DATA ACQUISITION,
TRANSPORT OVER A GSM
NETWORK AND
PRESENTATION OVER
THE WEB

by

Dimitris Giakoumis

,,pn-""—’.“

(r,. EXNEID K 17 ; \
»

ﬁﬁ:ﬁr }

Kk I
w/;(u "gmv g/

Technical University of Crete

2002

Supervisory Committee

Prof. Dollas Apostolos (Supervisor)
Prof. Mihalis Paterakis

Prof Kostas Kalaitzakis

Acknowledgements

The author wishes to express sincere appreciation to Professor Apostolos
Dollas for his guidance and assistance during the design and implementation of this
system. In addition, special thanks to Professors Michalis Paterakis, and Kostas
Kalaitzakis. for participating in the Supervisory Committee and evaluating this work.

I would also like to thank Christos Vosnidis, Dimosthenis Stellakis, and
Tassos Prigouris for allowing me the use of their hardware in the development stage
of the system.

Last but not least, very special thanks go to everyone posting at
comp.arch.embedded and the forums at www.avrfreaks.net who tried to help me.

o

ACKNOWLEDGEMENTS......ccccoese00asnssanensassssssasansessssssansssssssasssnsassasssssssssassssassssnsssssssnsasssossssisssssasssss 2

1
2.

INTRODUCTION .iiciicinicicicriiionsiommssntisisisaiossssamsssssnsosssionssssonsasssnssasanessnasssssosassssastissstsssanasssassnass 5
RESEARCH AND RELATED PRODUCTSiiiiincneiinsssnccrsransssscsecssnsessssssessssssssssssssesse 7

2.1 EMBEDDED ETHERNET ...ttt e e 7
2.2. GSM INTERFACES ...ttt e 9
2.3 Y B 10
SYSTEM ARCHITECTUREc.....ccooccsicissucassassissasisesssssssssssssssssosisscasses snasssnsasssssssassssssssmannns 12
3.1 INTRODUCTION L.ttt e 12
3.2. REQUIREMENTS ...ttt e e e e et e e e e et e e e e e e e e e s e e e e e e e e e eeeneeeeesesa 12
3.3. DESIGN CHOICES ...t 12
3.3 1. GSM @QUIPMENL ...t 12
3.3.2. Simple Dialup Vs embedded TCP/IP............c.ccccccoiiiiiiiiiiiiiiiiiiieeoeeeeeee L 13
3.3.3. Data storage loCAIION.........................ococueiieiiieeeeeeeeeeee e 14
3.3.4. Over-Network deliverycccccooiiiiiiiiiiiee oo 14
3.34.1. Architectural Alternatives and TTadeotlSi ... iinreanamismmmenieassomiinsansansamnssenmensens 15

3. 3. ettt ettt e, 16
3.3.43. Choice of Network techNOIO@Yoovoiiioi e 16

3.4. ARCHITECTURE AND ORGANIZATION OF THE SYSTEMuvviiiiieeeeeee oo 18
341 Microcontrollerco..ocooooooioiioooeoeeee e 18
3420 GSM @QUIPIMENL ... 19
3.4.3. Database Gateway SOfWAre............................ococoooiooooeoeeeeeeeeeeeeeeeeeeee 19
344, Database Serverccocooooiiiioeee e 19
345, WD SErVer ...t 19
346, Web ClIERLS. ..o 19
3.5. SUBSYSTEM CONNECTIVITY .ot 20
3.6. SUBSYSTEM INTERFACES ... 20
3.6.1. Communication between Microcontroller and GSM equipment 20
3.6.2. Communication between Gateway software and Modem.. 23
3.6.3. Communication between Gateway software and Microcontroller 23
3.6.3.1. Link TranSparencycoooiuioioiiiieeeeeeeeeeeeeee e 23
3.6.3.2. Data acquisition ProtOCOL.........o.oiiiiioiiei oo 24
3.6.4. Communication between Gateway software and Database....................................... 31
3.64.1. Reasons behind database USe...........ocooiiiioiii e 31
3.6.4.2. Parsing and StONNE DALA........cocnmsimmisismmsimimmmrorsarmmommrssmsssssasusssmmmssssssressssassssmsssonsraminis 32
3.6.4.3. DAADASE BORBINA cvcovpousiensrvssiissussmsnssnnospssmsnts s rmashommmssmamnesssmmsenensmmssa et sossessas copsasesssnms 3
3.6.5. Communication between Web Server and Database.......................cooooooooo 33
3.6.5.1. Server side script programming iNterfaceoooocooovoooeoooeooeoo 33
SYSTEM IMPLEMENTATION ...cotiiiiteieeteeeeteteeseeeee et e s s s e es e 34
4.1. CHOICE OF APPLICATION .ot 34
4.2. DATA SOURCE SYSTEMocvuuruuemnituntinsniie s sseeee e eesee e sseeses e s s ee e 34
4.3. MOBILE PHONE ..ottt 36
44, MICROCONTROLLER ...ttt e 87
FA Lo FIFMWGAIe ... 38
4.4.1.1. FIMMWAIE OVETVIEW........c.moicieeeieeeeee et e e oo 38
4.4.1.2. IRESOUICEE USBH. 1oviss.cs 0065155085575 mammnrn s amomm s e sy e s S S A e 38
4.4.1.3. Accelerometer PWM Sampling..............o.o.oooooiioiioo 39
4.4.14. e 39
4.4.15. PrOtOCOT PATSET ... 40

45. GATEWAY SOFTWARE ...ttt 42
4.6. DIATABASE sccursssstsvsssiaresensovmssssisasss soessssssnss st 445583555885t oo enmenrmer e s emees et eece eeRA SO RA RSO S LR 43
4.7. f o253 . S 44
TESTING AND VALIDATIONcucueuererterneenisscnseessenesesssessssssssssssssssssssemssssemseeeee oo e 48
3.1, DY STEM TESTING .. ves cuemmensssossssteitisssishios momememnsessson ssosas shssiesas st s AR s n e e s 48
3

I AL GSM equiDMENLIEST.. . c.xviciisessnssmmsesesssmmmsin s o sy s a0 R s oA S oo me e s 48

5.1.2. Embedded SyStem (eSHINGcc.ccuiiiiiii i 49
313, G areway SOMTWATC LESING .ovoincnveussssvs sossnniin s soss st e S5 i S S 58S S8 oA S oAb e 49

514, Web INIerface 1ESHNGcc.ccoiiiiiiieeeei e 50
5150 COMPLEIE TEST ... 50

6. FUTURE WORK .ooooiiieiiecccccttierrereeeeeeeseesssssssssssssssessssssssasasssssssesssssssssssssssssssssssessssssssssnnnnnsnsnnns 51
6.1.1. Embedded TCP/IP ... 51
6.1.2. Embedded Web SerVer..........cccouuw e 51

6.1.3. VOICEXML IMIEITACE.............ccoiiiiiiiiiiiie e 51
6.1.4. WML IRICETACE..........c.o oo 52
0.1.5. GPRS SUPPOFL.......ciiiiie e 52

7 APPENDIX I: BIBLIOGRAPHY AND OTHER SOURCES....... i eececreneeeeeeeeeeeeeeeeeennens 52
7.2. ON=LINE SOURCES ...t e et e e eeeeeennnn. D2

8. APPENDIX I1: REFERENCES.....oeeeeieeieccieiiecccsesssssssssssssssssssssssesssessessssesessessessssssssssssssnns 53
9. APPENDIX I11: IMPLEMENTATION DETAILS. cooeeeeeeteeeeeeeeeeeeeeeeeeeeeeeeeessessssssasaees 53
9.1 G a2 [174 S 53
9.2 GATEWAY APPLICATION SETTINGS FILEeiueiteeeiee e e 53
9.3 WEB SERVER SETTINGSeeeeuiieeeitee oo e e e e e e e e e eaeeeeeeeee e 54
10. APPENDIX IH1: PROTOCOL SIMULATION DATA ..eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeseeesnaees 56

1. Introduction

Information in this day and age is so important we call it “the information age™.
Over the years much effort has gone into various technologies with the sole purpose
of distributing information, making it accessible to a widely distributed public. The
improvement of available technology has led to a variety of progressively more
advanced systems to process and distribute information. Beginning with the simple
concept of a newspaper that was first and simplest form of information delivery to a
large group of people. every advancement of technology caused the development of a
faster and more direct form of information delivery. The introduction of electronics
brought about the use of radio and later television, aerospace technology gave us
satellite communication, and finally the invention of computer networks led to the
single most widely spread information exchange network on the planet, the Internet.

Information is often contained in data, or derived from it, and this makes data
acquisition systems an important part of any information delivery infrastructure. The
applications of such a system are virtually limitless, as are the circumstances requiring
fast delivery of data from a remote location. Stock and commodity values can be
made available all aver the world. Data about traffic can be obtained by web enabled
in-car systems. Meteorological, geological and medical data can reach scientists in
real time. wherever they are, even on the move and from practically anyware. These
are only some of the applications of such a technology. Even things such as parking
availability reporting systems and vehicle tracking systems can be ‘implemente'd
through a data acquisition system that samples data from an embedded system.
Connectivity of the embedded system through the GSM network enables us to locate
the data source system practically anyware within GSM covered area (which is almost
everyware today). without any need for cable connectivity or any wireless access
point being in the vicinity.

The purpose of this work is to develop a data acquisition system. The system must
transport data from an embedded system to a central server via a GSM network. From
there the data is presented upon request in a web interface over a TCP/IP network. in

a text or graph form. Multiple clients must be able to connect to the server at once.

Chapter 2 gives an overview of relative products in the market, thus reveling the
penetration of this type of technology to the consumer. In chapter 3 the design of the
system is discussed. and this includes the whole design process. various choices that
had to be made and the architecture of the system. Chapter 4 describes how the
system components were implemented and how they were integrated. Chapter 3
describes how the system was tested and validated. Chapter 6 presents possible future

work that can be done to improve the system.

2. Research and related products

In this chapter we present products that have similar functionality with the
system developed. The study of existing similar products provides a variety of ideas
on how to approach the design of the system. Although a great variety of data
acquisition systems exist for a variety of different needs, the following chapter
focuses on embedded system based solutions that make use of either TCP/IP or the

GSM network to transfer data.

2.1. Embedded Ethernet

One type of related products are embedded Ethernet applications. These
applications interface directly into an Ethernet network and use the TCP/IP protocol
to send data over it. In many cases HTTP, FTP or E-mail protocols are used over

TCP/IP for easier access to the acquired data.

24141 WebDAQ by SuperLogics
WebDAQ is a Multi-Function Networkable A/D. Digital 1/0 and D/A Device.

Every webDAQ contains a complete web server built into the box. It can be
connected 1t to an Ethernet network, or direct to an Ethernet card in a computer, and
accessed by a web browser. The user has complete control over channels. rates and
other acquisition parameters, a dynamic view of the acquired data, and direct
download in a variety of formats.

