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Mobile Robot Navigation in 2-D Dynamic Environments
Using an Electrostatic Potential Field

Kimon P. Valavanis, Timothy Hebert, Ramesh Kolluru, and
Nikos Tsourveloudis

Abstract—This paper proposes a solution to the two-dimensional (2-D)
collision free path planning problem for an autonomous mobile robot uti-
lizing an electrostatic potential field (EPF) developed through a resistor net-
work, derived to represent the environment. No assumptions are made on
the amount of information contained in the a priori environment map (it
may be completely empty) and on the shape of the obstacles. The well-for-
mulated and well-known laws of electrostatic fields are used to prove that
the proposed approach generates an approximately optimal path (based on
cell resolution) in a real-time frame. It is also proven through the classical
laws of electrostatics that the derived potential function is a global naviga-
tion function (as defined by Rimon and Koditschek [11]), that the field is
free of all local minima and that all paths necessarily lead to the goal posi-
tion. The complexity of the EPF generated path is shown to be ( )
where is the total number of polygons in the environment and is the
maximum number of sides of a polygonal object. The method is tested both
by simulation and experimentally on a Nomad200 mobile robot platform
equipped with a ring of sixteen sonar sensors.

Index Terms—Electrostatic potential field, mobile robots, navigation.
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I. INTRODUCTION

This paper proposes an Electrostatic Potential Field (EPF) based so-
lution to the Mobile Robot (MR) path planning and collision avoidance
problem in two-dimensional (2-D) dynamic environments. The EPF is
obtained in four steps:

1) create anoccupancy mapof the environment;
2) create the correspondingresistor networkthat is representative

of the MR’s operational environment;
3) create theconductance mapfrom the resistor network;
4) solve the resistor network to obtain thepotential field.
The laws of electrostatic fields are used to prove that the proposed ap-

proach generates in real-time a local minima freeminimum occupancy
approximately optimal path, and that all generated paths necessarily
lead to the goal position. No assumptions are made on the amount of
information contained in the environmenta priori map; the map may be
(initially) completely empty. However, a complete sensor based model
of the environment is built and information from environment maps is
combined with on-line sonar sensor data, to plan, replan and execute a
collision free path in real-time. The resolution of the environment map
depends on the “size” of the smallest possible square cell in the grid.
The MR is modeled as a “point” about its center of mass; hence, the 2-D
workspace and the configuration space coincide. The MR is treated as a
“point source” where current is injected into it to compute the adjacent
cell resistances. Further, no assumptions are made on the shape of ob-
stacles, their location and their velocities. Obstacles are stored as a col-
lection of line segments with their half-planes intersecting to form the
obstacle area. Obstacles are modeled as areas of high resistance within
an area of low resistance; thus, areas of high obstacle occupancy are
mapped to high resistances and areas containing relatively few obsta-
cles are mapped to low resistances. Completely occupied cells of the
network are modeled as an infinite resistance (open circuit). The cell
the robot is assigned to is treated as an “empty cell” with no object,
so the robot may move through and out of the cell. With a maximum
potential at the robot’s initial position and the sole minimum at the de-
sired goal point, an EPF is created in which most of the current flow
is in areas of (least) minimum resistance, corresponding to a path of
minimum occupancy in the real environment while moving to the goal
point. Stated differently, the optimum path minimizes the sum of swept
occupancies (the total swept occupancy); the MR is pushed away from
the boundary of obstacles while being attracted towards the goal posi-
tion. It is shown that the complexity of the EPF generated path is linear
with respect to the number of obstacle edges within the environment,
O(mnM); where m is the total number of polygons in the environment
andnM is the maximum number of sides of a polygonal object.

The rest of the paper is organized as follows: Section II summa-
rizes related work and discusses the fundamental laws of electrostatic
potential fields, used as justification for the proposed solution. Sec-
tion III presents the path planner solution, Section IV identifies simi-
larities of the proposed approach with dynamic programming, and Sec-
tion V presents simulation and real-time results. Section VI concludes
the paper.

