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Many current relational database systems use some form of histograms to approximate the

frequency distribution of values in the attributes of relations and on this basis estimate query

result sizes and access plan costs. The errors that exist in the histogram approximations directly

or transitively affect many estimates derived by the database system. We identify the class of

serial histograms and its subclass of end-btased histograms; the latter is of particular interest

because such histograms are used in several database systems. We concentrate on equality join

queries without function symbols where each relation is joined on the same attribute(s) for all

joins in which it participates. Join queries of this restricted type are called t-cllque queries. We

show that the optimal histogram for reducing the worst-case error in the result size of such a

query is always serial. For queries with one join and no function symbols (all of which are

vacuously t-clique queries), we present results on finding the optimal serial histogram and the

optimal end-biased histogram based on the query characteristics and the frequency distributions

of values in the join attributes of the query relations. Finally, we prove that for t-clique queries

with a very large number of joins, h~gh-bzased h zstograms (which form a subclass of end-biased

histograms) are always optimal. To construct a histogram for the join attribute(s) of a relation,

the values in the attribute(s) must first be sorted based on their frequency and then assigned

into buckets according to the optimality results above.
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1. INTRODUCTION

Query optimizers of relational database systems decide on the most efficient

access plan for a given query based on a variety of statistics on the contents

of the database relations that the system maintains. These are used to

estimate the values of several parameters of interest that affect the decision

of the optimizer [SAC+ 79]. Histograms are the most common type of main-

tained statistics containing the number of tuples in a relation for each of

several subsets of values (buckets) in an attribute. Usually, the information

contained in a histogram represents an inaccurate picture of the actual

contents of the database. This is due to two reasons: first, for each subset of

values in an attribute, only aggregate information is captured in the his-

togram; second, as the database is updated, the information becomes obsolete

if it is not appropriately updated as well. Hence, the query optimizer uses

erroneous data to accomplish its task.

This would not be much of a problem if the desired estimates were derived

by applying some simple functions on the erroneous statistics only once. This

is not the case, however, for many complex queries that are processed as a

sequence of many simpler operations, e.g., multi-join queries processed as a

sequence of 2-way joins. In that case, the query optimizer must estimate

various parameters of the intermediate results of the operations, and then

use the obtained values to estimate the corresponding parameters of the

results of subsequent operations. Even if the original errors in the statistics

maintained by the database system are small, their transitive effect on

estimates derived for parameters of the complete query may be devastating.

Consequently, the decision of the query optimizer may be wrong since it is

based on data with large errors. This phenomenon where the errors in the

original system statistics affect the error in the derived estimates is called

en-or propagation and is one of the main issues that challenge current query

optimizer technology.

There are several parameters whose inaccurate estimation can lead a

query optimizer to wrong decisions. Moreover, there are several operators

that may be present in a query, and each one is affected by errors in its

operands differently. In this paper, we concentrate on the relation size and on

the join as the parameter and the operator of interest, respectively. This

choice is motivated by their importance in query optimization and by their

sensitivity to error propagation.

We investigate the optimality of histograms for limiting the error propaga-

tion in the estimates of the result sizes of a restricted type of join queries.
Specifically, we study equality join queries without function symbols, where

each relation is joined on the same attribute(s) for all joins in which it

participates. The focus of our work is on histograms that accurately record

the average frequency within each bucket. We identify a class of such

histograms and show that, for the specific type of join queries studied, the

optimal histogram for reducing the worst-case error in the size of such a

query is always in that class. For 2-way join queries with no function symbols

(all of which are vacuously of the query type studied), we present several

ACM TransactIons on Database Systems, Vol 18, No 4, December 1993
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results on finding the optimal histogram in that class based on the query

characteristics and the frequency distributions of values in the join attributes

of the query relations. In that class, we also identify a specific type of

histogram that is always optimal for very large queries. Since all these

results discuss histogram optimality with respect to a specific query, we

conclude with some possible heuristics on choosing a histogram that is

potentially effective on both large and small queries. In practice, constructing

a histogram is straightforward. The values in the join attribute(s) of interest

must first be sorted based on their frequency, and then assigned into buckets

according to the criteria dictated by the optimality goals of the system as

specified by the formal results or heuristics presented in this paper.

We are aware of no work in the area of error propagation in the context of

database query optimization other than our own [4, 5]. There is an extensive

literature on deriving good estimates for the parameters of the result of

database operations, which has been surveyed by Mannino et al. [10]. This is

not the case, however, with the effect of the errors in these estimates on the

error of a sequence of such operations. The folklore has been that errors

propagate exponentially, and therefore, beyond a certain point, computed

estimates are unreliable—but the problem has essentially been ignored. The

primary reason has been the low complexity of the queries that current

systems have to face. But as the query complexity increases in future

database applications, this can no longer be the case. In hindsight, however,

it becomes apparent that a better understanding of error propagation is

needed even for the currently common, low complexity queries, where errors

can grow enough to cause erroneous decisions by the optimizers [3, 8, 9, 17].

Although used in many systems, the formal properties of histograms have

not been studied extensively. In addition, the few pieces of work of which we

are aware deal with histograms in the context of single operations, primarily

selection. Specifically, Piatetsky-Shapiro and Connell [15] dealt with the

effect of histograms on reducing the error for selection queries. They studied

two classes of histograms: in an “equi-widt& histogram, the number of

attribute values associated with each bucket is the same; in an “equi-depth”

(or “equi-height”) histogram, the total number of tuples having the attribute

values associated with each bucket is the same. Their main result showed

that equi-width histograms have a much higher worst-case and average error

for a variety of selection queries than equi-depth histograms. Muralikrishna

and DeWitt [13] extended this study to include multidimensional histograms

that are appropriate for multiattribute selection queries. The details of those

studies and the assumptions under which the above statement holds are very

different from the foundations of our work. Several other researchers have

dealt with “variable-width” histograms for selection queries, where the buck-

ets are chosen based on various criteria [6, 12, 14]. The survey by Mannino

et al. [10] contains various references to work on choosing the appropriate

number of buckets in a histogram for sufficient error reduction in the area of
statistics. That work deals primarily with selections as well. Histograms for

single-join queries have been minimally studied, and then again without

ACM Transactions on Database Systems, Vol. 18, No. 4, December 1993



712 . Y. E. Ioannidis and S. Christodoukalls

emphasis on optimality [1, 7, 14]. Our work is different from all the above in

that it deals with arbitrarily large join queries for the most part and

discusses properties of histograms that are optimal for such queries.

This paper is organized as follows. Section 2 introduces some notation for

the study of error propagation and states the assumptions made in this

paper. It also gives some of the results derived from mathematics (majoriza-

tion theory) that are used throughout the paper. Section 3 contains the basic

definitions on histograms and some of their fundamental properties. Section 4

identifies a characteristic property of all histograms that are optimal for some

query. The class of histograms that have this property is studied further in

subsequent sections. In Section 5, criteria are provided for identifying the

optimal histogram within that class for queries with one join and no function

symbols. Similar results are also obtained for a special histogram subclass of

interest. In Section 6, the properties of histograms for queries with very large

number of joins are studied and the class of asymptotically optimal his-

tograms (as the number of joins in the query tends to infinity) is identified.

Section 7 makes some general recommendations on how to choose histograms

that limit the worst-case error propagation based on the results of the

previous sections. Finally, Section 8 summarizes our results and gives direc-

tions for future work.

2. MATHEMATICAL FOUNDATIONS AND PROBLEM FORMULATION

2.1 Majorization Theory

We present some important results from the mathematical theory of ma-

jorization, which will prove to be useful in studying the effect of histograms

on limiting the error propagation. They are all taken from Marshall and

Olkin [11]. In what follows, an M-vector gz whose components are a,, 1< i s

M, is denoted by ~ = (al,..., a~) or by g = (a,). The components of all

vectors are nonnegative reals. A vector g is nonincreasing when V1 < i < M,

the inequality al > a,, ~ holds. Finally, for two vectors g and ~, their inner

product is defined as

This may also be generalized for an arbitrary number N of vectors g(J),
1 < j < N, whose inner product is defined as

We have taken the liberty to use * both in the infix notations as a binary

operator on vectors and in the functional notation as an N-ary operator on

vectors for arbitrary N. The relationship between the two uses is straightfor-

ward: g *~ = *(g, ~).

ACM Transactions on Database Systems, Vol 18, No 4, December 1993
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Definition 2.1. For two M-vectors g = (a, ) and ~ = (b, ) with nonnega-

tive components, g majorizes ~ if

There are several important inequalities that can be derived based on the

majorization property. The most significant one for this paper is expressed by

the following theorem.

THEOREM 2.1. If g is a nonincreasing vector and g majorizes ~, then

a*x>b *3.— — —

Example 2.1. As an example of the above theorem, consider the vectors

-- (10, 5, 1), and b = (1,5, 10). One can easily verify that thex = (3,2, 1), g --

~remises of Theorem 2.1 are satisfied. The same holds for the conclusion of

the theorem, since q * & = 42, whereas ~ * y = 23.

The above theorem can be extended to inner products

THEOREM 2.2. If for all 1< j < N, Q(J) majorizes ~(j),
*(a(l) a~NJ) > *(b(l), . . . . btN)) hOl&.

