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Abstract

Supercomputers or High Performance Computers (HPC), traditionally play a significant role either

in the Computer Architecture scientific field, or in the Computer Science, due to their usage in

manner computing processes, scientific research and applications. Consequently, the study around

them, as well as, the Memory System performance and size study is necessary about their further

evolve, due to the traditional bottleneck between Memory and CPU speed (memory gap). Large

resources inefficiencies (mostly in Memory) as well as, significant power consumption regarding to

the current Cloud Data Center structure, have been observed. Their mainboard-oriented mono-

lithic structure fails to operate in an optimal way with the hardware, corresponding to the modern

application needs. Larger Data Center are being built, in response to that problem, a strategy

which leads to even more power consumption. The nowadays research about Disaggregated Ar-

chitecture Systems, study those problems. It aims to change the traditional mainboard-organized

Data Center structure by proposing a more flexible and software-controlled one, organized around

Pooled Disaggregated Resources.

The current diploma thesis is part of the DiMEM Simulator, a modular execution-driven Disaggre-

gated Memory Simulation tool study and implementation. That tool approximately tries to depict

the Disaggregated Memory System behaviour using HPC workload. The DiMEM Simulator couples

the Intel PIN framework with DRAMSim2 Memory Simulator, where that thesis also focuses. The

main study object are the DRAMs, the Memory Simulation methods, the Disaggregated Memory

Simulation implementation, as well as the parameters experimentation. The presented results show

the approximated Disaggregated Memory System behaviour.
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Περίληψη

Οι Υπερυπολογιστές ή Υπολογιστές Υψηλών Επιδόσεων (High Performance Computers) διαχρονικά,

κατέχουν σημαντικό ρόλο στο πεδίο της Αρχιτεκτονικής Υπολογιστών αλλά και γενικότερα στην

Επιστήμη Υπολογιστών καθώς χρησιμοποιούνται σε ιδιαίτερα απαιτητικές υπολογιστικά εργασίες και

βαρύνουσας σημασίας επιστημονική έρευνα και εφαρμογές. Συνεπώς η μελέτη τους, και πιο συγ-

κεκριμένα, η μελέτη των συστημάτων μνήμης τους όσον αφορά τις επιδόσεις και το μέγεθός τους

είναι αναγκαία για την περαιτέρω ανάπτυξη των συστημάτων αυτών καθώς παραδοσιακά το (memory

gap-wall) παίζει επιβραδυντικό ρόλο στις ήδη υψηλές επιδόσεις των επεξεργαστών. ΄Οσον αφορά την

υπάρχουσα δομή των μεγάλων Cloud Data Centers παρατηρείται σημαντική σπατάλη πόρων (κυρίως

μνήμης) και υψηλή κατανάλωση ενέργειας. Η μονολιθική τους δομή με επίκεντρο το mainboard δεν

αξιοποιεί βέλτιστα το hardware για τις ανάγκες των εφαρμογών και εμφανίζονται ανεπάρκειες. ΄Ετσι,

προκειμένου να επιστρατευτούν οι αναγκαίοι πόροι, χτίζονται πιο μεγάλα Data Centers, πρακτική

που οδηγεί μεταξύ άλλων και στην ακόμα υψηλότερη κατανάλωση ενέργειας. Στην κατεύθυνση αυτή,

βρίσκονται υπο έρευνα και μελέτη Συστήματα Απομακρυσμένης/Επιμερισμένης Αρχιτεκτονικής (Disag-

gregated Architecture Systems). Η Αρχιτεκτονική αυτή στοχεύει να αλλάξει τον παραδοσιακό τρόπο

οργάνωσης ενός Data Center, προτείνοντας την μετακόμιση από την ενοποίηση γυρω από τοmainboard

σε μια πιο ευέλικτη και μεταβαλόμενη από το software ενοποίηση γύρω από blocks, τις Επιμερισμένες

Δεξαμενές Πόρων (Pooled Disaggregated Resources).

Η διπλωματική αυτή είναι κομμάτι της μελέτης και ανάπτυξης ένα ενοποιημένου (modular) εργαλείου

προσομοίωσης μνήμης «οδηγούμενο» από την εκτέλεση ενός προγράμματος (execution driven) με

σκοπό να αποτυπωθεί προσεγγιστικά η συμπεριφορά του τυπικού HPC φόρτου εργασίας σε συνθήκες

Μνήμης Επιμερισμένης Αρχιτεκτονικής. Το εργαλείο συνενώνει το Intel Pin Framework με τον προ-

σομοιωτή Μνήμης DRAMSim2 όπου και επικεντρώνεται η διπλωματική. Αντικείμενο μελέτης είναι οι

μνήμες DRAM καθώς και οι μέθοδοι προσομοίωσής τους, η υλοποίηση της προσομοίωσης Μνήμης

Επιμερισμένης Αρχιτεκτονικής, και ο πειραματισμός με τις διάφορες παραμέτρους. Τα αποτελέσματα

που παρουσιάζονται αποτυπώνουν προσεγγιστικά τη γενικότερη συμπεριφορά ενός συστήματος Μνήμης

Επιμερισμένης Αρχιτεκτονικής.
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Chapter 1

Introduction

High-performance computing (HPC) or Supercomputers is the use of parallel processing for running

advanced application programs efficiently, reliably and quickly. Performance of those systems is

measured above a teraflop (1012) floating point operations per second. Some of them are near or

at the current highest performance. For instance, the Chinese supercomputer Sunway TaihuLight,

which is the first in the TOP500 list (June 2016) as the fastest supercomputer in the world, reaches

93 petaflops (1015) on the LINPACK benchmarks. Since HPC are commonly used by academic

institutes, researchers and engineers, their study constitutes a crucial and traditionally continuous

researching field of Computer Architecture.

Disaggregated Architecture Systems are under research by the H2020 EU project dRedBox[10], that

aims to break the system resources and scalability limitations, which lead to inefficiencies, sub-

optimal resource availability and unexploited spare resources in current datacenters. Furthermore,

it introduces a new Rack-Scale Architecture that will not require memory or accelerator to be

co-located with a processor in the same node. System resources are aimed to be connected via

multiple networks. High-speed and low-latency electrical network will be used for intra - tray data

access in memory bricks. High-speed low-latency optical network will be used for inter - tray data

access in memory bricks. The current thesis is trying to do an experimental evaluation of that

memory inter-connection.

Before a particular design ”committed to silicon”, we need a way to evaluate the performance of
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design alternatives quickly, accurately and costlessly. An initial assessment and exploration for the

whole set of design parameters is absolutely necessary, in order to be reliable for further research

and development. System Simulation is a good option for that purpose because it is cheap and

easy to develop compared with a real system implementation.

The goal of the current diploma thesis is the development of a Disaggregated Memory System

Simulator and its use for the evaluation of Disaggregated High Performance Parallel Systems. The

DIMEM Simulator has to operate by passing all the Main Memory CPU requests to a Disaggre-

gated Memory System model. Furthermore it must aggregates statistical results, such as CLK,

Bandwidth, in order, to make the user able to evaluate the Simulation.

In Memory Simulation a software system that models and simulates Memory is needed, together

with a suitable method to model the traffic of the System. The work of DIMEM Simulator is based

on the DRAMSim2, a Cycle Accurate Memory System Simulator (for modelling and simulation).

This way implementation of the traffic generation and passing methods to DRAMSim2 are the

missing pieces of the puzzle. Intel’s PIN dynamic binary instrumentation framework was chosen as

the development means of a dynamic program analysis tool for memory tracing and preparing the

simulation.

The tool which was created using Intel’s Pin (Pintool) combines two main goals: 1)Binary Exe-

cutable Memory Tracing, 2) Memory Simulation. These two goals were expanded in two discrete

but interrelated Diploma Thesis. The first one has been covered by Andreas Andronikakis [9], and

the second is the object of the current thesis. These two goals compose the whole Disaggregated

Memory System Simulator (DiMEM), which can be used for evaluation of any type of Disaggregated

Memory System.

The current Diploma Thesis focuses on the Pintool’s Simulation Preparation functionality, both

from theoretical and implementation point of view, so that the Pintool obtains more complete-

system and useful tool characteristics than a simple Memory Tracing Pintool. The implemented

features which will be described in detail in chapter 3 are:

1. Reordering, Approximate Timing and Sorting of the Multithreaded Trace
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2. Making use of the capabilities of DRAMSim2 Cycle Accurate Memory System Simulator,

3. Implementation of Disaggregate Memory Behaviour

4. Speeding-up the Simulation with “Skip Mode” and Statistical processing of the results.

In the implementation chapter code parts are presented to help readers understanding.

High-Performance Parallel Systems are the object of Disaggregated Memory System Evaluation

process which will be described in chapter 4. Segments of both Splash-3 and PARSEC Benchmark

Suites have been used for evaluation.

Figure 1.1: Whole System Abstract Figure



Chapter 2

Background And Related Work

2.1 Background

2.1.1 DRAM Technology Overview

The random-access memory technology (RAM) is used for the Main Memory implementation of

a Computer System. Main Memory is responsible for the majority of the needed information

required during a program execution. Despite the fact that it is commonly conceived as a box that

receives CPU requests and responses with data, Main Memory has a structure which is critical

for its performance. These structural characteristics are about to be described for the purpose of

understanding the evaluation approach.

The Basic Circuit

RAM that uses a single transistor-capacitor pair for each bit is called a dynamic random-access

memory or DRAM. The circuit is dynamic because the capacitors storing electrons are not perfect

devices, and their eventual leakage requires that, to retain information stored there, each capacitor

in the DRAM must be periodically refreshed (read and rewritten).[1]

4



2.1. Background 5

Figure 2.1: A typical PC organization and the DRAM subsystem as one part of a complex whole.

Memory Arrays

Each DRAM device/chip contains one or more memory arrays, rectangular grinds of storage cells

with each cell holding one bit of data. The arrays are organized into rows and columns. The

Memory Controller (MC) uses the rows and columns (row address and column address) to access a

specific storage cell into the DRAM chip. In the case of more than one memory array, a DRAM chip

works in several different ways: in unison, completely independently or somewhere in the middle.

If the memory arrays are designed to act in unison, they work as a unit, and the memory chip

transmits or receives a number of bits equal to the number of arrays (Device Density or Device

Width) each time the memory controller accesses the DRAM. For example, an x4 DRAM indicates

that the DRAM device has four memory arrays and that a column width is 4 bits (each column

read or write transmits 4 bits of data). In an x4 DRAM part, four arrays each read 1 data bit in

unison, and the part sends out 4 bits of data each time the MC makes a column read request.
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Figure 2.2: Basic organization of DRAM internals.

