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Abstract. This paper discusses a fuzzy logic control system designed to determine, regulate and
maintain the amount of suction needed by a robotic gripper system to perform reliable limp mate-
rial manipulation. A neuro-fuzzy approach is followed to determine the amount of desired suction
(depending on experimentally derived data and plant characteristics). A knowledge-based valve con-
troller is then designed to generate, regulate and maintain the amount of suction calculated by the
neuro-fuzzy suction module. The performance of the overall suction control system is compared with
actual experimental results obtained when using a prototype gripper system to handle limp material.
Further, performance of the fuzzy logic based valve controller is compared to conventional PD and
PID controllers. The proposed control scheme is found to enhance the overall functionality of the
prototype robotic gripper system.

Key words: robotic gripper, knowledge-based systems, neuro-fuzzy control, suction control, limp
material.

1. Introduction

This research is the natural outgrowth of the authors’ previous work, in the area
of robotic grippers for limp material manipulation. The system design, prototyp-
ing, stability analysis, performance evaluation and control architecture have been
presented in [1, 2]. A review of existing commercial and research limp material
handling systems, and gripping mechanisms such as electrostatic, suction, thermal
and chemical adhesion, has been presented and discussed in [3].

The developed gripper prototype, shown in Figure 1, has been integrated with
AdeptOne and AdeptThree robot arms. Suction was found to be the most ap-
propriate mechanism to handle delicate deformable material such as fabric, due

* This work has been partially supported by a Board of Regents Support Fund, Industrial Ties
Research Subprogram (ITRS) grant LEQSF (1996-99)-RD-B-14, and a National Science Foundation,
Division of Manufacturing and Industrial Innovation (DMII) grant NSF-DMII-9701533.

** Dr. Tsourveloudis is currently with the Technical University of Crete, Department of Production
Engineering and Management, 73100 Chania, Greece.
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Figure 1. The developed gripper system.

to its non-intrusive and non-incisive characteristics. Suction offers high gripping
strength, low cost and ease of implementation.

The integrated robotic gripper system in its current configuration has been proven
to:

e manipulate single or multiple limp material panels without causing distortion,
deformation or folding of the material,

e pick and place more than 12 panels per minute, as required by the irffgdustry
while the maximum rate reaches about 22 panels per minute, and,

e operate with reliability of at least 99%.

However, in previously reported work [1, 2], a constant amount of suction was
generated and applied to pick and place limp material panels. But in reality, the
amount of suction required for reliable and distortion free limp material manipu-
lation varies; it depends on parameters such as material porosity, weight, speed of
robot, distance of travel, number of panels to be lifted, etc. Since a precise math-
ematical relation among these parameters is lacking, fuzzy logic methodologies
may be implemented to model the suction control system.

The overall control system consists of two coupled inference modules. The first
module, which is responsible for determination of the required suction, uses a
neuro-fuzzy([10, 11]) technique, adapting itself to experimentally derived input-
output data pairs. The second module that is responsible for the generation and
maintenance of suction uses heuristically tuned fuzzy control laws.

* Industrial requirements specified by the American Apparel Manufacturers Association (AAMA)
and Textiles and Clothing Technology Corporation [?C]



SUCTION CONTROL OF A ROBOTIC GRIPPER 217

The paper is organized as follows: In Section 2, the operation of the robotic
gripper system is presented, followed by a brief discussion on grasp stability and air
flow dynamics issues. Section 3 presents a discussion on the two suction modules,
namely,suction determination modundsuction generation modul&xperimen-
tal and simulation results are presented in Section 4, while conclusions and future
research topics are included in Section 5.

2. Operation of the Gripper System

The experimental set-up of the overall robotic gripper system is shown in Figure 2.
The operation of the gripper system is coordinated by hierarchical control archi-
tecture shown in Figure 3. The gripper prototype is integrated with AdeptOne and
AdeptThree industrial robot arms. The AdeptVision AGS system has been used for
visual processing. The sensor coordinator uses vision sensors (cameras) to detect
the presence of the material on one of the two conveyors and to communicate the
object pose information to the robot. The position coordinator then transforms the
object pose from the world coordinate system to the gripper coordinate system.
The robot arm positions the gripper over the piece of material. Gripper-mounted
fiber-optic proximity sensors and capacitive sensors are used to facilitate accurate
positioning of the gripper, for exact alignment with the material. Suction is then
activated to enable material manipulation. This operation is governed by the overall
suction control system that consists of two modulesS(iction Determination

(SD) module- an off-line process used to determine the amount of suction based
on material and plant characteristics, andSiilction Generation (SG) moduean
on-line component that achieves the value of the desired suction determined by the
SD module.

