ResearchGate

See discussions, stats, and author profiles for this publication at:

Structural optimization using evolution
strategies and neural networks

ARTICLE /n COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING - APRIL 1998

Impact Factor: 2.96 - DOI: 10.1016/S0045-7825(97)00215-6

CITATIONS READS
89 62
3 AUTHORS:
H National Technical University of Athens National Technical University of Athens
249 PUBLICATIONS 2,792 CITATIONS 129 PUBLICATIONS 1,298 CITATIONS
SEE PROFILE SEE PROFILE

Technical University of Crete

65 PUBLICATIONS 357 CITATIONS

SEE PROFILE

Available from: Nikos Lagaros
Retrieved on: 08 October 2015


http://www.researchgate.net/publication/222499945_Structural_optimization_using_evolution_strategies_and_neural_networks?enrichId=rgreq-38bad074-4f38-47ca-9a49-8a718cf187c6&enrichSource=Y292ZXJQYWdlOzIyMjQ5OTk0NTtBUzoxMDM3MTI3MDYwMDcwNTVAMTQwMTczODQ0NDg2MA%3D%3D&el=1_x_2
http://www.researchgate.net/publication/222499945_Structural_optimization_using_evolution_strategies_and_neural_networks?enrichId=rgreq-38bad074-4f38-47ca-9a49-8a718cf187c6&enrichSource=Y292ZXJQYWdlOzIyMjQ5OTk0NTtBUzoxMDM3MTI3MDYwMDcwNTVAMTQwMTczODQ0NDg2MA%3D%3D&el=1_x_3
http://www.researchgate.net/?enrichId=rgreq-38bad074-4f38-47ca-9a49-8a718cf187c6&enrichSource=Y292ZXJQYWdlOzIyMjQ5OTk0NTtBUzoxMDM3MTI3MDYwMDcwNTVAMTQwMTczODQ0NDg2MA%3D%3D&el=1_x_1
http://www.researchgate.net/profile/Papadrakakis_Manolis?enrichId=rgreq-38bad074-4f38-47ca-9a49-8a718cf187c6&enrichSource=Y292ZXJQYWdlOzIyMjQ5OTk0NTtBUzoxMDM3MTI3MDYwMDcwNTVAMTQwMTczODQ0NDg2MA%3D%3D&el=1_x_4
http://www.researchgate.net/profile/Papadrakakis_Manolis?enrichId=rgreq-38bad074-4f38-47ca-9a49-8a718cf187c6&enrichSource=Y292ZXJQYWdlOzIyMjQ5OTk0NTtBUzoxMDM3MTI3MDYwMDcwNTVAMTQwMTczODQ0NDg2MA%3D%3D&el=1_x_5
http://www.researchgate.net/institution/National_Technical_University_of_Athens?enrichId=rgreq-38bad074-4f38-47ca-9a49-8a718cf187c6&enrichSource=Y292ZXJQYWdlOzIyMjQ5OTk0NTtBUzoxMDM3MTI3MDYwMDcwNTVAMTQwMTczODQ0NDg2MA%3D%3D&el=1_x_6
http://www.researchgate.net/profile/Papadrakakis_Manolis?enrichId=rgreq-38bad074-4f38-47ca-9a49-8a718cf187c6&enrichSource=Y292ZXJQYWdlOzIyMjQ5OTk0NTtBUzoxMDM3MTI3MDYwMDcwNTVAMTQwMTczODQ0NDg2MA%3D%3D&el=1_x_7
http://www.researchgate.net/profile/Nikos_Lagaros?enrichId=rgreq-38bad074-4f38-47ca-9a49-8a718cf187c6&enrichSource=Y292ZXJQYWdlOzIyMjQ5OTk0NTtBUzoxMDM3MTI3MDYwMDcwNTVAMTQwMTczODQ0NDg2MA%3D%3D&el=1_x_4
http://www.researchgate.net/profile/Nikos_Lagaros?enrichId=rgreq-38bad074-4f38-47ca-9a49-8a718cf187c6&enrichSource=Y292ZXJQYWdlOzIyMjQ5OTk0NTtBUzoxMDM3MTI3MDYwMDcwNTVAMTQwMTczODQ0NDg2MA%3D%3D&el=1_x_5
http://www.researchgate.net/institution/National_Technical_University_of_Athens?enrichId=rgreq-38bad074-4f38-47ca-9a49-8a718cf187c6&enrichSource=Y292ZXJQYWdlOzIyMjQ5OTk0NTtBUzoxMDM3MTI3MDYwMDcwNTVAMTQwMTczODQ0NDg2MA%3D%3D&el=1_x_6
http://www.researchgate.net/profile/Nikos_Lagaros?enrichId=rgreq-38bad074-4f38-47ca-9a49-8a718cf187c6&enrichSource=Y292ZXJQYWdlOzIyMjQ5OTk0NTtBUzoxMDM3MTI3MDYwMDcwNTVAMTQwMTczODQ0NDg2MA%3D%3D&el=1_x_7
http://www.researchgate.net/profile/Yiannis_Tsompanakis?enrichId=rgreq-38bad074-4f38-47ca-9a49-8a718cf187c6&enrichSource=Y292ZXJQYWdlOzIyMjQ5OTk0NTtBUzoxMDM3MTI3MDYwMDcwNTVAMTQwMTczODQ0NDg2MA%3D%3D&el=1_x_4
http://www.researchgate.net/profile/Yiannis_Tsompanakis?enrichId=rgreq-38bad074-4f38-47ca-9a49-8a718cf187c6&enrichSource=Y292ZXJQYWdlOzIyMjQ5OTk0NTtBUzoxMDM3MTI3MDYwMDcwNTVAMTQwMTczODQ0NDg2MA%3D%3D&el=1_x_5
http://www.researchgate.net/institution/Technical_University_of_Crete?enrichId=rgreq-38bad074-4f38-47ca-9a49-8a718cf187c6&enrichSource=Y292ZXJQYWdlOzIyMjQ5OTk0NTtBUzoxMDM3MTI3MDYwMDcwNTVAMTQwMTczODQ0NDg2MA%3D%3D&el=1_x_6
http://www.researchgate.net/profile/Yiannis_Tsompanakis?enrichId=rgreq-38bad074-4f38-47ca-9a49-8a718cf187c6&enrichSource=Y292ZXJQYWdlOzIyMjQ5OTk0NTtBUzoxMDM3MTI3MDYwMDcwNTVAMTQwMTczODQ0NDg2MA%3D%3D&el=1_x_7

Computer methods
in applied
mechanics and
engineering
Comput. Methods Appl. Mech. Engrg. 156 (1998) 309-333 —

ELSEVIER

Structural optimization using evolution strategies and neural
networks

Manolis Papadrakakis*, Nikos D. Lagaros, Yiannis Tsompanakis
Institute of Structural Analysis & Seismic Research, National Technical University Athens, Zografou Campus, Athens 15773, Greece

Received 17 March 1997

Abstract

The objective of this paper is to investigate the efficiency of combinatorial optimization methods, in particular algorithms based on
evolution strategies (ES) when incorporated into the solution of large-scale, continuous or discrete, structural optimization problems. Two
types of applications have been investigated, namely shape and sizing structural optimization problems. Furthermore, a neural network (NN)
model is used in order to replace the structural analysis phase and to compute the necessary data for the ES optimization procedure. The use
of NN was motivated by the time-consuming repeated analyses required by ES during the optimization process. A back propagation
algorithm is implemented for training the NN using data derived from selected analyses. The trained NN is then used to predict, within an
acceptable accuracy, the values of the objective and constraint functions. The numerical tests presented demonstrate the computational
advantages of the proposed approach which become more pronounced in large-scale optimization problems. © 1998 Elsevier Science S.A.

1. Introduction

Optimization of large-scale structures, such as sizing optimization of multi-storey 3-D frames or shape
optimization of 2-D mechanical parts, is a computationally intensive task. In sizing optimization the aim is to
minimize the weight of the structure under certain restrictions imposed by design codes, whereas in shape
optimization the goal is to improve a given topology by minimizing an objective function subjected to certain
constraints. When a gradient-based optimizer is used the most time-consuming part of the optimization process,
in both cases, is devoted to the sensitivity analysis phase which is an important ingredient of all mathematical
programming optimization methods [1]. On the other hand, the application of combinatorial optimization
methods based on probabilistic searching, such as evolution strategies (ES), do not need gradient information
and therefore avoid performing the computationally expensive sensitivity analysis step [2]. Furthermore, it is
widely recognized that combinatorial optimization techniques, such as ES, are in general more robust and
present a better global behaviour than mathematical programming methods. They may suffer, however, from a
slow rate of convergence towards the global optimum.

