratory columns [James and Rubin, 1979; Nkedi-
Kizza et al., 1983; Miller and Weber, 1986] and through
aquifers [Pickens et al., 1981; Goltz and Roberts, 1986b;
Roberts et al., 1986].

There are certain cases where direct application of the
existing analytical solutions to solute transport models is not
adequate. For example, in a demonstration of in situ resto-
ration of contaminated aquifers a flow field is induced
between an injection-extraction well pair, where chemicals
of interest are introduced into a fraction of the extracted fluid
which is reinjected (Semprini et al., 1987]. In geothermal
fields it is common to reinject thermally spent hydrothermal
brines, which contain high levels of environmentally hazard-
ous toxic minerals and cannot be discharged as surface
waters [Horne, 1985; Chrysikopoulos and Kruger, 1986].
Clearly, in such systems the movement of injected solutes
cannot be simulated accurately without taking into account
the feedback due to recirculation.

This work extends the collection of solute transport mod-
els by presenting solutions to one-dimensional transport
through porous media under local equilibrium conditions and
solute recirculation between the extraction-injection well
pair. The solutions are developed for a flux-type inlet bound-
ary condition in a semi-infinite medium. Although one-
dimensional models may not be adequate for every field
situation, this particular model provides a starting point for
investigating the effects of well-to-well recirculation. Fur-
thermore, for one-dimensional models, analytical or semian-
alytical solutions are most likely obtainable. When these
solutions are applicable, they are more efficient and accurate
computations than the purely numerical solutions of multi-
dimensional models. The model is applied to an actual field
situation where well-to-well recirculation occurs in an in-
duced flow field superimposed on the natural gradient of the
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confined aquifer with extraction to injection rates of 10: 1.4,
under broad solute pulse injection conditions.

MODEL DEVELOPMENT

The transport of a sorbing solute through one-dimensional
porous media under steady state flow conditions is governed
by the following partial differential equation [Lapidus and
Amundson, 1952].

ac(t, x)  p dCH(t, x) 93CU, x) aC(t, x)
+ = =D -U
at [7] dat

axz ax

where C is the liquid phase solute concentration (M/L?3), C*
is the solid phase concentration of the adsorbed solute
(M/M), D is the hydrodynamic dispersion coefficient (L2/r),
U is the average interstitial fluid velocity (L/1}, x is the spatial
coordinate in the direction of flow (L), ¢ is the time (¢), p is
the bulk density of the solid matrix (M/L?), and 9 is the
porosity (L3/L3). For linear, reversible, instantaneous sorp-
tion the equilibrium relationship between the solute sub-
stance in the aqueous and solid phases is given by

C*(t, x) = K,/Clt, x) (2)

where K, is the partition or distribution coefficient (L3/M).
The distribution coefficient is a measure of solute retention
by the solid and is expressed as the ratio of solute concen-
tration on the adsorbent to solute concentration in solution.
Combining equations (1) and (2) leads to

BZC(I, x) aC(t‘ x)

aC(t, x)
R =D 7~ U 3)
at dx dx

where the dimensionless variable R is the retardation factor
defined as

R=1+ (pl0)K, @

For a semi-infinite system and pulse input conditions that
take into account the effect of solute recirculation, the
appropriate initial and boundary conditions are

c0,x)=0 (Sa)
aC(t, 0)
- +UC(t, )=U[C, + qC(1, )] 0<t=1,
ac(t, 0) (56)
—D-a—x—+ Uc, 0)=quUc, ) 1>1,
aC(t, =)
=0 (5¢)
dx

where C,, is the pulse-type injection concentration (M/IL?),
and ¢, is the duration of the solute pulse (/). The initial
condition (5a) establishes that there is no initial solute
concentration within the one-dimensional porous medium.
The third- or flux-type boundary condition (5b) for pulse
injection implies concentration discontinuity at the inlet and
leads to material balance conservation [Brigham, 1974, Choi
and Perlmutter, 1976; Kreft and Zuber, 1978; Parker and
van Genuchten, 1984]. The upstream boundary condition
(5b) includes, on the right-hand side, the term of qC(t, I),
where C(t, 1) is the solute concentration at the extraction
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location [, and ¢q is the fraction of the recircuiating solute
mass (0 < g < 1). This term accounts for solute recirculation
between the extraction-injection locations by adjusting in-
stantaneously the inlet concentration in proportion to the
solute concentration at the exit. The downstream boundary
condition (5¢) preserves concentration continuity for a semi-
infinite system.

