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Abstract

Indexing schemes were proposed by Hellerstein, Koutsoupias
and Papadimitriou [7] to model data indexing on external
memory, Using indexing schemes, the complexity of index-
ing is quantified by two parameters: storage redundancy
and access overhead, There is a tradeoff between these two
parameters, in the sense that for some problems it is not
possible for both of these to be low,

In this paper we derive a lower-bounds theorem for ar-
bitrary indexing schemes, We apply our theorem to the
particular problem of d-dimensional range queries. We first
resolve the open problem of [7] for a tight lower bound for
2-dimensional range queries and extend our lower bound to
d-dimensional range queries. We then show, how, the con-
struction in our lower-bounds proof may be exploited to de-
rive indexing schemes for d-dimensional range queries, whose
asymptotic complexity matches our lower bounds.

1 Introduction

In the last decade, the relational database paradigm has
been extended in numerous ways. Here we are concerned
with the introduction of new data models and query lan-
guages and the implications on indexing methods. We selec-
tively mention geographical information systems, abstract
datn types and object data models, constraint databases,
temporal databases, and on-line analytical processing. In
these new contexts, the typical indexing methods of rela-
tional databases, B-trees and hashing, are generally con-
sidered inadequate [18]. Thus, there is a renewed need to
develop a deeper understanding of data structures and al-
gorithms to speed operations on external memory.
Database extensibility necessarily includes extensible de-
velopment of index mechanisms. Engineering approaches
comprising parameterized components and/or libraries of
composable components are demonstrating successes {8, 3].
In related work, at least one effort is underway to gener-
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ate such a system from formal specifications [2]. This ef-
fort, though it started in the database domain, has focused
on main-memory data structures and admits, relative to
databases, simple cost models. The database problem is
more challenging, because it involves a tradeoff between two
antagonistic aspects; storage redundancy, and access over-
head.

In this paper, we adopt the model of indezing schemes,
proposed in [7]. Indexing schemes are not data structures,
as they do not model the problem of searching for the data.
They only model the (spatial) locality issues that arise. It is
assumed that for any given query we can determine, with-
out additional IO, the particular disk pages that we have
to access in order to answer it. Keeping this abstraction
in mind, consider the problem of indexing N elements on a
hard disk, where each disk page can hold B elements. Ide-
ally, we would like our index to consume %’ disk pages, and

be able to answer any query @ by reading only P—grl disk
pages where |Q] is the number of objects returned by the
query. In reality, for some types of queries this is not pos-
sible. Assume that some particular index occupies r% disk

blocks, and can answer queries by reading at most A Pg;—l]
disk pages. We identify r as the storage redundancy, and A
as the access overhead for this index.

Our main theorem, the Redundancy Theorem, provides
lower bounds for the storage redundancy r , given a desired
access overhead A and the block size B, for any indering
problem. Our approach is combinatorial in nature, The re-
sults are reminiscent of the AT>-complexity results in VLSI
theory [11]. The main argument in AT2-complexity, con-
sists of two parts: a geometric separation theorem, and a
concept of communication complezity, or “information con-
tent” of a digital circuit, modeled as a boolean function. In
the domain of indexing schemes, geometric separation cor-
responds to properties of disk pages, viewed as sets of fixed
size. Communication complexity characterizes the particu-
lar type of indexing workload we study (multi-dimensional
range queries, set inclusion queries etc.).