During the last fifteen years there has been a growing interest in problem solving systems based on algorithms
which rely on analogies to natural processes. The best known algorithms in this class include evolutionary
programming (EP) [3], genetic algorithms (GA) [4,5], evolution strategies (ES) [6,7]. Evolution-based systems
maintain a population of potential solutions. These systems have some selection process based on fitness of
individuals and some recombination operators. ES like GA imitate biological evolution and combine the concept
of artificial survival of the fittest with evolutionary operators to form a robust search mechanism.
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Another important technique that follows natural processes, and in particular human brain functions, is
artificial neural networks which simulate the structure of the biological neural network of the human brain. The
use of artificial intelligence techniques, such as neural networks, to predict analysis outputs has been studied
previously in the context of optimal design of structural systems [8,9], and also in some other areas of structural
engineering applications. In the review papers of Berrais [10] and Waszczyszyn [11] a number of references can
be found on the application of neural networks (NN) in computational mechanics. The principal advantage of a
properly trained NN is that it requires a trivial computational effort to produce an acceptable approximate
solution. Such approximations appear to be valuable in situations where the actual response computations are
intensive in terms of computing time and a quick estimation is required.

In this work the efficiency of ES combined with neural networks (NN) both in sizing and shape structural
optimization problems is investigated in an effort to increase the robustness as well as the computational
efficiency of the optimization procedure. The use of NN was motivated by the time-consuming repeated
analyses required for ES during the optimization process. The suitability of NN predictions is investigated in a
number of structural problems optimized using ES and the computational advantages of the proposed approach
are demonstrated. In addition, a thorough investigation is performed on the selection of the training set used for
the NN learning procedure in order to ensure the generality and robustness of the proposed methodology.

For each problem an NN is trained utilizing information generated from a number of properly selected
analyses. The data from these analyses are processed in order to obtain the necessary input and output pairs
which are subsequently used to produce a trained NN. The trained NN is then used to predict the response of the
structure in terms of objective and constraints function values due to different sets of design variables. The
predicted values of the optimizarion functions should resemble closely to the corresponding values of the
conventional analyses, which are considered exact. The NN type considered here is based on the feed-forward
error back-propagation training algorithm [12]. It appears that the use of a properly selected and trained NN can
eliminate any limitation on the dimensionality of the problem, due to a drastic reduction of the computing time
required for the repeated analyses. Additionally, the cost of each optimization cycle of ES using NN is trivial,
therefore the number of analyses during the optimization procedure is not of great importance. In other words,
the proposed combination of NN with ES increases the applicability of ES, or any other probabilistic searching
optimization algorithm, and makes it an efficient general purpose optimizer.

2. Shape optimization

In structural shape optimization problems the aim is to improve a given topology by minimizing an objective
function subjected to certain constraints [2,13,14]. All functions are related to the design variables which are
some of the coordinates of the key points in the boundary of the structure. The shape optimization method used
in the present study is based on a previous work by Hinton and Sienz [13] for treating two-dimensional
problems. It consists of the following essential ingredients: (i) shape generation and control, (ii) mesh
generation, (iii) adaptive finite element analysis, (iv) sensitivity analysis, when gradient-based optimization
methods are applied, and (v) shape optimization. The mathematical formulation of a typical structural shape
optimization problem with respect to the design variables, the objective and constraint functions can be
expressed in standard mathematical terms as a nonlinear programming problem (NLP) as follows:

min F(s)
subject to  g,(s) <0 j=1,...,m )]
sf.Ssi$s;1 i=1,...,n

where s is the vector of design variables, F(s) is the objective function to be minimized (or maximized), g;(s)
are the behavioural constraints, s; and s are the lower and the upper bounds on a typical design variable s,.
Equality constraints are usually rarely imposed. Whenever they are used they are treated for simplicity as a set of
two inequality constraints.

The set of design variables gives a unique definition of a particular design. The selection of design variables is
very important in the optimization process. The designer has to decide a priori where to allow design changes
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and to evaluate how these changes should take place by defining the location of the design variables and the
moving directions. The use of the coordinates at key points of the curves that define the shape of the structural
model as design variables leads to fewer design variables and more freedom in controlling the shape of the
structure.

It is an issue of extreme importance to formulate the optimization problem correctly, otherwise unrealistic
solutions may be found. Normally, it is necessary to constrain some function of the stresses (e.g. the principal
stress) so that it will not exceed a specified value throughout the entire structure. From a practical point of view
a finite number of so-called ‘stress constraint points’ is selected, where the condition is enforceable. These
points are either some predefined points within the domain, or some boundary nodes. Other types of constraints,
like displacement or frequency constraints, can also be imposed depending on the type of problem. Usually, the
constraint functions and their derivatives are normalized in order to improve the performance of the optimizer.

The shape optimization methodology proceeds with the following steps: (1) At the outset of the optimization,
the geometry of the structure under investigation has to be defined. The boundaries of the structure are modeled
using cubic B-splines which, in turn, are defined by a set of key points. Some of the coordinates of these key
points will be the design variables which may or may not be independent of each other. (2) An automatic mesh
generator is used to create a valid and complete finite element model. A finite element analysis is then carried
out and the displacements and stresses are evaluated. In order to increase the accuracy of the analysis an h-type
adaptivity analysis may be incorporated at this stage. (3) If a gradient-based optimizer, like the sequential
quadratic programming SQP algorithms, is used then the sensitivities of the constraints and the objective
function to small changes of the design variables are computed either with the finite difference, or with the
semi-analytical method. (4) The design variables are being optimized. If the convergence criteria for the
optimization algorithm are satisfied, then the optimum solution has been found and the process is terminated,
else a new geometry is defined and the whole process is repeated from step 2. The whole procedure is depicted
in Fig. 1.

3. Sizing optimization

In sizing optimization problems the aim is usually to minimize the weight of the structure under certain
behavioural constraints on stress and displacements. The design variables are most frequently chosen to be
dimensions of the cross-sectional areas of the members of the structure. Due to engineering practice demands
the members are divided into groups having the same design variables. This linking of elements results in a
trade-off between the use of more material and the need for symmetry and uniformity of structures due to
practical considerations. Furthermore, it has to be taken into account that due to fabrication limitations the
design variables are not continuous but discrete since cross-sections belong to a certain set.

A discrete structural optimization problem can be formulated in the following form:

min F(s)
subjectto g(s)<0 j=1,....,m 2)
siERd, i=1,...,n

where R? is a given set of discrete values and design variables s, (i =1, ..., n) can take values only from this
set. In the present study the sizing optimization of multi-storey 3-D frames is investigated. Optimal designs of
frames have been studied initially using conventional plastic design methods. Then more sophisticated
optimization algorithms were introduced in order to solve this type of problem more efficiently [15,16]. Most
frequently the objective function is the weight of the structure and the constraints are the member stresses and
nodal displacements or inter-storey drifts. For rigid frames in rolled W-shapes, under allowable stress design
requirements specified by AISC [17], the stress constraints are the non-dimensional ratio g of the following
formulas:

|-

qg= “+—£—f—s1.0 iff,—“slo.ls 3)
b

a a
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f,=(P/A) is the computed axial stress, where A is the cross-sectional area of the member. The computed

bending stress is taken from f, = (M, /W), where M, is the maximum bending moment in the element and

W is the section modulus, which is equal to W= 0.256 * A%’? for rolled W-shaped cross-sections. Finally, F’ is

the Euler stress divided by a safety factor, C,, is a coefficient depending upon column curvature, F, = 0.60* F,
is the allowable axial stress, F, = 0.66 * Fy is the allowable bending stress and Fy is the yield stress.

4. Evolution strategies (ES)

There are three types of algorithms belonging to the class of evolutionary computation that imitate nature by
using biological methodologies in order to find the optimum solution of a problem: (i) evolutionary
programming (EP), (ii) genetic algorithms (GA) and (iii) evolution strategies (ES). Their main difference is that
GA deal with bit-strings of fixed sizes, ES with real vectors and EP with finite state automata. GA basic
assumption is that the optimal solution can be found by assembling building blocks, i.e. partial pieces of
solutions, while ES and EP simply ensure the emergence of the best solutions. The most important consequence
of this different approach is related to the recombination operator, viewed as essential for GA, as potentially
useful for ES and as possibly harmful for EP. The modern tendencies seem to follow combinations of the two
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approaches, since GA users have turned to real number representations when dealing with real numbers
following experimental results or heuristic demonstrations, whereas ES users have included recombination as a
standard operator, and have designed special operators for non real-valued problems [18].

Evolution strategies were propossd for parameter optimization problems in the 1970s by Rechenberg [6] and
Schwefel [7]. Similar to genetic algorithms, ES imitate biological evolution in nature and have three
characteristics that make them differ from other conventional optimization algorithms: (i) in place of the usual
deterministic operators, they use randomized operators: mutation, selection as well as recombination; (ii) instead
of a single design point, they work simultaneously with a population of design points in the space of variables;
(iii) they can handle continuous, discrete and mixed optimization problems. The second characteristic allows for
a natural implementation of ES on parallel computing environments. The ES, however, achieve a high rate of
convergence than GA due to their self-adaptation search mechanism and are considered more efficient for
solving real world problems [19]. The ES were initially applied for continuous optimization problems, but
recently they have also been implemented in discrete and mixed optimization problems. The ES algorithms used
in the present study are based on the work of Thierauf and Cai who applied the ES methodologies in sizing
structural optimization problems having discrete and/or continuous design variables [20,21].

