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Abstract—In this work a macroscopic lane-changing model
is incorporated to a single-class second-order gas-kinetic (GKT)
traffic flow model to simulate multi-lane traffic flow dynamics.
The lane-changing terms, simulating lane-changes due to vehicle
interactions as well as spontaneous ones, are introduced as source
and sink terms into the traffic flow equations. The numerical
integration is based on an accurate and robust high-resolution
finite volume relaxation scheme, where the nonlinear system of
the macroscopic partial differential equations are first recast
to a diagonilizable semi-linear system. A fifth order in space
WENO scheme is used for spatial discretization, while time
integration is based on a high-order implicit-explicit Runge-
Kutta method. Numerical simulations, considering a two-lane
highway flow where a bottleneck is formed due to a lane closure,
demonstrate the ability of the proposed methodology to efficiently
simulate the corresponding traffic dynamics.

I. INTRODUCTION

Macroscopic traffic flow modelling has been widely used,
not only as a practical tool for efficiently simulating and
optimizing traffic flow for specific infrastructures, but also as a
research tool to analyze interesting phenomena, resulting from
non-linear vehicle interactions, such as stop-and-go waves
[10]. The existence of multiple lanes (with possible lane-drops,
due to accidents or public works), on- and off-ramps, and
intersections, necessitates the development of proper multi-
lane models, which may effectively simulate vehicle lane-
changes and overtaking maneuvers.

Relatively few works are available on the macroscopic
modelling of the lane changing process, despite the recent
advances in macroscopic modelling of traffic flow dynamics.
In [8] a two dimensional with respect to space, first-order
model is derived, along with a one-dimensional second-order
dynamic one. In [3] a continuum model for two-lane traffic
flow was proposed, based on the theory of kinematic waves, as
an extension of the LWR first-order macroscopic model. Later
on, in [6], [7] a microscopic multi-lane model was initially
developed; then, based on this model, an Enskog-like kinetic
model was derived, while a second-order macroscopic model
was finally deduced from the kinetic one. In [10] a macro-
scopic second-order model of mixed multi-lane freeway traffic
was presented, derived from a gas-kinetic approach. Three
different types of lane-changing maneuvers were considered;
those due to interactions between vehicles, corresponding to
overtaking maneuvers or lane changes to avoid interactions

with slower vehicles in front, spontaneous maneuvers and,
finally, mandatory lane changes due to lane merging, on-
or off-ramps, accidents etc. Further, in [9] a second-order
macroscopic model for interrupted traffic streams, based on
a gas-kinetic approach was also developed, being a refinement
of the work in [10]. The derived model is able to explicitly
take into account the lane-changing process between a ramp
lane and the adjacent lane of the main stream, as well as other
similar cases, such as lane-drops.

This paper follows and extends the works of some of the
preceding authors and our previous work in [1]. In [1] an
integrated methodology was introduced for the numerical sim-
ulation of various second-order non-equilibrium macroscopic
models, where the relaxation approximation, from [4], was
used to transform the nonlinear macroscopic traffic flow dif-
ferential equations into a diagonilizable semi-linear problem.
The resulting relaxation system was discretized using low-
and high-order spatial reconstructions, leading to a numerical
approach characterized by simplicity, accuracy and robustness.

Here, the aforementioned computational framework is ex-
tended to deal with (single-class) multi-lane traffic, including
the simulation of lane-drops due to different situations. The
GKT model is used as a basis in this work, as it was found
able to simulate the hysteretic phase transitions to congested
states, connected with the existence of on-ramps, or other
types of bottlenecks [11], [2], [12]. Additional lane-changing
terms are introduced as source/sink terms into the traffic flow
equations in order to take into account lane-changes due to
vehicle interactions as well as spontaneous ones. Lane changes
due to vehicle interactions are simulated using properly de-
fined lane-changing probabilities and interaction frequencies,
adapted from the works in [6] [7]. The spontaneous lane-
changes are taken as proportional to vehicle densities, with
the proportionality factors being the transition rates, defined
in [10]. Special treatment is followed for the region upstream
a lane drop, where the flow of the closed lane should be
distributed to the adjacent lane(s). We note that both the
GKT model as well as multi-lane dynamics has been deduced
from kinetic formulations but their proposed combination and
numerical approximation in a novel one.