Semianalytical Solution

The solution to (3), subject to initial and boundary condi-
tions described by equations (Sa}—(5c) is obtained by the
methods of Lindstrom and Boersma [1971] and Chrysikopou-
los et al. [1990]. Taking the Laplace transforms of these
equations with respect to the time variable ¢ and the space
variable x leads to the following set of algebraic equations:

R[sC(s, v) — €0, v)] = D[y*C(s, y) — vC(s, 0) = Cils, 0)]

~UlyC(s, v) ~ C(s, 0))  (6a)

¢, v)=0 (6b)

—DC(s, 0) + UC(s, 0) = U[Cp/s + qC(s, [)]  (6¢)
Cyls, ®) =0 (6d)

where

Cls, y) = f fm C(t, x)e e " dt dx
0 Jo

the tilde signifies Laplace transform, and s, y are the Laplace
domain time and space variables, respectively. Substituting
initial condition (6b) into (6a), employing boundary condi-
tion (6¢), and solving for C(s, y) yields

yC(s, 0) — (U/D)[Cpls + qCls, )]

N T M- NG M W) @

where
M=-UR2D 8
N =[Rs/D + U% (4D%]"? ©)

Using Laplace transforms from the tabulation of Roberts
and Kaufman [1966], the inverse of (7) with respect to y is
determined to be

—(M ~ N)e ™M =Mx 4 (3 4 N)e M+ N
2N

U Cp ) e—(M—N)x_e—(M+N)X
- = |—+4qC(s, 1)
Dis 2N

(s, x) = C(s, 0)

10

Applying boundary condition (6d) in (10) and taking the limit
x — =, C(s, 0) is evaluated to be

C(s, 0) .Y [Ef+qC(s, 1)] (1
DIM—N)| s
and upon substitution into (10) yields
Cls, x) = Y F—’f + qCls, 1)} e—-—(M—LN—)— (12)
D] s (M- N)
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Setting x = [ in equation (12), C(s, I) is evaluated to be

[UC,/ (sD)][e ™™ * Mij(M — N)]
I+ (qUID)[e ™ N (M — N))

Substituting (13) into (12) leads to
uUc e'lM*-N)x qUe*(M+NDI
C‘(s,x)=——p—-— 1 f-—
sD (M- N) D (N-M)
(14)

Analytical inversion of (14) with respect to s is too difficuit to
obtain, and numerical inversion of the Laplace transform by
techniques such as the Stehfest algorithm [Srehfest, 1970],
Fourier series approximations [Dubner and Abate, 1968,
Crump, 1976] are required. Therefore the semianalytical
solution in the Laplace domain is given by

Cs. 1) = (13)

C(t, x) = Qt, x) 0<t=1,
(15a)
Clt, x) = Qlt, x) — Qt — 1,, x) t>1,
where
Qt, x) = L~ Y{Cs, )} (15b)

and L ™! is the Laplace inverse operator.

Approximate Analytical Solution

The expression (14) can be reduced by a good approxima-
tion to a format for which analytical inversion is achievable.
For the case where

qU\ e~ M+ N
—_— ] <1
D N-M

the Maclaurin approximation /(1 — x) = 1 + x + x> +

x3 -+ is employed to simplify (14) as follows:

(16)

m-~1
CP
N

Co =3 (—pmd
m=1

(U)’" exp{— M+ N)x+(m- D}
. a7n

D (M~ N)”

Resubstituting equations (8) and (9) into (17), inversion from
Laplace time variable s to real time ¢ is straightforward, and
all necessary transforms can be found in the tabulation of
Roberts and Kaufman [1966]. The Laplace inversion of the
first term, A(t, x), on the right-hand side of equation (17)
yields the well-known solution to the one-dimensional ad-
vection-dispersion solute transport model with third-type
boundary condition without recirculation {Lindstrom et al.,
1967; Gershon and Nir, 1969]:

A C, . Rx — Ut
t, x)=— —_—
X = e | R

U2\ 12 (Rx — Un?
+Cpl —= exp| —————
7DR 4DRt
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[Rx+ Ut]

. arf —_— 1Q
1o

ene | 2DR)™? |

The Laplace inversion of the second term, B(r, x), on the
right-hand side of equation (17) is given by

B | L‘{ CPUg“MJ(NM}L-I{ qUe—(M+NiI}
t, x)= —_— -_——

A
7

sD (M- N) D (M—-N)

where the star signifies convolution, A(s, x) is as defined in
(18), and G(s, [) is given by

