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Abstract. The domination of XML in the Internet for data exchange has led to 
the development of standards with XML Schema syntax for several application 
domains. Advanced semantic support, provided by domain ontologies and se-
mantic Web tools like logic-based reasoners, is still very useful for many appli-
cations. In order to provide it, interoperability between XML Schema and OWL 
is necessary so that XML schemas can be converted to OWL. This way, the 
semantics of the standards can be enriched with domain knowledge encoded in 
OWL domain ontologies and further semantic processing may take place. In or-
der to achieve interoperability between XML Schema and OWL, we have de-
veloped XS2OWL, a model and a system that are presented in this paper and 
enable the automatic transformation of XML Schemas in OWL-DL. XS2OWL 
also enables the consistent transformation of the derived knowledge (individu-
als) from OWL-DL to XML constructs that obey the original XML Schemas.  
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1. Introduction 

Web applications and services have formed an open environment, where the applica-
tions developed by different vendors interoperate on the basis of the emergent stan-
dards. The dominant data exchange standard in the Internet today is the eXtensible 
Markup Language (XML) [2]. The XML documents are usually structured according 
to schemas expressed in XML Schema Language [5] syntax. XML Schema uses XML 
syntax, supports very rich structures and datatypes for XML documents and plays a 
central role in the data exchange in the Internet. As a consequence, important stan-
dards in different application domains have been specified in XML Schema such as 
the MPEG-7 [4] and the MPEG-21 [14] for multimedia, the IEEE LOM [10] and 
SCORM [1] in e-learning, the METS [9] for Digital Libraries etc. 

Advanced semantic support, though, would be very useful for several standard-
based applications that need to integrate domain knowledge expressed in domain 
ontologies and perform semantic processing (including reasoning) within the con-
structs of the standards. As an example, consider the MPEG-7 based multimedia ap-
plications. MPEG-7 provides rich multimedia content description capabilities and has 
been specified using XML Schema syntax, like many other standards. MPEG-7 based 
services (e.g. retrieval, filtering etc.) would benefit from domain knowledge integra-



tion. MPEG-7 provides general-purpose constructs that could be used for domain 
knowledge description [18], but the developers that are going to integrate domain 
knowledge in MPEG-7 are likely to be more familiar with the Web Ontology Lan-
guage (OWL) [13] than with the domain knowledge description mechanisms of 
MPEG-7. In addition, some applications of MPEG-7, like the (semi-)automatic mul-
timedia content annotation may greatly benefit from using logic-based reasoners for 
OWL. As a consequence, the capability to work with the semantics of MPEG-7 ex-
pressed in OWL and integrated with OWL domain ontologies is beneficial for such 
applications. Since other MPEG-7 applications may work with the XML Schema 
version of MPEG-7, the derived knowledge should be converted back to standard 
MPEG-7/XML constructs. 

We present in this paper the XS2OWL transformation model that allows to trans-
form the XML Schema constructs in OWL, so that applications using XML Schema 
based standards will be able to use the Semantic Web methodologies and tools. 
XS2OWL also supports the conversion of the OWL-based constructs back to the 
XML Schema based constructs in order to maintain the compatibility with the XML 
schema versions of the standards. XS2OWL has been implemented as an XML 
Stylesheet Transformation Language (XSLT) [7] stylesheet and transforms every 
XML Schema based standard in an OWL-DL Main Ontology. This way, the con-
structs of the standard become first class Semantic Web objects and may be integrated 
with domain knowledge expressed as OWL domain ontologies. In addition, all the 
OWL-based Semantic Web tools, including reasoners, can be used with the standard-
based descriptions. In addition, a Mapping Ontology is generated for each XML 
Schema, which allows encoding all the knowledge needed to transform the individu-
als generated or added later on to the main ontology back to XML syntax valid ac-
cording to the original XML Schema. 

