
1 INTRODUCTION

During the last decade, Unmanned Air Vehicles
(UAVs) have replaced piloted aircraft in a broad
band of missions, showing a high potential for fur-
ther growing, especially due to the avoidance of hu-
man risk in dangerous environments. Typical pre-
sent and future roles include weather reconnais-
sance, offshore and border patrol, search and res-
cue assisting operations in sea and mountains, aerial
photographing and mapping, fire detection and co-
ordination of fire fighting, traffic control etc. Advan-
ces in telecommunications, control and Artificial In-
telligence along with UAV low risk, low cost and long
endurance, tailor such missions to the UAV's profile.

Autonomous operation of UAVs requires the de-
velopment of control systems that operate isolated
from human support for extended time periods. The
development of such systems has been traditionally
focused on ground vehicles. Additionally, the high
cost and risk of testing air vehicles necessitates the
use of sophisticated analysis and simulation tools.

The desired autonomous operations of UAVs
leads to the development of pathline planners, for ge-
nerating collision free paths in environments with ob-
stacles. Such planners should work either on-board,
for local real-time optimization of the flight path, or
out-board, for global optimization of the mission,
prior to the flight. The optimization of the flight
path is, in general, a constrained multi-objective op-
timization problem. Additionally, a trajectory track-
er is needed, in order to schedule the movement of
the UAV along the optimized planned path.

In this work, an off-line UAV trajectory planner,
based on an Evolutionary Algorithm, is described.
Traditionally, evolutionary algorithms have been
used for the solution of the path-finding problem in
ground based or sea surface navigation [1]. Evoluti-
onary algorithms have been used for the solution of
the path-finding problem in a 3-D environment for
underwater vehicles, using line segments for the
representation of the pathline [2]. B-Spline curves
have been used for the pathline representation in a
2-D environment, using simulated annealing for the
optimization of the line [3]. In the current work the
path-finding problem is three-dimensional, with the
pathline being a continuous 3-D B-Spline curve,
while the solid boundaries are 3-D surfaces.

The pathline of a flying vessel is actually a curve
with curvature continuity and, therefore, cannot be
modeled using straight-line segments, which is the
usual practice for ground robots. The B-Spline cur-
ves, used here for path representation, have the ad-
vantage of being described using a small amount of
data (actually the coordinates of their control points),
although they may produce very complicated curves.
The coordinates of their control points form the
chromosome of each individual in the Evolutionary
Algorithm. The reasons behind choosing EA as an
optimization tool for the path-planning problem are
their high robustness compared to other existing di-
rected search methods, their ease of implementa-
tion in problems with a relatively high number of
constraints, and their high adaptability to the special
characteristics of the problem under consideration.
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2 THE EVOLUTIONARY ALGORITHM

2.1 Basic features

EAs are a class of search methods with remark-
able balance between exploitation of the best solu-
tions and exploration of the search space. They
combine elements of directed and stochastic search
and, therefore, are more robust than existing direc-
ted search methods [1]. Their strong point is that
they are very easily parallelized. Additionally, they
may be easily tailored to the specific application of
interest, taking into account the special characteris-
tics of the problem under consideration. They simu-
late the process of genetic evolution found in na-
ture to perform artificial evolution, in order to pro-
vide optimized solutions in various problems. Since
their development they have been successfully ap-
plied to numerous different and complex search
space problems.

In nature, the external characteristics (phenotype)
of each organism are encoded in their genes (geno-
type). Individuals with external characteristics better
fitted to the environment have better chances to
survive and increase their numbers over a number
of generations, while the less fit individuals tend to
eliminate. In this way natural selection ensures that
genes from a better-fitted individual have better
chances to survive and consequently their popula-
tion increases.

The natural selection process is simulated in EA,
using a number (population) of individuals (soluti-
ons to the problem) to evolve through certain pro-
cedures. Each individual is represented through a
string of numbers (bit strings, integers or floating
point numbers), in a similar way with chromosomes
in nature. The quality of each individual is repre-
sented by a function (the fitness), tailored to the
problem to be optimized.