Our results identify an analog of a geometric separa-
tion theorem. To date we have only partially succeeded
in characterizing workloads in a general manner, with re-
spect to their intrinsic complexity. Thus, our Redundancy
Theorem will sometimes only yield trivial lower bounds.
However, it allows us to derive a number of interesting re-
sults. First, we use it to prove the conjecture of Hellerstein,
Koutsoupias and Papadimitriou for a worst-case trade-off of
r = Q(log B/ log A) for 2-dimensional range queries. Then,
we extend this result to the d-dimensional case, where we



=1
ghow alower bound of r = Q ((}—gg—f—:— . Also, we demon-

strate that our technique for deriving lower bounds can of-
ten be “reversed” to derive optimal indexing schemes, and
for the case of d-dimensional range queries we show r =

0 ((;%g—ﬁ-) d—‘). Finally, we discuss some open issues, and

relate our results to recent developments in the area of in-
dexing,

2 Related Work

Our work continues on the work of Hellerstein, Koutsou-
pias and Papadimitriou, presented in [7]. That work was
in turn motivated by the work of Hellerstein, Naughton
nnd Pfeffer on the Generalized Search Tree [8] (also known
s GiST), GiST is an extensible indexing structure, orga-
nized as a balanced search tree. In their discussion of in-
dexing issues, the authors stated the need for a “theory of
indexability”, a formal framework that would “... describe
whether or not trying to index a given data set is practi-
cal for a given set of queries.,” Previous work on index-
ing data structures concentrated on the study of specialized
problems, The first problem-independent insight on exter-
nal data structures was offered in [7]. Continuing on this
work, Koutsoupias and Taylor {10] investigate the indexa-
bility of 2-dimensional data sets, and derive asymptotically
tight indexing schemes for these sets. In particular, they
identify the Fibonacci workload as a worst-case workload
for 2-dimensional indexing.

The research into external data structures has largely
been experimental. Theoretical work on the B-tree and
jts variants, as well as on external hashing, concentrated
mainly on probabilistic analysis of performance, under var-
jous distributions of the indexed data. For these problems,
the worst-case asymptotic performance has been known for
a long time,

In the area of multidimensional indexing, data structures
are classified into two categories: those that partition the
data sct, such as R-trees and their variants, and those that
partition the search space, In both categories, most of the
proposed algorithms are based on heuristics, and have rel-
atively bad worst-case asymptotic performance. See [6] for
an overview,

This situation has been changing in the past few years,
mostly due to the work of Kanellakis, and that of Vitter,
and their collaborators. We attribute the renewed inter-
est in the fundamental results of [9], where it was shown
that indexing in new database paradigms, such as constraint
databases, and databases with class hierarchies, can be re-
duced to special cases of multidimensional range searching.
In subsequent publications, [14, 13, 16, 17] there are pre-
sented asymptotically efficient dynamic algorithms for 2-
sided, 3-sided and interval management queries. An optimal
golution for the interval management problem has recently
been found [1), We also mention the work of [12], who use
cost metrics similar to ours, to characterize the locality in
external graph searching,

Tinally, we should mention the recent results of Faloutsos
ond Kamel [5], on characterizing the performance of multi-
dimensional range queries on R-trees, using the fractal di-
mension of real-world datasets. Their work provides only
intuitive and experimental evidence, in contrast to our the-
oretical approach, but we feel that there is a strong correla-
tion between their empirical observations and our theoretical
models, and we will discuss this issue further in this paper.
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3 Definitions and Notation

We now define indexing schemes, departing slightly from the
notation of [7], and present some additional notation of our
own,

3.1 Indexing Schemes

Definition 3.1 A workload W is a tuple W = (I, Q), where
I is a non-empty finite set, and Q is a set of subsets of I.

For a workload W = (I, Q), the elements of I are called
objects, and I is the object set. Also, the elements of Q are
called queries, and Q is the query set. We also define N to
stand for |I}, the cardinality of I, and g to stand for |Q).

In the terminology of combinatorics, W is a simple hy-
pergraph, where I is the vertex set, and Q is the edge set.
We choose not to use this terminology, but instead we adopt
terminology that is more natural for databases.

Definition 3.2 An indezing scheme S for block size B, B
an integer greater than 1, is a pair S = (W, B), where W =
(I, Q) is a workload, and B is a set of B-subsets of I, such
that B covers I.

We refer to the elements of B as blocks, and to B as the
set of blocks. We refer to B as the block size, and K stands
for |B]. Again, notice that an indexing scheme is a simple,
B-regular hypergraph with vertex set I.