II. THE GKT MODEL AND ITS MULTI-LANE EXTENSION

In what follows, we will denote as functions in space, x,
and time, t, ρ(x, t) the vehicle or traffic density (number of



vehicles per unit length), u(x, t) the average speed and q =
ρu the traffic flow rate (number of vehicles per unit time).
We present first the single-class single-lane GKT model in
conservation law form with source terms, given as

∂tρ+ ∂x(ρu) = rrmp, (1)

∂t (ρu) + ∂x
(
ρu2 + θρ

)
= ρ

(
V ?e − u
τ

)
+ hrmp. (2)

Following from[12], the source term rrmp in the continuity
equation (1) denotes the effective source density from on-
ramps (or off-ramps) with merging (diverging) length lrmp and
inflow qrmp > 0 from (or outflow qrmp < 0 to) the ramp, and
is given as

rrmp(x, t) =


qrmp(t)

lrmp
if x is within merging zone,

0 elsewhere.
(3)

Further, in the momentum equation (2), the term hrmp de-
scribes changes of the macroscopic local speed by assum-
ing that on-ramp vehicles merge to the main road at speed
urmp < u and, conversely, that drivers reduce their speed to
urmp before leaving the main road. Hence, this term is given
as

hrmp(x, t) =
q · rrmp

ρ
+

(urmp − u)|qrmp|
lrmp

. (4)

We note that, usually, one assumes urmp ≈ u [2].

In equation (2), θ = A(ρ)u2 is a pressure-like term, with
A(ρ) being a density-dependent variance factor given by the
Fermi function as:

A(ρ) = A0 + δA

[
1 + tanh

(
ρ− ρcr
δρ

)]
(5)

in which ρcr is the critical density, which reflects the boundary
between free flow and congested traffic, with A0 and A0+2δA
the variance pre-factors between the two states; while δρ
denotes the width of the transition region. Typical range of
values for the constants A0, δA and δρ, along with the typical
range of the other parameters for this model can be found,
for example, in [11], [2], [9], [12], [1]. These parameters
are meaningful, measurable, and have the correct order of
magnitude for highway traffic while they can be adapted to
city traffic as well [12].

The model also includes a traffic relaxation term aiming
to keep flow in equilibrium, with V ?e ≡ V ?e (ρ, u, ρa, ua) being
the, non-local and dynamic, equilibrium speed (maximum out-
of danger velocity meant to mimic drivers’ behavior) with τ
being a relaxation time. V ?e depends not only on the local
density ρ and mean speed u, but also on the non-local density
ρa and mean speed ua, and is defined as

V ?e = umax

[
1− θ + θa

2A(ρmax)

(
ρaT

1− ρa/ρmax

)2

B(δu)

]
. (6)

According to (6), V ?e is given by the maximum velocity
umax, reduced by a term that reflects necessary deceleration
maneuvers. Both ρa and ua are computed at an anticipated
location xa = x + γ(1/ρmax + T · u) with T being the
desired time-gap and γ a scale factor. Finally, B is a so-called

Boltzmann (interaction) factor, which, with δu =
u− ua√
θ + θa

, is

defined as

B(δu) = 2

[
δu
e−δu

2/2

√
2π

+ (1 + δu2)

∫ δu

−∞

e−y
2/2

√
2π

dy

]
.

This term contains the standard normal distribution and the
Gaussian error function and describes the dependence of the
braking interaction on the dimensionless velocity difference δu
between the actual location x and the anticipation location xa.