Banks and Devices

A set of memory arrays that operates independently from other sets is referred to as a Bank. Each

Bank is independent and can be activated, precharged, read out, etc. at the same time that other

Banks (on the same or on other DRAM devices) are being activated, precharged, etc. The use

of multiple independent Banks of memory has been a common practice in computer design since

DRAMs were invented. One or more Banks which work in unison are organized and compose a

DRAM device. As a result, interleaving multiple memory banks has been a popular method, used

to achieve high-bandwidth memory buses using low-bandwidth devices.

Despite the existent confusion, among the bibliography, about the clear definition of word ”Bank”,

it is currently used by DRAM device manufacturers to describe the number of independent DRAM

arrays within a DRAM device [6]. For example a 16 Banks x4 DRAM Device contains 16 inde-

pendent quadruple Arrays. Each quadruple Array acts independently from the 15 others, but the

4 internally contained Arrays act in parallel.
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Ranks

As a system can have multiple DIMMs, each of which can be perceived as an independent Bank,

and the DRAM devices can implement internally multiple independent Banks, the word ”Rank”

was introduced to distinguish DIMM-level independent operation. Each Rank is a set of DRAM

devices that operates in unison, and internally each of these DRAM Devices implements one or

more independent Banks. JEDEC standard defines that a Rank must have 64 bits output bus so

the number of DRAM Devices in a Rank is equal to 64/Device Width. Each DIMM can contain

exactly one or two Ranks.

DIMM/Channel

The Rank or Ranks compose a DIMM, or in other words a Channel. A computer’s Memory System

can have a single Channel, or multiple Channels. As an overview, a Channel is the collection

of all DRAM Devices that share a common physical link (command, address, data buses) to the

processor, and , thus, although a set of DIMMs in the Channel receives the same command, only

one Rank replies. A Multi-channel system can be further divided into (1) multiple dependent

(lockstep) Channels: single Memory Controller with ganged Channels to provide a wider interface;

and (2) multiple independent Channels (each with its own Controller).

The number of Banks is also used as a way to characterize a whole DIMM, without considering

as the total physical number of Banks that a whole DIMM may contains. The physical number of

contained Banks = Banks per Device x Devices per Rank x Num of Ranks, but the characterization

of N (=Banks per Device) Banks DIMM is used. For example a 4 GB 16 Banks x4 DRAM,

physically, may not consists of 16 Banks only, but it is used to be refereed as a 16 Banks DIMM

from the aspect of its structure characterization.

To summarize, an example table is presented with all DRAM structural characteristics expanded:
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Example A Example B

Total Size 1 GB 2 GB

Is Multi Channel NO YES

Num of DIMMS 1 2

DIMM Size 1 GB 1 GB

Ranks per DIMM 1 1

Num of Ranks 1 2

Devices per Rank 16 8

Device Size 64 MB 128 MB

Banks per Device 16 16

Bank Size 4 MB 8 MB

Arrays per Bank x4 x8

Array Size 1 MB 1 MB

Rows (in bits) 128 128

Columns (in bits) 64 64

Table 2.1: Example A: 1GB Memory System composed by one 1GB-x4-16Bank DIMM, Example
B: 2GB Memory System composed by two 1GB-x8-16Bank DIMMs

2.1.2 General Simulation Techniques: Execution or Trace Driven

Let’s make an overview of the memory system simulation methods and approaches so that we

determine how and why a choice has been made. The most important diversifying factor, is the

generation way of the memory trace because, in order to simulate the memory system behaviour

and performance, a memory trace is necessary.

Trace Driven Simulation Approach

A tracing collection process is necessary so that the information about “interesting instructions” of

a binary executable can be written out in file, the Trace File, as each instruction is executed. The

tracing process can operate both over a real-existing Instruction Set Architecture (ISA), and over
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an emulated and maybe not-existing one.

The only information needing to be recorded is about the data address and the type of memory

operation. Trace Files have quite a large size in general ( 0,5 GB per 1 Billion Memory Accesses) for

real benchmark programs. After the trace production, Trace Files are passed as input, read by the

Memory System Simulator and analyzed for performance study. It should be emphasized that the

Simulator can run on any machine, even though on one with different ISA, because, the Memory

System Simulator itself does not need to execute the ISA but only to analyze the execution history

for a particular architecture being studied.

Since a Trace-based Memory System Simulator is ISA-independent, it can be used to evaluate

also not existing Architectures. In addition, this technique is very useful when the execution of a

program used for trace collection, is extremely slow or wasteful, due to the fact that the Trace File

is generated once and can be reused, thus, saving both resources and time.

The pros and cons of the trace driven simulation method are presented below:

Advantages

1. Can run on any machine as long as trace format is known.

2. Simplicity and low modeling complexity. Only memory address and access type recorded.

3. Produced once, used many times.

4. Evaluation of not existing Architectures.

Disadvantages

1. A Trace File is only a capture. May not be representative of the dynamic behavior of

multithreaded applications. Special custom handling and synchronization needed, such as

TaskSim-NANO++ [7].

2. Simplicity requires low-level of model detail. The detail lose may refer to the time accuracy,

which is important for the result reliability.
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3. Two step process.

4. Large disks are needed as a result of large space need to store traces.

5. High-speed disks are needed to avoid overhead from read/write traces to disk.

Execution Driven Simulation Approach

The Simulation follows the actual execution of a program. This can be done either with the direct

execution of the program by the Memory Simulator, or with the Memory Simulator pairing with a

front-end driver, which executes the program and generates the Trace. In both ways, as the Binary

is executed, the trace is generated on-the-fly, so Memory Simulation is performed exactly after the

execution of an Instruction. The ISA can sometimes be emulated. A timing model is also necessary

for the time accuracy of the simulation. The timing model usage adds a significant overhead. The

pros and cons of execution driven simulation method are presented below:

Advantages

1. Parallel behaviour can be captured.

2. No need to store traces.

3. No overhead from read/write to disk.

4. One step process.

Disadvantages

1. Execution-driven is ISA-depended, consequently increased development time for different ar-

chitectures.

2. Is slower when a complex architecture is studied. (speed of the simulator is a very important

issue and a complex one).

3. Time accuracy of the timing model adds a significant overhead to simulation time.
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The Execution Driven approach can be implemented either one-by-one, or in-fragments as send-to-

simulator rate. In one-by-one Execution Driven, a single instruction is approached separately, so

each instruction is traced, it is also simulated. The Execution Driven in fragments approaches the

simulation trace neither as a monolithic whole (Trace driven), nor per single instruction separately,

but somewhere in the middle. The Trace is separated, during execution, into arbitrary sized

fragments by storing them into a buffer. When a buffer is full-filled, it is sent for Simulation. The

size of that buffer is arbitrary and must be specified experimentally.

2.1.3 DRAMSim2 Memory Simulator Overview

General

DRAMSim2 is a very popular open-source cycle-accurate JEDEC DDRx Simulator which models

memory controller, memory channels, ranks, banks and all timing constraints in a general way

[2]. It is developed in object-oriented C++. It can be used either in standalone mode to simulate

memory system traces, or as a dynamic shared library which is convenient for connecting it to CPU

simulators (such as MARSSx86, gem5) or other custom front-ends, in order to develop a full-system

simulator.

In the current thesis DRAMSim2 is approached as the “Simulation Pair” of the Instrumentation

Trace Generator Pintool from the Andronikakis thesis [9]. DRAMSim2 has the goal “to be an

accurate and publicly available DDR2/3 memory system model” and can be used both for trace-

driven simulations and so as Library Interface for more custom-system approaches. DRAMSim2

has came to fill the previously semi-blank field of memory system simulators with a quite simple

programming interface. Despite the fact that DRAMSim2 is focused on DDR2/3, the differences

with the DDR4 technology are only on latency and power so it can be used also for latency and

power aimed and less rigorous DDR4 simulation.

The basic component is the cycle accurate memory controller with the mission of translation and

issuing DRAM commands to a memory-bus-attached set of DRAM devices. The DRAMSim2

functionality is enclosed by an easy-to-use interface, so it is easy, also, to connect DRAMSim2
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with any kind of ”front-end driver”, for example with a cycle accurate CPU simulator such as

MARSSx86 or just a trace reader etc.

Figure 2.3: Overview of DRAMSim2

A few words about internal functionality

The MemorySystem class is the DRAMSim2 core-module and models one channel of a Multi-

Channel Memory System. So the whole system is modelled by the MultiChannelMemorySystem

class.

The constructor functions and methods of those two classes are presented so that their functionality

can be explained easily :

1 MemorySystem : : MemorySystem (unsigned id , unsigned int megsOfMemory ,

CSVWriter &csvOut , ostream &dramsim log )

Listing 2.1: MemorySystem Constructor

1 void update ( ) ;

2 bool addTransaction ( Transact ion ∗ t rans ) ;
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3 bool addTransaction ( bool i sWrite , u i n t 6 4 t addr ) ;

4 void p r i n t S t a t s ( bool f i n a l S t a t s ) ;

5 bool Wil lAcceptTransact ion ( ) ;

6 void Reg i s t e rCa l l back s ( Ca l lback t ∗readDone , Ca l lback t ∗writeDone ,

void (∗ reportPower (double bgpower , double burstpower , double

re f reshpower , double actprepower ) ) ;

Listing 2.2: MemorySystem Methods

1 MultiChannelMemorySystem : : MultiChannelMemorySystem ( const s t r i n g &

dev i ce In iF i l ename , const s t r i n g &systemIniFi lename , const s t r i n g &

pwd , const s t r i n g &traceFi lename , unsigned megsOfMemory , s t r i n g ∗

visFi l ename , const In iReader : : OverrideMap ∗paramOverrides )

Listing 2.3: MultiChannelMemorySystem Constructor

1 bool addTransaction ( Transact ion ∗ t rans ) ;

2 bool addTransaction ( const Transact ion &trans ) ;

3 bool addTransaction ( bool i sWrite , u i n t 6 4 t addr ) ;

4 bool wi l lAcceptTransact ion ( ) ;

5 bool wi l lAcceptTransact ion ( u i n t 6 4 t addr ) ;

6 void update ( ) ;

7 void p r i n t S t a t s ( bool f i n a l S t a t s=fa l se ) ;

8 ostream &getLogFi l e ( ) ;

9 void Reg i s t e rCa l l back s (

10 TransactionCompleteCB ∗readDone ,

11 TransactionCompleteCB ∗writeDone ,

12 void (∗ reportPower ) (double bgpower , double burstpower , double

re f reshpower , double actprepower ) ) ;

13 int ge t In iBoo l ( const std : : s t r i n g &f i e l d , bool ∗ va l ) ;

14 int ge t In iU in t ( const std : : s t r i n g &f i e l d , unsigned int ∗ va l ) ;

15 int ge t In iU int64 ( const std : : s t r i n g &f i e l d , u i n t 6 4 t ∗ va l ) ;
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16 int g e t I n i F l o a t ( const std : : s t r i n g &f i e l d , f loat ∗ va l ) ;

17 void In i tOutputF i l e s ( s t r i n g t r a c e f i l e n a m e ) ;

18 void setCPUClockSpeed ( u i n t 6 4 t cpuClkFreqHz ) ;

Listing 2.4: MultiChannelMemorySystem Methods

The main arguments for a MultiChannelMemorySystem object are, in essence, the Device Ini

file (the MultiChannelMemorySystem constructor first argument, deviceIniFilename_), the sys-

tem ini file (the second argument, systemIniFilename_) and the DRAM size (fifth argument,

megsOfMemory). With these 3 arguments we can describe our simulated Memory System structure

and characteristics.