Ut \"? (Rl — UD?
Glt,l)=q DR+ €Xp |- ADR:
\IIU‘\( TALsANE

qU? Ul . RI+ Ut 20
— | ——)exp|—|erfc | —=
2or) P\ D soryE|
The Laplace inversion of the third term, I'(z, x), on the
right-hand side of equation (17) is given by

Tt x) = B(t, x)Gir, [) = f’ B(r. )Gt —1. D dr (1)

0

All other terms in the series (17) are evaluated in a similar
fashion. Therefore the approximate analytical solution of the
proposed one-dimensional solute transport model with well-
to-well recirculation in the real time and space domain is

C(1, x) = ®(1, x) 0<t=ty,
22a)

Clt, x} = (2, x) — D@t~ 1,. x) t>1,

where
D1, x) = Alt, X) + 2 anm(t, I*G(t, 1) (22b)
m=1

a(t, x) = A(t, x) (22¢)
anmlt, X) = a, (t, X)*G(t, [) m=2 (22d)

and the nested convolution integrals are easily determined
by numerical integration techniques.

The evaluation of condition (16) is not straightforward
since the parameter N incorporates time in Laplace domain.
However, due to the exponential decay term, the approxi-
mation is always justified for large /. Figure } shows plots of
dimensionless concentration versus time for the approxi-
mate analytical solution (22), the semianalytical solution
(15), and the case of no recirculation (g = 0). The semiana-
lytical solution was obtained by numerical inversion of the
Laplace transform utilizing the Stehfest algorithm [Stehfest,
1970], while the convolution integrals of the approximate
analytical solution were evaluated by Simpson’s rule. For
this illustrative comparison only the first three terms of the
infinite series (22b) were taken into account. The predictions
of the analytical and semianalytical solutions are indistin-
guishable. For ¢ << 1 the approximate analytical solution
can be utilized efficiently with just a few terms of the infinite
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Fig. 1. Comparison of the approximate analytical, semianalyti-

cal, and case of no recirculation solutions: U = 0.5 m/d, D = 0.02
m*d,R=1,C, = 1.0mg/L, x =2.0m,[=6.0m, 1, = 40.0 days,
and ¢ = 0.1.

series, because at late stages of a broad pulse injection the
breakthrough concentration increases only very slowly.
However, for ¢ ~ 1 the number of the required summation
terms in the infinite series is determined by the number of
injected fluid recirculations or equivalently the number of
pore volumes passing through the system during the exper-
imental period. For example, if ¢ = 1, the breakthrough
concentration at the end of & fluid recirculations is approxi-
mately 4C,.

PARAMETER ESTIMATION METHODOLOGY

The model developed above generally contains four pa-
rameters, namely, the retardation factor, the dispersion
coefficient, the fluid velocity, and the fraction of the recir-
culating solute mass. In applying the model to laboratory or
field data it is necessary to best estimate these parameters
and to quantify their uncertainty. There are several ap-
proaches available for parameter determination. Here the
nonlinear least squares regression method has been adopted.

In general, the objective of the nonlinear least squares
method is to obtain estimates of the model parameters which
minimize the residual sum of squares between simulated and
observed data. The objective function may be written as

S(b) = [y — g(u, b1 [y — g(u, b)] 23)

where y = g(u, b) + e is an n X 1 observation vector, g is an
n X 1 vector of model simulated data, u is a vector of
independent variables (time, space locations), b is anp x 1
vector of the true but unknown parameters, e is an n X 1
random vector with zero mean and known covariance ma-
trix, and the circumflex denotes an estimate.

In this study the Standards Times Series and Regression
Package (STARPAC) [Donaldson and Tryon, 1983] was used
for parameter estimation. STARPAC includes an adaptive
nonlinear least squares algorithm developed by Dennis et al.
[1981]. This algorithm adaptively decides when to use the

CHRYSIKOPOULOS ET AL.: WELL-TO-WELL SOLUTE TRANSPORT: FIELD APPLICATION

computationally expensive second-order part of the least
squares Hessian, which accounts for its reliability and effi-
ciency when the residuals are large or the model is highly
nonlinear.