The crucial difference between the GKT model and other
macroscopic traffic flow models is its non-local character.
The non-local relaxation term in (6) has smoothing properties
similar to those of a viscosity term, but its effect is forwardly
directed and, therefore, more realistic. In contrast to other
macroscopic models, the steady-state speed-density relation,
V e(ρ), is not explicitly given, but results from the steady-state
on homogeneous roads.

Model equations (1)-(2) can be written in vector form,
supplied with initial conditions, as

∂tu + ∂xf(u) = s(u),

u(x, 0) = u0(x),
(7)

where the functions u, f(u) and s(u) ∈ R2 with u = [ρ, q]T,
f(u) = [ρu, ρu2 + θρ]T and s(u) = [rrmp, (ρV ?e − ρu)/τ +
hrmp]

T. Systems in the form of (7) can be rewritten in quasi-
linear form

∂tu + J(u)∂xu = s(u), (8)

where J(u) =
∂f

∂u
is the Jacobian matrix, given as

J(u) =

 0 1
∂P

∂ρ
− u2 ∂P

∂q
+ 2u

 , with P = ρθ(ρ, u).

(9)
The Jacobian matrix has two distinct and real (positive) eigen-
values, for all physically reasonable parameter sets, given as

λ1,2 = u+
1

2

∂P

∂q
±

√(
1

2

∂P

∂q

)2

+
q

r

∂P

∂q
+
∂P

∂ρ
, (10)

which denote that the model equations constitute a strictly
hyperbolic set of partial differential equations.

For the multi-lane extension of the GKT model we consider
a road with l = 1, 2, . . . , N lanes. Then system (7) can be
given for each lane l as

∂tul + ∂xf(ul) = s(ul) + wl(u1, . . . ,uN ),

ul(x, 0) = ul0(x),
(11)

where now the extra source term wl(u1, . . . ,uN ) ∈ R2

accounts for the sources and sinks due to lane-changing,
resulting in a weakly coupled system of 2N−equations. In
[6] a macroscopic approach to multi-lane dynamics has been
deduced, following from a kinetic formulation, by taking into
account the behavior of driver-vehicle units regarding overtak-
ing, deceleration/acceleration, and lane-changing maneuvers.



Following [6] the (generic) form of each component of the
lane-changing terms are adapted here as

w1,2
l =

(
1

TLl−1
u1,2l−1 −

1

TRl
u1,2l

)
(1− δl1) +

+

(
1

TRl+1

u1,2l+1 −
1

TLl
u1,2l

)
(1− δlN ) (12)

where the terms 1/TLl and 1/TRl are the lane changing rates
from lane l to the left l+ 1 and right l− 1 lane, respectively,
and δij the Kronecker delta. These rates are given as

1

TLl
= PL(ρl+1)ν(ρl) + SLl (13)

1

TRl
= PR(ρl−1) (1− PL(ρl+1)) ν(ρl) + SRl , (14)

with PR,L(ρ) are lane-changing probabilities due to vehi-
cle interactions and ν(ρ) are interaction frequencies due to
breaking and acceleration. For simplicity we assume here that
PR(ρ) = PL(ρ) and in Fig. 1 we show a plot of these
normalized probabilities along with a plot of the interaction
frequency. Similar probability and frequency distributions have
been also proposed in [5], [7].
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Fig. 1. Lane changing probability and frequency for normalized densities

Further in (13) and (14) we take into account spontaneous
lane changes, which are not caused by interactions with other
vehicles, through the terms SR,Ll . This is particularly important
for inhomogeneous traffic situations since both interactive and
spontaneous lane changes are necessary for the description of
empirically observable density-dependence of the total lane
changing rates and lane occupancies. Following from [10], [9]

we assume that these terms depend on the density, ρ, and are
given as

SR,Ll = kR,Ll

(
1− ρl±1

ρmax,l±1

)β
(15)

where kR,Ll , β are spontaneous lane-changing factors.