32 separate channels can be sampled with 12 bit accuracy in up to 500 KHz total
sampling rate (#ch * rate). This unit can also e-mail and offer access via FTP to the
collected data, handle data conversion according to the type of sensor that was used
and has 8 programmable analog outputs for circuit stimulus. It also supports multiple
users and a command line interface for programming. The WebDAQ data acquisition
system can use up to 128 MB of RAM in SIMM package and utilizes specialized DSP
hardware. [Ref. 1]

2.1.1.1.2. PicoWeb Server
The PicoWeb ServerTM allows World Wide Web access to digital 1/0 and

serial I/O signals without the need for assistance from external PCs or Unix

computers. It is a stand-alone device with a real-time networking kernel, TCP/IP

stack, and an HTTP Web server. Once plugged into a network with Internet access.

using its twisted pair Ethernet connector (i.e.. 10baseT RJ-45 plug). the PicoWeb can
be accessed via a standard Web browser from anywhere in the TCP network. User
designed web pages can be implemented to process "CGI like" devices. Web pages
(i.e.. HTML, text. images, etc.) can be retrieved in the normal manner from the
PicoWeb's on-board flash memory.

The PicoWeb Server uses Atmel's AT90S8515 microcontroller, which offers an
8 MIPS low power RISC processor, 8 Kbytes of flash program memory. 512 bytes of
EEPROM. 512 bytes of RAM, 32 I/O lines, and a built-in UART. The PicoWeb
development board also includes a 32K-byte serial EEPROM chip, useful for holding
Web pages and images. A Realtek RTL8019AS a single chip NE2000-compatible

Ethernet controller chip provides the 10baseT network interface [Ref 2]

214 1.3 Axis network camera
The Axis 2100 is a network camera running TCP/IP with built in web server to

be used with a web-browser. It is a camera connected directly to the network. a real
web cam (not some pc connected camera) which has an integrated web server and
uses normal Ethernet. The camera can be connected in three ways:

Directly to an Ethernet network running TCP/IP where the camera is a web
server on its own.

In a dial-up mode. the user can attach an external modem to the serial port to
have the camera dial-up to an ISP. The Axis 2100 can be set to deliver snapshots at
certain intervals or triggered by external events, e.g. to send you an email in case of
an alert.

In a dial-in mode the user also attaches a modem to the serial port but can then
dial in to the camera using windows standard dial-up-networking to connect to the
camera. Images are then monitored through your web-browser.

The Axis 2100 Network Camera is a network camera that attaches directly to a
network providing live video with high quality images. In contrast to existing video
servers it is using digital technology with Ethernet networks. The Internet style
software used. based upon the TCP/IP protocol, makes it easy to manage. The camera
can be monitored locally (intranet) or wherever desired in the world by taking
advantage of the Internet. As it is based on open standards. the users can take and
view pictures remotely over the network with a standard web browser. such as

Netscape Navigator or Microsoft Internet Explorer.

2.2, GSM interfaces
Another product type used the GSM network to pass the acquired data through. The

GSM modem was used to dial to a remote server. or to an ISP to facilitate acquisition.

2.2.1.1.1. Maxks Application Microserver
M@xks Application Microserver is a modular data acquisition system based on

the CAN bus. The main module is connected with other M@xks sensors or with
custom embedded systems via the CAN' bus. This line of products is also using an
embedded TCP/IP protocol, but it runs over a dialup connection that can be run over a
modem, be it an analog, ISDN or GSM modem. Over the modem connection a PPP
protocol is run.

Once connected to the TCP/IP network the device can send data to a web server
using the HTTP protocol (utilizing a perl script), the FTP or the SMTP mail protocol.
[Ref 3]

2.2.1.1.2, Accord’s Fleet Management Software
Accord’s Fleet Management Software (AFMS) is a powerful yet cost effective

web based solution for tracking vehicles in a fleet. It acquires location data from
automobiles in real time to maintain the history of their movement and generates
valuable information for the fleet management. AFMS helps the Fleet operators to
track their vehicles™ location coordinates accurately no matter where they are. AFMS
facilitates help to reach vehicles immediately in the event of any emergency such as
accident or breakdown. AFMS accomplishes these functions by integrating the GPS
receivers (locating devices) and GSM cellular modems (communicating devices) with

a user-friendly graphical user interface on a personal computer.

' Controller Area Network (CAN) is a serial bus system especially suited to interconnect smart devices
to build smart systems or sub-systems.

The attributes of a Controller Area Network (CAN) are

* the multi-master capabilities that allow building smart and redundant systems without the need of a
valuenerable master,

* the broadcast messaging that is the first piece of the gurantee for 100% data integrity as any device
within the network uses the very same information,

* the sophisticated error detecting mechanism and the retransmission of faulty messages which is the
second piece of the guarantee for 100% data integrity,

* the availability of more than 50 controllers from low-cost devices to high-end chips from more
than 15 manufacturers,
* and the availability of CAN for the next 15 years as its use within the European automotive industry
and the decision for CAN from the US and Japan automotive industry.

In Vehicle Equipment consists of NAV2300R GPS Receiver with embedded
GSM Interface and any standard GSM modem compliant with the ETSI 07.07 and
07.05 standards. The GPS receiver determines the vehicle’s position, speed and
direction by tracking the NAVSTAR GPS satellites. The GSM modem is used to
report the vehicle’s location coordinates to the Nerve Centre.

Control Station has two software components; GSM Driver and Fleet Server.
GSM Driver interacts with Mobile Unit and provides vehicle data to the Fleet Server.
Fleet Server maintains vehicle data in MS-Access database. This data 1s served to
web-server components when triggered by AFMS users.

AFMS provides web-based interface to vehicle data. This interface displays
vehicle data and helps users interact with Control Station. The web-components are
written in Java Server Pages (JSP) and Java Beans. These web-components generate
HTML-based information to the browsers. AFMS can be browsed on Internet

Explorer 4.0+. [Ref 4]

22 1.3, Dragonix VZ

The Dragonix VZ board is an embedded linux solution maintained as “open
hardware™. It uses a Motorola Dragonball microprocessor (68VZ328) to run the linux
operating system and has an Ethernet interface. [Ref 5] It can interface with a
universal wireless communication board that includes an onboard Siemens MC335
GSM module. Combined with the Ethernet controller on the Dragonix mainboard. it is

possible to use the two board set as a Gateway.

2.3 Analysis

All of the analyzed systems had some of the characteristics that were required of
the developed system. but none met all of them.All systems that have a TCP/IP
acquisition option run the server in the embedded system. This results in either bad
performance (especially when a lot of clients are connected) or a high-end embedded
system, more expensive and certainly not with better performance than a standard PC.
Some of these systems are implemented for specific applications, such as the Axis
Camera or Accord’s Fleet Management Software. Of all products reviewed, the
M(@xks microserver came closer to being a match for the requirements. by featuring

both a platform independent web interface and out-of-the-box GSM connectivity.

Connectivity | Internet/Web | Generic Platform Low cost
via GSM interface (not for Independent

10

single
application)

WebDAQ ? ? ?
PicoWeb ? ? ?
Axis Camera ? ?
M(a@xks server ? ? s
Accord’s Fleet ?
Management

? 7 ?

Dragonix VZ

11

3. System Architecture

3.1. Introduction

This chapter describes the design of the data acquisition system. It describes
not only how the system was structured and designed, but also what technologies
were used and the reasons behind the choices that led to the use of these technologies.
Also the reasons for adopting the architecture that was used and the benefits this

architecture bestows on the system are discussed.

3.2. Requirements

Given the fact that not much is known for the exact type of data transferred
through the system (meteorological data, biometric data, etc). The system should be
able to accommodate a single stream of data or many scarcely sampled variables. It
should also be able to maintain the data acquired by multiple data acquisition units,

while serving multiple requests over the web.

3.3. Design choices

The design choices that are discussed here were influenced by many factors. They are
presented in the context of technical issues, as well as availability, cost, and suitability
to this project.

3.3.1. GSM equipment

In the choice of a mobile phone to use with the system. various compatibility,
protocol openness and availability issues came into play. Firstly, not all mobile
phones are designed for data transfer, so the one selected had to be one equipped with
a GSM modem. The second requirement was a RS-232 interface. The popularity of
data enabled mobile phones with laptops and other portable devices has led many
companies to adopt an infrared port as a way to allow communication with a PC.
There exist. however, models that use external cables to communicate via a serial
port.

In theory any mobile phone with a built-in GSM modem and a serial
connection option could be set up to communicate, at least on a serial link level. with
an embedded system featuring a RS-232 interface, by configuring the microcontroller
to behave like a PC would. Most mobile phones however utilize propertary protocols

to run the standard modem AT command protocol over. These models were

12

unsuitable because technical information about the internal protocol used to
communicate between the phone and the driver was unavailable (in fact denied) by
the manufacturing compan_\'.:

The answer came in the usage of a microcontroller-driven serial cable that
comes with some mobile phones to provide data connectivity. This type of peripheral
enables the mobile phone to appear as a standard modem to the PC. Thus we can
program a microcontroller to mimic the PC’s behavior without knowledge of any

specific proprietary protocol.

3.3.2. Simple Dialup Vs embedded TCP/IP

A system for over-the-internet data delivery from an embedded system could
be designed by attempting to give access to both the embedded system and the client
side software on the same TCP/IP network. This technique is used on all WAP
enabled mobile phones, but with the embedded system (the mobile phone) as a client.
The same method can be used, but with an http server set up to run on the
microcontroller.

Although possible, this technique has a number of drawbacks, all of which
concern the microcontroller’s limited resources. Actually this technique would be
ideal for a similar system with a normal desktop computer in place of the embedded
system.

The protocols that make connection to the internet possible were created with
standard computers in mind. Indeed, to access a web client through the internet, a
computer system should run no less than four distinct protocols. These are the
modem’s AT command protocol (that results in a transparent link after initial
connection, and therefore requires no memory. nor does it increase the workload of
the system), a PPP or SLIP protocol, the TCP/IP protocol and the HTTP protocol. The
protocols mentioned above run one on top of the other, with HTTP being top level
and running over TCP/IP, which in turn runs over PPP (or SLIP). that run over the
serial link provided by the connected modem.

This set of protocols would have both workload and memory requirements far

exceeding those of the microcontroller used (and any in the low cost range, requiring

* The gnokii project is a project to achieve connectivity between Nokia phones and the popular open
source Linux operating system. Nokia has been coniacted many times by members of the open source
community for information on the inner workings of their protocols and has announced its
unwillingness to make any information available. The project continues by reverse engineering.

high power embedded processors to be implemented). It was therefore necessary to
use a simple protocol over the serial link of the mobile phone to transfer the data to a

gateway computer. This gateway will in turn access the internet and send the data

through.

3.3.3. Data storage location

Another choice that had to be made was where in the system to store the data
that was acquired. Storage in the embedded system and dynamic acquisition upon
request, while theoretically possible, would obviously have been a poor choice
because of limited resources, both in terms of memory and bandwidth (especially
having to serve each requesting user separately). It would also require the embedded
system to be on-line for as long as the system would operate, rather than connecting
only to update the content, leading to higher application costs. Streaming the data to
the clients and storing it there is also not the best choice. Apart from each user having
to be on-line when data is transmitted or miss a part of the stream, we would have to
solve several consistency and data redundancy problems, ensuring that the same data
resides an all clients.

