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Summary

The objective of this paper is to investigate the efficiency of various optimization methods based on mathe-
matical programming and evolutionary algorithms for solving structural optimization problems under static
and seismic loading conditions. Particular emphasis is given on modified versions of the basic evolutionary
algorithms aiming at improving the performance of the optimization procedure. Modified versions of both
genetic algorithms and evolution strategies combined with mathematical programming methods to form
hybrid methodologies are also tested and compared and proved particularly promising. Furthermore, the
structural analysis phase is replaced by a neural network prediction for the computation of the necessary data
required by the evolutionary algorithms. Advanced domain decomposition techniques particularly tailored
for parallel solution of large-scale sensitivity analysis problems are also implemented. The efficiency of a
rigorous approach for treating seismic loading is investigated and compared with a simplified dynamic anal-
ysis adopted by seismic codes in the framework of finding the optimum design of structures with minimum
weight. In this context a number of accelerograms are produced from the elastic design response spectrum
of the region. These accelerograms constitute the multiple loading conditions under which the structures
are optimally designed. The numerical tests presented demonstrate the computational advantages of the
discussed methods, which become more pronounced in large-scale optimization problems.

1 INTRODUCTION

Since 1970 structural optimization has been the subject of intensive research and several dif-
ferent approaches for optimal design of structures have been advocated [25,35,51,67,76,78,90].
Mathematical programming methods make use of local curvature information derived from
linearization of the original functions by using their derivatives with respect to the design
variables at points obtained in the process of optimization to construct an approximate
model of the initial problem. On the other hand the application of combinatorial opti-
mization methods based on probabilistic searching do not need gradient information and
therefore avoid to perform the computationally expensive sensitivity analysis step. Gradi-
ent based methods present a satisfactory local rate of convergence, but they cannot assure
that the global optimum can be found, while combinatorial optimization techniques, are
in general more robust and present a better global behaviour than the mathematical pro-
gramming methods. They may suffer, however, from a slow rate of convergence towards
the global optimum.

During the last three decades there has been a growing interest in problem solving
systems based on algorithms that rely on analogies to natural processes, called Evolution-
ary Algorithms (EA). The best-known algorithms in this class include Evolutionary Pro-
gramming (EP) [24], Genetic Algorithms (GA) [31,41], Evolution Strategies (ES) [69,75].
Evolution- based systems maintain a population of potential solutions. These systems have
some selection process based on fitness of individuals and some recombination operators.
Both GA and ES imitate biological evolution and combine the concept of artificial survival
of the fittest with evolutionary operators to form a robust search mechanism.

Over the last ten years artificial intelligence techniques [13,45] have emerged as a pow-
erful tool that could be used to replace time-consuming procedures in many scientific or
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engineering applications. The use of NN to predict finite element analysis outputs has been
studied previously in the context of optimal design of structural systems [4,5,7,14,34,59,77]
and also in some other areas of structural engineering applications, such as structural dam-
age assessment, structural reliability analysis, finite element mesh generation or fracture
mechanics [33,44,62,79,84,87].

In this work the efficiency of both mathematical programming and evolutionary algo-
rithms is investigated in sizing, shape and topology optimization problems. In order to
benefit from the advantages of both methodologies combinations of EA with mathematical
programming are also examined in an attempt to increase further the robustness as well
as the computational efficiency of the optimization procedure. Furthermore, combinations
of EA and Neural Networks (NN) are also implemented and tested in sizing optimization
problems.

Since a great deal of effort is spent for the solution of the finite element equilibrium
equations encountered during the optimization process specially tailored solution methods
have been applied and tested in this work in a variety of optimization problems. These
methods implemented in serial and parallel computing environments can have a paramount
effect on the computational performance of the whole optimization procedure.

Structural optimization is also performed under seismic loading. In this case the com-
putational effort for optimization can be orders of magnitude more than the corresponding
effort for static loading. A rigorous approach based on a number of artificial accelerograms
treated as multiple loading conditions is compared with a simplified response spectrum
modal analysis adopted by the seismic codes. The numerical tests presented demonstrate
the computational advantages of the discussed methods, which become more pronounced
in large- scale and computationally intensive optimization problems.

2 FORMULATION OF THE STRUCTURAL OPTIMIZATION PROBLEM

Structural optimization problems are characterized by various objective and constraint
functions that are generally non-linear functions of the design variables. These functions are
usually implicit, discontinuous and non-convex. The mathematical formulation of structural
optimization problems with respect to the design variables, the objective and constraint
functions depend on the type of the application. However, all optimization problems can
be expressed in standard mathematical terms as a non-linear programming problem (NLP),
which in general form can be stated as follows:

min F (s)

subject to gj(s) ≤ 0 j = 1, · · · ,m

s1i ≤ si ≤ sui i = 1, · · · , n

(1)

where, s is the vector of design variables, F (s) is the objective function to be minimized,
gj(s) are the behavioural constraints, s1i and s

u
i are the lower and the upper bounds on a

typical design variable si. Equality constraints are usually rarely imposed. Whenever they
are used they are treated for simplicity as a set of two inequality constraints.

There are mainly three classes of structural optimization problems: sizing, shape and
topology or layout. Initially structural optimization was focused on sizing optimization,
such as optimizing cross sectional areas of truss and frame structures, or the thickness of
plates and shells. The next step was to consider finding optimum boundaries of a structure,
and therefore to optimize its shape. In the former case the structural domain is fixed, while
in the latter case it is not fixed but it has a predefined topology. In both cases a non-optimal
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starting topology can lead to sub-optimal results. To overcome this deficiency structural
topology optimization needs to be employed, which allows the designer to optimize the
layout or the topology of a structure by detecting and removing the low-stressed material
in the structure which is not used effectively.

2.1 Sizing Optimization

In sizing optimization problems the aim is usually to minimize the weight of the structure
under certain behavioural constraints on stresses and displacements. The design variables
are most frequently chosen to be dimensions of the cross-sectional areas of the members of
the structure. Due to engineering practice demands the members are divided into groups
having the same design variables. This linking of elements results in a trade-off between the
use of more material and the need of symmetry and uniformity of structures due to practical
considerations. Furthermore, it has to be to taken into account that due to fabrication
limitations the design variables are not continuous but discrete since cross-sections belong
to a certain set.

A discrete structural optimization problem can be formulated in the following form

min F (s)

subject to gj(s) ≤ 0 j = 1, · · · ,m

si ∈ Rd i = 1, · · · , n

(2)

where Rd is a given set of discrete values representing the available structural member
cross-sections and design variables si (i = 1, · · · , n) can take values only from this set.

The sizing optimization methodology proceeds with the following steps: (i) At the
outset of the optimization the geometry, the boundaries and the loads of the structure
under investigation have to be defined. (ii) The design variables, which may or may not be
independent to each other, are also properly selected. Furthermore, the constraints are also
defined in this stage in order to formulate the optimization problem as in eq. (2). (iii) A
finite element analysis, is then carried out and the displacements and stresses are evaluated.
(iv) If a gradient-based optimizer is used then the sensitivities of the constraints and the
objective function to small changes of the design variables are computed. (v) The design
variables are being optimized. If the convergence criteria for the optimization algorithm
are satisfied, then the optimum solution has been found and the process is terminated, else
the optimizer updates the design variable values and the whole process is repeated from
step (iii).

2.2 Shape Optimization

In structural shape optimization problems the aim is to improve the performance of the
structure by modifying its boundaries. This can be numerically achieved by minimizing
an objective function subjected to certain constraints [37,68]. All functions are related to
the design variables, which are some of the coordinates of the key points in the boundary
of the structure. The shape optimization approach adopted in the present study is based
on a previous work by Hinton and Sienz [37] for treating two-dimensional problems. More
specifically the shape optimization methodology proceeds with the following steps: (i) At
the outset of the optimization, the geometry of the structure under investigation has to be
defined. The boundaries of the structure are modeled using cubic B-splines that, in turn,
are defined by a set of key points. Some of the coordinates of these key points will be the
design variables which may or may not be independent to each other. (ii) An automatic
mesh generator is used to create a valid and complete finite element model. A finite element
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analysis is then carried out and the displacements and stresses are evaluated. In order to
increase the accuracy of the analysis an h-type adaptivity analysis may be incorporated in
this stage. (iii) If a gradient- based optimizer is used then the sensitivities of the constraints
and the objective function to small changes of the design variables are computed either with
the finite difference, or with the semi-analytical method. (iv) The optimization problem
is solved; the design variables are being optimized and the new shape of the structure is
defined. If the convergence criteria for the optimization algorithm are satisfied, then the
optimum solution has been found and the process is terminated, else a new geometry is
defined and the whole process is repeated from step (ii).

2.3 Topology Optimization

Structural topology optimization assists the designer to define the type of structure, which
is best suited to satisfy the operating conditions for the problem in question. It can be seen
as a procedure of optimizing the rational arrangement of the available material in the design
space and eliminating the material that is not needed. Topology optimization is usually
employed in order to achieve an acceptable initial layout of the structure, which is then
refined with a shape optimization tool. The topology optimization procedure proceeds step-
by-step with a gradual ”removal” of small portions of low stressed material, which are being
used inefficiently. This approach is treated in this study as a typical case of a structural
reanalysis problem with small variations of the stiffness matrix between two subsequent
optimization steps.

Many researchers have presented solutions for structural topology optimization prob-
lems. Topological or layout optimization can be undertaken by employing one of the fol-
lowing main approaches, which have evolved during the last few years [38]: (i) Ground
structure approach [66,77], (ii) homogenization method [12,36,80], (iii) bubble method [19]
and (iv) fully stressed design technique [88,92]. The first three approaches have several
things in common. They are optimization techniques with an objective function, design
variables, constraints and they solve the optimization problem by using an algorithm based
on sequential quadratic programming (approach (i)), or on an optimality criterion concept
(approaches (ii) and (iii)). However, inherently linked with the solution of the optimization
problem is the complexity of these approaches. The fully stressed design technique on the
other hand, although not an optimization algorithm in the conventional sense, proceeds by
removing inefficient material, and therefore optimizes the use of the remaining material in
the structure, in an evolutionary process.

At present only a limited number of studies is devoted to 3-D optimal topology design of
structures. For this type of problems the main difficulty when a homogenization method is
used is the orientation of the material voids which is more complicated than in the 2-D case.
This difficulty is not present in the case of the fully stressed design technique. The work
presented in this study is based on the implementation of the evolutionary fully stressed
design technique (FSD) proposed by Hinton and Sienz [38] and the improved implementa-
tion presented by Papadrakakis et al. [65] for 2-D topology optimization problems. This
methodology is extended to 3-D topology optimization problems using solid finite elements.
Furthermore an investigation is performed on the impact of using effective domain decom-
position solution techniques on the overall performance of the FSD topology optimization
approach.

The algorithm for topology optimization adopted in this study is based on the simple
principle that material which has small stress levels is used inefficiently and therefore it
can be removed. Thus, by removing small amounts of material at each optimization step
the layout of the structure evolves gradually. In order to achieve convergence of the whole
optimization procedure, it is important the amount of material removed at each stage to
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be small and to maintain a smooth transition from one layout of the structure to the
subsequent one.

The domain of the structure, which is called the reference domain, can be divided into
the design domain and the non-design domain. The non-design domain covers regions with
stress concentrations, such as supports and areas where loads are applied, and therefore it
cannot be modified throughout the whole topology optimization process. After the gener-
ation of the finite element mesh, the evolutionary fully stressed design cycle is activated,
where a linear elastic finite element analysis is carried out. The maximum principal stress
σpr for each element can be computed which for convenience is called stress level and is
denoted as σevo. The maximum stress level σmax of the elements in the structure at the
current optimization step is defined, and all elements that fulfill the condition

σevo < ratre× σmax (3)

are removed, or switched-off, where ratre is the rejection rate parameter [93]. The elements
are removed by assigning them a relatively small elastic modulus which is typically

Eoff = 10−5 ×Eon (4)

In this way the elements switched-off virtually do not carry any load and their stress
levels are accordingly small in subsequent analyses. This strategy is called “hard kill”, since
the low stressed elements are immediately removed, in contrast with the “soft kill” method
where the elastic modulus varies linearly and the elements are removed more gradually. The
remaining elements are considered active and they are sorted in ascending order according
to their stress levels before a subsequent analysis is performed.

The iterative process of element removal and addition, if element growth is allowed, is
continued until one of several specified convergence criteria are met: (i) All stress levels are
larger than a certain percentage value of the maximum stress. This criterion assumes that a
fully stressed design has been achieved and the material is used efficiently. (ii) The number
of active elements is smaller than a specified percentage of the total number of elements.
For uniform meshes, which are commonly used in topology optimization problems, this
criterion is equivalent to an area or volume fraction of the initial design, which will be in
use in the final layout. (iii) When element growth is allowed the evolutionary process is
completed when more elements are switched-on than they are switched-off.

3 MATHEMATICAL PROGRAMMING OPTIMIZATION ALGORITHMS

Mathematical programming algorithms such as the successive quadratic programming me-
thod [83], the generalized reduced gradient method [47], the method of moving asymptotes
[81], the method of feasible directions [89] have been used for structural optimization pro-
blems. Successive Quadratic Programming (SQP) methods are regarded as the standard
general purpose mathematical programming algorithms for solving non-linear programming
optimization problems [28]. They are also considered to be the most suitable methods for
solving structural optimization problems [6,73,83]. Such methods make use of local curva-
ture information derived from linearization of the original functions, by using their deriva-
tives with respect to the design variables at points obtained in the process of optimization.
Thus, a quadratic programming model (or subproblem) is constructed from the initial NLP
problem. A local minimizer is found by solving a sequence of these QP subproblems using
a quadratic approximation of the objective function. Each subproblem has the form

minimize
1
2
pTHp+ gT p
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subject to Ap+ h(s) ≤ 0

s1 ≤ p ≤ su
(5)

where p is the search direction subjected to upper and lower bounds, g is the gradient of
the objective function, A is the Jacobian of the constraints, usually the active ones only
(i.e. those that are either violated, or not far from being violated), s1 = s1− s, su = su− s
and H is an approximation of the Hessian matrix of the Lagrangian function

L(s, λ) = F (s) + λh(s) (6)

in which λ are the Lagrange multipliers under the non-negativity restriction (λ ≥ 0) for
the inequality constraints. In order to construct the Jacobian and the Hessian matrices of
the QP subproblem the derivatives of the objective and constraint functions are required.
These derivatives are computed during the sensitivity analysis phase.

There are two ways to solve this QP subproblem, either with a primal [29], or a dual
[23] formulation. The primal algorithm adopted in this study is divided into three phases:
(i) the solution of the QP subproblem to obtain the search direction, (ii) the line search
along the search direction p, (iii) the update of the Hessian matrix H. Once the direction
vector p is found a line search is performed, involving only the nonlinear constraints, in
order to produce a “sufficient decrease” to the merit function ϕ. This merit function is an
augmented Lagrangian function of the form [29]

ϕ = F (s)−
∑
i

λi(gi(s)− γi) + 1
2

∑
i

ρi(gi(s)− γi)2 (7)

where γi are the non-negative slack variables of the inequality constraints derived from the
solution of the QP subproblem. These slack variables allow the active inequality constraints
to be treated as equalities and avoid possible discontinuities. Finally, ρi are the penalty
parameters which are initially set to zero and in subsequent iterations are increased when-
ever this is necessary in order to control the violation of the constraints and to ensure that
merit function follows a descent path.

