ResearchGate

See discussions, stats, and author profiles for this publication at:

File Organizations and Access Methods for CLV
Optical Disks.

CONFERENCE PAPER - JANUARY 1989

Source: DBLP

CITATIONS READS
4 94

2 AUTHORS, INCLUDING:

Technical University of Crete

174 PUBLICATIONS 3,115 CITATIONS

SEE PROFILE

Available from: Stavros Christodoulakis
Retrieved on: 05 October 2015


http://www.researchgate.net/publication/221299850_File_Organizations_and_Access_Methods_for_CLV_Optical_Disks?enrichId=rgreq-a48311ee-79b0-43d2-bb1b-398d4fbc8b1b&enrichSource=Y292ZXJQYWdlOzIyMTI5OTg1MDtBUzoxMDAwMTc4NDI5NTAxNTNAMTQwMDg1NzUyMDg0OQ%3D%3D&el=1_x_2
http://www.researchgate.net/publication/221299850_File_Organizations_and_Access_Methods_for_CLV_Optical_Disks?enrichId=rgreq-a48311ee-79b0-43d2-bb1b-398d4fbc8b1b&enrichSource=Y292ZXJQYWdlOzIyMTI5OTg1MDtBUzoxMDAwMTc4NDI5NTAxNTNAMTQwMDg1NzUyMDg0OQ%3D%3D&el=1_x_3
http://www.researchgate.net/?enrichId=rgreq-a48311ee-79b0-43d2-bb1b-398d4fbc8b1b&enrichSource=Y292ZXJQYWdlOzIyMTI5OTg1MDtBUzoxMDAwMTc4NDI5NTAxNTNAMTQwMDg1NzUyMDg0OQ%3D%3D&el=1_x_1
http://www.researchgate.net/profile/Stavros_Christodoulakis?enrichId=rgreq-a48311ee-79b0-43d2-bb1b-398d4fbc8b1b&enrichSource=Y292ZXJQYWdlOzIyMTI5OTg1MDtBUzoxMDAwMTc4NDI5NTAxNTNAMTQwMDg1NzUyMDg0OQ%3D%3D&el=1_x_4
http://www.researchgate.net/profile/Stavros_Christodoulakis?enrichId=rgreq-a48311ee-79b0-43d2-bb1b-398d4fbc8b1b&enrichSource=Y292ZXJQYWdlOzIyMTI5OTg1MDtBUzoxMDAwMTc4NDI5NTAxNTNAMTQwMDg1NzUyMDg0OQ%3D%3D&el=1_x_5
http://www.researchgate.net/institution/Technical_University_of_Crete?enrichId=rgreq-a48311ee-79b0-43d2-bb1b-398d4fbc8b1b&enrichSource=Y292ZXJQYWdlOzIyMTI5OTg1MDtBUzoxMDAwMTc4NDI5NTAxNTNAMTQwMDg1NzUyMDg0OQ%3D%3D&el=1_x_6
http://www.researchgate.net/profile/Stavros_Christodoulakis?enrichId=rgreq-a48311ee-79b0-43d2-bb1b-398d4fbc8b1b&enrichSource=Y292ZXJQYWdlOzIyMTI5OTg1MDtBUzoxMDAwMTc4NDI5NTAxNTNAMTQwMDg1NzUyMDg0OQ%3D%3D&el=1_x_7

FILE ORGANIZATIONS AND ACCESS METHODS
FOR CLV OPTICAL DISKS

Stavros Christodoulakis
Daniel Alexander Ford

Research Report CS-88-21

April, 1988



File organizations and Access Methods for CLV Optical Disks

Stavros Christodoulakis
Daniel Alexander Ford

Department of Computer Science
University of Waterloo,
Waterloo, Ontario, N2L 3G1
ABSTRACT

A very large and important class of optical disk technology are CLV type disks
such as CD ROM and WORM.

In this paper, we examine the different issues surrounding the implementation and
use of several different file organizations on CLV type optical disks such as CD ROM
and WORM. The organizations examined are hashing, B-trees and ISAM.

The CLV recording scheme is shown to be a good environment for efficiently
implementing hashing. Single seek access and storage utilization levels approaching
100% can be achieved.

It is shown that a B-tree organization is not a good choice for WORM disks, but
that a modified ISAM approach can be.

Expressions for the expected retrieval performance of both hashing and B-trees
are also given.

1. Introduction

Continuing progress in the development of optical disk technology is resulting in ever increasing
capacities and lower costs for direct access secondary storage. This new availability of large inexpensive
storage is fueling the development of more ambitious and demanding applications such as multimedia data

bases [3] which until recently, were not technically nor financially feasible.

Along with new applications, the advance of optical disk technology is spawning a need to under-
stand the issues involved in providing efficient file organizations and access methods for the new storage
medium. Optical disks are similar in nature to conventional magnetic disks, but some types have two
significant differences that affect the efficiency and feasibility of implementing the conventional file
organizations employed on magnetic disks such as hashing and tree structures like B-trees and ISAM.
Firstly, the recording scheme used on these disks to register data on the disk surface is different than that

used on magnetic disks. Many optical disks use a CLV (Constant Linear Velocity) recording scheme



—92-

rather than the CAV (Constant Angular Velocity) scheme used on virtually all magnetic disks. Secondly,
at the current level of technology, most generally available optical disks are not erasable. Two common
examples of optical disks that combine both of these characteristics are CD ROM and CLV WORM

(Write Once Read Many times) disks.