The wisest choice would be to store the data in the gateway PC where
resources are plenty and data storage can be centralized. Data should be stored in a
way that would allow access by many clients and update by the data source
simultaneously. A database was chosen to store the data primarily because of its built-
in resolution of these consistency problems. A database is also easily accessible from
most modern programming languages and from scripting languages used in server
side scripting. This ease in connectivity even permits the parallel use of another data
delivery system, for example a stand alone client written in any programming
language supporting a database access protocol (ODBC is supported by almost every
modern language) retrieving data without affecting the rest of the system. Finally a
database eases the implementation of security and access control should it become

necessary.

3.3.4. Over-Network delivery

Having decided to use a gateway computer gave a wider range of choices on
the technologies that could be used to transfer the data to the client software. Both the

gateway PC and the client software will be on the same TCP/IP network and so the

14

TCP/IP protocol could be used as a basis for the data transfer process. Either TCP/IP
could be employed to transfer the data or another protocol could be employed over

TCP/IP to be used in data transfer.

The main aspect of the system that influenced this choice was system and
platform independence. The client part of the system was to be deployable on the
broadest range of operating systems and platforms possible. To fail that requirement
would be to exclude diverse TCP/IP network resources (namely the internet).
Therefore the main concern in this choice was to insure that the client portion of the

system is independent of the platform and version of the operating system used.

3.3.4.1. Architectural Alternatives and
Tradeoffs

The first solution would involve client software specifically written to receive
data through an open TCP/IP socket and display the results. This client could be
implemented in three ways: using a stand alone application, or using Java or ActiveX

technology. none of which offers true platform independence.

334.1.1. a) Standalone application
A standalone application would be by definition platform specific. Standard

executable programs cannot be run on a different operating system than the one they
were designed to be used with. There are times in witch even the same operating
system will require different compilations of a program depending on the hardware.
Noted cases are non Intel (alpha) processors running windows environments,
windows CE devices and executables using specific instruction sets like MMX, SSE
and 3DNOW.

Variations on the standalone application scenario include use of either ActiveX
control technology or of Java. Both these technologies can be used to create applets,
client programs that load automatically from a web server and appear to run within
the web browser, giving the illusion of a web interface, but are otherwise client
programs running in the client’s computer and system architecture would be no

different from the stand-alone client scenario.

3.3.4.1.2. b) ActiveX technology
ActiveX technology uses normally running compiled binaries that run from

within the web browser, thus having all the drawbacks of a standalone executable

15

client. ActiveX controls require use of the Microsoft Internet Explorer web browser to

operate. being still more restrictive platform-wise.

3.3.4.1.3. c¢) Java Technology
Java technology appeared as a promising choice for a cross-platform

implementation of a client. Either a stand alone client or an applet seemingly running
on a web browser could be written using Java and it would run on any platform with
the same Java Virtual Machine (JVM) it was written for and even across some
different versions of JVM's. However, even being designed for platform
independence Java technology still cannot guarantee it. Microsoft’s implementation of
the Java Virtual Machine is quite different from Sun’s and there are compatibility
issues between them. So even if there is no platform compatibility problem. on
Windows OS there is the issue of JVM compatibility (Windows may run either
version of the JVM). Recently, after Sun Microsystems’ legal action against
Microsoft the latter’s implementation of the JVM, and the deployment of Microsoft’s
competitive technology (.NET). Microsoft announced its intended discontinuation of
Java support in the Windows operating systems. This means that continued
compliance of Windows (especially newer versions of Windows like XP) cannot be

guaranteed.

3.3.4.2.

Any of these designs would also have problems using an available TCP/IP
connection because of the widespread use of firewalls. Inability to use some internet
application because of the TCP/IP port it is using is closed by a firewall is a
commonplace scenario, made worst by the frequent inability of the end user to alter
firewall settings. Using a standard TCP/IP port that is commonly used and therefore

routinely left open by firewalls would minimize problems of this type.

3.3.4.3. Choice of network technology

In the end. a true web interface was chosen. Dynamically created HTML
content is delivered over a standard HTTP connection to a web browser. The web
server uses a server side script to access the stored data according to a request sent to
him and render the response content. Server side scripting generated web content is
the most widely used design for dynamic web content delivery today, and server side

scripting technology is constantly researched to allow web developers more power

16

still. Choosing to use server side scripting to deliver the data was probably the most
important design choice, and despite its unique advantages, it also has certain

limitations.

3.3.4.3.1. Advantages of Server side scripting

The main advantage of server side scripting is platform independence. It is
possible to generate HTML content that does not contain browser-specific tags or
client-side scripts. allowing almost all browsers in most operating systems to view the
content, albeit with minor visual differences. The breadth of platforms on which
clients can be deployed is maximized by the use of this technology. Also, most
firewalls allow web access by default, so no network configuration is required to
allow the operation of the system. This extends to the lack of system component
installation on the client computer in most modern operating systems. Virtually any
post-1998 operating system in widespread use comes with a pre-installed web client,
and in those that do not, the possibility of the user having installed a web browser is
high. Thus this system is easily usable by a novice user without technical knowledge,
or from a public computer not specifically set up for use with the system.

An added advantage is compliance to standard web design practices.
Integrating this system to a commercial web host’s existing web page would be quite
a trivial task. Furthermore most commercial web hosts dislike binary programs
running on their web servers, as they pose a serious security hazard. This system is
based on technology already in widespread use on web hosts. designed with security

in mind, and therefore supported by virtually all commercial web hosts.

3.3.4.3.2. Disadvantages of Server side
scripting
Use of server-side scripting also has downsides. HTML content lacks the
ability to update text or graphics without a new request for the entire page. Therefore
on each data request a snapshot of the data that is in the system’s database is shown.
Consequent refreshes of the web page will update the shown content.
Also, because the visual representation of the data is shown, bandwidth use can

be higher than it would have been had the numeric values of the data been sent.

17

3.4. Architecture and organization of the system

There are seven distinct components up the mobile data acquisition system:
The microcontroller, the GSM equipment (mobile phone). the gateway modem. the
database gateway software. the database itself, the web server, and one or more web
clients. The microcontroller is responsible for acquiring the data from sensors. or
other data sources. The mobile device is used to connect to the gateway modem. Once
connected to the latter it permits the flow of information between the microcontroller
and the gateway software. The getaway software is responsible for interpreting the
data send to it by the microcontroller and storing it in the database. Data stored in the
database can be accessed by the web server and is used for generating the web pages

to be sent at the web clients according to their requests.

— - Protocol Rang —

L S N

S — P S — —
/1 [L L,,, — ,,J \J

Embedded system ke 3 GSM modem 1 modem . Gateway
N 1/ ‘ 1/

J | b S

I—— S|

N
1 N D

Web Server & p Database
o] A
N| 14

|
|
|

|
Web Client ‘

|
Web Client ‘ |
|
IR |

Figure 1 : System architecture

3.4.1. Microcontroller

This component acquires information by a routine that is specific to the type of
data source used and stores it in its internal memory. The maximum size of the data
block that can be stored into the microcontroller memory to be sent in one data
acquiring transaction with the gateway software (one data packet) is 255 bytes. (This
size is hereafter referred to as “packet payload size”)

The existing RS232 compatible port and baud generator of the microcontroller
was used as basis for the serial interface. Hardware flow control was necessary for
interfacing with the mobile equipment’s modem and was implemented in software.

The microcontroller performs any data acquisition from the data source. The

use of internal memory as an intermediate buffer is necessary in case of a preemptive

18

data source. In case of a client-behaved data source that provides data on request. no
intermediate buffering is needed.The microcontroller runs one end of the data transfer

protocol once a transparent link is established through the GSM device.

3.4.2. GSM equipment

The GSM equipment is essentially a serially driven data enabled mobile phone
with an openly available serial (RS232) protocol. It connects to a normal modem on
the server computer and thus provides a transparent serial link between the

microcontroller and the gateway software.

3.4.3. Database Gateway software

This piece of software -is responsible for the dial-up connection on the
modem’s side. Once a connection is achieved it uses the modem to run the other end
of the data transfer protocol. The gateway parses the packets and stores the data in the

database.

3.4.4. Database Server

This 1s an ODBC supporting database. The database gateway uses it to store
the data. The web server scripts also use it to access the stored data and generate the

web content.

3.4.5. Web Server

The web server accepts requests through an http connection from the web
clients and generates the appropriate web content dynamically, using the data stored
in the database. It then returns the response content through the http connection.

The web server scripts also utilize an additional component of Microsoft

Office. the Office Web Components, to render the graphs.

3.4.6. Web Clients

These can be any frame supporting web client on the same IP network as the
web server. It is used to access the web server content as well as the dynamically

created content of any data request.

19

3.5. Subsystem Connectivity

The microcontroller and the GSM equipment are typically bundled with the
data acquisition subsystem (typically a sensor or some type of memory) on site where
the data is to be sampled from. The gateway software should run on a PC with an
analog modem connected to a phone line. This PC should be on the same IP network
with the PC’s running the SQL server, the web server and the web clients. The web
clients are typically on a different PC on the same IP network (most commonly the
internet, but the system can be set up on an intranet as well). In a typical configuration
however the web server, database server and the gateway program can run on the
same computer to avoid network-related performance hits. Another popular
configuration would be for the PC with the modem to run the gateway program and
the web and database servers on another. This would be the proposed way of setting
up the system while using a commercial web server, as security reasons normally
disallow the execution of custom programs on the web server. The use of ODBC
access to the database server however allows enough flexibility for the system to be

distributed along a network and accommodate these types of limitations.
3.6. Subsystem Interfaces

3.6.1. Communication between Microcontroller

and GSM equipment

The GSM equipment chosen supported connection with a serial port. A PC’s
serial port is based on the RS-232 serial communication protocol supported by the
AVR microcontroller which we used, but it also uses a number of control signals. In
order for the serial connection to work we had to implement the output signals for the
mobile phone to detect. Also, we had to use some sort of flow control to prevent data
loss at the send buffer of the mobile phone should it overflow by the microcontroller

continuously sending data faster than the phone can send through the GSM network

PCs have 9 pin male SUB-D connectors. The pin layout is as follows (seen

from outside your PC):

Not all RS232 signals are typically used, therefore we need to examine what

signals are needed in the context of this system.

RxD, TxD
These lines carry the data and were connected through the level shifter

to the respective lines of the mobile phone.

RTS, CTS

These are used by the PC and the modem to start/stop a
communication. The PC sets RTS to 'high', and the data set responds with CTS
'high'. If the data set wants to stop/interrupt the communication (eg. imminent
buffer overflow), it drops CTS to 'low". the PC uses RTS to control the data
flow. CTS was routed through the level shifter and to an input pin on the
microcontroller. Before each byte is sent, the microcontroller checks the pin’s
status. ensuring that no overflow will occur.

DTR, DSR

These lines are used to establish a connection at the very beginning, ie.
the PC and the data set perform handshake in order to assure that they are both
present. The PC sets DTR to 'high'. and the data set answers with DSR 'high'.
Modems often indicate hang-up by resetting DSR to 'low' (and sometimes are

hung up by dropping DTR).

(These six lines plus GND are often referred to as '7 wire'-connection

or 'hand shake'-connection.)