II. RELATED WORK AND BACKGROUND INFORMATION

A. Related Work

Most solution approaches to the MR navigation problem recommend
global navigation (generating a path leading to the goal point) and local
navigation (follow the global path avoiding collisions with obstacles).
A survey of techniques used for navigational planning along with a
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comprehensive study of the problem is given in [39]. Global plan-
ners may be classified into roadmaps (visibility graphs, Voronoi dia-
grams, freeway net, and silhouette) [19]–[25], exact and approximate
cell decomposition approaches [26]–[29], and artificial potential fields
(APF’s). APF approaches generate a collision-free path from the field
formed by the obstacles and the goal point in the robot workspace [7],
[9]–[12]. Proposed solutions to overcome the problem of local minima
may be found in [8], [11], [13], [16]–[18], [32]. Several researchers
have also used the actual EPF [31], [36], [37], or even the magnetic
field [35] to solve a specific problem. In most cases a resistor network
is created as a hardware-based, analogue solution to a set of equations.
A comprehensive list of related references and a comparative study of
pertinent approaches including computational complexity comparisons
may be found in [12] and [16].

B. Background Information

Gauss’s law states that the total outward flux of the electric field in-
tensity over any closed surfaceS in free space equals the total charge
enclosed in the surfaceQS divided by the permittivity of free spaceε.
Further, the curl-free electrostatic fieldE is the gradient of the vector
potential fieldφ. Combining Gauss’s law with the definition of electro-
static potential results in

r � E = r � (r�) = r2� =
QS

"
(1)

whereQS is the free charge in the Gaussian surface. In a closed system,
the only free charge is provided by external sources. At points of the
system that do not include sources the second derivative is equal to
zero, and Laplace’s equation is satisfied. Therefore, no minimum or
maximum is located internal to the field. At a source (sink),QS is
positive (negative) thus, a maximum (minimum) exists [1], [2].

Considering an arbitrary volumeV bounded by surfaceS and with
a net chargeQ within this region, it is known that the currentI leaving
the region is the total outward flux of the current density vector through
the surfaceS

I =
S

D � ds = �
dQ

dt
= �

d

dt V

� � dv (2)

whereD is the volume current density andρ is the charge density. For
a stationary volume

V

r �D dv = �
V

@�

@t
dv or r �D = �

@�

@t
: (3)

For steady currents, charge density does not vary with time,r�D = 0:
Over any closed surface, the above equation results in an expression of
Kirchhoff’s Current Law (KCL)

S

D � ds = 0)
j

Ij = 0: (4)

Given a network of resistors, defineK = 1 � � � Nas the set of all
nodes of the network. Each node of the network has a number of resis-
tors centrally tied. The actual number of resistors is determined by the
connectivity of the network. LetG be anN�1 matrix withgk the con-
ductance of each resistor of nodek 2 K: In matrix form the complete
system of equations isA � V = J whereA is anN �N matrix andV
andJ areN � 1 matrices. The matrixV is the potential of each node
in the resistor network,J is the matrix of external current sources con-
nected to the network, andA is the system matrix. To obtainA; KCL
is applied to each node of the resistor network

k2K

Ilk = jl 8 l 2 K: (5)

Kl � K is the set of all nodes connected to nodel; Ilk is the current
of the branch between nodesl andk; andjl is the total current from
external current sources entering nodel: By replacing each branch cur-
rent,Ilk; with its equivalent statement as defined by Ohm’s Law,glk
being the conductance of the branch connected to thelth andkth nodes
(with l the central node of scrutiny), one gets

k2K

glk(v1 � vk) = jl: (6)

(vl�vk) is the potential drop froml to k; andglk = (gl � gk=gl+gk);
gkl = glk; 8fk; lg 2 K:

It is proven in [3] and [4] thatthe current in a network of linear pas-
sive resistors distributes itself in such a manner that the network settles
into a unique state of minimum power dissipation. The unique solution
to the resistor network system of equations is equivalent to minimizing
the instantaneous power consumed by the network and yields a max-
imum current path that follows the path of least resistance. The poten-
tial field created over a continuous surface, and through a discrete net-
work of linear passive resistors, is shown to be free of all local minima,
except at places of external sources or sinks.