CLV optical disks have the advantage over their CAV cousins of maximizing, within the limits of
the recording technology, the utilization of a disk’s recording surface. For the same size disk platter,
more data can be stored on a CLV disk than a CAV disk. This is achieved by using a uniform recording
density throughout the disk and then relying upon the drive’s ability to vary the speed at which the disk
rotates to ensure that all recordings, regardless of their position on the disk, pass beneath the sense
mechanism at the same rate. The data recordings on a CLV disk are usually laid down in a single spiral

pattern.

The disadvantage of this approach is that it makes movements of the access mechanism or seeks on
CLV disks slightly slower than on CAV disks. Reading the data on the disk requires the speed at which
the disk rotates to accurately match the position of the sense mechanism, but determining the position
with the required precision is difficult without first being able to read the identification information stored
in each sector. This “chicken and egg” problem can be solved by reading the identification information
as the access mechanism is moved incrementally across the surface of the disk, adjusting the rotation
speed to match. Other delays come from problems in determining the exact position of a track as adjust-
ments might be required for proper alignment. The exact method employed by CLV optical disk drive

manufacturers is proprietary information and is generally not available.

For most optical disks, the seek time is generally much larger than the disk’s rotational latency.
Though some WORM disks are faster, delays of up to one second or more are possible with the current
CD ROM technology. As a result, the seek time is usually the most important factor in the time required
to answer a query. The issue is complicated slightly however, by some optical disk drives which are capa-
ble of reading from more than one track without performing a seek. The viewing mechanism (in the
access mechanism) of such a drive is equipped with an adjustable mirror that allows slight deflections of

the beam of laser light used to read the data. This enables it to be aimed at any one of a small set of the



Y .

spirally concentric tracks immediately beneath the viewing mechanism. This set of tracks is called a span
and the number of tracks in the set is called the span size. Typical values of the span size are 10, 20 and
40 tracks. This span access capability can be likened to cylinders on magnetic disk packs except that for
optical disks the sets of tracks or sectors in a span can be overlapping. It is provided by manufacturers of

both CAV and CLV disk drives (although currently, it is more frequently encountered with CAV drives).

Neither CD ROM nor WORM disks allow the information stored on them to be altered. Informa-
tion on CD ROM disks is registered by a physical pressing process similar to that used to create audio
LP’. A master disk is created using a photochemical etching process from which other pressing masters
can be made. The pressing masters are then used to imprint the CD ROM disk with the desired data
recording patterns. The recording surface is given a thin coating of aluminum to make it reflective and

is then covered with a protective plastic layer.

On a WORM disk, data is recorded on the disk surface by way of permanent reflective changes
made by a laser beam. WORM disks are manufactured and received by the user in a blank state; infor-
mation is then permanently registered on them in an incremental sector by sector manner at the user site.
To improve error rates, error detection and correction information is incorporated within a sector when it
is written. It is not possible for the user to erase, reuse or even add to data that has been previously
stored on a WORM disk. Any attempt to write over a previously written sector (if the disk drive will
allow such an operation), will cause the error detection and correction information to become inconsistent
with the sector contents. This will cause an error to be reported during subsequent retrievals of the

rewritten sector.

An important difference between WORM and magnetic disks that affects the use of pointer linked
structures is the inability to detect bad sectors on WORM disk until an attempt to write the sector is
made. On a magnetic disk, unusable (bad) sectors can be detected before the disk is used and corrective
(preventive) measures taken. This implies that all pointers on WORM disk must point to previously writ-

ten sectors; to ensure that recorded sector addresses are valid.



— 4

In this paper we examine the efficiency, feasibility and possible implementation strategies of provid-
ing some of the conventional file organizations and access methods typically available for CAV magnetic
disks. We also give approximate expressions for the expected retrieval performance of these organizations
when implemented on CLV optical disk. The next section briefly presents a model of CLV type optical
disks. Section 3 examines the issues raised when providing a hashing file access method. The perfor-
mance and space utilization implications of using pointer linked tree file organizations such as B-trees and
ISAM are discussed in section 4; particular attention is paid to the difficulties of employing such struc-

tures on WORM type optical disks.

2. A Model and a Schedule

In this section we present an abstract model of optical disks upon which our retrieval performance
analysis was based and give a physical description of CLV disks. We also present an optimal schedule for

answering a query.

An optical disk is a device composed of T ordered tracks, an access mechanism and a viewing
mechanism. A track is represented by its sequence number ¢ within the tracks of the device,
1=1,2, .. .,T (to avoid discussion about boundary conditions we assume that track numbers are extended
above T and below 1). Each track is composed of a number of sectors (or blocks). The access mechanism
can be positioned at any track. When the access mechanism is positioned at a certain track ¢, the device
can read data which completely exist within @ consecutive tracks (track ¢ is one of them). In order to do
that, the viewing mechanism focuses to a particular track with qualifying data (within the @ tracks).
We call the @ consecutive tracks a span and this capability of optical disks span access capability. An
anchor point a of a span, is the smallest track number within a span. The largest track number within
this span is @ + @ — 1. The anchor point of a span completely defines the tracks of the span. A span

can therefore be described by its anchor point.

A number N of objects (or records) may qualify in a query. N is called the object selectivity (or
record selectivity) of the query. In the case of optical disks the number of times that the access mechan-
ism has to be moved for accessing the data which qualifies in a query is called the span selectivity of the

query. Therefore, a first approximation of the cost of evaluating a query is given by the span selectivity



of the query.