DCD

The modem uses this line to indicate that it has detected the carrier of
the modem on the other side of the phone line. The signal was not used and
was left unconnected; the carrier is instead detected by a message through the
serial port upon connection.
RI

The modem uses this line to signal that 'the phone rings' . The signal
was not used and was left unconnected: instead rings could be detected by a
message through the serial port upon ring, though no ring detection was used
in this system, as the microcontroller was the one to dial the PC.

The 'signal ground', ie. the reference level for all signals. It was
connected with the microcontroller’s ground.

Protective ground

This line can be connected to the power ground of the serial adapter. It
was left unconnected. as the microcontroller power supply had a signal ground

but lacked earth ground. .

o
Modem TxD L_{>
O——

Modem RxD Level shifter input 1

O
RTS

& Level shifter output 1

CTS 1

RxD

O 2
DTR TxD

Microcontroller

O CTS in
DSR _{>_‘
GND

DCD Level shifter input 2
O

RI ’ J—\?;c
cfip N

Level shifter output 2

Figure 2 : Connection of the Mobile phone on the Microcontroller

The most important lines (the ones used in a typical Microcontroller to PC connection) are
RxD. TxD, and GND. Others are used with modems, printers and plotters to indicate internal states.

Once connected on a hardware level. AT commands may be used to control the
modem until a connection is achieved. The ATV0 command is be used to set the
modem so numerical responses are used to the AT commands. (0 instead of ok or an
error code instead of a descriptive error message) more easily parsed and recognised
by the microcontroller. The ATEO command disables command echo. ATX0
command limits the return code range for easier parsing (that is, causes the modem to
return a generic “connected” response upon success or an “error”’ on failure. rather
than a more descriptive, but unnecessary and harder to parse message). The AT&K3
sets hardware flow control. All these settings may be initialised by the microcontroller
at start-up, but can be omitted if the mobile phone is pre-set with those. as they are
persistent. The ATDT command is used to dial the gateway PC’s modem. After the

gateway answers and the modem connects (the 0 character signifies successful

)
)

connection) the modem creates a transparent serial link that appears as a cable based
serial connection to both the microcontroller and the gateway software. Since all
modern modems and the mobile phone support the MNPS error correcting protocol.
data sent through this connection are protected against transmission errors. so long as
they occur between the two modems. The error protection scheme used in the serial
communication protocol was implemented mainly to protect against errors occurring

between the microcontroller and the mobile phone’s serial interface.

3.6.2. Communication between Gateway software
and Modem

A modem whose drivers provide a COM port interface must be used with the
gateway software. All serial modems can be accessed this way and the vast majority
of internal and USB modems offer a virtual com port interface to the system to
facilitate use with software. The ATEO command should be used in the init string to
disable command echo. ATX0 command limits the return code range for easier
parsing. The ATSO=1 at command is used to configure the modem to answer
automatically after one ring (in the present implementation a dedicated phone line was

assumed, although the implementation of an interactive pick-up mode is trivial).

A}

3.6.3. Communication between Gateway software

and Microcontroller

3.6.3.1. Link Transparency

Once the mobile phone’s modem dials the gateway computer and the modem
on the latter picks up, and upon successful handshaking both modems signal a
successful connection. After that, the link between the microcontroller and the PC is a
transparent serial link, until an escape sequence is sent through. An escape sequence
consists of a pause of at least one second. and sending the modem’s escape character
(character 43 in the ascii table or *+ by default but configurable) within a one second
time period. After that the modem disconnects and can be hung up by the ATH AT
command. The other modem disconnects after some time due to carrier loss
automatically (unless expressly set not to). Although the occurrence of an escape
sequence at random in the transferred data is improbable, steps have been taken in the

protocol design to prevent it.

]
|8}

Embedded System GSM modem ~ Analog Modem Gateway Software

o . . N

Initialization > ¢ Initialization

| /
v N |

Dial Command \;f} ‘

i N
// 4 | | \\\ |

|

<{ HandShaking

|
| | NS] |
| Y L
Y \ ‘ N
v ‘ |
/| | 1]
A | ; |
1 ¢ Connected } | Connected >
| - S
[N T |
‘ L |
‘ \ | 174
|
A |
a
//’/ ‘
C Serial Protocol >
N s ——
|] |
N v
/] \
| {_ Esc. sequence |
\\ ir ‘
: \\\ | 1
| ya o N
| " biscommocied] |
7 ' it
<‘\\ Dlic?nnected | ~ Disconnected
f N
| |
[N
\
|

Figure 3 : Connection Use case

3.6.3.2. Data acquisition protocol

3.6.3.2.1. Protocol Requirements

A simple protocol was designed to control the connection and encapsulate the

transferred data. Although many protocols exist to transfer data over a serial line

(zmodem, xmodem, Kermit) connecting two computers. the presence of an embedded
system and its limited resources, mainly in memory. combined with the potential for
“on the fly” data transmission from it, as opposed to the file transfer use of the other
protocols disallowed their use. This new protocol needed to be simple in its
implementation and light on necessary resources, especially on the side implemented
in the microcontroller. Lastly, since more than one system may dial the gateway. a

one byte ID (referred to as device ID) was used to identify a connecting server.

3.6.3.2.2. Protocol design

The protocol was very loosely based on the way xmodem works but heavy
modification was needed to facilitate the requirements of the present system. The
protocol is a client server protocol with the gateway software at the client side. This
enables timeouts to be handled on the client (i.e. PC software) side. so that the
timeouts won’t use one of the microcontroller’s few timers/counters. A command to
the server consists of a single byte, and it responds accordingly. Commands include
ID. ALIVE, REQUEST, NEXTREQUEST, DISCONNECT and EXTENDED (the
actual op-codes of these commands are discussed below). Other one-byte responses
from the server are ACK (acknowledgement), NAK (no acknowledgement) and
DATA (data packet header). The server responds to these commands accordingly. but
reception of any other character results in a NAK response. The use of each command
1s as follows:

ID

The ID command identifies the particular embedded system to the gateway
software. Following the reception of the ID command the server responds by issuing
either the ACK or NAK response followed by the device ID. An ACK response
indicates that the device is ready to send data while a NAK response signifies that
data is unavailable. This is useful in case the data acquisition subsystem has to be
initialized or has not received data. In case of a memory request the NAK request may
signify as an empty memory.

ALIVE

The ALIVE command is used to verify proper function of the remote
embedded system. It always returns a single byte as a result: ACK.

REQUEST

This command is used to perform the actual data transfer and causes either a
data packet or a NAK response to be sent from the server. A data packet begins with
the DATA byte header and continues to transmit a number of payload bytes equal to
the packet size (packet size is discussed later). A single checksum byte follows at the
end of the packet, calculated as the 8 least significant bits of the sum of all payload
bytes. Care must be taken if the packet is not stored in memory but generated
dynamically on request. It may be possible for the data source subsystem to include
delays. However the transmission of a single packet should never span over more than
a second for fear of the data forming an escape sequence and disconnecting the
modem. No assumption was made as to the stability of this value, and it can change
between packet transfers. This however would have to be a gateway initiated action
through a “custom command™ as the gateway has to receive a predefined number of
payload bytes to successfully complete a data packet. and therefore must “know” the

exact packet payload size each time a packet is sent.

“r “Packet Size” Bytes — >

PAYLOAD

T
|

[HEADER (DATA) PA“OAD | PAYLOAD CHECKSUM

Figure 4: Data packet structure

NEXTREQUEST

This command is used to facilitate transfer of large data blocks stored in
memory. Its use is identical to the REQUEST command, except for the fact that it
implies successful delivery of the previous packet‘.. So if the contents of a memory
attached to the microcontroller were to be transferred. consecutive NEXTREQUEST
commands would transfer sequentially all the contents of the memory, while if a
checksum error occurred the next command issued by the gateway would be a
REQUEST command to retransmit the last packet transmitted. In a per-request polling
of the data source where the resulting data isn’t stored between requests but is instead
sent immediately to the gateway. this command should be implemented to act exactly
as the REQUEST command.

DISCONNECT

This command is used to signify the end of the data acquisition session and is

issued prior to an escape sequence from the gateway software. The server can either

not respond at all. waiting for the disconnection from the client side or issue an escape
sequence to disconnect his side of the phone line (requires timer/counter use due to
long waiting periods associated with escape sequence) . In any case it should ignore
all following data from the serial port (until its next dial) as the escape sequence
would pass through to it.

EXTENDED

Since this protocol is designed for a multitude of applications, the need for
expanding the protocol for an application specific command is obvious. Changing the
sampling rate or target channel of an A/D converter, addressing a memory for the next
data request to fetch data from. reading the status of a secondary sensor, controlling
subsystems connected to the microcontroller and triggering some operation are only
some of the uses that might demand expandability of the protocol. The EXTENDED
command offers a way for these application-specific operations to be implemented.
After an EXTENDED command, other commands can be implemented using the
same op-codes or different ones to cover application-specific needs. To check the
status of a slave microcontroller attached to the main microcontroller for example, the
EXTENDED command could be followed by an ALIVE command. This sequence
would cause the main microcontroller to access its slave to ascertain if it is
functioning properly and then return an ACK or NAK code in response.

If no such custom commands are implemented. invoking the EXTENDED
command should result in a NAK response. The assumptions made about the protocol
used inside the EXTENDED “sub-protocol™ are:

1. At some point the EXTENDED session ends and the server
exits back into parsing the protocol’s original commands.

2. The sub-protocol used inside the EXTENDED session cannot
send randomly occurring escape sequences. This can be assured either by
limiting the timeframe of each session or by packing the transferred data into
limited timeframe packets with a header not beginning with the modem’s

escape character.

3.6.3.2.3. Packet Size

The packet size may need to be different for each application, especially if one
wishes to use the packet to transport bundled sets of data. for example data from

different channels of an A/D converter taken (almost) simultaneously. The packet size

a7

can be set anywhere from a single byte to 256 bytes. While a static packet size.
unchanging throughout the session would be enough for most applications. a variable
packet size could be implemented through the use of an EXTENDED command. The

negotiation of the new packet size value remains a matter for the application specific

command.

3.6.3.2.4. Command op-codes

The actual byte values representing each command can be almost arbitrarily
selected. The only real restriction is that the DATA packet header and the values for
the ACK and NAK responses should not be the same as the modem's escape
character. This is necessary in order to exclude an escape sequence from occurring, as
there might well be a long pause before a packet transaction takes place and an escape
character as an opcode in conjunction with data that may well contain the escape
character might constitute en escape sequence.

In order to maximize the robustness of the serial link, the selection of the
opcodes can follow certain rules. First if all the 0x00 and OxFF values are most
commonly the result of errors, being composed fully from 1s or Os (especially OxFF is
very common). Second. opcodes that differ in a single bit from each other are also a
bad practice, as a single mistransmitted bit could result in a different operation taking
place. The small number of commands allows us to construct opcodes by arbitrarily
selecting the first halfbyte and inverting it to form the second. This gives us 16

distinct command opcodes, more than enough to accommodate the protocol's needs.