The research conducted in the support of interoperability between XML Schema 
and OWL is limited. We had observed the need for such support for the MPEG-7 
standard in the context of the DS-MIRF framework [16, 17, 18]. In order to achieve it, 
we first defined manually an Upper OWL-DL ontology capturing the MPEG-7 Mul-
timedia Description Schemes (MDS) [12] and the MPEG-21 Digital Item Adaptation 
(DIA) Architecture [11]. This way, domain knowledge expressed in OWL domain 
ontologies could be integrated with the semantics of the standards captured in the 
Upper ontology, as was done with ontologies for soccer and Formula 1. Finally, we 
developed a set of transformation rules for transforming the OWL individuals that 
describe the multimedia content and have been defined using the Upper ontology and 
the domain ontologies back to the original MPEG-7/21 constructs. The transformation 
rules rely on a mapping ontology that systematically captures the semantics of 
MPEG-7/21 that cannot be captured in the Upper ontology. This work is an important 
motivating example for the need of the general-purpose mechanism described here. 

The automatic transformation of XML Schema constructs to OWL constructs has 
been proposed in [6]. According to this methodology, an XML Schema is transformed 
to an OWL-Full ontology that partially captures the XML Schema semantics. This 
way, information is lost during the transformation from XML Schema to OWL, and 
no support is provided in order to transform OWL individuals obeying the ontologies 
produced back to XML syntax valid according to the original XML Schemas. Finally 
some XML Schema construct transformations of to OWL in [6] do not follow closely 



the XML Schema semantics. The XS2OWL model presented in this paper allows 
automatically transforming XML Schema constructs to OWL-DL constructs (not 
OWL-Full) without loosing any information. This way, computational completeness 
and decidability of reasoning are guaranteed in the OWL ontologies produced and 
back transformations are supported. 

The rest of the paper is structured as follows: In section 2 we provide background 
information. The proposed model for transforming XML Schema constructs in OWL-
DL is presented in section 3. The mapping ontologies that represent the XML Schema 
semantics that cannot be directly transformed in OWL-DL are described in section 4. 
In section 5 we present the realization of the XS2OWL model, so that the transforma-
tions are carried out automatically. The paper conclusions are presented in section 6. 

2. Background 

In this section we present the background information needed in other parts of the 
paper. In particular, we present in brief the XML Schema Language and the Web On-
tology Language (OWL).

The XML Schema Language. The XML Schema Language [5] allows the defini-
tion of classes of XML documents using XML syntax and provides datatypes and rich 
structuring capabilities. An XML document is composed of elements, with the root 
element delimiting the beginning and the end of the document. Reuse of the element 
definitions is supported by the substitutionGroup attribute, which states that the cur-
rent element is a specialization of another element. The elements may either have a 
predefined order (forming XML Schema sequences) or be unordered (forming XML 
Schema choices). Both sequences and choices may be nested. The minimum and 
maximum number of occurrences of the elements, choices and sequences are speci-
fied, respectively, in the minOccurs and maxOccurs attributes (absent “minOccurs” 
and/or “maxOccurs” attributes correspond to values of 1). Reusable complex struc-
tures, combining sequences and choices, may be defined as model groups.

The XML Schema language allows for the definition of both complex and simple 
elements. Complex elements belong to complex types, which may include other ele-
ments and carry attributes that describe their features. Simple elements belong to 
simple types, which are usually defined as restrictions of the basic datatypes provided 
by XML Schema (i.e. strings, integers, floats, tokens etc.). Simple types can neither 
contain other elements nor carry attributes. Inheritance and constraints are supported 
for both simple and complex types. Sets of attributes that should be used simultane-
ously may form attribute groups. Default and fixed values may be specified for XML 
Schema attributes and simple type elements.  

The top-level XML Schema constructs (attributes, elements, simple and complex 
types, attribute and model groups) have unique names (specified in their “name” 
attribute), while the nested types and groups are unnamed. All the XML Schema 
constructs may have unique identifiers (specified in their “id” attribute). The top-level 
constructs may be referenced by other constructs using the “ref” attribute. 

The Web Ontology Language (OWL). The Web Ontology Language (OWL) 
[13] is the dominant standard in ontology definition. OWL has followed the descrip-



tion logics paradigm and uses RDF (Resource Description Framework)/RDFS (Re-
source Description Framework Schema) [8, 3] syntax. Three OWL species of increas-
ing descriptive power have been specified: OWL-Lite, which is intended for light-
weight reasoning but has limited expressive power, OWL-DL, which provides de-
scription logics expressivity and guarantees computational completeness and decida-
bility of reasoning, and OWL-Full, which has more flexible syntax than OWL-DL, but 
does not guarantee computational completeness and decidability of reasoning.  