When the access mechanism is moved a seek cost and a rotation delay cost are incurred as in the
case of magnetic disks. The seek cost depends on the distance travelled by the access mechanism.
Transferring a track of data from the device involves a track transfer cost as is also the case in magnetic
disks. When more than one track within a given span has to be transferred to main memory, the access
mechanism does not have to be moved as we mentioned before. However, there is a small additional
delay (of the order of one millisecond) involved for focusing the viewing mechanism on each additional
track (within a span) that has to be read. We call this delay a viewing cost and will ignore it for the
remaining part of this paper. This model reduces to a model of magnetic disks when the number of

tracks in a span is one and the track size is equal to the cylinder size.

A spiral scheme is generally used on CLV optical disks for the storage of data rather than the con-
centric rings found on CAV disks. The spiral consists of one long physical track of data recordings that
begins at a distance from the centre of the disk called the principal radius, and continues until close to

the outer edge of the disk where it terminates.

A track, for purposes of our analysis, starts from the intersection of the spiral with the radial line
that starts at the centre of the disk and passes through the very beginning of the physical spiral. The

track ends at the next intersection with this radial line.

A scheduling algorithm for retrieving the data which qualify in a query is an ordered sequence of
anchor points which define the spans used for answering the query (and their order). Observe that there
are many different sets of anchor points (and sequences of anchor points/schedules) that can be used for
answering a given query. The span selectivity of the query (as well as the distance travelled by the access

mechanism) depends on the scheduling algorithm used for answering the query.

In the following, we show optimal criteria for a scheduling algorithm when retrieving data in this
model. In the algorithm, the access mechanism moves continuously in one direction. The criteria minim-
izes the number of times that the access mechanism is moved (span selectivity), as well as the total dis-

tance travelled by the access mechanism.



Theorem {optimal scheduling}

The number of spans required to access all qualifying objects in a query is minimized if:
A. Spans do not overlap and

B. The anchor point is always positioned on a track with qualifying sectors.

In addition, the total distance travelled by the access mechanism is also minimized (within one span
length) if the access mechanism is moved so that in addition to the conditions A and B, the anchor points

ay, . . . ,ag of the schedule satisfy a; < ay - - - < a,.

Proof found in [4].

The theorem shows that if a schedule satisfies the conditions A and B it results in a minimum

number of spans.

In (5] exact and approximate results have been derived for retrievals from CLV optical disks that
follow optimal schedules. It was shown that the conventional CAV solution for the expected number of
spans required for the retrieval of sector boundary crossing or non-crossing objects from a CAV disk as

found in [4] was a good approximation to the CLV solution.

The expected number of spans Kis given by:
_ B

K(B) =
1+ 2=LF-

Where B is the expected number of tracks to be retrieved. It is calculated differently for non-crossing and

crossing objects.



_7_

The approximate expected number of tracks for non-crossing objects where: ¢t is the number of

tracks in the file, n is the number of objects to be retrieved and ¢ is the track capacity, is given by :

g

For crossing objects, the same formula for spans is used but the approximate expected number of

B=b(tne)=1t |1 -

tracks is calculated differently.

Where
B = 2(T-1)@-45) +1)

3. Hashing on CLV type Optical Disks

As a primary access mechanism, hashing has the ability of directly determining the location of a
selected record without the need to perform disk accesses to consult file indices. This is of particular
advantage on CLV optical disks as they typically require relatively long periods of time to reposition

their access mechanisms.

Consideration of the details of providing a hashing access method for a file on a CLV optical disk
produces some interesting observations. Firstly, that to ensure efficient accesses and space utilization,
some way will be needed of accounting for the varying number of sectors that can pass under the viewing
mechanism, depending upon its position, during one rotation of an optical disk. This situation would be
similar to having variable capacity tracks on a CAV disk. The number of sectors increases as the viewing
mechanism becomes positioned closer to the outer edge of the disk. The difference can be as much as

three to one between the two extremes of the disk surface.



-8—

Secondly, we observe, that while the slow seek times of CLV optical disks make hashing attractive
as an file access method, they also make the cost of employing overflow chaining to handle the inevitable
bucket overflows to be expensive, or any other collision resolution method for that matter, that requires
the access mechanism to move. The process of following a list of pointers from overflow block to over-

flow block across the surface of the disk could cause considerable delay in resolving a query.

One possible way of accounting for the variable number of sectors passing under the viewing
mechanism is with some form of nonuniform hashing function. As is also the case for conventional CAV
type disks (e.g. magnetic), movements of the CLV disk drive’s access mechanism (seeks) will be minim-
ized if there is both a one-to-one mapping between hash buckets and some physical division (track,
cylinder) and a further correspondence in terms of their respective storage capacities. This means that on
CLV type disks, the variable number of sectors in one revolution of the disk surface implies variable
record capacities for the hash buckets. A special nonuniform hash function that distributes records to
hash buckets m proportion to their capacity would help to avoid over utilizing the lower capacity buckets,
causing overflows and further delays in resolving them, and under utilizing the buckets with greater capa-

city, causing lower file utilization. Something similar to Spiral Hashing [8] would seem appropriate.

Upon greater reflection, we realize that these observed complications are really a result of conform-
ing to restrictions imposed by physical divisions that are not found on the spiral CLV recording scheme.
Typical physical divisions found on conventional CAV type disks are concentric tracks which are rings of
stored data that can be read completely with one movement of the access mechanism and one rotation of
the disk surface, and cylinders which are groups of tracks on different disk platters that are accessible by
one position of a multihead access mechanism. On a CLV disks such divisions are not present. The data
recordings do not form concentric rings! and the disks are not usually found in multiplatter configura-
tions. A more appropriate definition of a “track” for file organizations on CLV disks is “a set of sequen-
tially accessed sectors”. The number of sectors in the set being variable and independent of the number of
rotations required of the disk actually to read them. For CAV type disks, this definition is equivalent to

the conventional notion of a track.

