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Fuzzy Assessment of Machine Flexibility

Nikos C. TsourveloudisAssociate Member, IEEEBNd Yannis A. PhillisSenior Member, IEEE

Abstract—Manufacturing flexibility is a difficult and mul-  whole industry were presented in [11], involving appropriate
tifaceted concept that because of its inherent complexity and \weights and machine efficiencies in carrying out sets of tasks.
fuzziness is amenable to an artificial intelligence treatment. Fuzzy In [12], the period needed by a system to recover after a
logic offers a suitable framework for measuring flexibility in h ’ d h | flexibil h
its various aspects. This paper deals with the measurement of change was used as the central flexibility measure, whereas
machine flexibility. When data are precise, this is done via a @ stochastic dynamic programming model for its assessment
simple analytical formula. But if such data, and hence knowl- was presented in [13]. Artificial intelligence (Al) methods
Edgt(r%é are rrrl]gtngrfﬁési, m;ﬁygoggt@g‘iﬁ%ﬁﬂaﬂ?\l brelggng'r(])é’edseem appropriate in most practical situations where numerical

y | u X ] | - u . . . .. .
membership functions. An implementation of the interval-valued data are not re(?ldlly aV(?uIab_Ie and. linguistic variables are
fuzzy-set approach, together with a max-min schema, provides more_fimenable n .handllng imprecise knowledge [14]j The
the approximate inference mechanism for the computation of flexibility of competing systems can be ranked appropriately
machine flexibility. Th_is approa(_:h has_the advantage of revealing_ using an algorithmic approach [15] or a decision support
second-order semantic uncertainty with the associated nonspeci- system [16] based on performance and economic criteria. Last
ficity measure. The models are illustrated with a number of . . . i :

integer programming methods have been proposed in [17], and

examples. X - ) )
) ] o a graphical representation method of production processes in
Index Terms— Approximate reasoning, flexibility measures, [18]

f modeling, linguistic rules, machine flexibility. . G . . . .
uezy g, ANGUIstic Tu I XD Manufacturing flexibility is associated with uncertainty in

all levels of a firm’s operation, such as variation in the demand
I. INTRODUCTION and characteristics of a product or unanticipated interruptions

RADITIONAL manufacturing has relied on dedicated®f the production process because of machine failures. In
T mass-production systems to achieve high production v@ddition, human operators or managers use imprecise concepts
umes at low cost. As living standards improve and the dand vague meanings when they attempt to define or measure
mand for new consumer goods rises, manufacturing flexibilifgxibility. Fuzzy-set theory [19], [20], and especially fuzzy
gains great importance as a strategic weapon against rapi@gic, constitutes a natural framework for the representation
changing markets. Flexibility, however, cannot be propergnd manipulation of uncertainty.
incorporated in the decision-making process if it is not well Indeed, fuzzy-set theory is an algebra of imprecise propo-
defined and measured in a quantitative fashion. Today, masifions and gradual statements such as “machine A is more
facturing flexibility remains an elusive concept because of iftexible than machine B because it is more versatile.” In
inherent complexity and generality, in spite of a large bodyrevious treatments, uncertainty is handled by probability
of research that has been published. There exist more tfia@ory under the assumption that probabilities can be obtained
50 definitions of [1] and six different approaches to obtainingrecisely. Mandelbaum and Buzacott [21], examining the
a guantitative flexibility measure [2]. Flexibility in its mostmeaning and use of flexibility in decision-making processes,
rudimentary essence is the ability of a manufacturing systeadmit that for real-world problems with increased complexity,
to respond to changes and uncertainties associated with tie existing modeling methods are inadequate to represent
production process [3]-[5]. A comprehensive classificatioreality. For context-dependent situations where conceptual
of eight flexibility types was proposed in [6]. Resource aniinprecision exists, however, as in the description of machine
system flexibilities were examined in [7], whereas globdlexibility itself, fuzzy sets and logic appear to be more
measures for flexible manufacturing systems (FMS’s) weegpropriate for the definition and analysis of the problem. The
defined in [8]. Routing flexibility based on information theuse of fuzzy sets in assessing flexibility, to our knowledge,
oretic concepts was examined in [9] and [10]. Flexibilitthas not been introduced elsewhere in the literature. We hope
measures for one machine, a group of machines, andhat this approach will prove fruitful and certainly provide a

different, and perhaps more natural, vantage point to assess
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functional relationship to flexibility is not so clear. As an alter- 3) the range of adjustments, which is defined as the size
native, decision makers often use natural language ratings and of the working space and is related to the part sizes a
qualitative assessments to measure various flexibilities. Here, machine can produce.