The basic functionality provided by OWL is: (a) Import of XML Schema 
Datatypes, that represent simple types extending or restricting the basic datatypes (e.g. 
ranges etc.). The imported datatypes have to be declared, as RDFS datatypes, in the 
ontologies they are used; (b) Definition of OWL Classes, organized in subclass hierar-
chies, for the representation of sets of individuals sharing some properties. Complex 
OWL classes can be defined via set operators (intersection, union or complement of 
other classes) or via direct enumeration of their members; (c) Definition of OWL 
Individuals, essentially instances of the OWL classes, following the restrictions im-
posed on the class in which they belong; and (d) Definition of OWL Properties, which 
may form property hierarchies, for the representation of the features of the OWL class 
individuals. Two kinds of properties are provided by OWL: (i) Object Properties,
which relate individuals of one OWL class (the property domain) with individuals of 
another OWL class (the property range); and (ii) Datatype Properties, which relate 
individuals belonging to one OWL class (the property domain) with values of a given 
datatype (the property range). Restrictions may be defined on OWL class properties, 
including type, cardinality and value restrictions. OWL classes, properties and indi-
viduals are identified by unique identifiers specified in their “rdf:ID” attributes. 

3. Transformation of XML Schema Constructs to OWL-DL 

We present in this section a model for the direct transformation of the XML Schema 
constructs in OWL-DL. The result of the transformation of a source XML Schema is 
a main ontology, an OWL-DL ontology that captures the semantics of the XML 
Schema constructs. The transformations of the individuals XML Schema constructs 
are presented in the next paragraphs. 

Simple XML Schema Datatypes. OWL does not directly support the definition 
of simple datatypes; it only allows importing simple datatypes. Existing XML 
Schema datatypes may be used in OWL ontologies if they have been declared in 
them. XS2OWL organizes all the simple XML Schema datatype definitions in the 
“datatypes” XML Schema and for each of them it generates an OWL datatype decla-
ration. Let st(name, id, body) be an XML Schema simple datatype, where body is the 
body of the definition of st, id is the (optional) identifier of st and name is the name of 
st. st is transformed into: (a) The st'(name', id, body) simple datatype, which is stored 
in the “datatypes” XML Schema; and (b) the dd(about, is_defined_by, label) datatype 
declaration in the main ontology. 

The st' simple type has the same body and id with st, while name' is formed as fol-
lows: If st is a top-level simple type, name' has the name value. If st is a simple type 
nested in the ae XML Schema construct (that may be an attribute or an element), 



name' has the value (a) id if st has a non-null identifier; and (b) the result of concate-
nate(ct_name, '_', ae_name, '_UNType') if st has a null identifier, where: (i) The con-
catenate(…) algorithm takes as input an arbitrary number of strings and returns their 
concatenation; and (ii) ct_name is the name of the complex type containing ae. If ae 
is a top-level attribute or element, ct_name has the ‘NS’ string as value.; and (iii) 
ae_name is the name of the property that represents ae.

The dd datatype declaration carries the following semantics: (a) about is the iden-
tifier referenced by the datatype declaration and is of the form concate-
nate(url,name'), where url is the URL of the “datatypes” XML Schema; (b) 
is_defined_by specifies where the datatype definition is located and has the url value; 
and (c) label is the label of dd and has name' as value. 

As an example, consider the nested simple datatype of Fig. 1, which is defined in 
the “a1” attribute of the “ct1” complex type. It is transformed to the top-level simple 
datatype shown in Fig. 2, and the OWL datatype declaration shown in Fig. 3. 

 <xs:complexType name="ct1"><xs:simpleContent> 
<xs:extension base="xs:integer"> 
<xs:attribute name="a1"> 
<xs:simpleType> 
<xs:restriction base="xs:string"/> 
</xs:simpleType> 
</xs:attribute> 
</xs:extension> 
</xs:simpleContent> 
</xs:complexType>  

Fig. 1. Definition of a nested simple datatype  

 <simpleType name="ct1_a1_UNType"><restriction base="xs:string"/> 
</simpleType>

Fig. 2. Top-level simple datatype representing the nested datatype of Fig. 1 

 <rdfs:Datatype rdf:about="&datatypes;ct1_a1_UNType"><rdfs:isDefinedBy rdf:resource="&datatypes;"/> 
<rdfs:label>ct1_a1_UNType</rdfs:label> 
</rdfs:Datatype>  

Fig. 3. OWL Declaration of the simple datatype of Fig. 2 

Attributes. XML Schema attributes describe features with values of simple type. 
The OWL construct that can represent such features is the datatype property. Thus, 
XS2OWL transforms the XML Schema attributes into OWL datatype properties. 