4.1. ES algorithms for continuous problems

The ES for continuous optimization problems are divided into two-membered (2-ES) and multi-membered
algorithms (M-ES).

4.1.1. The two-membered ES

The earliest evolution strategies were based on a population consisting of one individual only. The
two-membered scheme is the minimal concept for an imitation of organic evolution. The two principles of
mutation and selection, which Darwin in 18359 recognized to be most important, are taken as rules for variation
of the parameters and for recursion of the iteration sequence, respectively.

The two-membered ES works in two steps for the solution of the optimization problem:

Step 1 (mutation). The parent s;f > of the generation g produces an offspring ség), whose genotype is slightly

different from that of the parent:
sgx) — s;g) + Z(gl (5)
where z'¢' = [2\*, 25¥, ..., 2.¥']" is a random vector.
Step 2 (selection). The selection chooses the best individual between the parent and the offspring to survive:

(g+1)
Sp

(6)

s if g65¥)<0G=1,2,...,1) and fisg¥) <f(s.")
otherwise

(8)
Sp

The question that arises is how to choose the random vector z'#" in Step 1. This choice has the role of mutation.

Mutation is understood to be random, purposeless events, which occur very rarely. If one interprets them, as a
set of many individual events the ‘natural’ choice is to use a probability distribution according to which small
changes occur frequently, but large ones only rarely. As a result of this assumption two requirements arise
together by analogy with natural evolution: (i) the expected mean value ¢, for a component zﬁg) to be zero; (ii)
the variance o-f, the average squared standard deviation from mean value, to be small. The role of mutation
operation, both in ES and GA, is to make the population less homogeneous and permit a diversity in the process
of random search which results in a better exploration of the design space and a faster allocation of the optimum
design.

The probability density function for normally distributed random events is given by

7(&’))2 1 €X (_(ZEK]_&')z)
P@; 2mo, p ]

(N
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When ¢, =0 the so-called (0, ¢;) normal distribution is obtained. By analogy with other deterministic search
strategies, o; can be called step length, in the sense that it represents average values of the length of the random
steps.

If the step length is too small the search takes an unnecessarily large number of iterations. On the other hand,
if the step length is too large the optimum can only be crudely approached and the search can even get stuck far
away from the global optimum. Thus, as in all optimization strategies, the step length control is the most
important part of the algorithm after the recursion formula, and it is further more closely linked to the
convergence behaviour.

The standard deviation o; can be adjusted during the optimum design search as follows (Rechenberg’s 1/5
success rule [6]): ‘The ratio  of successful mutations to all mutations should be 1/5. If it is greater, increase
the standard deviations o,; while if it is less, decrease the standard deviations o,’. Successful mutations are
those who produced offsprings having a better objective function value than their parents. According to
Schwefel [7] the check should take place every n» mutations over the preceding 10*»n mutations, while the
increase and decrease factors of the step length should be (1/0.85) and 0.85, respectively. The intuitive reason
behind this rule is to increase the efficiency of the optimum design search by monitoring the step lengths. If ¢ is
greater than 1/5 the search continues with larger steps else the steps are shorter.

4.1.2. Multi-membered ES .

The disadvantage of the 1/5 success rule for controlling the ‘step size’ of the two-membered strategies, as
well as the need for acceleration of the convergence rate of the methodology, led to the development of
multi-membered evolution strategies (M-ES). The M-ES differ from the (2-ES) in the size of the population and
the recombination and mutation operators. In this case a population of u parents will produce A offsprings.
Thus, the two steps of the ES arz defined as follows:

Step 1 (recombination and muiation). The population of p parents at gth generation produces A offsprings.
The genotype of any descendant differs only slightly from that of its parents. For every offspring vector a
temporary parent vector § = [§, §,, ..., s"n]T is first built by means of recombination. For continuous problem
the following recombination cases can be used:

5, or s, randomly (A)

1/2(s,, +5,,) (B)

§; =9 Suji <) (8)
5, O 5, randomly (D)
1/20s,, +5,,,) (E)

§, is the ith component of the temporary parent vector §, 5, ; and s, ; are the ith components of the vectors s, and
5, which are two parent vectors randomly chosen from the population. In case C of Eq. (8), §; =5,;; means that
the ith component of § is chosen randomly from the ith components of all x parent vectors. From the temporary
parent § an offspring can be created following the mutation operator of 2-ES (Eq. (5)).
Step 2 (selection). There are two different types of the multi-membered ES:
(u + A)-ES: The best g individuals are selected from a temporary population of (4 + A) individuals to form
the parents of the next generation.
(u, A)-ES:  The u individuals produces A offsprings (4 <A) and the selection process defines a new
population of u individuals from the set of A offsprings only.

In the second type, the life of each individual is limited to one generation. This allows the (u, A)-ES selection to
perform better on dynamic problems where the optimum is not fixed, or on problems where the objective
function is noisy.

Multi-membered ES termination criteria are the following: (i) when the absolute or relative difference
between the best and the worst objective function values of the current generation is less than a given value &,
or (ii) when the mean value of the objective values from all parent vectors in the last 2+#n generations has not
been improved by less than a given value &,.
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4.2. ES for discrete optimization problems

In engineering practice the design variables are not continuous because usually the structural parts are
constructed with certain variation of their dimensions. Thus, design variables can only take values from a
predefined discrete set. For the solution of discrete optimization problems a modified ES algorithm has been
proposed by Thierauf and Cai [20]. The basic differences between discrete and continuous ES are focused on the
mutation and the recombination operators.

The mutation operator in the continuous version of ES produces a normally distributed random change vector
z'*’. Each component of this vector has small standard deviation value o, and zero mean value. As a result of
this there is a possibility that all components of a parent vector may be changed, but usually the. changes are
small. In the discrete version of ES the random vector z'*' is properly generated in order to force the offspring
vector to move to another set of discrete values. The fact that the difference between any two adjacent values
can be relatively large is against the requirement that the variance 0‘,»2 should be small. For this reason it is
suggested that not all the components of a parent vector, but only a few of them (e.g. /) should be randomly
changed in every generation, This means that n — ! components of the randomly changed vector z'¢’ will have
zero value. In other words, the terms of vector z'* are derived from

o J (& +1)ds; for [ randomly chosen components 0
“% 7o for n — I other components ®)

where ds; is the difference between two adjacent values in the discrete set and « is a random integer number
which follows the Poisson distribution

3

ply =1 o (10)

x!
v is the standard deviation as well as the mean value of the random number «. For a very small y (e.g. 0.001)
the probability that « will be zero is greater than 99%. For greater values of y (e.g. 0.05) the probability that «
will be zero is 95% and the probability that it will be one is 5%. This shows how the random change zf.g) is
controlled by the parameter y. The choice of / depends on the size of the problem and it is usually taken as the
1/5 of the total number of design variables. The ! components are selected using uniform random distribution in
every generation according to Eq. (9).

As far as the recombination operator is concerned, in the case of discrete optimization problems the
recombination cases (B) and (E) in Eq. (8) are not suitable since the mean value of two discrete values is
usually not a discrete value from the given set of the design variables. Therefore, the following recombination
cases are employed

s, or s, randomly  (A)
s,.; or s, randomly (B)

Sy ©) (1)
S, OF 5,,; randomly (D)

“n
I

(
S, OF 5, ; randomly (E)

The recombination cases (A), (C) and (D) are the same as those in Eq. (8). In cases (B) and (E) of Eq. (11) the
current vector of design variables s, is not randomly chosen but is the best of the w parent vectors in the gth
generation. It has been verified that when the best parent is used during the recombination a better convergence
rate is achieved. Using the temporary parent vector of Eq. (11) an offspring can be created as in the
two-membered type ES (Eq. (6)).

For discrete optimization the procedure terminates when one of the following termination criteria is satisfied:
(i) when the best value of the objective function in the last 4 #*n * u/A generations remains unchanged, (ii)
when the mean value of the objective values from all parent vectors in the last 2*n* u/A generations has not
been improved by less than a given value &, (=0.0001), (iii) when the relative difference between the best
objective function value and the mean value of the objective function values from all parent vectors in the
current generation is less than a given value & (=0.0001), (iv) when the ratio u, /u has reached a given value
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g, (=0.5-0.8) where g, is the number of the parent vectors in the current generation with the best objective
function value.

4.3. ES in structural optimization problems

So far comparatively little effort has been spent in applying probabilistic search methods to structural
optimization problems [1,22]. Usually these types of problems are solved with a mathematical programming
algorithm such as the sequential quadratic programming method SQP [23,24], the generalized reduced gradient
method (GrG) [25], the method of moving asymptotes (MMA) [26], which need gradient information. In
structural optimization problems. where the objective function and the constraints are particularly highly
nonlinear functions of the design variables, the computational effort spent in gradient calculations is usually
large.