We use some standard notation throughout this paper.
We will use lower-case letters from the end of the alpha-
bet, z,y, z to represent objects, letter Q, possibly with sub-
scripts, to denote queries, and letter b, possibly with sub-
scripts, to denote blacks. Also, we typically use U to repre-
sent sets of blocks.

3.2 Performance measures

We now define the two performance measures that we use,
departing slightly from the notation of [7]. In the following
definitions, let § = (W, B) be an indexing scheme of block
size B on workload W = (I, Q).

3.2.1 Redundancy

Definition 3.3 The redundancy r(z) of object = is defined
as the number of blocks that contain z:

riz)={beB:z b}

The redundancy r of § is then defined as the average of
r(z) over all objects:

r= 1—:[- E r(z)
zel

It is easy to see that K = Z¥. We also define the maximum
redundancy f in §, as f = maxzer r(z)

3.2.2 Access Overhead

Definition 3.4 A set of blocks U covers a query Q, iff Q@ C

uv.

Definition 3.5 A cover set Cg for query Q is a minimum-
size set of blocks that covers Q.

Notice that a query may have multiple cover sets.



Deflnition 3.6 The access overhead A(Q) of query Q is
defined as
ICql

A(Q) = I-J_QJ-‘

where Cq is a cover set for Q.

Notice that 1 < A(Q) < B.

Informally, A(Q) models the normalized cost of the query
Q, in terms of block accesses. For a given query Q, [|Q|/B]
{s the minimum number of blocks required. A(Q) is the
multiplicative overhead associated with @ for a particular
indexing scheme,

We now define the access overhead A of indexing scheme
8, to be the maximum of A(Q) over all queries.

Deflnition 8.7 The access overhead A for indezing scheme

S is
A=5eA@

3.3 Some Trivial Bounds and Trade-offs

We assume that the number of objects N is always much
greater than the block size B, although B can grow arbi-
trarily large,

Far some indexing scheme 8, the minimum possible re-
dundancy is 1, when B is a partition of I, and the maximum
is % (¥), when B = (£). For § having maximum redun-
dancy, A is exactly 1, which is minimum. Also, forr =1 it
is casy to devise a problem where A = B, which is maximum
(g @=())

We will not comment further on the proposed framework,
since it is thoroughly discussed in [7)].

4 The Redundancy Theorem

We now turn our attention to an analysis of the above model,
that will lead us to the Redundancy Theorem. We first state
and prove a set-theoretic result that is of central importance
to our work. Note that this theorem is not specific to index-
ing schemes, but is really a theorem in extremal set theory.
The reader is warned that the notation does not correspond
to indexing schemes,

Theorem 4.1 Let 51,852,...,5: (a > 1) be non-empty fi-
nite sets, Q@ = S1 US> U...US, be their union, and L < |Q)]
be a positive integer, Let k denote the mazimum integer
such that there exist I pair-wise disjoint sets Py, P,,..., P,
ao that for alli, 1 <i<k,

1, |P| =L, and
2, Py C 55 forsomej, 1<j<a.

or k =0 if no such sets ezist. Then,

ke [1Ql=eE=1)] (1)

Proof: We proceed by induction on a. For a = 1, the proof
is trivial, Assume that the theorem is true for some a. Let
51,52y ¢4+ 5, Sat1 be non-empty, finite sets. Let Q denote
their union, and @' denote the union of the first a of them,
Q' =8 USU...US,. Finally, let k be defined as in the
theorem, for all a 4- 1 sets.