In order for the overall system to perform reliably, the grasp needs be stable.
The suction generated needs be greater than the weight of the material and also
overcome the shear forces (due to robot accelerations) and suction losses (due to
air leaks, etc.). Issues relevant to grasp stability and suction dynamics are discussed
next.

GRASP STABILITY AND SUCTION DYNAMICS

Consider that the robot arm is accelerating at a raig. @nda, in the horizontal
and the vertical directions, respectively. The equilibrium of forces in the horizontal
and vertical directions is resolved as follows (Figure 4):

Y Fo=—F;=ma, @
> Fy=P,—W—N =ma, )

where,m is the mass of the material. The frictional forg holds the material on
the gripper during the translation in the horizontal plane. The value of the normal
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Figure 2. Configuration of the gripper’s testbed.
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Figure 3. The hierarchical control architecture.

force N is determined by the equilibrium of forces in the vertical plane. Conse-
quently, the magnitude af s, is determined by the equatiadn, = N, whereu

is the coefficient of friction. For grasp stability it is necessary that< uN. The
suction, P, generated at the gripper must be sufficient to overcome the slippage
effect due to the acceleration of the robot arm, and also the weight and slippage
of the material, as computed from Equations (1) and (2). The above mathematical
formulation implicitly assumes no suction losses due to air leaks, material porosity,
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etc., making the physical model of the system overly simplistic and unrealistic.
These parameters, though experimentally measurable, are difficult to be incorpo-
rated into the mathematical model of the system. An analytic approach, based on
fluid dynamics theory is now presented to derive the valug,of

The suction generator is connected to the gripper via a series of pipes with
bends, sudden enlargements and contractions in the conduits and control valves as
shown in Figure 5.

The flow of air through the pipes of the suction system, assuming incompress-
ible and isentropic flow conditions, may be approximated by the Bernoulli equation

Pn 2 P, v2
ﬂ—i-ﬂ—i—zin: OUt+LUt+Zout+Hm 3)
Win 2g Wout 2g

whereP;, is the pressure at the inlet port of the impellef, is the specific weight of
air at the inletpi, is the velocity of air at the atmospheric inlet poin,is the height

of the inlet port above the ground level (datumg), is the pressure of the fluid at
the outlet portwoy is the specific weight of air at the outlet, is the velocity of
air at the outlet portzoy is the height of the outlet port from the ground level (da-
tum), Hy, is the overall manometric head, agds the acceleration due to gravity.

The flow of air at pipe inlets, valves, bends, and pipe outlets is generally not
fully developed. This results in a loss of pressure that takes energy away from the
flow. In piping systems, the losses due to fluid flow through valves or fittings are
known as minor losses. In the design of pipelines, energy loss due to friction is
dominant for pipe lengths of 100 feet or greater. For shorter lengths (as is the case
in the present system configuration), losses at elbows and tee joints due to a change
in direction of flow, losses at valves due to suddena contractaare substantial,
in addition to the frictional losses.
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Figure 4. Forces acting on the material during vertical and horizontal motion.
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Figure 5. The suction system integrated with a robotic arm.

These minor losses, incorporated into Equation (3), result in the following equa-

tion:

Pin Uizn Pout Ucz)ut SL Uizn vy

— 4+ tiin=—+ 24wt Hnt+ ) — 4y k-t (4

w 2¢ Zin w 2¢ Zout m Z D 2¢ Z 2¢ ( )
which is called thenodifiedBernoulli equation. The suction generated at the outlet
port of the suction generator needs to exceed the suction needed at the gripper by at
least the amount of the overall losses in suction, in order for the gripper to perform
reliably. Losses due to friction and minor losses due to fittings are added, in order
to determine the overall losses:

Plosses = Pfall due to friction T Pfall due to bends T Pfall due to fittings-
Thus,

v2 ([ fL
Plosses = ﬁ (? + kp + kf) (5)

where f is the friction factor,u, is the mean velocity of ait, is the length of the
pipe, D is the diameter of the pip&, is a coefficient which depends on the total
angle of the bend, anid; is a coefficient dependent on type of pipe fitting.