)...>_ —— — —

2.2 Problem Formulation

of multiple vectors.

then the inequality

In this paper, we use the term join as an operator that combines tuples of

two relations based on some condition satisfied by the tuples. In general, such

a condition will be a conjunction of simple relationships, each relationship

involving an attribute of the first relation and an attribute of the second

relation. For example, if R ~, R ~, R ~ are relation names and a, b are attribute

names of these relations, a query whose qualification is

(Ro.a = R1.a and RO.b = l?l.b) (1)

is a query with one join, whereas a query whose qualification is

(Ro.a = R1.a) and(RO.b = Rz.b) (2)

is a query with two joins. In both qualifications above, the condition inside

each parenthesis is a join.

Consider a tree query of N joins in which relations RO, ..., RN participate.
To avoid potential confusion with the multiple use of the term “value,” we

refer to the values of the join attributes of these relations as the join

elements. In this study, we make the following assumptions about the form of

ACM Transactions on Database Systems, Vol. 18, No. 4, December 1993.
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the query:

All joins are equality joins with no function symbols. (Al)

Each relation is joined on exactly the same attribute(s) for all

joins in which it participates. That is, even if a relation is joined

with multiple other relations, each join is always on the same
(A2)

attribute(s).

Queries that satisfy the above assumptions are called t-clique queries, since

their query graph would be a clique due to the transitivity of equality. For

example, a query with qualification (1) is a t-clique query, but a query with

qualification (2) is not, because RO participates in the join with RI with

attribute a and in the join with Rz with attribute b, i.e., (A2) is violated.

Similarly, a query with qualification

(Ro.a =R1.aand Ro.b =R,. b)and(Ro.a =R2.aand Ro.b =Rz. b) (3)

is a t-clique query, because R ~ is joined with both R ~ and Rz based on both

attributes a and b. Finally, a query with qualification

(Ro.a +RO. b =R1.a +R1. b)

is not a t-clique query, because the join involves the arithmetic function +,

i.e., (Al) is violated. Note that all queries with one join (often referred to as

2-way join queries because they involve two relations) satisfy (A2) by defini-

tion. Hence, for 2-way equality join queries with no function symbols, the

results presented in this paper are completely general.

An obvious implication of (A2) is that all relations participate in joins with

the same number of attributes of compatible types. We view this common set

of attributes as a single attribute of potentially tuple form and refer to it as

the join attribute of the query. Based on the above, the join elements, i.e., the

values of the join attribute, may be of tuple form as well. For example, in both

(1) and (3), the combination of attributes a, b is considered as a single

attribute whose values are tuples (pairs) of atomic values. The ~“oin domain

9 of a t-clique query is the set of all join elements that could potentially

appear in the join attribute of any relation in the query. All forthcoming

results are independent of the number of attributes of each relation that

appear in the query, i.e., independent of the form of the join attribute

mentioned above.

We assume some arbitrary numbering of the elements in the join domain,

so that referring to the i-th join element is meaningful. The following

database parameters are of interest:

M The size of the join domain.

tLJ The number of tuples in RJ whose join attribute contains the i-th

join element of the join domain, 1 < i < M, O < j < N. This is

called the frequency of the i-th join element of the join domain in

R,.

s The size of the result relation of the query,

ACM TransactIons on Database Systems, Vol 18, No 4, December 1993
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For simplicity, given the bijection between Q and the set {1,2,..., M}, we

treat the latter as the join domain itself, i.e., ~ = {1,2, . . . . M}. Whenever we

need to distinguish between the two, we use the term “actual join domain” to

refer to the former. We should point out, however, that the bij ection is

arbitrary and thus not necessarily order preserving. For example, if the

actual join domain is a finite subset of the integers, reals, or bounded-length

character strings, the i-th join element based on the natural ordering of the

join domain is not necessarily associated with i. For each relation RJ,

O <j<iV, thevectorfJ = (tlj,..., ~,t .)is called the frequency distribution in

R~. Occasionally, it is also useful to treat all the frequencies in ~j as a

collection, ignoring the join element with which each frequency is associated.

That collection is in general a multiset (i.e., it may contain duplicates), is

called the frequency set of RI, and is denoted by Mj. For example, if

j. = (10,3, 7,3) and II = (3,3, 10, 7), then M. = Ml = {10, 7,3, 3}.

Clearly, for t-clique queries, the above parameters are related with the

following formula:

s= *(Jo,..., JN)= f fit,J. (4)
~=1 J=o

That is, the size of S of the result of a t-clique join query is equal to the inner

product of the frequency distributions of the participating relations. Theorem

2.2 can be directly applied on (4) to derive the following:

THEOREM 2.2. Consider a t-clique query Q with relations R], O < j < N.

Let the fi-equency sets Ml, O < j < N, be given for all relations. The result size

of Q is maximized when, for all O < j < N, the corresponding frequency vector

~1 is a nonincreasing vector.

PROOF. Consider any frequency set Ml, O < j < N, and let ~1, ~~ be two

potential frequency vectors for RI (whose components are the elements of

M~). If tj is a nonincreasing vector, then clearly, jj majorizes j;. Hence, by

Theorem 2.2 and formula (4), the result size of Q is maximized when the

frequency vectors of all relations are nonincreasing. ❑

Most often database systems have inaccurate knowledge of the frequency

distributions in the query relations. Therefore, the estimate that they derive

for the size S is inaccurate as well, and this affects the decisions of their

query optimizers.

Definition 2.2. Suppose that a certain quantity has a definite value A

whereas the database system approximates it by the value A’. The difference

A – A’ is the exact error and the fraction ( A – A’ )/A’ is the relatiue error in

the approximate value A’.

One could have used the fraction (A – Ae )/A in defining the relative error

in A’, instead of following Definition 2.2. Our choice was motivated by a

desire to measure error based on the value that the database system knows,

which is A’. In addition, there is a very simple relationship between the two

types of relative error, which can be used to derive the value of one given the

ACM Transactions on Database Systems, Vol. 18, No. 4, December 1993.
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value of the other. Specifically, if ~1 = ( A – A’)/Ae and ~z = ( A – A’ )/A,

then the following holds:

Note that as El varies from – 1 to CC,.sZ varies from – @ to 1. Also note that

the values of the two types of relative error are very close to each other when

they are very small (close to O). Hence, when the database system achieves its

goal of maintaining enough information so that it deals with small errors, the

definition that is adopted for the relevant error plays no significant role. For

all the above reasons, all the results on relative error in this paper are

derived based on Definition 2.2.

For any quantity of interest, the potentially erroneous value used by the

system is denoted by the same symbol as the correct value with an additional

superscript “e.” For example, the approximation of the frequency distribution

is denoted by ~~ = (t~l,....t&l) and the corresponding estimated result size

is denoted by Se. In the sequel, we concentrate on relative errors. If no

confusion arises, we occasionally use the term “error” alone, the intended

meaning being “relative error.”

For a given collection of ~~’, O s j s N, let D = (S/S’) – 1 be the corre-

sponding relative error in the estimated size of the query result. By (4), this

implies that for t-clique queries

Note that for any fixed value of the estimated result size S’, Theorem 2.3 and

(5) imply that the error D is maximized when for all O < j s N, Jj is a
nonincreasing vector. Moreover, it has been shown that, under the uniform

distribution assumption, the error grows exponentially with N [4, 5]. (This

holds for many other approximations of the frequency distributions as well.)

The focus of our attention is on reducing D for databases where such

worst-case behavior is exhibited, i.e., where all frequency vectors are nonin-

creasing. The particular method that we study is maintaining appropriately

chosen histograms on the frequency distributions.

2.3 An Example

Formula (5) holds for arbitrary frequency distributions. To obtain a better
feeling for the magnitude of the error propagation, we apply (5) to a specific

database instance, which will also be our running example for the entire

paper. In particular, we examine the case where the actual frequency distri-

butions are Zipf [2, 18]. The main characteristic of the Zipf distribution is

that it assigns high frequencies to few join elements and low frequencies to

most join elements. Thus, this example deals with a quite common special

case, since the above is claimed to be a characteristic of the distribution in

many databases.

ACM TransactIons on Database Systems, VOI 18, No 4, December 1993
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Fig. 1. Zipf frequency distribution.

Assume that all relations in the database are equal to each

frequency distribution is Zipf, i.e., for all j,

In (6), Tj is the size of RJ in tuples,

for all relations. Furthermore, we

forall l<isll.

Z=o.oo
2=0.02

Z=O.04
z=O.06
z=O.08

Z=o.lo

other and the

(6)

and we assume that it is equal to 10000

assume that the join domain contains

M = 100 join elements. Figure 1 is a graphical representation of (6) for
z = 0.0,0 .02,..., 0.1. One can see that the deviation from the uniform distri-

bution increases with z, but it is not very dramatic for the range depicted.

Suppose that the database system uses the Zipf distribution with z = O

(uniform) as the approximation to the actual distribution. Figure 2 is a

graphical representation of equation (5) for that case. Specifically, the rela-

tive error in the query result size is shown as a function of the number of
joins for various values of ~. The observed results are rather discouraging.

Even small errors in the individual relations propagate in the query result

growing at an exponential rate and generating a final error that very quickly
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Fig. 2. Join result size error for Zlpf distributions under uniform approximation

becomes intolerable. Note that by Theorem 2.3, this situation produces a

worst-case error, since all frequency distributions are nonincreasing vectors.

