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Fuzzy Assessment of Machine Flexibility
Nikos C. Tsourveloudis,Associate Member, IEEE,and Yannis A. Phillis,Senior Member, IEEE

Abstract—Manufacturing flexibility is a difficult and mul-
tifaceted concept that because of its inherent complexity and
fuzziness is amenable to an artificial intelligence treatment. Fuzzy
logic offers a suitable framework for measuring flexibility in
its various aspects. This paper deals with the measurement of
machine flexibility. When data are precise, this is done via a
simple analytical formula. But if such data, and hence knowl-
edge, are not precise, fuzzy-logic modeling should be employed
by transforming the human expertise into IF-THEN rules and
membership functions. An implementation of the interval-valued
fuzzy-set approach, together with a max-min schema, provides
the approximate inference mechanism for the computation of
machine flexibility. This approach has the advantage of revealing
second-order semantic uncertainty with the associated nonspeci-
ficity measure. The models are illustrated with a number of
examples.

Index Terms—Approximate reasoning, flexibility measures,
fuzzy modeling, linguistic rules, machine flexibility.

I. INTRODUCTION

T RADITIONAL manufacturing has relied on dedicated
mass-production systems to achieve high production vol-

umes at low cost. As living standards improve and the de-
mand for new consumer goods rises, manufacturing flexibility
gains great importance as a strategic weapon against rapidly
changing markets. Flexibility, however, cannot be properly
incorporated in the decision-making process if it is not well
defined and measured in a quantitative fashion. Today, manu-
facturing flexibility remains an elusive concept because of its
inherent complexity and generality, in spite of a large body
of research that has been published. There exist more than
50 definitions of [1] and six different approaches to obtaining
a quantitative flexibility measure [2]. Flexibility in its most
rudimentary essence is the ability of a manufacturing system
to respond to changes and uncertainties associated with the
production process [3]–[5]. A comprehensive classification
of eight flexibility types was proposed in [6]. Resource and
system flexibilities were examined in [7], whereas global
measures for flexible manufacturing systems (FMS’s) were
defined in [8]. Routing flexibility based on information the-
oretic concepts was examined in [9] and [10]. Flexibility
measures for one machine, a group of machines, and a

Manuscript received November 29, 1993; revised November 1996. Review
of this manuscript was arranged by Department Editor D. Gerwin. This work
was supported by the Greek Ministry of Industry, Energy, and Technology
under Grant PENED 95#489.

N. C. Tsourveloudis was with the Department of Production Engineering
and Management, Technical University of Crete, Chania 731 00 Greece. He is
now with the Center for Advanced Computer Studies, University of Southern
Louisiana, Lafayette, LA 70504 USA.

Y. A. Phillis is with the Department of Production Engineering and
Management, Technical University of Crete, Chania 731 00 Greece.

Publisher Item Identifier S 0018-9391(98)00823-X.

whole industry were presented in [11], involving appropriate
weights and machine efficiencies in carrying out sets of tasks.
In [12], the period needed by a system to recover after a
change was used as the central flexibility measure, whereas
a stochastic dynamic programming model for its assessment
was presented in [13]. Artificial intelligence (AI) methods
seem appropriate in most practical situations where numerical
data are not readily available and linguistic variables are
more amenable in handling imprecise knowledge [14]. The
flexibility of competing systems can be ranked appropriately
using an algorithmic approach [15] or a decision support
system [16] based on performance and economic criteria. Last,
integer programming methods have been proposed in [17], and
a graphical representation method of production processes in
[18].

Manufacturing flexibility is associated with uncertainty in
all levels of a firm’s operation, such as variation in the demand
and characteristics of a product or unanticipated interruptions
of the production process because of machine failures. In
addition, human operators or managers use imprecise concepts
and vague meanings when they attempt to define or measure
flexibility. Fuzzy-set theory [19], [20], and especially fuzzy
logic, constitutes a natural framework for the representation
and manipulation of uncertainty.