The EA starts by generating in a random way
the initial population of chromosomes, with their
genes taking values inside the desired constrained
space. After the evaluation of the fitness function
for each individual, certain operators are applied to
the population, simulating the according natural
processes. These operators include various forms of
selection, recombination and mutation, which are
used in order to provide the chromosomes of the
next generation. The process of evaluation and cre-
ation of a new generation is successively repeated,
providing individuals with high values of fitness
function. The Evolutionary Algorithm discussed in
this work is a modified Breeder Genetic Algorithm,
incorporating some characteristics of the classic
Genetic Algorithms (GAs). The Breeder Genetic
Algorithms (BGAs) use floating point representa-
tion of variables and both recombination and muta-

tion operators. The truncation model is used as the
selection scheme, with the best T % of P initial in-
dividuals to give origin to the individuals of the next
generation, with equal probability.

2.2 The representation of the individual

The representation of each individual can be rea-
lized using artificial chromosomes with either binary,
integer or floating point coding. Classical GAs use
binary coding for the representation of the genotype.
However, floating point coding moves the EA clo-
ser to the problem space, allowing the operators to
be more problem specific. For this reason floating
point coding is used in the current work, which
provides a better physical representation of the
path line control points and easier control of the
space constraints. Additionally, two points that are
close to the physical space are also close in the re-
presentation space (the genotype encoding), and vice
versa. With this type of encoding directed search
techniques gain physical representation and they
are easily applicable.

The path line is represented using a B-Spline
curve, with the Cartesian coordinates of its control
points being the genes of the artificial chromosome.
The starting and ending points of the path are
fixed, while the internal control points are free to
change in a constrained space. The Cartesian coor-
dinates of the non-fixed control points form the
genes of each individual.

2.3 The initial population

The initial population is created randomly in the
constrained space of each gene. The lower and hig-
her constraints of each gene can be chosen in a way
that specific undesirable solutions may be avoided,
such as pathlines with a higher than the desired al-
titude. Although the shortening of the search space
reduces the computation time, it can also lead in
local optima. The algorithm may be initialized using
also the last population of a previous run.

2.4 The selection scheme

The selection scheme is a combination of the
truncation model of Breeder Genetic Algorithms
and the roulette procedure of the traditional Gene-
tic Algorithms. Starting with the truncation model,
only T % elements showing the best fitness are cho-
sen in order to give origin to the individuals of the
next generation. The parameter T is the threshold
of the procedure. Once chosen these individuals are
used for the generation of a new population thro-
ugh the roulette wheel selection [1]. The selection
probability of each of the T % remaining individu-
als is directly proportional to its relative fitness, with

144                                   AUTOMATIKA 42(2001) 3−4, 143−150

I. K. Nikolos, N. C. Tsourveloudis, K. P. ValavanisEvolutionary Algorithm Based ...



reference to the average fitness of the T % selected
individuals. The fitter the individual, the more
chances has for being chosen. Using this hybrid
scheme, only the individuals with the best fitness
are allowed to pass to the next generation.

The adopted hybrid selection scheme provides
high flexibility to the evolutionary algorithm. When
threshold takes values close to 100 % the scheme
actually serves as a classic roulette scheme. For va-
lues of T close to 10 % the scheme serves close to
a classic truncation model. In the current work va-
lues of T between 40 % and 70 % were used. Lower
values of T tend to trap the procedure in local op-
tima.

An elitist model assures that the best individual
of each generation always survives the selection
procedure and reproduces its structure in the next
generation.

2.5 The recombination and mutation operators

The first operator applied to the selected chro-
mosomes is the classical crossover scheme [1]. Two
randomly selected chromosomes are divided in the
same (random) position, while the first part of the
first one is connected to the second part of the se-
cond one and vice-versa. The application or not of
the crossover operator in a specific chromosome is
being controlled through a predefined crossover
probability. The crossover operator is used in order
to provide information exchange between different
potential solutions to the problem.

The second operator applied to the selected chro-
mosomes is the classical uniform mutation scheme.
This asexual operator alters a randomly selected ge-
ne of a chromosome. The new gene takes its random
value from the constraned space, determined in the
beginning of the proccess (in this case being the
borders of the physical 3-D search space). The ap-
plication or not of the corresponding operator in a
specific chromosome is controlled through a prede-
fined mutation probability. The mutation operator
is used in order to introduce some extra variability
into the population.