Protocol element Byte opcode
ACK Ox1E
NAK 0x2D
ALIVE 0x3C
DATA 0x4B
REQUEST 0x5A
NEXTREQUEST 0x69
DISCONNECT 0x78
EXTENDED 0x87

The above table indicates the generated op codes that were used. (Note: during
most phases of development, a different set of opcodes corresponding to ASCII codes

were used to facilitate debugging)

3:8.3.2.5. Error rates

While no errors were observed in actual system operation, a checksum was
used in case noise on the serial port caused data loss. A simulation of how the
protocol reacts over a noisy line was used to calculate how error rates will behave in
various packet sizes. The simulation program was written in C. Every randomly
generated byte is XORed with a bit mask, generated based on the selected bit error
rate (1 denoting a bit hit by noise). Two checksums are generated. one on the original
bits and one on the bits that have been subjected to the noise bit mask. The “noisy™
checksum is then subjected to the noise bit mask itself (as the transmitted checksum is
also subject to noise on the actual protocol) and the two checksums are compared.
Track is also kept on all packets that pass the checksum comparison but have been
subjected to errors.

The bit error rate used was 5-10” and the simulation was run for 10000000
packets. The following graphs illustrate the checksum mismatch errors that occurred.
the errors that occurred without generating a checksum mismatch error, and the

packetsize

bandwidth used for actual payload (given by the formula s the

packetsize + 2

overhead for the protocol is two bytes, the request and the checksum byte)

s —

‘ 140000

120000

' 100000 |-

80000 -

| 0 50 100 150 200 250 300

Figure 5: Checksum mismatch errors per packet size

The error rate increases linearly with the packet size, as the probability for an
error in the packet increases as it gets bigger.

100 -

N |

0 50 100 150 200 250 300

Figure 6: Data errors per packet size

152

[

| 021 e
| | | |
i 0 50 100 150 200 250 300

Figure 7: Bandwidth percentage used for payload.

Complete data on the graphs can be found in Appendix 1

3.6.3.2.6. Analysis of error rates
The choice of packet size relies heavily on the type of data that is being

transferred and the type of application that is used. In case of transmitting values from
multiple sensors that are sampled simultaneously the packet size may have a
minimum size. For example if sampling a three axis accelerometer, grouping the tree
values might lead to a minimum packet size of six bytes. Also the acceptable error
rate depends on the type of data that is being transferred. And of course, depending on
the type of sensor used large packet sizes might require more of the microcontroller’s

resources, such as memaory.

With that in mind, a packet size value can be estimated for a bandwidth-
intensive application that uses little of the microcontroller’s resources in operations
other than running the protocol. The estimation is done assuming that the
microcontroller has the necessary resources. It is also assumed that the sensors used
can produce data with the desired rate. Data stored in an external memory for example
can be used with high packet sizes, while for a real time sampling sensor with low
enough sample rate it makes no sense to wait for enough data to be sampled before
sending them. Considering all that, one can estimate the optimal value at around 50
bytes. Showing near-maximum bandwidth usage and low error rates, it is plain that

the optimal packet size is around that value.

3.6.4. Communication between Gateway software

and Database

3.6.4.1. Reasons behind database use

Since it was necessary for the gateway software to store the received data. a
method for storing it was necessary. In choosing between writing a persistent data
structure to store the data in and using a database, the latter option showed a multitude
of advantages.

. Consistency: A database could be accessed simultaneously. by
many web clients retrieving data while at the same time being updated by one
or more instances of the gateway software.

. Connectivity: Almost all modern programming languages offer
database connectivity, and the use of database connectivity interfaces (ODBC,
DAO) provide an abstraction layer that can be used across platforms and
networks. This extends to connectivity with the web server. as all web
scripting languages today support native database connectivity and are
typically used to access databases.

s Atomicity: The transaction architecture of a database can be
used to achieve atomicity of the updates alternatively to a progressive, more
real-time update.

For all these reasons, a database was adopted to facilitate data storage.

3.6.4.2. Parsing and storing Data

Once a packet is received by the gateway software, its contents must be parsed
and a number of data values should be extracted. These values are then stored on the
database, commonly appended on a table. The gateway software contains an
application specific parse routine that converts the received data to actual values and

manages their storage.

3.6.4.3. Database Schema

The data to be stored was simple enough and required no special or complex
schema to be designed. Any table with two fields named “sample™ and “value™, with
the “sample™ field being the primary key can be used.

As each microcontroller device contains an identification number, the database
can have several tables, and each device can be assigned to a different table according
to its ID number. The special META tables description table in the database
contains information about what tables in the database are active (i.e. accessible from
the gateway) along with a short description and a Device ID that can be used to match

a data source to the appropriate data table on the database.

Table name Device ID Description (text) ;
|
|
| data 001 “Accelerometer Data” | >~ _meta_tables_description
f—— { |
; | | ‘
data2 002 | "some other data” | |
1) - |
Sample Value ’ ’ w Sample 4 Value
' — data ‘ ; T —
0 ‘ 1000 } ‘ ‘ 0 230 ‘
2 1 \ 1100 [1 A 230 |
i 103 V1230 | | | 103 \ 320
- —— —] data2 - — —

Figure 8: Sample database Use case

(U]
(]

3.6.5. Communication between Web Server and

Database

3.6.5.1. Server side script programming
interface

One of the reasons for choosing to use a database was its ease of connectivity
with virtually all server side scripting languages. After each request for data, the web
page's script queries the database and fetches the appropriate data from the table it is
stored in. It then generates the dynamic part of the web content to be sent to the web

client.

3.0.5.1.1. Graphical library use

If so requested by the user the script can, call a graphic library to render an
image of a graph representing the data, rather than generate a text page with the data.
Not all scripting languages support such graphical tools, however. The benefits of
such a representation however are apparent, especially when the data samples are too

numerous to be red one by one.

3.6.5.1.2. Statistic analysis

The use of a database can also prove convenient when the user requires some
statistical analysis of the data and not all its values. Although different databases
support a different range of statistical analysis functions, most support finding the
minimum and maximum values of a data table. or its average value and standard

deviation.

In this chapter the whole process of designing has been described. Not only has
it been shown how the subsystems were set to interact with each other and compose
the whole system, but also why this particular architecture was chosen and how the

design was derived from the requirements of the system.

W
(O8]

4. System Implementation

4.1. Choice of Application

The application which was chosen to utilize the remote data delivery system
was a solid state accelerometer sensor for biometric data. The accelerometer is
sampled on data demand and a two byte value is transferred each time and appended
to the rest of the samples. A list of the samples stored or a line graph of the value for
each sample is shown upon request on the web interface. The data from the

accelerometer is not processed in any way.

4.2. Data Source system

To provide a data source for the data acquisition system a pre-made board with
an ADXL210 two-axis solid state accelerometer was used. Only one of its axes was
captured. The axes’ output pin relays the acceleration measurement using pulse width
modulation. A square pulse with a period of 469 Hz that remains constant is output
and the duty cycle of the pulse relays the acceleration value. Since the period of the
pulse is stable. the acceleration value can be represented by the time the output signal
stays high on each period. The output signal is connected to both external interrupt
pins of the microcontroller; each transition of the output signal causes an external
interrupt on the microcontroller, with one interrupt triggering on the rising and one on

the falling edge of the signal.

High signal timed . High signal timed ‘

>

- N
l |

Period (constant)

Figure 9 Measured duration of “High™ on accelerometer output signal

Since there was no memory in the embedded system., every value that is
sampled was temporarily stored in memory, overwriting the old value. On a request
for data the last value stored is sent over the link. Thus, the data stream is actually
sampled at a frequency set by the frequency or received requests.

The pre-made board that was used was equipped with a 5 volt voltage
regulator, and had to be powered with a power supply of 9 volts. To accommodate a
second regulator was used to power the rest of the system, so that the power supply

could be used.

(U8}
(V)]

To accelerometer Input

o Ve,
. — [P0 vc:c.JT
—lpB1 PAG—
3 3&
— PR PAI——
‘»pg; PA2
5 36
—{PBa PR3
5 pes Pha
— PBB PAS—
0 33
o e
— | ReSET PAT—
1
v? £ 30
. SRR 51 PO" ALESe-
T sl PR oc1B -
] PC7
LI pos | 27
15 26
— —lPs PCS | —
16 |25
| B —51{P08 P4
] s{ED
| - . ——e L P —
= 'S | xray P11 22
20 21
—{GND POO —
| |
|
| == ==
[
| fd
|
N
|
—._
10 |
— 16 —_—
= —# al B i —
= 2 15 4
T —e2 b2 ——] ‘
a3 b3 |
i PV ba| = —
] ADM 20! 12 |] b— |
am " b T — | ;
el 2 . | {)
C_ | 12 L % U [|||
—1® . = — 1 / [|
— 24 - ba—7 | T S |
| e oo |
| | o] | | Senal D connector |
— || [LAa A
|
] 1 ||
| = |
||
L ,_J

-T 100nF capacitors
S

Figure 10 : Embedded system connection

4.3. Mobile Phone

The choice of a mobile phone to use with the system was perhaps the most
crucial design choice and influenced the whole system. The mobile phone that was
chosen was Nokia's 7110 and it's serial interface cable DLR-3. The foremost reason
for this choice was that the standard AT command set could be run directly over the
serial connection of the phone's cable. Like all mobile phones that were considered,
the 7110 requires a specific proprietary protocol over which to send AT commands
and data; the DLR-3 serial cable however contains a microcontroller receives standard
AT commands or data and sends it over this protocol, eliminating any need for
knowledge of the inner workings of the protocol. In all older Nokia models and in all
other mobile phones considered, a driver written specifically for the windows
operating system would run the other end of this protocol, making any

communication of a non-windows running system with the phone impossible, at least

without knowledge of the inner workings of this intermediate protocol. Information
about the intermediate protocol of both older Nokia models and Ericsson's data
enabled handsets was denied by representatives of both companies. Other phones that
were considered and rejected were Panasonic and Alcatel models. rejected due to lack

of data cable availability.

The DLR-3 serial adapter is set to run on 19200 bps. When interfacing with a
modem in an embedded system it is common practice to use a "3 wire" serial
interface, a stripped-down serial connection achieved by driving the modem's status
input pins from their respective output pins. DTR is looped back to DSR and RTS is
tied to CTS. This effectively sets the modem to read it's own signals as the data
terminal's and assume that the microcontroller is always ready to receive and always
about to send data. This way. only one of the inputs and one of the outputs of the
serial level shifter are used. leaving the other pair for any debugging and/or on-site
control the application code may require. This also effectively overwrites any
hardware flow control of incoming (towards the microcontroller) data. However. in
our case, all input status signals had to be implemented by the microcontroller's serial
interface. Apparently the DLR-3 serial cable uses the status signals to power its
microcontroller (no technical data was available about this from Nokia. despite
queries, yet unofficial sources seem to support this).

Moreover because the serial link between the microcontroller and the modem
is faster that the expected bandwidth, the possibility of the microcontroller
overflowing the modem buffer was present’. To avoid this. the CTS signal is sampled
each time a byte is to be sent. The remaining level shifter input is used to convert the

modem's CTS signal to TTL level.

4.4. Microcontroller

The microcontroller that was used was a member of Atmel's AVR family of
flash microcontrollers. namely the AT90S8515 5-volt MIiCroprocessor, running at 8
MHz. The firmware was written in assembly language using Atmel's AVR studio IDE

and its integrated assembler.

" The protocol permits a maximum of 258 bytes consecutively without a response form the gateway,
and thus a buffer above that size would render flow control unnecessary. However, no information was
available on the size of the mobile phone's output buffer, and flow control was implemented.