Let a(name, aid, type, annot, ct_name, fixed, default) be an XML Schema attrib-
ute, where name is the name of a, aid is the identifier of a, type is the type of a, annot 
is an (optional) annotation element of a, ct_name is the name of the complex XML 
Schema type c_type in the context of which a is defined (if a is a top-level attribute, 
ct_name has the null value), fixed is the (optional) fixed value of a and default is the 
(optional) default value of a. XS2OWL, transforms a into the OWL datatype property 
dp(id, range, domain, label, comment), where: (a) id is the unique rdf:ID of dp and 
has concatenate(name, ‘__’, type) as value; (b) range is the range of dp and has type 
as value; (c) domain is the domain of dp and has ct_name as value; (d) label is the 
label of dp and has name as value; and (e) comment is the textual description of dp 



and has annot as value. If any of the features of a is absent, the corresponding feature 
of dp is also absent. Note that: (a) If a fixed value of a is specified, it is represented as 
a value restriction in the definition of the OWL class c that represents c_type; and (b) 
If a default value of a is specified, it cannot be represented in the main ontology. 

As an example, consider the “a1” attribute, shown in Fig. 1, which is transformed 
to the OWL datatype property shown in Fig. 4. 

 <owl:DatatypeProperty rdf:ID="a1__ct1_a1_UNType"><rdfs:domain rdf:resource="#ct1"/> 
<rdfs:range rdf:resource="&datatypes;ct1_a1_UNType"/> 
<rdfs:label>a1</rdfs:label> 
</owl:DatatypeProperty>  

Fig. 4. The OWL datatype property representing the “a1” attribute of Fig. 1 

Elements. XML Schema elements represent features of complex XML Schema 
types and are transformed into OWL properties: The simple type elements are repre-
sented as OWL datatype properties and the complex type elements are represented as 
OWL object properties. Let e(name, type, eid, annot, ct_name, substitution_group) be 
an XML Schema element, where name is the name of e, eid is the identifier of e, type 
is the type of e, annot is an annotation element of e, ct_name is the name of the com-
plex XML Schema type c_type in the context of which e is defined (if e is a top-level 
attribute, ct_name has the null value) and substitution_group is an (optional) element 
being extended by e. We represent e in OWL as a (datatype or object) property p(id, 
range, domain, label, comment, super_property), where: (a) id is the unique rdf:ID of 
p and has concatenate(name, ‘__’, type) as value; (b) range is the range of p and has 
type as value; (c) domain is the domain of p and has ct_name as value; (d) label is the 
label of p and has name as value; (e) comment is the textual description of p and has 
annot as value; and (f) super_property is the specification of the property specialized 
by p and has substitution_group as value. 

<xs:element name="e" type="c_t2"/>

Fig. 5. Definition of the “e” element, nested in the complex type “c_t1” 

 <owl:ObjectProperty rdf:ID="e__c_t2"><rdfs:domain rdf:resource="#c_t1"/> 
<rdfs:range rdf:resource="#c_t2"/> 
<rdfs:label>e</rdfs:label> 
</owl:ObjectProperty>  

Fig. 6. The OWL object property representing the “e” element of Fig. 5 

As an example, consider the “e” element, shown in Fig. 5, of type “c_t2”, defined 
in the context of the complex type “c_t1”. The “e” element is transformed to the 
OWL object property shown in Fig. 6. 

Complex Types. The XML Schema complex types represent classes of XML in-
stances that have common features, just as the OWL classes represent sets of indi-
viduals with common properties. Thus XS2OWL transforms the XML Schema com-
plex types into OWL classes. Let ct(name, cid, base, annot, attributes, sequences, 
choices) be an XML Schema complex type, where: (a) name is the name of ct; (b) aid 
is the identifier of ct; (c) base is the (simple or complex) type extended by ct; (d) 



annot is an annotation element of ct; (e) attributes is the list of the attributes of ct; (f) 
sequences is the list of the ct sequences; and (g) choices is the list of the ct choices. 