1 concentric CLV schemes are rare



-9-

The advantage of this definition is that more closely mirrors the way in which sectors are addressed
and allocated on a CLV type optical disk. In a spiral recording scheme it is unnecessary to divide sectors
into units which are related to the rotation of the disk platter; there is no physical reason to do so. The
constant rate at which sectors pass under the access mechanism, independent of their position on the disk
surface and hence the number of disk rotations (that is what constant linear velocity means), implies no
need to relate a group of sectors to one revolution of the disk. Any such relationship would be somewhat
arbitrary in any event, since any sector could be designated the “start” of a track, and since there is no
guarantee that a whole number of sectors will pass under the access mechanism during one revolution,
almost any sector could be designated the last. Further, on CLV disks, sector addressing and seek
requests are expressed in terms of offsets from the beginning of the spiral, not in units called “tracks”.
On CD ROMs, this offset is expressed in the form of "Minute, Second and Data Block", and reflects the

technology’s origins as a medium for music delivery.

Note that it is still convenient for the purposes of analysis to employ the CAV definition of a track
as an approximation to the CLV case. As mentioned above, it has been shown [5] that the CAV solution
for the expected retrieval performance from a disk is very close to the solution for the CLV case. We will

employ it in our analysis below.

The CLV concept of what constitutes a track allows them to be of any arbitrary size, as small as
one sector, or more than can be read with one or even several rotations of the disk; this characteristic is
very useful for hashing. Note that because the data is recorded in a spiral, reading an amount of data
that requires the disk to rotate more than once incurs no penalty in terms of a seek cost. Provided we
read sequentially, which is always the case for our definition of a “track”, the access mechanism will for
as long as is required slowly follow the recorded data as it spirals out to the edge of the disk. The access
mechanism itself will periodically make small adjustments in its position while its associated optics will
make even smaller adjustments to stay focused on the spiral. The important point is that no time delay

is incurred by this following process; it is different from performing a seek.

The disadvantage of employing tracks with variable numbers of sectors, lies in possibly increased

retrieval times due to longer transmission delays and more complicated main memory management



- 10 -

schemes. Tracks with large numbers of sectors will take longer to retrieve then ones with smaller
numbers. Buffer management also becomes an issue when potentially large amounts of buffer space could
be required. Organizing the space to ensure the ability to buffer the largest track may not be a simple
matter, especially in a storage system shared among many concurrent users. Fixed size tracks do not

have these problems.

Exploiting the ability to arbitrarily specify the capacity of a track allows us to avoid the two com-
plications observed above. A special nonuniform hashing function that skews the distribution of records
to hash buckets in proportion to their different, but fixed, capacities will not be required. And further,
overflow resolution will not be a problem since overflows simply need not occur. On CLV type optical
disks, buckets all have the same potentially (almost) unlimited capacity so a conventional uniform (i-e.
well understood) hashing function is all that need be employed. In fact, to minimize the size of any given
track assigned to hold the data of a hash bucket, and in turn, the expected amount of time required to
read it in from the disk and be searched, it will be important that hash function selected distribute

records to buckets in as uniform a manner as possible.

Bucket overflow can be completely eliminated when employing hashing as a file access mechanism
on CLV type optical disks because tracks can be expanded to accommodate any number of records
assigned to a bucket. The original motivation to restrict the size of hash buckets on CAV disks was to
keep the number of records assigned to a physical division within the capacity of the division and reduce
the probability of moving the access mechanism to resolve overflows. This is not necessary on CLV type
optical disks; the flexibility allowed in selecting track sizes allows them to be adjusted to fit the number of
records hashed to a bucket. All records can be allocated to sequential disk sectors and read with one

disk access.

3.1. Ideal Environment

The ability to flexibly specify track capacities on CLV type optical disks makes it an almost ideal
environment for implementing hashing as a file access method. It allows the elimination of two of the
major problems encountered when employing it as an access method on conventional CAV disks: under

utilization of file space and delays incurred during overflow resolution.



- 11 -

For efficiency reasons, hashing schemes employed on CAV disks typically do not use a small but
substantial portion of the disk space allocated to the file. This under utilization tends to reduce the
expected length of overflow chains that hold records assigned to an already full hash bucket by reducing
the number of hash buckets expected to be full. This in turn, improves the expected performance of
accessing the file as the probability of incurring the cost required to traverse a long overflow chain? is

reduced. Typical values for the file utilization factor on CAV disks lie between 70% and 90%.

For certain types and applications of CLV optical disks, the file utilization factor can be 100%3.3
With variable capacity tracks bucket overflows should not occur, so no unused space need be allocated to
reduce the probability of such an event. Tracks need only be as big as the capacity of their correspond-
ing hash bucket and no bigger. Even space in the last sector of a track can be used if the first sector of
one track overlaps with the last sector of the previous track. Again, main memory management may be a

problem when using variable capacity tracks.

Allowing such an overlap however, introduces the potential for records to cross sector boundaries.
For objects or records which are larger than a sector this will not be a significant source of overhead as at
most one extra sector will be retrieved, but for objects smaller than one sector it represents a doubling of
the required storage to be retrieved and buffered in main memory. A careful mapping between hash
buckets and tracks can reduce the occurrence of records that cross sector boundaries. This is possible
because the mapping does not need to reflect the logical order of the hash buckets. The track for the log-
ically last hash bucket, for example, could occupy the first sectors allocated to the file or any other posi-
tion that might prove advantageous. A method for implementing such a flexible scheme and its storage

overhead are discussed below.