In order to provide fine local tuning, non-uni-
form mutation and heuristic crossover are used,
along with the classic mutation and crossover sche-
mes [1].

The non-uniform mutation operator chooses ran-
domly, with a predefined probability, the gene of a
chromosome to be mutated. Contrary to the uni-
form mutation, the search space for the new gene
is not fixed, but it shrinks close to the previous va-
lue of the corresponding gene as the algorithm con-
verges. The search is uniform initially, but very lo-
cal at later stages.

The heuristic crossover operator generates a sin-
gle offspring x3 from two parents x1 and x2. If x2 is
not worse than x1, then x3 is given as

(1)

where r is a random number between 0 and 1. In
this way a direction for search is adopted, providing
fine local tuning and search in the most promising
direction.

3 USING THE EVOLUTIONARY ALGORITHM FOR

PATH PLANNING

3.1 The solid boundary representation

The solid terrain under the flying vessel is repre-
sented by a meshed three-dimensional surface. For
simplicity reasons this surface is produced using
mathematical functions of the form

(2)

where a, b, c, d, e, f, g are proper constants. The
produced surface simulates a terrain with moun-
tains and valleys, as can be seen in Figure 7.

A graphical environment was developed for the
visualization of the terrain surface, along with the
pathline curve [4]. The corresponding environment
can deal with different terrains, produced either ar-
tificially or based on real geographical data. Hori-
zontal sections of the surface in different heights
can be plotted, visualizing the solid boundaries in
the UAVs flight height, as presented in Figure 4.
The path-planning algorithm considers the scanned
surface as a group of quadratic mesh nodes with
known coordinates.

3.2 The B-Spline modeling of the pathline

The pathline of a flying object cannot be represen-
ted by straight-line segments, as it is usually the case
for mobile robots, sea and undersea vessels. In the
present work B-Splines are adopted in order to de-
fine the desired path of the UAV, providing conti-
nuity at least of the second derivative of the curve
[5, 6]. B-Spline curves are well fitted to the evolu-
tionary procedure, as they need a few variables (co-
ordinates of the control points) in order to define
complicated curved paths. Additionally, each con-
trol point has a very local effect on the curve's
shape, and small perturbations in its position pro-
duce changes in the curve only in the neighborhood
of the changing control point.
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B-Spline curves are parametric curves, with their
construction based on blending functions [5, 6].
Their parametric construction provides the ability
to produce non-monotonic curves. If the number of
control points of the corresponding curve is (n + 1),
with coordinates (x0, y0, z0),...,(xn, yn, zn), the coordi-
nates of the B-Spline may be written as:

(3)

(4)

(5)

where Bi,K(t) the blending functions of the curve
and K the order of the curve, which is associated
with curve's smoothness. Higher values of K corre-
spond to smoother curves, as it is demonstrated in
Figures 1 and 2. Parameter t varies between 0 and
(n − K + 2) with a constant step, providing the dis-
crete points of the B-Spline curve. The sum of the
values of the blending functions for any value of t
is always 1.

The blending functions are defined recursively in
terms of a set of knot values, with the most com-
mon form being the uniform non-periodic one, de-
fined as:

(6)

The blending functions Bi,K are defined recur-
sively, using the knot values given by (6):

(7)

(8)

If the denominator of either of the fractions is zero,
that fraction is defined to have zero value.
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A valuable characteristic of the adopted B-Spline
curves is that the curve is tangential to the control
polygon at the starting and ending points (see Figu-
re 1 and Figure 2 for the polygon formed by the
control points). This characteristic can be used in
order to define the starting direction of the curve,
by inserting an extra fixed point after the starting
one. These two points can define the direction of
the curve at the corresponding region. This is essen-
tial for the path planning of flying vessels, as their
flight angles are continuously defined. Consequently
the direction of the designed pathline in the star-
ting position must coincide with the current direc-
tion of flight in this position, in order to ensure
curvature continuity of the whole pathline.