we use fuzzy modeling implication methods in a flexibility- These parameters, called primary data, express changeover
measurement methodology that is easy for a manager sffeed, versatility, and adjustability, which are among the most
interpret and use, as we shall see. common and important aspects of MF. To evaluate each
First, we provide a mathematical expression for the compgarameter, we need information about 1) batch sizes, 2) variety
tation of comparative machine flexibility when precise data ag products, and 3) variety of product sizes. We call these
available about setup times, number of operations, and raggameters secondary data and use them to determine weights.

of adjustments for each machine. When these quantities a¥g general rules for assigning weights of importance to the
not known precisely, we introduce linguistic modeling, whiclyrimary data are:

is performed by extracting knowledge from human experts,
and representing their perceptions via appropriate linguistic smalt
IF-THEN rules. The linguistic variables involved in these o . C
rules are production parameters whose values are fuzzy sets. versatility isvery importantwhen product variety isigh
The attraction of these models is that they imitate natural® adjustability isvery importantwhen products have differ-
language expressions such as, “If the importance is small €ent sizes.

then the priority is low,” and thus they capture vagueness,

which is an inherent property of human communication.

Approximate reasoning, together with a certain class of fuzzg- A Comparative Measure

logic operators, is employed in the last part of the paper toNow we provide a comparative measure of MF when crisp
compute machine flexibility. A number of examples illustratumerical data are available. Comparative measures are useful
these ideas. to management in choosing the system that most appropri-
ately fits certain requirements, especially FMS'’s. Measures of

IIl. MACHINE-LEVEL FLEXIBILITY comparative MF have been reported in [15] and [24] using

It is generally accepted that flexibility of manufacturing®ly Seétup times. Our measure ranks alternative machines
systems is a multidimensional but also vague notion, whi@% machining centers_ according to their flexibility by taking
for reasons of simplicity has been broken down into sever8f0 account the major components of MF as well as the
distinct types. In the definition of flexibility, a machine is thenanagement's belief about them. In this sense, the proposed
basic hierarchical element of the production process. TheBgasure is user oriented. Specifically, i¢t= {1, --,m} be
definitions can be extended to more general hierarchies sigf Sét of competing machines. Then the flexibility measure
as groups of machines or a whole industry. All manufacturifgt of machine: is given by
systems are flexible to some extent, but flexibility here refers
to production systems consisting of a set of numerically
controlled machines connected by a transportation system and min([s;] ‘ N
controlled by a central computer. Machines are equipped WitEF; = W, — + W, vi + W, "
exchange mechanisms for tools and workpieces, which enable 84 max[v;] m?X[Tj]
them to perform several operations in a given configuration (1)
with short load, unload, and tool exchange times. Machine
flexibility (MF) is the simplest type of the concept, which
constitutes a necessary building block for the determination of
more complex notions such as product, process, and operaﬁm?re

changeover speed i&ry importantwhen batch sizes are

’ LvJGM

flexibilities [22]. MF in itself, although basic, is quite difficult i setup time of maching;
to compute because of its nature. For example, it is rathery, number of operations machiiean perform;
well understood how operational characteristics (setup, product.. range of adjustments of machitig

variety, etc.) individually influence MF, but the overall effect
cannot be satisfactorily provided by analytical expressions.

The observable components we use in our study for tRd W, + W, + W, = 1 )
measurement of MF are: In (1), MF is the weighted sum of the relative values of

1) the setup time required for various preparations (todi’ "’ andr; compared to the best machine values. For the
preparations, part positioning and release time, C se ofs;, the best value corresponds to the machine with
changeover 'time software changes, etc.) whic’h relhe smallest setup time. According to the information above,
resents the abilit;/ of a machine to r;lbsorb’ changes el machine happens to outrank the others in the sense of
production efficiently; possessing the smallestand the largesty and r, then its
) ] . _relative flexibility equals one.
2) the variety of operations a mgc_:hme can perform, which Note that the weights are subjectively chosen according to
will be called machine versatility the particular type of installation studied. We illustrate (1)

LFor a detailed discussion about versatility as a flexibility factor, see [23firough an example.

W, W,,W,. weights of importance fog;,v;, andr;;
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Suppose a set of five machining centers (mc’s) are to fact, we introduce a rule-based measurement scheme in which
compared with the following data: no analytic or numerical expressions of flexibility parameters
are required. Rules contain already known facts but in compact
form, such as, “If setup time i®w, then machine flexibility is
high,” in which the linguistic valuesl¢w and high here) are
represented by appropriate fuzzy sets. The value of flexibility
is the result of a fuzzy or approximate reasoning procedure. We
now provide some background material of fuzzy-set theory.