441. Firmware

4.4.1.1. Firmware overview

In the early design of the microcontroller's firmware it was clear that there
would be two separate tasks: Sampling the accelerometers and running the dialer and
the data transfer protocol (the data transfer protocol and the dialer need not run
simultaneously as the dialer exits when a connection is achieved so the data transfer
protocol can be run. The sampling frequency of the accelerometers is high enough to
consider it the primary task of the microcontroller. as the limited baud rate of the
mobile phone insures that the rate at which the protocol parser will have to serve
requests is low. At 9600 bps and using the ID command (being the smallest to execute
it would yield the most commands per second) we would have 354 commands each
second’. The accelerometers on the other hand produce a pufse every 2 milliseconds,
thus requiring priority over the dialer. The accelerometer code is entirely in the
interrupt service routine thus having priority over the protocol code or the dialer code.

The two "processes" communicate via a shared memory region. As it often
happens in shared memory architectures. a consistency problem arises if both routines
are allowed to access the memory arbitrarily since memory access 1s not an atomic
action. In this case the interrupt service routine may attempt to write in the shared
memory as data is being sent through the serial port. This would happen often, as in
the time it takes to send the first byte, several interrupts would occur. A bit in a
register is used as a semaphore to prevent that. Before starting transmission of the
protocol routine sets this flag and clears it after the reading is finished. The interrupt
service routine stores data in the shared memc;ry region only after it checks that the

flag is clear.

4.4.1.2. Resources used.

A primary concern while implementing the protocol was leaving as many
resources available for the application specific code to use. The resources used by the

protocol itself are two registers from the “high™ register area (those capable of

* This number is calculated theoretically. 9600 bits per second at 9 bits a byte (start bit is included)
produce approx 1067 bytes per second. The command requires one byte and its response is one byte, so
at two bytes per command we have 534 commands each second. This calculation however does not
include latency from the microcontroller (which is negligible) and transmission latency that varies
greatly.

operations with immediates). one more from the “low™ area. and of course. the
microcontroller’s RS-232 interface. The shared memory is not considered part of the
protocol, as a different kind of sensor (one that generates data on demand) might not

require it.

4.4.1.3. Accelerometer PWM sampling

The accelerometer's output (only one axis was used) was connected to the
external interrupt pins. External interrupt 0 was set to trigger on a falling edge and
external interrupt 1 was set to trigger on the rising edge. On the rising edge of the
accelerometer's signal the microcontroller's 16 bit timer/counter is starting., and it
stops on the falling edge of the same signal essentially timing the length of time the
signal remains high. After stopping, the timer flag0 (the 0 bit on the flags register) is
checked and if it is O the routine stores the contents of the timer/counter in memory,
least significant byte first (in lower memory address). This overwrites the previous
value. If the semaphore flag is set, the Interrupt Service Routine exits without saving

any data.

4.4.1.4. Phone Dialer

The phone dialer is the part of the software that is used to send the AT
commands to the mobile phone prior to the connection. It initializes the mobile phone
and sends the ATDT command that causes the modem to dial the gateway PC. The
phone number is stored in the program memory, and is thus impossible to change at
run time (i.e. without reprogramming the microcontroller). EEPROM memory could
alternatively be used or the microcontroller could be upgraded to allow write access to
the program memory at run time (some microcontrollers of the AVR mega family are
pin compatible with the 8515 and all but the oldest models allow write access to the
program memory).

Currently the dialer was set to dial the gateway a few milliseconds after power-
up (delay is necessary to allow the serial line level shifter time to charge its capacitors
and function properly). After the end of the acquisition session an infinite loop is used
to halt the processor. Since no data is being stored across sessions in the

microcontroller, resetting the microcontroller can be used to Initiate a new session.

4.4.1.5. Protocol parser

This routine runs after the dialer has successfully connected the modems and
the transparent link to the gateway has been established. It polls the serial port for
protocol commands and responds accordingly.

On an ID command the server always answers with an ACK command if a
rising edge interrupt has happened and a NAK if no interrupt has happened since
power-up (signifying that the accelerometer is not present). The device ID is hard-
coded in the firmware (indicated with the "DevicelD" constant in the defined using
the .EQU assembler directive).

On a REQUEST command the semaphore flag is set to lock further writing in
the shared memory. the DATA header is sent and then the data bytes in the shared
memory. Before sending a data byte, it is added to an originally cleared register to
calculate the checksum. NEXTREQUEST does exactly the same.

On an ALIVE command, ACK is sent.

No extended commands have been implemented, so EXTENDED command
causes a NAK response.

On a DISCONNECT command the protocol simply exits the protocol parsing
subroutine ignoring all serial input until next dial. The AVR does not send an escape
sequence as this would require extensive use of the timer/counter. Although it was
possible to do this, halting the accelerometer sampling that would be using the 16 bit
timer/counter at the time would be necessary and making it part of the protocol would
dramatically increase its resource requirements (timers/counters are amongst the most
valuable resources on a microcontroller). The mobile phone's modem detects lack of
carrier in a few seconds and disconnects on its own. Ignoring serial port input is
important as the escape sequence that the gateway will send through the modem to
disconnect its end of the connection will be received on this end of the still active

connection.

40

'_T
Enable serial
| Recieve

Initialize mobile
phone

Dial Gateway

Connect
Successful

Receive

L

Figure 11 Flowchart representing the function of the microcontroller’s main firmware.

(ISRs not shown)

set “lock memory”
flag
Send packet
header

clear packet
counter and
checksum counter

read memory/
advance pointer

Data Request

IIHHHHIHHHII

send payload byte

el

P

] P ey —
\Lnter_}

send checksum

4
clear “lock
memory” flag

Command

Recognize

command

Alive

Device ID request

Y

|

EXTENDED

Disconnectﬁ

L Send NAK ’ TD
J

isable Serial
Recieve

:

Send ACK

l Send Device
ID

41

4.5. Gateway Software

The gateway software was written in Microsoft Visual Basic 6. because if the
languages ease of use. built in connectivity with a database and easy driver-based (as
opposed to 10-address based support of older languages) support of serial port
communication via an ActiveX control. A graphical interface facilitates the
management of the data acquisition session. The various commands are available
through the application's menus.

=101 x|

&, Database Gateway
Database Data About

" On connect intiate Standard Session

" Orn connect inttiate Timed Session

)

[T Enable Expert settings ample Sent 0

Sample Num Y alue

o o
Packets to get ,1 0 Packet Size]

Vv Automatically Purge Database On starhing Agquisition session

Target Table

Timed session interval (ms) I 2000

e r‘ A AN N

h 000

No sample yet

Image 1 : Screenshot of the Data Acquisition gateway application

The Database menu contains two options. The “Purge™ option empties the
contents of the selected active table. The “Exit” option exits the program. The Data
menu has three options. “Start” initiates a standard data acquisition session to fetch a
number of packets designated by the value in the “Packets to Get” field. The initial
sample number is the value of the “Sample Num™ field and the sample number

increases by one on every subsequent sample stored. Each sample request is made as

soon as the previous one is completed. The “Timed session™ option has almost
identical functionality, except that the requests are made at intervals defined by the
value of the “Timed session Interval” field. Timed sessions can be interrupted by
selecting the “Stop timed session™ option from the Data menu. The two radio buttons
can be use to cause the program to initiate either type of session on a successful
modem connection.

The other options are enabled by the “enable expert settings™ check box. This
is because certain combinations can cause key overlap errors in the database and
cause the system to crash. However because of their usefulness in development and
the relative ease of avoiding such errors, they were included. The Quick Insert is used
to insert samples in the database manually. The DataSpy checkbox performs a
periodical (with the text box being the period in milliseconds) check and displays the
last sample acquired. The Target Table list displays the active target table in the
database and can also be used to overwrite the database preferences and change it it.
The Packet size field represents the expected packet size (This field was used for
debugging and must not be changed without changing the firmware and the packet
parsing routine).

Various settings about the connections with the database and the com port used
are stored in a XML file and can be edited by changing it. Appendix III contains more

information about configuring the Gateway Application.

4.6. Database

The database selected to implement the database part of the system was
Microsoft’s SQL server 2000. Care was taken however to use standard SQL and
Transact-SQL syntax to maximize ease of portability. Tables for data have two fields.
the sample field and the value field. Sample is the increasing number that also serves
as primary key, and denotes the chronological order of the received samples. Value is
the value of the timer for that sample. The type of both fields is long integer, but can
be easily changed to better reflect the nature of the data in a different application. The
sample number could be changed into datetime type for more loosely sampled values
(in out case, sampling frequency is too great for the timedate type to serve as a
timestamp, but it would be ideal for data sampled in intervals of more than a few
seconds). Value could be changed in real if any processing was done to calculate

. . 2
acceleration, for example in m/sec’.

Every table is mentioned in a special table named “_meta_tables description.
Every table with two fields named “sample” and “value™ (The table must not be
named “_meta_tables_description™) can be mentioned in this table and be associated
with a data source. The meta tables description has three fields: table name,
sensor_ID and description. Sensor_ID is a short integer and the other fields are text
fields. Table name contains the name of the table. and the description field contains a
short description of that data the table will represent. Sensor ID contains the

DevicelD of the microcontroller whose data is to be matched to this table.

4.7. Web server

The web server is where the scripts responsible for powering the sweb
interface. The Internet Information Server provided with Windows 2000 was used.
and vbScript was selected as the scripting language of the server side scripts. Client
side scripts were not included in any of the web pages to maximize platform and
browser independence. Any browser that supports frames, forms and depicting
graphics can theoretically use the web interface. (See the testing on browsers). The
GET method was used to pass parameters to the server script, both to facilitate
bookmarks that contain parameters for pre-made queries and in accordance with the
HTML 4.0 guidelines that propose using the GET method for idempotent actions (like
database queries).

The web interface at its introductory page presents two links in the sidebar.
One is for a standard, text outputting query and the other is for a graphical
representation of the data resulting from the query. Pressing either of those links will
result in the parameter input page. The basic parameter to select is the table from
which to query data (tables present in the _meta_table_discription table appear in the
drop down box). If the user wishes he can use a sample range to limit the number of
samples that will be displayed as a result of the query. On pressing the submit button
the parameters pass back to the server along with the resulting URL.

The first phase of the data retrieval is identical to all queries. First the
parameters of the previous page are extracted by parsing the URL string. Then a
database connection object is instantiated and the database connection string along
with the login information is passed to the object and the connection is open. The
parameter connection string is a standard form of passing information necessary for

initiating a database connection, that information being the network name of the

44

computer the SQL server runs on and the database to be accessed. The login and
password of a database account are also passed into the object at this point along with
the protocol that will be used to access the database (SQLOLEDB was used to specify
SQL server’s OLE protocol). Then the SQL query is constructed using the previously
extracted parameters and the query is executed by opening the connection. The result
Is a recordset. a data structure that represents the returned tuples from the database.
Through a recordset a single tuple can be accessed at a time, as if it were a normal
record, but the active tuple can be change by moving a notional cursor across the
returned table by invoking the recordset’s methods.

In the case of a text query a loop is used to access all the tuples serially by
moving through the recordset by invoking the movenext method. that moves the
recordset’s cursor to the next tuple. In each iteration, the sample and value of the

current tuple are “printed” on the html response.