3. BASIC DEFINITIONS AND PROPERTIES OF HISTOGRAMS

Among commercial systems today, maintaining histogranzs is a very common

approach to approximating frequency distributions [17]. In histograms, the

join domain is partitioned into buckets, and a uniform distribution is as-

sumed within each bucket. Hence, based on our convention about the join

domain, a bucket is a subset of ~ = {1,2,... , M}. The approximate frequency
distribution captured by a histogram is called the h istogruvl distribution. We

should emphasize the fact that buckets that do not represent a contiguous

range in the join domain are perfectly valid, e.g., bucket {1, 3}. The join

domain as defined provides no indication of how the join elements should be

grouped in buckets. The numbering of the join elements based on the bijec-

tion between the actual join domain and {1,2, . . . . M} (Section 2.2) has been

arbitrary and does not reflect, for example, a natural value-based ordering of

the join domain. Also note that maintaining the necessary information for the

uniform distribution assumption over the entire join domain is equivalent to
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maintaining a histogram with a single bucket. Such a histogram is called

trivial.

In this study, we assume that the histograms maintained by the system

have an accurate record of the average frequency within each bucket, i.e., for

any bucket b in the histogram of RJ, O < j < N, for all 1 s i < M, i e b = t,;

= Xk. ~th j// b 1. Thus, we concentrate on errors that arise from aggregating
the frequency distributions and not on ones that arise from delaying the

propagation of database updates to the histogram. The reason is that the

former are the only types of error that can be controlled by an appropriate

choice of histograms. The latter can only be controlled by an appropriate

schedule of database update propagation to histograms, the investigation of

which is beyond the scope of this paper.

The following lemma establishes a majorization relationship between a

frequency distribution and any corresponding histogram distribution.

LEMMA 3.1. If ~ is a nonincreasing frequency distribution and ~ any

corresponding histogram distribution, then ~ majori~es ~.

PROOF. Within each bucket of the histogram, t,is nonincreasing, whereas

tf remains constant. Hence, within each bucket (t, ) majorizes ( t,’).Combin-

ing the implications of this for all buckets yields the lemma. ❑

In general, each histogram reduces the join result size error differently, We

attempt to identify the ones that are in some sense optimal. Unfortunately,

we are aware of no useful result that is generally applicable. Hence, we

concentrate on identifying optimal histograms for reducing the worst-case

error, i.e., when for all 1 < k < M, the k-th largest value in the frequency sets

of all relations is associated with the same join element. This association

represents the worst case because, for any given collection of frequency sets,

it produces the maximum value for the join result size among all possible

associations of frequencies to join elements (Theorem 2.3), which corresponds

to the maximum error given any fixed value of the estimated result size. By

Theorems 2.2 and 2.3 and Lemma 3.1, the approximate join result size is

never larger than the maximum possible actual size. Therefore, the optimal

histogram maximizes the approximate size.

For simplicity in the presentation and without loss of generality, we choose

the bijection between the actual join domain and the set {1, 2,..., M} (Section

2.2) so that it preserves the frequency-based ordering of the join elements.

Thus, the k-th most frequent join element is associated with k. Because of

the decision to use {1,2, . . . . M} as the join domain itself, the above can be

restated simply as the following convention, which holds for the entire paper:

The fi-equency distributions of all relations are noninereasing.

Recall that, in general, the frequency-based ordering captured by the

distributions following the above convention is completely unrelated to any

value-based ordering of the actual join domain.

Example 3.1. To illustrate the above definitions, conventions, and as-

sumptions on histograms, consider the “canonical” EMP relation and focus on

ACM TransactIons on Database Systems, Vol. 18, No. 4, December 1993



720 . Y. E. Ioannldis and S Christodoukalls

Table I. Frequencies of Department Names in the EMP Relation

Department Name Number of Employees Frequency-based Itank

candy 10 4

jewelry 30 2

shoe 20 3

t Oy 40 1

the dept attribute, which contains the name of the department of each

employee. I?or simplicity, assume that there are four different departments

and that the frequency of each department in the EMP relation is given in

the following table.

The assumption that the frequency distributions of all relations are nonin-

creasing implies the following: first, the frequency-based ordering of depart-

ments is toy > jewelry > shoe > candy for all relations that have the dept

attribute; second, the bijection between the actual join domain and {1,2, 3, 4},

which is used as the join domain by convention, associates each department

to the frequency-based rank mentioned in Table I. Note that this frequency-

based ordering is completely unrelated to the alphabetical ordering of depart-

ments based on their names. Figure 3(a) is a graphical representation of the

nonincreasing frequency distribution of department names in EMP. In the

x-axis, both the actual and the conventional join domains are given. Based on

the usual convention [9, 15], if one were to build a histogram on the dept

attribute, buckets would be formed by departments that are close in the

alphabetical ordering of their names. An example of such a histogram with

two 2-element buckets is shown in Figures 3(b) and 3(c). In the former, we

show the original distribution and which join elements (or equivalently

frequencies) are placed in which bucket. In the latter, we show the actual

histogram distribution that is the result of averaging the frequencies in each

bucket. Note that the buckets b ~ = {1,3} and b ~ = {2,4} are not contiguous

ranges within {1, 2,3, 4}. As another example, consider the histogram with

two 2-element buckets that is shown in Figures 3(d) and 3(e), again depicted

in the two ways discussed for the first histogram. In this case, the buckets

bl = {1,2}and b2 = {3,4} are contiguous ranges within {1,2,3, 4}, but do not

group departments based on their names. In principle, all possible his-

tograms are equally valid for the purposes of this paper, including the two

above.

Based on the above, histogram optimality is defined as follows.

Definition 3.1. Consider a query Q with relations RI, O < j < N, associ-

ated with nonincreasing frequency distributions. For each relation R~, let Y<’

be a collection of histograms of interest. The ( N + I)-vector ( Hj ), where

HI = Z;, O < j < N, is an optimal histogram vector for Q within (XJ’), if the

approximate result size of Q that it generates is greater than or equal to the

approximate result size of Q that any other such histogram vector generates.
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Fig. 3. Frequency distribution and two histograms of department names in EMP.
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Note that optimality is defined per query and per collection of frequency

distributions, and for the histograms of all relations together. The reason is

that the optimal histograms differ for different queries and for different

frequency distributions. In reality, one would like to identify one histogram

per relation that is optimal for all queries and all frequency distributions of

the remaining relations. Whenever possible, we present results of that form,

but in general, we follow Definition 3.1 for optimality,

Before we proceed with the investigation of optimal histograms, we define

several types of histograms and histogram buckets that play some significant

roles in the rest of this paper.

Definition 3.2. A histogram bucket such that the frequencies associated

with all the join elements in it are equal is called uniualued. Any other

bucket is called m ultivalued.

Note that for all join elements in a univalued bucket, the histogram captures

their associated frequencies accurately.

Definition 3.3. A histogram with L univalued buckets and one multival-

ued bucket is called biased. If the L univaled buckets correspond to the join

elements with the LI highest distinct frequencies and the Lz lowest distinct

frequencies for some LI and Lz such that L = LI + Lz, then it is called

end-biased. If LI = L and Lz = O, then it is called high-biased. If LI = O and

Lz = L, then it called low-biased.

We should point out that high-biased histograms are being used by some

current systems for approximating the frequency distributions of relations

[Se189].

Definition 3.4. A histogram is called serial with respect to its buckets bl

and b2, if either Vi = bl, k = b2, the inequality i > k holds, or Vi = bl, k =

b2, the inequality i < k holds. It is called serial if it is serial with respect to

all pairs of its buckets.

For example, the histogram of Figures 3(d)–(e) is serial, while that of Figures

3(b)–(c) is not. Note that because we are dealing with nonincreasing fre-

quency distributions, the inequality i > k above is equivalent to the reverse

inequality between the corresponding frequencies, i.e., t,< tk.Also, note that

end-biased histograms are serial.

4. CLASS OF OPTIMAL HISTOGRAMS

In searching for the optimal histograms, the following general result is

useful.

LEMMA 4.1. Consider a t-clique query with relations R], O < j < N, and

assume that t?le histogram distributions for R], 1 < ]“ < N, are nonincreasing.

For two different histograms G and H for RO, if the histogram distribution of

G majorizes that of H, then the error under G is no higher than the error

under H.
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PROOF. This is a straightforward consequence of Theorem 2.1, which

implies that S“ obtains a larger (or equal) value under G than under El.

Since we are dealing with the case that produces the highest possible actual

size (nonincreasing frequency distributions), the above implies that the error

under G must be less than or equal to the error under H. ❑

Clearly, the overall optimal histogram is always the one with singleton

buckets, one for each join element. To avoid such vacuous arguments and to

make fair comparisons, we define several interesting spaces of histograms,

where each space contains histograms that are equivalent with respect to the

amount of information that they maintain. Then we identify the optimal

histoWams within each such space.

Definition 4.1. The bucket template S@ of a histogram is a pair ~ ==

( /3, B ), where B is a set of integers that denote the cardinalities of the

buckets in the histogram and whose sum is equal to M, and ~ = IB! is the

histogram size, i.e., the number of buckets in the histogram.

As an example, the bucket template of both histograms of Example 3.1 is

(2,{2, 2}), since they have two buckets, each one of which has two join

elements.