We apply the induction hypothesis on Si,82,...,8.. Let
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= I—m'—‘z@'—ll . If ¥’ > 0, there exist (at least) k' dis-

joint sets Py, ..., Pw, with |P;| = L, each contained entirely
in some set Sj, for 7 < a. Let P stand for their union,
P=PU...UPu. k' =0,let P=0.
Now, take U = Sg41 NP, and V = Sat+1 — U. Write
[Vl=Ln+1l,forn >0and 0 <1 < L. We conclude
that
E>K +n

which implies

Lk > LK +Ln
Replacing Lk’, we have

Lk>1Q'|=a(L—-1)+Ln
But [@] = Q' +|Sa+1] — |Q' N Sat1|. Replacing, we get
Lk > |Q| = |Sa+1] +1Q" N Sag1| —a(L — 1) + Ln
Replacing [Sa41] by U]+ [V,
Lk > Q- U] = [VI+1|Q' N Sass| —a(L —1) + Ln
Replacing Ln by |V] -1 we get

Lk Q-1 - V|+1Q" N Sat1] —a(L - 1)
HV]-1
Q- UI+1Q' N Sag1| —a(L = 1) =1

Finally, note that U] < |Q' N Sa41], which gives us
Ik 2 1Q —a(L—1) ~12 Q] — (a+ 1)(L - 1)

from which the theorem follows.0

Although not necessarily obvious from the above induc-
tive proof, there is a simple way of constructing sets Py,..., Pk
given sets Sy,...,Ss. We proceed in a steps, processing set
Sj in step j. In step j, we use elements of S; to create
as many disjoint sets P; as possible, taking care not to use
again any elements of Sj used by previous steps. At every
step, we “ignore” at most L — 1 elements of Sj, where “ig-
nore” means that we do not use these elements to construct
P; sets, At the end, we will have “ignored” a total of at
most a(L —1) elements of @, thus the result of the theorem.

The inequality in the theorem is tight. For example, the
equality applies in the case where sets S; are disjoint, and
|ISjl med L=L~-1

We now apply the above theorem to the domain of in-
dexing schemes. First we define a new concept, flakes.

2

Definition 4.2 Let S = (W, B) be an indezing scheme on
workload W = (I, Q). A flake is any set of objects FF C I
such that for some query Q and some block b, F C QNb.

We now have the following lemma on flakes:

Lemma 4.1 (Flaking Lemma) LetS be an indezxing scheme,
A be the access overhead, and 2 < ¢ < £ be a real num-
ber. Then, any query Q with |Q] > B wiﬁ contain at least

(e— 2)A1%1 pair-wise disjoint flakes of size [%j.

Proof: Choose a cover set for @, say Cg = {b,...,ba}, of
size a. Let S1,...,5, be defined as S; = Qnbi for1 < i < a.



We have a = A(Q) [43!] < A['4!]. From Theorem 4.1 we
knows that the number k of flakes of size | ;] is at least

] QI —a(lE]-1)
b2 l 2 ]
s 19l-al&i-1
- 1)
L 1e-4T3NA&I-
= )
, -4l +)&-1
= =]
S lel—A(i—%l:l)(;‘-’x-l)
A
AlQl o]
> A4 (1)
cAlQl . el
z —g ~4F

= Ale- 2).'.%1
The Jast inequality follows from |@Q] > B. O

Before we proceed to prove our main theorem, we need a
technical tool from extremal set theory, known as Johnson’s
lemma;

Lemma 4.2 (Johnsgon’s lemma) Let A be a finite set, and
S1,852y+..,9) be subsets of A, each of size at least a|A|, such
that the intersection of any two of them is of size at most

BlAl IfB < 5%_’;, the number of subsets k is at most a/B.
Proof: See [7) for a proof. O

We are now ready to state and prove our main theorem.

Theorem 4.3 (Redundancy Theorem) Let S be an in-
dezxing scheme, and Q1,Q2,...,Qun be queries, such that for
overy i, 1 <i< M;

1, 1Qi| = B, and

8. 1QiNQs| < 5z for all 4, 1< 5 < M.
Then, the redundancy is bound by

e—-21
r 2 NEIQ‘

=1

where2<e< 3

Proof: We begm by dlscussmg the role of parameter &
This parameter exists in the analysxs for assuring that 2.

is integer, For the reader’s convenience, it may be assumeﬁ
that € lies between 3 and 6 (provided that £ > 6). There
is no technical importance to parameter &, and our analysis
would be better without it, but we were unable to remove
it without seriously complicating the rest of our proof.