For many fittings,k, must be experimentally measured, however, in a few
simple cases, it is possible to determihe analytically. It was experimentally
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found that the friction factorf variesapproximatelywith the square of velocity

[12]. Further, the friction factor depends on roughness conditions ariRigyreolds
number which in turn depends on the density, velocity, and viscosity of the fluid
and the pipe’s diameter [13]. The valuekgfdepends upon the type of the joint, the
angle of the bend, the curvature of the bend, etc. The effective suction generated at
the gripper surface is dependent on all of the above factors, which are difficult to
guantify and evaluate.

The overall complexity of the system model renders justification and motivation
for use of a fuzzy logic formulation, presented in the next section. Traditional
controllers require an accurate mathematical model of the system that is to be
controlled. On the other hand, fuzzy logic controllers have been proven to work
effectively in real-world systems, which are difficult to be analytically modeled,
but can be adequately described and controlled by humans [8, 9].

The role of the suction control is to compute the amount of suction needed for
handling certain materials and to produce and regulate the predetermined amount
of suction, by adjusting the air flow in the system. In the next section a discussion
on the suction control system is presented.

3. Suction Control

It has been experimentally found that the suction required for material manipula-

tion depends on the following parameters:

1. Porosity (IT) of material: It is experimentally found that the amount of suction
needed to manipulate the material reliably changes significantly with the poros-
ity of material. Porosity of a panel of material (fabric) may be mathematically
computed as follows [11]:

m

M=1-—o (6)
wherem is total mass of the paned, is density of the material's fibe# is
the cross-sectional area of the panel ahds length of the panel. The value
of porosity computed using Equation (6) may vary across different samples of
the same material, because parameters such as fiber density and cross-sectional
diameter may vary over the length of the material. This results in uncertainty in
the computed value of porosity. It is thus proposed to classify fabrics based on
the computed values of porosity into certain classes of linguistic values.

2. Weight (W) of material: Material weight determines the amount of suction
needed to overcome the effect of gravity on the object. Since the effect of
suction permeates through a stack of porous panels, it is possible to increase
the number of panels picked, by increasing the amount of suction. However,
there does not exist a linear relationship between the amount of suction to be
generated and the number of panels picked, due to material-specific properties,
such as, inter-ply electrostatic adhesion, mechanical fusion of the edges of the
panels, etc.
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Figure 6. Suction Control Block Diagram.

3. Robot Spee(l/): The amount of suction to be generated should be large enough
to overcome of the downward force due to the material weight, and the shear
force, due to the robot speed. As the speed of the robot arm increases, the value
of shear forces acting to strip the object/material from the gripper’'s surface
increases. Thus, speed of the robot is an important parameter to be considered
while generating the desired amount of suction.

4. Distance of Trave(D): Once the amount of suction is generated and the object
is picked up, it is transported to a “drop-off” area. During the transportation,
there is a steady decrease in the static suction head within the gripper cham-
ber, due to fluid losses and air leaks within the system. The longer the travel
distance, the greater are these losses. It is necessary to overcome these losses
by continuously generating an incremental amount of suction, once the initially
desired suction has been generated.

These parameters serve as fuzzy inputs to the suction determination (SD) mod-
ule.The output of the SD-module is a single-value, specifying the amount of desired
suction Sy, for the given input variables. It is the responsibility of the suction gen-
eration (SG) module to attain and maintain this value. The overall control scheme
is presented in Figure 6.

3.1. SUCTION DETERMINATION (SD) MODULE

Since the output variable from the SD-module is the desation(S), the generic
fuzzy rule used for suction determination is

RV IFMis LTIV AND W is LW® AND U is LU AND D is LD®
THEN S is LS® (7)
whereLT1V, LW LU®, LD andLS®, are linguistic term sets fdPorosity,
Weight Robot SpeedDistance of Travebhnd Suction respectively. All input and
output variables take values, which instead of being “crisp” numbers, are natural

language wordsliiguistic value} such aslLow, Average High, etc. The math-
ematical meaning of these values is represented by the membership functions of
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the corresponding fuzzy sets. It should be noted that the fuzzy set theory does
not provide an analytical method for determining problem-specific membership
functions. The generic rule in (7) represents the knowledge acquired from experi-
ments that determined the amount of suction needed when handling various types
of material panels. The knowledge and data acquisition procedure is schematically
presented in Figure 7. Repeating this procedure for different valu€g &, U

and D, several values of were derived.