The update of the Hessian matrix of the Lagrangian function is performed with a BFGS
quasi-Newton update [28] where attention is given to keep the Hessian matrix positive
definite. In order to incorporate the new curvature information obtained through the last
optimization step, the updated Hessian H̃ is defined as a rank-two modification of H

H̃ = H − 1
wTHw

HwwTH +
1
yTw

yyT (8)

where w and y denote the change in the design variable vector s and the gradient vector of
the Lagrangian function of eq. (6), respectively. If the quadratic function is convex then
the Hessian is positive definite, or positive semi-definite and the solution obtained will be a
global optimum, else if the quadratic function is non-convex then the Hessian is indefinite
and if a solution exists it is only a local optimum.

3.1 Sensitivity Analysis

The most time-consuming part of any optimization algorithm based on mathematical pro-
gramming methods is devoted to the sensitivity analysis phase [65], which is an important
ingredient of all mathematical programming optimization methods. Although, sensitivity
analysis is mostly mentioned in the context of structural optimization, it has evolved into a
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research topic of its own. The calculation of the sensitivity coefficients follows the applica-
tion of a relatively small perturbation to each primary design variable. Several techniques
have been developed which can be mainly distinguished by their numerical efficiency and
their implementation aspects [16].

A classification of the discrete methods for sensitivity analysis is the following. (i) Global
finite difference method: A full finite element analysis has to be performed for each design
variable and the accuracy of the method depends strongly on the value of the perturbation
of the design variables. (ii) Semi-analytical method: The stiffness matrix of the initial fi-
nite element solution is retained during the computation of the sensitivities. This provides
an improved efficiency over the finite difference method by a relatively small increase in
the algorithmic complexity. The accuracy problem involved with the numerical differen-
tiation can be overcome by using the “exact” semi-analytical method which needs more
programming effort than the simple method but it is computationally more efficient. (iii)
Analytical method: The finite element equations, the objective and constraint functions are
differentiated analytically.

The semi-analytical and the finite difference approaches are the two most widely used
types of sensitivity analysis techniques. From the algorithmic point of view the semi-
analytical technique results in a typical linear solution problem with multiple right-hand
sides in which the stiffness matrix remains unchanged, while the finite difference technique
results in a typical reanalysis problem in which the stiffness matrix is modified due to the
perturbations of the design variables. In both shape and sizing optimization problems 60%
to 90% of the computations are spent for the solution of equilibrium equations required for
the finite element analysis and sensitivity analysis.

3.1.1 The semi-analytical (SA) method

The SA method is based on the chain rule differentiation of the finite element equations
Ku = f

K
∂u

∂sk
+
∂K

∂sk
u =

∂f

∂sk
(9)

which when rearranged results in

K
∂u

∂sk
= f∗k (10)

where

f∗k =
∂f

∂sk
− ∂K

∂sk
u (11)

f∗k represents a pseudo-load vector. The derivatives of ∂K/∂sk and ∂f/∂sk are computed
for each design variable by recalculating the new values of K(sk+∆sk) and f(sk+∆sk) for
a small perturbation ∆sk of the design variable sk. The derivatives of ∂f/∂sk are computed
using a forward finite difference scheme. With respect to the differentiation of K the semi-
analytical approach is implemented in two versions: The conventional SA and the “exact”
SA. In the conventional sensitivity analysis (CSA), the values of the derivatives in eq.(9)
are calculated by applying the forward difference approximation scheme

∂K

∂sk
≈ ∆K

∆sk
=
K(sk +∆sk)−K(sk)

∆sk
(12)
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In the “exact” semi-analytical method (ESA) [54] the derivatives ∂K/∂sk are computed on
the element level as follows

∂k

∂sk
=

n∑
j=1

∂k

∂αj

∂αj
∂sk

(13)

where n is the number of elemental nodal coordinates affected by the perturbation of the
design variable sk and αj are the nodal coordinates of the element. The ESA method is
more accurate and leads the mathematical optimizer to a faster convergence [39]. This
approach is used in the present study.

Stress gradients can be calculated by differentiating σ = DBu as follows

∂σ

∂sk
=
∂D

∂sk
Bu+D

∂B

∂sk
u+DB

∂u

∂sk
(14)

Since the elasticity matrix D is not a function of the design variables then eq.(14) reduces
to

∂σ

∂sk
= D

∂B

∂sk
u+DB

∂u

∂sk
(15)

In eq. (15), ∂u/∂sk and ∂B/∂sk may be computed using a forward finite difference scheme.
Using the values of ∂σ/∂sk the sensitivities of different types of stresses (e.g. the principal
stresses or the equivalent stresses) can be readily calculated by analytically differentiating
their expressions with respect to the shape variables.

3.1.2 The global finite difference (GFD) method

In this method the design sensitivities for the displacements ∂u/∂sk and the stresses ∂σ/∂sk,
which are needed for the gradients of the constraints, are computed using a forward differ-
ence scheme

∂u

∂sk
≈ ∆u

∆sk
=
u(sk +∆sk)− u(sk)

∆sk
(16)

∂σ

∂sk
≈ ∆σ

∆sk
=
σ(sk +∆sk)− σ(sk)

∆sk
(17)

The perturbed displacement vector u(sk+∆sk) of the finite element equations is evaluated
by

K(sk +∆sk)u(sk +∆sk) = f(sk +∆sk) (18)

and the perturbed stresses σ(sk +∆sk) are computed from

σ(sk +∆sk) = DB(sk +∆sk)u(sk +∆sk) (19)

where D and B are the elasticity and the deformation matrices, respectively. The GFD
scheme is usually sensitive to the accuracy of the computed perturbed displacement vectors
which is dependent on the magnitude of the perturbation of the design variables. The
magnitude of this perturbation is usually taken between 10−3 and 10−5.
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3.2 Solving The Sensitivity Analysis And Topology Optimization Problem

Usually, a real world structural optimization problem, whether it is topology, shape, sizing
or an integrated structural optimization problem, is a computationally intensive task, where
60% to 90% of the computations are spent for the solution of the finite element equilibrium
equations required for the analysis steps within the optimization procedure. Thus, the
computational efficiency of the finite element solver has a paramount effect on the efficiency
of the optimization algorithm.

The numerical problem encountered in the sensitivity analysis phase can be seen as
an algebraic problem with multiple right-hand sides of the type Kui = fi (i = 1, · · · , q),
when the exact semi-analytical (ESA) approach is used, or as a nearby problem of the type
(K+∆Ki)ui = fi (i = 1, · · · , q), when the global finite difference approach is implemented.
In the case of topology optimization with the fully stressed design concept adopted in this
study, a nearby problem has to be solved in each optimization step.

The solution methods implemented and tested in this work can be distinguished in
single- and multi-domain methods. Single-domain methods perform operation on the global
structural level, while in multi-domain methods the operations are performed in subdomains
or substructures in a successive or simultaneous fashion. The second case corresponds to
the implementation of the solution algorithms in parallel computing environment.

3.2.1 Single-domain methods

Single-domain hybrid solution schemes based on a combination of direct and preconditioned
iterative methods are applied in the context of both sensitivity analysis and topology opti-
mization. These schemes combine direct skyline algorithms with preconditioned conjugate
gradient and Lanczos methods and are properly modified to address the special features of
the particular optimization problem at hand.

The Incomplete Cholesky Preconditioned Conjugate Gradient (ICCG) Method

The PCG method has become very popular for the solution of large-scale finite element
problems. An efficient preconditioning matrix makes PCG very attractive even for ill-
conditioned problems without destroying the characteristic features of the method. Several
global preconditioners have been used in the past for solving finite element linear problems
[56]. Preconditioning techniques based on incomplete Cholesky factorization are capable in
increasing the convergence rate of the basic iterative method, at the expense of more storage
requirements. In the present study the incomplete procedure by magnitude proposed by
Bitoulas and Papadrakakis [15], is implemented in a mixed precision arithmetic mode, and a
compact storage scheme is used to store both the stiffness and the preconditioning matrices
row-by-row.

The reason for performing an incomplete factorization is to obtain a reasonably accurate
factorization of the stiffness matrix without generating too many fill-ins, whereas a com-
plete factorization produces the strongest possible preconditioner, which in exact precision
arithmetic is actually the inverse of K. In sensitivity analysis the incomplete factorization
of the stiffness matrix K can be written: LDLT = K0 + ∆K − E, where E is an error
matrix which does not have to be formed. For this class of methods, E is defined by the
computed positions of “small” elements in L, which do not satisfy a specified magnitude
criterion and therefore are discarded. If we have to deal with a nearby problem, such as
the case of GFD sensitivity analysis and topology optimization problems, the matrix E is
taken as the ∆K matrix, whereas in the case of SA sensitivity analysis both E and ∆K
are taken as null matrices. The complete Cholesky factorization of the “initial” stiffness
matrix K0 is used as the preconditioning matrix in its original skyline form and is stored
in single precision arithmetic.
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Another important factor affecting the performance of the PCG iterative procedure for
solving Kx = b is the determination of the residual vector. The accuracy achieved and the
computational labor of the method is largely determined by how this is calculated. A study
performed in [56] revealed that the computation of the residual vector of the equilibrium
equations Kx = b from its defining formula r(m) = Kx(m)−b with an explicit or a first order
differences matrix-vector multiplication Ku(m) offers no improvement in the accuracy of the
computed results. In fact, it was found that, contrary to previous recommendations, the
calculation of the residuals by the recursive expression r(m+1) = r(m) + αmKd(m), where
d is the direction vector, produces a more stable and well-behaved iterative procedure.
Based on this observation a mixed precision arithmetic PCG implementation is proposed
in which all computations are performed in single precision arithmetic, except for double
precision arithmetic computation of the matrix-vector multiplication involved in the recur-
sive evaluation of the residual vector. This implementation is a robust and reliable solution
procedure even for handling large and ill-conditioned problems, while it is also computer
storage-effective. It was also demonstrated to be more cost-effective, for the same storage
demands, than double precision arithmetic calculations [56].

The Neumann Series-CG Method (NSCG)

The approximation of the inverse of the stiffness matrix using a Neumann series expansion
has been used in the framework of stochastic finite element analysis, structural reanalysis
and damage analysis problems. In all these cases the method was implemented on an
“as is” basis, without any corrections to improve the quality of the solution, thus the
results were satisfactory only in the vicinity of the initial design and unacceptable for large
modifications of the stiffness matrix. In a recent study by Papadrakakis and Papadopoulos
[61] the method was successfully combined with the conjugate gradient algorithm resulting
in an improvement on the accuracies achieved with low additional computational cost. It
can also handle cases with significant changes of the stiffness matrix.

The solution of a typical reanalysis problem

(K0 +∆K)u = f (20)

yields

u = (I +K−1
0 ∆K)−1K−1

0 f (21)

The term in parenthesis can be expressed in a Neumann expansion giving

u = (I − P + P 2 − P 3 + · · · )K−1
0 f (22)

with P = K−1
0 ∆K. The response vector can now be represented by the following series

u = u0 − Pu0 + P 2u0 − P 2u0 + · · · (23)

or

u = u0 − u1 + u2 − u3 + · · · (24)
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The series solution can also be expressed by the following recursive equation

K0ui = ∆Kui−1 i = 1, 2, · · · (25)

The advantage of this expression is that the stiffness matrix has to be factorized once while
the additive terms ui to the solution of eq. (24) can be computed by successive backward
and forward substitutions.

In order to improve the quality of the preconditioning matrix C used in the PCGmethod,
a Neumann series expansion is implemented for the calculation of the preconditioned vector
z(m) = C−1r(m) of the PCG algorithm. The preconditioning matrix is now defined as
the complete global stiffness matrix K = K0 + ∆K, but the solution for z is performed
approximately using a truncated Neumann series expansion. Thus, the preconditioned
vector z of the PCG algorithm is obtained at each iteration by

z = z0 − z1 + z2 − z3 + · · · (26)

z0 is given by

z0 = K−1
0 r0 (27)

and

K0zi = ∆Kzi−1 i = 1, 2, · · · (28)

The incorporation of the Neumann series expansion in the preconditioned step of the
PCG algorithm can be seen from two different perspectives. From the PCG point of view
an improvement of the quality of the preconditioning matrix is achieved by computing a
better approximation to the solution of u = (K0 + ∆K)−1f than the one provided by
the preconditioning matrix K0. From the Neumann series expansion point of view, the
inaccuracy entailed by the truncated series is alleviated by the conjugate gradient iterative
procedure.

The Preconditioned Lanczos Method

When a sequence of right-hand sides has to be processed direct methods possess a clear
advantage over the conventional application of iterative methods. The major effort con-
cerned with the factorization of the stiffness matrix is not repeated and only a back and
forward substitution is required for each subsequent right-hand side. In the case of iterative
methods the whole work has to be repeated from the beginning for every right-hand side.

Papadrakakis and Smerou [63] presented an implementation of the Lanczos algorithm
for solving linear systems of equations with a sequence of right-hand sides. This algorithm
handles all approximations to the solution vectors simultaneously without the necessity
for keeping in fast or secondary storage the tridiagonal matrix or the orthonormal basis
produced by the Lanczos method. Thus, when the first solution vector has converged to a
required accuracy, good approximations to the remaining solution vectors have simultane-
ously been obtained. It then takes fewer iterations to reach the final accuracy by working
separately on each of the remaining vectors.

The equilibrium equations for multiple right-hand sides can be stated as follows:

K[u1 · · · uk] = [f1 · · · fk] (29)

or

KU = F (30)
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and the characteristic equations of the Lanczos algorithm become

TjYj = QT
j R0 (31)

and

Uj = QjYj (32)

where Yj = [y1, · · · , yk]j , Uj = [u1, · · · , uk]j consist of the jth approximation to the k
auxiliary and solution vectors y and u respectively, and R0 = [r10, · · · , rk0 ] with ri0 = f i−Kuj0
consists of the residual vectors. By using a Cholesky root-free decomposition of Tj we get

LjDjZj = QT
j R0 (33)

Uj = BjZj (34)

with Zj = [z1, · · · , zk]j and LjBT
j = QT

j . The last components of matrix Zj are now given
by

ζji = (qTj r
i
0 − δjdj−1ζj−1,i)/dj (35)

with δj = βj/dj−1, βj = (rTj C
−1rj)1/2 and C is the preconditioning matrix. The new

approximation to the solution vectors by

[x1 · · · xk]j = [x1 · · · xk]j−1 + bj [ζj1 · · · ζjk] (36)

If converge is achieved for the first right hand side

‖r(1)j ‖
‖r(1)1 ‖

< ε⇒ |ζj1| ‖r(1)j+1‖
‖r(1)1 ‖

< ε (37)

then continue iterations (separately) for the remaining f (i) (i = 2, · · · , k) with the PCG
algorithm [63].

3.2.2 Multi-domain methods

In computational structural mechanics there are basically three domain decomposition for-
mulations combined with the PCG method for solving linear finite element problems in
parallel computing environments. The first approach is the global subdomain implemen-
tation (GSI) in which a subdomain-by-subdomain PCG algorithm is implemented on the
global stiffness matrix. In the second approach the PCG algorithm is applied on the in-
terface problem after eliminating the internal degrees of freedom of each subdomain. This
Schur complement scheme is called the primal subdomain implementation (PSI) on the
interface to distinguish from the third approach which is called the dual subdomain imple-
mentation (DSI) on the interface. The most efficient DSI is the FETI method [21] which
incorporates a projection re-orthogonalization scheme for handling problems with multiple
or repeated right-hand sides.