III. T HE PROPOSEDSOLUTION

The navigation problem may be compared to the flow of electric
current within a sheet of conducting material. The proposed solution
implements a discrete form of the comparison, mapping obstacles into a
discrete resistor network. Through a combination of serial and parallel
resistances, the representational resistance matrix reduces to a finite
number of paths directly proportional to the number of objects in the
field. Each path has its head at the highest potential, and its tail at the
lowest potential corresponding to the initial and goal positions of the
MR, respectively. The path following the steepest gradient from the
initial position to the goal position will be the path of least resistance,
forming a minimal occupancy path from the initial position to the goal
position.

Four major modules: 1)Object Detection, 2) Localization, 3) Path
Planning, and 4)Collision Avoidanceperform all tasks, while the
sensor based environment map generation and trajectory following are
being inherently included in the four mentioned modules [16]. The
algorithm to create the potential field follows four steps:

Step 1) Create anoccupancy mapof the environment
Step 2) Create theresistor network
Step 3) Create theconductance map
Step 4) Solve the resistor network to obtain thepotential field.

A. The Occupancy Map

The potential field is actually used to calculate the path, however
cell decomposition is used to create the environment map. The space
in which the navigation takes place is first mapped onto a regular grid.
Level mappingandbinary mappingis used to map the object into the
occupancy map. Fig. 1 shows, imposed on an object, the regular grid
used to perform the mapping into the occupancy map.

Both binary and level mapping are needed in a navigation approach.
In a global path planner, the resistor network must be able to scale the
mapping from the environment to the network so that the goal point
is included in the field. If the distance to the goal point is large, one
cell may map into a large physical area. If obstacles are smaller than
the cell size, a binary mapping technique is more likely to be unable to
find a path to the goal since it marks a single cell, which may only be
minimally occupied, as full. In this instance, if a level mapping tech-
nique is used, a minimally occupied cell is marked as such and the
robot is allowed to pass through the cell. The local collision avoidance
must not allow the robot to attempt to move through an occupied area;
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Fig. 1. Creation of the occupancy map. The robot is the circle. Sonar readings
are represented as lines radiating from the robot. For theNomad200, new sonar
readings are obtained every 0.6 s.

thus, a binary mapping is required so that a physical area close to the
robot is rendered impassable by the presence of any object. Cells that
are close to the robot are mapped from the environment to the resistor
network using a binary technique; while more distant cells are mapped
according to the percentage occupancy of the cell—the level mapping
technique.

B. The Resistor Network and the Conductance Map

Once the occupancy map is generated, each cell is then mapped onto
a resistor network by replacing each cell in the occupancy map with
a set of eight resistors (N, NE, E, SE, S, SW, W, NW), each resistor
connected at a central point. The resistor network is obtained using the
/-norm approach. Each resistor is connected to one resistor from the
eight neighboring cells, unless the cell is on the boundary, in which
case those resistors on the outer edge(s) are left open circuited (infinite
resistance).

The value of the resistors is determined by the value of the corre-
sponding cell in the occupancy map as shown in Fig. 2 and by the
function of (7). Fig. 2 shows the sample resistance (heuristically deter-
mined) mapping function [16] utilized to map the occupancy of a cell
into the conductivity of a node in the resistor network. Three regions
of the map are marked to show the possible states of a node. If the oc-
cupancy of a cell places it inregion I, the cell is classified as empty and
a maximum conductance is assigned. If the occupancy falls intoregion
III the cell is classified as full and the corresponding node is assigned a
minimum conductance.Region IIcorresponds to cells neither full nor
empty. The graph corresponds to the mapping function given by

f(x) = 10:0 � exp[�0:2(4:0 � x)3:05]: (7)

C. Formal Definition and Solution of the System of Equations

Formally, the overall system can be represented as follows.
Consider an environment mapM; which contains obstacles of var-

ious shapes and sizes. The initial position of the robot isq0 and the des-
tination point isqf : Assume a square, bounded region centered about

Fig. 2. Resistance mapping function.

q0 which includesqf and can be divided into ann � n grid,X: The
grid is discretely represented by the matrix,C; where the value of each
entry (the occupancy) is given bycij ; the percentage of the area of the
grid cell occupied by obstacles of mapM: Mathematically,cij is given
by

cij =
Area(�ij \ M)