We will prove the lower bound in two steps. First, we
compute the minimum number of flakes associated with
queries Q1,Q2,...Qnr. Let this number be fi. Then we
will compute the maximum number of flakes associated with
cach block, Let this number be f2. Clearly, there will be at
least fy/ fa blocks in B.

£ is any real number such that 2 is integer.
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Step 1 Consider any query Q;. By the partitionin 194.5[
lemma, this query is assoc:ated with at least (e — 2)AS
distinct flakes of size <=-. Let F be such a flake. F cannot.
be associated with some other query Qj, j # i, because if it
were, then it would be a subset of Q; as well as of Q;, and
thus |@:n Q5| > & > W We conclude that

M M
fl = Z(E - 2)AJQB—‘1 = E———'f—)A- Z IQ,'

i=1 i=1

Step 2: Consider any block b, and let Fy, Fa,..., Fx be
the flakes associated with this block. Since all these flakes
are subsets of b, we upper bound the number of flakes k,
using Johnson’s lemma Each flake F; is of size ;B. Also,
for two distinct flakes F; and Fj, i # j, |FinFj| < < WB
by the following argument: If the flakes are associated with
the same query, then they are disjoint. If the flakes are
associated with different queries, then their intersection is
bounded by the intersection of these queries. Thus, John—
son’s lemma is applicable with @ = 2, and 8 = W

It can easily be checked that 8 < az/(2 —a). Thus, we
conclude that a
fo= TB- =2eA
The proof is complete, by the inequality K = Sg- > %

which simplifies to

M
-21
Z%"ﬁZlQil

i=1

5§ Lower bounds for d-dimensional range queries

In this section we apply the Redundancy Theorem to d-
dimensional range queries. First, we examine the case for
2-dimensional range queries, and then we generalize to d
dimensions.

For any d 2> 1, we define the d-dimensional range query
workload, 'R.,,, whose object set is I = [1 : n]¢ and whose

query set is
Q:{[a; th]x...
For this workload, N = n%.

x [aa : 8d]|t < a;i <& < n}

5.1 2-d range queries

In order to apply the Redundancy Theorem, we must iden-
tlfy quenes @Q1,Q2,...,Qn, each of size at least B, and with
pairwise mtersectlons at most B/2(eA) We consider only
queries of size ¢ X &, for j = 0,1,...,log. B. For each
aspect ratio, we will pamtlon the n x n space, obtaining a
total of M = —-(1 +log, B) queries of size B each. Before
we apply the theorem, we compute parame(;er c.

Let j and j* be integers 0 < J <j'< loch and Q; and
Qj+ be queries of dimensions ¢ x = B and ¢ x 'J" respectively.
Fig.1 depicts the setup It is easy to see that for any J and
J,IQ,nQ_,|<—-,—< . Thus, we take ¢ = 2(cA)>.
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Figure 1: Two rectangles of sizes ¢’ X & and ¢’ x 2, j < 7,
intersecting at a maximum number of points —d—fi—J

We are now ready to apply the Redundancy Theorem.
From the theorem,
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and thus we have the Q(los B) result conjectured by [7].

5.2 d-dimensional queries

We can generalize the above technique to d-dimensional
queries, We consider queries of size B, with dimensions 1 x
¢’ x .., x ¢74, for all nonnegative mte:zer 15925+« -, 34, such

that Ekm Jr = log. B. For each sequence ji, j2,...,74, We
partition the d-dimensional cube into n¢/B (hyper)rectangles,

of dimensions ¢/ x ¢ x ... x ¢,
In order to select the appropriate value for ¢, we consider

blan nimn P o
the size of pa.r'w.sc intersections of rectangles with different

dimensions, It is easy to see that ¢ = 2(cA)? is applicable
in this case also, guaranteeing that the intersection of any
two rectangles will have size at most -2—(;;)-,-