III. THE RELAXATION APPROACH AND ITS NUMERICAL
DISCRETIZATION

In this section we briefly present the class of relaxation
models of [4] applied to various second-order macroscopic
traffic flow models in [1]. Dropping, for simplicity, the lane
index and by the introduction of the artificial, relaxation,
variables v, the corresponding to (11) relaxation system (with
r(u) = s(u) + w(u)) reads as

∂tu + ∂xv = r(u),

∂tv + C2∂xu =
f(u)− v

ε
,

(16)

with initial data
u(x, 0) = u0(x),

v(x, 0) = v0(x) = f(u0(x)),

where the small parameter ε (0 < ε � 1), is the relaxation
rate and C2 = diag{c21, c22} is a positive diagonal. Applying
the Chapman-Enskog expansion in system (16), the following
approximation for u can be obtained,

∂tu + ∂xf(u) = r(u) + ε∂x

[(
∂f(u)

∂u

)
r(u)

]
+

+ε∂x

[(
C2 −

(
∂f(u)

∂u

)2
)
∂xu

]
+O(ε2). (17)

Equation (17) controls the first-order behavior of system (16),
with the third term on the right-hand side being an O(ε) dom-

inant dissipation term in the model with
(
C2 −

(
∂f(u)
∂u

)2)
being the diffusion-like coefficient matrix. Model (16) is well-
posed only if this matrix is positive semi-definite for all u.
This requirement on the diffusion coefficient matrix is the well-
known sub-characteristic condition [4], i.e.

C2 −
(
∂f(u)

∂u

)2

≥ 0, ∀u, (18)

which ensures the dissipative nature of (17); and it is equivalent
to

λ2 ≤ c2, where λ = max
1≤i≤2

|λi| and c = min
1≤i≤2

|ci|.
(19)

Condition (18) can always be satisfied by choosing sufficiently
large values for the diagonal elements in C2, for u varying in a
bounded domain. As such, the solution of the relaxation model
(16) converges strongly to the unique entropy solution of the
original conservation laws.

System (16) can be easily diagonalized leading to the
following decoupled system of equations:

∂t(v + Cu) + C∂x(v + Cu) =
f(u)− v

ε
+ Cr(u); (20)

∂t(v −Cu)−C∂x(v −Cu) =
f(u)− v

ε
−Cr(u). (21)



The left-hand side of system (20)-(21) is linear with constant
wave speeds, split into positive and negative parts. Thus, its
solution has the property that it propagates at finite speeds
along linear characteristic curves dx/dt = ±C. From (20)-
(21) and by setting g1,2 = v±Cu, the follow relations can be
obtained that recover the original variables of the relaxation
system,

u =
1

2
C−1 (g1 − g2) and v =

1

2
(g1 + g2) . (22)

The structure of the linear characteristic field of the relaxation
system constitutes a clear advantage compared to the original
conservation laws for their numerical integration.

For the spatial discerization of (16) the finite volume
approach is adopted. Let xi = i∆x, xi± 1

2
= (i ± 1

2 )∆x,
where ∆x is a uniform spatial discretization step. The discrete
cell average of u in the cell Ii = [xi− 1

2
, xi+ 1

2
] at time t is

defined as ui(t) and the approximate value of u at (xi+ 1
2
, t)

by ui+ 1
2
(t). The semi-discrete relaxation system is given as

∂

∂t
ui +

1

∆x

(
vi+ 1

2
− vi− 1

2

)
= r(u)i,

∂

∂t
vi +

C2

∆x

(
ui+ 1

2
− ui− 1

2

)
= −1

ε
(vi − f(u)i).