Area(�ij)
(8)

where∩ is geometric intersection.
Consider a resistor network that consists ofn�n nodes of resistors

each node containing eight resistors connected in parallel at one point.
The free end of each resistor is tied to one resistor from a neighboring
node. LetG be a matrix whose entries contain the value of the con-
ductances (inverse of the resistance) of each node of the network. Then
the function of (7) is a one-to-one and onto mapping fromC toG such
that:

C
f(x)
�! G: (9)

Following KCL taken over the entire network, the matrix form of the
system of equations is

A � V = J (10)

whereA is an(n2 � n2) matrix, called the admittance matrix;V is an
(n2 � 1) matrix representing the potential values at each node of the
resistor value; andJ; the current matrix, is an(n2 � 1) matrix whose
values are non-zero only at points of application of external current
sources (the initial and final points only). The solution to (10) is

V = A
�1
� J (11)

and defines the discrete and bounded electrostatic potential field used
to determine the navigation path.

The boundaries of the field are defined at the outer cells of the net-
work and at nodes of the network whose corresponding occupancy cell
is marked 100% full. To determine a desired direction of travel from
the EPF, a vector is associated with each cell connected to the cell con-
taining the MR with magnitude equal to the amount of current flowing
through the specified branch. If the resistance between the central node
and all of its neighbor nodes is equal, then the potential drop can be
used in place of the current. The sum of these vectors is then reported
to be the direction of travel along the minimum occupancy path.
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D. Global Navigation Function

Rimon and Koditschek proposed aglobal navigation functionto
specifically force the function used to generate the potential field to
have only one local minimum located at the single goal point [11].

Let	 be a robot free configuration space, and letqf be a goal point
in the interior of	. A map': 	! [0; 1] is a navigation function if it
is

1) smooth on	 (at least aC2 function);
2) polar atqf ; i.e. has an unique minimum atqf on the path-con-

nected component of	 containingqf ;
3) admissible on	, i.e., uniformly maximal on the boundary of�;
4) a Morse function.
The proposed EPF solution meets the four outlined criteria, and thus,

it is a global navigation function. The existence of the first derivative
of the electrostatic potential is proven by the fact thatr� = (QS=");
whereQS is the total charge applied through a source. The existence
of the first derivative of the potential field demonstrates the smooth-
ness of the function. Combining this result with Gauss’s Law shows
the existence of the second derivative of the potential field at points of
application of external sources. Points of the field that do not have a
connected external source have a second derivative of zero satisfying
Laplace’s equation. Further, a real-valued function on the free config-
uration space is said to beadmissibleif it is uniformly maximal on the
boundary of	, that is, where the robot touches an obstacle

V (q)
= c 8 q 2 boundary(	)

< c 8 q 2 inside(	):
(12)

A boundary of the proposed EPF solution is a node at which the con-
ductance equals zero—when a node is open circuited. Strictly speaking
no comment on the potential of not connected points may be offered.
But since no current can flow into or out of a not connected node, it is
postulated that no path can intersect with the boundary. So the condition
is satisfied by the EPF. Further, according to Rimon and Koditschek,
it can be shown that trajectories of a dissipative system with admis-
sible potential energy that start with suitable initial velocity remain
away from the obstacles. Since the proposed EPF solution is compact,
and bounded, a controller obtained from the specified admissible func-
tion—Kirchhoff’s Laws—is bounded and steers the robot away from
the obstacles if some initial speed limit is imposed on the robot. The
fourth property is that a navigation function be Morse. A Morse func-
tion is one whose Hessian (the matrix of the second derivative) eval-
uated at the critical points is nonsingular. A simple explanation of a
Morse function is that there are no degenerate critical points in the field.
Note that the potential function is shown to satisfy Laplace’s equation
at all points within the field, thus, only saddle points exist at any critical
point within the field.