Device Ini File defines the DIMM structural characteristics for example : DEVICE_WIDTH, NUM_BANKS,

NUM_ROWS, NUM_COLS and many non-structural characteristics such as : REFRESH_PERIOD, tCK, ,,

Vdd etc.

System Ini File defines the Memory Controller characteristics, for example : JEDEC_DATA_BUS_BITS,

TRANS_QUEUE_DEPTH, CMD_QUEUE_DEPTH, SCHEDULING_POLICY, QUEUING_STRUCTURE etc. It also sets

the debugging flags of DRAMSim2.

MultiChannelMemorySystem is the DRAM system composed of one or more channels (MemorySys-

tem). Each channel contains multiple ranks and each rank has several banks. Furthermore, each

channel has a pendingTransactionQueue. In addition, there is one corresponding memory controller

for each channel.

The memory controller has four queues:

1. the Transaction Queue (TransQ) which receives and stores incoming transactions,

2. the Command Queue (CmdQ) which stores the translated commands of each transaction.

3. If a read command is dispatched to the memory, then the transaction will be stored into the

Pending Read Transaction Queue (PendRTQ) until the data is returned.

4. Finally the Return Transaction Queue (RtnQ) is for storing the returned transactions.
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Initialization

The first step is the creation of a new MultiChannelMemorySystem object by calling the con-

structor (listed in figure 2.3) with the appropriate arguments and Ini files described above. The

getMemorySystemInstance() function can be called alternatively. That function is implemented in

MultiChannelMemorySystem class and gets exactly the same arguments as the original Constructor

function. Its task is the MultiChannelMemorySystem Constructor call. After that, the Callback

Functions must be registered so as to be executed when a read or write request is completed. A

simple example of initialization follows.

1 void main ( ) {

2 . . .

3 MultiChannelMemorySystem ∗mem = getMemorySystemInstance ( arg1 , . . ) ;

4 TransactionCompleteCB ∗ read cb = new Callback< /∗ args ∗/ >(&obj , &

some object : : read complete ) ;

5 TransactionCompleteCB ∗wr i t e cb = new Callback< /∗ args ∗/ >(&obj , &

some object : : wr i t e comple te ) ;

6

7 mem−>Reg i s t e rCa l l back s ( read cb , wr i t e cb ) ;

8 . . .

9 /∗

10 Simulat ion code can f o l l o w s

11 ∗/

12 }

Listing 2.5: Initialization Example

Simulation

A function must be called for every MemorySystem clock tick and also a function to queue the

memory requests. After the completion of a memory request, DRAMSim2 calls the provided
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callback function to inform the front-end for the completed request. The process of Simulation can

be described like this: CPU requests are buffered into the TransQ in execution order, then they

are translated into DRAM commands and placed into the CmdQ which can have per rank or per

rank per bank structure. The memory controller takes into consideration the state of every memory

bank, the read/write dependencies and the timing constraints to decide the next issue request.

Due to that decision, the memory controler is, also, free to issue out-of-order. The out-of-order

issuing helps to increase bank usage and bandwidth and also latency lowering. After a completed

transaction, the bandwidth and latency are kept. An average calculation is performed over a given

epoch defined in Device Ini File.

Refresh Modelling

Another simulation issue is the DRAM refresh. Modelling refresh is necessary because the refresh

induces differentiation in the memory requests latency. If a request is issued during a DRAM

refresh, it will have to wait much longer than other requests. That latency elongation can impose

significant performance penalties for processors in wait for memory accesses and as a result, they

significantly affect the whole system performance.

Power Model

Another DRAMSim2 feature is the power calculation based on the power model described in [8].

The DRAMSim2 power calculation adapts to any DDR model. The power consumption is calculated

per Bank. The calculation is based in the Bank’s activity where each action, or state, corresponds

to a specific amount of power. That correspondence is a result of many power equations which

model the DDR DRAMS and also described in [8]. This model and calculations follow in a strictly

way theoretical equations and can be considered as accurate, despite any real world deviations.
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DRAMSim2 Inputs

Memory Trace

The Trace either as a Trace File, or as an execution driven process is the main input source of

DRAMSim2. In the standalone mode the Trace is a .trc file, the Trace File, with 3 columns:

Memory Address, Transaction Type (P_MEM_WR, P_MEM_RD, P_FETCH) and Cycle. In case of a front-

end driver which produces Trace File timed in nano seconds, it must be preprocessed with a python

parse script (comes with DRAMSim2 package) in order to be mapped to cycles.

For example:

0x018ADB20 P MEM WR 0 ps

0x018ADB28 P MEM WR 10.000 ns

0x01A5DB58 P FETCH 50.000 ns

0x01A5DB50 P MEM RD 60.000 ns

0x01A5DB48 P FETCH 70.000 ns

Listing 2.6: before parsing

0x018ADB20 P MEM WR 0

0x018ADB28 P MEM WR 1

0x01A5DB58 P FETCH 5

0x01A5DB50 P MEM RD 6

0x01A5DB48 P FETCH 7

Listing 2.7: after parsing

When used as a library interface, a simple and easy-to-use API is provided, in order to pass the

transactions in a custom way . The function must be used to pass a Transaction to DRAMSim2 is

the addTransaction, in listing 2.4.

System Ini File

The System Ini (system.ini) file contains the Memory System and Memory Controller parameters.

They are presented below:
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NUM_CHANS ADDRESS_MAPPING_SCHEME

NUM_RANKS SCHEDULING_POLICY

JEDEC_DATA_BUS_BITS QUEUING_STRUCTURE

TRANS_QUEUE_DEPTH VIS_FILE_OUTPUT

CMD_QUEUE_DEPTH USE_LOW_POWER

EPOCH_LENGTH VERIFICATION_OUTPUT

ROW_BUFFER_POLICY TOTAL_ROW_ACCESSES

Some debugging flags also exist.

Device Ini File

The Device Ini file (DRAMmodel.ini) contains all the DRAM model structural parameters such as

banks, rows, columns, clock, other timing and all power parameters, as well. The most important

of them are presented below:

DRAM Device Structural parameters

NUM_BANKS number of banks

NUM_ROWS number of array rows

NUM_COLS number of array columns

DEVICE_WIDTH number of arrays per device (eg x16)

REFRESH_PERIOD (in ns)

The four Latency parameters CL-tRCD-tRP -tRAS (in cycles)

CL CAS latency: the number of cycles between sending a column address

to the memory and the beginning of the data in response

tRCD Row Address to Column Address Delay: The minimum number

of clock cycles required between opening a row of memory and accessing

columns within it.

tRP Row Precharge Time: The minimum number of clock cycles required

between issuing the precharge command and opening the next row.

tRAS Row Active Time: The minimum number of clock cycles required

between a row active command and issuing the precharge command.

The parameters also include all other timing, latency and power constraints. It must be noted that

other structural characteristics such as Ranks, Number of Devices per Rank etc are not defined
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directly, but are calculated internally. The Device ini file defines the 4 strategic structural charac-

teristics that describe directly only the DRAM Device. The Total Storage is defined as an argument

in the MultiChannelMemorySystem Object Constructor (listing 2.3) and can be considered as the

second part of the equation that calculates the remaining structural characteristics.

DRAMSim2 computes internally PER_DEVICE_STORAGE, NUM_DEVICES, and PER_RANK_STORAGE while

all the other parameters are set by the Device Ini file.

1. PER_DEVICE_STORAGE = NUM_ROWS * NUM_COLS * DEVICE_WIDTH * NUM_BANKS (in bits)

2. A rank ”must” have a 64 bit output bus according to the JEDEC standard, so each rank

must have: NUM_DEVICES_PER_RANK = 64 / DEVICE_WIDTH.

If multiple channels are ganged together, the bus width is NUM_CHANS * 64/DEVICE_WIDTH

3. PER_RANK_STORAGE = PER_DEVICE_STORAGE * NUM_DEVICES_PER_RANK

= NUM_ROWS * NUM_COLS * NUM_BANKS * 64

4. MultiChannelMemorySystem object gives Total Storage in Mega Bytes so

NUM_RANKS = (TOTAL_STORAGE/8) / PER_RANK_STORAGE

The only way this could run into problems is if TOTAL_STORAGE < PER_RANK_STORAGE. In that case

DRAMSim2 sets NUM_RANKS = 1 and continues.

Due to that fact, it is clear that both total storage and DRAM structural parameters must be

selected carefully, so that the user can be able to control the Simulation.

DRAMSim2 Output

Also the simulator outputs in detail, per epoch, the bandwidth, latency and power statistics to a

log file. The whole output format depends on which debug flags have been set on or off.
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2.1.4 Disaggregated Systems

The Rack-scale Disaggregated Systems is new Data Center approach, that aspires to change the

traditional design, organization and building of data centers, proposing the deployment of pooled,

disaggregated resources rather than ”monolithic and tightly integrated components”.

The Architecture of a server is traditionally organized in trays with a specific number of processors,

memory size etc. Furthermore, due to their co-existence in the same node, they consist a monolithic

and tightly coupled whole. The cloud or hyperscale computing servers, typically accommodate a

large set of interconnected racks, each utilizing multiple interconnected server trays, as depicted in

the figure above.

In general, a server tray consists of -typically multiple- CPUs attached via one or multiple Memory

Controllers to tray-local Random Access Memory (RAM) for rapid instruction read and fast, ran-

dom read/write byte-level access to data. The CPUs can also access persistent local storage and

I/O devices (e.g. flash storage, accelerators) using a single or an hierarchy of I/O bridges.

At the same time, current Datacenter scale-out workloads mostly perform parallel tasks (e.g. in-

ternet search) that require access to vast amounts of data, but the traditional approach introduces

limitations in terms of available system resources and scalability, leading to inefficiencies, sub-

optimal resource availability and unexploited spare resources in current datacenters.

To surmount these inefficiencies, the disaggregated architecture aims not to require memory or

accelerator to be co-located with the processor in the same node. This will enhance

1. elasticity,

2. improvement of virtual machine migration, and

3. reduction of the Total Cost of Ownership (TCO)

in comparison to the current servers. In this new architecture the main building block is not the

server, but the brick or dBRICK. The term brick refers to that new main building block unit in

Disaggregated Architecture, which may be designed in different kinds, like compute, memory and
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peripheral bricks. To build a server based on Disaggregated architecture requires, in addition, many

new breakthrough developments in network, memory interface, hyper visor and orchestration layer.