The problem of mapping the logical order of the hash buckets to a physical sequence is essentially a
bin packing problem. The objective is to select an assignment that reduces the overhead introduced by
sector boundary crossing. This is a difficult problem in general though the linear ordering of hash buck-

ets may help to simplify it.

2 just one collision resolution method but the same is true for other mechanisms
3 unfortunately though, not for all as file expansion will still be an issue



-12 -

3.2. Hashing Implementation

Implementing the variable track capacity hashing scheme for CLV disks requires a small amount of
storage overhead to hold a table that implements the mapping function between the hash buckets and the
CLV tracks. If hash buckets are laid out on the spiral in their logical order, the table will contain one
sector address per hash bucket, successive table entries will delimit the boundaries of each track. If a
more complex physical arrangement is called for, perhaps due to a need to reduce sector crossings, it can
be accommodated by including more information in each table entry. It is expected that the mapping
tables, even for a great many hash buckets, will be small enough to fit in main memory, but could be

maintained on magnetic disk if so required by an implementation.

3.2.1. Hashing on CD ROM

CD ROM disks have similar characteristics as those used for audio compact disks (CD’). The
nature of the manufacture and use of CD ROM type optical disks make them a prime platform for imple-
menting hashing as a file access mechanism. The contents of a CD ROM disk are never updated or
altered so a great deal of time, effort and resources can be spent preprocessing the disk contents to pro-
duce an organization that will ensure good access performance. Once expended, this effort is not
repeated until a new disk is issued to physically replace the old one. This characteristic and the prepro-
cessing stage make it possible to achieve the 100% file utilization possible with variable capacity disk
tracks. Having no need to handle insertions or deletions to or from the file, implementing hashing on
CD ROM optical disks, becomes a one time job of preprocessing the file by computing the contents of

each hash bucket and constructing the hash bucket/sector address mapping table.

Before the disk is physically pressed, a certain degree of optimization and improvement can be
injected into the expected access performance during the preprocessing stage. During this period, it is pos-
sible to examine and experiment with the performance of a variety of different combinations of hashing
functions and numbers of hash buckets, selecting the one that provides the greatest expected access per-
formance for the file contents. We can also give a great deal of attention to the bin packing problem of

assigning hash buckets to physical locations to reduce sector boundary crossings.



—13 -

As there is no requirement to allocate disk space to hash buckets that have not been assigned
records, a simple “NULL” entry in the table is all that is required to accomplish this, one can employ a
large number of hash buckets in an attempt to reduce the expected number of records per bucket, and
hence the time to retrieve and search each one. There is virtually no penalty for having a large number of
buckets other than a larger mapping table. Even for large files, the mapping table size for a CD ROM
implementation can be quite manageable. On a CD ROM disk, complete sector addresses require at least
twenty bits, 7 bits for the minute (0-99), 6 bits for the second (0-59) and 7 bits for the data block number
(0-74), or two and a half bytes. A hashing scheme employing 20,000 hash buckets would only require
45000 bytes of main memory, a size easily accommodated by today’s generation of microcomputers, the
primary type of computer associated with CD ROM use. If each bucket was allocated a track of just one
sector, the size of the file would be 40 megabytes and the table overhead, a mere 0.1%. If needed, the
size of the table could be reduced by storing sector run lengths in fewer bytes per table entry (i.e. store
the number of sectors in each track). The savings in space that would result need to be measured against

the effort to calculate an absolute sector addresses.

3.2.2. Hashing on CLV WORM

Providing an efficient hashing access mechanism for a WORM type CLV optical disk will be more
difficult than for CD ROM. The obvious complication is the existence of dynamically changing files and
the necessity to allow for the insertion and deletion of file contents on a medium that does not allow for
the reuse of previously allocated space. Also, for the applications in which WORM disks are typically
employed, there will usually be no preprocessing stage in which to explore alternate hashing strategies, so
in general, it will not be possible to improve the expected access performance by adjusting the number of
hash buckets or the hashing function to fit the data set as it was for CD ROM. As a result, it will be a

nearly impossible task to achieve the potential of 100% space utilization.

To improve efficiency, and in particular space utilization, implementing hashing for a file stored on
a WORM disk will probably involve some degree of buffering on a magnetic disk for both the mapping
table and the contents of hash buckets. A pointer in each entry of the mapping table would lead to what

is essentially an overflow chain stored on the magnetic disk of records that are assigned to the hash



— 14 —

bucket but which have not yet been archived on the optical disk. Information on which records have
been logically deleted from the hash bucket (but which cannot be erased from the physically unerasable
disk) might also be stored in the bucket’s entry in the mapping table. At some point, as the buffer space
gradually fills up, a portion or all of the buffered information would be flushed. The “new” records will
be merged with the old (logically undeleted) ones already on the optical disk and written together on new

tracks; the mapping table will also be updated to reflect the changes.

With regard to space utilization on the WORM disk, we speculate that the extent of buffer flush-
ing may have some, as yet undetermined, decision points. It may not be profitable, for example, to invali-
date the contents of a long track and allocate a completely new one, simply to add a few more records to
it. The deciding factors will be the size of the track on the WORM disk, the proportion of deleted records
in the track, the amount of buffered information associated with the track’s hash bucket and the amount

of magnetic storage available.

For the archiving of large objects in a hashing file access scheme on WORM disks, it will be effi-
cient in terms of space utilization to store a pointer to the object in the hash bucket rather than the
object itself. As it would be wasteful to recopy large objects (records) which might be megabytes in size
simply for the benefit of merging buffered information with that on the optical disk. A pointer would add
another disk access to the retrieval process but the savings in storage space may be worth the extra

effort.

