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Abstract

Due to the widespread use of the light microscope as a diagnostic tool for many
scientific fields like medicine, biology, chemistry as well as for industrial applications,
light microscopy has been undergoing vast and continuing innovations both regarding
the hardware and software domain. The optical resolution of light microscopes is
physically constrained by the phenomenon of diffraction. Out-of-focus light and light
originated from adjacent areas of a sample are superposed degrading the quality of
the image of the object under study. In this degradation, the Point Spread Function
(PSF) of the optical system is the main culprit and it is the one that determines
the optical resolution. This degradation effect can be eased by sophisticated and
expensive confocal microscopy systems or reversed to some degree by much cheaper
widefield deconvolution microscopy methods. Deconvolution processes need a PSF as
much as accurate it can be in order to provide satisfactory and realistic results. The
description of the PSF can be done either by mathematical models or by experimental
measurements. Experiments for this purpose include measurements of fluorescent
microbeads as well as estimation of the Modulation Transfer Function (MTF) of the
optical systems which finally yields the PSF. The present diploma thesis deals with the
mathematical modelling of the PSF in comparison with its experimental measurement
via a method that uses the general MTF estimation process, with application on
optical microscopes. This evaluation is done with the use of quantitative metrics that
describe the quality of the deconvolved images aiming at an objective assessment
of them. Results show a superiority of the experimental PSF as far as the metrics
are concerned. As for the visual perception, deconvolution with a modelled PSF
seems to produce results of higher contrast. Contrast enhancement is therefore not
in agreement necessarily with the improvement of images that approaches the real
optical information . In addition, several standard contrast enhancement techniques
are used for extra comparison. This work is integrated in a graphical user interface
which additionally allows quantitative comparison on user-imported images.
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Chapter 1

Introduction

The widespread use of light microscope as a diagnostic tool for many scientific fields
like medicine, biology, chemistry as well as for industrial applications, has provoked
vast and continuing innovations both regarding the hardware and software domain.
The motive behind this dissertation lies in the ascertained fact that optical imaging in
general exhibits inherent physical limitations. These limitations are due to the phe-
nomenon of diffraction. As it is elaborated in the next chapter, an object under study
is not depicted as it is in the reality. More specifically, its image is degraded due to
many reasons involving blur, glare, scatter of light and incoming photon related noise.
The aforementioned diffraction phenomenon is related to blur. The work realised in
this thesis deals with the following concept. Out-of-focus light and light originated
from adjacent areas of a sample are superposed blurring the image of the object under
study. For this effect, the Point Spread Function (PSF) of the optical system is the
main culprit and it is the one that determines the optical resolution. This degradation
effect can be eased by sophisticated and expensive confocal microscopy systems or
reversed to some degree by much cheaper widefield deconvolution microscopy meth-
ods. Deconvolution processes need a PSF as much as accurate it can be in order to
provide satisfactory and realistic results. The description of the PSF can be done
either by mathematicall models or by experimental measurements. Experiments for
this purpose include measurements of fluorescent microbeads as well as estimation of
the Modulation Transfer Function (MTF) of the optical systems which finally yields
the PSF.

The present diploma thesis deals with the mathematical modelling of the PSF in
comparison with its experimental measurement via a method that uses the general
MTF estimation process, with application on optical microscopes. This evaluation is
done with the use of quantitative metrics that describe the quality of the deconvolved
images aiming at an objective assessment of them. Results show a superiority of the
experimental PSF as far as the metrics are concerned. As for the visual perception,
deconvolution with a modelled PSF seems to produce results of higher contrast. Con-
trast enhancement is therefore not in agreement necessarily with the improvement of
images that approaches the real optical information . In addition, several standard
contrast enhancement techniques are used for extra comparison. This work is inte-
grated in a graphical user interface which additionally allows quantitative comparison
on user-imported images.

In order for someone to be introduced to the above-mentioned matter, at first
the basic physical concepts are gradually explained. Beginning with how lenses in
general work, how their providing magnification is defined and in which way the
optical resolution of an optical system is limited, one can get to know the basic stuff
behind the field of optics. Then, the anatomy of a modern conventional microscope is
described. At this point, the concept of fluorescence and the anatomy of a fluorescent
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microscope is explained, since the test images used in this thesis contain a fluorescence
microscope.

Knowing the parts of an optical system and how the its provided images are phys-
ically degraded, one can go deeper into how a PSF can be mathematically modelled
and how it can alternatively be experimentally measured.

