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ABSTRACT : 

Despite the structural simplicity of retaining walls, their seismic response is a rather complicated problem.
What makes that response so complicated is the dynamic interaction between the wall and the retained soil,
especially when material and/or geometry non-linearities are present. This paper aims to examine how and to
what extent the potential soil non-linearity may affect both the dynamic behavior of a rigid non-sliding 
retaining wall and also the seismic response of the retained soil layer. For this purpose an extensive parametric
study, based on two-dimensional dynamic finite-element analyses, is conducted. Soil non-linearity is 
realistically taken into account via a computationally efficient equivalent-linear procedure. The examined 
numerical model is studied under different excitations and various levels of the imposed ground motion
maximum accelerations to examine more thoroughly the influence of material non-linearity. The results of this
study justify the hypothesis that the non-linear soil behavior has a considerable impact not only on the dynamic
earth pressures developed on the wall, but on the amplification of the acceleration levels on the backfill soil as 
well. Therefore, it becomes evident that seismic codes and geotechnical design practice should take this impact
into serious consideration. 
 
KEYWORDS: retaining walls, dynamic response, soil non-linearity, amplification, dynamic SSI 
 
1. INTRODUCTION  
 
Undoubtedly, retaining walls have many applications in geotechnical engineering practice. Harbor quay-walls, 
bridge abutments, or deep excavations are some of the cases where a rigid gravity retaining wall or a flexible
cantilever retaining wall is constructed. Despite their structural simplicity, the seismic response of a wall
(retaining even a single soil layer) is a rather complicated problem. The dynamic interaction between the wall
and the retained soil is what makes that response so complicated, especially when material and/or geometry
non-linearities are considered (PIANC (2001), Wu and Finn (1999)). The seismic response of various types of 
walls that support a single soil layer has been examined by a number of researchers in the past either 
experimentally, analytically, or numerically (Veletsos and Younan (1997), Iai (1998), Psarropoulos et al. 
(2005)). Depending on the assumed material behavior of the retained soil and the possible mode of the wall
displacement, there exist two main categories of analytical methods used in the design of retaining walls against
earthquakes: (a) the pseudo-static methods incorporating the limiting-equilibrium concept (Mononobe–Okabe 
type solutions), which assume yielding walls and rigid – perfectly plastic behavior of the retained soil (Okabe 
(1926), Mononobe and Matsuo (1929), Seed and Whitman (1970)), and (b) the elasticity-based solutions that 
regard the retained soil as a linear (visco-) elastic continuum (Veletsos and Younan (1997), Scott (1973), Wood 
(1975)).  
 
According to an efficient simplification of the Mononobe-Okabe method, developed by Seed and Whitman 
(1970), the (maximum) normalized dynamic active earth force imposed on the wall is: 

                                   
2
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Δ

Δ = ≈                              (1.1) 

where A is the peak base acceleration, ρ is the soil mass density, and H is the wall height. In the early ‘70s, the 
elastic solutions developed by Scott (1973) or Wood (1975) suggest that for the case of low-frequency 
(quasi-static) base motions, which refers to many practical problems, the normalized dynamic active earth force
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developed on a rigid fixed-base wall is 1AEPΔ ≈ . It is evident that this quantity is almost 2.5 times bigger than
the proposal made by Seed and Whitman (1970). It has to be mentioned that, as it will be presented later on,
this discrepancy may be even more intense when the fundamental frequency of the base excitation approaches
that of the retained soil layer under one-dimensional (1–D) conditions, i.e.: 

                                  max

4 4
S

o

G ρV
f

H H
= =                           (1.2) 

where VS is the shear-wave velocity of the soil, and Gmax is the corresponding small-strain shear modulus. 
However, the two aforementioned modes of wall-soil system behavior are rather extreme and in many cases fail
to represent reality due to their unrealistic assumptions. The limiting-equilibrium solutions imply the capability 
of the system to develop relatively large displacements (geometric non-linearity) together with the formation of 
plastic zones (material non-linearity). In contrast, the elasticity-based solutions include only the potential 
geometric non-linearity by taking into account the wall flexibility and/or the wall foundation compliance 
(Veletsos and Younan (1997)). In some cases, such as bridge abutments, braced excavations, or basement walls,
the existence of kinematic constraints on the wall motion is incompatible with the limiting-equilibrium concept, 
while on the other hand, the available elasticity-based solutions overlook the potential non-linear behavior of 
the retained soil, leading thus to over-conservative designs. 
 