For example, the network should provide ultra-low latency and high bandwidth to, efficiently,

interconnect disaggregated components in the datacenter. Regarding memory, interfaces should be

transparent to application. Remote-Disaggregated memory should require no changes in current

applications and because of that it should be accessed as if it is local memory in today’s systems.

A Disaggregated Data Center composed of computational, memory and general purpose block units.

The memory units, are the key for disaggregation. They are aimed to provide a large and flexible

pool of memory resources which can be partitioned and (re)distributed among all processing nodes

(and corresponding VMs) in the system. The memory units can support multiple links. These links

can be used to provide more aggregate bandwidth, or can be partitioned by the orchestrator and

assigned to different computational units, depending on the resource allocation policy used. This

functionality can be used in two ways. First, the nodes can share the memory space of the memory

unit, implementing essentially a shared memory block (albeit shared among a limited number of

nodes). Second, the orchestrator can also partition the memory of the memory unit, creating

private “partitions” for each client. This functionality allows for finer-grained memory allocation.

Due to the fact that DDR4 memory modules were selected for dRedBox research and development,

the same memory is used in the current thesis.

2.2 Related Work

Memory Simulator is a topic with large body of prior work. Many approaches have been made

either from the DRAM simulation aspect (Ramulator[19], DrSIM[4]), or from Memory Controller

point-of-view to play a vital role on exploration of future Memory Architectures ([3]).

Ramulator as the current latest cycle-accurate DRAM simulator bears lots of improvements. Its

initial idea relies on the observation that a DRAM can be abstracted as a state-machine hierarchy,

with the DRAM standard dictating each state-machine behavior. It was build from scratch and
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supports all the latest DRAM standards (DDR3-4,LPDDR3/4, GDDR5, WIO1/2, HBM, as well as

some academic proposals (SALP, AL-DRAM, TL-DRAM, RowClone, and SARP). Finally does not

sacrifice simulation speed to gain extensibility while is 2.5x faster than the next fastest simulator

The Memory Controller focused design, generally, is an alternative approach for Memory Simula-

tion. The [3] work uses that principle to build a high-performance event-based model offering 7x

simulation speed improvement without accuracy and detail level loss. That work presents a high-

level memory controller model, specifically designed for full-system exploration of future system

architectures. Due to the fact that is controller-focused, a DRAM memory model it is needed.

Gem5 simulator is a popular Full System Simulator containing many features, such as: Multiple

CPU models, GPU model, Event-driven memory system, Multiple ISA support (Alpha, ARM,

SPARC, x86) and Power and energy modeling. Regarding to the Memory Simulation using

Gem5, two different memory system models are included: Classic(ast and easily configurable) and

Ruby(flexible infrastructure, accurate simulation). Gem5 can play both the role of the Memory

Simulator [3], or the Memory Simulator’s front-end driver [2].

Due to the reason that the Intel PIN framework had already been chosen as the Simulator’s front-

end driver, Gem5 was not an option. Ramulator had not been released so far, so, the choice

of DRAMSim2 as the memory simulation back-end was one-way. Except from that, the PIN-

DRAMSim2 coupling was a contribution, since that match hadn’t already been approached.

Regarding to the Last Level Cache Misses profiling, there are many already implemented tools

doing so, like Cachegrind[16], OProfile[17] and perf[18]. However it was chosen the implement-

from-the-scratch option using Intel Pin framework, to explore also other aspects as well.



Chapter 3

DIMEM Simulator: Overall Approach

3.1 Binary Instrumentation

In order to simulate and evaluate a memory system, except for a memory simulator, the existence of

a trace generator or a front-end driver to cover the simulation traffic/input needs is also necessary.

The trace generator is a software system that, as first step, produces, once, an experimental memory

trace written in a Trace File, based on a real-world workload. After that, the Trace File can be

used, more than once, as input in a memory simulator. The front-end driver can be a software

system, also, that, for example, during a benchmark execution, takes the control of the execution

and also ”drives” the memory simulation. The term ”drives” refers to the behavior of the front-end

to correspond the memory simulation with real-time CPU-to-memory-requests following a memory

trace produced on the fly (or -in other words- during execution).

For the DIMEM Simulator the pairing of a front-end driver with the DRAMSim2 memory simulator

it was chosen. The development of a Pintool was chosen as the front-end driver. A Pintool is a

program created by using Intel’s PIN framework and describes how PIN will Instrument a specific

binary executable.

The developed Pintool has the task to Instrument a binary executable to collect the memory trace

of Main-Memory-only effective addresses. The memory trace is intended to drive the DRAMSim2

23
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memory simulator during execution time. In a semi-parallel way, the Pintool instruments the

executable until it reaches an arbitrary user-defined instructions amount, the Window, and then the

collected trace is prepared to be sent for simulation to DRAMSim2. After simulation is completed,

the Pintool continues that procedure iteratively until the binary execution ends.

A few more details: the Pintool gets the execution control of a binary executable program, so that

it can be able to apply the Instrumentation and the Analysis Functions. The Instrumentation

function is responsible to inject the instrumentation code in the binary. The Analysis function is

the injected code, thus, it contains the, actually, instrumentation code.

The Pintool instruments using per Instruction Granularity and calls an Analysis Function when

an instruction is or includes a Read or Write Operation. That is, in summary, the functionality of

Instrumentation Function.

The Analysis Functions, are consequently, called when a Read or Write Operation is found. Then

it is filtered through a Cache Model to decide if the Operation actually affects Main Memory.

Finally, every instruction that affects Main Memory, is recorded to the Record Buffer (RB). The

RB is processed in the next steps, before Simulation, for Simulation preparatory reasons. The RB

reordering, approximate timing and sorting, according to the (possible) multithreading nature of

the Instrumented binary executable, is the main object of the current thesis implementation.

The current thesis work has also to do with the second task of the Pintool, Simulation preparatory

process and Memory System Simulation exploiting DRAMSim2. The implementation description

uses code quotes to be more descriptive.

3.2 Memory Simulation

The implementation of simulation process of DIMEM Simulator is the main goal of the current

thesis. We have already talked about the pairing of the front-end driver (Pintool) with a Memory

System Simulator (DRAMSim2). In the previous section we gave a brief description of the Pintool.

The object of the current section is to explain more technical details about the Memory System

Simulation, the way that the capabilities of DRAMSim2 Cycle Accurate Memory System Simulator
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were exploited, the implemented techniques for reordering, approximate timing and sorting, the

techniques for maintenance the multithreaded nature of the trace and the simulation speed-up

technique.

At the current thesis the memory system simulator was based on the “execution driven” method

because of the advantages 1, 2 and 3 of the execution driven. Also, the “in pieces” simulation

rate was chosen. So the rate was named Window and the whole technique “Reordering Window

Technique”.

3.2.1 The Reordering Window Technique

As Reordering Window Technique referred the way, or the rate, the collected Memory Trace is

passed to the Memory Simulator. The Reordering Window Technique relies on the simulation

choices have been made. This technique can be described as an hybrid of the trace and execution

driven also. As first priority was the fact that Instrumentation and Simulation chosen to pair as

a whole and not as a “two discrete steps” process. That choice was made because of the aim

of DRAMSim2 paired with a Pintool study. So, the choice of the simple Trace File generation

was rejected consequently, the trace cannot be passed to memory simulator as a Trace File, and a

Buffer must be used. As mentioned above, that buffer is called RB. The RB keeps instances of Main

Memory Access Record structure (MMAR), a structure to store a single instrumented instruction

that affects Main Memory. An MMAR stored to RB can be passed to simulator at any time. Our

choice was to be passed in fragments after a constant size of instrumented instructions.

These constant size fragments named Windows. The Window Size is given as an input to the

Pintool and is totally experimental.

After that, because of execution-driven gained ground, it had to be a choice about the timing

model. Another priority was the speed of the system in a good trade-off with the accuracy. In

order to decide about the timing model with those two factors (speed and accuracy) it was proceed

the choice of implementation of a simple and quite approximately timing technique, based on

the additive cache latency and penalties. With that choice it is avoided the large timing model

overhead. Despite that, an approximate timing exists -for sure better than no timing-. The timing



3.2. Memory Simulation 26

was also necessary due to another priority: the goal of multithreaded applications simulation. If

the technique is not able to perform an, at least, approximate timing, it is also unable to simulate

the multithreaded behavior and affection to the memory system. To summarize, the technique

is an hybrid because in the side of trace generation it is not produce a Trace File, but a more

dynamically generated Trace in a Buffer through a one step process, so is much closer to execution-

driven. In the other side, of memory simulation, the produced trace is not using a detailed cycle

accurate timing but an approximately one, so, in spite of the trace generation, from the timing

perspective is much closer to trace-driven. With these characteristics, at the end of the day, we

know that the reordering window technique is not the “best of all”, because does not provide a true

intreleaving of requests, but is the one that suits to our goals and needs: fast one-step simulation

with multithreaded (at least approximate) timing capability.

3.2.2 Preparation of Simulation

As noted in a previous section, Window Size (INS_LIMIT) is a critical parameter of Simulation

and represents the number of instructions must pinned before a Memory Simulation. It is noted

that, the Pintool instruments until the count of pinned instructions equals to Window Size. It

is important how the already pinned instructions are counted so that, the Pintool know when

to pause instrumentation, and call Simulation functions. To count the number of Instrumented

instructions it is used an ICOUNT class object of the INSTLIB namespace. The ICOUNT class is

already implemented in Intel Pin’s icount.H header file. The ICOUNT class is an independent

instrumentation tool for counting Instrumented instructions and can be used with other Pintools.

Because ICOUNT calculates the count for one thread, it was implemented a new method of ICOUNT

class, named MultithreadCount(), which returns the total number of instructions already executed

by every running thread. The code follows below:

1 UINT64 MultithreadCount ( ) const

2 {

3 UINT64 multithreadCount = 0 ;

4 ASSERTX(Mode ( ) == ModeBoth) ;

5 for (UINT64 i =0; i<ISIMPOINT MAX THREADS; i++)
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6 {

7 multithreadCount = multithreadCount + s t a t s [ i ] . count ;

8 }

9 return multithreadCount ;

10 }

Listing 3.1: MultithreadCount Method

The implementation of that method was based on the already implemented method Count() which

calculated the count for the caller thread only. Also it should be noted that it was implemented

and another method, named SetMultithreadCount() for the purpose of initialization to 0 the Count.