We also use the well-known fact that the number of dis-

sequences of d nonnegative integers, whose sum is n,

1S
w0

nnnnnn v he
JD Exvcu ()4

(n+d—l)
AN d—l k4

(cf. Bose-Einstein distribution).
Thus, the total number of queries (each of size B) will

be
_n ( raseas T4 1\
d-1
and for the redundancy we have
-2 ( ogl;(:iF +d- 1\
u bt l

For d a constant, the above quantity is a polynomial of de-

gree d — 1. Thus, we have shown the following theorem:

Theorem 5.1 For workload R2, the storage redundancy is
bound by

6 Deriving Indexing Schemes

We have seen that we can derive lower bounds for the stor-
age redundancy by selectmg as large a number as possible
of queries with small pair'v'v'ise intersections. The process
of selecting these queries depends on the “topology” of the
workload in question (the term topology is used in an intu-
itive manner).

It is only natural to consider the merit of using a sim-
ilar process for qp]prflnw blocks flnqhnar‘ of nnpnr—-q\ in or-

der to construct mdexmg schemes for a desired access over-
head A. In this section we shall apply this idea to R,,, the
d-dimensional range query workioad. In the lower-bounds
analysis of RE, we considered queries of size B. In this
analysis, we choose these queries to serve as the blocks,

In order to facilitate our analysis, we provide the follow-
ing simple fact:

Proposition 1 Let n > 1, and consider the intervals [0 :
n-l] [rn: 2n— 1], [2n 3n 1],.. o partztzomng the natural

7‘u""’cr3 J.ur;n, ‘1555' vut |_u
b—a+1, intersects at most [’;‘] -1 intervals.

= n
;Uj,U:u_\_U’ UJ\!I‘GJ—

Proof: Left as an exercise to the reader.0
We now consider workloads RZ, for some fixed d. For
our analysis, we employ parameter c. For each sequence
J1,524--.,34 of integers, such that Z yJe = log B, we
partltlon the d-dimensional mesh into blocks of dimensions
i1 x ¢77 x ... x ¢4, Thus, we have a redundancy:
1 d—=1 n\

_[log. B+d~1\ _ 0 a1g
= d-1 ) e BJ
'v'v'e now nave to compuue me access overneaa IOK‘ Bms Se-
lection of blocks, and parameter ¢. Consider any query of

dimensions X1 x X2 x ... x Xq4. Let
V= l IX
11
i=1



be the size of this query. Also, define a parameter A as

(3"

Finally, we define the scaled dimensions, X;, 1 <i < d, as
p AP

)

A=

Notice that H Xi=B.

We will a.ssume that a cover for our query consists only
of blocks of fixed aspect, i.e. blocks of dimension ¢t x ¢/2 x
v oo X ¢¥4 for fixed j1,72,...,J4. By applying Proposition 1,
the number of blocks f will be at most

T1(1%]+)
11+
(:5i+2)

t=1
But because H‘ . Xi = B, it is possible to choose 7; so that

d
we have

[ =

A

i=1

i . .
-c;.TSc foralli, 1<i<d

Thus, we have
F<(Ae+2)°

In the case where Ac < 2, we have f < 4%, Thus, we require
that A > 44, Now, assume ¢ > 2. In this case,

f < @0
= @'y

|4
e [ 5]
From this we get that
A= (2)% > 4"

IA

which gives, for ¢ > 2,
Al/d
c= —

2

By replacing this expression into Eq.2 we get the desired
result, Thus, we have shown the following theorem:

Theorem 6.1 For the RS workload, the redundancy of any
optimal indezing scheme will be

= (D <o (k22) )

Jor access overhead A > 4%,

Interestingly, this theorem imposes an absolute lower bound
on the access overhead A > 4%, It is of course possible to
achieve access overhead arbitrarily close, or equal, to 1, and
for these small values of A the lower bound on r still holds.
However, it is not clear if the upper bound on r is achievable
for small A,
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7 Discussion and Future Work

7.1 Multidimensional Range Queries

Lower-bound results on indexing schemes imply lower bounds
for the corresponding indexing problems. In general, this
is not true for upper-bound results, because in indexing
schemes we ignore the search problem that indexing data
structures have to solve.