Finally, since the blurring effect in an image, is mathematically described using
the concept of convolution, the rest background chapter deals with de-convolution
methods with their ultimate goal to be the de-blurring of the captured image.



Chapter 2

Background information and
theory

2.1 Microscopy

Microscopy is the technical field of using microscopes to view objects and areas of
objects that cannot be seen with the naked eye (objects that are not within the reso-
lution range of the normal eye). There are three well-known branches of microscopy:
optical, electron, and scanning probe microscopy. Optical (light) microscopy, which
is the case of study, uses visible light and a system of lenses in order to project a
magnified image of a specimen under study on the eye or on a camera sensor.

2.1.1 Magnification of lenses

Transmission Reflection Refraction
[ ]
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Diffraction Adsorption Scattering

'ﬂm s / T~
FIGURE 2.1: Principal interactions of light with a medium

Source: http:
//physicsweekly.weebly.com/reflection-refraction-and-diffraction.html

Light can interact with a medium in many ways, depending on the material of the
medium, the angle of the incidence and the wavelength. Fig. 2.1 is self explanatory.
As for diffraction (expounded in Sec. 2.1.2), this phenomenon is based on the
principals of constructive and destructive wave interference. Light behaves in the
same way as a mechanical wave encountering an obstacle or passing through a slit. It
is defined as the bending of light around the corners of an obstacle or a slit (aperture)
into the region of geometrical shadow of the obstacle. In order to exhibit diffraction,
this obstacle or this slit must be comparable in size with the wavelength of the


http://physicsweekly.weebly.com/reflection-refraction-and-diffraction.html
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encountering wave. From this, also it follows that an obstacle or a slit can have sharp
edges.

In microscopy, all these kinds of interaction are significant. Transmission, reflec-
tion, refraction are used to build a path for the light rays. Diffraction, absorption and
scattering, though, eventually act as degrading factors for the microscoped image.

For the purposes of light microscopy, the basic components relative to the optical
train are lenses and filters.

Converging Diverging

o 04 Y our
viuyud ALN

Biconvex Plano- Positive Biconcave Plano- Negative
convex meniscus concave meniscus

FIGURE 2.2: Different shapes of simple lenses
Source: http://data.allenai.org/tqa/optics_L_0755/

LENSES

Lenses come in different shapes (Fig. 2.2). They can be grouped and form a
compound system with special properties (i.e better focusing, better magnification
or eradication of aberrations). Two are the main charatecteristics of a lens. The
distance over which initially parallel light rays are brought to a focus (focal length
f) and the magnification. Image formation happens when light rays converge either
in real or seem to do so (virtually). [1]

e A real image is formed in the plane where light rays converge in real (using
converging lenses) and the object to be pictured is placed farther than the focal
length of the lens. When the object is placed in between f and 2f the image is
bigger than the object, whereas when it is placed in a distance bigger than 2f
the image is smaller. A real image is always inverted and can be formed in a
screen. For a converging lens, the focal length is said to be positive, which is
the reason why they are also called positive.

e A virtual image is formed in the plane where light rays seem to converge (con-
tinuing ,virtually backwards, the rays coming out of the lens). This happens
in diverging lenses or when the object to be pictured is placed inside the focal
distance of a converging lens. A virtual image is always erect and cannot be
projected onto a screen as it on the same side of the lens as the object.

THIN LENS

In the simple case of just one thin convex lens(thickness is negligible) (Fig. 2.3),
the equation of the thin lens (Eq. 2.1) and the provided magnification (Eq. 2.2) can
be computed, using the metric relations of the formed triangles: [4]

1 1 1

== 2.1

S1 82 / 21)
, where s1: object to lens distance, sa: real image to lens distance, f: focal length
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FI1GURE 2.3: Image formation of an object with a convex lens
Source: https://en.wikipedia.org/wiki/Lens_(optics)

M= (2.2)
Yo 51

, where y;: image height, y,: object height
Usually, the object is put on the f,, so the above equation becomes:

Yi 52
M==Z==-= 2.3
Yo Jo (2:3)

LENS WITH IMPORTANT THICKNESS

When the thickness of the lens is not negligible, in order to compute the effective
focal length, radii of the curvature (RoC) of each side of the lens, along with the
refractive index (r.i) of the lens medium must be known. So the corresponding
equation is:

1 1 1 (n—-1)d

Al ey e (2.4)