The FETI method operates on totally disconnected subdomains, while the governing
equilibrium equations are derived by invoking stationarity of the energy functional subject
to displacement constraints which enforce the compatibility conditions on the subdomain
interface. The augmented equations are solved for the Lagrange multipliers after eliminating
the unknown displacements. The resulting interface problem is in general indefinite, due to
the presence of floating subdomains which do not have enough prescribed displacements to
eliminate the local rigid body modes. The solution of the indefinite problem is performed
by a preconditioned conjugate projected gradient (PCPG) algorithm.
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Solving Kui = fi(i = 1, 2, · · · , q)
The modified Lanczos method proposed in [63] can handle simultaneously with the first
right-hand side a sequence of right-hand sides. This means that all right-hand sides vectors
must be known in advance. When the multiple right-hand sides are not known in advance
a reorthogonalization procedure has been proposed by Farhat et al. [21], for extending
the PCG method to problems with repeated right-hand sides based on the K-conjugate
property of the search directions (dm = dTmKdi = 0 for m < i).

The implementation of the reorthogonalization technique is impractical when applied to
the full problemKu(i) = f (i) due to excessive storage requirements for keeping the direction
vectors dm. This methodology, however, has been efficiently combined with the DSI-FETI
method [22] where the size of the interface problem can be order(s) of magnitude less than
the size of the global problem. Thus, the cost of reorthogonalization is negligible compared
to the cost of the solution of the local problems associated with the matrix-vector products
of the FETI method, while the additional memory requirements are not excessive. The
modified search direction of the PCPG algorithm is given by

d′m+1 = dm+1 −
m∑
i=1

dTi FIdm+1

dTi FIdi
di (38)

which enforces explicitly the orthogonality condition d′m+1FIdi = 0, i = 1, · · · ,m. FI =∑s
j=1B

(j)K(j)B(j)
T
,K(j), B(j) are the subdomain matrices and the signed Boolean matrices

which localize the subdomain displacements on the interface, while “s” is the total number
of subdomains. The initial estimate λ(i+1)0 of the solution vector of the subsequent right-
hand side [f (i+1)λ f

(i+1)
γ ]T is given by

λ
(i+1)
0 = DT

k x+ x
′ (39)

whereDT
k FIDkx = DT

k (f
(i+1)
λ −FIx′) and x′ = GI (GT

I GI )−1f
(i+1)
γ . GI = [B(1)·R(1)· · ·B(sf )·

R(sf )] with R(j) being the rigid body modes and “sf” is the total number of floating
subdomains.

Solving (K0 +∆Ki)ui = f(i = 1, 2, · · · , q)
The hybrid solution schemes proposed in [65] for treating nearby problems, based on the
global formulation and solution of the problem of eq. (20), proved to be very efficient com-
pared with the standard direct skyline solver in sequential computing environment. Their
parallel implementation, however, is hindered by the inherent scalability difficulties encoun-
tered during the preconditioning step of single-domain methods which incorporates forward
and backward substitutions of a fully factorized stiffness matrix. In order to alleviate this
deficiency the GSI subdomain-by-subdomain PCG algorithm is implemented in this study
on the global stiffness matrix. The dominant matrix-vector operations of the stiffness and
the preconditioning matrices are performed in parallel on the basis of a multi-element group
partitioning of the entire domain.

In order to exploit the parallelizable features of the GSI-PCG method and to take
advantage of the efficiency of a fully factorized preconditioning matrix, the following two-
level methodology is proposed based on the combination of the GSI and the DSI approaches.
The GSI-PCG method is employed, using a multi-element group partitioning of the entire
finite element domain, in which the solution required during the preconditioning step is
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performed by the FETI method operating on the same mesh partitioning of the GSI-PCG
method. In the proposed methodology the preconditioning step of the GSI-PCG method

zm+1 = C−1
k rm+1 (40)

is performed by the FETI solution procedure. For the solution of this problem two method-
ologies, namely the GSI(ICCG)-FETI and the GSI(NSCG)-FETI are proposed. The second
approach is based on a Neumann series expansion of the preconditioning step.

The GSI(ICCG)-FETI method

In the GSI(PCG)-FETI method the iterations are performed on the global level with the
GSI-PCG method, using a complete Cholesky factorization of a nearby stiffness matrix as
preconditioner. Thus, the incomplete factorization of the stiffness matrix K0 +∆K can be
written as LDLT = K0 +∆K −E, where E is an error matrix which does not have to be
formed. Matrix E is usually defined by the computed positions of “small” elements in L
which do not satisfy a specified magnitude criterion and therefore are discarded [15]. For
the typical reanalysis problem

(K0 +∆Ki)ui = f (i = 1, · · · , q) (41)

matrix E is taken as ∆K, so that the preconditioning matrix becomes the complete factor-
ized initial stiffness matrix Ck = K0. Therefore, the solution of the preconditioning step of
the GSI-ICCG algorithm, which has to be performed at each GSI-ICCG iteration, can be
effortlessly executed, once K0 is factorized, by a forward and backward substitution.

With the parallel implementation of the two-level GSI(ICCG)-FETI method the pre-
conditioning step can be solved in parallel by the interface FETI method for treating the
repeated solutions required in eq. (40), using the same decomposition of the domain em-
ployed by the external GSI-PCG method. The procedure continues this way for every
reanalysis problem, while the FETI direction vectors are being reorthogonalized in order to
further decrease the number of FETI iterations within the preconditioning step. The solu-
tion of eq.(40) is performed ni ·nr times via the FETI method, where ni and nr correspond
to the number of GSI-PCG iterations and the number of reanalysis steps, respectively.

The GSI(NSCG)-FETI method

The quality of the preconditioning step of eq.(40) can be improved by computing the in-
verse approximation of the preconditioning matrix via a Neumann series expansion. The
preconditioning matrix is defined in this case as the complete stiffness matrix (K0 +∆K),
but the solution for zm+1 of eq. (40), which can be written as

zm+1 = (I +K−1
0 ∆K)−1K−1

0 rm+1 (42)

is performed approximately using a truncated Neumann series expansion

zm+1 = z′0 − z′1 + z′2 − z′3 + · · · (43)

with

z′0 = K
−1
0 rm+1 (44)

z′i = K
−1
0 (∆Kz′i−1), i = 1, 2 · · · (45)
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Figure 1. Square plate: (a) initial shape. (b) final shape

3.3 Numerical Tests

For the test examples considered in this section, isotropic material properties are assumed
(elastic modulus E = 210, 000 N/mm2 and Poison’s ratio ν = 0.3). The performance of
the parallel solution methods was examined using an SGI Power Challenge XL computer
with 14 R4000 processors. The convergence tolerance for all solution methods was taken
as 10−3.

3.3.1 Shape optimization with gradient-based optimizers

The performance of the optimization methods discussed is investigated in one characteristic
plane stress test example with isotropic material properties. The SQP method used for the
mathematical programming based optimization is taken from the NAG library [53]. The
problem definition of this example is given in Figure 1 where, due to symmetry, only a
quarter of the plate is modeled. The plate is under biaxial tension with one side loaded
with a distributed loading p = 0.65 N/mm2 and the other side loaded only with half of
this value, as shown in Figure 1. The objective is to minimize the volume of the structure
subject to an equivalent stress limit of σmax = 7.0 N/mm2. The design model consists of 8
key points and 5 primary design variables (2, 3, 4, 5, 6) which can move along radial lines.
The movement directions are indicated by the dashed arrows. The stress constraints are
imposed as a global constraint for all the Gauss points and as key point constraints for the
key points 2, 3, 4, 5, 6 and 8. The problem is analyzed with a fine mesh of 38,800 d.o.f.
giving a sparse global stiffness matrix with relatively large bandwidth. The characteristic
d.o.f. for 4 and 8 subdomains, as depicted in Figure 2a and 2b, are given in Table 1. The
ESA and the GFD methods are used to compute the sensitivities with ∆s = 10−5.

The performance of the solution methods presented in section 3.2 is investigated first in
serial computing mode with the conventional direct skyline and ICCG, NSCG and Lanczos
solvers. Furthermore, the parallel performance of the standard FETI (S-FETI) and a mod-
ified version (M-FETI) is investigated in both types of sensitivity analysis problems [55],
while the two-level PCG method is applied for the GFD sensitivity analysis test cases. In
M-FETI the rigid body modes are computed explicitly and are not obtained as a by-product
of the factorization procedure as in the S-FETI, while the local problem is solved via the
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(a)

(b)

Figure 2. Square plate: (a) finite element mesh in 4 subdomains. (b) finite ele-
ment mesh in 8 subdomains

subdomains 4 8
Total d.o.f. 38,800 38,800
Internal d.o.f.* 9,738 5,122
Ineterface d.o.f. 998 2,290

*of the larger subdomain

Table 1. Square plate: Characteristic d.o.f. for 4 and 8 subdomains

PCG algorithm with preconditioner the complete factorized stiffness matrix stored in single
precision arithmetic. In all test cases FETI methods are applied with re-orthogonalization
unless otherwise stated, while the lumped type preconditioner is used for the PCPG algo-
rithm for the solution of the constrained problem.
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The following abbreviations are used: Direct is the conventional direct skyline solver;
ICCG (ψ) and Lanczos (ψ) are the PCG and Lanczos solvers respectively, preconditioned
with a Cholesky factorized matrix controlled by the rejection parameter ψ. A value of ψ
between 0 and 1 corresponds to an incomplete Cholesky preconditioner, while ψ = 0 gives
the complete factorized matrix. NSCG-i is the NSCG solver with i terms of the Neumann
series expansion. The variants of the two-level implementation, namely the GSI(ICCG)-
FETI and GSI(NSCG)-FETI, are compared with the other solvers, both in serial and
parallel computing modes, in the case of GFD sensitivity analysis problems.

Table 2 demonstrates the performance of the methods operated in a sequential mode
for the case of ESA sensitivity analysis. In the standard FETI method and its variant the
operations are carried out in 4 subdomains. Table 3 shows the performance of S-FETI and
M-FETI, for the case of ESA sensitivity analysis, operated on parallel computing mode in
4 and 8 processors using 4 and 8 subdomains, respectively. The benefit from the use of the
reorthogonalization is also evident both in terms of FETI iterations and computing time.
Tables 4 and 5 depict the performance of the methods, for the case of GFD sensitivity
analysis, operated on sequential and parallel computing modes, respectively. In Tables 3
and 5 the iteration history is also depicted for six right-hand sides, which correspond to the
initial finite element solution and the sensitivity analysis for the five design variables of the
problem.

method
(4 subdomains-1 processor)

time
(s)

storage
(Mbytes)

Direct skyline 502 95
Lanczos (0) 524 63
Lanczos (1E-9) 417 29
ICCG (0) 514 61
ICCG (1E-9) 425 27
S-FETI 486 43
M-FETI 414 26

Table 2. Square plate: Performance of the methods in sequential mode in ESA
sensitivity analysis

right-hand
sides

1 2 3 4 5 6

method
(4 processors) iterations

time
(s)

storage
(Mbytes)

S-FETI-no reorth 67 60 65 51 53 53 420 41
S-FETI 33 16 13 10 9 8 150 43
M-FETI-no reorth 67 60 65 51 53 53 306 24
M-FETI 33 16 13 10 9 8 120 26

method
(8 processors) iterations

S-FETI-no reorth 271 266 253 219 199 204 398 20
S-FETI 64 24 18 14 11 11 92 23
M-FETI-no reorth 269 267 253 220 199 205 290 13
M-FETI 64 24 18 11 11 11 70 16

Table 3. Square plate: Performance of the methods in parallel mode in ESA
sensitivity analysis
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method
(4 subdomains)

time
(s)

storage
(Mbytes)

Direct skyline 2,790 95
Lanczos (0) 732 65
Lanczos (1E-9) 745 61
ICCG (0) 714 27
ICCG (1E-9) 2,108 43
S-FETI 1,782 26
M-FETI 779 29

Table 4. Square plate: Performance of the methods in parallel mode in GFD
sensitivity analysis

right-hand
sides

1 2 3 4 5 6

method
(4 processors) iterations

time
(s)

storage
(Mbytes)

S-FETI 33 33 33 33 33 33 667 43
M-FETI 33 33 33 33 33 33 574 26
GSI(ICCG) M- FETI 33 17 13 12 10 10 8 8 7 7 6 256 27
GSI(NSCG) M-FETI 33 17 14 12 11 11 9 7 7 6 6 249 29

method
(8 processors) iterations

S-FETI 64 64 64 64 64 64 396 23
M-FETI 64 64 64 64 64 64 332 16
GSI(ICCG) M- FETI 64 24 19 17 14 12 11 9 9 8 7 165 17
GSI(NSCG) M-FETI 64 24 18 16 14 13 11 10 9 8 7 163 18

Table 5. Square plate: Performance of the methods in parallel mode in GFD
sensitivity analysis

3.3.2 Topology optimization

The performance of the proposed multi-domain two-level methodologies is demonstrated
and compared with the one-level dual decomposition solvers in sequential and parallel
computing modes. They are also compared with the single-domain direct skyline solver and
the ICCG and NSCG hybrid solvers in sequential computing mode. For the single-domain
iterative solvers the following abbreviations are used: ICCG-n stands for the ICCG solver
in which the preconditioning matrix is formed with a complete Cholesky factorization and
is updated with a refactorization when the number of PCG iterations becomes greater than
n. NSCG-n stands for the NSCG solver using one term in the Neumann series expansion
in which a refactorization of the stiffness matrix is performed when the number of PCG
iterations becomes greater than n.

A cantilever beam is taken as the initial design domain for the topology optimization
test example. The design domain for the optimum layout of the structures covers a large
portion of the reference domain. Around areas of loading and support a non-design domain
is used in order to take into account manufacturing constraints and to avoid taking into
consideration high stress concentrations. The domain of the example is discretised using a
fine mesh of hexahedral elements in order to give a good resolution of the final topology and
to compute the stresses accurately. The initial values for the rejection rate, the evolution
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rate and the cut-off stress are taken as: 1%, 1% and 2,000 N/mm2, respectively. The basic
control parameters are chosen as follows: minimum and maximum number of elements to
be switched-off in every optimization step are taken as 0.5% and 2% of the total elements,
respectively. Convergence is achieved when all stress levels are within 70% of the maximum
stress or when the number of active elements is less than 30% of the total number of
elements, while isolated active elements are suppressed and no element growth is allowed.
The switching-off of the elements in all examples is accomplished by dividing the elastic
modulus for active elements by a factor of 105.

The cantilever beam is clamped on one face and loaded at the middle of the right-hand
face with a vertical load as shown in Figure 3. The finite element mesh consists of 9,600
solid elements, 11,737 nodes and 34,848 d.o.f. resulting in a dense global stiffness matrix
with narrow bandwidth. The characteristic d.o.f. for 4 and 8 subdomains are given in Table
6. The final layout of the structure is almost identical for all solution methods considered,
and it is depicted in Figure 3. Table 7 depicts the total optimization time in sequential
computing mode and the storage requirements. Table 8 demonstrates the performance of
the one-level and two- level multi-domain methods operated on parallel computing mode
in 4 and 8 processors using 4 and 8 subdomains, respectively.