E. Linear Complexity Path Generation

As explicitly shown in [16], the complexity of the occupancy map
generation for each polygon is

C
(i)
OM = ni + size

2(4ni + I) (13)

for a total complexity given by

COM =

m

i=1

ni + size
2(4ni + I) (14)

whereni is the number of vertices of theith polygon of the space,
sizeis the dimension of the resistor network (the network hassize×

sizenodes), andm is the number of polygons in the space. IfnM is
assigned to be the maximum number of vertices of any polygon in the
space, then it may be asserted that

COM � m(nM + size
2(4nM + I): (15)

All other procedures that follow the occupancy map generation rely
only on the fixed dimension occupancy map, operating with a constant
complexity, depending only on the size of the resistor network that is
fixed at run time. The values of the occupancy map are mapped in a
one-to-one and onto mapping to the resistor network. This process is a
simple numerical conversion from percentage occupancy to resistance
value based on (7). All that is required is a single pass through the
occupancy map, resulting in a complexity of

CIM = size
2: (16)

The solution of the system of equations is done over a sparse represen-
tation of the system matrix both before and after the factorization. The
complexity of Cholesky factorization using full matrices is found to be
O(N3)

C =

N

i=1

N

j=1

i�1

k=1

1 =

N

i=1

(N � i)(i� 2)

= (N + 2)

N

i=1

i�

N

i=1

i2 � 2N

N

i=1

1

= 1
2
(N + 2)N(N + 1)� 1

6
N(N + I)(2N + I)� 2N2

= 1
6
N3
� 3

2
N2 +

7
6
N: (17)

Making the system matrix sparse allows one loop to iterate over a con-
stant number much smaller thanN: Since the resistor network is a fixed
network, the connectivity of each node is the same regardless of the
mapping from the environment. Knowing the connectivity, not only
can the fill for a solution be predicted, but an optimal ordering for the
elimination can be performed off-line and then hardcoded into the cal-
culation of the solution [5], [21], [30], [33]. The complexity of finding
the Cholesky factorization of the system matrix including sparsity of
the system matrix and with previous knowledge of the created fill (with
c1 andc2 constants much smaller thanN) is of the order ofO(N)

C =

N

i=1

c1c2 = c1c2N c1; c2 � N (18)

The complexity of the total solution is the summation of (16)–(18)

C =COM + CIM + CS

=mnM +m(4nM + 1)size2 + 3size2 + size: (19)

Removing the non-variable terms, this reduces toO(mnM) which is
linear with respect to the variables, the number of polygons in the space,
m; and the maximum number of sides of any polygon,nM :

IV. SIMILARITY TO DYNAMIC PROGRAMMING

The Dynamic Programming (DP)-based approach to the shortest
path finding problem is divided into the sub-problems of finding the
next step plus finding the rest of the path with the total cost given by
the general expression [21], [24], [30]

C(u; v) = c(u; v) + c(v; f) (20)
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whereu is the present node,v is the next step, andf is the final destina-
tion. The EPF-based solution may also solve the problem in a similar
manner. Ohm’s Law determines the electric current of a path as the
product of the potential and the conductance

I(u; f) = �(u; f) � g(u; f): (21)

When tracing a path through a resistor network from nodeu to node
f the path takes an initial step through only nodev: After nodev; the
path degenerates into a sequence of series and parallel branches (resis-
tances). The overall conductance of the path can be split accordingly

I(u; f) = �(y; f) � [g(u; v) + g(v; f)]: (22)

The total amount of current that flows through a path remains constant
due to the conservation of energy principle associated with a closed
electric circuit. When current in a path encounters parallel branches,
the current is split between the branches according to the conductive
strength of the branches. Since the path fromu to f is initiated only
through nodev; there is no current split; thus,I(u; f) can be seen en-
tirely in the branch current ofI(u; v)

I(u; v) = I(u; f) = �(u; f) � [g(y; v) + g(v; f)]: (23)

Anywhere in the resistor network, the current at each step reflects the
conductance of the immediate branch,g(u; v); and the effective con-
ductance of the rest of the network,g(v; f); along the path.