, where Ri: RoC of closer to the light source lens side, Ry: RoC of farther to the
light source lens side, n: r.i of the lens medium, d: lens thickness

TWO LENS SYSTEM (thin lenses)

A compound microscope system of two lenses provides better magnification than
that of one lens. It consists of at least two converging lenses; the objective and the
eyepiece. The former has a focal length f, < 1 cm and the latter has a f. of a
few cm. The total magnification M of the two lenses is given by the product of the
magnifications of the individual lenses. Thus, we have:

M = Mobjective X Meyepiece (25)

The individual magnifications are given by 2.2, which in order lead to:

Sy S

M="22x 22
The distances between object-objective lens S7, objective lens-real (first) image S
and real image-eyepiece lens Si may vary. But the distance between the eyepiece lens

(2.6)


https://en.wikipedia.org/wiki/Lens_(optics)

6 Chapter 2. Background information and theory

eye lens
e —

objective lens

FIGURE 2.4: An objective-eyepiece compound
Source: https://physics.stackexchange.com/questions/307050/
why-we-take-objective-of-short-focal-length-and-eye-piece-of-long-focal-length-i

and the virtual (final) image Sj is set to 25 cm. This is because 25 cm is the closest
point at which an object can be brought into focus by a "normal" human eye. Closest
distance is important, because apparently the image of the object will be the most
detailed it can be. Eventually, the eye perceives the final magnified image as if it
were in that distance of 25 cm.

When the object is put on the f,, the intermediate image is formed on the fe.
Hence the above equation becomes:

M:£X25cm

fo o Je

, where T': distance between f, and f., usually 16 cm

(2.7)

CONVENTIONAL MICROSCOPE LENSES

In a typical microscope a third lens is added, namely the tube lens, for the reason
that the objective lens projects incoming light into infinity. The tube lens forms the
real image on its focal point. Light rays originating from the two ends of the object
are adequate for the purpose of explaining conventional microscope lenses. To take
it from the start: The objective (Fig.2.5(2)) is designed to project the incoming light
rays of the object (Fig.2.5(1)) into infinity. Then, the tube lens (Fig. 2.5(3)) produves
a magnified intermediate image (Fig.2.5(4)) which in turn is captured by the eyepiece
(Fig.2.5(5)) and finally shown to the eye (Fig.2.5(6)). The resulting viewing angle
01 of the case A is much larger than d2 of case B, where the object is seen directly
from a distance of approximately 25 cm. Regarding the overall magnification of such
a system, it can computed by the product of the individual magnifications of the
objective and the eyepiece lenses. [3]

USING AN IMAGE CAPTURING SYSTEM INSTEAD OF THE EYEPIECE

In cases that recording of the specimen in an imaging system of a sensor and a
computer monitor is preferred, the eyepiece can be ommitted. The magnification is
produced by the optical system (i.e objective, tube lens) and the electronic imaging
system which provides a magnification factor due to the optical to electronic system
adaptor (computer monitor adaptor). The total magnification of the system can be
computed as:


https://physics.stackexchange.com/questions/307050/why-we-take-objective-of-short-focal-length-and-eye-piece-of-long-focal-length-i
https://physics.stackexchange.com/questions/307050/why-we-take-objective-of-short-focal-length-and-eye-piece-of-long-focal-length-i

2.1. Microscopy 7

FIGURE 2.5: An objective-tube-eyepiece compound

Moverall - Moptical X Melectrom'c (28)

The optical magnification in case of just one objective and an adapter is given by:

Moptical = Mobjective X Madapter (29)

The electronic magnification is the ratio of the active sensor diagonal and the useful
monitor diagonal:

Melectronic = diagonalmonitor/diagonalsensor (210)

WHAT ARE THE LIMITS OF MAGNIFICATION - USEFUL MAGNIFICATION

As it was mentioned above, greater magnification can be achieved using two or
more lenses. So, the question is if there are any boundaries to magnifying an object
infinitely. The short answer is NO. Despite the fact that with an infinite number of
lenses an infinite magnification is achieved, after a point that huge magnification is
useless because "deeper" details of the magnified object cannot be resolved further. So
the maximum useful magnification for a conventional optical microscope it is known
to be 2000x. In terms of the tinyest possible distinguishable area of an object, the
conventional optical microscope can produce a virtual image of a 200 nm diameter
spot of the object. This is approximately the width of an average-sized bacterium.
The smaller this distinguishable area is, the bigger the resolution of the microscope
is. However, in practice this resolution of 200 nm cannot be approached due to
lenses’ imperfections. Further improvements have been accomplished by the nobel
prize-awarded Super Resolution Microscopy which circumvents the aforementioned
limit and brings it to the nanodimension. The explanation to the existence of a limit
to the resolving power of the microscope, lies in the concept of diffraction which is
eventually the reason why more and more magnification power of lenses lead merely to
a magnification of the smallest distinguishable area, without unveiling further details.
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2.1.2 Diffraction-limited resolution