(23)

where r(u)i and f(u)i are discrete averages of the source term
and flux function, respectively. To completely define the spatial
discretization, we need to compute the flux values ui± 1

2
and

vi± 1
2

. As system (16) has linear characteristics and its char-
acteristic speeds, +ck and −ck, are constant, the construction
of an upwind scheme is much simpler than developing such
a scheme for the original nonlinear conservation laws. For
example, the first-order upwind scheme, [4], [1], applied to
g1 and g2 gives g1

i+1
2

= g1i and g2
i+1

2

= g2i+1
.

To increase the spatial order of accuracy, a WENO-type
interpolant approach is applied, where the approximate solu-
tion is reconstructed using higher-order polynomials. By direct
application of this reconstruction to the k−th components of
the characteristic variables, g1,2 = v ±Cu, a non-oscillatory
higher-order spatial discretization is obtained. The superiority
of applying higher-order schemes, compared to low-order ones,
in traffic flow simulations has been recently demonstrated
in [1]. By applying a fifth-order WENO reconstruction the
discrete values of each component of g1

i+1
2

and g2
i+1

2

, at a cell

boundary i+ 1
2 , are defined as left and right extrapolated values

g−1
i+1

2

and g+
2
i+1

2

i.e., g1
i+1

2

= g−1
i+1

2

and g2
i+1

2

= g+
2
i+1

2

. Af-
ter the reconstructions have been performed to each component
of the characteristic variables, the numerical fluxes for ui+ 1

2

and vi+ 1
2

are computed from (22). In a similar manner we
compute the face values at cell boundary i− 1

2 .

The semi-discrete relaxation system (23) constitutes a sys-
tem of autonomous ordinary differential equations with a stiff
relaxation term. A time marching approach based on implicit-
explicit (IMEX) Runge-Kutta (RK) splitting was considered
as to avoid the time step restrictions imposed by an explicit
solver due to stiffness. As such, the explicit RK scheme treats
the non-stiff stage of the splitting while a diagonally implicit
RK scheme treats the stiff one. We note that even though an
implicit scheme is used, either linear or nonlinear algebraic

equations have to be solved due to the special structure of the
relaxation system. The choice of the time marching step ∆tn

is based only on a usual CFL condition,

CFL = max

(
(max
i,k

cnk )
∆tn

∆x
,

∆tn

∆x

)
≤ 1

2
,

where the values of the relaxation constants cnk are re-computed
at each time step based on the Jacobian eigenvalues as to
satisfy the sub-characteristic condition (18). For a detailed
presentation of the spatial and temporal discretizations, as
well as the treatment of boundary conditions and source term
computations, we refer to [1].

IV. SIMULATIONS AND RESULTS

We present single-class simulations of the interesting case
of a two-lane (N = 2) bottleneck, corresponding to a lane
closure or an accident. We assume that the right lane closes at a
certain point xe. To model the behavior close to the bottleneck,
we specify a mandatory lane changing for the right to left,
since all drivers there must merge into the adjacent lane. To
achieve a smooth transition we assume a merging length lm =
500 m in front of the lane closure which acts in the same way
as lrmp in equations (3)-(4). To guarantee that all vehicles
have changed lane at xe we assume that this mandatory lane-
changing, as given in equations (1)-(4), grows inversely to the
distance L = xe − x and we achieve this by multiplying the
effective densities and flows with a smooth step-like function
m(x), similar to (5), with m(xe − lm) ≈ 0 and m(xe) ≈ 1.
Further, and within the merging length, the V ?e values for the
right lane are substituted with the left lane velocities as to
realistically describe the drivers’ behavior of adapting their
velocity to that of the lane to which they merge.

For the spontaneous lane-changing terms (15) we adopt
the European-rule of primarily using the right lane at low
densities [10]. Calibration results have shown that spontaneous
lane-changing influences mainly low-density regimes. Setting
β = 8 in (15), a smooth correction pre-factor GEu, with
0 < GEu(ρ) < 1, is used to account for the European traffic
rule by modifying SL1 as SL1 GEu and SR2 as SR2 /GEu. The
GEu function used and the final forms of SL1 and SR2 are
shown in Fig. 2.