Let X be a collection of objects, called the universal set,
Machining centetnc; has the smallest setup time, while:, whose elements are denoted pyThen a fuzzy setd in X
takes the larger value in all three parameters. Furthermoiedefined as the set of ordered pairs
suppose that the weights for each parameter lafe =

s v r
mc; 5.53 9 107.3
mcy 7.21 17 98.6
mcz  6.32 12 103.7
mcy 10.01 20 120
mc; 7.82 15 115,

0.3, W, = 0.5, and W,. = 0.2. From (1), we have A= {(pal@)/z)|palz) € [0,1], reX}
- ,9.53 .9 107.3 wherer 4(x) is the membership function of € X in A. The
MF, = 0'35_53 + 0")% +0.2 120 — 0.7038. membership function denotes the degree to whitkelongs in
Similarly, it is found that M = 0.8193,MF; = A. The closer the value of,(x) is to one, the more belongs

0.778. which shows © A. Membership functions are not unique, as different people
that mq is the most flexible ar'non(:; all candidatemight define various membership functions for the same fuzzy

mc’s. Let us suppose now that a new machining centi®t: Theunlc;]nc;:‘two fuzzy setsd and B is also a fuzzy set
meg of the same class is under consideration, with Y £ such that

0.7353,MFy = 0.866, and MF =

values ss = 6.5,u6 = 15, and r¢ = 108. Direc_:tly praus(x) = max[pa(z), ps ()], for everyz € X.
from (1), we compute ME = 0.8102, and since _ _ _
s¢>8 = minf[sy, - -,s6],v6<vq = max[vy,---,vg), The intersectionA N B is
and rg <ry = max[ri,---,7¢], the previously computed pans(z) = min[ps(x), pp(z)],  for everyz € X.

flexibilities remain unaltered. Obviously, if the new machine
has a better score in any of the three parameters,.8.51 The standardcomplementA® of a fuzzy setA has the
or we>wy OF 76>714, then the MF should be recalculatednembership function

according to the new data. This is an expected and desirable

property of (1). pac(z) =1— pa(z), for everyz € X.

It shquld be ;trgssed ag.ain that (1) provid'es & MeasuremeRls .« ax-min-standard complement” is a simple extension
of relative flexibility that is conceptually simple and almsggc the classical set theory operations and is known as the

to help managers in choosing among several alternatives Xdeh’s De Morgan Triple. Other extensions are possible as
taking flexibility as a criterion. Indeed, in practice, we mostl)év

need a measurement tool to certify whether a machinis
more flexible than a maching.

el [26], e.g., ranB(x) = pa(x) @ pp(x) or paup(z) =
min(1, ea(x) + pp(x)].
A fuzzy conditional statementr a fuzzy if/then rule is an
expression of the type “ifX is A thenY is B,” denoted
. A Fuzzy PERSPECTIVE A — B, whereA and B are values of the linguistic variables
Precise data and weighting factors usually are not availableandY". A linguistic variable is mainly characterized by:
in practical situations. The factors that affect MF are not a) its linguistic values, e.g.4, B;

independent. Machine versatility, for example, has a largey) the physical or abstract concept domain over which the
impact on setup time. A multipurpose machine, which is variables, e.g.X, Y, take their quantitative values;

capable of performing many different operations, minimizes th bershio functi f the linquisti |
the setup time needed for the production of a certain classc) € membership function of the inguistic values, €.9.,

of parts. An additional complication is that precise data and “A(x)’“B(y)'_. o
weights concerning these factors usually are not available iR" €xampleyersatility, which is an abstract concept, can be

practical situations. Setup time, for instance, is allocated to p&¢garded as a linguistic variable of MF taking linguistic values
and tool positioning and release, software changes, etc., whitgh asow, about low, average, higland so on. The physical
cannot be measured easily. Bearing this in mind, manag8fmain ofversatility is the set of different operations that
prefer linguistic to numerical values in measuring factol§€ machine can perform over a set of products, which, for
affecting machine flexibility. In many cases, researchers hag¥ample, for most mc's is represented by the interval [0, 35].
utilized natural language expressions suchhagh, low, or The meaning of the fuzzy conditionéid — B) is given
fair in their attempt to evaluate flexibility. Generally, the?y @ fuzzy relation

representation of managerial knowledge_ by linguistic rules pr(z,y) = pal@) © psly), reXyey

performs better when there are no units of measurement

for the attributes of the system and no quantitative criteni@here @ represents any fuzzy implication. Fuzzy relations
for the values of such attributes [25]. Fuzzy logic offers play a major role in fuzzy or approximate reasoning. The
systematic base in dealing with such cases. Motivated by thi®st frequently used inference method, t@empositional
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Fig. 1. Membership functions of linguistic valuds= low, AL = about low, A = average,AH = about high, andd = high.