In that case, as previously, the implementation was based on the already implemented method

SetCount() which was also designed for single thread applications. The code follows below:

1 VOID SetMultithreadCount (UINT64 count )

2 {

3 ASSERTX( mode != ModeInactive ) ;

4 for (UINT64 i =0; i<ISIMPOINT MAX THREADS; i++)

5 {

6 s t a t s [ i ] . count = count ;

7 s t a t s [ i ] . repDuplicateCount = 0 ;

8 }

9 }

Listing 3.2: SetMultithreadCount Method

As soon as the number of pinned instructions reaches the defined Window Size (INS_LIMIT), the

Simulation process begins.

1 //window s i z e i s a r b i t r a r y d e f i n e d

2 #define INS LIMIT 50000000

3 . .

4 . .
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5 LOCALFUN UINT32 PinAnalys i sFunct ion ( )

6 {

7 // g e t the i n s t r u c t i o n count so f a r

8 UINT32 c = icount . MultithreadCount ( ) ;

9 //some a n a l y s i s code

10 . . .

11 . . .

12 // i f window s i z e i s reached go to s i m u l a t i o n

13 i f ( c >= INS LIMIT )

14 {

15 in s count = in s count + c ;

16 GoToSim( threadid , c ) ;

17 i count . SetMultithreadCount (0 ) ;

18 ram count = 0 ;

19 }

20 }

Listing 3.3: Analysis Function begins Simulation

The function called by the Pin Analysis function to perform the Simulation is, at line 16, the

GoToSim() function. That function is responsible for two discrete jobs which are implemented in

the prepareSimulation() and the Disaggregate() functions. It was considered useful about these two

discrete jobs to implemented as two discrete functions also, for structure programming reasons. It

was estimated, likewise, that the task of calling the two functions had to be assigned in an also

new/discrete function. So the GoToSim() function has a unifying role of the two discrete jobs that

compose the Simulation process.

1 VOID GoToSim(UINT32 threadid , std : : s i z e t a r g i n s c o u n t )

2 {

3 // p r i n t some h e l p messages
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4 . .

5 prepareS imulat ion ( ) ;

6 Disaggregate ( ) ;

7 //some more h e l p i n g code

8 . . .

9 return ;

10 }

Listing 3.4: GoToSim code

The prepareSimulation() function

The role of that function is to perform the necessary transformation to the RB (Trace Buffer)

so that to be in the appropriate form for the simulation. The RB is a multi -dimensional Vector,

one dimension per CPU core, and contains MMARs (Records of Instructions that affect Main

Memory). The prepareSimulation() function performs a loop to access the RB by CPU core order.

For each MMAR, calculates the Issue-to-Memory Cycle and then stores the Record to a new (one

dimensional) Buffer named Trace Buffer (TB). The Issue-to-Memory Cycle of an Instruction (that

term refers to the cycle that this instruction is going reach the Memory System and create a request)

is the Issue-to-Memory Cycle of the previous Instruction from the same CPU core plus the current

Instruction Penalty (latency).

r e c [ i s ] . c y c l e = rec [ i s −1] . c y c l e + rec [ i s ] . pena l ty ;

After all MMARs are stored to TB, their order is not chronologically correct, so the next step is

sorting by the calculated Cycle. The Sorting result is the actual Memory Trace, stored in TB, with

approximate chronological order and timing, so it is ready to be Simulated. The chronological order

is the sorting by Cycle result, so due to the fact that the Cycle was calculated approximately, the

whole chronological order is also approximately. As a resume of the prepareSimulation() function

we can say that receives the Instrumentation output, stored in RB, and transforms it to an approx-

imately chronological ordered and timed Memory Trace, stored in TB, ready to be Simulated.
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1 LOCALFUN VOID prepareS imulat ion ( )

2 {

3 PIN MutexLock(&Mutex) ;

4 for ( std : : s i z e t co r e s =0; cores<coreNUM ; co r e s++)

5 {

6 for ( std : : s i z e t i =0; i<j [ c o r e s ] ; i s ++, i++)

7 {

8 /∗ s t o r e to TB( rec ) and c a l c u l a t e c y c l e − r e c s=RB ∗/

9 rec . push back ( Record ( ) ) ;

10 rec [ i s ] = r e c s [ c o r e s ] [ i ] ;

11 r ec [ i s ] . thread id = r e c s [ c o r e s ] [ i ] . thread id ;

12 rec [ i s ] . ip = r e c s [ c o r e s ] [ i ] . ip ;

13 rec [ i s ] . r = r e c s [ c o r e s ] [ i ] . r ;

14 r ec [ i s ] . pena l ty = r e c s [ c o r e s ] [ i ] . pena l ty ;

15 i f ( i ==0)

16 rec [ i s ] . c y c l e = 0 ;

17 else

18 rec [ i s ] . c y c l e = rec [ i s −1] . c y c l e + rec [ i s −1] . pena l ty ;

19 rec [ i s ] . cacheFlag = r e c s [ c o r e s ] [ i ] . cacheFlag ;

20 }

21 }

22 /∗ s o r t i n g by c y c l e ∗/

23 std : : s o r t ( r e c . begin ( ) , r e c . end ( ) , l e s s t h a n c y c l e ( ) ) ;

24 PIN MutexUnlock(&Mutex) ;

25 }

Listing 3.5: prepareSimulation() code

The Penalty value is the additive penalty/latency of the cache hits between the current and the

previous Recorded Instruction of the same CPU core.
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The Disaggregate() function

At this point the Memory Trace is ready to be simulated. For every Instruction, firstly the Disag-

gregate() function is called, that decides which Memory System Model will simulate the instruction,

the Local or the Remote-Disaggregated. Subsequently calls the Simulate() function with the In-

struction as an attribute. In other words, the Disaggregate() function splits the Instructions through

a percentage condition.

1 LOCALFUN VOID Disaggregate ( )

2 {

3 PIN MutexLock(&Mutex) ;

4 for ( std : : s i z e t i =0; i<r e c . s i z e ( ) ; i++)

5 {

6 i f ( i % 101 < DISAGGREGATE PERCENTAGE)

7 Simulate ( dis mem , i , DISAGGREGATED LATENCY ) ;

8 else

9 Simulate (mem, i , 0) ;

10 }

11 PIN MutexUnlock(&Mutex) ;

12 }

Listing 3.6: Disaggregate() code

3.2.3 Memory Simulation: Calling DRAMSim2

As already noted, in the current thesis, DRAMSim2 is used as an internal library interface. At

the main() function of the Pintool, DRAMSim2 is initialized. The initialization registers the Call-

backs of the Read, Write and everything else functions needed to be executed when a Transaction

completes. These Callbacks are registered to one (or more) simulated Memory System objects,

modelled by the MultiChannelMemorySystem class. In this implementation are used two discrete

simulated Memory System objects, in respect with the Simulation and Evaluation of Disaggregated
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Memory System approach. DRAMSim2 implementation gives the ability of simulation more than

one independent Memory Systems, which may also modelled by different Device ini file. For exam-

ple the first may use a x16 DDR2 and the second a x8 DDR3 etc. Each simulated Memory System

produces its own output log file also. The approach of the current thesis focus more on DDR4

DRAM models, because the whole vision of Disaggregated Memory Systems will be based on the

nowadays, or even future, Memory System technologies. This topic will be discussed in detail in

the Evaluation and Experimental Results Chapters.

With regard to the implementation, are used two discrete Memory Systems. The first named

DIMEMmem, and models the Local Main Memory Module. The other named DIMEMdis_mem, and

models the Remote (or Disaggregated) Main Memory Module. When DRAMSim2 is used as a

library interface, the front end driver is responsible for the time-correct passing of the input for

simulation. For example, if the time between two instructions is 10 clock cycles, after the passing of

the first, the front-end driver must not give the next instruction until 10 clock cycles of the memory

system pass. For that purpose is the Cycle field, that was kept in the Instruction Record and

calculated in prepareSimulation(). Cycle embodies the cache latency of the refereed instruction,

and also the additive cache latency of the discarded instructions that not affect Main Memory.

Using that calculation we are able to support that an approximate instruction timing is actually

used, which drives the DRAMSim2 traffic.

For example we suppose the following instruction sequence:

Core 0 Core 1

Instr. Pen. Instr. Pen.

Hit 1 Miss10 4

Miss00 4 Hit 2

Hit 1 Miss11 4

Miss01 4 Hit 1

Hit 2 Hit 3

Hit 3 Miss12 4

Miss02 4 Miss13 4
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After the front-end driver discards the Cache Hit Instructions, in prepareSimulation() is calculated

the Cycle that the misses reach the Memory System. As explained before, the Cycle of an instruc-

tion equals with the previous instruction Cycle plus the current instruction penalty, which embodies

also the additive penalty of the discarded cache hit instructions. So the table transformed:

Core 0 Core 1

Instr. Cycle Instr. Cycle

Miss00 5 Miss10 4

Miss01 10 Miss11 10

Miss02 20 Miss12 18

Miss13 22

So finally the Trace that destined for DRAMSim2 input, after chronological reordering is:

Instr. Cycle

Miss10 4

Miss00 5

Miss01 10

Miss11 10

Miss12 18

Miss02 20

Miss13 22

At this point is clear that the goal of parallel application nature maintenance in the produced Trace

is achieved due to the fact that a core regardless reordering occurred (only by Cycle) and also may

exist more than one instructions in the same cycle, which shows the parallel nature of the produced

Trace.

Subsequently, the simulate() function is called. Either in the case of Local Memory, or in the case

of Remote, it has the same functionality. Before the instruction is passed as a new Transaction,

all the necessary Memory Updates are performed, for timing reasons. While a Memory Update,

the clock, as well as the internal Memory tasks go on for a Cycle without new input. The Memory
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is Updated as many times as the difference of the current and the previous instruction cycle, plus

the defined Disaggregated latency. That extra latency, in the case of the local memory is equal to

zero. After the updates are completed, a new Transaction is passed to Memory Simulator with its

memory address and a is read or write boolean value as arguments. The code follows below:

1 /∗ mem i s the s imu la ted Memory System ( l o c a l or remote )

2 i i s the Trace Buf fer index

3 d i s l a t e n c y i s the e x t r a l a t e n c y f o r remote

4 ∗/

5 LOCALFUN VOID Simulate ( MultiChannelMemorySystem ∗mem , std : : s i z e t i ,

s td : : s i z e t d i s l a t e n c y )

6 {

7 bool i sWr i te ;

8 /∗ to avoid out−of−border a cce s s the f i r s t time ∗/

9 i f ( i == 0)

10 {

11 for ( std : : s i z e t i 2 =0; i 2 < r e c [ i ] . c y c l e − 0 + d i s l a t e n c y ; i 2

++)

12 mem −> update ( ) ;

13 }

14 else

15 {

16 for ( std : : s i z e t i 2 =0; i 2 < r e c [ i ] . c y c l e − r e c [ i −1] . c y c l e +

d i s l a t e n c y ; i 2++)

17 mem −> update ( ) ;

18 }

19 /∗ i s read or w r i t e f i n d out ∗/

20 i sWr i te = ( rec [ i ] . r == ’W’ ? true : fa l se ) ;

21 /∗ add new Transact ion to Simulator ∗/

22 obj . add one and run (mem , rec [ i ] . ip , i sWr i te ) ;
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23 }

Listing 3.7: Simulate() code

The add_one_and_run() is the function that, finally, begins the simulation by passing a new Trans-

action to the simulated Memory System. It calls the addTransaction() function of DRAMSim2

with isWrite and addr as attributes. Essentially, that addTransaction() refers to the Multi-

ChannelMemorySystem object method addTransaction(), which calls the corresponding Mem-

orySystem addTransaction(). If, at this point, the Transaction becomes acceptable, directly is

added to MemoryController Transaction Queue and then translated to DRAM command so as to

be added to Command Queue and executed when its order comes; if not, is added to MemorySystem

Pending Queue until is acceptable.