In a recent work by Papadrakakis et al. [1] it was found that combinatorial type algorithms are
computationally efficient even if a greater number of analyses are needed to reach the optimum. These analyses
are computationally less expensive than in the case of mathematical programming algorithms since they do not
need gradient information. Furthermore, probabilistic methodologies, due to their random search, are considered
as global optimization methods because they are capable of finding the global optimum, whereas mathematical
programming algorithms may be trapped in local optima. Finally, the natural parallelism inherent in
combinatorial algorithms makes them very attractive for application in parallel computer architectures.

The implementation of ES in structural optimization follows the same steps as described in Fig. 1 without
performing the sensitivity analysis step. The ES optimization procedure starts with a set of parent vectors. If any
of these parent vectors gives an infeasible design then this parent vector is modified until it becomes feasible.
Subsequently, the offsprings are generated and checked if they are in the feasible region. According to (u + A)
selection scheme in every generation the values of the objective function of the parent and the offspring vectors
are compared and the worst vectors are rejected, while the remaining ones are considered to be the parent
vectors of the new generation. On the other hand, according to (u, A) selection scheme only the offspring
vectors of each generation are used to produce the new generation. This procedure is repeated until the chosen
termination criterion is satisfied.

The computational efficiency of the multi-membered ES discussed in this work is affected by the number of
parents and offsprings involved. It has been observed that values of u and A equal to the number of the design
variables produce best results [1]. The ES algorithm for structural optimization applications can be stated as
follows:

Selection step: selection of s, (i =1,2,..., u) parent vectors of the design variables

. Analysis step: solve K(s)u,=f (i=1,2,..., u)

Constraints check: all parent vectors become feasible

. Offspring generation: generate s; (j=1,2,..., A) offspring vectors of the design variables

. Analysis step: solve K(s;)u; =f(i=12,..., %

Constraints check: if satisfied continue, else change s, and go to step 4

Selection step: selection of the next generation parents according to (s + A) or (u, A) selection schemes
Convergence check: if satisfied stop, else go to step 3

NS ANN o~

4. Elements of artificial neural networks theory

Only the basic principals of neural networks (NN) will be discussed in this section. A more detailed
introduction to NN may be found in [12,27]. A number of computational structures technology applications have
been investigated in order to demonstrate neural network capabilities [28-30]. NN have been also applied to a
variety of problems like image processing, pattern recognition, classification, medical and financial applications
etc. NN are most suitable for applications that have any of the following characteristics: (i) they are
data-intensive and depend on multiple criteria, (ii) data set is incomplete, noisy, and contain errors, (iii) there
are many results about the problem area, and (iv) there is no way to describe the problem with a function.

The aim of the present study is to train a neural network to provide computationally inexpensive estimates of
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analysis outputs required during the optimization process. A trained network presents some distinct advantages
over the numerical computing paradigm. It provides a rapid mapping of a given input into the desired output
quantities, thereby enhancing the efficiency of the redesign process. This major advantage of a trained NN over
the conventional procedure, under the provision that the predicted results fall within acceptable tolerances, leads
to results that can be produced in a few clock cycles, representing orders of magnitude less computational effort
than the conventional computational process.

4.1. Back propagation learning algorithm

In general there are many different types of NN topologies and usually there is not one architecture that is
suitable for all problems. The main types of NN are the following: competitive learning, the Boltzmann
machine, the Hopfield network, and the back propagation network. The latter type is the most popular due to its
simplicity and ease of use. Its name comes from the way it ‘learns’: by back propagating the errors that occur
during the training process. The basic model for a neural network processing element is shown in Fig. 2.

A back propagation (BP) neural network consists of multiple interconnected processing elements belonging to
different layers. In a BP algorithm learning is carried out using a set of input training patterns propagated
through a network consisting of an input layer, one or more hidden layers and an output layer as shown in Fig.
3. The hidden layers represent complicated associations between patterns and propagate data in a feed-forward
manner from the input towards the output layer. The use of hidden layers and nonlinear activation functions
enhance the ability of NN to ‘learn’ nonlinear relationships among 1/O quantities. The selection of the number
of nodes in the hidden layer(s) is an important factor in the design of the network. The number of nodes in the
hidden layer(s) is usually selected as the mean value of the number of the input and output nodes plus the input
nodes. More sophisticated networks use dynamic node pruning or node growing in the intermediate layer(s).

Each layer of the network has its corresponding units (processing elements, neurons or nodes) and weight
connections that perform the learning process. Most of the NN training methods use gradient descent algorithms,
such as least squares, in order to correct the values of the weight connections. This is the outcome of a
minimization of an error measure which is the difference between the computed and the desired output values
summed over the output units and all pairs of I/O vectors. This correction step of the weights is known as delta
rule. Once a trained network is established then every time it is activated with a new input data set it produces
an estimation of the desired output. In an optimization problem using NN, for example, one could create a
mapping between design variables and values of the objective and constraint(s) functions.

The inputs x,,i =1, ..., n, received by the input layer are analogous to the electrochemical signals received
by neurons in human brain. In the simplest model these input signals are multiplied by connection weights w, .
and the effective output net, ; of the elements in the next layer p is the weighted sum of the inputs

netm = ; W, i netq’i (12)

f) output layer

2nd hidden layer

Xn
neuron j input layer 1st hidden layer

Fig. 2. Basic model for a processing element.

Fig. 3. A fully connected NN configuration.
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layer q layer p

Fig. 4. Connection pattern between two layers.

As shown in Fig. 4, w . is the connecting weight of the i neuron in the g (source) layer and the j neuron in the p
(target) layer, net,_, is the input signal transmitted from the i neuron of the layer g to the nodes of the target
layer p, net  ; is the output produced at the j neuron of the layer p. The exterior inputs x; correspond to net, ; for
the input layer.

In the biological system, a typical neuron produces an output signal only if the incoming signal is strong
enough to stimulate the neuron. This output is simulated with NN by

out, ; = F(net, ) (13)

where F is an activation functicn which produces the output at the j neuron of the p layer. The activation
function used in the present study is the commonly used sigmoid function

1
; (14)

1 + e—(nelpd-ﬁ—hpdl

F(netp‘j) =

where b, ; is a bias parameter which acts as a function shifting term that improves the overall network accuracy.
Bias parameters can be learned during the training in the same manner as the other weights. The principal
advantage of the sigmoid function is its ability to handle both large and small input signals. Initially the weights
and biases are selected randomly and during the network learning process their values are improved.

At the output layer the computed output(s), also called observed output(s), are subtracted from the desired or
target output(s) to give the error signal

err, , = tar, ; —out,; (15)

where tar, , and out, ; are the target and the observed output(s) for the node i of the output layer k, respectively.
This type of training is called supervised learning.

For the evaluation of the weight changes in the output layer related to the error signal given by Eq. (15) the
following gradient descent relationship is used

Aw

i 8, ; -out

P

(16)

where 7 denotes a learning rate coefficient usually selected between 0.01 and 0.9 and out,, ; denotes the output
of the last hidden layer p. This learning rate coefficient is analogous to the step size parameter in the numerical
optimization algorithms.

The term &, is the result of the multiplication of the derivative of the activation function, for the neuron in
question, with the error signal

8, , = dF(net, ) err, , (17)
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while the derivative dF of the sigmoid function is given by

dF(net, ;) =out, ;- (1 —out, ;) (18)
Alternatively, the changes of the weights may be expressed with a generalized delta rule according to [15] by
Aw, =78, out,  +a-Aw, (19)

where the superscript ¢ denotes the cycle of the weight modification and a is the momentum term which
controls the influence of the previous weight changes. The momentum term is used in order to accelerate and at
the same time to minimize the oscillations of the learning process of the network. For the hidden layers the
corresponding weight changes are given by

8,,=dF(net, ) (; 8w ,,) (20)

Aw:,jl =78, -out,, +a- Aw;,‘,j (21)

where out,, denotes the output of the neuron / of the hidden layer r and Aw;y,j is the weight changes between
neuron / of the hidden layer r to neuron j of the hidden layer p. After the evaluation of the weight changes the
updated values of the weights, w’,”' = w/, + Aw!"" are used for the next training cycle. This process has to be
repeated for all input training patterns until the desired level of error is obtained.

There are two categories of NN training algorithms depending on the way they treat the 1/O data set.
Algorithms that compute the error measure and gradient from the entire data set are called batch or off-line
training methods. Algorithms that compute the error and gradient and update the weights for each set or groups
of sets, are called incremental or on-line training methods. On-line methods may be unstable, since the error
measure for the entire data set is unknown and do not provide a criterion of training termination [31]. In this
study the off-line method is employed with a single pattern training where all the weights are updated before the
next training pattern is processed.