If ct extends a complex type, XS2OWL transforms it to the OWL class c(id, su-
per_class, label, comment, value_restrictions, cardinality_restrictions), where: (a) id 
is the unique rdf:ID of c and has name as value if ct is a top-level complex type. If ct 
is a complex type nested within the definition of an element e, name is a unique, 
automatically generated name of the form concatenate(ct_name, '_', element_name, 
'_UNType'), where ct_name is the name of the complex type containing e and ele-
ment_name is the name of e. If e is a top-level element, ct_name has the ‘NS’ value; 
(b) super_class states which class is extended by ct and has base as value; (c) label is 
the label of ct and has name as value; (d) comment is the textual description of ct and 
has annot as value; (e) value_restrictions is the set of the value restrictions holding 
for the properties of c; and (f) cardinality_restrictions is the set of the cardinality 
restrictions assigned to the properties representing the ct attributes and the ct se-
quence/choice elements.  
 <owl:Class rdf:ID="ct1"><rdfs:subClassOf> 

<owl:Restriction> 
<owl:onProperty rdf:resource="#a1__ct1_a1_UNType"/> 
<owl:maxCardinality rdf:datatype="&xsd;integer">1</owl:maxCardinality>
</owl:Restriction> 
</rdfs:subClassOf> 
<rdfs:subClassOf> 
<owl:Restriction> 
<owl:onProperty rdf:resource="#content__xs_integer"/> 
<owl:cardinality rdf:datatype="&xsd;integer">1</owl:cardinality> 
</owl:Restriction> 
</rdfs:subClassOf> 
<rdfs:label>ct1</rdfs:label> 
</owl:Class> 
<owl:DatatypeProperty rdf:ID="content__xs_integer"> 
<rdfs:domain rdf:resource="#ct1"/> 
<rdfs:range rdf:resource="&xs;integer"/> 
</owl:DatatypeProperty>  
Fig. 7. OWL class representing the “ct1” complex type of Fig. 1 

If ct extends a simple type, XS2OWL transforms it to the OWL class c(id, label, 
comment, value_restrictions, cardinality_restrictions), with the same semantics with 
the classes representing complex types that extend complex types on the correspond-
ing items. The extension of the simple type is represented by the datatype property 
ep(eid, erange, edomain) of cardinality 1, where: (a) eid is the unique rdf:ID of ep and 
has concatenate(base, ‘_content’) as value; (b) range is the range of ep and has base 
as value; and (c) domain is the domain of ep and takes as value the id of c.

The attributes and the elements that are defined or referenced in ct are transformed 
to the corresponding OWL-DL constructs. 

As an example, consider the complex type “ct1”, shown in Fig. 1. The “ct1” com-
plex type is represented by the “ct” OWL class, shown in Fig. 7, together with the 
“content__xs_integer” datatype property, which states that “ct1” is an extension of 
xs:integer. 

Sequences and Choices. The XML Schema sequences and choices essentially are 
XML element containers, defined in the context of complex types and model groups. 
The main difference between sequences and choices is that the sequences are ordered, 



while the choices are unordered. XS2OWL transforms both the sequences and the 
choices to unnamed OWL-DL classes featuring complex cardinality restrictions on 
the sequence/choice items (elements, sequences and choices) and places them in the 
definition of the classes that represent the complex types where the sequences/choices 
are referenced or defined. 

The lower bound of the minimum cardinality of the construct that represents a se-
quence/choice item has the value i_min_occurs*s_min_occurs and the upper bound of 
the construct maximum cardinality has the value i_max_occurs*s_max_occurs,
where: (a) i_min_occurs is the value of the “minOccurs” attribute of the item; (b) 
s_min_occurs is the value of the “minOccurs” attribute of the sequence; (c) 
i_max_occurs is the value of the “maxOccurs” attribute of the item; and (d) 
s_max_occurs is the value of the “maxOccurs” attribute of the sequence. In addition, 
the cardinality of the sequence/choice items must always be a multiple in the range 
[i_min_occurs – i_max_occurs]. 