Rule of Inferenceg(CRI) proposed by Zadeh [27], is basedhis, we will continue our presentation in max-min schema
on the composition of fuzzy relations. An example of fuzzjo provide a prototype framework for the potential application

implication comes next. of fuzzy logic in the determination of machine flexibility.
Let A, A* be fuzzy sets onX, B, B* be fuzzy sets oty

and th(_a statementg _ A. Fuzzy Interval Implication
Premise: Xis A* (Observation) We define th inout linquisti iables f h hi
Implication: If X is A thenY is B (Expert Rule) e define three input linguistic variables for each machine,

namely,setup (S), versatility (V)and adjustability (R) which

take on linguistic valuedow (L), about low (AL), average (A),
Note thatA and A* are simply different fuzzy sets of the samebout high (AH),and high (H). The various setup, versatility,
universal set; the same is true f& and B*. In the above and adjustability values, which are denoteddy S,v € V,
inference schema, an observation is combined with an expand » € R, respectively, construct the base variable values
rule providing the consequence, which in turn is the advice wathin a context that is defined as € X. Some repre-
the decision maker. The conclusi@t can be obtained from sentative membership gradgéz)/x of the linguistic values
the CRI by taking the composition of the observatidhhand for each of the above variables are given in Table I, while
the fuzzy conditionalA — B as follows: the corresponding membership function curves are shown in

" 0 Fig. 1.
B*=A"(A— B) It should be noted that the linguistic values shown in Fig. 1

where “°” is the max-min composition. In the membershigre commonly used by all variables but they are scaled into the
function domain, the CRI is interval [0, 1]. The physical domain of the linguistic variables
. is defined by the available technologies. For example, setup
1B (y) = Vila () A pa— s, y5)]; L= 17 ;7 o ’g timess; for mc’s range from zero to six hours; or, equivalently,
J=hsr the physical domain of is [0, 6]. v; range from zero to 35

where 115 (y;) is the membership grade of thh element operations over a set of products, andrange from zero to
of B*, 1.4+ (x4) is the membership grade of thith element of 1.5 cubic meters.
A*, ua—s(x;,y,) is the membership grade of thgth element In practice, in addition to the fuzziness of various concepts,
of the implication relatiord — B, andV, A denote maximum we encounter fuzziness in the way these concepts are related
and minimum, respectively. to each other. For example, managers may not have a precise

The CRI, based on the max-min-standard complement, isde@a not only of how to define versatility and adjustability
method suggested by Zadeh [27] and is a commonly used apt also how these parameters should be logically combined
proximate reasoning schema. Later research [28], [29] reveatedbbtain a flexibility assessment. Therefore, their knowledge
that for desirable inference, there has to be an appropriaen be represented in the form of “(intecedents) then
match between the conjunction and implication operators thatnsequent)” rules, where the implication operator and the
define the composition®* operator inB* = A*°(4 — B). connectives among antecedents are fuzzy. These rules include
According to these results, inference based on the max-mstatements that are close to natural language and can be
standard complement does not produce a desirable inferereodracted via knowledge-acquisition methodologies [30], such
In real-life applications, however, it is suggested that aas interviews or questionnaires. For a detailed exposition in
appropriate conjunction and implication operator combinatidmowledge-acquisition studies in the context of flexibility, see
should be chosen for a desirable inference. Having notg1] and [32]. The linguistic rule base of our study contains

Conclusion: Y is B* (Consequence).
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MEMBERSHIP GRADETSASFL TEHé LiNGuIsTIC VALUES Sctup Versatility ~ Adjustability =~ Machine Flexibility
Low (1/.1, 8/.15, .5/.25, .1/.35, 0/.45, 0/.5, 0/.65, 0/.65, 0/.75, 0/.85, 0/.9)
About Low | (0/.1, 0/.15, 4/.25, 1/.35, .4/.45, 0/.5, 0/.65, 0/.75, 0/.85, 0/.9)
Average (0/.1,00.15, .1/.25, 5/.35, 75/.45,1/.5, .5/.65, .1/.75, 0/.85, 0/.9)
About High | (0.1, 0/.15, 0/.25, 0/.35, 0/.45, 0/.5, 4/.65, 1/.75, 4/.85, 0/.9)
High (0/.1,0/.15, 0/.25, 0/.35, 0/.45, 0.5, .1/.65, .5/.75, 8/.85, 1/.9)

@

53 = 125 rules, which include all variations of the linguistic
values, i.e., five linguistic values for each of the three linguistic
variables. The rules, which represent the expert knowledge on
how the variables affect flexibility, are of the following form:

IF setup is ses
AND versatility is veV °
AND adjustability is re€R

THEN machine f|exibi|ity is mfeMF. Fig. 2. A subset of the linguistic rule base.