4.2. The NN training

In the present implementation the objective is to investigate the ability of the NN to predict accurate structural
analysis outputs that are necessary for the ES optimizer. This is achieved with a proper training of the NN. The
NN training comprises the following tasks: (i) select the proper training set, (ii) find a suitable network
architecture and (iii) determine the appropriate values of characteristic parameters such as the learning rate and
momentum term.

The main limitation of a NN training algorithm is the fact that its efficiency depends on the learning rate,
momentum term and network architecture. Unfortunately, there are not any general rules on the selection of
these parameters. They usually depend on the type of the problem and the experience of the designer and
sometimes they can be chosen with a trial and error approach. The appropriate selection of 1/0 training data is
one of the most important features of NN training. The number and the distribution of training patterns is of
great importance especially for the BP algorithm which provides good results only if the training set includes
data over the entire range of the design space.

The output of the sigmoid function used in the BP algorithm lies between 0 and 1. Thus, in order to produce
meaningful results using Eq. (15), the output values of the training patterns should be normalized within this
range. During the training phase the weights can be adjusted to very large values, which can force all or most of
the neurons to operate with large output values in a region where the derivative of the activation function is very
small. Since the correction of the weights depends on the derivative of the sigmoid function the network in this
case may become virtually standstill. Initializing the weights to small random values could help to avoid this
situation, although a more appropriate one is to normalize the input patterns to lie between 0 and 1.

Typically there are two types of network architectures: fully and patterned connected networks. In a fully
connected network, as shown in Fig. 3, each unit in a layer is connected to all the units of the previous and the
next layer. This type of network architecture is widely used. Alternatively, partial associativity between the units
may be created reducing the number of connections and producing a patterned connected network. The number
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of neurons to be used in the hidden layers is not known in advance and usually is estimated by a trial and error
procedure. At the first phase of learning it is convenient to increase the number of hidden units gradually and
when the desired convergence is achieved some of them are removed in order to find the minimal size of the
network [32].

The learning rate coefficient and the momentum term are two user defined BP parameters that affect the
training of NN. The learning rate coefficient, employed during the adjustment of weights, can speed-up or
slow-down the learning process. A bigger learning coefficient increases the weight changes, hence large steps
are taken towards the minimum error level but may lead to oscillation, while smaller learning coefficients
increase the number of steps taken to reach the desired error level and may trap the process at a local optimum.
If an error curve shows a downward trend but with poor convergence at the latest stages a decrease of the
learning rate coefficient is likely to accelerate the convergence.

The momentum term o when used with batch training affects the learning procedure in such a way that if the
gradient points lie at the same direction for several consecutive iterations, it increases the step size by a factor of
approximately 1/(1-a). Therefore, a momentum term close to one is useful when a small learning rate is used.
However, a large momentum term can exacerbate divergence problems when a large learning rate is used. In
this study both parameters are initialized from the value 0.5. Then, when the error curve starts to oscillate the
value of the learning rate coefficient is divided by two. If a flat error curve is obtained the value of the
momentum term is increased to the value 0.99 while the value of the learning rate coefficient remains
unchanged.

The basic NN configuration employed is fully connected with one hidden layer. Tests performed for more
than one hidden layer showed no significant improvement in the obtained results. Based on this configuration
various NN architectures are tested in order to find the most suitable one in terms of the smallest prediction
error. This is done either with a direct comparison of predicted ‘exact’ results, or by means of the root mean
square (RMS) error which is given by

N,
1 out
Cems =\/———N 2 2 (tar, —out,)’ (22)

Pilout Np i=1

where NP is the total number of 1/O pairs in the training set and N, is the number of output units. ‘Exact’
results are those computed by a conventional structural analysis.

4.3. Selection of the training set

An important factor governing the success of the learning procedure of a NN architecture is the selection of
the training set. A sufficient number of input data properly distributed in the design space together with the
output data resulting from complete structural analyses are needed for the BP algorithm in order to provide
satisfactory results. Overloading the network with unnecessary similar information results in overtraining
without increasing the accuracy of the predictions. A few tens of structural analyses have been found sufficient
for the examples considered to produce a satisfactory training of the NN. Ninety percent of those runs is used
for training and the rest is used to test the results of the NN.

Most researchers split the design space into subregions and try to combine randomly the values within each
subregion in order to obtain a training set which is representative of the whole design space. This procedure
frequently leads to a huge number of training patterns in order to ensure that the whole design space is properly
represented. In an effort to increase the robustness as well as the computational efficiency of the NN procedure
two types of selection are used in this study: (i) the training set is chosen automatically based on a uniform
distribution of the design variables in the design space, (ii) the training set is chosen automatically based on a
Gaussian distribution of the design variables around the midpoints of the design space as shown in Fig. 5. These
two selection approaches are compared with a third one where the training set is chosen manually on the basis
of a trial and error procedure.

The last type of training set selection is considered to be the ‘optimum’ since it is based on the results
obtained by the conventional ES optimization procedure and the data used is taken in the vicinity of the known
optimum solution. The first type follows the general rule of randomly choosing combinations of input data from
the whole range of the design space. The second type of training set selection was motivated from the fact that
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Fig. 5. Gaussian distribution.

usually the searching for the optimum and its location lies in the region near the midpoints of the design space.
A Gaussian distribution was therefore used for the random selection of input data in order to cover the whole
design space and enforce the selection of most input patterns around the midpoints of the design space.

5. Structural optimization based on ES and NN

After the selection of the suitable NN architecture and the training procedure is performed using a number
(M) of data sets, selected as described previously, in order to obtain the I/O pairs needed for the NN training.
Since the NN based structural analysis can only provide approximate results it is suggested that a correction on
the output values should be performed in order to alleviate any inaccuracies entailed, especially when the
constraint value is near the limit which divides the feasible with the infeasible region. Thus, a relaxation of this
limit was introduced in this study before entering the optimization procedure during the NN testing phase.
Therefore, a ‘correction’ of the allowable constraint values was performed analogous to the maximum testing
error of the NN configuration. The maximum testing error is the bigger average error of the output values among
testing patterns. When the predicted values were smaller than the accurate ones derived from the normal
structural analysis then the allowable values of the constraints were decreased according to the maximum testing
error of the NN configuration and vice versa.

The combined ES-NN optimization procedure is performed in two phases. The first phase includes the
training set selection, the structural analyses required to obtain the necessary I/O data for the NN training, and
finally the selection, training and testing of a suitable NN configuration. The second phase is the ES
optimization stage where instead of the standard structural analyses the trained NN is used to predict the
response of the structure in terms of objective and constraints function values due to different sets of design
variables.

The proposed methodology ES-NN can be described in the following algorithm:

e NN training phase:
1. Training set selection step: select s, (i =1,2,..., M) input patterns.
2. Structural analysis step: solve K(sju, =f (i =1,...,M).
3. Training step: selection and training of a suitable NN architecture.
4. Testing step: test NN and ‘correct’ allowable constraint values.

¢ ES optimization phase:
1. Selection step: selection of s, (i =1,2,..., u) parent vectors of the design variables.
2. Prediction step: using NN to compute optimization function values for the w parent vectors.
3. Constraints check: all parent vectors become feasible.



322 M. Papadrakakis et al. | Comput. Methods Appl. Mech. Engrg. 156 (1998) 309-333

Offspring generation. generate s; (j = 1,2,..., A) offspring vectors of the design variables.
Prediction step: using NN to compute optimization function values for the A offspring vectors.
Constraints check: if satisfied continue, else change s, and go to step 4.

Selection step: selection of the next generation parents according to (um + A) or (u, A) selection
schemes.

Convergence check: if satisfied stop, else go to step 3.

NS A

%

6. Examples

The performance of the optimization methodology discussed in previous sections is investigated in a number
of characteristic test examples in sizing as well as in shape structural optimization. The NN method used in this
study is the back propagation algorithm META-NETS [33]. In the tables containing the results of the test
examples the following abbreviations are used: ES refers to the standard evolution strategies optimization
procedure, in which structural analyses are performed in the conventional way. ES—NN refers to the combined
NN and ES optimization procedure, where the structural analysis response is predicted by a trained NN. For the
three different types of training set selection that have been compared in this study the following abbreviations
are used: (i) UT stands for the automatic selection of training set based on a uniform distribution of the design
variables in the design space, (il) GT stands for the automatic selection of training set based on a Gaussian
distribution of the design variables in the design space and (iii) OT stands for the ‘optimum’ training set
selection where the data used is taken in the vicinity of the optimum solution according to the results obtained a
posteriori by the conventional ES optimization procedure. The symbol ‘(c)” denotes that the allowable limits of
the constraints have been adjusted, as discussed previously, in order to ‘correct’ the NN predictions near the
feasible region limits, while symbol ‘(v)’ indicates that the final design is violating the constraints and thus it is
infeasible. All examples were run on a Silicon Graphics Power Challenge computer.