Those actions followed iteratively as soon as the whole Trace Window is passed for simulation.

When the simulation session completes, the Pintool turns back to Instrumentation mode for the

next Window etc. The whole process completes when the binary executable terminates, which

means that the whole set of Instructions affect Main Memory is Instrumented and Simulated.

3.3 Skip Mode Feature

The applications run for Billion of Instruction and Cycles, and they have significant initializa-

tion phases. We therefore need the ability to ”skip” initialization and simulate the ”core” of the

application or to sample over the application execution.

The choice of Skip mode can be applied to many tasks of the DIMEM Simulator, but it was observed

that just as the Instrumentation sub-task has large overhead, so as the Simulation sub-task has

the same, so it was decided the Skip mode to be applied over a full (Instrumented + Simulated)

processed Window periodically.

The additional implementation based on a user defined constant integer named SKIP_MODE , which

models the number of periodically skipped windows. For example if SKIP_MODE is 5, the DIMEM
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Simulator will be in Skip mode for 5 Windows, before simulates one. Subsequently, again skips 5

Windows, one simulated etc.

New code added at Instrumentation Analysis functions, so as to be checked if the DIMEM Sim-

ulator is in Skip or Normal Mode before the sub-tasks, which may must be skipped, actually

executed or called. It should be added into these functions because they are responsible for either

Instrumentation or Simulation sub-task calls.

1 LOCALFUN UINT32 AnInstrumentationAnalysisFunc ( arg1 , arg2 , . . . )

2 {

3 /∗ c a l c u l a t e window # ∗/

4 UINT32 c = icount . MultithreadCount ( ) ;

5 UINT32 windowCnt = in s count / INS LIMIT ;

6

7 i f ( ( windowCnt >= STARTING WINDOW−1 ) && \

8 ( ( windowCnt % (SKIP STEP + 1) ) == 0 | | SKIP STEP == 0 ) && \

9 ( s imulated windows counter < WINDOWS TO SIMULATE) ) \

10 {

11 /∗ in s t ru ment a t io n a n a l y s i s code ∗/

12 . . .

13 }

14 else

15 {

16 /∗ Skip mode code

17 p r i n t some h e l p i n g messages ∗/

18 . . .

19 i count . SetMultithreadCount (0 ) ;

20 }

21 }

Listing 3.8: Skip Mode code
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3.4 Simulation Output

The Simulation Output consists of two discrete output files: Pintool’s .out file and DRAMSim2

.log file.

Pintool .out file

These files contain information about Ram accesses and their percentage per Window, the Local

and Disaggregated Clock cycles, the Total and Total Instrumented Instructions, the Local and

Disaggregated Cycles per Instruction (CPI) and finaly a complete Cache report. The Cache report

contains information about Load/Store/Total Hits, Misses, Accesses, Miss Rate for each Cache

Level separately. A simple example is following:

Ram Accesses : 132980

Ram Percentage : 0.27%

Simulat ion number : 1 o f 40

===================================

. . .

Local Clock : 584842980

Disaggregated Clock : 6708072956

Total I n s t r u c t i o n s : 6300001184

Total Instrumented I n s t r u c t i o n s : 2000000000

0 .292 c y l e s per I n s t r u c t i o n (L)

3 .35 c y l e s per I n s t r u c t i o n (D)

. . .

L1 Data Cache 0 :

Load Hits : 126941409

Load Misses : 7090283

Load Accesses : 134031692
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Load Miss Rate : 5.29%

Store Hits : 61278276

Store Misses : 4117665

Store Accesses : 65395941

Store Miss Rate : 6.30%

Total Hits : 188219685

Total Misses : 11207948

Total Accesses : 199427633

Total Miss Rate : 5.62%

Flushes : 0

Stat Resets : 0

Listing 3.9: Pintool.out example

DRAMSim2 .log file

These files contain a DRAM report per EPOCH. The report presents statistical results about the

current DRAM state per Rank. For each Rank, at the begining are presented the Total Return

Trasactions and an average Bandwidth. Then are listed the Reads, Writes, Latency and Bandwidth

(per Bank) and Power Data for that Rank. At the end of a .log file is presented a complete Latency

Histogram for all Ranks. A simple example is following:

| Benchmark : BARNES | CPU: IVY | Scenar io : 25−75 | Step : 3 |

============================================================

============== Pr int ing S t a t i s t i c s [ id:0]===================

Total Return Transact ions : 5521948 average bandwidth 68 .119MB/ s

−Rank 0 :

−Reads : 462380 (29592320 bytes )

−Writes : 184524 (11809536 bytes )
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−Bandwidth / Latency (Bank 0) : 4 .282 MB/ s 33 .576 ms

−Bandwidth / Latency (Bank 1) : 4 .300 MB/ s 33 .401 ms

−Bandwidth / Latency (Bank 2) : 4 .283 MB/ s 33 .555 ms

−Bandwidth / Latency (Bank 3) : 4 .249 MB/ s 33 .441 ms

−Bandwidth / Latency (Bank 4) : 4 .227 MB/ s 33 .471 ms

== Power Data for Rank 0

Average Power (mW) : 1000.132

−Background (mW) : 976.925

−Act/Pre (mW) : 7 .577

−Burst (mW) : 13 .621

−Refresh (mW) : 2 .009

−Rank 1 :

. . .

−−− Latency l i s t (17)

[ l a t ] : #

[30−39] : 5509845

[40−49] : 6095

[50−59] : 6008

== Pending Transact ions : 0 (9081920616)==

Listing 3.10: DRAMSim2.out example

The number in brackets at the last line represents the reached DRAM Clock Cycle.



Chapter 4

Evaluation and Experimental Results

In that chapter the CPU, DRAM and Benchmark choices are reported. The ISA choices are

described within the CPU metrics, the used DRAM model is described in the DRAM Metrics and

a summary of Splash-3 and PARSEC benchmark suites is presented.

4.1 CPU Configurations and Metrics

As it has already been explained, the DIMEM Memory Simulator is ISA portable. That feature

gives the user the valuable freedom of selection, to decide which CPU Model he wants to use,

coupled with a Memory System. The user can modify the Cache Size, Associativity, Penalties, the

number of Cores, to enable/disable the Hyperthreading etc.

Three modern and popular CPUs for HPC, are used in the current thesis:

1. Intel Ivy Bridge i7 3770

2. Intel Skylake i7 6700K

3. Intel Xeon X5-650

Their metrics are presented below, as well as their corresponding cache metrics:

40
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Ivy Bridge i7 3770 Skylake i7 6700K Xeon X5-650

Cores 4 4 6

Hyperthreading 2 threads/core 2 threads/core 2 threads/core

Logical Cores 4 4 6

Cache 3-levels and TLB 3-levels and TLB 3-levels and TLB

Table 4.1: The general specs table of the 3 CPUs

Intel Ivy Bridge i7 3770

TLB Cache Levels

DTLB Levels L1 L2 UL3

Items 32 Size 32 KB 256 KB 8 MB

Line Size 2 MB Line Size 64 B 64 B 64 B

Associativity 4-way Associativity 8-way 8-way 16-way

Penalty 16 Penalty 5 12 30

Table 4.2: Intel Ivy Bridge i7 3770 Cache Metrics

Intel Skylake i7 6700K

TLB Cache Levels

DTLB Levels L1 L2 UL3

Items 64 Size 32 KB 256 KB 8 MB

Line Size 4 KB Line Size 64 B 64 B 64 B

Associativity 4-way Associativity 8-way 4-way 16-way

Penalty 9 Penalty 4 12 42

Table 4.3: Intel Skylake i7 6700K Cache Metrics

Intel Xeon X5-650

TLB Cache Levels

DTLB Levels L1 L2 UL3

Items 64 MB Size 32 KB 256 KB 16 MB

Line Size 2 MB Line Size 64 B 64 B 64 B

Associativity 4-way Associativity 8-way 8-way 16-way

Penalty 16 Penalty 4 10 41

Table 4.4: Intel Xeon Cache Metrics

4.2 DRAM Configurations and Metrics

The Memory System is portable, as well as, the CPU. The user can modify and experiment with

his/her own choices. As described in DRAMSim2 overview section in Chapter 2 the Device Ini and

System Ini contain many variables which can be modified. A modified Micron MT40A1G4HX-083E

DDR4 SDRAM[15] it is used in the current thesis.
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The original model has by default 4 GB of total storage, but the benchmarks that the current thesis

used had an average less than 1 GB footprint. So, the Rows and Columns were modified, in order

to shrink the original model to 1 GB of total storage.

Some of the metrics of modified DDR4 Micron 1G 16B x4 sg083E model are contained in Device

ini file and presented below:

Name Value

NUM BANKS 16
NUM ROWS 16384
NUM COLS 8192

DEVICE WIDTH 4

tCK 0.85 ns
REFRESH PERIOD 7800 ns

CL 16
tRAS 32
tRCD 16
tRRD 4
tRC 48

tCMD 1
Vdd 1.2

Table 4.5: DRAM Metrics - Modified DDR4 Micron 1G 16B x4 sg083E

4.3 Splash-3 Benchmark Suite

The Stanford ParalleL Applications for SHared Memory (SPLASH) is a well-known parallel appli-

cation suite which had been widely used as workload in many architectural studies.

In 1995 the suite was expanded to include several new programs as well as original improved

versions. The resulted new version was SPLASH-2 [12] which has also been widely used in research.

However, Splash-2 was released over 20 years ago and does not follow the recent C memory consis-

tency model. The modern and nowadays used compilers and hardware, lead Splash-2 benchmarks

to unexpected behavior and often, also, incorrect output. The Splash-3 Benchmark suite [13] was

released on that basis. That ”updated” Splash suite has rectified the problematic benchmarks and

contributes to the community a new sanitized version of the Splash-2 benchmarks.
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The main Splash-3 improvement is the optimization of the data races. The Splash-2 data races are

not perceived as a bug, but as an effort to enhance scalability for the older machine generations

where synchronization, such as locks, mutexes and conditional variables, were not considered as

inexpensive as today.