DIFFRACTION - WHY IT HAPPENS AND HOW IT IS AFFECTED

Lens-systems have an opening which allows a cone of light to pass through. Here
lies the resolution limitation of the microscope (and of every optical device incor-
porating apertures). As it was mentioned in the early introduction of this section,
light bends around the corners of an obstacle or a slit (aperture) into the region of
geometrical shadow of the obstacle when the size of the latter is comparable with the
wavelength of the incoming light. From this, also it follows that light bends around
the sharp edges of an obstacle or an aperture.

L LI T

F1GURE 2.6: Diffraction by Huygens-Fresnel principle
Source: https://en.wikipedia.org/wiki/Huygens%E2%80%93Fresnel_principle

The significance of the phenomenon of diffraction in the case of image capturing
lies in the fact that light does not travel linearly from the aperture towards the sensor
(camera or human eye), but instead spreads to a cone angle. As it was mentioned
earlier, light diffraction behaves in the same way a mechanical wave behaves entering
a slit. The spreading of the post-aperture light can be explained by the Huygens-
Fresnel principle. It argues that every single point of a wave front (wavelet) acts like
a source of new spherical waves. These emanating waves interfere constructively or
destructively with themselves creating a characteristic pattern in the post-aperture
area. In Fig. 2.6, this principle is visualized with the use of 6 wavelets at the level
of the aperture. While these waves propagate the total aggregating wave front takes
the form of the green lines, giving the effect of the spreading of light.

When the spreading light eventually "hits" the sensor, a two-dimensional diffrac-
tion pattern appears on it. This is the resolved image of the point light source. So, as
long as the light bends after it passes throught the slit, the resolved image is larger.
This means that the final captured image is a degraded form of the true point source.
Fig. 2.7 exhibits a case where light arrives at the aperture in plane wave fronts. That
is accomplished when the light source, the aperture and the sensor are far apart
in order for the spherical source waves to expand in such a degree that their wave
fronts become plane or close to plane. Another occasion is when curved wave fronts
enter the objective lens of the microscope and come out as plane ones. This is the
Fraunhofer diffraction. In case where the incoming wave fronts are curved and sensor
is relatively close to the aperture, Fresnel diffraction applies. Fraunhofer diffraction
helps the understanding of the parameters that affect the level of light bending and
the diffraction patterns on the sensor, because of its simplicity compared to Fresnel
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FIGURE 2.7: Fraunhofer diffraction
Source:
http://hyperphysics.phy-astr.gsu.edu/hbase/phyopt/sinslitd.html#cl

diffraction. The figure shows the sensor plane and the intensity of light in each point
on it.

A wave of light interferes constructively with another of the same wavelength A
when their path lengths differ by m multiples of A . They interfere destructively when
their path lengths differ by (m + %))\ In Fig. 2.7 rays 3 and 4 arrive 180 degrees out
of phase on the sensor and lead to a minimum light intensity in that point. Rays 1
and 2 arrive in phase and lead to maximum light intensity.

In order to calculate how much the light diffracts, after it passes the aperture, it
is sufficient to calculate the angle of the first intensity minimum over the optical axis
(aperture middle). From Fig. 2.8, using trigonometric small-angle approximations
(because Fraunhofer approach considers that aperture to slit length L > w and thus
0 ~ ¢) and applying the destructive interference condition § sinf = %, it can be
shown that the angle of first intensity minimum (first trough or dark fringe) is:

sinf = 1.22i (2.11)
w

FIGURE 2.8: Angle of first intensity minimum (left) - Diffraction pat-
tern formed on the sensor across the vertical line the diffraction curve
extends (1D) (middle) - Diffraction pattern formed across the whole
sensor plane (2D - Airy disk) (right)
Source: Own illustration