Both membership functions and rules were initially created by using the ac-
quired knowledge. However, since there is no analytic methodology to convert
human expertise intbf-then rules and membership functions, extensive trial and
error type of testing is required, which again does not guarantee output optimality.
Recently, variousmeuro-fuzzysystems [10, 11] have been developed to provide a
systematic approach in selecting appropriate fuzzy systems. Neuro-fuzzy systems
combine both fuzzy systems and neural networks in the sense that the parameters
(membership functions and rules) of the fuzzy systems are trained by a learning
algorithm derived from the neural network theory. Some guidelines for selecting
neuro-fuzzy models may be found in [12]. One advantage of neuro-fuzzy systems
is that they keep the semantic properties of the underlying fuzzy system and cause
only local modifications, mainly on the shape of membership functions.

The Adaptive Neuro-Fuzzy Inference Sysi&NFIS) presented in [13] is used
in this paper. The ANFIS system approximates the function that is partially defined
by the acquired data, and which may be mathematically presented as

S=fI1,w,U,D) (8)
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Figure 8. ANFIS architecture of the two-input/nine-rule SD-module.

Equation (8) represents the behavior of the system to be modeled. ANFIS mini-
mizes the difference between fuzzy system’s actual and desired performance and
identifies the parameters of the fuzzy inference system through a hybrid learning
rule, which combines the back-propagation gradient-descent and a least-squares
method. From a structural point of view, ANFIS can be viewed as a 5-layer feed-
forward neural network. The first layer generates the membership grades of the
input linguistic values. The second layer calculates the membership function of the
connective operator (AND) of the antecedents part of a rule, i.e. the firing strength
of each rule. In the third layer the ratio of each rule’s firing strength to the sum
of firing strength of all the rules, is calculated. In layer 4, the parameters of the
consequent part of a rule are determined and the overall output is aggregated at the
node of layer 5. The network of the SD-module for 2 inputs (material’s porosity
and weight) and one output (suction value) is shown in Figure 8.

Since ANFIS accepts only the so-called Takagi—Sugeno (T-S) type of fuzzy
rules [15], expression (7) is converted as follows:

RO IFTis LTI AND Wis LW® AND U is LU® AND D is LD®
THEN S = def(LS") 9)

where defL S?) is the number obtained by applying the center-of-area defuzzifi-
cation formula onLS®. From now on we will refer to T-S fuzzy system or rule
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representation or controller, as just Sugeno system, representation, etc. Regardless
of rule representation, the value of desired suction is computed as follows.

Every time a new material or a material of known porosity but different in quan-
tity needs to be manipulated, the SD-module has to output the suction force need
for this operation. The crisp values Of, W, U and D are fuzzified and converted
to membership functions denoted by, 1} v, 1, andu; ,,, respectively. These
functions are inputs to the knowledge-based inference block and can be defined on
T =11 x W x U x D, wherell, W, U, and D represent the physical domain
over which the variables are defined. The combined membership function of the
antecedent part igx\p (IT, W, U, D).

The membership functions(s) of suction level is then computed as follows

pus(s) = max minuanp (I, W, U, D), ur(I1, W, U, D, S)] (10)

whereur(I1, W, U, D, S) is defined ovefl' x S and represents the union of all
individual rule meanings, i.e.,

ur(I, W, U, D, S) = ¥ p& (I, W, U, D, 5) (11)
i=1

and

/-’LZND(H’ W? Uv D) = mln[MzH(n)’ /-’LzW(w)v MzU(u)’ MzD(d)] (12)

The crisp value of suctiorfy to be generated is computed at the defuzzifica-
tion block and it serves as the reference value forsthetion generation module
described in the next section.

3.2. SUCTION GENERATION(SG) MODULE

The objective of the suction generation (SG) module is to achieve and maintain the
desired amount of suctiosy computed by the SD-module. In order to effectively
maintain the amount of suction at the desired level, it is important to accurately
derive the dynamics of fluid flow within the conduits of the system and the grip-
per. However, as shown in Section 2, the mathematical description is approximate
and exhibits non-linear characteristics, making the use of conventional controllers
difficult in practice.