As described in [13] it was observed that data races ”can lead to unexpected and often incorrect

behavior when the applications containing them are used in conjunction with contemporary C

compiler or hardware (either simulated or real) that supports a more relaxed memory model than

TSO, as for example Release Consistency (RC) [13] or a Weak memory model (e.g., ARM [14] or

Power [15] architectures). Unexpected behaviors are translated to non-deterministic or incorrect

output, or even to performance bugs”. As a result, additional synchronization, either with locks or

with conditional variables (signal/broadcast/wait), was added where was necessary.

For the evaluation, finally, three benchmarks from the Splash-3 suite were used : Barnes, Volrend

and Raytrace.

Input Sets

The input sets which were used, are offered by PARSEC benchmark suite, which also includes a

Splash distribution. That benchmark suite defines and refers to a size-classified input set system,

composed by six discrete input set sizes. The test size, for program’s functionality testing, the

simdev size, that has a behavior similar to the real one (also for test and development), the

simsmall, simmedium, simlarge sizes which are for simulators and microarchitectural studies,

and finally the native size which is designed, and literally used, for real machine performance

measurements.

From our aspect, the native input set is the most interesting one due to the reason that is the

most similar to real program inputs.
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Barnes

The Barnes application performs a simulation of a N-body system (galaxies or particles, for ex-

ample) interaction, using Barnes-Hut hierarchical N-body method. The simulation is carried out

in three dimensions over a number of time-steps. For the evaluation process it was used with the

native workload, which is presented below:

Barnes Parameters Native Input Values

Number of particles/bodies (int) 4194304

The seed used by the random number generator (int) 123

The time-step (double) 0.025

The usual potential softening (double) 0.05

The cell subdivision tolerance (double) 1.0

Cells per Fleave (double) 2.0

Number of Fleaves (double) 5.0

The time to stop integration (double) 0.075

The data-output interval (double) 0.25

The number of processors (int) 64

Table 4.6: Barnes Native Input

Volrend

This application a three-dimensional volume rendering making use of a ray casting technique. A

cube of voxels (volume elements) represents the volume, which is traversed in a quickly way by

an octree data structure. The program renders several frames from changing viewpoints. The

benchmark gets the number of Threads and the model file, as inputs. But it can be configurable

by changing its parameters in the code. In order to set up a native, the parameters above are

configured:

Raytrace

This application uses ray tracing technique to render a 3-D scene. The scene is represented by an

hierarchical uniform grid (similar to an octree). It also implements antialiasing early ray termina-

tion. A ray is traced through each pixel in the image plane, and reflects in upredictable ways off

the objects it strikes.
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Volrend Native Input

Runtime parameters

Thread Number 64
Input Model head.den

user-options.h file parameters

BLOCK LEN (image block size) 1024

const.h file parameters

ROTATE STEPS 10000
STEP SIZE 3

Table 4.7: Volrend Native Input

Raytrace Parameters Native Input Values

Number of Threads 64

Antialiasing 128

Shared Memory 96 MB

Object Model Car

Table 4.8: Raytrace Native Input

4.4 PARSEC Benchmark Suite

A cooperation between Intel and Princeton University aiming to a Benchmark Suite for Chip

Multiprocessors, was resulted at Princeton Application Repository for Shared-Memory Computers

or PARSEC Benchmark Suite[14]. It is an open source parallel benchmark suite of emerging

applications for evaluating multicore and multiprocessor systems. It contains a wide range of

application domains: financial, computer vision, physical modeling, future media, content-based

search and deduplication. Its current release is 3.0 (since summer 2011).

For the evaluation, finally, it was used the Fluidanimate benchmark.

Fluidanimate

It is an Intel’s Computer Animation application, which simulates the underlying physics of fluid

motion (smoke and particles effects) for realtime animation purposes with Smoothed-Particle Hy-

drodynamics (SPH) Algorithm. Physics simulations allows significantly more realistic animations,

so that it is a highly demanded feature for games. Fluid animation, more specificaly, is one of the

most challenging effects and it starting to get used in games.
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FluidAnimate Parameters Native Input Values

Number of Threads 64

Number of Frames 100

Input File in500K.fluid

Table 4.9: FluidAnimate Native Input

The input file is the native input set, as characterized by Parsec 2.1 package and is a list of 500K

particles.

4.5 Experimental Process

In that section the experimental process strategy is going to be described. The result reliability

achievement was the main problem of the experimental process design. As mentioned in chapter 3,

the DIMEM Simulator uses Skip mode, because of the time consuming simulation as a result of the

large overhead over the benchmark execution time. Skip mode, in essence, is a sampling method,

consequently, the existence of the statistical error ε cannot be hidden; it has to be determined, as

well as the sampling rate, to make the reader able to evaluate the result’s reliability. The sampling

rate, as a function of ”how many samples”, describes ”when”, a measurement, or in our case a

piece of simulation, must be applied for the result reliability maintenance.

As described earlier, the chosen simulation sample size is 2 Billion benchmark instructions. The

trade-off simulation sample size vs simulation time had lead us to that choice. The sample has to

be large enough to let the benchmark unfold its true workload execution, but always in the context

of paying the least usefull overhead. So that, the 2 Billion was estimated as a good trade-off,

because that size is quite over the usual benchmark execution and simulation threshold, which is

1 Billion (eg the Ramulator [19] evaluation uses 10M main memory accesses which approximately

corresponds to 1% miss rate per Billion Instructions), and also the overhead was not excessively

high. The overhead affection was experimentally observed.

The simulation result of the 2 Billion sampling must be scaled up to the whole benchmark size,

in order to produce the final result. At this point, the final result must be accompanied with the

corresponding ε.
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To calculate the ε, a complete simulation, without sampling, is a one-way street. But as a result

of the time limitations, imposed by the complete simulation, (expected duration ∼ 90 days = 3

months), the solution of just a 4 times denser simulation has been chosen. A simulation with higher

density will not provide us with an accurate ε, but with just an indication of our sample selection

accuracy level.

Sample Selection: The samples must be uniformly distributed along the whole benchmark instruc-

tions, to make the sampling representative. A simple Workload Profiling Pintool was developed to

instrument the benchmark and produce a last level cache miss profile representation. The func-

tionality of that Pintool is quite simple. The whole benchmark is simply instrumented, in order to

profile the last level cache miss number of each window. That number is recorded to a .csv file, so

that profile can be depicted in a chart.

The offered knowledge of a last level cache miss profile chart give us the ability to design the

simulation process, in order to distribute in a uniform and statistically correct way our simulation

samples. For example we assume that the benchmark profile shows a spike (many cache misses)

which occupies the 15% of the benchmark behaviour and the rest 75% is a quite constant line. To

simulate in a representative way, one must utilize the 15% of the samples to be spread over the

spike, as well as, the rest 75% over the constant line. In order to achieve the corresponding and

appropriate sampling distribution, each benchmark was utilized separately. The dense method was

used only for Barnes benchmark. It was the only one whose behaviour was notably complicated,

with hard-to-catch spikes etc. That behaviour can easily leads us to unreliable results, so an

indication of the result correctness level it is very helpful. Many different behaviours have been

observed between the benchmarks and as well as their utilization, are presented below:

Barnes Profiling and Utilization

The Barnes benchmark profile presents a periodic behavior, and each period can be divided in three

discrete areas. The first is the spike with ∼45 miss per kilo instructions (MPKI) and occupies 0.4%

of a period. Second, is the area before the spike with ∼2 MPKI and occupies the 4% of a period.

Finally is the rest 95.6% area with � 1 MPKI. The experiment utilization below:
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Figure 4.1: Barnes Profile

Number of Samples

Area Percentage 2B (Simple) 8B (Dense)

Spike 0.4% 1 4

Before Spike 4% 2 8

Rest 95.6% 37 148

Table 4.10: Barnes Utilization

Volrend Profiling and Utilization

An alternative utilization approach has been chosen for Volrend. During profile study (figure

4.2a), it was observed that it looks like a periodic function. Due to that observation, a Fourier

transformation was applied, to compute the signal over the frequency spectrum. For simplicity, one

second per Window it was set as the time measurement unit.

The spectrum in 4.2b shows that the Volrend profile is not a simple periodic function but a complex

one. That means that more than one periodic functions are included, subsequently the strictly

mathematical period is hard to find out. The Volrend program follows an iterative process, and

due to cache locality effects, a slightly different curve is formed in the last level cache misses profile

diagram, despite the fact that the profile curves refer to the same iterative process.

With Nyquist sampling theorem, given the Maximum spectrum frequency, we can calculate which

is the sampling frequency threshold, in order to produce reliable simulation results. The max

frequency is 0.0145 Hz, subsequently, we must use a sampling frequency ≥ 0.029 Hz according to
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(a)

(b)

(c)

Figure 4.2: Volrend Profile Sampling

Nyquist sampling theorem.

In that benchmark we use 200 Million Instructions sized Windows, subsequently, to perform a 2

Billion Instructions Simulation, we need 10 Windows (samples). Given that amount, if we sample

over a period (consists of ∼140 Windows), the sampling frequency is 0.0714 Hz and overpass the

Nyquist threshold frequency. The sampling trace is illustrated with the orange line in figure 4.2c

over the blue one (initial workload profile).

The needed utilization to operate that concept is: simulation with skip Mode 14 after the initial-

ization phase of the Benchmark.

Raytrace Profiling and Utilization

Raytrace Workload profile doesn’t show any periodic behaviour, in contrast with Barnes and Vol-

rend profiles. As we can see in figure 4.3, the diagram can be divided in three discrete areas. The
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Figure 4.3: Raytrace Profile

first area, with percentage 12%, lays after initialization phase to Window 170 , the second area,

with percentage 23%, is the pyramid-shaped area between Windows 600 and 850. The rest can be

perceived as the third area, with percentage 65%.

Due to that behaviour (no spikes or periods) it was assumed that if the simulation sampling follows

the ratio between the areas, the results will be quite reliable. For simplicity reasons no more dense

experiments were made. It was also judged that, a possible denser experiment, wouldn’t be able

to give us a more accurate indication, about the result accuracy level, than the dense Barnes did.

The experiment utilization below:

Area Percentage Number of Samples

First 12% 5

Pyramid 23% 9

Rest 65% 26

Table 4.11: Raytrace Utilization

FluidAnimate Profiling and Utilization

FluidAnimate Workload profile shows no periodic behaviour as Raytrace’s profile does. As we can

see in figure 4.4, the diagram cannot be divided in discrete areas. We observe that the majority of

the values lying bellow 3 MPKI, and many others over 14 MPKI.