Indeed, fuzzy-set theory is an algebra of imprecise propo-
sitions and gradual statements such as “machine A is more
flexible than machine B because it is more versatile.” In
previous treatments, uncertainty is handled by probability
theory under the assumption that probabilities can be obtained
precisely. Mandelbaum and Buzacott [21], examining the
meaning and use of flexibility in decision-making processes,
admit that for real-world problems with increased complexity,
the existing modeling methods are inadequate to represent
reality. For context-dependent situations where conceptual
imprecision exists, however, as in the description of machine
flexibility itself, fuzzy sets and logic appear to be more
appropriate for the definition and analysis of the problem. The
use of fuzzy sets in assessing flexibility, to our knowledge,
has not been introduced elsewhere in the literature. We hope
that this approach will prove fruitful and certainly provide a
different, and perhaps more natural, vantage point to assess
flexibility.

In this paper, we adopt the AI approach and construct a
rule-based system to handle imprecise data about a production
system. We are dealing with the measurement of machine
flexibility, and develop a model whose variables cannot be
computed precisely, namely, machine versatility, adjustability,
and setup times. Although certain factors that affect flexibility
can be quantified by managers or flexibility experts, their
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functional relationship to flexibility is not so clear. As an alter-
native, decision makers often use natural language ratings and
qualitative assessments to measure various flexibilities. Here,
we use fuzzy modeling implication methods in a flexibility-
measurement methodology that is easy for a manager to
interpret and use, as we shall see.

First, we provide a mathematical expression for the compu-
tation of comparative machine flexibility when precise data are
available about setup times, number of operations, and range
of adjustments for each machine. When these quantities are
not known precisely, we introduce linguistic modeling, which
is performed by extracting knowledge from human experts
and representing their perceptions via appropriate linguistic
IF-THEN rules. The linguistic variables involved in these
rules are production parameters whose values are fuzzy sets.
The attraction of these models is that they imitate natural
language expressions such as, “If the importance is small
then the priority is low,” and thus they capture vagueness,
which is an inherent property of human communication.
Approximate reasoning, together with a certain class of fuzzy-
logic operators, is employed in the last part of the paper to
compute machine flexibility. A number of examples illustrate
these ideas.

II. M ACHINE-LEVEL FLEXIBILITY

It is generally accepted that flexibility of manufacturing
systems is a multidimensional but also vague notion, which
for reasons of simplicity has been broken down into several
distinct types. In the definition of flexibility, a machine is the
basic hierarchical element of the production process. These
definitions can be extended to more general hierarchies such
as groups of machines or a whole industry. All manufacturing
systems are flexible to some extent, but flexibility here refers
to production systems consisting of a set of numerically
controlled machines connected by a transportation system and
controlled by a central computer. Machines are equipped with
exchange mechanisms for tools and workpieces, which enable
them to perform several operations in a given configuration
with short load, unload, and tool exchange times. Machine
flexibility (MF) is the simplest type of the concept, which
constitutes a necessary building block for the determination of
more complex notions such as product, process, and operation
flexibilities [22]. MF in itself, although basic, is quite difficult
to compute because of its nature. For example, it is rather
well understood how operational characteristics (setup, product
variety, etc.) individually influence MF, but the overall effect
cannot be satisfactorily provided by analytical expressions.

The observable components we use in our study for the
measurement of MF are:

1) the setup time required for various preparations (tool
preparations, part positioning and release time, CNC
changeover time, software changes, etc.), which rep-
resents the ability of a machine to absorb changes in
production efficiently;

2) the variety of operations a machine can perform, which
will be called machine versatility1;

1For a detailed discussion about versatility as a flexibility factor, see [23].

3) the range of adjustments, which is defined as the size
of the working space and is related to the part sizes a
machine can produce.

These parameters, called primary data, express changeover
speed, versatility, and adjustability, which are among the most
common and important aspects of MF. To evaluate each
parameter, we need information about 1) batch sizes, 2) variety
of products, and 3) variety of product sizes. We call these
parameters secondary data and use them to determine weights.
The general rules for assigning weights of importance to the
primary data are:

• changeover speed isvery importantwhen batch sizes are
small;

• versatility isvery importantwhen product variety ishigh;

• adjustability isvery importantwhen products have differ-
ent sizes.