(a)

(b)

Figure 3. 3D cantilever: (a) initial topology. (b) final topology
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Subdomains 4 8
Total d.o.f. 34,848 34,848
Internal d.o.f.* 9,075 4,719
Ineterface d.o.f. 1,079 2,541

*of the larger subdomain

Table 6. 3D cantilever: Characteristic d.o.f. for 4 and 8 subdomains

method
(4 subdomains-1 processor)

time
(s)

storage
(Mbytes)

Direct skyline 83,164 112
ICCG-4 41,785 69
NSCG-3 42,367 72
S-FETI 72,135 108
M-FETI 61,457 67
GSI(ICCG) M-FETI 43,863 71
GSI(NSCG) M-FETI 44,386 73

Table 7. 3D cantilever: Performance of the methods in sequential mode

method
(4 subdomains-4 processors)

time
(s)

storage
(Mbytes)

S-FETI 24,281 108
M-FETI 20,693 67
GSI(ICCG) M-FETI 14,086 71
GSI(NSCG) M-FETI 14,278 73

Method
(8 subdomains-8 processors)

S-FETI 15,724 103
M-FETI 13,361 65
GSI(ICCG) M-FETI 9,176 69
GSI(NSCG) M-FETI 9,302 71

Table 8. 3D cantilever: Performance of the methods in parallel mode

4 EVOLUTIONARY OPTIMIZATION ALGORITHMS

Computer algorithms based on the process of natural evolution have been found capable
to produce very powerful and robust search mechanisms although the similarity between
these algorithms and the natural evolution is based on crude imitation of biological reality.
The resulting Evolutionary Algorithms (EA) are based on a population of individuals, each
of which represents a search point in the space of potential solutions of a given problem.
These algorithms adopt a selection process based on the fitness of the individuals and some
recombination operators. The best known EA in this class include evolutionary program-
ming (EP) [24], Genetic Algorithms (GA) [31,41] and Evolution Strategies (ES) [69,75].
The first attempt to use evolutionary algorithms took place in the sixties by a team of
biologists [10] and was focused in building a computer program that would simulate the
process of evolution in nature.

Both GA and ES imitate biological evolution in nature and have three characteristics
that differ from other conventional optimization algorithms: (i) In place of the usual deter-
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ministic operators, they use randomized operators: mutation, selection and recombination.
(ii) Instead of a single design point, they work simultaneously with a population of design
points in the space of design variables. (iii) They can handle, with minor modifications
continuous, discrete or mixed optimization problems. The second characteristic allows for
natural implementation of GA and ES on a parallel computing environment [2,57,85].

In structural optimization problems, where the objective function and the constraints
are highly non-linear functions of the design variables, the computational effort spent in gra-
dient calculations required by the mathematical programming algorithms is usually large.
In two recent studies by Papadrakakis et al. [59,64] it was found that probabilistic search
algorithms are computationally efficient even if greater number of analyses is needed to
reach the optimum. These analyses are computationally less expensive than in the case of
mathematical programming algorithms since they do not need gradient information. Fur-
thermore, probabilistic methodologies were found, due to their random search, to be more
robust in finding the global optimum, whereas mathematical programming algorithms may
be trapped in local optima.

4.1 Genetic Algorithms

GA are probably the best-known evolutionary algorithms, receiving substantial attention
in recent years. The GA model used in this study and in many other structural design
applications refers to a model introduced and studied by Holland and co-workers [41]. In
general the term genetic algorithm refers to any population-based model that uses various
operators (selection-crossover-mutation) to evolve. In the basic genetic algorithm each
member of this population will be a binary or a real valued string, which is sometimes
referred to as a genotype or, alternatively, as a chromosome.

Different versions of GA have appeared in the literature in the last decade dealing with
methods for handling the constraints or techniques to reduce the size of the population of
design vectors. In this section the basic genetic algorithms together with some of the most
frequently used versions of GA are considered.

4.1.1 The Basic Genetic Algorithms

The three main steps of the basic GA

Step 0 Initialization

The first step in the implementation of any genetic algorithm is to generate an initial pop-
ulation. In most cases the initial population is generated randomly. In this study in order
to perform a comparison between various optimization techniques the initial population is
fixed and is chosen in the neighborhood of the initial design used for the mathematical pro-
gramming methods. After creating an initial population, each member of the population is
evaluated by computing its fitness function.

Step 1 Selection

Selection operator is applied to the current population to create an intermediate one. In
the first generation the initial population is considered as the intermediate one, while in
the next generations this population is created by the application of the selection operator.

Step 2 Generation

In order to create the next generation crossover and mutation operators are applied to
the intermediate population to create the next population. Crossover is a reproduction
operator, which forms a new chromosome by combining parts of each of the two parental
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chromosomes. Mutation is a reproduction operator that forms a new chromosome by mak-
ing (usually small) alterations to the values of genes in a copy of a single parent chromosome.
The process of going from the current population to the next population constitutes one
generation in the evolution process of a genetic algorithm. If the termination criteria are
satisfied the procedure stops otherwise returns to step 1.

Encoding

The first step before the activation of any operator is the step of encoding the design
variables of the optimization problem into a string of binary digits (l’s and 0’s) called a
chromosome. If there are n design variables in an optimization problem and each design
variable is encoded as a L-digit binary sequence, then a chromosome is a string of n × L
binary digits. In the case of discrete design variables each discrete values is assigned to a
binary string, while in the case of continuous design variables the design space is divided
into a number of intervals (a power of 2). The number of intervals L + 1 depends on the
tolerance given by the designer. If s ∈ [s�, su] is the decoded value of the binary string
< bLbL−1 · · · b0 > then

s = DE(< bLbL−1 · · · b0 >) = s� + su − s�
2L − 1

(
L∑
i=0

bi · 10i
)

(46)

where DE(·) is the function that performs the decoding procedure. In order to code a real
valued number into the binary form the reverse procedure is followed.

Evaluation of fitness function

Apart from the objective function the so-called fitness function is also used by a genetic
algorithm. The evaluation of a string refers to the evaluation of the objective function
value of that string and it is independent to the evaluation of any other string. The fitness
of that string, however, is always defined with respect to other members of the current
population. The fitness is used to determine the selection probability of this chromosome
to become the parent chromosome for the generation of the new chromosomes. In the basic
genetic algorithm, fitness is defined by: F ′

i/F
′ where F ′

i is the penalized objective function
associated with string i. F ′ is the average penalized objective function value of all the
strings in the population. Fitness can also be assigned based on a string’s rank in the
population [9] or by sampling methods, such as tournament selection [30].

Selection

There are a number of ways to perform the selection. According to the Tournament Selec-
tion scheme each member of the intermediate population is selected to be the best member
from a randomly selected group of members belonging to the current population. According
to the Roulette Wheel selection scheme, the population is laid out in random order as in a
pie graph, where each individual is assigned space on the pie graph in proportion to fitness.
Next an outer roulette wheel is placed around the pie with N equally spaced pointers, where
N is the size of the population. A single spin of the roulette wheel will now simultaneously
pick all N members of the intermediate population.

Crossover

Crossover is a reproduction operator, which forms a new chromosome by combining parts
of each of two “parent” chromosomes. The simplest form is called single-point crossover,
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in which an arbitrary point in the chromosome is picked. According to this operator two
“offspring” chromosomes are generated, the first one is generated by copying all the infor-
mation from the start up of the parent A to the crossover point and all the information
from the crossover point to the end of parent B. The second “offspring” chromosome is
generated by the reverse procedure. Variations exist which use more than one crossover
point, or combine information from parents in other ways.

Mutation

Mutation is a reproduction operator, which forms a new chromosome by making (usually
small) alterations to the values of genes in a copy of a single parent chromosome.

4.1.2 Micro Genetic Algorithms (µGA)

The micro genetic algorithm was introduced by Krishnakumar [46] and applied to simple
mathematical test functions and to the wind shear optimal guidance problem. The main
objective of this scheme is to reduce the size of the population compared to the basic one.
This corresponds, in the case of structural optimization problems discretized with finite
elements, to less finite element analyses per generation. It is a known fact that GA gen-
erally exhibit poor performance with small population size due to insufficient information
processed and premature convergence to non-optimal results. A remedy to this problem,
suggested by Goldberg [32], could be to restart the evolution process in case of nominal con-
vergence with a new initial population, which will include the best solution already achieved.
Based on this suggestion Krishnakumar proposed the µGA which can be described by the
following steps:

Step 0 Initialization

The first step generates a population of size 5 either randomly or by generating 4 strings
randomly and by selecting 1 good string from any previous search, or according to the
experience of the designer.

Step 1 Fitness evaluation

In this step the fitness of each individual is evaluated and the best string is determined. The
best string is labeled as string 5 and it is carried to the next generation (elitist strategy).
In this way there is a guarantee that the information about good strings are not lost.

Step 2 Generation

According to the previous step the best individual of the current generation is carried out to
the next one. The remaining four members of the next generation are chosen according to
the tournament selection operator. After the selection operator is terminated the crossover
operator is applied.

Step 3 Convergence check

If the termination criteria is satisfied the process ends, otherwise check for nominal conver-
gence which is measured by bit wise convergence in case of binary coding or by comparing
the design variables in case of real valued strings. If converged go to step 0, else return to
step 1.

A modified version of µGA is tested in this study, where only feasible designs are accepted
for the evolution process. This version, which resembles the death penalty treatment of the
constraints adopted by ES, is abbreviated to mµGA.
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4.1.3 Methods for handling the constraints

Although genetic algorithms are initially developed to solve unconstrained optimization
problems during the last decade several methods have been proposed for handling con-
strained optimization problems as well. The methods based on the use of penalty functions
are employed in the majority of cases for treating constraint optimization problems with
GA. In this study methods belonging to this category have been implemented and will be
briefly described in the following paragraphs.

Method of static penalties

In this simple method the objective function is modified as follows

F ′(s) =
{
F (n)(s), if s ∈ F
F (n)(s) + p · viol(n)(s), otherwise

(47)

where p is the static penalty parameter, viol(n)(s) is the sum of the violated constraints

viol(s) =
m∑
j=1

fj(s) (48)

and F (n)(s) is the objective function to be minimized, both normalized in [0,1], while F is
the feasible region of the design space.

The sum of the violated constraints is normalized before it is used for the calculation
of the modified objective function. The main advantage of this method is its simplicity.
However, there is no guidance on how to choose the single penalty parameter p. If it is
chosen too small the search will converge to an infeasible solution otherwise if it is chosen
too large a feasible solution may be located but it would be far from the global optimum.
A large penalty parameter will force the search procedure to work away from the boundary,
where is usually located the global optimum, that divides the feasible region from the
infeasible one.

Method of dynamic penalties

The method of dynamic penalties was proposed by Joines and Houck [43] and applied to
mathematical test functions. As opposed to the previous method, the penalty parameter
does not remain constant during the optimization process. Individuals are evaluated (at
the generation g) by the following formula

F ′(s) = F (n)(s) + (c · g)αviol(n)(s) (49)

with

viol(s) =
m∑
j=1

fβj (s) (50)

where c, α and β are constants. A reasonable choice for these parameters was proposed as
follows: c = 0.5 ÷ 2.0, α = β = 1 or 2. For high generation number, however, the (c · g)α
component of the penalty term takes extremely large values which makes even the slightly
violated designs not to be selected in subsequent generations. Thus, the system has little
chances to escape from local optima. In most experiments reported by Michalewicz [50] the
best individual was found in early generations.
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Augmented Lagrangian method

The Augmented Lagrangian method (AL-GA) was proposed by Adeli and Cheng [1,3]. Ac-
cording to this method the constrained problem is transformed to an unconstrained one, by
introducing two sets of penalty coefficients γ[(γ1, γ2, · · · , γM+N

)] and µ[(µ1, µ2, · · · , µM+N
)].

The modified objective function, for the generation g, is defined as follows

F ′(s, γ, µ) =
1
Lf
F (s)+

1
2




N∑
j=1

γ
(g)
j [(qj − 1 + µ(g)j )+]2+

M∑
j=1

γ
(g)
j+N

[(
|dj |
|daj |

− 1 + µ(g)j+N

)+ ]2

(51)

where Lf is a factor for normalizing the objective function; qj is a non-dimensional ra-
tio related to the stress constraints of the jth element group (see eqs. (62), (63)); dj is
the displacement in the direction of the jth examined degree of freedom, while daj is the
corresponding allowable displacement; N , M correspond to the number of stress and dis-
placement constraint functions, respectively:

(qj − 1 + µ(I)j )+ = max(qj − 1 + µ(I)j , 0) (52)

(
|dj |
|daj |

− 1 + µ(I)j+N

)+
= max

(
|dj |
|daj |

− 1 + µ(I)j+N , 0

)
(53)

There is an outer step I and the penalty coefficients are updated at each step according to
the expressions γ(I+1)j = β ·γ(I)j and µ(I)j = µ(I)j /β, where µ

(I+1)
j = µ(I)j +max[con(I)j,ave,−µ(I)j ]

and con(I)j,ave is the average value of the j
th constraint function for the Ithth outer step, while

the initial values of γ’s and µ’s are set equal to 3 and zero, respectively. Coefficient β is
taken equal to 10 as recommended by Belegundu and Arora [11].

Segregated GA

The basic idea of the segregated GA (S-GA) [48] is to use two static penalty parameters
instead of one, as in the method of static penalties. The two values of the penalty param-
eters are associated with two populations that have a different level of satisfaction of the
constraints. Each of the groups corresponds to the best performing individuals with respect
to the associated penalty parameter. The segregated GA can be described as follows:

Step 0 Initialization

Random generation of 2N designs. The objective functions of the designs 1, 2, · · · ,N are
evaluated using the ph penalty parameter, while the remaining designs N + 1, · · · , 2N are
evaluated using the p� penalty parameter.

Step 1 Selection

An intermediate population of size N is created by selecting the best individuals from the
two populations.
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Step 2 Generation

Generate N offsprings using the basic operators mutation and crossover. The parents are
evaluated using the ph penalty parameter while the offsprings using the p�. The process is
then repeated by returning to step 1.

This version was used in [48] for the minimal weight design problem of a composite lami-
nated plate.

4.2 Evolution Strategies (ES)

ES were proposed for parameter optimization problems in the seventies by Rechenberg [69]
and Schwefel [75]. Some differences between GA and ES stem from the numerical repre-
sentation of the design variables used by these two algorithms. The basic GA operate on
fixed-sized bit strings which are mapped to the values of the design variables, ES work on
real-valued vectors. Another difference can be found in the use of the genetic operators.
Although, both GA and ES use the mutation and recombination (crossover) operators, the
role of these genetic operators is different. In GA mutation only serves to recover lost
alleles, while in ES mutation implements some kind of hill-climbing search procedure with
self-adapting step sizes σ (or γ). In both algorithms recombination serves to enlarge the
diversity of the population, and thus the covered search space. There is also a difference
in treating constrained optimization problems where in the case of ES the death penalty
method is always used, while in the case of GA only the augmented Lagrangian method
can guarantee the convergence to a feasible solution. The ES, however, achieve a high rate
of convergence than GA due to their self-adaptation search mechanism and are considered
more efficient for solving real world problems [40]. The ES were initially applied for con-
tinuous optimization problems, but recently they have also been implemented in discrete
and mixed optimization problems [85,86]. The ES algorithms used in the present study are
based on the work of Thierauf and Cai who applied the ES methodologies in sizing struc-
tural optimization problems having discrete and/or continuous design variables [85,86]. In
the following paragraphs different versions of ES algorithms are discussed and compared in
some test examples.

4.2.1 ES Algorithms

The ES can be divided into a two-membered evolution strategy (2-ES) or a multi-membered
evolution strategy (M-ES).

The two-member ES

The earliest evolution strategies were based on a population consisting of one individual
only. The two membered scheme is the minimal concept for an imitation of organic evolu-
tion. The two principles of mutation and selection, which Darwin in 1859 recognized to be
most important, are taken as rules for variation of the parameters and for recursion of the
iteration sequence respectively.