The objective of the present study is to examine more thoroughly the influence of material non-linearity on the 
dynamic distress of a wall retaining a single soil layer. For this purpose, two-dimensional numerical simulations 
are performed, utilizing the finite-element method in order to investigate some of the most important aspects of
this complex phenomenon of dynamic non-linear wall-soil interaction. In order to “isolate” the effects of 
material non-linearity on the system response, the wall is considered to be rigid and fixed at its base. Apart from 
the dynamic earth pressures developed on the wall, emphasis is put on the soil amplification of the base
acceleration. Note that seismic norms (such as the Eurocode EC8, or the Greek Seismic Code), being based on 
the limit-equilibrium methods, underestimate the role of the potential soil amplification. A parametric study has 
been performed in order to examine how the level of applied acceleration may affect the dynamic earth
pressures induced on the retaining wall. Material non-linearity is taken into account in a simplistic, yet efficient
way, through the use of an iterative equivalent-linear procedure in which strain-compatible shear modulus, G, 
and critical damping ratio, ξ, are used to describe the soil behavior within each iteration. 
 
Dynamic response of any system depends on the seismic excitation characteristics (both in the time and in the
frequency domain). However, in the present numerical study the excitations were limited on purpose to 
harmonic and simple pulses in order to examine more thoroughly the complex phenomena of non-linear 
dynamic wall-soil interaction. Results provide a clear indication of the direct dynamic interaction between a
retaining wall and the retained soil, whilst potential soil non-linearity seems to increase the degree of 
complexity, being either beneficial or detrimental for the wall distress, depending on the circumstances. That
fact justifies the necessity for a more elaborate consideration of these interrelated phenomena on the seismic 
design of retaining walls. 
 
 
2. NUMERICAL  MODELING 
 
In order to examine the non-linear dynamic wall-soil interaction, two-dimensional (2-D) numerical simulations 
of a rigid fixed-base retaining system were conducted. The simulations were performed utilizing the
finite-element code QUAD4M developed by Hudson et al. (1993), which performs dynamic non-linear analyses 
incorporating the well-known iterative equivalent-linear procedure. Each iteration includes: (a) a linear 
direct-integration dynamic analysis of the model, (b) the calculation of the maximum effective shear strain, γeff, 
for each element (calculated as a percentage of the maximum strain), and (c) the calculation of the
strain-compatible shear modulus G(γeff) and critical damping ratio ξ(γeff) to be used in the next iteration, by means 
of G/Gmax - γ and ξ - γ curves. The procedure is terminated when convergence in the values of G and ξ arises. The 
G/Gmax - γ and ξ - γ curves used are characteristic of sandy soil material (Seed and Idriss (1970), Idriss (1990)). 
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In general, the soil material properties (G, ρ) and the wall height do not affect the dynamic pressures on the wall,
as the wall flexibility is examined in relation to soil stiffness and the earth pressures are normalized with ρ and H
(Veletsos and Younan (1997), Psarropoulos et al. (2005)). Therefore, all the analyses in the current investigation 
were performed considering an 8m-high wall. The retained soil layer is characterized by a relatively low 
small-strain shear-wave velocity VS equal to 100m/s and a mass density of 1.8 Mg/m3. The discretization of the 
retained soil was performed by four-node plane-strain quadrilateral elements. The model was adequately
elongated so as to reproduce adequately the free-field conditions at the right-hand side of the model. The rigid 
wall was simulated by an extremely stiff column with linear elastic behavior. The simplifying assumption of no
de-bonding or relative slip at the wall-soil interface was used. 
 
The base of both the wall and the soil stratum were considered to be excited by a horizontal motion, assuming an
equivalent force-excited system. The model was subjected to harmonic and Ricker pulses which allow for a better
understanding and interpretation of the results. Furthermore, the results of harmonic excitations can be easily
generalized for any real excitations via Fourier transformations. Moreover, various characteristic levels of peak
base acceleration were used, aiming at the development of different degrees of material non-linearity. 
 
 
3. LINEAR HARMONIC RESPONSE 
 
The dynamic linear response of a single soil layer under 1-D conditions has been studied by many researchers, 
and analytical solutions for harmonic excitation can be found in the literature. In the case of harmonic excitation 
the response is controlled by the ratio f/fo, where f is the dominant period of the excitation, and fo the fundamental 
period of the soil layer. Therefore, the employed harmonic excitations had two characteristic frequencies: the first 
was set equal to the low-strain fundamental eigenfrequency of the soil layer (f =fo), and the second pulse had
frequency six times lower (f = fo/6), approximating a quasi-static excitation. 
In the examined model the fundamental frequency of the soil layer fo is almost 3.1Hz (or equivalently, the 
fundamental period of the soil layer To is 0.32s). The duration of the sinusoidal pulse was such that steady state
conditions were reached. In that case the maximum amplification factor (AF) for linear response is given by: 

        
2 1

2 1
AF

πξ n
≅

+
                    (3.1) 

where ξ is the critical damping ratio and n the eigen-mode number. For first mode (n = 0) and ξ = 5%, AF is 
approximately equal to 12.7. 
 