There are two ways to regulate suction developed within the gripper system.
One way is to adjust the continuous-position valve connecting the gripper to the
suction generator (from now on, the valve control method); an alternative approach
is to directly adjust the rotational speed of the impeller of the motor (i.e., the motor
control method). Both methods have been tested and evaluated. The valve control
fuzzy controller has been implemented first due to its apparent simplicity. Results
of the valve control method, presented here, have been compared with the results
obtained using the motor control method, presented in detail in [13].
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Figure 9. The physical components of the suction system.

The overall suction system is shown in Figure 9. A three-way diverter valve,
connected to the robot controller, is used to activate or deactivate airflow through
the pipes. By adjusting the main valve, one can regulate the amount of suction
applied to the material. The testbed for the valve controller it is schematically
presented in Figure 9. It consists of a Compumotor AT-6400 microprocessor based
four-axes indexer. The indexer is integrated with an IBM PC-AT machine using an
interface card. The MatlabBuzzy Logic ToolboXl4] running on the PC is used
to generate high level instructions to control the speed and the amount by which
the valve needs to be opened or closed. The indexer, which has a 2 millisecond
update frequency and capabilities for encoder feedback and accurate motor position
capture, sends the “move” signals to the driver, in order to control the motion of
the motor. The driver receives step input signals from the indexer and converts
them to motor currents to drive the motor. The stepper motor converts the digital
input signals into fixed mechanical increments. The encoder serves as a position
verification device that indicates the extent and the direction of motion.

Immediately after the SD-module calculates the desired su&iothe SG-
module takes over and generates/regulates the airflow. The generic fuzzy rule for
the suction control is of the following form:

IF e(k)is T, AND Ae(k) isTA, THEN u(k) is T, (13)

where

e e(k) = Sq — S(k), is thesuction errorand Sy, S(k), are the desired and the
current suction level, respectively;is the sampling time,

o Ae(k) = e(k) — e(k — 1), is thechange-of-erroy

e u(k) is thecontrol action i.e. valve adjustments

e T,, Tr. andT, are the linguistic term sets ofk), Ae(k) andu(k), respectively.

The simple rules used for the control of the valve are presented in Figuig 0.

T A, = {Negative(N), Zero (Ze), Positive(P)} andT, = {Open_FastO_PF),

Open_SlowO_9, No_ChanggN_C), Close_FastC P, Close_SlowC_9}.
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Figure 10. The fuzzy rules of the valve controller.

The motor controller consists of rules identical to (13). The only difference with
the valve controller is that the control variable is thatage changelt has been
found that the suction generated by the blower varies at the square of the speed of
the impeller. By applying varying voltages to control the motor speed, it is possible
to change the amount of suction generated [13].

4. Experimental Results and Simulation

A series of experiments have been performed to validate the performance of the
overall suction control system. Matlab’s Fuzzy Logic Toolbox within SIMULINK
environment has been used for modeling and simulation and testing of both SD and
SG modules. Experimental data was collected to determine the amount of suction
needed when handling materials of different porosity and weight. This information
was needed to train the membership functions of the SD-module, leading to a
neuro-fuzzy approach for the SD-module. A pure fuzzy approach was found to
be adequate for the SG-module. This is primarily due to the fact that the inference
rules and membership functions of the SD-module are complex, non-intuitive and
possibly erroneous, due to complicated nature of the inputs and their interdepen-
dencies. On the other hand, knowledge relevant to the SG-module is simpler and
more accurately encoded within the linguistic rules of the system.