The B-Spline curve is discretized, using a con-
stant step dt equal to 0.01, and it is used in this
form for the calculation of its fitness. 
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Fig. 1 A 2-D B-Spline curve (K = 3), with its control points and the
control polygon

Fig. 2 The corresponding B-Spline curve with the same control 
points as in Figure 1 for K = 5



3.3 The Fitness Function

The fitness function of the evolutionary algo-
rithm is formed in order to evaluate four different
aspects of the selected curve:

– The feasibility of the curve with respect to colli-
sion free path generation.

– The minimization of the total length of the path.
– The curve's minimum distance from solid boun-
daries.

– The minimum curvature of the B-Spline curve.

The problem to be solved is a minimization one,
while the algorithm has been constructed for maxi-
mization problems. For this reason the fitness func-
tion is the inverse of the weighted sum of four dif-
ferent terms:

(9)

where αi are the weights and fi are the correspon-
ding terms described below.

Term f1 in (9), penalizes the non-feasible curves
that pass through the solid boundary. The penalty
value is proportional to the number of discretized
curve points (not control points) located inside the
solid boundary. In this way non-feasible curves with
fewer points inside the solid boundary show better
fitness than the curves with more points inside the
solid boundary. Additionally, the fitter of the non-
-feasible curves may survive the selection procedure
and produce acceptable offsprings through the
heuristic crossover operation.

Term f2 in (9), is the total length of the curve
and is used in order to provide shorter paths.

Term f3 in (9), is designed to provide flight paths
with a safety distance from solid boundaries, given
as:

(10)

where nline is the number of discrete curve points,
nground is the number of discrete mesh points of the
solid boundary, ri,j is their distance and rsafe is the
minimum safety distance from the solid boundary.

Term f4 in (9) is designed in order to provide
curves with a prescribed minimum curvature angle.
This characteristic is essential for a flying vessel, as
the minimum radius of curvature is determined by
its flight envelope. The angle determined by two
successive discrete segments of the curve is calcu-
lated. In case that the calculated angle is less than
a prescribed one, a penalty is added to the fourth
term of the fitness function.
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The weights αi are experimentally determined,
using as criterion the almost uniform effect of the
last three terms in the fitness value. Term α1 f1 has
a dominant role in (9) because provides feasible
curves in few generations, since path feasibility is
the main concern. The maximization of (9), through
the EA procedure, results in a set of B-Spline con-
trol points, which actually represent the desired
path (along with the fixed control points).

4 EXPERIMENTALRESULTS

The off-line path planner has been extensively
tested, using a simulation environment. All experi-
ments have been designed in order to search for
path lines between »mountains«. For this reason, an
upper ceiling for flight height has been enforced.
This ceiling is represented in the graphical environ-
ment by the horizontal sections of the terrain.

The settings of the evolutionary algorithm are as
follows: population size = 100, threshold = 0.5, heu-
ristic crossover probability = 0.75, classic crossover
probability = 0.15, mutation probability = 0.05, non-
-uniform mutation probability = 0.15. The algorithm
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Fig. 3  The first test case: An upper ceiling was imposed for the
control points of B-Spline curve, represented by the horizontal sec-
tion of the terrain. The starting position is marked with a circle

Fig. 4 The second test case: Four free control points were used, with
a prefixed direction of the curve at the starting position. The mini-
mum acceptable distance from the solid boundary is equal to the

one of the first test case



was defined to terminate after 50 generations, al-
though feasible solutions can be reached in less
than 20 iterations.

The order K of the B-Spline curve was set equal
to 5, providing adequate smoothness to the calcula-
ted curve. The free-to-move control points were
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Fig. 5 The third test case. The starting position is marked with a
circle

Fig. 6 The fourth test case. The starting position is marked with a
circle

Fig. 7 Early feasible solution of the fourth test case

Fig. 8 The fifth test case, with 4 free control points, and a very low
upper limit

taking values between 4 and 6, resulting in a total
number of B-Spline control points equal to 7–9
(along with the fixed starting and target points, and
the fixed second point, used for the determination
of the initial direction). The four free-to-move con-
trol points correspond to 3 × 4 = 12 genes of each
chromosome and the six control points to 18 genes,
a relatively low number of genes, for this kind of
applications. Higher number of control points re-
sulted in higher computation time and slower con-
vergence rate, without any significant profit, con-
cerning the fitness of the curve.