For multidimensional range queries in particular, our re-
sults provide the first lower bounds for indexing structures,
for dimensions higher than 2. In particular, we have the
following:

Theorem 7.1 Any ezternal data structure that answers d-
dimensional range queries in time O ([]%l]) will consume

Q (-’—g- log9—? B) space.

We believe this is the first lower bound on storage redun-
dancy, for d > 2. However, this lower bound is probably
very weak.

For d = 2, there is a lower bound by Subramanian and

Ramaswamy [16], of g‘xo_;rogI;N ?

bounded by O (log"g N+ lgl) Although stronger than that
of theorem 7.1, even this is not tight. Elsewhere in these
proceedings, Koutsoupias and Taylor [10] show that loga-
rithmic redundancy r = Q(log N) is needed, if the access
overhead is to be A < B. Also, slightly higher redundancy
r = 4log(N/B) is sufficient for A < 4, for any 2-dimensional
workload. Thus, the trade-off for 2-dimensional workloads
exhibits threshold behaviour.

These results give rise to two fundamental open prob-
lems. First, none of these results reveals the trade-off be-
tween r and A, for given N and B. This is not a moot
question, because the hidden constant in the r = Q(log N)
lower bound is extremely small, small enough to matter for
reasonable values of N, and also it is not independent of
B. Our Redundancy Theorem may be applicable to this
problem, deriving interesting refinements to these complex~
ities. The second open problem is that of extending these
results to higher dimensions. In [10] it is conjectured that
redundancy r = O(log?~! N} is required for d-dimensional
workloads.

Apart from the general problem of multidimensional range
queries, our results on RE are applicable in two other areas
of recent interest: Multidimensional OLAP (MOLAP) [19)
and external multidimensional arrays [15]. In MOLAP, the
challenge is to materialize a datacube to disk, so that range
queries can be answered efficiently. Usually, the datacube
undergoes some compression, to improve space utilization.
External multidimensional arrays are useful in scientific and
engineering applications, when the (usually numeric) data
does not fit into main memory. These types of data struc-
tures are strongly relevant to indexing schemes, because they
do not have a search component. Especially for arrays, work-
load RS is a relatwely accurate model for a d-dimensional
(dense) array. It is not accidental that the ideas in [15] are
similar to ours, and their experimental results are consistent
with our theoretical predictions.

for query I/O cost

7.2 Locality versus Search

It has been said earlier that indexing schemes do not model
the search problem of data indexing, but only the locality
aspects that arise. However, the two issues are not unre-
lated. Indeed, many indexing structures, such as a B-trees,



R-trees etc, are hierarchical, Consider such a hierarchical
indexing structure. Each level in the hierarchical structure
reflects the locality of the level under it. It seems quite likely
that for such structures a recursive analysis may be carried
out, where each recursive step of the analysis will employ
locality arguments.

In hierarchical structures for multidimensional range queries,

any particular level will employ Minimum Bounding Rect-
angles (MBR) to aggregate the data in the level under it.
The Russian Doll tree (RD-tree)[8] is a hierarchical structure
for the indexing of arbitrary sets of integers. In correspon-
dence with MBR, RD-trees employ rangesets, to aggregate
the data from level to level. In both cases, the common fea-
ture is a combination procedure: a set of MBRs combined,
determine a minimal MBR subsuming them all. A set of
rangesets can be combined to form a minimal rangeset sub-
suming them,

In our Redundancy Theorem, our basic combinatorial
tool is flakes, Indeed, the Redundancy Theorem is a flake-
counting theorem, It may be possible to refine the definition
of flakes, and devise a combination procedure for (the refined)
flakes, This approach may lead to results (and algorithms)
on the performance of generalized hierarchical structures.