Sequence items must appear in their order. Thus, the sequences are transformed to 
unnamed classes, formed as the intersection of the cardinality restrictions of their 
items. Notice that the exact sequence cardinalities cannot be computed when a se-
quence item is contained in a sequence with unbounded maximum number of occur-
rences and the item has no maximum cardinality restriction. In addition, information 
regarding the sequence element ordering cannot be represented in OWL. 

As an example, consider the sequence shown in Fig. 8, which is defined in the 
context of the complex type “c_t1”. The sequence is represented, in the “c_t1” class 
definition, by the unnamed class shown in Fig. 9. 

 <xs:sequence minOccurs="2" maxOccurs="2"><xs:element name="e1" type="xs:string"/> 
<xs:element name="e2" type="xs:string" maxOccurs="3"/> 
</xs:sequence>  

Fig. 8. Sequence defined in the context of the Complex Type “c_type1” 

 <owl:Class><owl:intersectionOf rdf:parseType="Collection"> 
<owl:Restriction> 
<owl:onProperty rdf:resource="#e1__xs_string"/> 
<owl:cardinality rdf:datatype="&xsd;integer">2</owl:cardinality> 
</owl:Restriction> 
<owl:Restriction> 
<owl:onProperty rdf:resource="#e2__xs_string"/> 
<owl:minCardinality 

rdf:datatype="&xsd;integer">2</owl:minCardinality> 
</owl:Restriction> 
<owl:Restriction> 
<owl:onProperty rdf:resource="#e2__xs_string"/> 
<owl:maxCardinality 

rdf:datatype="&xsd;integer">6</owl:maxCardinality> 
</owl:Restriction> 
</owl:intersectionOf> 
</owl:Class>  

Fig. 9. OWL Representation of the sequence shown in Fig. 8 

The choice items may appear at any order. Thus, the choices are transformed to 
unnamed classes, formed as the union of the allowed combinations of the cardinality 
restrictions of the choice elements. Notice that the exact choice cardinalities cannot be 



computed when a choice item is contained in a choice with unbounded maximum 
number of occurrences. 

The unnamed classes that represent XML Schema sequences and choices are pro-
duced using the algorithms outlined above, that are available at [15]. It must be noted 
that, if the maximum number of occurrences of a sequence/choice has a large value 
(but is not unbounded), the manual generation of the restrictions is tedious and time-
consuming and thus becomes error-prone and practically impossible. 

References. XML Schema attributes, attribute groups, elements and model groups 
that are referenced in complex type definitions are transformed into OWL-DL 
datatype (if they are or contain attributes or simple type elements) or object (if they 
contain complex type elements) properties. Let ref(ae) be a reference, in a complex 
type ct, to the ae XML attribute or element. The reference is represented by the 
(datatype or object) property rp(id, domain), where id is the rdf:ID of rp and has as 
value the value of the rdf:ID of the property that represents ae, and domain is the 
domain of rp and has the rdf:ID of the OWL class c that represents ct as value. 

4. Mapping Ontologies 

In section 3 we mentioned that some XML Schema semantics cannot be represented 
in OWL during the XML Schema to OWL transformation. These semantics do not 
affect the domain ontologies that may extend the main ontology and they are not used 
by the OWL reasoners; however, they are important when the individuals defined 
according to the main ontology have to be transformed back to valid XML descrip-
tions compliant with the source XML Schema. In order to support this functionality, 
we have defined a model that allows transforming the OWL constructs back to XML 
Schema constructs. This model captures the XML Schema semantics that cannot be 
represented in OWL and is expressed as an OWL-DL ontology, the OWL2XMLRules 
Ontology (available at http://elikonas.ced.tuc.gr/ontologies/OWL2XMLRules/ 
OWL2XMLRules). For a particular XML Schema that is transformed to OWL-DL, 
XS2OWL generates a Mapping Ontology that extends the OWL2XMLRules ontology 
with individuals and represents the semantics of the schema that are lost during the 
transformation to OWL.  

In the following paragraphs, we present the classes of the OWL2XMLRules on-
tology as well as the model for the generation of individuals of the classes of the 
OWL2XMLRules ontology during the transformation of specific XML Schemas. 