Definition 4.2. For any bucket template %, the space -%3 is the set of

histograms that conform to Q’ and the space%; is the set of histograms that

have D buckets. Also, the space %6 is the set of biased histograms that have

B buckets.

Note that %> is closed under join element exchange between buckets. That is,

given H = ~~j and two of its buckets b ~ and bz, consider any histogram H’

that is identical to H in all remaining buckets, and has b ~ and b2 replaced

by b~ and bj such that Ibjl = Ibll, Ibjl = lb21, and b~ U bj = bl U b2. Then

H’ =%3. Also note that ~z G%’, since Y?@ requires that not only the number

but also the size of the buckets be the same. Given the above, the following

lemma and the subsequent theorem shed some light on histogram majoriza-

tion within YE. (Optimality results within %; will be given in the next

section. )

~EiMMA 4..2. Consider a bucket template @ and a histogram H G Y@ with

two buckets b, and bt, and let s and t be the average of the corresponding join

element frequencies, respectively. Consider a histogram G ● %9 that is serial

with respect to b, and bt and is constructed from H by exchanging elements of

b. and bt and leaving all other buckets unchanged. Let the corresponding

frequency averages for b. and b, be s, and t,, respectively. Without loss of

generality, assume that in G, Vi ● b,, k = b,, the inequality i < k holds. If
SI > s > tl and SI > t > tl, then G majorizes H.~

PROOF. Obviously, in what follows, we can ignore all other buckets and

concentrate on b. and b,. Thus, without loss of generality, we assume that b.

1For any histogram H, three of the four inequalities always hold.
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and bt contain the first Ib,, I + Ib~ I elements of the join domain. Assume that

the frequencies in H and G are denoted by h, and g,, respectively. Then the

following three facts can be derived. (a) Since the set of elements remains

unchanged in the two histograms, the following holds: x~~l~ Ib’lh, = ~~!l~ l~’lg,.

(b) If Ks Ib.1,then Z~.lg, > E:. ~h,, since for all 1 s i s K, g, = SI and h,

either takes the value s or the value t, both of which are no greater than S1

by the premises of the lemma. (c) If Ib, I < K < lb, I + Ib,l, then the following

holds:

In the above, the inequality is due to two observations: the first sums of the

expressions on its two sides are equal (fact (a)); for the second sums, for all

K + 1 s i s Ib,,l + Ibtl, g, = tl and h, either takes the value s or the value t,

both of which are no less than tl by the premises of the lemma.

By Definition 2.1, points (a)–(c ) prove that G majorizes H. ❑

THEOREM 4.1. For any bucket template Q? and any histogram H ~%;,

there is a serial histogram in X2 that majorizes it.

PROOF. Consider two arbitrary buckets b,, and b, in H. We first show that

there is a histogram in %2 that is serial with respect to b, and bt that

majorizes H. Specifically, consider histograms that can be constructed from

H by exchanging elements of b,, and bt and leaving all other buckets

unchanged. Again, in what follows, we ignore all other buckets and concen-

trate on b, and bt. We distinguish two cases.

Case 1. Ib. I # Ibt 1. In this case, there are only two histograms in&~ that

can be constructed as above and be serial with respect to bS and bt: one

where Vi E b~, ‘dh G bt, i < k (denoted by HI) and one where Vi ● b,<,

Vk ~ bt, i > k (denoted by Hz). We prove that if one of them does not

majorize H, then the other one does. Without loss of generality, assume that

HI does not majorize H and that Ib,, I < Ibt 1.We use the following notation:

s The average of the frequencies in bucket b, in H.

t The average of the frequencies in bucket bt in H.

SJ The average of the frequencies in bucket b, in HJ, j = 1,2.

t, The average of the frequencies in bucket b, in H,, j = 1,2.

Figure 4 can be used to illustrate the situation by showing on the original

frequency distribution which join elements are placed in which bucket.

By the manner in which the b, and bt buckets have been constructed in the

various histograms, the following inequalities can be derived:
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Fig. 4. Serializations of two buckets by element exchange.

The inequalities in (7) are derived from the fact that all three s’s are

averages of the same number Ib,,I of frequencies, with s ~ being the average of

the Ib, I largest frequencies among those in the two buckets, and SZ being the

average of the Ib, I smallest such frequencies. The inequalities in (8) among

the t’s are derived similarly. Finally, the outermost inequalities SI > t~ and

tl > Sz are due to the fact that b, is smaller (has fewer join elements) than

b,.

The fact that 111 does not majorize H implies that tl > s. Given the

inequalities in (7) and (8), the above is derived as the contrapositive of

Lemma 4.2. That inequality combined with (7) and (8) yields the following:

tz > t > SZ and tz > s > SZ. By Lemma 4.2, these imply that Hz majorizes H.

Case 2. Ib. I = Ib, 1. In this case, there is a unique histogram in %1, (de-
noted by EJl) that can be constructed as above and be serial with respect to b,

and bt. (Whether it is b. that ends up with the high frequencies or bt is

immaterial, since both buckets contain the same number of elements. ) We
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prove that lZl majorizes H, using the same notation as in case 1. Because

Ib, I = Ibtl, both s and t can be no greater than SI, since the latter is the
average of the largest Ib. I frequencies in the two buckets. Similarly, both s

and t can be no less than t~,since the latter is the average of the smallest Ib, I

frequencies in the two buckets. Therefore, Lemma 4.2 is directly applicable

and implies that HI majorizes H.
The above concludes the proof that for any pair of buckets in H, we can

obtain a histogram in %~ that is serial with respect to the two buckets and

majorizes H. Repeatedly applying the above construction for all pairs of

buckets in Ii will result in a serial histogram in Y<> with the desired

properties. Since there is a finite number of such pairs, this process is

guaranteed to complete. ❑

The above theorem can now be used to derive results on the optimality of

histograms with respect to the join result size error.

THEOREM 4.2. Consider a t-clique query Q with relations RI, O s j < N,

and an (N + I)-vector of bucket templates (Y?]). There exists an optimal

histogram vector for Q within (.Yd, ) where all histograms in it are serial.

PROOF. By Theorem 4.1, for any histogram Hj = %,, there is a serial

histogram G~ E R,&,, that majorizes it. Since Gj is serial,’ the corresponding

histogram distribution is nonincreasing. By applying Lemma 4.1 the theorem

is proved. u

COROIJAFW 4.1. Consider a t-clique query Q with relations R,, O < j < N,

and an (N + 1)-z>ector of histogram sizes ( fl~ ). There exists an optimal

histogram vector for Q within { ?[P,) where all ( biased) histograms in it are

end-biased.

PROOF. Similar to the previous set of results. ❑

An interesting observation concerning Theorem 4.2 is that usually his-

tograms are const~wcted in a way that each bucket stores join elements that

belong in a certain range in the natural total order of the actual join domain.

What the above theorem implies is that this traditional approach may be far

from optimal for t-clique queries. Moreover, it indicates that histograms

should be constructed so that join elements are grouped in buckets based on

closeness in their corresponding frequencies.

Example 4.1. As an example of the importance of serial histograms,

consider the worst-case error when joining two identical relations of 10000

tuples whose join domain contains 100 elements and whose frequency distri-

butions are Zipf with z = 0.2 (Section 2.3). Assume that the histograms

maintained for the two relations are identical as well. We have calculated the

error generated when the histograms are trivial (i.e., uniform approximation)

and for three other interesting types of histograms that have five buckets: (a)
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Table II. Error in a 2-Way Join Query for Various Histograms

Histogram Error

Trivial 4.64%

Nonserial 4.60%

Serial 1.10%[[
High-biased 2.15%

a nonserial histogram where the i-th bucket b,, 1< i <5, is equal to b, = {5x

+ i 10< x < 19}; (b) the unique serial histogram with five buckets with twenty

elements each; and (c) the unique high-biased histogram with five buckets

(four univalued buckets contain the join elements with the four highest
frequencies and one that contains the remaining join elements). Note that (b)

and (c) conform to the same bucket template, i.e., they belong to %’& for

.% = (5,{20, 20,20,20, 20}), whereas (b), (c), and (d) have the same number of
buckets, i.e., they belong to %$. The corresponding results on the error based

on (5) are shown in Table II.

As expected the serial and high-biased histograms are better than the

trivial and the nonserial ones. There are two more interesting points to note,

however. First, the nonserial and the trivial histograms generate almost

identical errors, although the former maintains five times more information

than the latter. Second, the high-biased histogram generates a larger error

than the serial one. Hence, in this case, the relatively common practice of

accurately maintaining the highest frequencies is far from optimal. u

Theorem 4.2 is the most important result of this section and states that the

optimal histograms are serial. It does not offer, however, any indication as to

which of the possibly many serial histograms is the optimal one in each case.

Unfortunately, we are aware of no general result in that direction. The

optimal serial histogram depends on the specific frequency distributions of

the relations but also on the query size. That is, even for the same frequency

distribution for all relations, the number of relations joined in the query

significantly affects the optimal serial histogram. The intuition behind these

dependencies is the following:

(i) The frequencies that are rarer should be known more accurately, i.e., the
associated join elements should be placed in univalued buckets or at least

buckets with few join elements that have similar frequencies. The reason

is that these frequencies offer more information about the overaH distri-

bution. The following artificial example will help drive the point home.