4.1. SD-MODULE: LEARNING FROM DATA

By setting the robot speed to be always the maximum and the distance of travel
as constant (which is the case for the testbed of Figure 2) we gathered porosity
and weight data for 21 types of fabrics. These data were derived in order to train
the SD-module. The data consist of porosity and weight (inputs) readings for each
material and the suction value (output) needed for reliable manipulation (pick-up,

transportation, place-down) of the fabric. Data extraction and knowledge acquisi-

tion procedure was shown in Figure 7. By representing the core of the acquired
knowledge via fuzzy rules, we take the following Mamdani-type rules [14]:

M1: If ITis low andW is low thenS is low
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Table |. Experimentally derived data for the training of the SD-module

No Porosity Weight Suction No Porosity Weight Suction
(ar) (in of HG) (ar) (in of HG)

1 0.157 17.5 1 12 0.125 8 0.57
2 0.156 11 0.75 13  0.625 38 2.6

3 0.313 9.5 0.6 14  0.032 35 1.2

4 0.282 10 0.65 15 0.14 22 1.6

5 0.063 37 0.9 16  0.125 19 1.3

6 0.11 8 0.45 17  0.157 20 13

7 0.625 9 2.3 18  0.079 18 1.05
8 0.079 8.8 0.4 19 0.14 24 2.2

9 0.219 12 1.2 20 011 22 2.7
10 0.188 11 0.9 21 0.188 28 2.2
11 0.391 14 1

M2: If TT is high or W is high thensS is high

M3: If T is low andW is high thenS is about high
M4: If T1 is average ther§ is about high

M5: If TT is low andW is medium thets is average.

Although, a Mamdani-type fuzzy system reflects the heuristic knowledge in a bet-
ter manner, it is not widely used in neuro-fuzzy models (some recent exceptions
include NEFCON and NEFPROX [16]). In order to use some of the knowledge

contained in the above rules within ANFIS, we have to convert the Mamdani-type
rules into Sugeno-type rules [15]. The rules of the zero-order Sugeno system are:

S1:If I is low andW is low thenS = 0.3321
S2: If I is high or W is high thenS = 2.768
S3: If IT is low andW is high thenS = 2.275
S4: If 1 is average thers = 2.275

S5: If IT is low andW is medium ther§ = 1.55

The returned Sugeno rules have constant output membership functions determined
by applying the center-of-area defuzzification on the consequent part of each of the
original Mamdani rules [9]. While the antecedents remain unaltered in the Sugeno
system, the consequent is a crisp number. The Mamdani to Sugeno transformation
should be viewed as a trade-off between the readability and intuitiveness of the
former to the precision of the latter.
Data of Table I is used within ANFIS for two purposes: (i) to train the existing

(Mamdani converted to) Sugeno system, and, (ii) to generate a new Sugeno system
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Figure 11. Fuzzy inference systems performance in suction determination.

Table Il. Error Comparisons of the three inference systems

M-system(+) M—S-systemi(]) S-systems)

Ly 2.5555 11.2081 0.3889
Lo 1.35 8.8 0.27

in which the parameters are solely based on the information described by this data.
TheFuzzy C-meanalgorithm is used in the latter case for data clustering. Cluster
centers are selected randomly in the beginning and a membership grade is assigned
to each data point. Each iteration of the algorithm updates the cluster center until
the weighted sum of distances from all data points is minimized.

The performance of the inference systems under examination, namely, Mam-
dani (M), Mamdani-to-Sugeno (MS) and Sugeno (S), is shown in Figure 11.
The Mamdani system is based on acquired knowledge and contains 9 linguistic
rules. The training of the M>S-system is based on both heuristic knowledge and
data. Prior to training it contained the 5 zero-order (constant output) Sugeno rules
presented earlier in this section. After training, the structure of the consequent part
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Figure 12. The membership functions of input variablsrosityandWeightbefore and after
training. L: low, A: average, H: high.

of rules changed to first-order (output is linear combination of inputs) Sugeno. For
example, two such rules are presented:

S1: If ITis low andW is low thenS = 39.31IT — 0.5022W 4 6.052
S5: If IT is low andW is medium thers = —53.07IT — 1.181W + 38.68.