In this study the response of the soil layer under 1-D conditions is compared with the corresponding 2-D due to 
the existence of the wall. The presence of a retaining wall essentially imposes a vertical boundary condition,
leading thus to a 2-D model. In addition, this model has a fundamental low-strain eigenfrequency slightly lower 
than the corresponding 1-D model, due to the fact that the existence of the rigid wall makes the model stiffer.
However, the difference in the two values of eigenfrequency is considered negligible, as it is lower than 0.03 Hz. 
The distribution of the amplification factor (AF) on the surface of the backfill in the case of harmonic excitation at
resonance (f = fo) is plotted in Figure 1. It is evident that, for the rigid fixed-base wall examined, the motion in the
vicinity of the wall is practically induced by the wall itself, and therefore, no amplification is observed (AF = 1). 
The amplification factor converges to its maximum value (AF ≈ 12.7) at a distance of 10H from the wall, since at 
that distance 1-D conditions are present (free-field motion). Note that this distance was also calculated by Wood 
(1975), as the minimum distance required to eliminate the effects of the wall on the retained soil.  
Figure 2 presents the height-wise distribution of the normalized induced dynamic earth pressures for the two
harmonic excitations examined. It can be observed that when the fundamental frequency of the input motion
f approaches that of the retained soil layer fo, the normalized dynamic earth force is almost three times greater in
the case of resonance, compared to the corresponding value in the case of quasi-static excitation, which is almost 
equal to unity. 
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Figure 1  Distribution of the AF along the free surface of the backfill in the case of harmonic excitation at 

resonance (f = fo). Note that AF is unity just behind the rigid wall examined, and along the backfill-base interface.

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5

y/H

σx/AρH

f = fo/6

f = fo

 
Figure 2  Distribution of the normalized induced dynamic earth pressures for the two harmonic excitations 
examined. Note that fo is the fundamental low-strain eigenfrequency of the soil layer under 1-D conditions. 

 
 
4. NON-LINEAR HARMONIC RESPONSE 
 
The aforementioned results referring to the case of linear soil behavior are valid for very low levels of base input 
acceleration, when the induced strains remain small (γ < 0.005%). However, when the maximum acceleration
acting on the soil mass takes more realistic values the induced strains are substantially greater, and thus, the 
impact of material non-linearity (expressed by the G/Gmax - γ and ξ - γ curves) become more evident. The wall-soil 
system behavior depends heavily, not only on the level of applied acceleration, but also on the f/fo ratio, as it is 
justified by the subsequent results. 
 
The distribution of the amplification factor on the surface of the backfill in the case of the harmonic excitation at
resonance (f = fo) is plotted in Figure 3, for five levels of peak base acceleration: 0.0001g (corresponding
practically to a linear soil behavior), 0.12g, 0.24g, 0.36g, and 0.50g, covering a broad range of induced dynamic
strains. Note that in the range of small shear strains the critical damping ratio, ξ, was set equal to 5%, instead of 
the much lower values of the curves proposed by Seed and Idriss (1970), in order to ensure that the theoretical 
amplification (e.g., AF ≈ 12.7) for linear conditions is also numerically achieved for the lowest beak base
acceleration case (0.0001g). As it was expected, increasing the degree of material non-linearity makes the system 
more flexible, thus decreases its fundamental frequency and leads to detuning. This phenomenon can be easily
observed by examining the substantially reduced values of AF, for all levels (0.12g to 0.50g) of non-linear 
behavior, as shown in Figure 3. 
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Figure 3  Distribution of the soil amplification factor (AF) along the surface of the backfill in the case of 

harmonic excitation with frequency f equal to the low-strain first eigenfrequency fo.  
 
Figure 4 depicts the height-wise distribution of the normalized induced dynamic earth pressures for the five levels
of peak base acceleration examined in the case of the harmonic excitation with f = fo. As the level of applied 
acceleration increases the dynamic earth pressures decrease. In particular, the normalized dynamic earth force on
the wall reduces to values ranging from 0.60 to 0.90 (corresponding to A = 0.50g and 0.12g levels, respectively) 
compared to the previously calculated value of three for the linear soil behavior case. It is evident that for
excitations having dominant frequency approaching the low-strain fundamental eigenfrequency of the retained 
soil layer, the material non-linearity seems to act in a beneficial way. 
 
The case of quasi-static excitation is of greater interest. In Figure 5 the height-wise distribution of the normalized 
induced dynamic earth pressures is plotted for the case of the low-frequency harmonic excitation (f = fo/6) for the 
five levels of peak base acceleration examined.  
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Figure 4  Height-wise distribution of the normalized induced dynamic earth pressures for the harmonic 

excitation with frequency f equal to the low-strain first eigenfrequency fo.  
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Figure 5  Distribution of the normalized induced dynamic earth pressures for the low-frequency harmonic 

excitation (f = fo/6). 
 