Consider the frequency distribution (10, 9,8, 1). The frequency of the

fourth join element is much lower than the other three frequencies, which

are very close to each other. Thus, for small join queries, histogram 111
with buckets {1, 2, 3] and {4} is more preferable than, say, histogram Hz

with buckets {1} and {2, 3, 4}. The histogram distribution of HI is very
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close to the actual one, (9, 9, 9, 1) instead of (10, 9, 8, 1), whereas the

histogram distribution of Hz is quite different, (10,6,6,6) instead of

(10,9, 8, 1).

(ii) As the number of joins in queries grows, large frequencies become more

dominant in the computation of the query result sizes and therefore

should be known more accurately. The reason is that the number of

tuples in the results associated with the most frequent join elements

becomes a larger fraction of the overall result sizes as the number of joins

in queries grows. Consider a relation having the frequency distribution of

the example in (i) above, For a 2-way join query of the relation with itself,

the first join element contributes 100 tuples to the result out of a total of

246 tuples, that is approximately 40%. On the other hand, for a 5-way

join query of the relation with itself, the corresponding percentage is

approximately 52%. Thus, Hz becomes more competitive as the query

size grows, and beyond a certain number of joins it becomes more

preferable than H1.

The results presented in the next section quantify (i) for 2-way join queries.

The results presented in the subsequent section quantify (ii) for very large

queries (in the limit). A general result that captures the precise balance

between (i) and (ii) for arbitrary size queries, i.e., arbitrary values of N, still

escapes our efforts.

5. OPTIMAL SERIAL HISTOGRAMS FOR 2-WAY JOIN QUERIES

As mentioned earlier, all 2-way equality join queries with no function sym-

bols are t-clique queries. Hence, assumption (A2) does not restrict the gener-

ality of the results in this section. For the rest of the paper, we concentrate on

serial histograms. Let &P be the subset of %; that contains the serial

histograms that have ~ buckets. We discuss histogram optimality within Y@,

i.e., for a given number of buckets ~, we attempt to identify the optimal serial

histogram among those with ~ buckets. The following notation needs to be

introduced for histograms with ~ buckets:

P, The maximum join element in bucket b,, 1< i < @, of a serial

histogram of size P. (Clearly, PP = M, whereas we also define

p. = 0.)

Note that the set {pi 10 s i s P} completely specifies a serial histogram of size

B.
As mentioned above, in this section, we concentrate on 2-way join queries.

In two different subsections, we investigate optimal serial and optimal end-

biased histograms, respectively. Before proceeding in that direction, however,

we present the following general and rather unexpected result, which implies

that for maximal error reduction, the same histograms should be used for

both relations in a 2-way join query.
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THEOREM 5.1. Consider a function-free equality join query Q of two rela-

tions RO and R ~ and an integer B > 1. If H G P; is the histogram used for RO,

then for Q, H is optimal within u $= ~~ot for RI as well.

PROOF. Let 11 G 9P be the histogram used for RO, characterized by the set

{ptlo s i s b} of maximum join elements in its buckets. Consider an arbi-

trary histogram G E U ~. IYP, characterized by the set {q, 10 s i s ~‘} of
maximum join elements in its buckets. Let TZ~ (resp. U,J), j = O, 1,be equal to

T,, = Zjj’~ ~ tkj (resp., U,J = ~~. ~ th~). When j is omitted, T, (resp. T;) denotes
the sum of the frequencies of the first p, join elements in the result relation

of Q under the histogram pair (H, H ) (resp. (H, G)). We prove that the

approximate size TP under (H, H ) is never less than the approximate size T;

under (H, G).

Concentrate on two arbitrary consecutive members pl _ ~ and pl, 1<1< ~,

of {pl10 < i < ~}. Assume that q, <pl_l < q,+l and qj <p~ < q~+l for some

O < i, j < ~’. Consider the join elements between pl. ~ (exclusive) and pl

(inclusive) and their contribution Tl – Tl ~ (resp. T( – T;. ~) to the approxi-

mate size of the result under the histogram pair (H, H) (resp. (H, G )). Let A

be defined as A = ( Tl – Tl _ ~) – (T; – T/_ ~). To find an equivalent expression

for A, we distinguish two cases.

Case 1. q, < qJ (orequivalently q,, ~ < qj). The relative ordering of the
p’s and q’s for an arbitrary instance of this case are shown in Figure 5. From

Figure 5, the Following holds:
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qi n-l qi+l q, P, q+~

Fig. 5, Relative placement of maximum join elements of buckets.

Tlo – T(l_l)O
—

Pl –Pi-l

Case 2. q, = q, (or equivalently q,, ~ > pl ). Similarly to case 1, the fol-

lowing holds:

(10)

Formulas (9) and (10) can be captured uniformly by a single formula.

Specifically, assume that q, is the largest among the q’s that is no larger

than pl, i.e., q] 5 Pl < qj~~. In addition, let xl, yl, and Zl, O <1< B, be

defined as follows:

Tro – T,l. ~)o
xl = (11)

Pl –Pi-l

.v/ = 1“~1 – UJ1 (12)

u – q,
Z1 = (P1 –qJ) “+’)]

qj+l–f7J “
(13)

Then both (9) and (10) are equivalent to

Formula (14) can now be used to capture the difference between TP and T;.
Clearly, Tp == x~= ~(Tl – T1. ~) and T; = Z?. I(T[ – Tl _ ~). By (14) we obtain the
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following:

TP – T; = ; ((q – I“.,) – (q’ – 7’-1))
1=1

= ; Xl((y, -z,) - (y,_, -zl_l))
1=1

p-l

–Xl(yo –Zo) + x (xl –X1+l)(Y1 –21) +~p(Yp –Zp)
1=1

p-l

= ~ (x, -X,+l)(yj -z,). (15)
1=1

The last equality is due to the fact that all four of YO, zo, YP, and zp are

equal to O. This can be easily verified by using PO = q. = 7’01 = Uol = O and

pp = qfi = M and T’l = UPI = SI (the size of RI) in (12) and (13).

For each term of (15) we make the following two observations. First, the

inequality x ~ > xl+ ~ holds, since x ~ is the average of some frequencies that

are all no less than the frequencies whose average is equal to xl+ 1 (the

frequency distribution of RO is nonincreasing). Second, for similar reasons>

the inequality yl > Z[ holds. Specifically, (12) and (13) yield

The first term inside the rightmost parenthesis is the average frequency in

RI of the join elements between q,] and pl while the second term is the

corresponding average of the join elements between q, and qj + 1. Since

qj + ~ > pz, the parenthesis is non-negative. In conjunction with the fact that

Pt z q~ (by definition), this implies that yl > Zl. Applying the above two

observations to (15) yields the theorem. ❑

Example 5.1. Consider a relation R o that follows the Zipf frequency

distribution with z = 0.2. Assume that a 2-bucket serial histogram is used for

R. such that the maximum join element in the high-frequency bucket is 10.

Figure 6 shows the error as a function of the corresponding join element p of

a 2-bucket histogram for R ~. Three different Zipf frequency distributions for

RI are shown with z = 0.2, 0.5, and 1.0, respectively. In all cases, p = 10

generates the least error. It is interesting to note that the error grows quite

fast on the two sides of the optimal p value, indicating the importance of

choosing the appropriate histogram. As expected, more skewed distributions

(e.g., Zipf with z = 1.0) are affected more severely.

As mentioned right before Theorem 5.1, its most important implication is

that for maximal error reduction, the same histograms should be used for
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0.50

I

Fixed Relation: 2=0.2 p=10

I Z=l. o

o 10203 O4O5O6O7O 80 90 100
Join Element p

Fig. 6. Choosing a histogram for one relation given the histogram of the other.

both relations in a 2-way join query. There is no point in having more buckets

in the histogram of one relation than in the other or having different buckets.

Hence, we use this result in the following subsections and only search for a

single histogram for both relations that would be optimal for such a query.

5.1 Optimality Among ALL Serial Histograms

In this section, we identify the optimal histogram within 3; for a histogram

size ~ > 2. We assume that for both R o and RI, not all frequencies are equal

in each one of them, because otherwise all histograms are optimal and

generate zero error. The following notation needs to be introduced for relation

R], j = 0,1:

SJ The size of Rj measured in tuples,

T,J The sum of the highest i frequencies in the frequency distribu-

tion of R], i.e., T,j = Zi = ~tkl. By definition, S] = T~l.

T,(x) A monotonically increasing differentiable function on the reals

that agrees with T,~ on the integers. (Its derivative on x is

denoted by Z( x ).)

(Note the difference in the definition of T,l compared to the proof of Theorem
5.1.) In the following result, ~, is approximated by T~( x ) so that the latter’s
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derivatives can be obtained. Although based on such an approximation, the

outcome works well in practice. We first present the special case of the

theorem for B = 2 so that intuition is developed.

THEOREM 5.2. Consider a function-free equality join query Q of two rela-

tions RO and R ~ such that not all frequencies in RO (resp., R ~) are equal. For

Q, the optimal serial histogram with 2 buckets for RO and RI satisfies the

following:

(16)

where forj = O, 1,

PROOF. The size for the join result generated by a 2-bucket serial his-

togram as a furwtion of p ~ is equal to

~o(Plml(Pl) + (sO – To(pl))(sl – Tl(pl))
S’(pi) =

PI M–pl

To find the optimal value for p ~, we differentiate S’( pl ) and equate with O.