DatatypePropertyInfoType Class. It captures information about the datatype 
properties lost during the XML Schema to OWL transformation. This information 
includes the names of the XML constructs (elements, attributes) transformed to the 
datatype properties, the default values and the origins of the datatype properties, since 
an OWL datatype property may be the result of the transformation of an attribute, an 
element or it may state that a complex type extends a simple type. 

Let ae(name, ae_id, c_type, default) be an attribute or a simple type element, 
where name is the name of ae, ae_id is the identifier of ae, c_type is the complex type 
in which ae has been defined and default is the default value of ae. ae is transformed 
into the DatatypePropertyInfoType individual dpi(id, did, xml_name, dpi_type, 



def_val), where: (a) id is the unique rdf:ID of dpi and has concatenate(ct_name, ‘_’, 
name, ‘__’, type) as value, where ct_name is the name of the class that represents 
c_type in the main ontology; (b) did is the rdf:ID of the dp datatype property that 
represents ae in the main ontology; (c) xml_name is the name of ae and has name as 
value; (d) dpi_type represents the construct which has been mapped to dp and has the 
value ‘Attribute’ if ae is an attribute and the value and ‘Element’ if ae is an element; 
and (e) def_val represents the default value of ae and has default as value. 

If a datatype property dp states that a complex type extends a simple type, a 
DatatypePropertyInfoType individual dpi(id, did, dpi_type) is generated for dp, where 
id and did have the semantics defined above and dpi_type has the ‘Extension’ value. 

ElementInfoType Class. It captures information about the XML Schema ele-
ments that is lost during the XML Schema to OWL transformation. This information 
includes the names of the elements and, if they are parts of sequences, their ordering. 

Let e(eid, name, c_type, default, min, max, pos) be an element, where name is the 
name of e, eid is the identifier of e, c_type is the complex type in which e has been 
defined, default is the default value of e, min is the minimum number of occurrences 
of e, max is the maximum number of occurrences of e and pos is the position of e if e
is a sequence element. e is represented in the mapping ontology by the ElementInfo-
Type individual ei(id, pid, xml_name, def_val, min_occ, max_occ, position), where: 
(a) id is the unique rdf:ID of ei and has concatenate(ct_name, ‘_’, name, ‘__’, type) as 
value, where ct_name is the name of the class that represents c_type in the main on-
tology; (b) pid is the rdf:ID of the p property that represents e in the main ontology; 
(c) xml_name is the name of e and has name as value; (d) dpi_type represents the 
construct which has been transformed to p and has the ‘Element’ value; (e) def_val 
represents the default value of e and has default as value; (f) min_occ represents the 
minimum number of occurrences of e and has min as value; (g) max_occ represents 
the maximum number of occurrences of e and has max as value; and (h) position 
represents the position of e if e is a sequence element. 

ComplexTypeInfoType Class. It captures information lost during the XML 
Schema to OWL transformation about a complex type that has name as name. This 
information includes information about the datatype properties associated with the 
corresponding OWL class in the main ontology and the cardinality and ordering of the 
elements contained in the complex type. 

Let ct(name, ct_id, att_list, seq_list, cho_list) be a complex type, where name is 
the name of ct, ct_id is the identifier of ct, att_list is the list of the ct attributes, 
seq_list is the list of the ct sequences and cho_list is the list of the ct choices. ct is 
represented in the mapping ontology by the ComplexTypeInfoType individual ct(id, 
type_id, dpi_list, container_list), where: (a) id is the unique rdf:ID of ct and has name 
as value; (b) type_id represents the identifier of the OWL class c that represents ct in 
the main ontology; (c) dpi_list is the list of the representations of the datatype proper-
ties of c; and (d) container_list is the list of the representations of the sc containers. 

ChoiceType and SequenceType Classes. They capture, respectively, information 
about the exact cardinalities and the structure of XML Schema choices and sequences 
that is lost during the XML Schema to OWL transformation. 

Let sc(sc_id, c_type, min, max, elements) be a sequence or choice, where sc_id is 
the identifier of sc, c_type is the complex type in which sc has been defined, min is 
the minimum number of occurrences of sc, max is the maximum number of occur-



rences of sc and elements is the list of the elements of sc. We represent sc in the map-
ping ontology by the (SequenceType if sc is a sequence, ChoiceType if sc is a choice) 
individual st(id, min_occ, max_occ, e_rep), where: (a) id is the unique rdf:ID of st and 
has concatenate(ct_name, ‘__’, i) as value, where ct_name is the name of the class 
that represents c_type in the main ontology and i is the index of sc in c_type; (b) 
min_occ represents the minimum number of occurrences of sc and has min as value; 
(c) max_occ represents the maximum number of occurrences of sc and has max as 
value; and (d) e_rep is the list of the representations of the elements of sc.