Both DP and EPF algorithms require knowledge of the immediate
next step, as well as complete knowledge of the rest of the path. A dy-
namic programming algorithm recursively solves for the remainder of
the path, while the EPF algorithm utilizes the complete system of equa-
tions to solve for the effective cost of the remainder of the path. Dy-
namic programming algorithms, backtracking algorithms, and the EPF
algorithm all guarantee a shortest path approach. Both the DP and back-
tracking algorithms operate with a complexity magnitude ofO(n2); n
is the number of nodes in the network. As previously justified, the basic
EPF solution may also be implemented to operate withO(n2) magni-
tude; recall that the variableN is the size of the system matrix which
is N � N; or equivalentlyn2 � n2:

V. SIMULATION AND EXPERIMENTAL RESULTS

Both simulation and experimental (real-time) results are presented
and several implementation issues are discussed. The proposed nav-
igation system has been implemented on theNomad 200robot using
theCognosdevelopment software package that provides a communica-
tion link with the actual mobile robot [15]. It is mentioned that results
resemble experimental results as explicitly shown in [16] for most case
studies.

In a completely static environment, the EPF planner may generate
a complete path through a known environment in a single iteration;
the generated path is guaranteed to be approximately optimal (min-
imum total occupancy) at the given cell resolution level. However, as
the robot moves closer to the desired goal point, the path may be re-gen-
erated given a different cell resolution, if necessary. On the other hand,
in a dynamic environment, the EPF is recalculated at each sampling
time (that varies according to the cell resolution); when this is the case,
only the next step of the approximately optimal path is generated. In
a dynamic environment the EPF takes into account the previous path
changes in every iteration. In this manner, the dynamic environment is
reduced to a sequence of static snapshots (during one sampling time
interval). Results are presented next. Comments, justifications and dis-
cussion are given when necessary.

Fig. 3. Simulation test case 1 in four different static environments.

Fig. 4. Simulation test case 2 in two different static environments.

A. Simulation Results

Figs. 3–5 show simulation runs in several static environments
demonstrating the inclination of the EPF approach to maximize the
distance from the obstacles as the robot is driven along the path.
In these three simulation test cases, the environment was broken
into squares 110 × 110 pixels, corresponding to 11 × 11 in in the
environment. The effect of this imposed minimum resolution is seen
especially in Fig. 4(b). As the vehicle is attempting to move down a
straight hallway, the initial move is to center the robot, however, due
to the minimum resolution, the path overshoots and is not actually
centered between the two walls. Further, note that the occupancy value
of any cell corresponds to a single value representing the percent of
the cell filled by obstacles. In the case of binary mapping, all that is
known is that an object resides within the cell. Small obstacles in the
environment may be poorly represented, thus causing the generated
path to pass very close to the obstacle. In both cases of Fig. 5, the
obstacles are larger than the resolution of a single cell; thus oscillatory
behavior is almost non existent. The paths taken in these two examples
demonstrate the increase in effectiveness of the EPF solution as the
environment becomes more cluttered. The path of Fig. 5(b) is a very
smooth path that approaches the goal at all times.The path taken by
the robot at each point can be seen to maximize the distance from all
close obstacles. The path of Fig. 5(a) also attempts to maximize the
distance from the obstacle.

Fig. 6 demonstrates the ability of the EPF path planner to navigate
long hallways. The MR is shown at the end of the path. The path of
Fig. 6(b) after the robot has reached the center hallway appears to show
some discrepancy when compared with the path of Fig. 6(a). The sinu-
soidal path at the beginning of the path of Fig.6(b) is due to a high cell
resolution. Since the goal point is far away, each cell contains less in-
formation about the walls of the environment, slightly modifying the
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(a)

(b)

Fig. 5. Simulation test case 3 in two slightly different static environments.

path. As the robot moves closer to the wall, the occupancy of the cells
close to the robot increases and forces the robot to rebound off the wall
slightly. This effect is seen in many of the test studies when the resolu-
tion is very large compared to the size of the obstacles.

Fig. 7 demonstrates the case of a dynamic environment with a hidden
obstacle, and at the same time provides the clearest justification for an
on-line global path planner. The motion of the obstacle begins when
the robot reaches point A, and it slides into its final location. In this
case, it is assumed that the EPF path planner has complete knowledge
of the dynamic object, including its velocity vector. This allows the
robot to completely avoid the “blocked” area. With less precise infor-
mation about the moving obstacle, the path taken is much less ideal
than the one shown in this test case. In some simulation runs, when the
dynamic obstacle was completely unknown, the potential field avoided
the area as long as the sonar sensors identified the obstacle. Once the
sonar sensors lose sight of the obstacle, the potential field “forgets”
about the obstacle and attempts to plan a path through the gap of the
two objects. While the sonars detected the obstacle, if the EPF planner
pushed the robot far enough around the seven-sided obstacle, the path
planner planned around the obstacle avoiding the area of the moving

(a)

(b)

Fig. 6. Test case 4: two paths generated in a simulated hallway environment.