~o(p,)~,(pl) + ~o(p,)~,(p,) _ ~o(P,)~,(P,)
S’(pi) = o +

P1 P;

(s0 - T’JP,))T,(P,)+To(p,)(s, - T,(p,))
M–pl

+ (L$J– To(p,))(s~ – T~(p~)) = o

(M–pl)2

(Tl(pl) SI – Tl(pl)
= Fo(pl) —

PI M–pl )

(To(pl) so – To(PI)
+

M–pl )
Tl(pl)

PI

Toil (SO – TO(P1))(SI – TI(PI))
—

P; (M –p,)z

The last equality is derived by the definition of y~- ( p ~) and y14( p ~). Dividing

both sides of it by Y;( pl)y~( pl) yields (16). The division is indeed allowed

since both Y;( p 1) and -yI( p 1) are nonzero. This is due to the fact that not all
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frequencies in each relation are equal, which forces the average of the

frequencies for elements up to p ~ to be greater than the average of those

after pl.

We have shown that Se(pl) takes an extreme value when PI satisfies (16).

To see that it is indeed a maximum, it is enough to observe the following. (We

avoid an argument based on the formula for S’( p ~) due to its complexity.) As

p ~ grows, Tj( P ~) increases (and correspondingly ~1( p ~) decreases) at a rate
determined by the frequencies added to T,. The larger the value of p 1, the

smaller the frequency that is added to T], so as p ~ grows, Tj( p ~) decreases at

that rate. At the same time, y~(pl) = ~(pl)/pl + (SJ – ~(pl))/(M – PI)

also decreases (both terms decrease), but at a slower rate due to averaging.

Hence, considering the value of PI that satisfies (16), to the left of it

Se(pl) >0 and to the right of it ~’(pi) <0, or equivalently Se(pl) <0.

Hence, for the value of p ~ that satisfies (16), Se has a maximum. ❑

To use Theorem 5.2 in database histograms, T( p ~) must be approximated

by a discrete quantity. We adopt one of the canonical methods that uses the

average of the value differences of T](x) between p ~ — 1 and p ~ and between

PI and PI + L i.e., 2~(P1) = t~(Pl) – ?(P1 – 1)) + (T1(P1 + 1) – T1(PI~)
= ~(pl + 1) – ~(pl – 1) = tp, ) + t(p,.,l),. Hence, the following corollary of

Theorem 5.2 can be obtained.

COROLLARY 5.1. Consider a function-free equality join query Q of two

relations RO and RI such that not all frequencies in RO ( resp., RI) are equal.

For Q, the optimal serial histogram uith 2 buckets for RO and RI satisfies the

following:

tp,o + t(p, +l)o + t ~,1 + t(pj+l)l ‘YTo + Y:l=
Ylo Yll Y;o 7;1 ‘

(17)

where y~l and y~l are derived from yJ- ( p ~) and yJ+( p ~), respectively, by

replacing Tl(pl) with TPLJ.

Applying the corollary to identify the optimal 2-bucket serial histogram can

be done in time linear in the number of join elements. Roughly, this would

involve scanning the join elements from 1 to M, and for each one calculating

the expressions in the two sides of (17) and comparing them, until (17) is

satisfied. The following example illustrates how Corollary 5.1 can be applied

on specific frequency distributions; the results have been obtained by using

such an algorithm.

Example 5.2. Consider again the Zipf distribution of Section 2.3 with

z = 0.1 and assume that both relations follow it. In this case, (17) is satisfied

for pl = 19. One can verify that this choice generates the largest approxima-

tion for the 2-way join result size. Note that the break point between the two

buckets is far from the median (which would be 50 in this case). This is due to

the fact that the distribution is skewed, with its high frequencies being rarer

than the lower ones (Figure 1). Hence, this example illustrates how (17)

captures point (i) of the intuition described in the end of Section 4 on the

dependency of optimal serial histograms on the rarity of frequencies.
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5.2 can be generalized to deal with an arbitrary number of

This generalized version is given below without its proof, which

steps of the one of Theorem 5.2.

THEOREM 5.3. Consider a fllnction-free equality join query Q of two rela-

tions RO and RI such that not all frequencies in RO (resp,, Rl) are equal. For

Q, the optimal serial histogram with ~ buckets for RO and RI satisfies the

following:

where forj = 0, 1,

~(Pl~ – q(P/.l) + ~J(Pl+l) – q(Pt)
y;(p~) = and

P1 –PI-I Pl+l –P1

q(pl) – q(P1.lJ _ q(Pl+l) – ~’(Pi)
yj-(pi) =

Pl –Pi-l P1+l– P1 “

Applying the above theorem to identify the optimal serial histogram for RO

and R ~ still requires polynomial time in the number of join elements, where

the degree of the polynomial is the number of desired buckets minus 1. The

reason for the complication compared to the 2-bucket case is that the optimal

break points cannot be identified independently of each other, so roughly all

possible combinations of points must be examined. If the number of desired

buckets is considered as a parameter of the size of the input, then the

algorithm requires exponential time in that parameter.

5.2 Optimality Among End-Biased Histograms

The above results identify the optimal histograms among all serial ones.

Because of the complexity involved in applying these results, a reasonable

alternative that several database systems have adopted is to only support

end-biased histograms [17]. In that case, the candidate break points for

buckets are much fewer. Unfortunately, differentiation has not been as

effective in identifying the optimal end-biased histograms as before. Although

it results in a theorem similar to Theorem 5.2 or 5.3, the formulas involved

are complex and unintuitive. As an alternative, we explore an inductive

approach in which the univalued buckets of the end-biased histogram are

chosen one at a time. Given a fixed set of ~ – 1 univalued buckets, choosing

the optimal next univalued bucket results in a histogram that may not

always be the optimal end-biased histogram with ~ buckets, but it often

provides a satisfactory approximation. According to the above approach, the

first k, 1< k < p – 1, univalued buckets that are chosen can be ignored

when choosing the (k + 1)-th one. This is done by concentrating on the
unique multi valued bucket that has been formed at that point and identifying

which of the two (sets of) join elements that are associated with its highest

and lowest frequency should be placed in a univalued bucket. Hence, without
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loss of generality and to simplify presentation, the following series of results

only addresses the first step in the histogram formation process, i.e., the case

of finding the first frequency to be placed in a univalued bucket.

Based on Theorem 5.1, for optimal results the two relations must have the

same histogram. Therefore, there are only two alternatives for the optimal

end-biased histogram with two buckets for a 2-way join query. The first such

histogram places in a univalued bucket the maximum possible number of join

elements that are all associated with the highest frequency in both I?. and

R1. The second such histogram does the same for elements associated with

the lowest frequency in both RO and R ~. Let k and k’ be the number of join

elements placed in a univalued bucket in the above two histograms, respec-

tively. In an effort to obtain succinct and usable criteria, we assume for

simplicity that k = k‘. The following theorem establishes a relationship

between the optimal histogram and properties of the specific distributions

involved. As in the previous subsection, S~, j = O, 1, denotes the size of R].

THEOREM 5.4. Consider a function-free equality join query Q of two rela-

tions RO and RI such that not all frequencies in RO ( resp., RI) are equal.

Consider the end-biased histogram with 2 buckets that is optimal for Q. The

frequency that is accurately maintained in its univalued bucket is chosen as

follows:

(
t if aO+al>O

Frequency in univalued bucket of R~ = t~J
M] if aO+al<O

where forj = O, 1,

(t,, + tM, )/2 – s,/M
al =

t lJ – thfj “

PROOF. Let S: and S; denote the result size approximations when tlJand

t~~ are chosen as the frequencies to be maintained in the univalued buckets,

respectively. Based on (4), and assuming k join elements in the univalued

buckets of each of the candidate histograms, a comparison of the two sizes

yields the following:

ktlotll + (SO – ktlO)(Sl – ktll)/(M – k)

z kt~ot~l + (SO – kt~O)(Sl – ktMl)\(M – k)

(M – k)ktlo t,, – (M – k)ktMOtM1

–SOk(tll – tJIl) – Slk(tlo – tMO) + kztlotll – k2tMOtl~l >0

tlotll – t&lotM1 – ~(tll – tM~) – ~(tlo – tMO) >0
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Based on the premises of the theorem, tlj> tMj for j = O, 1. Hence, dividing

the above formula by the nonzero (tlo– tMo)(tll– tM~)completes the proof.

❑

If R ~ and R ~ are the same relation R with frequencies t,,1< i < M, and

size S~, the following simple corollary can be obtained.

COROLLARY 5.2. Consider a function-free equality join query Q of relation R

with itself and suppose that not all frequencies in R are equal. Consider the

end-biased histogram with 2 buckets that is optimal for Q. The frequency that

is accurately maintained in its univalued bucket is chosen as follows:

Frequency in univalued bucket of R =

I
t~

if

if
tl+tM s~”

<—
2 M

PROOF. If cio = al - a, Theorem 5.4 implies that the optimal choice de-

pends on the sign of a. Since t~ is always greater than tM, the denominator

of a is always positive. Therefore, the optimal choice depends on the sign of

its nominator alone. ❑

There is a rather intuitive explanation of Corollary 5.2, which captures

point (i) of Section 4. When a >0, the frequency distribution is more skewed

towards lower values (the average. of the distribution is lower than the

average of the two extremes). In that case, the highest frequency of the

distribution is, in some sense, more distinguished (rarer) than the lowest one,

and is therefore more valuable to maintain in a univalued bucket. A similar

argument holds for the opposite case as well.