The above equation makes clear that the longer the wavelength of the incoming
light, the larger the level of light bending after the aperture. Additionally, the bigger
the aperture, the smaller the degree to which the light diffracts. Hence, in order to
have a better resolved image of the true point source regardless its wavelength, the


http://hyperphysics.phy-astr.gsu.edu/hbase/phyopt/sinslitd.html#c1
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bigger the aperture is, the better this can be achieved. Bigger aperture means longer
lens so as the latter gathers all the light that passes through the aperture. To express
how large cone of light a lens can gather, a quantity is introduced:

NUMFERICAL APERTURE AND RESOLUTION

Numerical Aperture of a lens(NA) : characterizes the range of angles over which
the lens can accept (or emmit) light. It is a function of the refractive index n of the
medium in which the lens is working (i.e air, water, oil) and half the angle (#) of the
largest pencil of light that the lens can accept (or emmit). [4]

NA=nsin6 (2.12)

From this definition along with the aforementioned simple aperture characteristics,
it can be concluded that the bigger the numerical aperture, the smaller the diffraction
spreading and thus the better the resolution of a point source. But in order to
quantify the resolution of the lens-aperture system, the smallest distance between two
diffraction patterns, caused by two point sources, must be found so that they both
can be resolved (seen separately). This distance is called the Rayleigh resolution limit
and is defined as the distance between the crests of the two diffraction patterns, when
the crest of the main lobe of the first one meets the first trough of the second one.
It is equivalent to the distance between the crest of the main lobe and the first dark
fringe. This lateral resolution is a function of wavelength and numerical aperture.

Because of refraction and reflection phenomena that appear when light passes from
the coverslip of the specimen to the objective through a gap of air, it is preferable
that an immersion oil (high refractive index medium) is used. This allows light to
travel straight towards the objective, leading thus to a larger effective NA. So, the
refractive index of the immersion oil, also, plays a role in the final formation of the
diffraction pattern.

122X 0.61X
2nsinf®  NA

, where r:lateral resolution of the lens-aperture system, A: wavelength of light, n:
refractive index of the medium surrounding the point sources, §: half-angle of the cone
of light that enters the lens, NA: effective numerical aperture of the lens-aperture
system

A condenser lens is often used so as to focus the illuminating cone of light onto
the sample. This has to be computed too. The lateral resolution is now given by:

(2.13)

Tlateral =

1.22 )\
T =
lateral NAobj T NAcond

In a properly configured microscope, the condenser must have equal N A with the
objective. So, this leads to the first resolution equation (Eq. 2.13)

(2.14)
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DIGITAL RESOLUTION

When it comes to capturing an image and translate it to a digital one, the question
of how the resolution is related to the image pixels arises. The image 2D signal in order
to be aliasing-free and properly represent the analog true signal needs to be sampled
accordingly to the Nyquist theorem. The latter states that a signal in general needs to
be sample in a rate fs > 2f42, with fi,az the highest frequency that is wished to be
recorded. In an image, frequency has the meaning of periodic changes of luminance
of the depicted objects. Thus the corresponding "period" has to do with distance
between this changes. The Nyquist sampling rate can be modified to: Dy < Dyyin/2,
where D corresponds to distance (or size). This gives the imaging sample rate (pixel
size) which should be 1/2 the size of the smallest object (resolution) that is wished
to be recorded. In practice, an image pixel usually represents distance that is 2.3-3
times smaller than the optical resolution. [21]

Let it be that the sampling process is completed. In order to find the physical
distance that is represented by a pixel without knowing the sampling rate, the sensor
pixel size and the magnification of the optical system must be known:

sensor pixel size

physical distance = (2.15)

overall magni fication

2.1.3 Anatomy of an optical microscope

As it was mentioned, this study concentrates on brightfield, fluorescence and confocal
microscopy. Brightfield microscopy is achieved using and configuring appropriately
an optical microscope. Fig. 2.9 shows the optical train inside a modern optical mi-
croscope. Light emanated from a source travels through a system of diaphragms
(apertures), plates and lenses in order to be configured in a way that it evenly dis-
perses across the plane of the field of view of the focused specimen. The final stage
of this source light-configuring system is the condenser, which focuses the cone of
light onto the specimen plane. Then, the re-emmitted light from the sample trav-
els through the objective-eyepiece or/and the objective-camera sensor system. Focus
knobs are used, as the name implies, to adjust the microscope tube or the specimen
stage for proper focusing. The coarse focus knob adjusts in the centimeter range,
whereas the fine focus knob adjusts in the micrometer range. There are also knobs
for the adjustment of the desired field of view of the sample.