6.1. Shape optimization examples

Two benchmark test examples [34] have been considered to illustrate the efficiency of the proposed
methodology in shape optimization problems with continuous design variables. In both examples plane stress
conditions and isotropic material properties are assumed (elastic modulus E = 210,000 N/mm” and Poisson’s
ratio » =0.3). For the shape optimization examples the results obtained from a previous study [1] with a
mathematical programming (MP) algorithm based on the sequential quadratic programming method (SQP) [35]
are also included for comparison. In the tables containing the test results the following additional abbreviations
are used: MP—ESA refers to the conventional MP method using a semi-analytical sensitivity analysis scheme,
while MP-GFD refers to the conventional MP method using a finite difference approach to perform the
sensitivity analysis calculations.

6.1.1. Connecting rod problem

This is a typical structural shape optimization test example. The problem definition is given in Fig. 6(a),
whereas the optimized shape is depicted in Fig. 6(b). The linearly varying line load between key points 4 and 6
has a maximum value of p = 500 N/mm. The objective is to minimize the volume of the structure subject to a
limit on the equivalent stress o, = 1,200 N/mm?. Two test cases are considered for this example with a
different number of design variables. In the first test case the design model, which makes use of symmetry,
consists of twelve key points, four primary design variables (7, 10, 11, 12) and six secondary design variables
(7, 8, 9, 10, 11, 12). The stress constraints are imposed as a global constraint for all Gauss points and as key
point constraints for key points 2, 3, 4, 5, 6 and 13. The movement directions of the design variables are
indicated by the dashed arrows. Key points 8 and 9 are linked to point 7 so that the shape of the arc is preserved
throughout the optimization procedure. For this test case the (u + A)-ES approach is used with u = A =4,

In the second test case key peints 7, 8 and 9 are not linked thus they can move independently, while three
more design variables are introduced in the upper part as key points 12, 13 and 14. The design model now
consists of fifteen key points and nine primary design variables (7, 8, 9, 10, 11, 12, 13, 14, 15) as shown in Fig.
7(a), whereas the optimized shape is depicted in Fig. 7(b). The constraints are again the global stress for all
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Fig. 6. Connecting rod—Test case 1 (4 design variables): (a) initial shape; (b) final shape.
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Fig. 7. Connecting red—Test case 2 (9 design variables): (a) initial shape; (b) final shape.

Gauss points and the stresses on key points 2, 3, 4, 5, 6 and 15. For this test case the (¢ + A)-ES approach is
used with u = A=10.

For the first test case of this example the number of NN input units is equal to the number of design variables,
the eight output units correspond to the seven constraint function values plus one for the value of the objective
function, whereas the NN architecture used has one hidden layer. The influence of the number of hidden units
on the accuracy of the NN prediction for the ‘optimum’ and for the Gaussian type of NN training set selection is
shown in Table 1. For both cases 40 training sets are used. It can be seen that, in both cases, the RMS error and
the maximum testing error are reaching a plateau after a certain number of hidden units without any further
improvement. This plateau is reached for 12 hidden units which seems to follow the heuristic rule that the
number of hidden units should equal the number of input units plus half the sum of input and output units.
Therefore, the 4-12-8 NN architecture is chosen and used for the remaining runs. It should be pointed out that
the results of the ‘optimum’ training set selection are used for testing the accuracy and the efficiency of the
proposed automated training set selection schemes only, since it is based on the unrealistic assumption that the
optimum solution is known.

Table 2 depicts, for the first test case of the connecting rod problem, the performance of the proposed ES—-NN
methodology, for all types of training set selection schemes, compared to the conventional ES optimization
procedure for various numbers of NN training patterns. It can be seen that the ‘correction’ scheme of the
allowable constraint values is more robust than the standard ES—-NN version in producing feasible optimum
designs. It can also be observed that a reduction in the number of training sets deteriorates the efficiency of the
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Table 1
Connecting rod—Test case 1: NN accuracy for different number of hidden units
Hidden nodes Training set selection
‘Optimum’ selection Gaussian distribution
RMS error MAX testing error (%) RMS error MAX testing error (%)
4 0.035 26.47 0.051 36.17
6 0.032 26.13 0.043 31.41
8 0.021 17.91 0.027 19.23
10 0.014 12.32 0.019 17.89
12 0.013 12.11 0.017 18.01
14 0.014 12.42 0.018 17.75
Table 2
Connecting rod—Test case 1: Performance of the optimization methods
Optimizer type Optimization steps/ ES-NN ‘steps’ Computing time (s) Optimum
P 3
training patterns Analysis Training ES-NN Total volume (mm’)
MP-ESA 47/~ - - - - 1061 333
MP-GFD 48/- - - - - 1806 333
ES 53/- - - - - 1153 337
ES-NN-OT -/40 49 862.3 181.8 0.9 1045 331(v)
ES-NN-OT(c) —-/40 59 862.3 181.8 1.1 1045 341
ES-NN-UT -/40 65 862.3 209.4 1.1 1074 332(v)
ES-NN-UT(c) ~140 68 862.3 2094 1.2 1074 340
ES-NN-UT -/32 45 696.4 173.2 0.8 870 325(v)
ES-NN-UT(c) -/32 49 696.4 173.2 0.9 870 332(v)
ES-NN-GT -/40 50 862.3 202.7 0.9 1066 328(v)
ES—-NN-GT(c) —-/40 61 862.3 202.7 09 1066 339
ES-NN-GT -/32 71 696.4 185.3 1.2 883 327(v)
ES-NN-GT(c) -/32 79 696.4 185.3 13 883 331(v)

method since it leads to infeasible final designs. For this test case a marginal improvement in total computing
time required by ES-NN over the standard ES is observed.

For the second test case of this example the number of NN input units is equal to the number of design
variables, the eight output units correspond to the seven constraint function values plus one for the value of the
objective function, whereas the NN architecture used has one hidden layer. The influence of the number of
hidden units on the accuracy of the NN prediction for the ‘optimum’ and for the Gaussian type of NN training
set selection is shown in Table 3. For these two cases 98 and 90 training sets are used, respectively. It can be
seen that the RMS error and the maximum testing error are reaching a plateau without any further improvement,
as in the previous test case, after a certain number of hidden units. This stationary point is reached for 17 hidden

Table 3
Connecting rod—Test case 2: NN accuracy for different number of hidden units
Hidden nodes Training set selection
‘Optimum’ selection Gaussian distribution
RMS error MAX testing error (%) RMS error MAX testing error (%)
9 0.0125 25.65 0.025 313
11 0.0109 2375 0.0251 30.7
13 0.0085 25.23 0.0193 27.8
15 0.0048 27.84 0.0187 244
17 0.0113 22.30 0.0182 241

19 0.012 22.86 0.0193 24.5
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units which seems to satisfy the heuristic rule that the number of hidden units should equal the number of input
units plus half the sum of input and output units. The 9-17-8 NN architecture is therefore chosen and used for
the remaining runs. The results of the ‘optimum’ training set selection are used as previously for testing the
accuracy and the efficiency of the proposed automated training set selection schemes.

Table 4 depicts, for the second test case of the connecting rod problem, the performance of the proposed
ES—-NN methodology, for all types of training set selection schemes, compared to the conventional ES
optimization procedure for various numbers of NN training patterns. It can be seen that the ‘correction’ scheme
of the allowable constraint values is more robust than the standard ES-NN version in producing feasible
optimum designs. It can also be observed that a reduction in the number of training sets deteriorates the
efficiency of the uniform type of training set selection, whereas for the Gaussian type of training set selection it
improves the efficiency with minor violations of the constraints in the final design. For this test case a significant
improvement in total computing time required by ES-NN over ES is observed.

In both test cases of this example the proposed methodology compares well with the MP optimization
procedure with a semi-analytical sensitivity analysis scheme and outperforms the MP method when a finite
difference approach is used to perform the sensitivity analysis calculations.

6.1.2. Square plate with central cut-out problem
The problem definition of this example is given in Fig. 8(a), where due to symmetry only a quarter of the
plate is modeled. The optimized shape is depicted in Fig. 8(b). The two exterior sides of the plate are loaded

Table 4
Connecting rod—Test case 2: Performance of the optimization methods

Optimizer type Optimization steps/ ES-NN ‘steps’ Computing time (s) Optimum
training patterns

3
Analysis Training ES-NN Total volume (mm-)

MP-ESA 91/~ - - - - 1721 306
MP-GFD 90/~ - - - - 4847 306
ES 133/- - - - - 2617 305
ES-NN-OT -198 128 1822.3 381.8 1.6 2206 300(v)
ES-NN-OT(c) 198 139 1822.3 381.8 1.5 2206 308
ES-NN-UT -/90 109 1691.3 417.1 1.4 2110 277(v)
ES-NN-UT(c) -/90 143 1691.3 417.1 1.9 2110 307
ES-NN-UT /70 98 1416.7 362.1 0.9 1780 242(v)
ES-NN-UT(c) -170 123 1416.7 362.1 1.2 1780 287(v)
ES-NN-GT -190 117 1691.3 391.5 1.0 2084 285(v)
ES-NN-GT(c) -190 153 1691.3 391.5 1.9 2085 309
ES-NN-GT -170 I 1416.7 3474 1.1 1765 265(v)
ES-NN-GT(c) -170 132 1416.7 347.4 1.6 1766 300(v)

O primary design variables
..z~ move direction

p2
INEEEEEEXNE 3

650.0

e

@ ®)
Fig. 8. Square plate—Test case 1 (5 design variables): (a) initial shape; (b) final shape.