A. A Comparative Measure

Now we provide a comparative measure of MF when crisp
numerical data are available. Comparative measures are useful
to management in choosing the system that most appropri-
ately fits certain requirements, especially FMS’s. Measures of
comparative MF have been reported in [15] and [24] using
only setup times. Our measure ranks alternative machines
or machining centers according to their flexibility by taking
into account the major components of MF as well as the
management’s belief about them. In this sense, the proposed
measure is user oriented. Specifically, let be
the set of competing machines. Then the flexibility measure

of machine is given by

(1)

where

setup time of machine;

number of operations machinecan perform;

range of adjustments of machine;

weights of importance for and ;

and .
In (1), MF is the weighted sum of the relative values of

and compared to the best machine values. For the
case of , the best value corresponds to the machine with
the smallest setup time. According to the information above,
if a machine happens to outrank the others in the sense of
possessing the smallest and the largest and , then its
relative flexibility equals one.

Note that the weights are subjectively chosen according to
the particular type of installation studied. We illustrate (1)
through an example.



80 IEEE TRANSACTIONS ON ENGINEERING MANAGEMENT, VOL. 45, NO. 1, FEBRUARY 1998

Suppose a set of five machining centers (mc’s) are to be
compared with the following data:

Machining center has the smallest setup time, while
takes the larger value in all three parameters. Furthermore,
suppose that the weights for each parameter are

and From (1), we have

Similarly, it is found that MF MF
MF and MF , which shows

that mc is the most flexible among all candidate
mc’s. Let us suppose now that a new machining center

of the same class is under consideration, with
values and . Directly
from (1), we compute MF , and since

and , the previously computed
flexibilities remain unaltered. Obviously, if the new machine
has a better score in any of the three parameters, e.g.,
or or , then the MF should be recalculated
according to the new data. This is an expected and desirable
property of (1).

It should be stressed again that (1) provides a measurement
of relative flexibility that is conceptually simple and aims
to help managers in choosing among several alternatives by
taking flexibility as a criterion. Indeed, in practice, we mostly
need a measurement tool to certify whether a machineis
more flexible than a machine

III. A F UZZY PERSPECTIVE

Precise data and weighting factors usually are not available
in practical situations. The factors that affect MF are not
independent. Machine versatility, for example, has a large
impact on setup time. A multipurpose machine, which is
capable of performing many different operations, minimizes
the setup time needed for the production of a certain class
of parts. An additional complication is that precise data and
weights concerning these factors usually are not available in
practical situations. Setup time, for instance, is allocated to part
and tool positioning and release, software changes, etc., which
cannot be measured easily. Bearing this in mind, managers
prefer linguistic to numerical values in measuring factors
affecting machine flexibility. In many cases, researchers have
utilized natural language expressions such ashigh, low, or
fair in their attempt to evaluate flexibility. Generally, the
representation of managerial knowledge by linguistic rules
performs better when there are no units of measurement
for the attributes of the system and no quantitative criteria
for the values of such attributes [25]. Fuzzy logic offers a
systematic base in dealing with such cases. Motivated by this

fact, we introduce a rule-based measurement scheme in which
no analytic or numerical expressions of flexibility parameters
are required. Rules contain already known facts but in compact
form, such as, “If setup time islow, then machine flexibility is
high,” in which the linguistic values (low and high here) are
represented by appropriate fuzzy sets. The value of flexibility
is the result of a fuzzy or approximate reasoning procedure. We
now provide some background material of fuzzy-set theory.

Let be a collection of objects, called the universal set,
whose elements are denoted by. Then a fuzzy set in
is defined as the set of ordered pairs

where is the membership function of in . The
membership function denotes the degree to whichbelongs in

. The closer the value of is to one, the more belongs
to . Membership functions are not unique, as different people
might define various membership functions for the same fuzzy
set. Theunion of two fuzzy sets and is also a fuzzy set

such that

for every

The intersection is

for every

The standardcomplement of a fuzzy set has the
membership function

for every

This “max-min-standard complement” is a simple extension
of the classical set theory operations and is known as the
Zadeh’s De Morgan Triple. Other extensions are possible as
well [26], e.g., or

.
A fuzzy conditional statementor a fuzzy if/then rule is an

expression of the type “if is then is ,” denoted
, where and are values of the linguistic variables

and . A linguistic variable is mainly characterized by:

a) its linguistic values, e.g., ;

b) the physical or abstract concept domain over which the
variables, e.g., take their quantitative values;

c) the membership function of the linguistic values, e.g.,
.