In all test cases the terrain was produced by the
same function, with prefixed starting curve direc-
tions and various starting and ending positions.
Four free-to-move control points were used for test
cases 1, 2, 3, 4, 5, while six control points were
used for the last test case. The test cases 5 and 6,
shown in Figure 8 and Figure 9 respectively, were
designed with the ceiling set to a low altitude, in-
creasing the path planning difficulty. The starting
position in all test cases is marked with a circle.
The minimum distance from the mountain-like
boundaries was set equal to 1/30 of the x-dimension
of the terrain, in all the cases, except for case 4,
which is presented in Figure 6 and Figure 7. In test
case 4, the minimum distance was set equal to the
1/15 of the terrain's x-dimension. As it is demon-
strated in Figure 6, a higher distance from the solid
boundaries was achieved, compared to test case 3
(Figure 5). For the test case 6, shown in Figure 9,
a wider terrain was used.

Relatively high values of mutation probabilities
were adopted, in order to ensure the ability of the
algorithm to overcome local optima. As it was ob-
served, initial feasible solutions, provided by the
evolutionary algorithm, were progressively replaced



by fitter ones, with a completely different structure.
Figures 6 and 7 demonstrate the above observation.
Figures 3 to 9 demonstrate the ability of the pro-
posed method to provide collision-free, smooth
pathlines, with a desired initial direction, even for
complicated environments with very narrow pas-
sages in both horizontal and vertical directions.

5 DISCUSSION AND FUTURE WORK

An Evolutionary Algorithm-based off-line path
planner for Unmanned Aerial Vehicles (UAVs) has
been presented to calculate a curved path line with
desired characteristics in a known 3-D rough ter-
rain environment. 

The trajectory of a UAV cannot be, adequately,
represented using line segments. Additionally, a fly-
ing vessel cannot follow a path line formed with
line segments, without giving rise to control and
stability problems. The proposed method uses para-
metric curves to produce a continuous path line,
which is described by a small set of parameters –
the coordinates of the control points. The construc-
tion of the B-Splines based on control points, pro-
ved suitable for coupling with an EA. The direction
of the curve can easily be prescribed at its starting
position, by inserting a second fixed point. The di-
rection described by these points is the initial direc-
tion of each curve and must coincide with the cur-
rent flight direction.

The planner takes into consideration the vehicle
flight capabilities in the form of a prescribed mini-
mum curvature angle and a maximum flight height.
The resulting path is smooth and assumed being
easily generated by autonomous navigation con-
trollers. 

The EA proved to be effective in finding feasible
path lines under the forced constraints and within
an acceptable time period. The easy implementa-
tion of the various constraints of the problem
proved to be a valuable characteristic of EA. Ne-
vertheless, a feasible solution could be reached
within a small number of iterations, while the rest
of the iterations were used in order to optimize the
solution, according to the rest of the criteria.

The presented off-line path planner is going to
be integrated with a trajectory tracker under devel-
opment, in order to schedule the movement of the
UAV along the optimized planned path and to deal
with unexpected situations (such as flying obsta-
cles).
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Fig. 9 A wider terrain was used for the sixth test case, along with 6 free con-
trol points and very low upper limit. The starting position is marked with a 

circle
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Evolucijski algoritam temeljen na off-line planeru putanje za navigaciju bespilotnih letjelica. Predstavljen je off-
-line planer putanje za bespilotne letjelice. Planer je temeljen na evolucijskim algoritmima za prora~un zakrivljene
putanje sa ̀ eljenim karakteristikama u 3D prostoru. Putanja je predstavljena pomo}u B-spline krivulja, gdje su ko-
ordinate kontrolnih to~aka geni umjetnih kromosoma evolucijskih algoritama. Metoda je provjerena na umjetnom
3D prostoru s razli~itim po~etnim i kona~nim to~kama, gdje su dobivene vrlo glatke putanje uz zadovoljenje strogih
ograni~enja. 

Klju~ne rije~i: B-spline, 3D planiranje putanje, evolucijski algoritmi, navigacija, UAV
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