2.1.4 Fluorescence Microscopy

A fluorescent microscope is a specialized optical microscope. Because specimens are
self-illuminated by internal light (fluorescence), they can be seen against a dark back-
ground. So, due to the enhanced contrast, it is easier for the human eye to see
details not visible in a brightfield microscope. For the latter, there exist ways of
being converted to a fluorescent microscope with the use of specific accessories.
When specimens, living or non-living, organic or inorganic, absorb and subse-
quently re-radiate light, the process is described as photoluminescence. If the emis-
sion of light persists for up to a few seconds after the excitation energy (light) is
discontinued, the phenomenon is known as phosphorescence. Fluorescence, on the
other hand, describes light emission that continues only during the absorption of the
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FIGURE 2.9: Basic parts of a typical optical microscope
Source: http://www.doctorc.net/Labs/Lab2/1lab2.htm

excitation light. The time interval between absorption of excitation light and emis-
sion of re-radiated light in fluorescence is of extraordinarily short duration, usually
less than a millionth of a second.

BASIC CONCEPT OF A FLUORESCENCE MICROSCOPE

For each fluorescent substance, there is a certain range of wavelengths that cause
its stimulation. After the absorption of the excitation light, the substance emits light
of longer wavelength which is finally captured. In order to illuminate the specimen
with the wavelength band which excites it, an excitation filter is placed right after
the light source. Similarly, in order to observe the re-emitted fluorescent light, an
emission filter is placed right before the eyepiece or the camera sensor. These filters
are termed barriers, since they block by absorption the unwanted light. Due to the
epi-illumination fluorescence microscope design, there must be a specialized filter that
will reflect the excitation light towards the specimen and will allow re-emitted light to
pass through it. Such a filter is named a dichroic mirror or else a dichromatic beam-
splitter. Reflection occurs via destructive and illuminance-reducing interference with
alternating layers of high and low refractive indeces, whereas transmission happens
via constructive and reinforced interference with the layers. For this reason, such
filters belong to the family of interference filters. Specifically, successive layers of
dielectric materials, with thickness values ranging between one-quarter and one-half
of the target wavelength consist the main body of these filters. In many of the cur-
rent epi-illumination fluorescence microscopes, the excitation, emmision filters along
with the dichroic mirror are altogether incorporated into a single fluorescence filter
cube. The whole design of the microscope is epigramatically shown in Fig. 2.10 and
is termed widefield epi-illumination fluorescence microscope. [2]
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FiGUure 2.10: Widefield epi-illumination fluorescence microscope
schematic

Source: https://en.wikipedia.org/wiki/Fluorescence_microscope

FLUORESCENCE

[11] Fluorescence may be exhibited naturally by some materials or biological struc-
tures (autofluorescence/primary fluorescence) as well as exhibited by artificially added
fluorescent markers (secondary fluorescence). Fluorescent molecules are also called
fluorescent probes, fluorochromes or simply dyes. When they are conjucated to a larger
macromolecule, through absorption or covalent bonds, they are termed fluorophores.
Thanks to this attachment, the distribution of the corresponding macromolecule of a
fluorophore can be observed.

Due to heat transfer within fluorophores or interactions between fluorophores and
other molecules, the re-radiated light has less energy than the absorbed light. So, the
emitted light has a longer wavelength than that of the excitation light. This differ-
ence between the maxima of the excitation-emission bands is termed as Stokes shift.
Typically, the emission band is a mirror of the excitation one. In general, fluorescence
investigations are conducted in the range of ultraviolet to visible spectrum (250 — 700
nm).

The distribution of electrons and the overall molecular geometry can be deter-
mined by electronic states. Several different electronic states exist, depending on the
total electron energy and the symmetry of various electron spin states (paired or un-
paired spins - opposite or same spins in an orbital). The number of unpaired electron
spins in an electronic state defines the state name in the numeration form of singlet,
doublet, triplet etc. The ground state of most organic molecules is an electronic sin-
glet, that is no electron spins are unpaired. The excitation process has no effect in
changing the spin-pairing, hence the excited states are singlets too. Each electronic
state is further subdivided into wibrational and rotational states associated with the
atomic nuclei and the bonding orbitals. In fluorescence, various transitions are taking
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place through different paths among energy levels. Transitions involved in absorption
and emission of light by a fluorochrome can be shown in a Jablonski energy diagram
(Fig. 2.11).