For example,versatility, which is an abstract concept, can be
regarded as a linguistic variable of MF taking linguistic values
such aslow, about low, average, high,and so on. The physical
domain ofversatility is the set of different operations that
the machine can perform over a set of products, which, for
example, for most mc’s is represented by the interval [0, 35].

The meaning of the fuzzy conditional is given
by a fuzzy relation

where represents any fuzzy implication. Fuzzy relations
play a major role in fuzzy or approximate reasoning. The
most frequently used inference method, theCompositional
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Fig. 1. Membership functions of linguistic valuesL = low, AL = about low,A = average,AH = about high, andH = high.

Rule of Inference(CRI) proposed by Zadeh [27], is based
on the composition of fuzzy relations. An example of fuzzy
implication comes next.

Let be fuzzy sets on , be fuzzy sets on
and the statements

Premise: is (Observation)
Implication: If is then is (Expert Rule)
Conclusion: is (Consequence).

Note that and are simply different fuzzy sets of the same
universal set; the same is true for and . In the above
inference schema, an observation is combined with an expert
rule providing the consequence, which in turn is the advice to
the decision maker. The conclusion can be obtained from
the CRI by taking the composition of the observation and
the fuzzy conditional as follows:

where “ ” is the max-min composition. In the membership
function domain, the CRI is

where is the membership grade of theth element
of is the membership grade of theth element of

is the membership grade of theth element
of the implication relation and denote maximum
and minimum, respectively.

The CRI, based on the max-min-standard complement, is a
method suggested by Zadeh [27] and is a commonly used ap-
proximate reasoning schema. Later research [28], [29] revealed
that for desirable inference, there has to be an appropriate
match between the conjunction and implication operators that
define the composition “” operator in .
According to these results, inference based on the max-min-
standard complement does not produce a desirable inference.
In real-life applications, however, it is suggested that an
appropriate conjunction and implication operator combination
should be chosen for a desirable inference. Having noted

this, we will continue our presentation in max-min schema
to provide a prototype framework for the potential application
of fuzzy logic in the determination of machine flexibility.

A. Fuzzy Interval Implication

We define three input linguistic variables for each machine,
namely,setup (S), versatility (V),andadjustability (R), which
take on linguistic values:low (L), about low (AL), average (A),
about high (AH),andhigh (H). The various setup, versatility,
and adjustability values, which are denoted by
and , respectively, construct the base variable values
within a context that is defined as . Some repre-
sentative membership grades of the linguistic values
for each of the above variables are given in Table I, while
the corresponding membership function curves are shown in
Fig. 1.

It should be noted that the linguistic values shown in Fig. 1
are commonly used by all variables but they are scaled into the
interval [0, 1]. The physical domain of the linguistic variables
is defined by the available technologies. For example, setup
times for mc’s range from zero to six hours; or, equivalently,
the physical domain of is [0, 6]. range from zero to 35
operations over a set of products, andrange from zero to
1.5 cubic meters.

In practice, in addition to the fuzziness of various concepts,
we encounter fuzziness in the way these concepts are related
to each other. For example, managers may not have a precise
idea not only of how to define versatility and adjustability
but also how these parameters should be logically combined
to obtain a flexibility assessment. Therefore, their knowledge
can be represented in the form of “if then

” rules, where the implication operator and the
connectives among antecedents are fuzzy. These rules include
statements that are close to natural language and can be
extracted via knowledge-acquisition methodologies [30], such
as interviews or questionnaires. For a detailed exposition in
knowledge-acquisition studies in the context of flexibility, see
[31] and [32]. The linguistic rule base of our study contains
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TABLE I
MEMBERSHIP GRADES OF THE LINGUISTIC VALUES

rules, which include all variations of the linguistic
values, i.e., five linguistic values for each of the three linguistic
variables. The rules, which represent the expert knowledge on
how the variables affect flexibility, are of the following form:

IF setup is
AND versatility is
AND adjustability is

THEN machine flexibility is

Let be the set of linguistic values for
all the four variables and , and let
and be the linguistic value sets for and ,
respectively. Then the above rule can be written compactly as
follows:

is AND is AND is is

(2)

where and . A graphical illustration of
a subset of the rule base is shown in Fig. 2.

The linguistic values of the variables setup, versatility,
and adjustability that represent the inexact knowledge of
the experts are fuzzy sets. More important, logical AND
connectives are also fuzzy, as we already mentioned. If the
AND operator were crisp, as in two-valued logic, the result
of the statement “A AND B” would be unambiguous. Here,
however, we are faced with the problem of expressing such
ambiguities. There are many ways to express fuzziness in an
AND operator [20]. In this paper, we chose the fuzzy interval
representation of connectives [33] because this mechanism
provides a reasonable interval of uncertainty for each operator
in the sense of experimental [20] and theoretical results [33],
[36].

In this section, MF is the conclusion of an approximate
reasoning method, which can be schematically described by
the following:

Observation is AND is AND is

Facts

Linguistic Rule is AND is AND is

MF is Knowledge

Conclusion MF is Measurement

where and are linguistic value sets in
general different than and . Informally,
approximate reasoning is the process by which, given an
observation, a conclusion is deduced from a collection of

Fig. 2. A subset of the linguistic rule base.

fuzzy rules that describe the relationship among the system
variables. Here, these relationships are quantified by utilizing
the interval-valued representation of AND and IF-THEN con-
nectives. This leads to the construction of lower and upper
bounds on the nonspecificity of a combination of linguistic
concepts based on disjunctive and conjunctive normal forms
of the linguistic values [33], [36]. For example, for the AND
operator that connects two fuzzy setsand , we now obtain
a lower and an upper bound. The rationale is that by defining
a bounded region for the membership function of “AND

,” we capture the dispersion of imprecise knowledge, i.e.,
its nonspecificity. In the appendix, we provide definitions of
the interval-valued representation of connectives as well as
other related background material. Generally, if is a
logical connective for , then [33]

DNF LC CNF (3)

where DNF stands for “disjunctive normal form” and CNF
stands for “conjunctive normal form.” Or, equivalently, in the
membership function domain

For the statement “ AND ,” where and are assumed
to be fuzzy sets, the lower bound is [33]–[35]

DNF AND (4)

and the corresponding upper bound is

CNF AND (5)

From (3), we obtain

DNF AND AND

CNF AND

Following (4) for the statement “ AND AND ”

DNF AND (6)
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while the upper bound (see also the appendix) is

CNF AND

CNF AND (7)

In the same manner, for the statement “IF THEN ,”
the bounds for the IF-THEN connective are
DNF and CNF . From (3), we
have

DNF CNF

All the above expressions are written in the fuzzy-set domain.
They have their equivalents in the membership function do-
main [33], [36]. In the appendix, we exhibit the mathematical
meaning of the fuzzy rules within an approximate reasoning
procedure.

As previously stated, the rule base contains 125 three-
antecedent rules such as

is AND is AND is is

These rules represent the core of knowledge needed for the
approximate reasoning process. The meaning of the above rule
is that, according to the experts, the flexibility of a machine
attains an ( )verage value when the antecedents assume the
values ( )ow, ( )ow, and ( )verage. The knowledge of the
experts about flexibility in the consequent side of the rule is
imprecise. We use the fuzzy interval implication to handle this
imprecision by capturing the scattering of knowledge around
a central tendency. It should be emphasized, however, that the
selection of the interval-valued representation of connectives
is not restrictive. One can use other operators to achieve a
desirable performance of the reasoning procedure.