Fig. 7. Simulated dynamic environment test case 5.
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(a)

(b)

(c)

Fig. 8. The results of three different, real-time test runs.

object. Observe that with knowledge of the overall structure of the en-
vironment the EPF approach directs the robot to move not necessarily
in the direction of the goal, but in the direction which generates the
most efficient path to the goal. The EPF approach, knowing that the dy-
namic obstacle will block the intended path has enough time to modify
the path and completely avoid the area of the moving obstacle. Com-
plete knowledge of the environment is unlikely in dynamic situations,
making this particular behavior more of an ideal than a reality and not
suitable in rapidly changing environments.

B. Experimental Results

Real-time experimental results have been obtained using the
Nomad200in a laboratory environment. The room is a clean environ-
ment with rectangular obstacles and measures approximately 300 in
by 150 in. The grid size used to calculate the EPF-based path was set
to be 13 × 13 giving a sampling rate of approximately 1 s. (Note that a
grid size of 11 × 11 reduces the sampling rate to approximately 0.65 s.)
The objects were placed in the room, their position measured and the

Fig. 9. Experiment in a realistic structured environment with moving
obstacles.

(a)

(b)

Fig. 10. Navigation in the same environment. (a) Simulated and (b) real time
results.

result placed in a map, which can be viewed by theCognossoftware
package. The robot is localized within the room before each test run.
The position of the robot is recorded at regular time intervals and
the subsequent path is displayed through theCognos’s GUI. During
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(a) (b)

(c) (d)

Fig. 11. Occupancy map and potential field of two different environments. (a) is the occupancy map whose solution is shown in (c), and (b) is the occupancy
map whose solution is shown in (d). A contour mapping of the potential fields of (c) and (d) reflect the position of equipotential surfaces in the field.

the test executions, all programs were run, under theLinux operating
system, directly on the main processor of the robot, a Pentium 133.
Fig. 8 displays three different, real-time runs of the EPF solution. The
paths displayed show the robot as the solid circle at the end of the
traversed path. The circles along the path show the robot’s position at
regular intervals. In all experimental runs, the robot completed the run
from the initial position to the desired end point with no collisions. No
localization module was used with these test runs.

The testbed shown in Fig. 9 is the actual overall floor plan of our
laboratory facility. The robot starts from point A and the final destina-
tion is point C. Moving obstacles, humans in this case, force the robot
to divert from its path. Obstacles’ trajectories are represented with the
dashed line, while the robot’s trajectory is represented with the red line.
The robot reaches the goal point avoiding collisions.

Fig. 10 compares the navigation results using theCognossimulation
package and theNomad 200robot, for the same test case (environment,
goal points, and initial position). The initial and final positions are the
same with a single intermediate goal point located at point A. As the
robot tracks to the final position; it attempts to pass between the ob-
stacle in the middle of the room and the uppermost obstacle. As the
robot reaches point B of the path, a hidden obstacle (a human in the
experimental case) moves to block the path of the robot with a speed
roughly equivalent to the speed of the robot. The potential field knows
neither the presence nor the velocity vector of the obstaclea priori.

C. Discussion

The effect of different parameters within the occupancy map and the
resulting effect on the potential field are explicitly shown in Figs. 11
and 13. Fig. 11(a) shows the occupancy map of an environment devoid
of obstacles. The resulting potential field of Fig. 11(c) demonstrates
the resulting potential field used to generate the optimal path. A single
obstacle is inserted into the environment of Fig. 11(b). The potential
field generated for this mapping is shown in Fig. 11(d). In the figure
of the potential field, the lines in theXY -plane represent a contour
drawing of the potential field corresponding to equipotential surfaces
within the field.

All paths will move from one line to the next in the direction of the
tangent of the line. The intensity of the lines in the figure represents the
relative speed of the negative descent of the potential field. Areas of the
occupancy map that contain obstacles are represented as depressions
within the field. Thus, the flat surface at the top of the occupancy field
represents the free space of the environment.