326 M. Papadrakakis et al. | Comput. Methods Appl. Mech. Engrg. 156 (1998) 309-333

with a distributed loading p = 0.65 N/mm?, as shown in Fig. 8(a). The objective is to minimize the volume of
the structure subject to a limit to the equivalent stress o, , = 7.0 N/mm®. Two test cases are considered for this
example with a different number of design variables. The first design model, consists of eight key points and five
primary design variables (2, 3, 4, 5, 6) which can move along radial lines. The movement directions of the
design variables are indicated by the dashed arrows. The stress constraints are imposed as a global constraint for
all the Gauss points and as key point constraints for key points 2, 3, 4, 5, 6 and 8. For this test case the
(s + A)-ES approach is used with x = A = 5. In the second test case five more design variables are incorporated
in the arc as shown in Fig. 9(a), whereas the final shape is depicted in Fig. 9(b). The design model now consists
of thirteen key points and ten primary design variables (2, 3, 4, 5, 6, 7, 8, 9, 10, 11). The constraints are the
global constraint for all Gauss points and the constraints on key points 2, 4, 7,9, 11 and 13. For this test case the
(p + A)-ES approach is used with w = A =10.

For the first test case of this example the number of NN input units is equal to the number of design variables,
the eight output units correspond to the seven constraint function values plus one for the value of the objective
function, whereas the NN architecture used has one hidden layer. The influence of the number of hidden units
on the accuracy of the NN prediction for the ‘optimum’ and the Gaussian type of NN training set selection is
shown in Table 5. For these two training set selection schemes 47 and 50 training sets are used, respectively. It
can be seen that the RMS error and the maximum testing error is reaching a plateau, as in the previous example,
after a certain number of hidden units. This plateau is reached for 11 hidden units following the heuristic rule
that the number of hidden units should equal the number of input units plus half the sum of input and output
units. The 5-11-8 NN architecture is therefore chosen and used for the remaining runs.

Table 6 depicts, for the first test case of the square plate problem, the performance of the proposed ES—-NN
methodology, for all types of training set selection schemes, compared to the conventional ES optimization
procedure for various numbers of NN training patterns. It is verified that the ‘correction’ scheme of the
allowable constraint values is more robust than the standard ES-NN version in producing feasible optimum
designs. In addition, it can be observed that a reduction in the number of training sets deteriorates the efficiency
of the uniform type of training set selection, whereas for the Gaussian type it improves the efficiency with minor

©)
®
®
®
(@) ()

Fig. 9. Square plare—Test case 2 (10 design variables): (a) initial shape; (b) final shape.

Table 5
Square plate—Test case 1: NN accuracy for different number of hidden units
Hidden nodes Training set selection
‘Optimum’ selectior. Gaussian distribution
RMS error MAX testing error (%) RMS error MAX testing error (%)
5 0.023 17.31 0.032 23.15
7 0.020 17.01 0.022 17.12
9 0.012 8.31 0.017 10.87
11 0.010 757 0.0145 9.67
13 0.010 7.61 0.0143 9.61
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Table 6
Square plate—Test case 1: Performance of the optimization methods
Optimizer type Optimization steps/ ES-NN ‘steps’ Computing time (s) Optimum
.. 3

iraining patterns Analysis Training ES-NN Total volume (mm’)
MP-ESA 72/- - - - - 1895 280
MP-GFD 75/- - - - - 4190 279
ES 127/- - - - - 2141 279
ES-NN-OT ~/47 120 890.7 229.6 1.8 1122 272(v)
ES-NN-OT(c) -/47 131 890.7 229.6 1.8 1122 281
ES-NN-UT -/50 112 946.3 238.8 1.8 1238 272(v)
ES-NN-UT(c) -/50 132 946.3 238.8 2.0 1238 281
ES-NN-UT -/40 138 674.4 245.1 1.9 921 259(v)
ES-NN-UT(c) -140 151 674.4 245.1 2.1 922 271(v)
ES-NN-GT -/50 116 946.3 254.4 1.9 1203 270(v)
ES-NN-GT(c) -/50 125 946.3 254.4 2.1 1203 283
ES-NN-GT -/40 112 674.4 238.8 1.8 915 263(v)
ES-NN-GT(c) -/40 132 674.4 238.8 2.0 ElN) 275(v)

violations of the constraints in the final design. For this test case a drastic improvement in total computing time
required by ES~NN over ES is observed.

For the second test case of this example the number of NN input units is equal to the number of design
variables, the eight output units correspond to the seven constraint function values plus one for the value of the
objective function, whereas the NN architecture used has one hidden layer. The influence of the number of
hidden units on the accuracy of the NN prediction for the ‘optimum’ and for the Gaussian type of NN training
set selection for 117 and 100 training sets, respectively, is shown in Table 7. The plateau for both the RMS error
and the maximum testing error is reached for 18 hidden units satisfying again the heuristic rule. The 10-18-8 NN
architecture is therefore chosen and used for the remaining runs.

Table 8 depicts, for the second test case of the square plate problem, the performance of the proposed ES—-NN
methodology for all types of training set selection schemes compared to the conventional ES optimization
procedure for various numbers of NN training patterns. The conclusions which can be drawn from this test case
are similar to those of the first test case, while the improvement in total computing time required by ES—-NN
over ES is more evident.

In the first test case of this example the proposed methodology outperforms the MP optimization procedure,
whereas in the second test case it provides the optimum design while the MP method fails to converge.

6.2. Sizing optimization examples
Two benchmark test examples of space frames with six and twenty storeys, respectively, have been

considered to illustrate the efficiency of the proposed methodology in sizing optimization problems with discrete
design variables. In both examples the modulus of elasticity is 200 GPa (29,000 ksi) and the yield stress is

Table 7
Square plate—Test case 2: NN accuracy for different number of hidden units
Hidden nodes Training set selection
‘Optimum’ selection Gaussian distribution
RMS error MAX testing error (%) RMS error MAX testing error (%)
10 0.020 27.7 0.032 41.1
12 0.017 27.1 0.032 371
14 0.019 24.1 0.027 25.6
16 0.014 18.7 0.026 242
18 0.011 12.6 0.021 19.7

20 0.012 13.4 0.020 19.8
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Table 8
Square plate—Test case 2: Performance of the optimization methods

Optimizer type Optimization steps/ ES-NN ‘steps’ Computing time (s) Optimum
training patterns volume (mm’)

Analysis Training ES-NN Total

MP-ESA 61/- - - - - 3675 216(v)
MP-GFD 60/- - - - - 9512 221(v)
ES 874/- - - - - 21850 320
ES-NN-OT /117 917 2806.8 496.9 72 3311 313(v)
ES-NN-OT(c) -/117 901 2806.8 496.9 6.8 3310 321
ES-NN-UT -/100 713 2439.7 4714 53 2916 374
ES-NN-UT(c) -/100 863 3439.7 471.4 7.3 2918 331
ES-NN-UT ~/80 835 2001.7 463.4 6.9 2472 287(v)
ES-NN-UT(c) —/80 907 2001.7 463.4 8.0 2473 315(v)
ES-NN-GT -/100 802 2439.7 447.3 6.1 2893 293(v)
ES-NN-GT(c) -{100 911 2439.7 4473 8.0 2895 324
ES-NN-GT —-/80 755 2001.7 439.1 5.6 2446 298(v)
ES-NN-GT(c) -/80 892 2001.7 439.1 7.5 2448 334
ES-NN-GT -160 685 1485.3 385.1 5.0 1875 254(v)
ES-NN-GT(c) -/60 796 1485.3 385.1 6.1 1876 292(v)

g, =250 MPa (36 ksi). The cross section of each member is assumed to be a W-shape and for each member two
design variables are considered as shown in Fig. 10. The objective function of the problems is the weight of the
structure. The constraints are imposed on the inter-storey drifts and the maximum non-dimensional ratio g of
Egs. (3) and (4) in each element group which combines axial force and bending moment. The values of
allowable axial and bending stresses are F, = 150 MPa and F, = 165 MPa, respectively, whereas the maximum
allowable inter-storey drift is limited to 2.2 inches which corresponds to 1.5% of the height of each storey.

6.2.1. Six storey space frame

This example consists of 63 elements with 180 degrees of freedom as shown in Fig. 11. The beams have
length L, = 7.32 m and the columns L, = 3.66 m. The structure is loaded with a 19.16 kPa gravity load on all
floor levels and a lateral load of 109 kN applied at each node in the front elevation along the z direction. The
element members are divided into five groups, as shown in Fig. 10, each one having two design variables
resulting in a total of ten design variables. The constraints are imposed on the maximum allowable inter-storey
drift and the non-dimensional ratio g in each element group. For this test case the (u + A)-ES approach is used
with u = A=35.