The model parameters used in the simulations are given in
Table I and follow close the ones given in [10], [9] and have
been calibrated to traffic data from the Dutch motorway A9.
In the numerical discretization ∆x = 20m, the CFL value was
set to 0.25 and the relaxation rate in (16) ε = 10−8.

TABLE I. PARAMETERS USED FOR THE TWO-LANE GKT TRAFFIC
MODEL

Model parameters Units Right lane Left lane
umax km/h 90 110

ρmax veh/km 150 150
ρcr veh/km 0.275ρmax 0.036ρmax

T s 1.7 1.2
γ 1.2 1.2
τ s 35 35
A0 0.007 0.0065
δA 0.015 0.018
δρ veh/km 0.055ρmax 0.05ρmax

kR,L
l 75 28
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Fig. 2. The pre-factor GEu (top) and the modified spontaneous lane changing
rates

We start with an empty 10 km two-lane highway with
a closure at xe = 5 km on the right lane and prescribe
the incoming values at the boundary x = 0. The prescribed
density is the same for both lanes and the prescribed flow
is assumed to be in equilibrium. The traffic dynamics are
essentially characterized by the approaching traffic volume.
The first simulation is for a low incoming density ρ0 = 12.5
veh/km and the density spatio-temporal evolution can be seen
in Fig. 3 for a total time of 20 min. Starting with an empty
highway one observes the free flow of the vehicles until the
stretch is completely filled. For this case the capacity of the
left lane is sufficient enough to accommodate the vehicle flow
from both lanes, resulting in a higher density (but free flow) in
the left lane downstream of the bottleneck, whereas the right
lane is empty behind the closure.

The second simulation is for ρ0 = 25 veh/km. The
vehicle density spatio-temporal evolution can be seen in Fig.
4. After free flow and when the stretch is completely filled, the
density rises at the bottleneck. A growing region of congested
traffic forms, since the capacity of the left lane is exceeded
by the traffic volume in both lanes. Later one observes the
formation of a traffic jam, which is finally moving backwards
on both lanes, while homogeneous free flow can be observed
downstream of the bottleneck in the left lane. As it was noted
also in [10], the observed step-like structure of the congested
region, of both lanes, is related to deceleration in two steps,
i.e. rough breaking and fine breaking, when approaching the
traffic jam from free flow. The density and flow per lane are
shown in Fig. 5. These results are, at least qualitatively, similar
to those observed in real traffic flow situations and agree to

Fig. 3. Spatio-temporal evolution for density in each lane ρ0 = 12.5 veh/km

similar simulations tests from [10], [2] and [7].

V. CONCLUSIONS

A novel way of extending a macroscopic second-order
traffic flow model for the simulation of multi-lane traffic dy-
namics has been presented. The second-order non-equilibrium
GKT traffic model was used as the basis model since, due to
its non-local character, it allows to describe the fluctuations
of speed dynamics around a so-called equilibrium speed-
density relationship. The GKT model as well as multi-lane
dynamics have been deduced from kinetic formulations. Both
interactive and spontaneous lane changes are explicitly taken
into account by the proposed model which aim to describe
the behavior of driver-vehicle units regarding overtaking,
deceleration/acceleration, and lane-changing maneuvers. An
important part of the simulation process is the stable and
accurate numerical solution of the resulting model by the
development of a high-resolution finite volume relaxation
scheme. Numerical simulations for a two-lane highway with
a lane closure have demonstrated the ability of the proposed
model to describe traffic dynamics at bottlenecks, producing
results similar to those observed in real traffic flow situations



Fig. 4. Spatio-temporal evolution for density in each lane for ρ0 = 25
veh/km

and to similar simulation results from the literature. Following
from this presentation, our ongoing work focuses on the multi-
class extension and calibration of the model as to realistically
describe the effects of heterogeneous traffic.
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