Fig. 12 demonstrates the effect of resolution on the occupancy and
subsequently on the potential field. The physical area of the environ-
ment to be mapped into a single cell of the occupancy map is deter-
mined by the relative distance of the initial position and the goal po-
sition. A larger resolution of the cells implies that less information is
represented per cell of the occupancy map. However, a larger area of
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(a) (b)

(c) (d)

Fig. 12. Two different mappings, and related potential field, of the same environment. The resolution of the occupancy map reflected in (a) is smallerthan the
resolution of the cells of the occupancy map in (b). The availability of more paths in the potential field of (d) as compared to the field of (c), reflectsthe increased
area covered by the mapping. The contour lines of (c) and (d) reflect the equipotential surfaces of the respective potential field.

the environment can be represented. If the goal point is near the edge
of a map with a certain resolution, increasing the resolution will move
the goal point to a cell which is more central to the map, allowing more
paths to be potentially generated. In Fig. 12, the additional paths are
especially seen in the contour lines of the potential field of Fig. 12(d).
Fig. 12(a) is the occupancy map, which corresponds to the potential
field of Fig. 12(c), and Fig. 12(b) is the map which corresponds to the
potential field of Fig. 12(d).

Another method to incorporate more of the environment into the oc-
cupancy map, and thus into the solution space of the potential field, is
to increase the size of the grid. As more cells are added to the grid,
more of the environment can be represented without changing the res-
olution of the current cells. When deciding the desired size of the grid
the desired time of computation should be considered. Even though the
computational complexity for the solution of the potential field is a con-
stant, and thus does not show in the overall computational complexity,
the majority of the runtime of the process is consumed through the cal-
culation of the solution of the resistor network. Thus, a resistor grid
which is very large would take an inordinate amount of time to solve,
negating any advantage gained through increasing the size of the grid.

VI. CONCLUSIONS

The proposed potential field follows the natural laws of electrostatics
to build a single EPF represented discretely as a lumped element re-
sistor network. A single metric, resistance, reflects both the distance to

the goal and the presence of obstacles. A system of linearly independent
equations is solved to generate two related fields, the scalar potential
field and the vector current field. Tracing a path of maximum current
flow through the branches of the network is equivalent to tracing a path
of minimum resistance that maps to a minimum occupancy path.

Minimizing area occupancy along a navigation path inherently in-
corporates two important navigation constraints: minimize the distance
traveled and avoid collisions with obstacles. Since the optimum path
minimizes the sum of swept occupancies, a straight-line path gives a
minimal occupancy path in an area without obstacles. An obstacle in
the environment not only effects the immediate cells of the resistor net-
work; the resistances of all regions of the network are affected. Com-
pletely occupied cells of the network are modeled as an infinite resis-
tance, or more simply put as an open circuit. Thus, the optimum path,
seeking to minimize the total occupancy of the path, is pushed away
from the boundary of obstacles, yet is attracted towards the goal posi-
tion.

The “occupancy” optimization criterion has several advantages over
a simple distance criterion. A distance optimization criterion, or cost
function, cannot be variable—the distance between any two points is
fixed. Thus, no other allowances can be incorporated into the cost func-
tion. On the other hand, the occupancy of a cell describes the volume
of obstacles in the environment, or the smoothness of the ground in
the environment, or any combination of quantities that may effect the
quality of the path through the area of the environment.
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The result of the EPF solution is a minimum occupancy path. The
immediate next step plus the rest of the path determine the complete
path. The network resistance of the rest of the path is an effective resis-
tance; it is the series and parallel combination of all connected nodes
between the next step and the goal point. A very low resistance cell in
parallel with a very high resistance cell will average out to a medium
resistance path. An averaging happens as the resistor network’s system
of equations is solved. Within a long hallway, the effective resistance
of the space immediately next to the two walls is highest. The effective
resistance between the two walls forms a trough with the lowest point
the exact center of the hallway. A robot following the path of lowest
resistance through the hallway tends to center itself in the hallway; in
effect, maximizing the distance from all obstacles in the immediate en-
vironment. This affect is seen between any grouping of objects through
which the EPF path goes.
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