The two-membered ES for the solution of the optimization problem works in two steps:

Step 1 (mutation). The parent s(g)p of the generation g produces an offspring s(g)0 , whose
genotype is slightly different from that of the parent

s
(g)
0 = s(g)p + z(g) (54)

where z(g) = [z(g)1 , z
(g)
2 , · · · , z(g)n ]T is a random vector.
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Step 2 (selection). The selection chooses the best individual between the parent and
the offspring to survive

s(g+1)p =

{
s
(g)
0 if gi(s

(g)
0 ) ≤ 0 i = 1, 2, · · · , 1 and f(s(g)0 ) ≤ f(s(g)p )

s
(g)
p otherwise

(55)

The question how to choose the random vector z(g) in Step 1 is very important. This choice
has the role of mutation. Mutation is understood to be random, purposeless events, which
occur very rarely. If one interprets them, as is done here, as a sum of many individual events,
it is natural choice to use a probability distribution according to which small changes occur
frequently, but large ones only rarely. Two requirements arise together by analogy with
natural evolution: (i) the expected mean value ξi for a component z(g)i to be zero; (ii) the
variance σ2i , the average squared deviation from mean value, is small.

The probability density function for normally distributed random events is given by

p(z(g)i ) =
1√

(2π)σi
exp

(
−(z(g)i − ξi)2

2− σ2i

)
(56)

when ξi = 0 the so-called (0, σi) normal distribution is obtained. By analogy with other
deterministic search strategies, σi can be called step length, in the sense that it represents
average values of the length of the random steps. If the step length is too small the search
takes an unnecessarily large number of iterations. On the other hand, if the step length is
too large the optimum can only be crudely approached and the search can even get stuck
far away from the global optimum. Thus, as in all optimization strategies, the step length
control is the most important part of the algorithm after the recursion formula, and it is
further more closely linked to the convergence behaviour.

Multi-membered ES

The multi-membered evolution strategies differ from the previous two-membered strategies
in the size of the population. In this case a population of µ parents will produce λ offsprings.
Thus the two steps are defined as follows:

Step 1 (recombination and mutation). The population of µ parents at g-th generation
produces λ offsprings. The genotype of any descendant differs only slightly from that of its
parents.

Step 2 (selection). There are two different types of the multi-membered ES:

(µ+ λ)-ES: The best µ individuals are selected from a temporary population of (µ+λ)
individuals to form the parents of the next generation.

(µ, λ)-ES: The µ individuals produce λ offsprings (µ < λ) and the selection process
defines a new population of µ individuals from the set of λ offsprings only.

In the second type, the existence of each individual is limited to one generation. This allows
the (µ, λ)-ES selection to perform better on problems with an optimum moving over time,
or on problems where the objective function is noisy.

In Step 1, for every offspring vector a temporary parent vector s̃ = [s̃1, s̃2, · · · , s̃n]T is
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first built by means of recombination. For continuous problem the following recombination
cases can be used

s̃i =




sα,i or sb,i randomly (a)
1/2(sα,i + sb,i) (b)
sbj,i (c)
sα,i or sbj,i randomly (d)
1/2(sα,i + sbj,i) (e)

(57)

where s̃i is the i-th component of the temporary parent vector s̃, sα,i and sb,i are the i-th
components of the vectors sa and sb which are two parent vectors randomly chosen from the
population. In case (57c), s̃i = sbj,i means that the i-th component of s̃ is chosen randomly
from the i-th components of all µ parent vectors. From the temporary parent s̃ an offspring
can be created in the same way as in two-membered ES (eq. (54)).

Multi-membered ES termination criteria are the following: (i) when the absolute or
relative difference between the best and the worst objective function values is less than a
given value ε1, or when (ii) the mean value of the objective values from all parent vectors
in the last 2 ∗ n generations has not been improved by less than a given value ε2.

4.2.2 ES in structural optimization problems

The ES optimization procedure starts with a set of parent vectors and if any of these
parent vectors gives an infeasible design then this parent vector is modified until it becomes
feasible. Subsequently, the offsprings are generated and checked if they are in the feasible
region. The computational efficiency of the multi-membered ES is affected by the number
of parents and offsprings involved. It has been observed that values of µ and λ should be
close the number of the design variables produce best results [64].

The ES algorithm for structural optimization applications can be stated as follows:

1. Selection step: selection of si (i = 1, 2, · · · , µ) parent vectors of the design variables

2. Analysis step: solve K(si)ui = f (i = 1, 2, · · · , µ), where K is the stiffness matrix of
the structure and f is the loading vector

3. Constraints check: all parent vectors become feasible

4. Offspring generation: generate sj , (j = 1, 2, · · · , λ) offspring vectors of the design
variables

5. Analysis step: solve K(sj)uj = f (j = 1, 2, · · · , λ)
6. Constraints check: if satisfied continue, else change sj and go to step 4

7. Selection step: selection of the next generation parents according to (µ+ λ) or (µ, λ)
selection schemes

8. Convergence check: If satisfied stop, else go to step 3

4.2.3 Contemporary ES (C-ES) - The (µ, λ, θ) Evolution Strategies

This is a more general ES version, which was proposed by Schwefel and Rudolph [74] for
application in continuous problems but has not been applied either to continuous or to
discrete optimization problems [71]. Considering the two schemes of the multimembered
evolution strategy, namely the (µ+λ) and the (µ, λ) ES, only empirical results have shown
that the “plus” version performs better in structural optimization problems [18,75]. The
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(µ, λ)-ES version is in danger to diverge because the so far best position is not preserved
within the generation cycle (the so-called elitist strategy). The “comma” version implies
that each parent can have children only once (duration of life: one generation or one
reproduction cycle), whereas in the “plus” version individuals may live eternally if no child
achieves a better or at least the same improvement in the objective function.

The C-ES introduce a maximal life span of θ ≥ 1 reproduction cycles which gives the
“comma” scheme for θ = 1 and the “plus” one for θ = ∞. If µ ≥ 1 is the number of
parents, λ > µ is the number of offsprings, then ρ with 1 ≤ ρ ≤ µ is the number of
ancestors for each descendant. This ES version differs in two points from the basic one:
(i) Free number of parents are involved in reproduction ranging from 1 to µ. (ii) A finite
number of reproduction cycles per individual is performed, not one (1) or infinite (∞) as
for the “comma” and the “plus” schemes, respectively. The selection operator used in the
C-ES can be similar to the one used by the genetic algorithms.

4.2.4 Adaptive ES (A-ES)

The handling of the constraints by the basic ES is based on the death penalty approach
[8], where every infeasible design point is discarded. Thus the process is directed to search
only in the feasible region of the design space. Due to this approach many designs that
are examined by the optimizer during the search process and are close to the acceptable
design space are rejected leading to the loss of valuable information. The idea introduced
in this work is to use soft constraints during the first stages of the search and as the search
approaches the region of the global optimum the constraints to become more severe until
they reach their real values.

The implementation of A-ES in structural optimization problems is straightforward and
follows the same steps described in the section of the basic ES. The ES optimization proce-
dure starts with a population of parent vectors, while a level of violation of the constraints
is determined. If any of these parents corresponds to an infeasible design lying outside
the extended design space then this parent is modified until it becomes “feasible”. Then
the offsprings are generated and checked if they are in the “feasible” region according the
current level of violation. In every generation the values of the objective function are com-
pared between the parent and the offspring vectors and the worst vectors are rejected, while
the remaining ones are considered to be the parent vectors of the new generation. This
procedure is repeated until the termination criterion is satisfied.

In this adaptive scheme a nominal convergence check is adopted for the determination
of the level of violation of constraints. Nominal convergence occurs when the mean value
of the objective function of the designs of the current population is relatively close to the
best design achieved until the current generation, according to the expression

F
(g) − F (g)best

F
(g)

≥ εad (58)

where F (g) is the mean objective function value, F (g)best is the best objective function value
of all parents in the g-th generation, and εad = 0.05.

The A-ES steps can be stated as follows:

1. Initialization step: selection of si (i = 1, 2, · · · , µ) parent vectors of the design vari-
ables and the percentage of violation of the constraints v0 (usually taken between
20-50%)

2. Analysis step: solve K(si)ui = f (i = 1, 2, · · · , µ)
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3. Constraints check: all parent vectors become “feasible”, within the prescribed level
of constraints violation v0

4. Offspring generation: generate sj , (j = 1, 2, · · · , λ) offspring vectors of the design
variables

5. Analysis step: solve K(sj)uj = f (j = 1, 2, · · · , λ)
6. Nominal convergence check: if nominal convergence has occurred the level of violation
vg becomes more severe by reducing its value by a small quantity (usually 0.1 or 0.2)

7. Constraints check: if satisfied according to the current level of violation vg continue,
else change sj and return to step 4

8. Selection step: selection of the next generation parents according to (µ+ λ) or (µ, λ)

9. Convergence check: if satisfied stop, else go to step 3

4.2.5 ES for discrete optimization problems

In engineering practice the design variables are not continuous because usually the struc-
tural parts are constructed with certain variation of their dimensions. Thus design variables
can only take values from a predefined discrete set. For the solution of discrete optimiza-
tion problems Thierauf and Cai [85] have proposed a modified ES algorithm. The basic
differences between discrete and continuous ES are focused on the mutation and the re-
combination operators. In the discrete version of ES the random vector z(g) is properly
generated in order to force the offspring vector to move to another set of discrete values.

The fact that the difference between any two adjacent values can be relatively large is
against the requirement that the variance σ2i should be small. For this reason it is suggested
that not all the components of a parent vector, but only a few of them (eg. @) should be
randomly changed in every generation. This means that n− @ components of the randomly
changed vector z(g) will have zero value. In other words, the terms of vector z(g) are derived
from

z
(g)
i =

{
(κ+ 1)δsi for @ randomly chosen components

0 for n− @ other components (59)

where δsi is the difference between two adjacent values in the discrete set and κ is a random
integer number which follows the Poisson distribution

p(κ) =
(γ)κ

κ!
e−γ (60)

γ is the standard deviation as well as the mean value of the random number κ. The choice
of @ depends on the size of the problem and it is usually taken as the 1/5 of the total number
of design variables. The @ components are selected using uniform random distribution in
every generation.

For discrete optimization the procedure terminates when one of the following termi-
nation criteria is satisfied: (i) when the best value of the objective function in the last
4 ∗n∗µ/λ generations remains unchanged, (ii) when the mean value of the objective values
from all parent vectors in the last 2 ∗ n ∗ µ/λ generations has not been improved by less
than a given value εb(= 0.0001), (iii) when the relative difference between the best objective
function value and the mean value of the objective function values from all parent vectors
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in the current generation is less than a given value εc(= 0.0001), (iv) when the ratio µb/µ
has reached a given value εd(= 0.5to0.8) where µb is the number of the parent vectors in
the current generation with the best objective function value.

4.3 Hybrid Optimization Algorithms

Several hybrid optimization algorithms which combine evolutionary computation techniques
with deterministic procedures for numerical optimization problems have been recently in-
vestigated. Papadrakakis et al. [64] used evolution strategies with the SQP method, while
Waagen et al. [91] combined evolutionary programming with the direction set method of
Hooke and Jeeves [42]. The hybrid implementation proposed in [64] was found very suc-
cessful on shape optimization problems, while the method proposed in [91] was applied
to unconstrained mathematical test functions. Myung et al. [52] considered a similar to
Waagen et al. approach, but they experimented with constrained mathematical test func-
tions. Myung et al. combined a floating-point evolutionary programming technique, with a
method-developed by Maa and Shanblatt [49] applied to the best solution found by the evo-
lutionary programming technique. The second method iterates until the system defined by
the combination of the objective function, the constraint functions and the design variables
reach equilibrium.

A characteristic property of the SQP based optimizers is that they usually capture very
fast the right path to the nearest optimum, irrespective of its nature of local or global
optimum. However, after locating the area of this optimum it might oscillate until all
constraints are satisfied since it is observed that even small constraint violations often slow
down the convergence rate of the method. On the other hand EA proceed with slower rate,
due to their random search, but the absence of strict mathematical rules, which govern the
convergence rate of the mathematical programming methods, make EA less vulnerable to
local optima and therefore it is much more likely to converge towards the global optimum
in non-convex optimization problems. These two facts gave the motivation to combine EA
with MP methodologies. Between the two EA examined in this study the basic genetic
algorithms seems to be faster than evolution strategies since they do not always operate
on the feasible region of the design space as evolution algorithms. However, they are most
often found unable to converge to feasible designs.

In order to benefit from the advantages of both methodologies a hybrid approach is
proposed, which combines the two optimization methodologies in an effort to increase the
robustness and the computational efficiency of the optimization procedure. Two combina-
tions of SQP and EA methodologies are implemented : (i) In the first approach the SQP
method is used first, giving a design very close to the optimum, followed by EA in order to
accelerate convergence and avoid the oscillations of SQP due to small constraint violations
around optimum. The transition from one algorithm to the other is performed when

∣∣∣∣fj+1 − fjfj

∣∣∣∣ ≤ ε (61)

where ε is taken 0.01. This approach appears to be more suitable when the design space is
convex, i.e. there is a unique optimum irrespective of the starting design. (ii) In the second
approach the sequence of the methods is reversed. An EA procedure, either GA or ES, is
used first in order to locate the region where the global optimum lies, and then the SQP
is activated in order to exploit its higher order of accuracy in the neighbourhood of the
optimum. In this case the switch is performed when there is a small difference (ε = 0.1)
between the best designs of two consecutive generations. This approach appears to be
more rational in the general case when more complex and non-convex design problems are
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to be solved with many local optima and is perfectly suited to GA since it improves the
fast-converged solution to an infeasible design by GA. Furthermore combination of GA and
ES are performed in which ES are used to improve the quality of the solution achieved by
GA.

4.4 Solving The FE Equilibrium Problems Within Evolutionary Algorithms

In the case of ES the optimization procedure starts with a set of parent vectors. If any
of these parent vectors gives an infeasible design then this parent vector is modified until
it becomes feasible. Subsequently, the offsprings are generated and checked if they are in
the feasible region. According to (µ + λ) selection scheme in every generation the values
of the objective function of the parent and the offspring vectors are compared and the
worst vectors are rejected, while the remaining ones are considered to be the parent vectors
of the new generation. On the other hand, according to (µ, λ) selection scheme only the
offspring vectors of each generation are used to produce the new generation. This procedure
is repeated until the chosen termination criterion is satisfied.

The algebraic definition of an evolution strategy procedure applied into a structural
system with the finite element equation Ku = f may be described as follows:

1. Initialization: selection of si (i = 1, 2, · · · , µ) parent vectors of the design variables
set K0 = K(s1)
solve K0u1 = f

(K0 +∆K(si))ui = f, (i = 2, 3, · · · , µ)
2. Constraints check

3. Offspring generation: generate sj , (j = 1, 2, · · · , λ) offspring vectors of the design
variables

4. Solution step:
(K0 +∆K(sj))uj = f, (j = 1, 2, · · · , λ)

5. Constraints check: if satisfied continue, else change sj and go to step 4

6. Selection step: selection of the next generation parents according to (µ+ λ) or (µ, λ)
selection schemes

7. Convergence check: if satisfied stop, else go to step 3

It can be seen that the solution of at least λ systems of finite element equations need to
be solved at each generation, where ∆K(sj) defines the modification of the stiffness matrix
due to the changes on the design variables and is generally small compared to K0. Similar
steps are performed with a GA optimization algorithm in which the constraint checks in
steps 2 and 5 are omitted.

4.4.1 Single- and multi-domain methods for solving (K0 +∆Ki)ui = fi

The finite element equilibrium equations required to be solved a number of times at each
optimization step, constitute a typical nearby problem similar to that discussed in the GFD
sensitivity analysis and topology optimization problems. The implementation of hybrid
solution schemes, based on a combination of direct and preconditioned iterative methods
implemented on single structural domains as well as the multi-domain methods implemented
on sequential or parallel computing environments, as discussed in sections 3.2.1 and 3.2.2,
may drastically reduce the time required for the solution of the finite element equations with
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an overall beneficial effect on the efficiency of the optimization procedure. The methods
are properly modified, as in previous applications, to address the special features of the
particular optimization problems at hand, while mixed precision arithmetic operations are
proposed resulting in additional savings in computer time and storage without affecting the
accuracy of the solution.