Quantifying the uncertainty of the estimated nonlinear
parameters by approximate 95% confidence intervals, which
are based on a single-variate Student’s r distribution assum-
ing normally distributed parameter estimates, may be criti-
cized because these limits do not yield joint confidence
regions. Joint confidence intervals or confidence regions are
preferable. However, although the concept of confidence

region construction is intuitively simple, it can lead to
considerable difficulties. The results of a Monte Carlo study

CONSIGTTIatIC GHNLUIUITS, 250 IOSUILS U a DMILDIRC LAl s

on approximate confidence region evaluations for nonlinear
least squares parameter estimates conducted by Donaldson
and Schnabel [1987] have shown that the simple and most
frequently used linearization methods are often grossly
underestimating confidence regions. On the other hand, the
likelihood and lack-of-fit methods are considered reliable
(see also Vecchia and Cooley [1987)). Since the utilization of
such methods is a computationally demanding task, only the
approximate 95% confidence intervals are presented in the
following example.

APPLICATION TO FIELD EXPERIMENTS

Solute transport experiments were carried out at Moffett
Naval Air Station, Mountain View, California, during the
first phase of a field demonstration study for in situ restora-
tion of aquifers contaminated with hydrocarbons [Semprini
et al., 1987]. Bromide was injected as a conservative tracer
into the subsurface test zone to characterize fluid residence
times, dispersion coefficients, and degree of solute recovery.

The test zone is a shallow, confined aquifer approximately
1.2 m thick, 4.5 m below the ground surface. The aquifer
material consists of fine- to coarse-grained sand and thin
discontinuous lenses of gravel. Although several wells are
installed on the field site that are designed to permit simul-
taneous experiments, the data used in this paper have been
collected from the south subzone which consists of a fully
penetrating injection-extraction well pair and three partially

577777728
Control
Shed

O

SR
XA A
sy

o
X

5%
S

.....

%8

7

5

2

i
%
2

5
=

%

NN

S 50
~risand &

e

Vertical cross section of the south test subzone: D, drain;
E extract; I injection; and S1, S2, and S3, sampling wells.

Fig. 2.



TS

T
.

T
1

T
L

CHRYSIKOPOULOS ET AL.: WELL-TO-WELL SOLUTE TRANSPORT: FIELD APPLICATION 1193
100 T T T

=
F=3
£

- J
[~4
o
2
/ [
)

= 1
4 [

Q b

=
o
(33

20 1

0 L
0 100 200 300 400

Fig. 3.
extraction to injection rates of 10: 1.4. (b) Streamlines for flow
resulting from a well pair with extraction to injection rates of 10: 1.4
and uniform regional flow.

(a) Streamlines for flow resulting from a well pair with

penetrating monitoring wells (see Figure 2). The injection
well is located 6 m south of the extraction well, whereas the
monitoring wells are 1.0, 2.2, and 4.0 m from the injection
well.

An induced flow field superimposing the natural gradient
within the confined aquifer was created by extracting
groundwater at a rate of 10 L/min and reinjecting a fraction
of this fluid at a rate of 1.4 L/min. The bromide was
introduced into the reinjected fluid as a broad pulse. The
solute concentrations of the injected fluid, at the three
monitoring wells and at the extraction well, were determined
by an automated data acquisition system located at the field.
Additional details of the field site and experimental and
analytical procedures are given by Semprini et al. [1987].

Using potential flow theory and superposition of stream
functions [Strack, 1989, p. 226], we determined that for the
10: 1.4 ratio of extraction to injection rates most of the flow
is limited to within a narrow band between the two wells (see
Figure 3a). As shown in Figure 3b, the width of the stream-
tube, which contains most of the flow, becomes even nar-

Time (hours)

Fig. 4. Bromide concentration breakthrough data observed at St
(squares) and simulated concentration history (solid curve).

rower in the presence of uniform regional flow from the
injection to the extraction well. Furthermore, the stream-
lines in the neighborhood of the monitoring wells S1 and S2
are nearly parallel, implying that the velocity U is nearly
constant in that subregion. Thus, although the actual flow is
not exactly one dimensional, the one-dimensional model is a
reasonable approximation. The boundary condition (5¢) is
introduced in the one-dimensional model to prevent loss of
mass through dispersion upstream.