LetT ={L,AL, A, AH, H} be the set of linguistic values for

all the four variablesS, V, R, and M F', and letls, 7y, Tr, fuzzy rules that describe the relationship among the system
andZyr € T be the linguistic value sets féf, V, R, andM F', variables. Here, these relationships are quantified by utilizing
respectively. Then the above rule can be written compactly é interval-valued representation of AND and IF-THEN con-
follows: nectives. This leads to the construction of lower and upper

IF SisTs AND V is Ty AND RisTr THEN M F is Ty bounds on the nonspecificity of a combination of linguistic

concepts based on disjunctive and conjunctive normal forms
(2 of the linguistic values [33], [36]. For example, for the AND
operator that connects two fuzzy setand B, we now obtain

whereT’s, Ty, Tr, andTiyyr € 1. A graphical illustration of i ) L
a lower and an upper bound. The rationale is that by defining

a subset of the rule base is shown in Fig. 2.

The linguistic values of the variables setup, versatilinf: Pounded region for the membership function of AND
and adjustability that represent the inexact knowledge & we capture the dispersion of imprecise knowledge, i.e.,
the experts are fuzzy sets. More important, logical ANBS nonspecificity. In the appendix, we provide definitions of

connectives are also fuzzy, as we already mentioned. If tmf interval-valued representation of connectives as well as

AND operator were crisp, as in two-valued logic, the resufither related background material. GenerallyL{f(e) is a

of the statement “A AND B” would be unambiguous. Here!0gical connective for(e), then [33]
DNF(s) C LC(s) C CNF(s) @3)

however, we are faced with the problem of expressing such

ambiguities. There are many ways to express fuzziness in an s ) .,

AND operator [20]. In this paper, we chose the fuzzy intervé(\’here DN'“: stgnds_for disjunctive ”normal f?”“ and_ CNF
representation of connectives [33] because this mechaniSkands for _conjum_:tlve normal form.” Or, equivalently, in the
provides a reasonable interval of uncertainty for each operafB?mberSh'p function domain

in the sense of experimental [20] and theoretical results [33],

[36].

In this section, MF is the conclusion of an approximat
reasoning method, which can be schematically described

the following:

Observation  SisTs AND Vis 13- AND R is Tg

(Factg

Linguistic Rule IF S isTs AND V is Ty AND R is Tg
THEN MF is Tiyr (Knowledge

Conclusion MF is Ty (Measurement

whereT¢, 17, T4, and I3 € 17 are linguistic value sets in

general different thaff’s, Ty, Tr, andIyr € 1. Informally,

approximate reasoning is the process by which, given an
observation, a conclusion is deduced from a collection of

rpNr(®) < ric(e) < ronple).

é:or the statement4 AND B,” where A and B are assumed
tgybe fuzzy sets, the lower bourddynp!? is [33]-[35]

Laxp® = DNF(A AND B) )
and the corresponding upper boutidxp!? is
Uanp® = CNF(A AND B).
From (3), we obtain
Laxp!® =DNF(A AND B) C (A AND B)
C CNFA AND B) = Uanp 2.
Following (4) for the statement4 AND B AND C”

(5)

Lanpl® = DNF(LAND[21 AND C) (6)
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while the upper bound (see also the appendix) is the implication(Canp — Tuvr) are given in the set domain
3] 2] as follows:
Usnpl = [CNF(LAND AND 0)}
U [eNF(UaoP aND O)]. @) L(~) =DNF(Canp = Tir)
=(Canp NTvr) U (Cinp NIMrF)

In the same manner, for the statement “4F THEN B,” U (Cnep N Tre) (11)
the bounds for the IF-THEN—) connective areL_,, = AND 71 SME .

DNF(A — B) and Uy = CNFA — B). From (3), we U—) =CNKCanp — Tur) = Cinp U Thr.  (12)

have
The center of the implication is

L(_)):DNF(A—> B)C(A — B)CCNKA — B):U(_)). C(_)) _ %[L(_)) +U(_>)] (13)

All the above expressions are written in the fuzzy-set domain.

They have their equivalents in the membership function dEquation (13) again is a heuristic simplification that computes
main [33], [36]. In the appendix, we exhibit the mathematicdhe center of the region in which flexibility potentially belongs
meaning of the fuzzy rules within an approximate reasonidty taking into account the joint interaction of the observations

procedure. about MF through the AND and implication operators.
As previously stated, the rule base contains 125 three-Suppose now that instead of the five linguistic values
antecedent rules such as L, AL A, AH, and H, a user defines a finer gradation of the

) , . : variables of interest by introducing a value betweerand

IF 5is L AND V'is L AND Ris A THEN MI'is A. AL. Then the new inputs would b€%, 77, and T} € 17,
These rules represent the core of knowledge needed for &l consequently, the center of the AND operator would yield
approximate reasoning process. The meaning of the above fdiexp 7 Canp. The value of flexibility 75 is then given
is that, according to the experts, the flexibility of a machin@y the CRI
attains an {l)verage value when the antecedents assume the
values {)ow, (L)ow, and ()verage. The knowledge of the INir = Canp° Co) (14)
experts about flexibility in the consequent side of the rule is
imprecise. We use the fuzzy interval implication to handle thighere " represents the max-min composition. By interpret-
imprecision by capturing the scattering of knowledge arourg (14) in the computational membership domain, we derive
a central tendency. It should be emphasized, however, that the membership function dfy; as follows:
selection of the interval-valued representation of connectives
is not restrictive. One can use other operators to achieve a ;. (y;) = \/[NCZND en) ANCH(Q;“%)],