The criterion provided by Theorem 5.4 is rather simple to apply for any

specific 2-way join between two relations, since al can be easily computed.

Unfortunately, it does not provide a general answer when considering all

possible 2-way joins that can be formed between relations from a large set.

Depending on the particular join, the answer for any relation may be differ-

ent. Below we offer a general heuristic that will work well in many cases. For

that we need to first prove the following simple proposition.

PROPOSITION 5.1. If not all frequencies in a relation R are equal, then

lal <l/2.

PROOF. We prove that a s 1/2; the other inequality can be proved simi-

larly.

Since there is at least one frequency (~,) that is higher than t~, the last

inequality always holds in the strict sense. Equality can be obtained at the

limit M - =. ❑
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Table III. Values of a for the Zipf Distribution for Various Values of z

z 0.0+6 0.02 0.04 0.06 0.08 0.10

Q 0.290 0.296 0.301 0.307 0.312 0.318

The above proposition can be used in applying the following heuristic. For

each relation Rj of interest, aj should be calculated. Based on the values that

are obtained, the following decision can be made: (a) if CYJis positive (resp.

negative) for most relations, then tlj (resp. tNIJ) should be chosen for all

histograms; (b) if al has a large absolute value (e.g., above 0.3) whenever it is

positive (resp. negative) and a small absolute value (e.g., below O.1) whenever

it is negative (resp. positive), then tlj (resp. tMj) should be chosen for all

histograms. If none of the above holds and there is a varied mix of positive

and negative values of aj, then additional considerations should be taken

into account, e.g., frequency or importance of queries, which are beyond the

scope of this paper.

Example 5.3. Consider again the Zipf distribution of Section 2.3 for vari-

ous values of z. The corresponding values of a are given in Table III.

In the above, c is an arbitrarily small number. There are three points that

we want to emphasize for this example. First, the value of a does not change

very dramatically as z increases. Hence one should expect to see large

differences in the values of this parameter only when there are dramatic

differences in the skew of distributions. Second, for the Zipf distribution,

which is claimed to be quite common in “natural” data, a is always positive.

Third, even for extremely small values of z, the value of a is relatively high.

The combination of the three points above implies that, for data that follows

Zipf distributions, the univalued buckets of end-biased histograms should

contain the high frequencies in the distributions.

6. ASYMPTOTICALLY OPTIMAL SERIAL HISTOGRAMS

The techniques used in the previous section to characterize optimal his-

tograms for 2-way join queries cannot be generally applied to obtain similar

characterizations for larger queries. Moreover, even in the cases where they

can, the resulting criteria are rather cumbersome and are not easily applica-

ble in practice. Nevertheless, they have shown a clear trend of the optimal
histograms when the number of relations in a t-clique query increases.

Specifically, the optimal serial histograms tend to have many buckets each

one of which contains few elements associated with high frequencies and one

large one with the remaining elements of low frequency. Similarly, the

optimal end-biased histograms tend to have increasingly more of their unival-
ued buckets containing elements with high frequencies. The following theo-

rem formalizes the above observation in the limit. We first introduce some
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notation about a family of relations {Rj Ij G .V U {O}} (where .4’ is the set of

positive natural numbers):

0] The minimum join element, i.e., value of i, in the multivalued bucket

of a high-biased histogram H] ● ‘2P for R,j, j ● M U {O}. That is,

dj – 1 denotes the number of join elements associated with the ~1 – 1

highest frequencies in RJ.

0 The minimum of all values of 8~, i.e., 6’ = minj e,~,, (oj~J}.

THEOREM 6.1. Consider a family of t-clique queries {Q~ IN ~.fl, where QN
is on relations R], O < j < N. Let ( H~N) ) be the (N + 1)-uector of serial

histograms that is optimal for Q~ within (P; ), where all histogram sizes

satisfy ~1 > 1 and the approximate frequencies &i-e denoted by t ~~N’. Let ~H] )

be the corresponding high-biased histogram vector in ( ?[O ). If for an infinite

number of values of j G.KU {O}, t$N) < tl,, then at the ~imit, the following

holds:

lim (H~N)) = (HJ).
N+ x

PROOF. Let S’ and S’(N’ denote the result size approximations for QN

under the high-biased histograms and under arbitrary serial histograms G~N )

with ~1 buckets for R], O < j < N, respectively. The theorem is proved by

showing that limN - .(S’ – S’(N’) > 0. Observe that tfj= t~j,since Hj is

high-biased. Formula (4) yields the following:

MN M N

By the premises of the theorem, for each product in the rightmost sum of the

above formula, an arbitrary number of its fractions are less than 1. Hence, as
N ~ w, that sum tends to 0. In addition, the limit of the sum immediately to

its left is clearly non-negative. Combining these two facts yields

We claim that the quantity in the parenthesis is always non-negative and

therefore the same holds for its limit. Assume the worst case that maximizes
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the rightmost sum in the parenthesis (with the negative sign), i.e., assume

that 6 – 1 is the highest join element in some bucket of G~N), for all

j =JI’ U {O}. (This represents a worst case because then t~,~~~)j is the average
of frequencies that are no lower than t(fl. 1~l.) Also, by the definition of O, for

alll<i< O–landj=ti~u {O}, t~j= t,j.Hence, the claim is equivalent to

with t,~N)representing the worst case discussed above. By Lemma 3.1, for all
j =,7’ u {O}, the M-vector ( t,j ) majorizes the M-vector ( tf~N)).In conjunction

with Theorem 2.2, this fact proves (18). Therefore, lim~ - .(S’ – S’(N)) z O.

The above was shown for an arbitrary histogram vector, so it holds for the

optimal vector ( H} N’) as well. In that case, it can be equivalently expressed

as limN+. (HjN’) = (HJ). ❑

A reasonable criticism of Theorem 6.1 is that it holds under a rather

technical and unnatural condition that 0 must satisfy. In reality, this condi-

tion is necessary to ensure that there is enough variability in the histograms

that the behavior in the limit is indeed asymptotic. For example, consider the

case where the condition is violated because all but two frequency distribu-

tions are uniform. Then essentially only the two non-uniform distributions

determine the optimal histogram and Theorem 5.4 should be used for that

purpose. We expect that in most cases the condition of the theorem would be

satisfied. Therefore, the above result captures the essence of the asymptotic

behavior of optimal histograms. Characteristic examples where Theorem 6.1

is applicable include the case where all relations are the same, the case

where for each relation the t) highest frequencies are distinct, and the case

where for all j G.I’U {O}, (3J = 0.

Example 6.1. To illustrate the importance of high-biased histograms in

large join queries, we continue Example 4.1, where instead of dealing with a

2-way join query, we deal with a 5-way join query. Recall that the relations

are identical, contain 10000 tuples whose join domain contains 100 elements,

and their frequency distributions are Zipf with z = 0.2 (Section 2.3). Assume

that the histograms maintained for the five relations are identical as well. We

have calculated the error generated by the same types of histograms that

were used in Example 4.1. The results for the 5-way join query are shown in

Table IV.

Again the serial and high-biased histograms are better than the trivial and

the nonserial ones. There are two additional interesting points to note. First,

the errors are significantly larger than those of the 2-way join query. -The

exponential growth is very evident once again [4, 5]. Secondj contrary to what

was observed in Example 4,1, the high-biased histogram generates a smaller

error than the serial one. This was to be expected at the limit due to Theorem

6.1. In this case, however, the distributions are skewed enough that the

cross-over point comes early, at relatively small queries.

ACM TransactIons on Database Systems, VO1 18, No, 4, December 1993



Optimal Histogram for Limiting Worst-Case Error Propagation . 741

Table IV. Error in a 5-Way Join Query for Various Histograms

Histogram Error

Trivial 79.42%

Nonserial 78.79%

Serial 25.00%

High-biased 16.43%

Example 6.2. As another example, we show the effect of the error of using

the high-biased histogram with L + 1 buckets in all relations of the example

introduced in Section 2.3 (for various values of L). That is, we assume that

the join elements of the relations follow a Zipf distribution with z = 0.02 and

z = 0.1, and show the effect on the error when there are L = 1, 5, and 10

univalued buckets in the histogram. Note that L = O corresponds to the

trivial histogram (uniform distribution). Figure 7 shows a graphical represen-

tation of (5) for these cases.

The results are rather impressive. We observe that in both cases, even

maintaining a single element has tremendous impact in reducing the total

error. An even more surprising result is that, in all cases with L > 0, the

error as a function of N has a maximum. That is, beyond a certain point, as

the query size grows, the error decreases. The reason is that with more

relations, the value of the frequency distribution for the most common

elements becomes an increasingly larger fraction of the total size of the query

result, thus reducing the error (point (ii) of the intuition described in the end

of Section 4). As expected, this is more dramatic for the more skewed

distribution (z = O.1). We must emphasize that, by Theorem 2.3, the case

presented deals with the largest possible result size (worst-case error given a

fixed value for the estimated result size). If the frequencies given by the Zipf

distributions were associated with the join elements of a different way, then

the original error (for L = O) would be less than what is shown in Figure 7,

but the error under the high-biased histograms for each value of L could be

larger. Nevertheless, the improvement for the worst-case error gives much

hope for being able to optimize very large queries in some cases, without

being overwhelmed by the errors in the query relations.