3.3. Expected Performance of Hashing

We can employ the results of [5] to analyze the expected retrieval performance of hashing as a file
access method. As a primary access mechanism the analysis will be fairly simple, as a secondary access

method it is slightly more complex.

3.3.1. Hashing as a Primary Access Method

When used as a primary access method, we expect that the retrieval performance of hashing to be
very good. For the scheme outlined above, the delay will consist of the time to perform one seek and the

time to read one hash bucket.



—15 -

The expected delay is given by:

expected delay = S, + Bk,

Where S, is the expected seek time and Bk; is the expected bucket transfer time.

A typical value for the expected seek time for CD ROM disks is 400msec. The expected bucket
transfer time depends upon the expected number of sectors occupied by the bucket, this in turn is deter-
mined by the size and average number of records hashed to a bucket. The time required to transfer one

sector from a CD ROM disk is exactly 13.3msec.

If records are small enough to be contained in a sector and a sufficient number of hash buckets are
employed to reduce the expected number in a bucket to one, then at most two sectors will need to be
retrieved if sector boundaries can be crossed by records, and at most one, if not. A delay between

413msec and 426msec is expected for the retrieval of one hash bucket.

3.3.2. Hashing as a Secondary Access Method

When employed as a secondary file access method, the dispersal of qualifying records to different
parts of the file (because they have been ordered by some other primary access method) will lower the
expected retrieval performance of hashing. In such a situation the contents of a hash bucket will not be
records but pointers to records in the file. These pointers cause many more accesses beyond the one to

retrieve the hash bucket contents.

Where K and B are as calculated in section 2, ignoring the transmission delay, the approximate

expected retrieval performance is given by:
expected delay = (K(B) + 1) S,
B depends upon the expected number of records (pointers) per hash bucket and whether sector boun-

daries are crossed. The transmission delay is ignored because the delay due to seeks is expected to be

much larger.



—16 —

4. Tree Index File Organizations on CLV Optical Disks

Depending upon the type of optical disk, either CD ROM or WORM, the task of providing an
indexed sequential file structure such as B-trees and ISAM will be either straight forward or very difficult.
Just as for hashing, the static nature of the contents of a CD ROM disk make it relatively easy to organ-
ize them into pointer linked tree organizations. For WORM disks, the situation is completely different.
Modification of files, mostly updates, is possible and is expected to occur frequently. The inability to
modify information stored on WORM disks has profound implications on the efficiency of pointer linked

structures when they undergo continuous modification.

Implementations of structures on WORM disks that employ pointers must address two implications
that arise from WORM disk characteristics. Firstly, pointers can only point to sectors that have been
written. Secondly, any change to a member of a linked list structure will require all preceding members
of the list or lists that include the changed member to be changed themselves to update their pointers;

members of the structure that come after the changed member do not require alteration.

4.1. B-trees on CLV type Optical Disks

The data structure known as Balanced Multiway trees or simply B-trees, is an important file organi-
zation method that uses pointers to maintain its structure. Like hashing, it provides efficient access to
large amounts of data. Unlike hashing however, it has the major advantage of allowing access to file con-
tents in the sequential order of their keys; since many applications require this feature, B-trees are widely

employed.

A feature of B-trees that it shares with hashing when employed on conventional CAV disks is a low
storage space utilization rate, in the worst case, about 50%, in the average case, approximately In 2 or

69%. Newer variations have reported utilizations of 85%.

4.1.1. Implementation on CLV optical disks

As is also the case for the hashing file access method, the variable capacity tracks available on CLV
disks can be used to improve the space utilization factor. However, the complexity and efficiency of a

B-tree implementation, depends heavily upon the targeted type of CLV optical disk, CD ROM or WORM.



~17 -

The static nature of the files stored on CD ROM optical disks simplifies things considerably as the
requirement of supporting insertions and deletions is removed and the file contents can be preprocessed to
improve expected access performance and space utilization. For CLV WORM type optical disks the
situation is more complex. Insertions and deletions do need to be supported, but as mentioned previously,
WORM disks only allow modification of data by writing the new information on another portion of the
disk surface, not by writing over the old. Any change to a B-tree, even to delete a record, will cause
changes to the tree and consequently more new disk space will be occupied to incorporate those changes.
Unrestricted modification of a file organized as a B-tree on a WORM disk (either CLV or CAV) will

quickly fill the disk.

4.1.1.1. Implementation on CD ROM

The file utilization rate of a B-tree file structure when employed on a CD ROM disk can be close to
100%. The lower file utilization rates quoted above are the result of unused space left in the nodes of the
balanced tree. This unused space varies from node to node depending upon the pattern of insertions and
deletions experienced by the file. Since files on CD ROM disks are static, only the space actually occu-
pied in a node need be allocated on the disk. Again, we can eliminate logically allocated but physically
unoccupied space by employing variable capacity tracks, and in the process raise the file utilization rate

to very near 100%.

4.1.1.2. Implementation on WORM

The advantages offered to a B-tree implementation by the characteristics of CD ROM disks are not
present when using WORM disks. In fact, certain characteristics of the B-tree insertion and deletion pro-
cess make it a particularly undesirable choice for WORM disks, especially if the file contents are expected

to be volatile.

Inserting or deleting records in a Balanced Tree has the potential of causing a great deal of reorgan-
ization, requiring the contents of many nodes to change to keep the tree in balance. Unfortunately, a
B-tree node, once written on a WORM disk and even if to add just one record, cannot be changed

without completely rewriting it on another part of the disk and occupying additional storage. Of course,



- 18 -

not all insertions will cause the tree to be reorganized, but even if its balance is not affected by the inser-
tion of a record, all of the nodes in the tree along the path between the root and the affected node will
need to be rewritten to update their pointers and maintain the integrity of the tree. Unrestrained, this

duplication process would quickly fill up even the immense capacity of a WORM disk.