As an example, consider the complex type “ct1”, shown in Fig. 1. ct1 is repre-
sented in the mapping ontology as shown in Fig. 10. 

 <ox:XSDComplexTypeInfoType rdf:ID="ct1"><ox:typeID>ct1</ox:typeID> 
<ox:DatatypePropertyInfo> 
<ox:DatatypePropertyInfoType rdf:ID="ct1_a1__ct1_a1_UNType"> 
<ox:datatypePropertyID>a1__ct1_a1_UNType</ox:datatypePropertyID> 
<ox:XMLConstructID>a1</ox:XMLConstructID> 
<ox:datatypePropertyType>Attribute</ox:datatypePropertyType> 
</ox:DatatypePropertyInfoType> 
</ox:DatatypePropertyInfo> 
<ox:DatatypePropertyInfoType rdf:ID="ct1_content__xs_integer"> 
<ox:datatypePropertyID>content__xs_integer</ox:datatypePropertyID>
<ox:datatypePropertyType>Extension</ox:datatypePropertyType> 
</ox:DatatypePropertyInfoType> 
</ox:XSDComplexTypeInfoType>  

Fig. 10. Representation of the complex type “ct” of Fig. 1 in the mapping ontology 

5. Realization and Evaluation of the XS2OWL Model 

We present in this section the design and implementation of the XS2OWL system, 
which transforms automatically XML Schemas into OWL-DL ontologies and gener-
ates their mapping ontologies. According to the XS2OWL model, an XML Schema is 
transformed into: (a) A main OWL-DL ontology that directly captures the XML 
Schema semantics using OWL-DL constructs; (b) A mapping OWL-DL ontology that 
systematically captures the semantics of the XML Schema constructs that cannot be 
captured in the main ontology; and (c) A datatypes XML Schema containing the 
simple XML Schema datatypes defined in the source XML Schema, which are im-
ported in the main ontology. 

The XS2OWL transformation model has been implemented as an XSLT 
stylesheet. The information flow during the transformation is shown in Fig. 11. As 
shown in Fig. 11, the source XML Schema and the XS2OWL stylesheet are given as 
input to an XSLT processor, and the output comprises of the main ontology, the map-
ping ontology and the datatypes XML Schema.  

 
XSLT 

Processor 

XS2OWL XSLT 

XML Schema File
Mapping
Ontology 

Simple XML 
Schema Datatypes

Main OWL-DL
Ontology 

Fig. 11. The Information Flow in XS2OWL 



In order to acquire extensive empirical evidence, we applied XS2OWL to several 
very large and well-accepted standards expressed in XML Schema: The MPEG-7 
Multimedia Description Schemes (MDS) and the MPEG-21 Digital Item Adaptation 
(DIA) Architecture in the multimedia domain, the IEEE LOM and the SCORM in the 
e-learning domain and the METS standard for Digital Libraries. The XML Schema 
constructs of these standards have been automatically converted to OWL for each of 
those standards. We then produced individuals following the ontologies. Finally, we 
converted the individuals to XML syntax, valid with respect to the source XML 
Schemas. The transformations were successful for these standards and we found that 
in all cases the semantics of the standards were fully captured in the main and map-
ping ontologies generated by the XS2OWL system. 

6. Conclusions 

We have presented in this paper the XS2OWL formal model that allows to automati-
cally transform XML Schemas into OWL-DL ontologies. This transformation allows 
domain ontologies in OWL to be integrated and logic-based reasoners to be used for 
various applications, as for example for knowledge extraction from multimedia data. 
XS2OWL allows the conversion of the generated OWL information back to XML. 
We have presented also the XS2OWL system that implements the XS2OWL model. 
We have used the implemented system to validate our approach with a number of 
well-accepted and extensive standards expressed in XML Schema. The automatically 
created ontologies have been found to accurately capture the semantics of the source 
XML Schemas. 
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