4.4.2 Neural Networks

Basic principles of artificial neural networks theory

The aim of the present study is to train a neural network (NN) to provide computation-
ally inexpensive estimates of analysis outputs required during the optimization process. A
trained network presents some distinct advantages over the numerical computing paradigm.
It provides a rapid mapping of a given input into the desired output quantities, thereby
enhancing the efficiency of the redesign process. This major advantage of a trained NN
over the conventional procedure, under the provision that the predicted results fall within
acceptable tolerances, leads to results that can be produced in a few clock cycles, requiring
order(s) of magnitude less computational effort than the conventional computational pro-
cess. The learning algorithm which was employed for the training is the well known Back
Propagation (BP) algorithm [72].

In the present implementation the objective is to investigate the ability of the NN to
predict accurate structural analysis outputs that are necessary for the EA optimizer. This
is achieved with a proper training of the NN. The NN training comprises the following
tasks: (i) select the proper training set, (ii) find a suitable network architecture and (iii)
determine the appropriate values of characteristic parameters such as the learning rate and
momentum term.

An important factor governing the success of the learning procedure of a NN architecture
is the selection of the training set. A sufficient number of input data properly distributed in
the design space together with the output data resulting from complete structural analyses
are needed for the BP algorithm in order to provide satisfactory results. Overloading the
network with unnecessary similar information results to over training without increasing
the accuracy of the predictions. A few tens of structural analyses have been found sufficient
for the examples considered to produce a satisfactory training of the NN. Ninety percent
of those runs are used for training and the rest is used to test the results of the NN.

Most researchers split the design space into subregions and try to combine randomly the
values within each subregion in order to obtain a training set which is representative of the
whole design space. This procedure leads frequently to a huge number of training patterns
in order to ensure that the whole design space is properly represented. In an effort to
increase the robustness as well as the computational efficiency of the NN procedure various
types of training set selection were investigated in a previous study [59]. In this study two
types of training set selection are used: (i) the training set is chosen automatically based on
a Gaussian distribution of the design variables around the midpoints of the design space,
(ii) the training set is chosen using data from the structural analyses performed in the
framework of ES optimization steps until the computed designs reach a plateau near the
optimum. The NN training is then activated when the value of objective function remains
unchanged for a number of ES generations.

The first type of the training set selection was motivated from the fact that usually the
searching for the optimum and its location lies in the region near the midpoints of the design
space. A Gaussian distribution was therefore used for the random selection of input data
in order to cover the whole design space and enforce the selection of most input patterns
around the midpoints of the design space. This approach proved to be more efficient than
choosing randomly combinations of input data from the whole range of the design space
using a uniform distribution of the design variables [59]. The second type of the training
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set selection is based on the fact that in most cases the EA optimizer very fast tracks the
path to the optimum and then it may oscillate around it until convergence is achieved at
a slower rate. Therefore it is more efficient to produce the training sets in the vicinity of
the design point where the optimizer has reached a stationary point. This way a smaller
number of training sets are required and the NN training is performed much faster and
accurately.

Structural optimization based on EA and NN

After the selection of the suitable NN architecture the training procedure is performed us-
ing a number (M) of data sets, selected as described previously, in order to obtain the I/O
pairs needed for the NN training. Since the NN based structural analysis can only provide
approximate results it is recommended that a correction on the output values should be per-
formed in order to alleviate any inaccuracies entailed, especially when the constraint value
is near the limit which separates the feasible and the infeasible region. This is achieved
with a relaxation of this limit during the NN testing phase before entering the optimiza-
tion procedure. A “correction” of the allowable constraint values was therefore performed
proportional to the maximum testing error of the NN configuration. The maximum testing
error is the largest average error of the output values among testing patterns. Whenever
the predicted values were found smaller than those derived from a conventional structural
analysis the allowable values of the constraints were decreased according to the maximum
testing error of the NN configuration and vice versa.

The proposed EA-NN methodology can be described, for the case of ES, with the
following algorithms according to the two types of training set selection schemes that were
previously described:

Algorithm 1

The combined ES-NN optimization procedure is performed in two phases. The first phase
includes the training set selection, the structural analyses required to obtain the necessary
I/O data for the NN training, and finally the selection, training and testing of a suitable
NN configuration. The second phase is the ES optimization stage where the trained NN is
used to predict the response of the structure in terms of objective and constraints function
values, due to different sets of design variables, instead of the standard structural analysis
computations.

The proposed methodology ES-NN can be described with the following algorithm:

• NN training phase:

1. Training set selection step: select (i = 1, 2, · · · ,M ) input patterns

2. Structural analysis step: solve K(si)ui = f (i = 1, · · · ,M )

3. Training step: selection and training of a suitable NN architecture

4. Testing step: test NN and “correct” allowable constraint values

• ES-NN optimization phase:

1. Selection step: selection of si (i = 1, 2, · · · , µ) parent vectors of the design vari-
ables

2. Prediction step: using NN to compute optimization function values for the µ
parent vectors

3. Constraints check: all parent vectors become feasible
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4. Offspring generation: generate sj , (j = 1, 2, · · · , λ) offspring vectors of the design
variables

5. Prediction step: using NN to compute optimization function values for the λ
offspring vectors

6. Constraints check: if satisfied continue, else change sj and go to step 4
7. Selection step: selection of the next generation parents according to (µ + λ) or

(µ, λ) selection schemes
8. Convergence check: If satisfied stop, else go to step 3

Algorithm 2

According to the second type of training set selection the proposed ES-NN methodology can
be described with the following algorithm: The combined ES-NN optimization procedure is
performed in three phases. The first phase is the ES optimization stage until a stationary
point is obtained. This is the case when the mean value of the objective values from all
parent vectors in the last n ∗ µ/λ generations has not been improved by less than a given
value εd(= 0.05). The second phase includes the training set selection in the vicinity of the
stationary point from the previous structural analyses during previous ES steps. This way
the necessary I/O data required for the NN training are obtained, and finally the selection,
training and testing of a suitable NN configuration. The third phase is identical to the
second phase of algorithm 1.

The second algorithm is described as follows:

• ES optimization phase:

1. Selection step: selection of si (i = 1, 2, · · · , µ) parent vectors of the design vari-
ables

2. Analysis step: solve K(si)ui = f (i = 1, 2, · · · , µ)
3. Constraints check: all parent vectors become feasible
4. Offspring generation: generate sj , (j = 1, 2, · · · , λ) offspring vectors of the

design variables
5. Analysis step: solve K(sj)uj = f (j = 1, 2, · · · , λ)
6. Constraints check: if satisfied continue, else change sj and go to step 4
7. Selection step: selection of the next generation parents according to (µ + λ) or

(µ, λ) selection schemes
8. Stationarity check: If satisfied continue, else go to step 3

• NN training phase:

1. Training set selection step: choose si (i = 1, 2, · · · ,M ) I/O data
2. Training step: selection and training of a suitable NN architecture
3. Testing step: test NN and “correct” allowable constraint values

• ES-NN optimization phase: as in algorithm 1

Similar consideration could be applied to GA-NN in a straightforward manner.

4.5 Numerical Tests
4.5.1 Sizing optimization with evolutionary algorithms

A twenty-storey space frame [60] and a double-layered space roof [58] were selected as test
problems for comparing various optimization algorithms in sizing optimization. All tests
were performed on a SG Power Challenge computer with the R4000 processor.
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Twenty-storey space frame

The space frame, shown in Figure 4, has 1,020 members and 2,400 degrees of freedom, with
modulus of elasticity E = 200 GPa and the yield stress σy = 250 MPa. The cross section
of each member is assumed to be a I-shape and for each member two design variables are
considered as. The values of b and h are selected from an integer design space, while t
and w are given as follows: f = 0.06h+ 0.10(b− 10), w = 0.625f . Those two expressions
make sure that the web thickness is less than b, the opposite of which would have been
not acceptable. The objective function of the problems is the weight of the structure. The
constraints are the member stresses and the inter-storey drifts. For rigid frames in rolled
I-shapes, under allowable stress design requirements specified by Eurocode 3 [20], the stress
constraints are defined by the non-dimensional ratio q of interaction formulas

q =
fa
Fa

+
fyb
F y
b

+
f zb
F z
b

≤ 1.0 if
fa
Fa

≤ 0.15 (62)

and

q =
fa

0.60 · σy +
fyb
F y
b

+
f zb
F z
b

≤ 1.0 if
fa
Fa

≤ 0.15 (63)

where fa is the computed compressive axial stress, fyb , f
z
b are the computed bending stresses

for y and z axis, respectively. Fa is the allowable compressive axial stress, F y
b , F

z
b are the

allowable bending stresses for y and z axis, respectively, and σy is the yield stress of the
steel. The allowable inter-storey drift is limited to 1.5% of the height of each storey. One
load case is considered in all examples.

Figure 4. I-shaped cross-section design variables

The loads considered here are uniform vertical forces applied at joints equivalent to
uniform load of 4.8 kPa and horizontal forces equivalent to uniform forces of 1.0 kPa on
the largest surface. The element members are divided into 11 groups shown in Figure 5
and the total number of design variables is 22. The initial design used in this example was
chosen away from the optimum corresponding to the weight of 42,248 kN for every test.
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Figure 5. Twenty storey space frame

Table 9 shows the performance of the two types of the multi-membered ES, namely
(10+10)-ES and (10,10)-ES used as a basis for comparison. The (10+10) version of ES
manages to converge to the best design, which is used as reference design, at approximately
half the time required by the (10,10) scheme. In Figures 6 and 7 various techniques for
handling the constraints by the GA are presented. It can be seen that all feasible solutions
achieved appear to be local optima although for this example the GA with dynamic penalties
showed a more robust behaviour.

Optimizer Weight (kN) FE analyses Time (s)
(5+5)-ES 6,028 240 3,708
(5,5)-ES 6,085 452 6,984

(10+10)-ES 5,819 422 6,519
(10,10)-ES 5,877 727 11,230

Table 9. Twenty storey space frame: Performance of the two selection schemes
(µ + λ)-ES and (µ, λ)-ES
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6 c=1.5 150
7 c=2 190

Figure 6. Twenty storey space frame: Optimizer (1-3) GA with static penalties;
Optimizer (4-7) GA and dynamic penalties (α = β = 2)

Tables 10 and 11 contain the results of the Augmented Lagrangian GA method (AL-
GA). The constraint violation percentage is equal to zero for all tests considered. Table
10 depicts the results of the method with the termination criteria suggested by Adeli and
Cheng in [3], while Table 11 includes the results obtained for the termination criteria used
for the rest of the methods. For the adopted termination criterion we have examined four
different cases according to the allowable number of generations with no improvement of
the objective function. It can be seen that both termination criteria converge to the same
result which appears to be a local minimal compared to the minimum achieved by the ES
as shown in Table 9. It can also be seen that the Augmented Lagrangian GA method is
not affected by the value of normalization parameter Lf .

Lf Weight (kN) FE analyses Time (s)
100 7,015 195 3,097
500 7,015 195 3,097

1000 7,015 195 3,097

Table 10. Twenty storey space frame: Performance of the AL-GA (termination
criterion of Ref.[3])
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Figure 7. Twenty storey space frame - Performance of S-GA (p�, ph) scheme

Lf Weight (kN) FE analyses Time (s)
case a: 6µ/λ

100 8,073 120 1,917
500 8,073 120 1,917

1000 8,073 120 1,917
case b: 12µ/λ

100 7,397 140 2,231
500 7,397 140 2,231

1000 7,397 140 2,231
case c: 18µ/λ

100 7,015 195 3,097
500 7,015 195 3,097

1000 7,015 195 3,097
case d: 24µ/λ

100 7,015 195 3,097
500 7,015 195 3,097

1000 7,015 195 3,097

Table 11. Twenty storey space frame: Performance of the AL-GA with the ter-
mination criterion adopted in this work

Figures 8 and 9 depict the performance of the contemporary and adaptive evolution
strategies, namely C-ES and A-ES, where all designs appearing in those two figures are
feasible. A comparison of the results of Table 9 and those depicted in Figures 6 and 7
indicates that contemporary and adaptive ES outperform in most cases the basic version
of evolution strategies in terms of the achieved optimum weight at the expense of more
computing time.
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Figure 8. Twenty storey space frame - Performance of the C-ES

Tables 12-14 depict the performance of hybrid approaches for this test example. Three
initial designs are considered, one close, one medium and one away from the optimum.
It can be seen that the computing time spent by the optimizers is affected by the initial
design, especially in the case of the SQP approach. Furthermore, GA-SQP, ES-SQP and
AL-GA-SQP optimizers manage to converge to final designs with 12% less weight than
the SQP optimizer at one fifth of computing time. We also examined two EA hybrid
methods by combining AL-GA with ES and vice versa. Both perform well in terms of the
design achieved and the required computing time. The mathematical optimizer using the
ESA sensitivity analysis method is again faster than GFD method while the magnitude of
perturbation is equal to 10−5.