For a given input , we first compute the
bounds of the AND connective in the fuzzy-set domain. From
(6), we obtain

DNF AND AND
(8)

Similarly, from (7)

CNF AND

CNF

AND

(9)

To simplify the implication, we compute the center of
the region determined by (8) and (9)

(10)

This is a heuristic simplification to control the dispersion of
uncertainty from one computation to the next. The bounds for

the implication are given in the set domain
as follows:

DNF

(11)

CNF (12)

The center of the implication is

(13)

Equation (13) again is a heuristic simplification that computes
the center of the region in which flexibility potentially belongs
by taking into account the joint interaction of the observations
about MF through the AND and implication operators.

Suppose now that instead of the five linguistic values
and a user defines a finer gradation of the

variables of interest by introducing a value betweenand
. Then the new inputs would be and ,

and consequently, the center of the AND operator would yield
. The value of flexibility is then given

by the CRI

(14)

where “ ” represents the max-min composition. By interpret-
ing (14) in the computational membership domain, we derive
the membership function of as follows:

(15)

where is the membership function value of theth
element of , i.e., the inferred membership value of the
element of is the membership function value of the
th element of , i.e., the observed membership value of

, and is the membership function value of the
th element of the implication relation matrix.

B. An Example

Suppose that for a particular machine, we have the following
inputs (observations): 1) setup time is about low, 2) versatility
is high, and 3) adjustability is average. The rule whose
antecedents match the observations and contain the desirable
information about the value of MF is

is AND is AND is is

or, equivalently, AND AND .
In calculations, we use the membership grades of the

linguistic values that are shown in Table I. Following the
procedure described above, and expressing operators in the
membership domain, we first compute the bounds of the AND
operator. Max-min operators are employed to carry out the
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computations, and from (8), replacingwith , we have

where

The upper bound is computed from (9), where union and
intersection correspond to max and min operators,
respectively. Thus

and the center of the AND operator is

A sufficient condition for meaningful implication [34] is that
should be normalized (i.e., . Dividing
by 0.25, which is the maximum membership grade, we

obtain

Now we apply the implication operator to extend the range of
experts’ advice about flexibility. The bounds of implication in-
volve the normalized result of the logical connection
and the knowledge provided by experts . These bounds,
according to (11) and (12), are

and
. All possible values

of the bounds and in the membership domain
will be arranged in two 7 3 matrices, where the number of
rows equals the number of values for (0.25, 0.35, 0.45,
0.5, 0.65, 0.75, 0.85) and the number of columns equals the
number of values of (0.65, 0.75, 0.85). Thus

where, for example,
and . From (13) and for the machine

under study, we have

Now consider the CRI. By using the above matrix and
the center of the AND operator, we obtain the membership
function of machine flexibility. For example, suppose
that we have a slightly different input with

. The mem-
bership function of flexibility is

where [from (15)]

and

The methodology above is useful in assessing individual
machine flexibilities, and thus it is an important tool to a
manager in choosing a specific manufacturing configuration.
In practice, however, managers would prefer a single num-
ber over membership functions to obtain a better feeling of
flexibility. To convert the membership function of flexibility
into a single point-wise value, we use a procedure called
defuzzification,which is widely used in the area of fuzzy
control. Among various defuzzification methods, we choose
the so-called center-of-gravity formula, which is the most
frequently referenced in the literature. Then the crisp value
of machine flexibility is given by

(16)

where is the membership grade of point. Apply-
ing (16) on the membership function of given by the
above example, we derive
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IV. CONCLUSION

We have presented two measurement methodologies for
the assessment of machine flexibility, which incorporate three
major operational aspects: setup, versatility, and adjustability.
The first measure provides a relative evaluation, as it is
based on comparisons among crisp machine characteristics.
This measure places emphasis on beliefs of the managers
as to the importance of each operational characteristic in
the measurement of flexibility and results in a situation-
specific measurement. In the second measure, the value of
flexibility is deduced from a fuzzy reasoning process in the
context of a rule-based system. No analytic formulas or
numerical data, which are difficult to find in practice, are
required in order to assess flexibility. The main characteristic
of this approach is that it utilizes natural language expressions
and thus captures the knowledge about the measurement of
machine flexibility. Furthermore, it should be noted that the
fuzzy measure is proposed from a structural perspective, as one
can use linguistic rules of different form or other approximate
reasoning procedures to achieve a desirable performance in
a given context. The measurement schemes proposed in this
paper appear to have two advantages.