As was the case for employing the hashing file access method on WORM optical disks, it might be
possible to alleviate some of the problems associated with the unerasability of WORM disks, and the
resulting poor space utilization, by using magnetic disks as an accompanying storage medium. The links
between nodes, for example, could be stored on the magnetic disk and updated as necessary thereby elim-
inating the necessity of duplicating nodes simply to modify a single pointer. Through the use of such a

table it would also be possible to buffer some nodes on the magnetic disk.

4.1.2. Expected Performance of B-trees on CLV optical disks

The slow seek and data transfer rates typical of CLV optical disks will tend to make B-trees a poor
performing file access method. Because of their large capacities, optical disks will generally store a very
large number of records (objects). A B-tree for a file with a large number of records (objects) will have
several levels of nodes, each with a high branching factor and hence a large number of records. Travers-
ing the tree will usually require as many seeks as there are levels in the tree, save for one if the root is
kept in main memory, each of which will require a relatively long time to complete. The time to actually
read the node and search it will add further to the expected delay since they will generally be large them-

selves.

From [10], with the root not in main memory, we find the expected cost of retrieval from a Bal-

anced Multiway tree to be approximately:

(S: + B, + D loggm) log,, N

m -]
B,

Where, S, is the expected seek time, B, the block transfer time, m the branching factor, E, the size of
one of the entries (records) in the node and B, is the size of a block (sector). D logym is the time to per-

form a binary search on the node when it is in main memory and N is the number of records in the file.



-19 -

Differentiating and setting the derivative to zero to find the branching factor (m) that will minimize

the expected delay, we produce the following expression:

In St Bs
m m_m_Bt E,

4.1.2.1. B-tree Access Performance on CD ROM

Using typical performance parameters of a CD ROM disk, we can calculate the optimal branching
factor for a given number of records of a particular size. A typical value for the expected seek time S, is
400msec. The time to transfer one block or sector, By, is exactly 1/75 of a second, and the size of sector,
B, is 2048 bytes when using the highest level of error correction, as will be the case for record oriented
data; lower levels of error correction are used for objects which can tolerate a small rate of error such as

bit maps or recorded audio.

For a record size of 200 bytes we calculate the following:

minm — m o 04 2048
T 1/75 200
= 307.2

which corresponds to a value of m equal to 88 (i.e. each node should have 87 or m—1 records).

If the entire 550 megabyte capacity of the disk was occupied by the file, that would include 2750000

records. The expected number of accesses is therefore:

In N
= log,, N or o m
_ In 2750000
~ Inss

= 3.31



—-920 -

Using the performance parameters for given above, the expected delay due to disk accesses is:

g7 -200_

2048 ) 3.31

expected delay = (0.4 + (1/75) [

= 1.72 seconds

Because 87 record entries do not completely fill all of the nine sectors assigned to them, we can

improve the expected performance and space utilization by increasing m to a value that does. In this

2048

200 ] = 92, reserving space for the m th pointer in the node. There

case, we can increase m to l9

would now be 91 records per node.

The expected delay for m = 92 is 1.71 seconds, a slight improvement. For comparison purposes,

the expected delay for m = 70 is 1.72 and for m = 100 it is also 1.72 seconds.

When the root of the B-tree is stored in main memory, we can reduce the number of disk accesses

by one. This will have an effect upon our analysis.

The expected delay when the root of the B-tree is kept in main memory is given by:

exzpected delay = (S; + B, |m B—‘ + D loggm) (log,, N — 1) + D loggm
8

Ignoring the time to search the node (i.e. D = 0), we obtain:

= (S; + B

&

E,
m 2 ) (log, N — 1)

Differentiating this expression and setting the derivative to zero, we find:

In®m i B,

mom - - V=5 &

Using the values from our previous example, we calculate that m = 134 will produce a minimal expected
delay of 1.19 seconds. However, as before, our calculated value of m branches per node does not com-
pletely fill all of the sectors assigned. The value of m that does is 143, for an expected delay of 1.16

seconds. For comparison purposes, a slightly higher value of m = 160, gives a higher expected delay of



~-91 -
1.18 seconds, showing that we have indeed found the value of m that produces a minimal delay.

4.1.2.2. Expected Secondary Access Performance

When used as a secondary access method, the expected retrieval performance of B-trees well be
reduced by the need to perform additional accesses to follow pointers to records in the file. Again, the

expressions given in section 2 can be used to determine the expected delay.

For a file of N records and a B-tree with a branching factor of m and also assuming fully populated

lowest level nodes, the expected retrieval performance is:
expected delay = Sy(log,, N + K(B))

Where the expression used for B depends upon whether sector boundaries are crossed by records, the size

of the file, the size of a span and the number of records in the lowest level node (which is at most m—1).

4.2. ISAM on CLV Optical Disks

An alternative sequential access method to B-trees is ISAM (Index Sequential Access Method). Like
B-trees, it allows sequential access to file contents and primarily consists of a pointer linked tree struc-
ture. Unlike B-trees, the index structure of ISAM has the useful property of remaining unchanged when
the file undergoes modification. This is not a great advantage for files stored on CD ROM which cannot

change, but for files stored on WORM disks, it is ideal.

4.2.1. ISAM on CLV WORM

It is not possible to implement a “pure” ISAM file organization on a WORM disk, but a slight varia-
tion can be easily accommodated. The changes necessary to adapt to the characteristics of WORM disks

lie in the method of handling overflows and in the frequency of periodic file maintenance.