Double-layered space truss

The second test example is the three dimensional double-layered space roof truss depicted in
Figure 10 with discrete design variables. Space truss structures usually have the topology
of single or multi-layered flat or curved grids that can be easily constructed in practice.
Most frequently the objective function is the weight or the volume of the structure and
the constraints are the member stresses, nodal displacements, or frequencies. The stress
constraints can be written as |σ| ≤ |σa|, where σ is the maximum axial stress in each element
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Figure 9. Twenty storey space frame - Performance of the A-ES (b = 0.1)

Optimizer Initial
Design for

Final
design

Sensitivity
Analysis

Time (s) Time (s)

2nd optimizer (kN) EA SQP EA SQP Total
SQP - 6,427 GFD - 435 - 21,932 21,932
SQP - 6,427 ESA - 438 - 13,655 13,655

S-GA-SQP 7,928v 5,764 GFD 65 116 1,100 5,166 6,266
S-GA-SQP 7,928v 5,764 ESA 65 117 1,100 3,608 4,708

AL-GA-SQP 7,015 6,427 GFD 195 99 3,301 4,415 7,716
AL-GA-SQP 7,015 6,427 ESA 195 99 3,301 3,077 6,378
C-ES-SQP 7,132 5,834 GFD 193 152 3,266 6,770 10,036
C-ES-SQP 7,132 5,834 ESA 193 152 3,266 4,687 7,953
A-ES-SQP 6,531 5,713 GFD 107 111 1,811 4,943 6,754
A-ES-SQP 6,531 5,713 ESA 107 110 1,811 3,392 5,202
AL-GA-ES 7,015 5,819 - 195+65 - 4,401 - 4,401

mµGA - 5,772 - 395 - 6,117 - 6,117

Table 12. Twenty storey space frame: Hybrid methods (bad initial design)

group for all loading cases, σa = 0.60× σy is the allowable axial stress and σy is the yield
stress. Similarly, the displacement constraints can be written as |d| ≤ da, where da is the
limiting value of the displacement at a certain node, or the maximum nodal displacement.
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Optimizer Initial
Design for

Final
design

Sensitivity
Analysis

Time (s) Time (s)

2nd optimizer (kN) EA SQP EA SQP Total
SQP - 6,119 GFD - 385 - 17,519 17,519
SQP - 6,119 ESA - 387 - 12,097 12,097

S-GA-SQP 7,669 5,695 GFD 40 169 681 7,391 8,071
S-GA-SQP 7,669 5,695 ESA 40 169 681 5,291 5,972

AL-GA-SQP 6,816 5,695 GFD 155 98 2,639 4,361 7,000
AL-GA-SQP 6,816 5,695 ESA 155 98 2,639 3,057 5,696
C-ES-SQP 6,835 5,764 GFD 171 111 2,901 4,943 7,844
C-ES-SQP 6,835 5,764 ESA 171 111 2,901 3,469 6,370
A-ES-SQP 6,319 5,764 GFD 91 67 1,552 2,983 4,535
A-ES-SQP 6,319 5,764 ESA 91 67 1,552 2,089 3,641
AL-GA-ES 6,816 5,430 - 155+73 - 3,866 - 3,866

mµGA - 5,472 - 339 - 5,243 - 5,243

Table 13. Twenty storey space frame: Hybrid methods (medium initial design)

Optimizer Initial
Design for

Final
design

Sensitivity
Analysis

Time (s) Time (s)

2nd optimizer (kN) EA SQP EA SQP Total
SQP - 6,119 GFD - 259 - 11,508 11,508
SQP - 6,119 ESA - 259 - 8,049 8,049

S-GA-SQP 7,669 5,695 GFD 35 169 590 7,391 7,981
S-GA-SQP 7,669 5,695 ESA 35 169 590 5,291 5,881

AL-GA-SQP 6,816 5,695 GFD 115 98 1,934 4,361 6,295
AL-GA-SQP 6,816 5,695 ESA 115 98 1,934 3,057 4,991
C-ES-SQP 6,835 5,764 GFD 158 111 2,685 4,943 7,628
C-ES-SQP 6,835 5,764 ESA 158 111 2,685 3,469 6,154
A-ES-SQP 6,275 5,764 GFD 69 67 1,198 2,983 4,181
A-ES-SQP 6,275 5,764 ESA 69 67 1,198 2,089 3,287
AL-GA-ES 6,816 5,430 - 115+73 - 3,161 - 3,161

mµGA - 5,472 - 339 - 5,243 - 5,243

Table 14. Twenty storey space frame: Hybrid methods (good initial design)

Figure 10. Double-layered space roof truss
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Euler buckling occurs in truss structures when the magnitude of a member’s compressive
stress is greater than a critical stress. For the first buckling mode of a pin-connected member
this is equal to

σb =
Pb
A

= − 1
A

(
π2EI

L2

)
(64)

where Pb is the computed compressive axial force, I is the moment of inertia, L is the
member length. For thin-walled tubular members with a diameter-to-thickness ratio ρ =
D/t = 10 to 20 the cross-sectional area is approximately equal to A ∼= πDt, and the moment
of inertia is approximated by I ∼= πDt(D2+t2)

8 . The expression for the buckling stress can,
therefore, be written as a function of the cross-sectional areas, which are the design variables
of the optimization problem, as follows

σb = −AE
L2

· π(ρ
2 + 1)
8ρ

(65)

Thus, the compressive stress should be less (in absolute values) than the critical Euler
buckling stress |σ| ≤ |σb|. The values of the constraint functions are normalized in order to
improve the performance of the optimization procedure as follows

σ/σa ≤ 1 for tension member σa = 0.6× σY
σ/σb ≤ 1 for compression member σb = E(π/(1/r))2

d/da ≤ 1

The NN tool used in this study is the META-NETS program [18] using the back prop-
agation training algorithm. In Tables 15-18, containing the results of this test example,
the following abbreviations are used: ES refers to the standard evolution strategies opti-
mization procedure, in which structural analyses are performed in the conventional way.
ES-NN refers to the ES optimization procedure, where the structural analysis response is
predicted by a trained NN. For the two different types of training set selection that have
been compared in this study the following abbreviations are used: (i) GT stands for the
random selection of Training set based on a Gaussian distribution of the design variables
in the design space according to Algorithm 1 of section 4.4.2 (ii) AT stands for the “Au-
tomatic” Training set selection using the results obtained at the initial stages of the ES
optimization procedure according to Algorithm 2 of section 4.4.2 The symbol “(c)” is used
when the allowable limits of the constraints have been adjusted, as discussed previously, in
order to “correct” the NN predictions near the feasible region limits, while symbol “(v)”
indicates that the final design is violating the constraints and thus it is infeasible.

In order to investigate the influence of the curvature of the structure in the optimum
design four different topologies were tested corresponding to 0◦, 5◦, 10◦, 15◦ inclination of
the curved surface at the supports. The modulus of elasticity is 200 GPa (29,000 ksi) and
the yield stress is σy = 250 MPa (36 ksi). Each member is assumed to have a thin-walled
tubular cross section. The cross-sectional area is considered to be the design variable of
each member. Members are divided to forty eight groups according to their position. For
all test cases the finite model consists of 8,000 members, 2,071 nodes and 6,183 degrees
of freedom. The loads are taken as uniform vertical forces applied at joints equivalent
to uniform load of 0.10 kN and a concentrated vertical load 50 kN at the center of the
structure which corresponds to the maximum load of a crane and it is equally distributed
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Analysis type
Number of

FE
analyses

Number of
NN

analyses
Computing time (s)

Optimum
volume (mm3)

Analysis Training NN-ES Total

ES 4,150 - - - - 93,125 58.7
NN-ES-GT 480 3,827 10,771 1,546 131 12,448 53.1(v)
NN-ES-GTc 480 4,094 10,771 1,546 140 12,457 59.4

NN-ES-A 472 3174 10,591 345 109 11,045 57.8(v)
NN-ES-Ac 472 3515 10,591 345 120 11,056 59.4

Table 15. Double layered space truss: Test case 1 (0◦ inclination): Performance
of the optimization methods

Analysis type
Number of

FE
analyses

Number of
NN

analyses
Computing time (s)

Optimum
volume (mm3)

Analysis Training NN-ES Total

ES 3,940 - - - - 88,220 44.5
NN-ES-GT 480 4,017 10,771 1,493 138 12,402 46.9
NN-ES-GTc 480 3,862 10,771 1,493 133 12,397 44.7

NN-ES-A 512 3116 11,489 361 106 11,956 41.9(v)
NN-ES-Ac 512 3406 11,489 361 117 11,967 44.8

Table 16. Double layered space truss: Test case 2 (5◦ inclination): Performance
of the optimization methods

Analysis type
Number of

FE
analyses

Number of
NN

analyses
Computing time (s)

Optimum
volume (mm3)

Analysis Training NN-ES Total

ES 4,210 - - - - 95,640 51.3
NN-ES-GT 480 4,132 10,771 1,575 140 12,486 55.5
NN-ES-GTc 480 4,256 10,771 1,575 147 12,493 51.7

NN-ES-A 423 3213 9,492 337 109 9,938 53.5
NN-ES-Ac 423 3147 9,492 337 107 9,936 51.6

Table 17. Double layered space truss: Test case 3 (10◦ inclination): Performance
of the optimization methods

to the central nodes of the roof. The objective function in all test cases is the weight of
the structure. The constraints are imposed on the maximum nodal displacement and the
maximum axial and buckling stresses in each element group. The values of allowable axial
stress is σa = 150 MPa, whereas the maximum allowable displacement is limited to 3 cm.

For all test cases the (µ + λ)-ES approach is used with µ = λ = 20. The number of
NN input units is equal to the number of design variables, whereas the output units are
ninety eight corresponding to the two values of axial and buckling stresses, for the forty
eight element groups, the value of the maximum nodal displacement and the value of the
objective function. The NN configuration has two hidden layers each one consisting of 35
nodes, which results in a 48-35-35-98 NN architecture used for all runs. The performance of
the Gaussian and the “automatic” NN training set selection with 480 and 200 training sets,
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Analysis type
Number of

FE
analyses

Number of
NN

analyses
Computing time (s)

Optimum
volume (mm3)

Analysis Training NN-ES Total

ES 4,280 - - - - 96,035 54.4
NN-ES-GT 480 4,021 10,771 1,631 138 12,540 51.5(v)
NN-ES-GTc 480 4,267 10,771 1,631 147 12,549 54.6

NN-ES-A 437 3613 9,806 356 124 10,286 55.2
NN-ES-Ac 437 3221 9,806 356 110 10,272 54.6

Table 18. Double layered space truss: Test case 4 (15◦ inclination): Performance
of the optimization methods

respectively, is shown in Tables 15-18 for the four configurations of the roof. It is obvious
from the results that the performance of the proposed ES-NN methodology is superior to the
performance of the conventional ES optimization procedure, since a dramatic improvement
in total computing time required by ES-NN over ES is observed in all test cases examined.
A significant improvement is also observed in the performance, both in terms of computing
time and optimum values of the objective function, of the proposed ES-NN methodology
when the “automatic” type of NN training is used over the Gaussian type of NN training. As
it can be observed from the results obtained the curved type of structure is more economical
from the flat roof type even though the surface of the structure is longer. For greater slopes,
however, the overall weight grows since the surface of the structure increases significantly.

4.5.2 Shape optimization with evolutionary algorithms

So far little effort has been spent in applying probabilistic search methods in shape opti-
mization problems which are usually solved with a mathematical programming algorithms.
The use of combinatorial type algorithms appears to be promising even if greater num-
ber of analyses is needed to reach the optimum. This is due to the fact that since the
number of design variables in shape optimization problems is relatively small the number
of analyses is usually limited to few tens or hundreds. Furthermore, the same advantages
stated previously for the probabilistic methodologies are also valid in shape optimization
problems.

The performance of the optimization methods discussed is investigated in the character-
istic plane stress test example considered in section 3.3.1 with isotropic material properties
(elastic modulus E = 210, 000 N/mm2 and Poisson’s ratio ν = 0.3) and five design vari-
ables. The problem definition of this example is given in Figure 1 where, due to symmetry,
only a quarter of the plate is modeled. The plate is under biaxial tension with one side
loaded with a distributed loading p = 0.65 N/mm2 and the other side loaded only with half
of this value, as shown in Figure 1. The problem is analyzed with a fine mesh of 38,800
d.o.f. giving a sparse global stiffness matrix with relatively large bandwidth. As previously
ESA and GFD methods are used to compute the sensitivities with ∆s = 10−5.

Table 19 depicts the performance of mathematical programming and evolution strategies
optimization methods in sequential and parallel computing modes for two test cases of
this example corresponding to two initial designs, one close and the other away from the
optimum. The parallel computing mode is a single-domain natural parallelization scheme.
In Table 19 the following abbreviations are used: MP corresponds to the Mathematical
Programming-SQP method. ESA and GFD refer to exact semi-analytical and global finite
difference methods of sensitivity analysis, respectively.

ES-(µ+ λ) refers to the number of parents and offspring vectors, µ and λ respectively,
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Optimization
Method

Number of
Opt. Steps

Optimum
Volume (mm3)

Sequential time
(s)

Parallel time in
p processors (s)

GOOD INITIAL DESIGN (V0=307.3 mm3) - 1528 d.o.f.
MP-ESA 33 280 965.8 702.9 (p=5)
MP-GFD 33 280 1785.6 873.5 (p=5)
ES (3+3) 134 279 2336.8 1217.2 (p=3)
ES (5+5) 85 279 1271.5 354.2 (p=5)

ES (10+10) 150 279 2780.7 337.4 (p=10)
BAD INITIAL DESIGN (V0=373.4 mm3) - 1546 d.o.f.

MP-ESA 72 280 1894.7 1198.6 (p=5)
MP-GFD 75 279 4189.1 1673.4 (p=5)
ES (3+3) 134 279 2406.8 1219.7 (p=3)
ES (5+5) 127 279 2141.3 586.8 (p=5)

ES (10+10) 191 279 2998.5 497.2 (p=10)
MP-ES 24 (4+20) 281 386.1 196.1 (p=5)
ES-MP 28 (10+8) 280 480.1 275.9 (p=5)

Table 19. Square plate example: Performance of the optimization methods

for the “plus” version of ES. MP-ES, ES-MP are the two hybrid approaches defining the
sequence of the two optimizers, while the number of optimization steps for each optimizer is
given in parenthesis. Finally, for the parallel implementation of the optimizers the number
of processors used for the case of MP optimizer is equal to the number of design variables
p = n, whereas for the case of ES p = µ. ES manage to find the optimum solution in
both test cases of the square plate example (good and bad initial design), whereas the
MP approach failed in the second test case. This could be explained by the fact that the
MP optimizer was trapped into the infeasible region due to its inability to overcome severe
violations mainly on the global stress constraint.

The computing time spent by the optimizers is affected by the initial design, partic-
ularly in the case of the MP approach. It can also be observed that ES achieve better
performance to MP optimizer in sequential computing mode and perform much better in
parallel computing mode. The use of hybrid approaches, especially the MP-ES, leads to
a significant reduction of computing time in both sequential and parallel modes for the
first test case. For the second test case, however, since SQP fails both hybrid approaches
fail. The mathematical programming optimizer using the ESA sensitivity analysis method
is faster than GFD method in sequential mode. In parallel mode, however, GFD becomes
competitive to ESA. The natural parallelization scheme implemented has a beneficial effect
to all versions of the optimizers used. In particular, this effect is more pronounced in the
case of ES where a higher efficiency is achieved.

5 OPTIMUM STRUCTURAL DESIGN UNDER SEISMIC LOADING

Due to the uncertain nature of the earthquake loading, structural designs are often based on
design response spectra of the region and on some simplified assumptions of the structural
behavior under earthquake. In the case of a direct consideration of the earthquake loading
the optimization of structural systems requires the solution of the dynamic equations of
motion which can be orders of magnitude more computational intensive than the case of
static loading. In this section, both the rigorous approach and the simplified one, with
respect to the loading conditions, are implemented and their efficiency is compared in the
framework of finding the optimum design of a structure having the minimum weight. In the
context of the rigorous approach a number of artificial accelerograms are produced from the
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design response spectrum of the region for elastic structural response, which constitutes the
multiple loading conditions under which the structures is optimally designed. The elastic
design response spectrum can be seen as an envelope of response spectra, for a specific
damping ratio, of different earthquakes most likely to occur in the region. This approach is
compared with the approximate one based on simplifications adopted by the seismic codes.
The results obtained for a characteristic test problem indicate the improvement achieved
in the final design when the rigorous approach is considered.

The equations of equilibrium for a finite element system in motion can be written in
the usual form

M (si)üt + C(si)u̇t +K(si)ut = Rt (66)

where M (si), C(si), and K(si) are the mass, damping and stiffness matrices for the i-th
design vector si; Rt is the external load vector, while u, u̇ and ü are the displacement,
velocity, and acceleration vectors of the finite element assemblage, respectively. Design
approaches based on direct integration of equations of motion and on the response spectrum
modal analysis, which is based on the mode superposition approach, will be considered in
the following paragraph.

The Newmark integration scheme is adopted in the present study to perform the di-
rect time integration of the equations of motion where the equilibrium equations (66) are
considered at time t+∆t

M (si)üt+∆t +C(si)u̇t+∆t +K(si)ut+∆t = Rt+∆t (67a)

and the variation of velocity and displacement are given by

u̇t+∆t = u̇t + [(1− δ)üt + δüt+∆t]∆t (67b)

ut+∆t = ut + u̇t∆t+ [(1/2− α)üt + αüt+∆t]∆t2 (67c)

where α and δ are parameters that can be determined to obtain integration accuracy and
stability. Solving for üt+∆t in terms of ut+∆t from eq. (67c) and then substituting for
üt+∆t in eq. (67b) we obtain equations for üt+∆t and u̇t+∆t each in terms of the unknown
displacements ut+∆t only. These two relations for üt+∆t and u̇t+∆t are substituted into
eq. (67a) to solve for ut+∆t. As a result of this substitution the following well-known
equilibrium equation is obtained at each ∆t

Keff(si)ut+∆t = Refft+∆t (68)

5.1 Generation of Artificial Accelerograms

The selection of the proper external loading Rt for design purposes is not an easy task due
to the uncertainties involved in the seismic loading. For this reason a rigorous treatment
of the seismic loading is to assume that the structure is subjected to a set of earthquakes
that are more likely to occur in the region where the structure is located.