The phenomenon of the worst-case error having a maximum as a function

of the number of joins N under high-biased histograms is not unique to the

above example. The next theorem provides general conditions for when this

happens, and also extends the conditions to capture the case where the error

tends to a finite number other than O. Thus, it complements Theorem 6.1,

which showed that for large join queries, high-biased histograms are optimal:

not only are they optimal, but often the corresponding error tends to zero as
well.

THEOREM 6.2. Consider a family of t-clique queries {Q~ IN ~~, where QN
is on relations R], O s j s N. Let ( H~ ) be an (N + 1)-vector of arbitrary
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histograms in (YP ) with approximate frequencies denoted by t~l. Suppose that

Z ( resp. Z’) denotes the minimum join element, i.e., value of i, such that for

an infinite number of values of j E.Y u {0), t,~ < tll (resp., t~l < t ~~), and let

K: denote K; = {j~t~~ < t ~~ and j ~. Y u {0)), Then the following holds:

{
limll= c

if Z’>1

N+. Y. if Z’ = 1,

where c is a constant and O < c < ~. Moreover, if Z = Z’ > 1 and VI < i <

Z – 1, Vj = K;. ~, the equality t = t~j holds, then c = O.l]

PROOF. Using (5), we obtain the following for the error ~:

1 +D= —— (19)

By the definition of Z and Z’, the limit of the rightmost sums in both the

nominator and the denominator is O. Similarly to K;, let K, denote K, =

{jIt,J < tl, and j G.J’u {0}}. Then (19) implies that

where for all 1 s i s Z – 1 (resp. 1 s i s Z’ – 1), K, (resp. K:) is finite. The

nominator in (20) is always strictly positive, since for i = 1, ~,~= o(tlJ/tlJ)= 1.

If Z’ = 1, then there are no terms in the sum of the denominator, which

therefore tends to O, implying that limN ~%D = CO.If Z’ > 1, then due to the

finiteness of K, and K{, the fraction in (20) is independent of iV, and

therefore equal to itself in the limit. This implies that lim~ - .D = c, where

c > () is a constant that is equal to that fraction minus 1.

Next we present a sufficient condition for when c = O. Observe that the

following always hold: Z’ s Z, K, L K:, K, c K,, ~, and K; c K~+ ~. From (20)

we obtain the following:

Clearly, F >0. Also, for any given collection {K: 11 s i < Z’ – 1}, the lowest

value of E is obtained when VI < i < Z‘ – 1, (i) K, = K;, and (ii) Z’ – 1 is
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the highest join element in some bucket of H~ for all j = lY~ (so that t~z ~)1 is

computed without taking into account any frequencies that are lower than

t ,Z. ~)j). In that case, by Lemma 3.1, for all j ●&. ~, the (Z’ – 1)-vector

( t,J/’tl, ) majorizes the (Z’ – I)-vector ( tfJ\t~J).Therefore, by Theorem 2.2,

E > 1.By (21), these lower bounds on E and F imply that c = O is equivalent

to E = 1 and F = O. These in turn satisfy the following.

The first equivalence is immediately derived from the definition of F in (21).

(Note that Z = Z’ is also necessary for c = O.) The second reverse implication

is again straightforward since it equates the nominator and the denominator

of the fraction defining E.z (Note that this condition also implies that

‘dl < i < Z‘ – 1, K, = K:.) The two together provide a sufficient condition for

C=o. n

Example 6.3. The above theorem shows that the phenomenon observed in

Example 6.2 where the corrected error presented a maximum and tended to O

for a large number of relations is more general. We present one additional

example, where we compare the behavior of the error under high-biased

versus under low-biased histograms. With the Zipf distribution, even for a

2-way join, high-biased histograms are to be preferred over low-biased ones.

(This can be verified by applying Corollary 5.2.) We therefore use a different

distribution to expose the fact that, even if for a small number of joins

low-biased histograms are more preferable, there is some value of N beyond

which high-biased ones are the right choice.

Assume that all relations in the database are equal to each other and the

frequency distribution for all O < j < N is as follows:

(t = 143 – [(i + 1)/2] if l<z <80
ZJ 101 – i

(22)
if 81sis 100”

The numbers were chosen so that there are some common characteristics

with the Zipf distributions discussed in Section 2.3, i.e., the size of the

relations is very close to 10000, the join domain contains 100 elements, and

the maximum value is almost the same as that of the most skewed Zipf

distribution ( .z = O. 1) that we examined (143 vs. 142). Figure S(a) is a

graphical representation of (22), where one can easily see that the distribu-

‘Some necessary and sufficient conditions for when vector majorizatlon Implies strict inequahty

(or equahty) of vector functions do exist They could be used to derwe a necessary and sufficient

condition for c = O They are very complex, however, and would be rather impossible to use m

practice. In addition, they would require us to introduce much additional notation together with

several other results from mathematics Hence, we decided to present a much simpler sufficient

condition that covers many common cases.
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tion is skewed towards high frequencies, i.e., high frequencies are more

common.

Consider the two cases where the database system uses a high-biased

histogram with L + 1 buckets for L = 10 or a low-biased histogram with

L + 1 buckets for L = 10. Figure 8(b) is a graphical representation of(5) for

the two cases. The relative error in the query result size is shown as a

function of the number of relations in the query. As expected from Corollary

5.2, for a small number of relations the error is smaller under the low-biased

than under the high-biased histogram. Nevertheless, the result of Theorem

6.2 can also be observed, since the error under the high-biased histogram has

a maximum beyond which it tends to zero, whereas the error under the

low-biased histogram tends to infinity.

7. HISTOGRAM RECOMMENDATION

In this section, we reflect on the entire set of results presented in this paper

and, based on them, make some concrete recommendations on what types of

histograms should be maintained for database relations and how these

should be chosen. To put the recommendations that follow in the right

perspective, however, we should emphasize the fact that the results in this

paper have not addressed the entire issue of histogram optimality with

respect to limiting worst-case error propagation. They are based on certain

assumptions, the most restrictive of which is the form of the queries (t-clique

queries). Nevertheless, we believe that they shed enough light on the problem

and that the directions to which they point with respect to how histograms

should be chosen may be useful in general.

To reduce the worst-case error, the optimal histograms are always serial.

For any specific join query, the specific serial histogram that is optimal

depends on the number of participating relations in the query and their

specific frequency distributions. In reality, the database administrator de-

cides on the maintained histogram having a collection of queries in mind,

with an overall goal of obtaining good estimates for all of them, large and

small. The results presented in this paper showed that high-biased his-

tograms are the optimal choice for large queries. On the contrary, for small

queries, the correct decision depends on the specific frequency distributions of

the participating relations in ways that one cannot deal with each individual

relation independently. Clearly, the database administrator would like to be

able to decide on the optimal histogram for each relation by looking at the
characteristics of that relation alone.

Given the above, for an overall effective estimation, we suggest the follow-

ing heuristic approach for choosing a histogram for a relation. Independent of

the frequency distribution of the relation, its histogram has some univalued

buckets with the join elements associated with the largest frequencies. Fur-

ther, if the distribution is very skewed towards large frequencies (which is

not very common), the remaining elements should be divided among another

set of buckets based on the specific distribution of the individual relations, so

that small queries, e.g., 2-way join queries, do not suffer as well. The
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effectiveness of the above heuristic approach on real databases is an issue

that requires further investigation.

8. SUMMARY

Error propagation in the context of query optimization is one of the most

significant challenges facing the efforts to effectively optimize queries of

much higher complexity than those with which conventional technology can

deal. Maintaining histograms to approximate frequency distributions in rela-

tions is a common technique used by database systems to limit the propaga-

tion of errors. In this paper, we have studied histograms and how they reduce

errors that represent the worst case. Specifically, we have introduced serial

and end-biased histograms and showed that for the restricted class of t-clique

queries, the optimal histogram for errors in the query result size is always

serial. For 2-way equality join queries with no function symbols, we have

presented results on finding the optimal serial histogram and the optimal

end-biased histogram based on the query characteristics and the frequency

distributions of values in the join attributes of the query relations. We have

also examined histogram optimality for very large t-clique queries (in the

limit) and showed that high-biased histograms are always optimal.

This work has raised several interesting questions and issues. What is the

precise characterization of optimal histograms for queries that have more

than one join? How many buckets should an optimal histogram have in order

for the error Lo be within certain prespecified bounds? How is histogram

optimality defined with respect to multiple queries and which histograms are

to be preferred for a variety of queries? Is it reasonable to use histograms

that are optimal in reducing the variance of the error instead of the worst-case

error and what are the characteristics of such histograms? What are the

characteristics of optimal histograms for non-t-clique queries, primarily arbi-

trary equality join queries with more than one join? How do the results of this

paper change when considering completely different types of queries (e.g.,

nonequality joins or selections) and different parameters of interest (e.g.,

operator cost or ranking of alternative access plans, which determines the

final decision of the optimizer)? Many of these questions are part of our

current and future work.
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