For this example the number of NN input units is equal to the number of design variables, whereas the twelve
output units correspond to the two values of axial force and bending moment for the five element groups, plus
one for the value of the inter-storey drift, plus one for the value of the objective function. The NN architecture
used has one hidden layer, while the investigation performed on the influence of the number of hidden units is

C I T
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L 1 1

—b 4

Fig. 10. W-shaped cross-section design variables.
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Fig. 11. Six storey space frame.

shown in Table 9. For the ‘optimum’ and the Gaussian type of NN training set selection 82 and 100 training sets
are used, respectively. The plateau for both the RMS error and the maximum error is reached for 18 hidden units
which is conforming with the heuristic rule. Thus, the 10-18-12 NN architecture is chosen and used for the
remaining runs.

Table 10 depicts the performance of the proposed ES-NN methodology compared to the conventional ES
optimization procedure for various numbers of NN training patterns. It can be observed that a marginal
reduction in the number of training sets deteriorates the efficiency of the uniform type of training set selection,
whereas it improves the efficiency of the Gaussian type with a minor increase of the objective function value in

the final design. For this test case a slight increase in total computing time required by ES-NN over ES is
observed due to the small size of the problem.

6.2.2. Twenty storey space frame

This example is presented in Fig. 12 (plan a) consisting of 1,020 members and 2,400 degrees of freedom. The
loads for this example are taken as uniform vertical forces applied at joints equivalent to uniform load of 4.788

Table 9
Six storey space frame: NN accuracy for different number of hidden units
Hidden nodes Training set selection
‘Optimum’ selection Gaussian distribution
RMS error MAX testing error (%) RMS error MAX testing error (%)
10 0.030 27.6 0.041 39.1
12 0.022 243 0.038 328
14 0.019 21.6 0.038 332
16 0.016 18.8 0.029 27.1
18 0.010 17.8 0.020 20.7

20 0.020 21.4 0.019 21.3
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Table 10
Six storey space frame: Performance of the optimization methods
Analysis type Number of FE Number of NN Computing time (s) Optimum weight
analyses-training analyses (kN)
patterns Analysis Training ES-NN Total
ES 281 - - - - 116.3 867
ES-NN-OT 82 275 35.6 313.0 2.7 351.3 908
ES-NN-OT(c) 82 263 356 313.0 2.7 351.3 883
ES-NN-UT 100 263 393 513.1 2.7 555.1 786(v)
ES-NN-UT(c) 100 255 39.3 513.1 26 555 918
ES-NN-UT 80 187 33.1 3426 1.8 3775 685(v)
ES-NN-UT(c) 80 232 33.1 3426 2.4 378.1 T58(v)
ES-NN-GT 100 274 39.3 478.0 3.0 520.3 927
ES-NN-UT(c) 100 269 393 478.0 29 520.2 898
ES-NN-GT 80 274 33.1 321.7 3.0 357.8 940
ES-NN-GT(c) 30 266 3311 321.7 29 357.7 884
ES-NN-GT 60 169 24.8 20953 1.7 321.8 996
ES-NN-GT(c) 60 211 248 2953 1.7 3222 961
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Fig. 12. Twenty storey space frame.

kPa and horizontal forces equivalent to uniform forces of 0.956 kPa on the largest surface. The element
members are divided into 11 groups shown in Fig. 12 (plan b) and the total number of design variables is 22.
The constraints are imposed on the maximum allowable inter-storey drift and the maximum non-dimensional
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Table 11
Twenty storey space frame: NN accuracy for different number of hidden units
Hidden nodes Training set selection

‘Optimum’ selection Gaussian distribution

RMS error MAX testing error (%) RMS error MAX testing error (%)
20(1) 0.021 17.7 0.037 351
22(2) 0.020 17.9 0.033 29.8
24(3) 0.020 173 0.038 36.3
26(4) 0.015 11.8 0.025 24.4
28(5) 0.012 10.6 0.018 19.3
30 0.011 9.81 0.021 20.9

ratio g in each element group, as in the previous example. For this test case the (u + A)-ES approach is used
with u = A=10.

For this example the number of NN input units is equal to the number of design variables, whereas the 24
output units correspond to the two values of axial force and bending moment for the 11 element groups, plus
one for the value of the inter-storey drift, plus one for the value of the objective function. The performance of
the ‘optimum’ and the Gaussian type of NN training set selection with 130 and 220 training sets, respectively, is
shown in Table 11. The heuristic rule for choosing the optimum NN configuration is also confirmed in this case
and thus the 22-28-24 NN architecture is chosen and used for the remaining runs. Table 12 depicts the
performance of the proposed ES—NN methodology compared to the conventional ES optimization procedure for
various numbers of NN training patterns, as shown in the second column. Table 12 also presents the influence of
the accuracy of the NN training on the results for the ‘optimum’ training set selection. It can be observed that a
moderate reduction in the number of training sets deteriorates the efficiency of the uniform type of training set
selection, whereas for the Gaussian type it improves the efficiency with a minor increase of the objective

Table 12
Twenty storey space frame: Performance of the optimization methods
Analysis type Number of FE Number of NN Computing time (s) Optimum weight
analyses-training analyses (kN)
patterns Analysis Training ES-NN Total
ES 1566 - - - - 24930 5430
ES-NN-OT 130(1) 1311 22373 649.4 10.7 2897 5348(v)
ES-NN-OT 130(2) 1337 2237.3 655.3 10.5 2903 5344(v)
ES-NN-OT 130(3) 1421 2237.3 670.3 11.1 2919 5381(v)
ES-NN-OT 130(4) 1491 2237.3 668.6 11.1 2917 5349(v)
ES-NN-OT 130(5) 1465 22373 673.2 11.0 2921 5407(v)
ES-NN-OT(c) 130(1) 1507 2237.3 649.4 12.5 2899 5442
ES-NN-QT(c) 130(2) 1527 22373 655.3 12.1 2905 5465
ES-NN-OT(c) 130(3) 1569 2237.3 670.3 12.9 2920 5452
ES-NN-OT(c) 130(4) 1577 2237.3 668.6 12.1 2918 5438
ES-NN-OT{(c) 130(5) 1563 22373 673.2 12.3 2923 5432
ES-NN-UT 220 1417 3497.2 1007.1 10.7 4515 5138(v)
ES-NN-UT(c) 220 1577 3497.2 1007.1 12.1 4516 5484
ES-NN-UT 180 1357 2387.9 607.1 10.6 3006 5298(v)
ES-NN--UT(c) 180 1470 23879 607.1 11.1 3006 5396(v)
ES-NN-GT 220 1609 34972 969.1 14.4 4481 5173(v)
ES-NN-GT(c) 220 1554 3497.2 969.1 13.7 4481 5453
ES-NN-GT 180 1593 2865.2 672.1 14.2 3551 5264(v)
ES-NN-GT() 180 1611 2865.2 672.1 144 3552 5502
ES-NN-GT 150 1203 2387.9 607.1 9.8 3005 4601(v)

ES-NN-GT(c) 150 1379 2387.9 607.1 10.7 3006 5194(v)
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Fig. 13. Iteration history of the objective function.

function value in the final design. For this test case a dramatic improvement in total computing time required by
ES—NN over ES is observed. The iteration history of the value of the objective function is shown in Fig. 13.

7. Conclusions

The implementation of a hybrid optimization procedure, based on the combination ES and NN, in shape and
sizing structural optimization problems was found to be very effective. The time-consuming requirements of
repeated analyses associated with the optimization procedure using ES motivated the use of NN. The
computational effort involved in the optimization procedure using ES becomes excessive in large-scale problems
and the use of NN to ‘predict’ the necessary optimization data for ES can practically eliminate any limitation on
the size of the problem, while the predicted structural response corresponding to different optimization
simulations falls within acceptable tolerances. The methodology presented is an efficient, robust and generally
applicable optimization procedure capable of finding the global optimum design of complicated structural
optimization problems. Additionally, it was found that the proposed hybrid optimization methodology can reach
the optimum for large and computationally intensive problems at a fraction of the computing time required by
the standard ES optimization algorithm and the conventional method based on mathematical programming
technique. A

The study performed on the type of data selection required for NN training showed that the rule of randomly
choosing combinations of input data using a Gaussian distribution around the midpoints of the design space is
the most successful training set selection scheme which makes the ES-NN methodology robust and efficient.
This approach was motivated by the fact that the searching for the optimum and its location usually lies in the
region near the midpoints of the design space and was found to be more efficient than the random uniform data
distribution and the ‘optimum’ ftraining set selection based on the unrealistic assumption that the optimum
solution is known. In addition, it enables the possibility of using a smaller number of training sets as it was
shown in the test examples presented.
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