MF

desirable performance of the reasoning procedure. i

For a given inputls, Ty, Tr € T, we first compute the 1=1,2,---.1, j=1,2,---,J (15)
bounds of the AND connective in the fuzzy-set domain. From
(6), we obtain where iz (y;) is the membership function value of theh

Laxn = DNF(Ts AND Ty AND T) = Ts N Ty N Tx. element of Iy, i.e., the inferred membership value of the
element ofy,, uc+__ is the membership function value of the
(8) J AND

Similarly, from (7) ith element ofC[’iﬁD,.i.e., the observe.d mempership value of
5 z;, anduc,_, (x;, v;) is the membership function value of the
Uanp® = U{CNF{(Ts N Ty') AND Tg], ijth element of the implication relation matrix.
CNH(TsUTy)N(TsuTH) N (T6 UTy)
AND Tg]} B. An Example
= U{{(Ts NTy)U TR N [(Ts NTy) UTE] Suppose that for a particular machine, we have the following
N [(Ts N Ty)° UTx], inputs (observations): 1) setup time is about low, 2) versatility

is high, and 3) adjustability is average. The rule whose

(L5 UTy) N (Ts VTT) V(TS UTY) U TR antecedents match the observations and contain the desirable

N[(Ts VTy)N(Ts UTY) N (Ts VTy) information about the value of MF is
UTpN[(Ts UTy) N (Ts UTY)
N (T§ U TV)]C U TR}- (9) IF SisALAND VisH AND Ris A THEN MF is AH

To simplify the implication, we compute the cent@xnp of or, equivalently,AL AND H AND A — AH.

the region determined by (8) and (9) In calculations, we use the membership grades of the
Canp = %[LANDM +UAND[31:|- (10 linguistic values that are shown in Table I. Following the
procedure described above, and expressing operators in the
This is a heuristic simplification to control the dispersion afnembership domain, we first compute the bounds of the AND
uncertainty from one computation to the next. The bounds foperator. Max-min operators are employed to carry out the
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computations, and from (8), replacimgwith A, we have under study, we have
LanxpP®l=ALANHAA -.i f .;1-
=(0/.1,0/.15,.3/.25,1/.35,.3/.45,0/.5, s 4
0/.65,0/.75,0/.85,0/.9) Cioy=|4 8 4
A (0/.1,0/.15,0/.25,0/.35,0/.45,0/.5, 4 1 4
1/.65,.5/.75,.8/.85,1/.9) _:2 ; :2_

A(0/.1,0/.15,.1/.25,.5/.35,.75/.45,1/.5,

. - - Now consider the CRI. By using the above matrix and
:5/:65,:1/.75,0/.85,0/.9) the center of the AND operator, we obtain the membership
=(0/z),  wherez ¢ [0,1]. function of machine flexibility. For example, suppose
that we have a slightly different input wittC%y, =
5/.25,.9/.35,.6/.45,.6/.5,1/.65,.8/.75, .6/.85). The mem-

' bership function of flexibility is

The upper bound is computed from (9), where union a
intersection correspond to m&ax/) and min (A) operators
respectively. Thus

Uano® = (.3/.25,.5/.35,.3/.45,.3/.5,.5/.65,

5/.75,.2/.85) /
vr =Canp Ci—) =[5.9.6 .61.8.6]°
and the center of the AND operator is

YNNI N NV
o = bo bo & o
oY SN NN N NV

Canp = (.15/.25,.25/.35,.15/ .45, .15/.5, .25/ 65,
25/.75,.1/.85). =(.6/.651/.75 .6/.85)

A sufficient condition for meaningful implication [34] is thatwhere [from (15)]
Canp should be normalized (i.eJz,: »(x) = 1). Dividing - (65) =z (.85)
Canp by 0.25, which is the maximum membership grade, we /e \"0) = HTp {69
obtain =(B5ADV(INDV(6ADV(6AA)

V(IAA)V(8AAL)V(6A.6)=.6
Canp = (.6/.25,1/.35,.6/.45,.6/.5,1/.65,1/.75,.4/.85).