7.3 Uniformity and Independence

In a pjoneering article, Faloutsos and Kamel {5] demon-
strated experimentally that the performance of existing in-
dexing structures (R-trees) for multidimensional queries can
be accurately predicted from the fractal dimension of the
indexed dataset. Their results strongly suggest the exis-
tence of a theoretical average-case result, with the fractal
dimension replacing the embedding dimension in the costs.
A natural question is to examine whether there exists in
fact a stronger, worst-case result of a similar nature. This
approach will further allow us to model multidimensional
queries better that B¢ or the fibonacci workload does, ame-
liorating the negative consequences of the results of [10].

On this subject, the authors of [10] state that a theoret-
icol approach along these lines is not likely to succeed, and
that in fact there is no relation between the fractal dimen-
sion of a point set and its indexability. Based on their own
results, they show that;

1, Topological transformations that do not change the in-
dexing properties of a set, such as stretching the em-
bedding space selectively, can change the fractal di-
mension of this set dramatically, and

2. Topological transformations that do not change the
fractal dimension of a set, such as rotation, change the
indexing properties of the set quite dramatically.

Although their arguments are irrefutable, we do not share
the conclusions of [10] that fractal dimension and indexabil-
ity are unrclated, The arguments of [10] are based in two
implicit assumptions, an assumption on the definition and
use of fractal dimension, and an assumption on the defini-
tion of “indexability”.

Agreeing on a definition of fractal dimension is crucial. In
many occasions, implicit use of different definitions resulted
, in contradictory results and caused much confusion [4]. The
definition used in the experiments of Faloutsos and Kamel
is the box-counting fractal dimension, a standard approach
for characterizing real, finite data sets. Although reasonable
in an experimental setting, since it is easy to compute, it is
probably not suitable for theoretical arguments. Indeed, the
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notion that by a single number we can characterize the com-
binatorial properties of multidimensional indexing is rather
far-fetched. But, going in the opposite direction could be
very fruitful: determine a set of combinatorial conditions on
problems, under which fractal dimension is relevant to in-
dexing. Then, evaluate these conditions experimentally, for
real datasets. We conjecture that such conditions, if found,
will be applicable to the majority of real datasets.

Our second point has to do with the definition of “in-
dexability”. The results in [10] suggest that the tradeoff be-
tween redundancy and overhead changes dramatically when
a 2-dimensional data set is rotated. However, access over-
head is a worst-case cost metric. Under an average-case
metric, such as the expected access overhead A, defined as

q
A=) wA(Q)
i=1

for appropriate weights w;, this may not be so. In fact, the
experimental results of Faloutsos and Kamel can be seen as
Monte Carlo estimations of A on real data sets. We argue
that A is an equally interesting metric of “indexability”, as
Ais. Also, A is less biased than A in favor of small queries,
in the sense that A is basically determined by queries of
size close to the block size B, at least for multidimensional
workloads.

In conclusion, we believe that the arguments in {10], al-
though thought-provoking, do not support such a general
claim, that the fractal dimension is unrelated to indexing.
In fact, we conjecture that under appropriate assumptions
and definitions, the fractal dimension can indeed determine
indexing properties of datasets. This approach can be gen-
eralized, by undertaking a study of topological properties of
workloads that determine their indexability, The results of
[12], which employ cost metrics similar to ours, are based
on such topological properties for undirected graphs, and
provide a good starting point for such an endeavor.

8 Conclusions

We have presented an analytical tool for indexing schemes,
in the form of a lower-bound theorem for arbitrary indexing
workloads, and we have demonstrated its utility by resolv-
ing a number of open problems in multidimensional range
queries. We have provided a theoretical analysis of locality
in d-dimensional range queries, with matching upper and
lower bounds on the redundancy vs. access overhead trade-
off, and have provided useful insight into locality issues that
arise in external data structures in general.
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