Due to profile non distinctness (no periods or discrete areas) it was prefered to simulate a solid

area. In that benchmark we use 50 Million Instructions sized Windows, subsequently, to perform a
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Figure 4.4: FluidAnimate Profile

2 Billion Instructions Simulation, we need 40 Windows (samples). After experimental observation,

the chosen area laid after initialization phase and included both samples below 3 MPKI and spikes

over 14 MPKI.

Simulation Scenarios

The final issue of Experimental Process Design is choosing the Simulation Scenarios. These scenar-

ios describe the Memory Disaggregation Percentage, or, in other words, how the whole Simulated

Disaggregated System makes use of its memory. For example, if the system has to execute a 16

GB memory footprint application, which amount is going to be delivered in Local, and which one

in the Remote Memory.

The Memory Disaggregation Percentage is a dynamic process result, through which, the system

will be able to choose between several factors, such as the latency, the availability etc. In our

approach for simplicity reasons it was assumed that the Local Memory usage percentage, as well

as, the Remote are static and predefined. That assumption had been lead to the different Scenarios

we used:

1. Local: 100%, Remote: 0%

2. Local: 75%, Remote: 25%

3. Local: 50%, Remote: 50%
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4. Local: 25%, Remote: 75%

To implement these scenarios many different Disaggregated Latencies have been used. The latency

range is 500-2000 ns with a step of 250 ns. The Disaggregated Latency had to be translated in

Memory Cycles. The used Memory Model has a 0.85 ns Cycle, so we have the latencies in cycles

below:

Latency in ns Latency in Cycles

500 588

750 882

1000 1176

1250 1470

1500 1764

1750 2058

2000 2352

Table 4.12: Nanosecond to Memory Cycles Disaggregated Latency Correspondence

4.6 Experimental Results

The experimental results are presented per Benchmark, CPU and Simulation Scenario. First are

illustrated the results for Barnes benchmark with Ivy Bridge i7 3770, then with Skylake i7 6700K

and finally with Xeon X5-650. Subsequently, the results for Volrend, Raytrace and FluidAnimate

Benchmarks are presented in the same concept.

A latency oriented chart (left column), as well as a bandwidth one (right column), corresponds

for each Scenario. The latency oriented chart shows the, positive or negative, Overhead in total

execution time over the 100-0 Scenario in a stack bar per Disaggregation Latency Step. As total

execution time, is defined the addition between the Local and Disaggregated execution time.

With that kind of chart, we are able to observe how the Disaggregated nature and behaviour differs

the benchmark execution time compared with the non Disaggregated (scenario 100-0).

The point that can be observed is that, the charts depict the expected increase on the execution

time. As the Disaggregated Latency increases, so does the Overhead. That fact is the expected

Disaggregated effect over the total execution time.
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The second kind of chart is about the Bandwidth. In that line chart the Average Memory Band-

width results in absolute values are depicted, also per Disaggregation Latency Step. Here we can

observe that as the Disaggregated Latency increases, the Bandwidth falls.

That phenomenon also validates the right Disaggregated behaviour of the DIMEM Simulator be-

cause the Disaggregated Latency enlarges the time distance between the Memory Accesses and as

a result we can observe the Bandwidth loss.

Dense Barnes Experimental Results

As noticed earlier, a denser experiment for Barnes has been performed, in order to evaluate that

Benchmark’s experimental process. The Barnes Benchmark profile shows some spikes which are

hard-to-catch during simulation. Because of that, it had to be determined in a specific way the

Windows where the simulation would be applied to. For 2 Billion Instructions Simulation size, the

spike area corresponds to only one Window Simulation, in contrast with the denser Simulation, in

which corresponds to four. The Dense Experiment results show 17% divergence in comparison with

the 2 Billion Instructions Experiment. Despite the fact that the Disaggregated behaviour is also

depicted as like the 2 Billion Experiment, it can be understood that for a benchmark like Barnes,

which shows a spiky LLC MPKI profile, the 2 Billion Instructions Simulation are not enough. For

a spiky profile, a more representative Simulation sample it is needed.

Results Comparison

A comparison between the Benchmarks about the Disaggregated Latency impact follows. A table

per benchmark containing the 500ns (lowest) and 2000ns (highest) impact, as well as, an average

one are presented:

The less Disaggregated Latency impact per Scenario belongs to Barnes Ivy for 75-25, Barnes Xeon

for 50-50 and Raytrace Ivy for 25-75. The Avergate table shows that the Barnes Benchmark is

influenced the less for all Scenarios. On the other hand, FluidAnimate is influenced the most for

75-25 and 25-75 Scenarios, as well as Raytrace for 50-50 Scenario. The Volrend Benchmark is out of
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Bench Ivy

75-25 50-50 25-75

Barnes [+10, +30] [+20, +70] [+25, +110]
Volrend [-5, -5] [-5, -5] [-5, -5]
Raytrace [+20, +40] [+25, +60] [+30, +80]

FluidAnimate [+10, +70] [+25, +140] [+40, +210]

Table 4.13: Disaggregated Latency impact range - Ivy

Bench Skylake

75-25 50-50 25-75

Barnes [+20,+80] [-10,+70] [+50,+250]
Volrend [-5, -5] [-5, -5] [-5, -5]
Raytrace [+25, +120] [+50, +220] [+70, +350]

FluidAnimate [+25, +120] [+10, +125] [+70, +350]

Table 4.14: Disaggregated Latency impact range - Skylake

Bench Xeon

75-25 50-50 25-75

Barnes [+10,+60] [-10,+60] [+60,+220]
Volrend [-5, -5] [-5, -5] [-5, -5]
Raytrace [+10, +70] [+200,+450] [+50, +350]

FluidAnimate [+10, +70] [+20, +125] [+50, +250]

Table 4.15: Disaggregated Latency impact range - Xeon

Bench Average

75-25 50-50 25-75

Barnes 56% 65% 190%
Volrend -5% -5% -5%
Raytrace 75% 240% 230%

FluidAnimate 85% 140% 270%

Table 4.16: Average Disaggregated Latency Impact per Benchmark
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that comparison due to the fact that, it presents a constant behaviour below the 100-0 (Local-only)

limit. That may happens because, as the LLC Misses profile showed, the benchmark’s workload

lies too low, ranging between 0,002 and 0,012 MPKI.
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Figure 4.5: Barnes Ivy Results
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Figure 4.6: Barnes Skylake Results
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Figure 4.7: Barnes Xeon Results
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Figure 4.8: Volrend Ivy Results
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Figure 4.9: Volrend Skylake Results
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Figure 4.10: Volrend Xeon Results
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Figure 4.11: Raytrace Ivy Results
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Figure 4.12: Raytrace Skylake Results
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Figure 4.13: Raytrace Xeon Results
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Figure 4.14: FluidAnimate Ivy Results
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Figure 4.15: FluidAnimate Skylake Results
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Figure 4.16: FluidAnimate Xeon Results



Chapter 5

Conclusion and Future Work

5.1 Conclusion

Concluding we can support that we have developed a simple Disaggregated Memory System Sim-

ulator. That approach comes with a level of detail, able to depicts the Disaggregated Memory

System behaviour, in an approximate way. It, also, bears the Intel Pin framework and DRAMSim2

coupling. Despite the fact that the coupling result comes along with a large overhead, it is useful

for future work and study on Memory System Simulators. It can play a supporting role as a base in

Disaggregated Memory System Simulators, due to the fact that a Simulator like DIMEM Simulator

has never developed before, not even in a simplistic way.

Regarding to the experimental methods, we can say that different approaches were used. To

simulate in a sampling way over a benchmark application, the profile knowledge is very important.

Sampling with Nyquist theorem seems more safe, accurate and reliable, than the more custom

way. However the custom way sampling is not meaningless. In the current thesis approach we just

observed that a more representative sampling amount had to be chosen.

Furthermore, we observe that the Disaggregated Memory System behaviour is quite depicted,

either in the Latency, or in the Bandwidth results. The higher Disaggregated latency we give to

the DIMEM Simulator, the clock grows, and the bandwidth falls.

68
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Comparing a system with Disaggregated Memory with a Local-only one in Instruction and Mem-

ory Access level, the Disaggregated Memory shows worse results than the Local, because of the

Disaggregated Latency overhead. Despite that fact, in our evaluation approach, we can observe

the existence of a point, where the results are not so bad. At the point of Disaggregated Latency

= 1000 ns, where the Step is 2x increased, we can see that the Bandwidth does not present the

linear 0.5x attended fall, but it is better than that. Consequently, we can assume that while the

Disaggregated Latency is bellow 1000ns, we can use Disaggregated Memory without paying for the

Disaggregated Latency in the highest price, which is the 0.5x of the performance.

Finally, it must be noticed, that only a high-level evaluation approach (for example in application

level) can provide us with a clear answer about when a Disaggregated System presents a better

performance than the traditional organization. In future work, we propose some ideas for further

and more detailed Disaggregated Systems evaluation.

5.2 Future Work

1. Main Memory Access Dynamic Split to Local and Remote Memory. The dynamic memory

access split can be achieved by implementing an algorithm which passes a memory access to

local or remote using a Memory Mapping scheme.

2. Study of the Disaggregated Memory System benefits in an application level. A transparent to

application memory interface is needed. That study can be done using criteria like Quality

of Service (QoS) in an application level comparison between Local-only Memory System and

Local-Disaggregated Memory System.

3. Further study and experimentation with more DRAMSim2 parameters.

4. Experimentation with another DRAM Simulators. Ramulator[19] may be a suitable one due

to the reason that it is self-presented as the Memory Simulator with the lower run time (2.5x

faster than the next fastest simulator and 2.7x faster than DRAMSim2).

5. Experimentation with latest Memory Technologies. 3D-stacked DRAM studies are aiming

to overcome the traditional DRAM limits. The lights are on the Hybrid Memory Cube
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(HMC) which is a type of 3D-stacked DRAM because of its usability for server systems

and processing-in-memory (PIM) architecture. HMC-Sim2.0[20] and CasHMC[21] Simulators

have been designed for this technology with CasHMC being a step forward due to its cycle

accurate HMC modeling. Regarding to the latest Memory technologies experimentation, the

DiMEM Simulator can be easily upgraded to them, through a simple DRAMSim2 library

replacement, for example with CasHMC library/interface. There is no need of changing the

simulation feeding process, except from the update() and addTransaction() library functions

which must be replaced by the corresponding new library ones.

6. Further DiMEM Simulator development/expansion by implementing new modules alongside

the already existed. These modules may be pools containing different kind of resources such

as FPGAs, GPUs, Accelerators, as well as, more advanced interconnects between them.

7. More detailed evaluation of the used evaluation methods. Since, Raytrace benchmark had

been sampled in specific areas, the question of which is the result reliability by using random

sampling, in the same benchmark, was risen.
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