and

Now we app_ly the implical_tigrl operator to exter_1d th_e range of pre (75) =(5A8)V (IAL)V (6A8)V(6A.8)
experts’ advice about flexibility. The bounds of implication in- MF
volve the normalized result of the logical connecti@iynp )

and the_ knowledge provided by expef¥r). These bounds, The methodology above is useful in assessing individual
according to (11) and (12), are machine flexibilities, and thus it is an important tool to a

— (o c c c manager in choosing a specific manufacturing configuration.
Ly = (Caxp AN AH)V (Ciyp N AH) V (Cinp A AHT) In practice, however, managers would prefer a single num-

VIALV(8AL)V(6A8) =1

Uy =Cinp V AH ber over membership functions to obtain a better feeling of
. . . . . _ flexibility. To convert the membership function of flexibility
and Canp = (.6/.25,1/.35,.6/.45,.6/.5,1/.65,1/.75, g o single point-wise value, we use a procedure called

4/.85), Al = (.4/.65,1/.75,.4/.85). All possible values yef77ificationwhich is widely used in the area of fuzzy

of the boundsL—, and U in the membership domain ¢onq Among various defuzzification methods, we choose
will be arranged in two 7 3 matrices, where the number ofy,e g5_called center-of-gravity formula, which is the most

rows equals the number of values fGixp (0.25, 0.35, 0.45, fequently referenced in the literature. Then the crisp value
0.5, 0.65, 0.75, 0.85) and the number of columns equals the,4chine flexibility is given by
number of values oA H (0.65, 0.75, 0.85). Thus

. 25 g, (U5)

4 .6 47 4 1 4 .5 ,
4 1 4 41 4 def Ny = —=—7—~— =127 (16)
4 6 4 41 4 %:“T&F (w)
L(_)) =14 6 4], U(_,) =14 1 4 ) . ]
4 1 4 4 1 4 whereuT;IF (y;) is the membership grade of poinf. Apply-
4 1 4 4 1 4 ing (16) on the membership function df;. given by the
L6 6 .6l 6 1 .6l above example, we derive
where, for examplel;; = .4 =(.6A.4)V(4AA.4)V(4A.6) def Tiyp = 0.65-0.6+0.75-1+0.85-0.6 - 0.75.

andu;; = .4 = (4 v .4). From (13) and for the machine 0.6+14+0.6
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IV. CONCLUSION Definition 3: A triangular norm o#-norm7’ denotes a class

We have presented two measurement methodologies @fbinary functions, which satisfies the following conditions.
the assessment of machine flexibility, which incorporate thregoundary conditions: 7(0,a) = 0,7(a,1) = T(1, a) = a.

major operational aspects: setup, versatility, and adeStabi"W(/Ionotonicity: T(a,b) < T(c, d) whenevera < c
The first measure provides a relative evaluation, as it is b<d -7
based on comparisons among crisp machine characteristigimmew: T(_a b) = T(b, a).

This measure places emphasis on beliefs of the ma”ag?@sociativity: T(f(a, b),c) ;T(a,T(b, o).

as to the importance of each operational characteristic in

the measurement of flexibility and results in a situatior]zxammes oft-normsT are min(a, b), ab, max (0, a+b— 1)
specific measurement. In the second measure, the values@f The same conditions hold %or7tlne;:onorm 75 Every ¢-

flexibility is deduced from a fuzzy reasoning process in theyym determines a unique duatonorms, which is defined
context of a rule-based system. No analytic formulas ¢

numerical data, which are difficult to find in practice, are

required in order to assess flexibility. The main characteristic S(a,b)=1-T(1—a,1-0b)

of this approach is that it utilizes natural language expressions

and thus captures the knowledge about the measuremenpof

machine flexibility. Furthermore, it should be noted that the

fuzzy measure is proposed from a structural perspective, as one T(a,b)=1-5(1—-a,1-17).

can use linguistic rules of different form or other approximate

reasoning procedures to achieve a desirable performancé=kamples oft-conormsS are max(a,b),a + b — ab and min

a given context. The measurement schemes proposed in fhis: + b). From [26], [37], and other investigations, it can be
paper appear to have two advantages. argued that the-norms-conorms are suitable candidates for

1) They are easy to use and interpret and suitable in coffnjunctions and disjunctions in many-valued logic.
paring alternative machine designs. Equation (1) allows
flexibility comparisons between alternate machines pr8&- Interval-Valued Fuzzy Sets [33]-[35]
vided precise numerical data exist. In practice, however,EVery linguistic proposition can be represented by an

the fuzzy measurement scheme looks more attracti{gieryal-valued fuzzy set. Generally, EC(e) is a logical
as it utilizes already gained knowledge together witionnective for(s), then

natural language ratings, which are favored by managers.