The average error of the M S-system after 120 periods of training is 1.2616,
which is big considering that the maximum suction in the training data is 2.7 inches
of Hg. Indeed, this system failed to give values close to the desired output at the
points 1, 11, 15, 16, 17, 18 and 20. This may be attributed to the inaccuracies
contained within the theoretical knowledge encoded within the inference rules,
and membership functions. The S-system is generated directly from the data set
presented in Table I. The training period was 120 time epochs and the average
testing error over the entire data set has been found to be 0.048261. This inference
system performs better than the others in almost all test cases. It contains nine
first-order Sugeno-type rules. In Figure 12 the membership functiori$ ahd
W, before training (i.e., the M-system) and after training (i.e., the S-system) are
shown. It can be clearly seen that the membership functions after training have
been tailored to the measured data. It has been found that the triangular shape of
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membership results in the best output performance of the S-system, although other

membership shapes such as gaussian, result in slightly smaller data fitting error.
Table Il presents a performance comparison of the three inference systems

based on two well known error norms, the and L. A reliable general picture

of the overall convergence of the systems is giveL.by= [(d;; — D;;)*]"/?, where

d;; stands for the actual output value of the system at some poimthile D;; is

the desired value. The errant behavior of isolated points far away from the desired

values is better identified by, = maxd;; — D;|.

4.2. SG MODULE. VALVE CONTROL

As justified earlier, the valve controller has been implemented first, due to its ap-
parent simplicity. The testbed for the valve controller has previously been shown
in Figure 9. The performance of the valve controller is illustrated in Figure 13.

It may be seen that the controller reaches the set point with no substantial delays,
and is reactive to the changes in the desired set point (shown as dotted line). The
changes in the set point are indicative of the changes in the desired suction due
to varying material porosity, number of panels, robot speeds. Prior to it's imple-
mentation, the behavior of fuzzy valve controller was simulated against traditional
controllers. The fuzzy controller appeared to be faster than conventional PD and
PID controllers in achieving the amount of suction, dictated by the SD-module,
as illustrated in Figure 14. It should be noted that the gains of the PD/PID are
experimentally tuned by trial and error, since no analytical methods are available
to determine the parameters of PID controllers. The numerical integration method
used for the simulation runs is the fifth-order Runge—Kutta method. The initial step
size is 0.0001 and the simulation period i$ fitne epochs. The fuzzy controller is
found to attain the desired suction level the fastest and is observed to be most stable
during the course of several simulation runs. Further simulations with more com-
plicated set-points show that the fuzzy controller attains the desired level without
additional tuning.

The motor control method to regulate the suction has been simulated. In Fig-
ure 15, a comparison of the two approaches is presented. It is found that the
simulated motor control method is faster, more accurate and stable than the imple-
mented valve control method in reaching and maintaining suction at the desired set
point. The motor controller seems to accomplish the set point with no delay, higher
stability, albeit with a minor overshoot. On the other hand, the valve controller
seems to get the job done, even though it demonstrates minor oscillations mainly
at low suction levels. This is because of the dynamics of the valve, and the inherent
overshoot in the controlling the mechanical position of the valve. It is to be noted
that valve control method is an indirect way of regulating suction: it is a by-product
of increasing or decreasing the effective diameter of the conduit from the suction
generator to the gripper. On the other hand, the motor controller directly regulates
the speed of the motor that is responsible for suction generation, making it more
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Figure 13. (a) Performance of the valve controller, (b) The corresponding error.

reactive, faster and more stable. Implementation of the motor control method is
thus one of our immediate goals.

5. Conclusions

The design and development of a knowledge-based control system (i) to derive a
desired amount of suction, and, (ii) to regulate, control and maintain the suction

needed to perform reliable manipulation of limp materials has been discussed. The
developed control system consists of a neuro-fuzzy suction determination (SD)
module, which determines the amount of suction based on a set of material spe-
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cific and plant specific parameters. Experimentally obtained values of suction for
handling a variety of fabric materials ranging in porosity and weight (21 samples:

from 100% cotton to 100% silk, rayon, polyester, denim, matted materials, hand-
woven and machine-woven fabrics) have been used to train the neural network.
Comparison of the trained and untrained system has been presented.

Two possible approaches for controlling and regulating the amount of suction
determined by the SD-module have been presented. The suction generation (SG)
module regulates the air flow, by either adjusting a valve or controlling the motor
voltages, to maintain the desired level of suction throughout the “pick and place”
process. Implementation of the valve controller and the testbed has been discussed.
Simulation results of the motor control approach are promising, and its implemen-
tation is identified as one of the immediate goals of the project. Further directions
for future research include:

e enhancement of the sensor-based position controller with a fuzzy knowledge-
based controller to enhance the performance of the robotic gripper system, and,

e design and development of a knowledge-based controller to control and coordi-
nate the operation of a multi-degree-of-freedom reconfigurable robotic gripper
system.
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