Mobile Data aqustion web site

T

home

Boundary query (text)

- a PN
Boundary query (Chart)

Statistical Analysis

Embedded data acqusition
delivery page

| For the MHL laboratory of the
Techmcal Univercity of Crete

o T T T e e e e e e

i
|

(ol w)

3fr the 1th sample the value 15 1488
j?or the Zth saraple the value 15 1490
gf’or the 3th sample the value 15 1483
for the 4th sample the value 15 1489
for the 5th sample the value 15 1482
for the 6th sample the value 15 1420
for the 7th sample the value 15 1429
for the 8th sample the value 15 14%1
for the 9th sample the walue 15 1482
for the 10th sample the value 15 1489
for the 11th sample the value 15 1492

for the 12th sample the value 15 1420

for the 13th sample the value 15 1484
%
for the 14th sarple the value 13 1490
i

for the 15th cample the value is 1493

Image 2: Browser client area, results of a text query

In the case of a graphical response however the procedure is different. The

recordset is split into two vectors. one containing all sample numbers and one all

sample values. Then an Office web component object is instantiated to create a chart.

The object’s fields are used to set the various parameters of the chart and finally a

data series is created based on the sample values vector for its y axis v

alues, with the

sample number vector serving as a basis for the x axis. The appropriate method

(getPicture) of the chart component is invoked. and the response 1s piped on the

output of the web page. This way. instead of an HTML page. a bitmap (compressed in

gif format) of the resulting graph is sent to the web client and seen in the main frame.

46

2000

1800

1400

1000

800

600

400

200

T TTT T T T T T T T T

WWMMWWM‘”WMM%%

—————

Image 3: Graphic representation of acquired data

Settings for the web server scripts are mainly about connectivity to the database. They
are stored in an include file that can be edited to configure the scripts. More
information on how to configure it can be found in Appendix III.

47

5. Testing and Validation

5.1. System testing

This chapter describes a series of tests that were preformed to validate the system.
Every subsystem was tested by itself after it was implemented and the interfaces
between subsystems were also tested individually. The only test that failed was the
testing of the whole system. and that was due to a change in the supported protocols
of the GSM provider. as is discussed in the last section of this chapter.

51.1. GSM equipment test

One of the first system components that were tested was the mobile phone’s
ability to connect to a normal modem instead of an ISP’ line. Initially the mobile
phone connected to the PC’s serial port was used to test this capability. A terminal
program (HyperTerminal and TerraTerm Pro were interchangeably used) was used to
connect to the mobile phone using 19200 port speed, no parity, 1 stop bit and 8 data
bits. The ATDT command was then used to dial the phone number of the analog
modem (most of the times the modem was connected to an analog port of an ISDN
terminal adapter. One test was done on a purely analog phone line but no differences
in the modem’s behavior were noted). The mobile phone was tested with a variety of
modems to ensure compatibility. A Crypto 56K Internal PCI modem. a Diamond
SupraExpress Serial modem, and a US robotics Sportster serial modem were used and
no differences (except minor variance in handshaking time, considered unimportant)
were noted.

The results of this test varied across development time. All tests were successful
in early development stages, and connection was consistent. In later tests, after most
of the rest of the system was implemented. the same test failed. The ability to perform
this type of connection depends on the GSM provider’s hardware, as the GSM modem
transmits data digitally. A connection with an analog modem is only possible due to
the GSM provider utilizing extra hardware that does the analog modulation. This
service was apparently discontinued. although repeated attempts to confirm this with
the GSM provider’s technical support on this subject were unsuccessful.

In the early stages of development, 9600 bps was the maximum data bandwidth
the GSM network could attain. Since then. the GSM provider claims that 14400 bps
are attainable. Failure in connecting with an analog modem however has prevented

confirmation of such claims. However. no assumption was made during the design of

48

the system as to the baud rate of the serial connection, and higher baud rates can be
used without change to the system. Indeed. all null modem cable tests were done at

19200 (the baud rate the DLR-3 serial cable connects) without any adjustment.

5.1.2. Embedded system testing

The next component that had to be tested was the embedded system and its
serial connection, both directly to the PC but. more importantly, to the mobile phone.
First the serial link between the microcontroller and the mobile phone was tested by
having the microcontroller issue an ATDT dialing command, just to verify the
microcontroller’s ability to send AT commands. The next test was dialing the modem
and sending a repeating byte pattern (ASCII A through Z was used). The output of the
modem was captured (using a terminal program) and checked for transmission errors.
No errors were detected in a transmission of no less than 3 minutes (roughly 190 kb of
data). This was expected as the modems use an error correction protocol (MNP5)
across the serial link (although this does not protect against errors occurring between

the microcontroller and the mobile phone’s serial interface).

5.1.3. Gateway software testing

Testing the gateway software consisted of testing the arrival of data to it and
testing its ability to store the data to the database. In early stages of development the
DataSpy feature was used to display the received data in real time form the embedded
system connected to the PC’s serial port via a null modem serial cable (the null
modem serial cable emulates a pair of connected modems). This test was particularly
important while implementing, and later testing, the accelerometer interface. This test
also verified the proper function of the accelerometers. The quick Insert function was
used to introduce dummy data to the database to test database access. Finally the
embedded system. connected through a null modem cable. was used to initiate a data
acquisition session while storing the data to the database. A non-timed session of
10000 samples to a table corresponding to the embedded system’s ID was used so
verify system stability. No checksum errors were reported in three separate repetitions

of the 10000 sample test.

49

5.1.4. Web interface testing

The web interface was originally tested with dummy data manually entered in
the database, and later with actual data from the accelerometers. The main concern for
the web interface was its proper function across different platforms and browsers. In
theory any frame-supporting browser will work. A wide range of browsers were
tested, and apart from minor visual differences (mainly in the way form controls look
and in spacing) the interface works similarly in all of them. The following browsers
were tested: Microsoft internet explorer 6.0, Microsoft internet explorer of windows
CE for pocket PC. Opera 6.00, Netscape 6.20, mozilla 1.0 and 1.1 and KDE"s
konqueror browser were used. The display was optimized for 1024x768 pixel
resolution, but the dimensions of the generated image can change easily to make

viewing in other resolutions easier.

9:1.9. Complete test

Because when the complete system was ready. connection with an analog
modem was unattainable, the system could not be tested in its entirety. The remaining
and final step that had to be taken to achieve the desired specifications was
substitution of the null modem serial cable with the mobile phone / analog modem
pair. However such connection was not possible. All other tests however have
validated the rest of the subsystems and based on their results. no problems are

expected to occur should data connections become available.

6. Future work

The system is far from perfect and there are a number of things that could be
done to improve it. These improvements mainly consist of making use of newer
technologies that have become available. Not all are applicable or useful to every
application, and not every one would result to a low cost solution (especially the ones
requiring changes in the embedded system). However there are applications that can

benefit greatly from such improvements.

6.1-1- Embedded TCP/IP

One of the drawbacks of the system is its inability to connect with any Internet
Service Provider and access the internet directly. This would solve problems with the
GSM provider and give more versatility to the system, as it would eliminate the need
Lo set up a server connected to a phone line, and allow the server to reside anyware in
the network. Implementation of this architecture will require running a SLIP or PPP
protocol over the serial line, and over that the TCP/IP protocol. Running these
protocols is costly however. especially in memory, and any such endeavor will lead to
an embedded system with external memory, at the very least, and maybe a more

powerful microcontroller.

6.1.2. Embedded Web Server

One step further than the embedded TCP/IP improvement is an embedded web
server system. This system would dial an ISP and connect to the internet. and then run
a web server. With this architecture no server is required. Every connecting client
would connect directly to the embedded system and get requests. This type of
embedded system would have to be of considerable power, and possibly run some

operating system to enable high-level software development.

6.1.3. VoiceXML interface

VoiceXML technology is the equivalent of HTML in voice recognition
applications. It is a trivial task to change the server side scripts so that they generate a
VoiceXML output to be parsed by a voice browser. Information can be accessible
through the telephone, or in an automotive environment where visual interfaces are

unusable. Parking availability and traffic information systems can benefit greatly by

(9,}
—_—

an interface of this type. A conventional Web interface can function simultaneously

with the voice interface.

6.1.4. WML interface

Along the lines of creating a VoiceXML interface is the creation of a WAP
interface. Modifying the server side scripts to generate WAP content is easier than
generating VoiceXML, given the similarities between HTML and WML. Such a
modification would enable data queries from WAP enabled mobile phones. As with
the previous modification, WML generating scripts can run simultaneously with

normal HTML generating scripts offering access to the same data.

6.1.5. GPRS support

GPRS technology permits high bandwidth access to the internet from mobile
phones. Also GPRS access is “always on-line”, and is priced by the amount of traffic
cach user generates rather than on-line time. This makes a GPRS enabled system an
economically attractive solution for applications where small amounts of data are

often required.

Every day new technologies become available and new ways to transfer data and
interact with computers appear. The use of a database and the standardized interfaces
make future updates with newer technologies a fairly easy process.

7. Appendix I: Bibliography and other sources
7.1. Bibliography

'Data and Fax Communication', by Robert L. Hummel. pub. Ziff-Davis
ISBN: 1562760777

‘Ewoaywyn ota cuvemuata Bacswov Agdopévov’, C. J. Date
ISBN: 9603321095 - 9603321109

Digital Design by M. Morris Mano
ISBN: 0130621218

Visual Basic Programmer's Guide to Serial Communications
by Richard Grier, Zane Thomas (Editor), James Shields (Editor). Phounsavan
ASIN: 1890422258

7.2. On-line sources

Comp.arch.embedded. newsgroup
Alt.mobilephones.nokia newsgroup
www.aspl01.com

W
(N9

www.w3schools.com

The Microsoft Development network (msdn.microsoft.com) and visual studio MSDN
cd-rom.

www.avrfreaks.com

www.atmel.com

forum.nokia.com (Nokia Developer Forum)

8. Appendix II: References

[Ref.1] Superlogics web site, WebDAQ:
http://www.superlogics.com/specpage.asp?Items=8400)

[Ref 2] PicoWeb web page http://www.picoweb.net/

[Ref 3] M@xks web page. M@xks Application Microserver http://www.esw-
stolberg.com/webserver/eng/product/roboteng/roboteng.html)

[Ref 4] Accord Web site http://www.accord-products.com

[Ref 5] (http://dragonix.openhardware.net/)

[Ref 6]

9. Appendix lll: Implementation Details.

This section provides information on various points in the implementation of the
system that are critical for setting up the system or changing its settings. While these
details are not important in understanding how the system works. they are important

to actually operate the system

9.1 Packet size
In the assembly code of the microcontroller’s firmware. the packet size can be

changed by changing the value of the “packetsize™ constant. On the gateway
application a field marked “Packet size™ is present that can be edited once the “Expert
settings™ check box is checked. Note however that packet size changes without
change to the packet parsing and packet generating routines in either end of the
protocol (microcontroller and gateway application) will cause the system to stop
functioning. While the system does not assume constant packet size. changing packet

sizes is not implemented.