2) They combine three different parameters of a production DNF(e) C LC(e) C CNF(e).
system, which play an important role in defining and - .
measuring machine-level flexibility. For the propositions AND, OR, and IF.. THEN, LC(e) is

A topic of future research is the development of a manufa@€fined as follows:

turing system measure able to capture the uncertainty in the

interrelationships among the various types of flexibility. To DNF(AAND B) =ANB C LC(A AND B)

accomplish that, further research is needed to define measures CAuB)N(AUB)N(A°UB)
for other flexibility types such as routing, material handling, =CNFA AND B) a7)
process, and labor using fuzzy-logic methodologies. DNF(A OR B) = (AN B) U (AN B%) U (A° N B)
CLC(AORB)C AUB
=CNFA4 OR B) (18)
APPENDIX

DNF(A — B) =(ANB)U(A°N B)U (A° N B)
CLC(A— B)C A°UB

A. Definitions and Background —CNF(A — B) (19)
Definition 1: Two fuzzy setsd and B are equalA = B)
if and only if Equations (17)—(19) are written in the fuzzy-set domain, and

consequentlyn, U, and ¢ are the well-known intersection,

union, and complement operators, respectively, which corre-

spond to appropriatenorm7’, ¢-conorms, and complemertft

operators in the domain of membership functions, respectively.

Definition 2: A is a subset oB(A C B) if and only if jl'hus,'the interval-valued fuzzy set in the membership domain
is defined as follows:

VaoeX:iralz) =rp(x).

Vaze Xira(z) <rp(z). HDNF(5,T,¢) < pLC £ HONF(S,T,¢)

whereT’, S, and¢ are thet-norm, ¢-conorm, and complement
Now, for r4(z) = a andrg(x) = b, we have Definition 3.  operators, respectively.
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1) Three-Antecedent Intersection [35Consider a three-

antecedent rule as follows:
IF X, is A; AND X, is A, AND X5 is A; THEN Y is B
or
A; AND A, AND A; — B.

It is known that for a two-antecedent intersection, we have

Ll =DNF(A; AND A,) € LC (AND)
C CNF(A; AND Ay) = UL (20)

For the three-antecedent intersectidn AND A, AND As,

and according to (17) and (20), we have two families ofyy;

interval-valued fuzzy sets and, as follows:
DNF(LIZI AND A3) C LCPI(AND)

C CNF L AND 45) (21)
DNF(U AND A3) € LCP/(AND)
CCNRUPIAND 45).  (22)

In general, it is not known whether CFZ AND A3)
is larger or smaller than CNE!2l AND A43), since these
expressions are nonmonotonic.

Theorem [35]: The lower bound of the three-antecedentg;

intersection 4; AND A, AND Aj” is DNF(LIZl AND A3),
and its upper bound i&{CNF(L[Zl AND A3), CNFU

AND Aj3)}, whereU is set union, which corresponds to an

appropriatet-conorm.S in the membership domain.

Proof: Let LI2I U, and A5 be fuzzy sets with mem- (1]

bership functions values «, anda € [0, 1], respectively, and
LI C Ul or in the membership domaifa; ) =1 < u =
pyte - Itis clear thaw® <16, whereu® = 1—w andi® =1-1.
For the lower bound, we notice that? C U2l implies

DNF(LM AND Ag) - (Lm N Ag) C (Um N Ag)
_ DNF(U[21 AND Ag)

and the result follows directly, as DNEP?! AND A4;) is the

lowest of the lower bounds in (21) and (22). For the upp
bound, we observe that there is no explicit relationship among

CNF(L[ AND A3) and CNRUl AND As). In particular,
from (17), we have

CNF(Lm AND Ag) - (L[21 u Ag) N (L[21 u Ag)
N (L[QJC U Ag)
cr\u:(U[21 AND Ag) = (U[21 U Ag) N (U[21 U Ag)
N (Umc U Ag)
or, equivalently, in the membership domain

HONF(LI2) AND A3) — T(T(S(, a), S(1,a%)), S(I°, a)) (23)
HCONF(U2] AND A3) = T(T(S(U,, a)v S(U'v ac))v S(U'cv a)) (24)

From the monotonicity condition, we know tha&t(/,a) <
S(u,a),S(,a%) < S(u,a®), and

TS, a),S(,a%)) <T(S(u,a),S(u,a))

IEEE TRANSACTIONS ON ENGINEERING MANAGEMENT, VOL. 45, NO. 1, FEBRUARY 1998

but S(u°,a) < S(I°, a), and thus depending on the relations
amongl,u, and a, penp(re aND 44) CoUld be either larger
or smaller thanucxpwe anp 4,), 1-€., CNF@A AND B) is
nonmonotonic. Consequently, the upper bourill! of the
upper bounds of (20) and (21) is given in the fuzzy-set domain
by the union of CNFL!Zl AND A3) and CNF{U2 AND Aj),

ie.,

Ul = u{CNF(L[‘ZJ AND Ag),c:NF(U[21 AND Ag)}. (25)
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