 
5. RESPONSE TO RICKER PULSE 
 
As aforementioned, apart from harmonic excitations simple pulses have also been used in the present study. A
simple Ricker pulse with central frequency fR = 2Hz has been selected as a pulse excitation. Despite the simplicity 
of its waveform, this wavelet covers smoothly a broad range of frequencies up to nearly 3fR (≈ 6Hz). The 
distribution of the normalized induced dynamic earth pressures in the case of the Ricker pulse excitation is plotted
in Figure 6, for three of the levels of peak base acceleration examined. The pattern revealed in Figure 4 for the 
harmonic excitation is repeated in this case, due to the fact that the excitation pulse includes a broad range of 
frequencies close to the fundamental frequency of the retained soil layer (fo ≈ 3Hz). As a result, despite the lower
pressures in this case, the system response is similar to that caused by the harmonic excitation at resonance. 
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Figure 6  Distribution of the normalized induced dynamic earth pressures in the case of the Ricker pulse.  

 
 
As this Ricker pulse covers smoothly the range of frequencies between 1 and 5Hz, it provides an efficient way to
comprehend the effect of material non-linearity on the wall distress in the frequency domain as well. Figure 7
shows the variation of the Pressure Amplification Factor (PAF) as a function of frequency. The aforementioned 
parameter is defined as the ratio between the Fourier spectrum of the normalized induced dynamic earth force
time history and the spectrum of the acceleration time history of a Ricker pulse excitation with unit peak value. 
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It is evident that in the case of linear soil behavior, PAF reaches its maximum value for frequencies close to the 
fundamental frequency of the retained soil layer. This result matches the value calculated previously in the case of 
linear harmonic response at resonance. Additionally, for low-frequency excitations, the value of PAF converges 
to that proposed by Scott (1973) and Wood (1975) as calculated previously. For the case of increased levels of
peak base acceleration (i.e., A = 0.24g or 0.36g), the development of material non-linearity not only affects the
maximum value of PAF, but also shifts the range of its maximum values towards lower frequencies.This pheno-
menon can be either beneficial or detrimental, depending on the predominant frequency of the input motion. 
 
Finally, Figure 8 presents the maximum normalized dynamic earth force as a function of peak base acceleration 
for the three excitations examined. Note that in the same plot, the values proposed by Wood (1975) and Seed and
Whitman (1970) are also included as references. It can be observed that in the case of linear response the wall
distress is dominated by the frequency content of the excitation. More specifically, AEPΔ  varies between the 
values of 1 and 3, being thus always higher than the standard bounding values adopted by the seismic norms.
Nevertheless, as the degree of non-linearity increases the distress decreases substantially, ranging between the
aforementioned Wood and M-O bounds in the cases of harmonic resonant and Ricker pulses.  
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Figure 7 The Pressure Amplification Factors (PAF) calculated for the Ricker pulse excitation. 
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Figure 8  Maximum normalized dynamic earth force as a function of peak base acceleration A, for the three 

excitations examined. Graph also includes the proposals of Wood (1975) and Seed and Whitman (1970). 
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In contrast, the distress in the case of low-frequency harmonic excitation and non-linear response is always higher 
than the upper bound (Wood’s solution), and is approximately 50% greater than the value of Wood’s solution. An
important conclusion resulting from Figure 8 is that for high values of the imposed acceleration the resulting force
approximates in general the proposal of Seed and Whitman (1970), even though the limiting-equilibrium 
conditions (imposed by the static theory of Coulomb, or its pseudo-static extension of M-O) are not valid in the 
specific retaining system. In other words, the force acting on the back of a yielding retaining wall (resulting from 
the weight of a rigid wedge of soil above a planar failure surface, according to M-O theory) coincides with the
force that acts on the back of a rigid fixed-base wall (resulting from the earth pressures of a yielding soil material).
 
6. CONCLUSIONS 
 
The present study has examined how and to what extent the potential soil non-linearity, that a retained soil layer 
exhibits under moderate or severe seismic excitations can possibly affect the dynamic distress of a rigid fixed-
base retaining wall, and the seismic response of the retained soil layer itself. It was found that soil non-linearity 
reduces in general the soil amplification of the retained soil and the dynamic earth pressures, leading thus to a
lower wall distress. However, as soil non-linearity alters the eigenfrequencies of the wall-soil system, there exists 
(under certain circumstances) the possibility that increased non-linearity may lead to an amplified response. This 
phenomenon is more probable to occur when the frequency content of the excitation is narrow and concentrated
around a fundamental frequency that is lower than the linear eigenfrequency of the soil layer. In any case, results
provide a clear indication that the potential non-linearity increases the degree of complexity, being either 
beneficial or detrimental for the wall distress, depending on the circumstances. That fact justifies the necessity for 
a more elaborate consideration of these interrelated phenomena on the seismic design of retaining walls. 
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