The seismic excitations that are more likely to occur are produced as a series of artificial
accelerograms. In order these artificial accelerograms, that will load the structure, to be
representative they have to match some requirements of the seismic codes. The most
demanding one is that the accelerograms have to be compatible with the elastic design
response spectrum of the region where the structure is located. It is well known that each
accelerogram corresponds to a single response spectrum for a given damping ratio that can
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be defined relatively easy. On the other hand on each response spectrum corresponds an
infinite number of accelerograms.

Gasparini and Vanmarke [26,27] originally proposed the creation of artificial accelero-
grams that correspond to a specific response spectrum. In this study the implementation
published by Taylor [82] for the generation of statistically independent artificial acceleration
time histories is adopted. This method is based on the fact that any periodic function can
be expanded into a series of sinusoidal waves

x(t) =
∑
k

Ak sin(ωkt+ ϕk) (69)

where Ak is the amplitude, ωk is the cyclic frequency and ϕk is the phase angle of the k-th
contributing sinusoid. By fixing an array of amplitudes and then generating different arrays
of phase angles, different motions can be generated which are similar in general appearance
but different in the “details”. The computer uses a random number generator subroutine
to produce strings of phase angles with a uniform distribution in the range between 0 and
2π. The amplitudes Ak are related to the spectral density function in the following way

G(ωk)∆ω =
A2k
2

(70)

where G(ωk)∆ω may be interpreted as the contribution to the total power of the motion
from the sinusoid with frequency ωk.

The power of the motion produced by eq. (69) does not vary with time. To simulate
the transient character of real earthquakes, the steady-state motion are multiplied by a
deterministic envelope function I(t)

Z(t) = I(t)
∑
k

Ak sin(ωkt+ ϕk) (71)

The resulting motion is stationary in frequency content with peak acceleration close
to the target peak acceleration. In this study a trapezoidal intensity envelope function
is adopted. The generated peak acceleration is artificially modified to match the target
peak acceleration, which corresponds to the chosen elastic design response spectrum. An
iterative procedure is implemented to smooth the calculated spectrum and improve the
matching [82].

The elastic design response spectrum considered in the current study is depicted in
Figure 11 for damping ratio ξ = 2.5%. Five artificial uncorrelated accelerograms, produced
by the previously discussed procedure and shown in Figure 12, have been used as the input
seismic excitation for the numerical tests. The corresponding response spectrum of the first
artificial accelerogram is also depicted in Figure 11.

5.2 Response Spectrum Modal Analysis

The response spectrum modal analysis is based on a simplification of the mode superposition
approach with the aim to avoid time history analyses which are required by both, the direct
integration and mode superposition approaches. In the case of the response spectrum modal
analysis eq. (66) is modified according to the modal superposition approach in the following
form

M(si)üt +C(si)u̇t +K(si)ut = Rt (72)
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Figure 11. Elastic design response spectrum of the region and response spectrum
of the first artificial accelerogram (ξ = 2.5%)

where

M i = ΦT
i MiΦi (73)

Ci = ΦT
i CiΦi (74)

Ki = ΦT
i KiΦi (75)

Rt = ΦT
i Rt (76)

are the generalized values of the corresponding matrices and the loading vector, while Φi

is an eigenmode shape matrix to be defined later. For simplicity M (si), C(si), K(si) are
denoted by Mi, Ci, Ki, respectively. These matrices correspond to the design, which is
defined by the i-th vector of the design parameters, also called design vector. According
to the modal superposition approach the system of N simultaneous differential equations,
which are coupled with the off-diagonal terms in the mass, damping and stiffness matrices, is
transformed to a set of N independent normal-coordinate equations. The dynamic response
can therefore be obtained by solving separately for the response of each normal (modal)
coordinate and then superimposing these to obtain the response in the original coordinates.

In the response spectrum modal analysis a number of different formulas have been
proposed to obtain reasonable estimates of the maximum response based on the spectral
values without performing time history analyses for a considerable number of transformed
dynamic equations. The simplest and most popular of these is the square root of the sum
of the squares (SRSS) of the modal responses. According to this estimate the maximum
total displacement is approximated by

umax =
√
u21,max + u

2
2,max + · · · u2N,max (77)

where uj,max corresponds to the maximum displacement calculated from the j-th trans-
formed dynamic equations over the complete time period. The use of the eq. (77) permits
this type of “dynamic” analysis by knowing only the maximum modal coordinates uj,max.
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Figure 12. The five artificial accelerograms
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Figure 12. continued

The following steps summarize the response spectrum modal analysis adopted in this
study and by a number of seismic codes around the world:

1. Calculate a number m′ < N of eigenfrequencies and the corresponding eigenmode
shape matrices, which are classified in the following order (ω1i , ω

2
i , · · · , ωm

′
i ) and Φi =

[φ1i , φ
2
i , · · · , φm

′
i ], respectively, where ωji , φ

j
i are the j-th eigenfrequency-eigenmode

corresponding to the i-th design vector. m′ is a user specified number, based on
experience or on previous test analyses, which has to satisfy the requirement of step
6.

2. Calculate the generalized masses, according to the following equation

mj
i = φ

jT

i Miφ
j
i (78)
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3. Calculate the coefficients Lji , according to the following equation

Lji = φ
jT

i Mir (79)

where r is the influence vector, which represents the displacements of the masses
resulting from static application of a unit, ground displacement.

4. Calculate the modal participation factor Γji , according to the following equation

Γji =
Lji

mj
i

(80)

5. Calculate the effective modal mass for each design vector and for each eigenmode, by
the following equation

mj
eff ,i =

Lj
2

i

mj
i

(81)

6. Calculate a number m < m′ of the important eigenmodes. According to Eurocode
the minimum number of the eigenmodes that has to be taken into consideration is
defined by the following assumption: The sum of the effective eigenmasses must not
be less than the 90% of the total vibrating mass mtot of the system, so the first m
eigenmodes that satisfy the equation

m∑
j=1

mj
eff ,i ≥ 0.90mtot (82)

are taken into consideration.

7. Calculate the values of the spectral acceleration Rd(Tj) that correspond to each eigen-
period Tj of the important modes.

8. Calculate the spectral displacements according to equation

(SD)j =
Rd(Tj)
ω2j

=
Rd(Tj) · T 2j

4π2
(83)

9. Calculate the modal displacements

uj,max = Γji · φji · (SD)j (84)

The total maximum displacement is then calculated by superimposing the maximum
modal displacements according to eq. (77).
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5.3 Numerical Tests of Sizing Optimization Under Seismic Loading

One benchmark test example of space frame with six storeys has been considered to il-
lustrate the efficiency of the proposed methodology in sizing optimization problems with
discrete design variables. The modulus of elasticity is 200 GPa and the yield stress is
σy = 250 MPa. The cross section of each member is assumed to be a I-shape and for each
member two design variables are considered as shown in Figure 4. The objective function
of the problem is as previously the weight of the structure. The constraints are imposed
on the inter-storey drifts and on the maximum non-dimensional ratio q of eqs. (62) and
(63) for each element group which combines axial force and bending moments. The values
of allowable axial and bending stresses are Fa = 150 MPa and Fb = 165 MPa, respectively,
whereas the maximum allowable inter-storey drift is limited to 4.5 cm which corresponds
to 1.5% of the height of each storey. All tests were performed on a SG Power Challenge
computer with the R4000 processor.

The space frame consists of 63 elements with 180 degrees of freedom as shown in Figure
13a. The beams have length L1 = 7.32 m and the columns L2 = 3.66 m. The structure is
loaded with a 19.16 kPa gravity load on all floor levels and a static lateral load of 109 kN
applied at each node in the front elevation along the z direction. The element members are
divided into 5 groups, as shown in Figure 13b, each one having two design variables resulting
in ten total design variables. The constraints are imposed on the maximum allowable inter-
storey drift and the non-dimensional ratio q for each element group. For this test case both
(µ+ λ)-ES and (µ, λ)-ES schemes are implemented.

x

y
z

(a)

Figure 13. (a) Six storey space frame

The convergence history with respect to the finite element analyses performed by the
optimization procedure using the (5+5)-ES scheme is shown in Figure 14 for both the direct
time integration and the response spectrum modal analysis methods. It can be seen that
the optimum design achieved by the direct time integration approach under the multiple
loading conditions of the five artificial accelerograms given in Figure 12 is 20% less than
the corresponding design given by the response spectrum modal analysis.
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Figure 13. (b) Element groups
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Figure 14. Six storey space frame: Convergence histories of the optimization procedure
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The results obtained by the (µ+λ)-ES and (µ, λ)-ES schemes with µ = λ = 5 are shown
in Table 20 for the direct integration approach and the response spectrum modal analysis.
The upper values of the design parameters are taken as the initial design (Winitial = 2486
kN), while the termination criterion (i) of section 4.2.5 is adopted for both schemes. The
results indicate that the (µ + λ)-ES scheme appears to be more robust than the (µ, λ)-
ES scheme. Furthermore, the direct time integration approach is about two times more
computationally expensive than the response spectrum modal analysis.

ESs scheme Weight (kN) Time (sec) Generations FE analyses

(µ+λ) 944 13818 40 142

(µ, λ) 842 39657 40 359

Optimum solution achieved (design variables-cm)
ESs scheme

h1 b1 h2 b2 h3 b3 h4 b4 h5 b5

(µ+λ) 46 38 58 46 51 35 20 15 46 33

(µ, λ) 51 35 46 43 51 35 30 13 51 20

(a) The (µ+λ)-ESs and (µ,λ)-ESs schemes for the direct time integration approach

ESs scheme Weight (kN) Time (sec) Generations FE analyses

(µ+λ) 1126 5674 40 157

(µ, λ) 1316 5284 21 140

Optimum solution achieved (design variables-cm)
ESs scheme

h1 b1 h2 b2 h3 b3 h4 b4 h5 b5

(µ+λ) 51 41 53 53 51 41 28 20 35 33

(µ, λ) 43 43 66 56 51 46 33 23 41 35

Table 20. Six storey space frame: Comparison of (µ + λ)-ESs and (µ, λ)-ESs
schemes

The influence of the number of parents and offsprings is shown in Table 21. The results
indicate that the schemes close to (5+5)-ES scheme gave better convergence. This confirms
the empirical rule that the sum of the parents and offsprings should be roughly equal to the
number of the design parameters of the problem. Schemes with larger number of parents
and offsprings consume much more time until they reach convergence but they can give
good results in some cases, as far as the optimum is concerned.

Finally, the behaviour of the (5+5)-ES scheme for different initial designs is depicted
in Table 22. The initial designs correspond to one feasible and one infeasible design. The
results show that the final optimum design could be affected by the initial parameters in
the range of 10% at the most.

6 CONCLUDING REMARKS

The proposed hybrid optimization algorithms proved to be robust and efficient methods for
structural optimization. Both combinations of genetic algorithms with successive quadratic



294 M. Papadrakakis, Nikolaos D. Lagaros, Y. Tsompanakis and V. Plevris

ESs scheme Weight (kN) Time (sec) Generations FE analyses

(3+3) 863 9839 65 135

(3+5) 917 11308 35 113

(5+3) 963 12816 56 123

(5+5) 944 13818 40 142

(5+10) 835 20574 38 248

(10+5) 824 29363 78 306

(10+10) 844 32130 48 381

(a) Direct time integration approach

ESs scheme Weight (kN) Time (sec) Generations FE Dynamic analyses

(3+3) 1207 3110 37 82

(3+5) 1103 3527 29 92

(5+3) 1082 9853 129 299

(5+5) 1126 5674 40 157

(5+10) 1165 4897 18 130

(10+5) 1253 4154 23 109

(10+10) 1108 8646 29 235

(b) Response spectrum modal analysis

Table 21. Six storey space frame: Influence of the number of parent and offspring
for the (µ + λ)-ESs schemes

Initial design Weight (kN) Time (sec) Generations FE analyses

feasible 944 9473 35 142

infeasible 1037 13818 40 178

(a) Direct time integration approach

Initial design Weight (kN) Time (sec) Generations FE analyses

feasible 1126 5674 40 157

infeasible 1104 9510 46 246

(b) Response spectrum modal analysis

Table 22. Six storey space frame: Influence of the number of the starting point
of the (5+5)-ESs scheme

programming and of evolution strategies with successive quadratic programming manage
to converge to better designs than those achieved by evolution strategies or successive
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quadratic programming alone at a reduced computational effort compared to the successive
quadratic programming procedure. The combination of genetic algorithms with successive
quadratic programming is particularly promising for bad initial designs due to the fast con-
vergence of genetic algorithms towards the neighborhood of the optimum and the property
of successive quadratic programming to compute quickly the nearest optimum once in the
neighborhood of the solution. However, the proposed adaptive evolution strategies when
coupled with successive quadratic programming and the combination of the augmented
Lagrangian genetic algorithms as the first stage optimizer followed by evolution strategies
proved to be the more efficient optimization algorithm for the test cases considered.

The techniques for handling the constraints in genetic algorithms are based on the use
of penalty functions, which transform the constraint optimization problem into an uncon-
straint one. Techniques for handling the constraints based on static and dynamic penalties
as well as the micro genetic algorithms and segregated genetic algorithms proved to be
rather sensitive to the values of the characteristic parameters for handling the constraints.
The computational effort that is required by genetic algorithms is less than the correspond-
ing effort by evolution strategies but they are hindered by premature convergence either
to non-optimal or to infeasible designs. The contemporary evolution strategies and the
adaptive evolution strategies, did manage to improve the final design achieved by the basic
evolution strategies for a number of values of the characteristic parameters at almost no
increase of the computational effort.

The proposed multi-domain methods for solving the finite element equilibrium equations
outperform the direct and hybrid single-domain methods in sequential computing mode. In
parallel computing mode both one-level and two-level multi-domain methods exhibit satis-
factory speed-ups in relation to the computational effort for solving the overall optimization
problem.

The computational effort involved in the optimization procedure using evolutionary
algorithms becomes excessive in large-scale problems and the use of neural networks to
“predict” the necessary optimization data for evolutionary algorithms can practically elim-
inate any limitation on the size of the problem, while the predicted structural response
corresponding to different optimization simulations falls within acceptable tolerances. The
methodology presented is an efficient, robust and generally applicable optimization proce-
dure capable of finding the global optimum design of complicated structural optimization
problems. Additionally, it was found that the proposed hybrid optimization methodology
of combining evolution strategies with successive quadratic programming can reach the op-
timum for large and computationally intensive problems at a fraction of the computing time
required by the standard evolution strategies optimization algorithm and the conventional
method based on mathematical programming technique.

The proposed optimization algorithms can be considered as robust and efficient tools for
design optimization of structures under seismic loading. The presented results indicate the
improvement that can be achieved in the final design of structures under seismic loading
when the proposed optimization procedure is implemented. Both design methodologies
based on a number of artificially generated earthquakes and the response spectrum modal
analysis adopted by the seismic codes have been implemented and compared. The more
rigorous dynamic approach based on time history analyses gives more economic designs
than the approximate response spectrum modal analysis, at the expense of requiring more
computational effort.
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