Insertion of records can cause the disk space allotted to a particular range of keys to overflow. The
conventional ISAM approach to this problem is to reserve an overflow area and shuffle the positions of
old and new records in the primary and overflow areas to maintain physical sequential ordering of the
records. Periodic maintenance on conventional ISAM files is performed to clear the overflow areas by

reorganizing the file and its index. The maintenance improves the expected retrieval performance by



- 929 —

reducing the expected amount of overflow processing required.

On WORM disks, it is not possible to “shuffle” the position of records to maintain physical as well
as logical ordering. Rewriting the new and old records to do so, will quickly use up the disk space and

decrease expected insertion performance.

Much like the arrangement previously described for hashing, a modified ISAM approach for CLV
WORM optical disks could use magnetic disk storage as the overflow medium. It can also take advantage
of the variable track capacities to reduce the need for periodic file reorganization. In such an approach,
the top level of the ISAM index would be kept in main memory and the rest on the optical disk. A small
table would also be kept in main memory to map between the lowest levels of the index and both physical

(optical) disk locations and overflow chains stored on magnetic disk.

When a record is inserted into the file, it will be placed on the overflow chain kept for its index
position on the magnetic disk. When a record is retrieved, the optical disk will be accessed, if the record
is not found then the overflow chain on the magnetic disk will be searched. Sequential access will

required both disks to be accessed if there are records buffered on the magnetic disk.

The deletion of a record could be handled by storing information in the mapping table or on mag-
netic disk. The exact method should not prove critical as the type of applications that to employ WORM

disks tend to be archival in nature so deletions are expected to be rare.

When an overflow chain becomes excessively long by some criteria, its contents and the contents of
its corresponding primary area on the optical disk will be merged and stored on a new WORM disk
track. The mapping table would be updated to reflect the change and the buffer space on the magnetic

disk flushed. Note that the index will not change.

The availability of variable capacity tracks on CLV WORM optical disks allows the capacity of a
track to expand to meet the load imposed upon it. Thus, the flushing and merging operation to continue
without requiring a reorganization of the file and its index until the capacity of the disk is exhausted.
When the disk is full and further insertions are pending, the file and its index (along with the new

records) can be transferred to a new disk and be reorganized in the process.



- 23 -

Reorganization may be desirable before the disk is full to adjusted the index to better match the
actual contents of the file. This will shorten the length of tracks that have grown excessively long due to
insertion patterns that did not match the organization reflected in the current index. A track may be
considered to be too long if its capacity exceéds that that can be buffered in main memory or if the
transmission time required to read it from the disk exceeds some threshold. Shortening the track length
by file reorganization will lessen buffering problems and improve the expected retrieval performance by

reducing the transmission delay and the expected length of overflow chains.

5. Conclusion

We have shown that conventional file access methods found on conventional magnetic disk that use
a CAV recording scheme can be adapted to the characteristics of CLV optical disks, such as CD ROM

and WORM.

In particular we have shown that particularly good retrieval performance and file utilization close to

100%, can be achieved by using hashing as a primary file organization method on CLV type optical disks.

For tree like file organizations, particularly B-trees, it was shown that they would not have particu-
larly good access times when used on CLV optical disks. B-trees were shown to be a bad choice access
method for WORM disks are they are expected to require large amounts of disk space to accommodate
file changes. The ISAM method was discussed and an implementation strategy that made better use of

the disk was described.

We also illustrated throughout the paper, the implementation advantages imparted by the static
nature of files on CD ROM to all of the file access mechanisms; as well as the optimization that can be

performed during the preprocessing stage of the disk’s contents.

The spiral recording scheme used on almost all CLV optical disks, was shown to have a major posi-
tive impact on the expected retrieval performance and space utilization of the all of the file access

methods. This was due to the flexibility allowed in selecting the capacity of disk tracks.

We are pursuing further investigations this this area.



— 94 -

6. References

[1]

[2]
[3]

[4]

[5]

[6]

[7]
[8]

[9]

[10]

Bell, A., Marrello, V., “Magnetic and Optical Data Storage: A comparison of the Technological

Limits”, Proceedings IEEE Compcon, Spring 1984, 512-517.
BYTES6, Collection of Articles, Byte, May 86.

Christodoulakis, S., Ho, F., Theodoridou, M., “The Multimedia Object Presentation Manager of

MINOS: A Symmetric Approach”, Proc. of ACM SIGMOD ’86, May, 1986, pp 295-310.

Christodoulakis, S., “Analysis of Retrieval Performance for Records and Objects Using Optical Disk

Technology”, ACM Transactions on Data base Systems, June 1987.

Christodoulakis, S., Ford, D.A., “Performance Analysis and Fundamental Performance Trade Offs

for CLV Optical Disks”, Proceedings ACM SIGMOD, Chicago, June 1988.

Fujitani. L., “Laser Optical Disks: The coming Revolution in On-Line Storage”, CACM 27, 6 (June

’84), 546-554.
Maier, D., “Using Write-Once Memory for Data base Storage”, Proceedings ACM PODS 82, 1982.

Martin, G.N.N.: “Spiral Storage: Incrementally Augmentable hash addressed Storage”, Theory of

Computation Rep. 27, University of Warwick, England, 1979

OPTIMEM1000, “Optical Disk Drive (OEM MANUAL)”, Optimem, 435 Oakmead Parkway, Sun-

nyvale CA 94086.

Reingold, EM., Hansen, W.J., “Data Structures in Pascal”, Little Brown, Boston, 1986.



	