1) They are easy to use and interpret and suitable in com-
paring alternative machine designs. Equation (1) allows
flexibility comparisons between alternate machines pro-
vided precise numerical data exist. In practice, however,
the fuzzy measurement scheme looks more attractive,
as it utilizes already gained knowledge together with
natural language ratings, which are favored by managers.

2) They combine three different parameters of a production
system, which play an important role in defining and
measuring machine-level flexibility.

A topic of future research is the development of a manufac-
turing system measure able to capture the uncertainty in the
interrelationships among the various types of flexibility. To
accomplish that, further research is needed to define measures
for other flexibility types such as routing, material handling,
process, and labor using fuzzy-logic methodologies.

APPENDIX

A. Definitions and Background

Definition 1: Two fuzzy sets and are equal
if and only if

Definition 2: is a subset of if and only if

Now, for and , we have Definition 3.

Definition 3: A triangular norm or -norm denotes a class
of binary functions, which satisfies the following conditions.

Boundary conditions:
Monotonicity: whenever

Symmetry:
Associativity:

Examples of -norms are min max ,
etc. The same conditions hold for the-conorm . Every -
norm determines a unique dual-conorm , which is defined
by

or

Examples of -conorms are max and min
. From [26], [37], and other investigations, it can be

argued that the-norms-conorms are suitable candidates for
conjunctions and disjunctions in many-valued logic.

B. Interval-Valued Fuzzy Sets [33]–[35]

Every linguistic proposition can be represented by an
interval-valued fuzzy set. Generally, if is a logical
connective for , then

DNF LC CNF

For the propositions AND, OR, and IF THEN, LC is
defined as follows:

DNF AND

CNF AND (17)

DNF OR

CNF OR (18)

DNF

CNF (19)

Equations (17)–(19) are written in the fuzzy-set domain, and
consequently, and are the well-known intersection,
union, and complement operators, respectively, which corre-
spond to appropriate-norm -conorm , and complement
operators in the domain of membership functions, respectively.
Thus, the interval-valued fuzzy set in the membership domain
is defined as follows:

where and are the -norm, -conorm, and complement
operators, respectively.
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1) Three-Antecedent Intersection [35]:Consider a three-
antecedent rule as follows:

is AND is AND is THEN is

or

AND AND

It is known that for a two-antecedent intersection, we have

DNF AND AND

CNF AND (20)

For the three-antecedent intersection AND AND ,
and according to (17) and (20), we have two families of
interval-valued fuzzy sets and, as follows:

DNF AND AND

CNF AND (21)

DNF AND AND

CNF AND (22)

In general, it is not known whether CNF AND
is larger or smaller than CNF AND , since these
expressions are nonmonotonic.

Theorem [35]: The lower bound of the three-antecedent
intersection “ AND AND ” is DNF AND ,
and its upper bound is CNF AND , CNF
AND , where is set union, which corresponds to an
appropriate -conorm in the membership domain.

Proof: Let and be fuzzy sets with mem-
bership functions values and respectively, and

, or in the membership domain
. It is clear that , where and .

For the lower bound, we notice that implies

DNF AND

DNF AND

and the result follows directly, as DNF AND is the
lowest of the lower bounds in (21) and (22). For the upper
bound, we observe that there is no explicit relationship among
CNF AND and CNF AND . In particular,
from (17), we have

CNF AND

CNF AND

or, equivalently, in the membership domain

(23)

(24)

From the monotonicity condition, we know that
and

but , and thus depending on the relations
among and , could be either larger
or smaller than , i.e., CNF( AND ) is
nonmonotonic. Consequently, the upper bound of the
upper bounds of (20) and (21) is given in the fuzzy-set domain
by the union of CNF( AND ) and CNF( AND ),
i.e.,

CNF AND CNF AND (25)
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