The bromide breakthrough data observed at monitoring
wells S1 (Figure 4) and S2 (Figure 5) from the experiment
TRACERS were used to validate the well-to-well recircula-
tion solute transport model. For each data set the best
estimates of the three unknown parameters U, D, and g were
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Fig. 5. Bromide concentration breakthrough data observed at S2

(squares) and simulated concentration history (solid curve).
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TABLE 1. Estimated Transport Parameters for Bromide
Breakthrough Data Observed at Sampling L.ocations
S1 and S2

Approximate 95%
Confidence Limits
Standard _—
Parameter Estimate Deviation Lower Upper

Monitoring Well 51
U (m/h) 0.119 0.003 0.113 0.125
D (m%/h) 0.032 0.004 0.024 0.040
q(-) 0.138 0.005 0.127 0.149

Monitoring Well S2
U (m/h) 0.123 0.002 0.120 0.127
D (m?%h) 0.032 0.002 0.027 0.037
q(-) 0.154 0.005 0.145 0.164

obtained by the estimation methodology previously de-
scribed. The fourth parameter of the model, R, was set equal
to unity because bromide was considered as a conservative
tracer. To improve convergence the parameter estimates
were based only on the early breakthrough and the complete
elution curves, excluding the middle portion of the observed
responses (50-170 hours in Figures 4 and 5). The parameter
estimates together with relevant statistics are given in Table
1. The relatively narrow 95% confidence limits of the esti-
mated parameters, as well as the close agreement of the
parameter estimates obtained for the two observed tracer
concentration profiles, indicate that the model can ade-
quately simulate the bromide transport and the solute recir-
culation effects, at least within the experimental subzone.

The actual bromide breakthrough responses observed at
sampling locations S1 and S2 together with the model-
simulated profiles are shown in Figures 4 and 5, respectively.
Good agreement between the experimental data and the
simulated concentration history is shown for both cases. A
model which does not account for well-to-well recirculation
would not have given such good predictions either at the
middle portion of the observed response or at the late
portion of the elution curve (see Figure 1). Clearly, the
observed data incorporate some experimental error, caused
mainly by slight inconsistencies in daily calibrations of the
analytical apparatus. Such variations in the observed data
cannot be simulated. Furthermore, the one-dimensional,
well-to-well recirculation solute transport model developed
herein cannot account for the inhomogeneities and the
three-dimensional nature of the real environment. Nonethe-
less, there is a remarkably good agreement between the
parameter estimates for U and D at the two monitoring
wells, S1 and S2, as seen in Table 1. These parameters
should be interpreted as “‘effective’ ones. Additional simu-
lations of tracer breakthrough field responses are given by
Chrysikopoulos and Roberts [1989].

SUMMARY

A semianalytical and an approximate analytical solution to
the one-dimensional advection-dispersion transport model
accounting for well-to-well recirculation have been pre-
sented. Solutions are given for a flux-type inlet boundary
condition and semi-infinite medium. Sorption is assumed to
be governed by a linear equilibrium isotherm. The model is
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fully applicable to studies of solute transport through packed
columns under controlled laboratory conditions. The appli-
cability of this model to well-to-well recirculation is limited
to situations where the actual flow field is approximately one
dimensional. This is the case when the extraction rate
greatly exceeds the injection rate, as in the situation pre-
sented here. The flow could not be treated as one dimen-
sional if the injection and extraction rates were nearly equal.

Bromide breakthrough concentration profiles, obtained
from the transport studies at the Moffett site, were used to
validate the model. Parameter estimates for the velocity,
dispersion coefficient, recirculation rate, and the associated

05%, confidence intervals were determined by nanlinear least
Z270 COMIGENCe Inidrvais were GeiermintG oy noningar .ast

squares regression. Good agreement was shown between the
observed tracer breakthrough responses and the simulated
concentration history.

NOTATION

A defined in (18).
b vector of unknown parameters.
B defined in (19).
C liquid phase solute concentration (solute mass/
liquid volume), M/L>.
pulse-injected solute concentration, M/L>.
C* solid phase concentration of sorbed solute (solute
mass/solids mass), M/M.

D hydrodynamic dispersion coefficient, L?/z.

e random vector with zero mean and known
covariance matrix.
complementary error function: erfc [x] =
1 — QIVmfie ™ dz.
g vector of model simulated data.
G defined in (20).
integers.
K, partition or distribution coefficient (liquid volume/

solids mass), L3/M.

{ location of extraction well, L.
Laplace inverse operator.
integer summation index.
defined in (8) and (9), respectively.
fraction of recirculating solute mass: 0 < g < 1.
retardation factor.
Laplace transform variable.
objective function.
time, ¢.
duration of the solute pulse, ¢.
vector of independent variables.
average interstitial velocity, L/t.
spatial coordinate in the direction of flow, L.
vector of observed data.
Laplace transform variable.
defined in (21).
porosity (liquid volume/aquifer volume), L3/L3.
bulk density of the solid matrix (solids
mass/aquifer volume), M/L3.
defined in (22b).
defined in (15b)

A tilde indicates Laplace transform, and a circumflex
represents an estimate.

erfc [x]
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