9.2 Gateway application settings file

An xml file is used to store settings for the gateway application, and can be edited to
change them. What follows is a description of these settings.
The information necessary for connection with the database are loaded at

startup from the bdsettings.xml file found in the system'’s drive root directory. This

file contains the dbsettings tag that includes the following tags.

W
(U8

. Provider: The database connectivity provider that is used to
facilitate connection with the database. The value “sqloledb™ was used to
communicate with SQL Server

. connection_string: This string consists of three pieces of
information. The “server” value is used to point to the IP address of the
machine that runs the SQL server. being either the IP address itself or the
corresponding DNS name. “VERGINA™ was the name used being the network
name of the developing machine. The “Database™ value points to the database
that contains the tables the data is to be stored in. “Mobile™ was the active
database in our case. Trusted connection specifies that a login is necessary to
access the database (not necessary if the windows login/password is used for
authentication). “No™ was the value used in this case.

. The “login™ tag specifies the database login. “sa™ was used.

. The “password” tag specifies the password corresponding to
the login used. The accound used had a null password, and this was used as
the value of this tag.

. The “COMprot_Number™ contains the number of the COM
port that is to be used.

. The COMport_settings is the settings string for the serial
connection. The value *“19200.n.8,1” that was used signifies 19200 bps

connection speed, no parity, 8 data bits and 1 stop bit.

2.3 Web server Settings

Settings for the web server scripts are mainly about connectivity to the database. They
are stored in an include file that can be edited to configure the scripts.
The settings.inc file holds the connection settings for the database. It consists

of four vbscript variable assignments, enclosed in an ASP tag. The names and
function if these variables are as follow.

Provider: The database connectivity provider that is used to facilitate
connection with the database. The value “sqloledb™ was used to communicate with
SQL Server

connstr: This string is the connection string and in a typical network
implementation it should match that of the gateway software (Indeed in most cases

the strings should be identical. but not always. especially when a computer employs

multiple network adapters). It consists of three pieces of information. The “server™
value is used to point to the IP address of the machine that runs the SQL server. being
either the IP address itself or the corresponding DNS name. “VERGINA™ was the
name used being the network name of the developing machine. The “Database” value
points to the database that contains the tables the data is to be stored in. “Mobile™ was
the active database in our case. Trusted_connection specifies that a login is necessary
to access the database (not necessary if the windows login/password is used for
authentication). “No™ was the value used in this case.

The “dblogin™ variable specifies the database login. ““sa” was used.

The “dbpwd™ variable specifies the password corresponding to the login used.

The account used had a null password. and this was used as the value of this tag.

33

10. Appendix lll: Protocol Simulation Data

This is the Data used to generate the protocol simulation graphs. The first
column is the packet size. the second shows how many mistransmitted packets were
intercepted by a checksum mismatch. The third indicates the number of packets that
were altered by noise during transmission but were not detected. The forth indicates
the bandwidth usage for payload data. The bit error rate that was used in the

simulation was 5-10~ and the simulation length was 10000000 packets.

(9]

Simulation Data

packet size |checksum errors |data errors bandwidth use |packet size |checksum errors |data errors |bandwidth use
2 1517 0 0,5 63 31043 6 0,969230769
3 1956 0 0,6 64 31203 4 0,96969697
4 2385 0 0,666666667 65 31503 5 0,970149254
5 2998 0 0,714285714 66 32300 10 0,970588235
6 3336 0 0,75 67 32716 8 0,971014493
7 3822 1 0,777777778 68 33199 7 0.971428571
8 4324 1 0,8 69 33362 12 0,971830986
9 4807 1 0,818181818 70 34387 15 0,972222222
10 5466 0 0,833333333 71 34501 13 0,97260274
11 5798 0 0,846153846 12 34758 12 0,972972973
12 6373 0 0,857142857 73 35934 10 0,973333333
13 6888 0 0,866666667 74 35778 9 0,973684211
14 7373 0 0,875 75 36071 12 0,974025974
15 7888 2 0,882352941 76 37084 16 0,974358974
16 8453 0 0,888888889 77 37439 12 0,974683544
17 8617 0 0,894736842 78 37734 11 0,975
18 9143 0 0.9 79 38380 12 0,975308642
19 9843 1 0,904761905 80 38860 17 0,975609756
20 10225 3 0,909090909 81 38896 18 0,975903614
21 10661 0 0,913043478 82 39991 18 0,976190476
22 10996 3 0,916666667 83 40053 12 0,976470588
23 11624 2 0,92 84 40423 10 0,976744186
24 11987 0 0,923076923 85 41594 15 0;977011494
25 12679 1 0,925925926 86 41490 15 0,977272727
26 13317 0 0,928571429 87 41982 14 0,97752809
27 13549 0 0,931034483 88 42845 17 0,977777778
28 14004 3 0,933333333 89 42831 19 0,978021978
29 14590 4 0,935483871 90 43349 14 0,97826087
30 15076 0 0,9375 91 44044 19 0,978494624
31 15227 5 0,939393939 92 44072 19 0,978723404
32 15992 4 0,941176471 93 44956 374 0,978947368
33 16559 4 0,942857143 94 45137 15 0,979166667
34 17201 3 0,944444444 95 45526 16 0,979381443
35 17319 2 0,945945946 96 46479 16 0,979591837
36 17845 1 0,947368421 97 46525 26 0,97979798
37 18464 4 0,948717949 98 47355 15 0,98
38 18659 3 0,95 99 47634 16 0,98019802
39 19336 5 0,951219512 100 48151 16 0,980392157
40 20082 7 0,952380952 101 48566 15 0,980582524
41 20120 3 0,953488372 102 48963 20 0,980769231
42 20800 5 0,954545455 103 49424 21 0,980952381
43 21190 S 0,955555556 104 49823 22 0,981132075
44 21574 4 0,956521739 105 50700 19 0,981308411
45 22429 4 0,957446809 106 50607 24 0,981481481
46 22633 6 0,958333333 107 51663 19 0,981651376
47 23233 6 0,959183673 108 51798 18 0,981818182
48 23638 9 0,96 109 52146 18 0,981981982
49 23882 3 0,960784314 110 52682 21 0,982142857
50 24844 9 0,961538462 111 53105 20 0,982300885
51 25194 9 0,962264151 112 53747 28 0,98245614
52 25455 4 0,962962963 113 54002 34 0,982608696
53 25834 4 0,963636364 114 54699 22 0,982758621
54 26528 7 0,964285714 115 54772 15 0,982905983
55 27318 4 0,964912281 116 55801 21 0,983050847
56 27402 10 0,965517241 117 55757 24 0,983193277
57 27%E3 8 0,966101695 118 56759 27 0,983333333
58 28351 4 0,966666667 119 56836 25 0,983471074
59 29241 8 0,967213115 120 57744 21 0,983606557
60 29204 6 0,967741935 121 57532 20 0,983739837
61 29728 9 0,968253968 122 58475 27 0,983870968
62 30262 12 0,96875 123 58655 26 0,984

packet size |checksum errors |data errors [bandwidth use packet size [checksum errors |data errors [bandwidth use
124 59473 24 0,984126984 186 87437 54 0,989361702
125 59471 30 0,984251969 187 87329 71 0,989417989
126 60206 25 0,984375 188 88374 69 0,989473684
127 60655 37 0,984496124 189 88559 3 0,989528796
128 61044 32 0,984615385 190 89094 67 0,989583333
129 61646 36 0,984732824 191 89663 71 0,989637306
130 61712 29 0,984848485 192 89598 74 0,989690722
11341 62518 36 0,984962406 193 90262 66 0,98974359
132 62866 26 0,985074627 194 90970 70 0,989795918
133 63419 28 0,985185185 195 81215 78 0,989847716
134 63633 35 0,985294118 196 91832 74 0,98989899
135 64386 39 0,98540146 197 91956 69 0,989949749
136 64779 34 0,985507246 198 92403 59 0,99
137 65083 42 0,985611511 199 93134 76 0,990049751
138 65899 49 0,985714286 200 93734 80 0,99009901
139 66033 29 0,985815603 201 93807 61 0,990147783
140 66574 27 0,985915493 202 94360 2 0,990196078
141 66710 32 0,986013986 203 94632 77 0,990243902
142 67677 42 0,986111111 204 95012 68 0,990291262
143 67733 44 0,986206897 205 95617 64 0,990338164
144 68155 46 0,98630137 206 -96197 71 0,990384615
. 145 68910 38 0,986394558 207 96548 83 0,990430622
146 69219 44 0,986486486 208 97079 84 0,99047619
147 69536 37 0,986577181 209 97283 79 0,990521327
148 70453 46 0,986666667 210 98000 97 0,990566038
149 70384 48 0,986754967 211 98328 80 0,990610329
150 71089 38 0,986842105 212 98588 75 0,990654206
151 71598 37 0,986928105 213 98941 77 0,990697674
152 71706 53 0,987012987 214 99599 80 0,990740741
153 72549 52 0,987096774 215 100343 82 0,99078341
154 72934 37 0,987179487 216 100827 84 0,990825688
155 73110 40 0,987261146 217 100879 76 0,99086758
156 73903 42 0,987341772 218 101534 77 0,990909091
157 74573 30 0,987421384 219 101426 91 0,990950226
158 74396 40 0,9875 220 102342 64 0,990990991
159 15172 48 0,98757764 221 102712 75 0,99103139
160 75597 54 0,987654321 222 103154 95 0,991071429
161 75802 51 0,987730061 223 103614 81 0,991111111
162 76694 44 0,987804878 224 103966 94 0,991150442
163 77018 41 0,987878788 225 104372 79 0,991189427
164 76966 51 0,987951807 226 104816 81 0,99122807
165 78019 51 0,988023952 227 105438 101 0,991266376
166 78373 32 0,988095238 228 105790 103 0,991304348
167 78590 42 0,98816568 229 106189 72 0,991341991
168 79343 45 0,988235294 230 106704 78 0,99137931
169 79698 45 0,988304094 231 106975 91 0,991416309
170 79998 40 0,988372093 232 107463 88 0,991452991
171 80173 63 0,988439306 233 107932 84 0,991489362
172 81204 51 0,988505747 234 108318 96 0,991525424
173 81457 54 0,988571429 235 108955 102 0,991561181
174 81549 50 0,988636364 236 109359 89 0,991596639
175 82282 54 0,988700565 237 109685 107 0,991631799
176 82874 56 0,988764045 238 110020 98 0,991666667
177 83291 56 0,988826816 239 110499 102 0,991701245
178 83451 54 0,988888889 240 110998 95 0,991735537
179 84097 55 0,988950276 241 111499 109 0,991769547
180 84915 51 0,989010989 242 111805 90 0,991803279
181 85068 64 0,989071038 243 112220 93 0,991836735
182 85472 66 0,989130435 244 112666 101 0,991869919
183 85869 58 0,989189189 245 113055 116 0,991902834
184 86318 44 0,989247312 246 113455 105 0,991935484
185 86737 64 0,989304813 247 113841 114 0,991967871

248 114578 119 0,992
249 114769 108 0,992031873
packet size |checksum errors |data errors |bandwidth use
250 115434 120 0,992063492
251 1157143 108 0,992094862
252 116233 105 0,992125984
253 116743 116 0,992156863
254 116802 117 0,9921875
255 117452 114 0,992217899