Jablonski Energy Diagram
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FIGURE 2.11: Jablonski energy diagram showing transitions involved
in absorption and emission of light by a fluorochrome. Straight lines
show absorption or emission of a photon, whereas wavy lines show
non-radiative processes.
Source: http://www.olympusmicro.com/primer/techniques/fluorescence/
fluorescenceintro.html

Absorption leads the molecule to an excited singlet state depending on the energy
of the incident photon which has to be at least equal to the corresponding energy of an
excited state. This takes place "instantly", in approximatelly a femtosecond. After-
wards, several processes will occur with varying probabilities. The most likely will be
non-radiative relaxation to the lowest vibrational energy level of the first excited state.
This is the wvibrational relaxation which can happen directly or through an internal
conversion process. From this point forward, many paths can be taken. One is the
desired fluorescence emission which is usually accompanied by transitions to higher
vibrational energy levels of the ground state. Other roads are energy dissipation non-
radiatively as heat or energy transfer due to molecules collision (i.e quenching) or
transition to an intermediate triplet excited state at its lowest vibrational state. The
latter transition is known as intersystem crossing, again with no radiation. From that
point, excitement back to the higher-energy singlet state might occur, resulting in a
delayed fluorescence after a radiative relaxation. The other possibility is relaxation to
the ground state, even though transition from an excited triplet state to the ground
singlet state is forbidden. It might happen again in the form of heat, but also with the
emission of a photon, which is termed phosphorescence. Because of this forbidding
law, phosphorescence is very rare, with a probability of several orders of magnitude
lower than that of fluorescence.

Considering the aforementioned different transition paths, it is clear why fluores-
cent light is of longer wavelength than that of the absorption light, justifying the
Stokes shift. Bearing energy of light is inversely proportional to the wavelength of
it. Specifically, radiative relaxations are of high probability when they start from
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the lowest vibrational state of the first excited state and when they culminate in the
highest vibrational state of the ground state. Hence, the emission energy leap is much
smaller than the absorption energy leap. Contributing factors to this phenomenon are
heat conversions, resonance energy transfer (RET) and quenching processes. In RET,
energy is transfered with non-radiative long range dipole-dipole interactions between
fluorophores. In quenching, energy might be transfered through collisions between
fluorophores and other molecules (usually oxygen, halogens and amines) that are
translated as coupling of electronic orbitals between the interacting molecules. Also,
formation of non-fluorescent complexes can reduce the population of active excitable
molecules, thus limiting the absorption of incident light.

Another unwanted pheonomenon, regarding energy and intensity loss, is photo-
bleaching. Fluorochromes can lose the ability of fluorescence permanently due to long
exposition to high intensity light which cause chemical destruction to them.

In general, the decay of fluorescence intensity as a function of time in a uniform
population of molecules excited with a brief pulse of light is described by an expo-
nential function:

I(t)=1(0)e7 " (2.16)

, where I(0): initial fluorescence intensity, 7: time in which fluorescence intensity
falls in 1/e =~ 37% of I(0)

The exact decaying degree depends on the particular fluorochrome. In addition to
this, other parameters are also used to describe and compare different fluorochromes:

e Extinction coefficient: Ability of light to absorb light. Those chromophores that
have a high extinction coefficient also have a high probability of fluorescence
emission, in the expense though of their intrinsic lifetime (below).

o Quantum yield: Gauge of the efficiency of fluorescence emission. It describes
the probability that an excited molecule will end up in emitting a photon, either
through a direct or a delayed fluorescence process.

o Fluorescence lifetime: The characteristic time that a molecule remains in an
excited state prior to returning to the ground state.

2.2 Point Spread Function

Fig. 2.8 shows the formation of a diffraction pattern on the sensor plane. Because this
pattern is the spreaded light initially emanated from a point source, it is given the
name Point Spread Function (PSF). The term "function" is valid because the spread-
ing, as it was said, depends on the N A of the lens-aperture system, the refractive
index of the immersion oil (if it exists) and the A of the source light.

By simulating the single-slit phenomenon in a computer, the PSF can be visual-
ized. Using 2,3 and 9 in-phase wavelets of the Huygens-Fresnel model (Fig. 2.12), it
can be shown how a PSF is formed across the aperture-sensor plane space. As long
as there is no finite number of wavelets, also a simulation of "infinite" ones is shown
in Fig. 2.13

The resolution on the image plane (lateral resolution) is given by Eq. 2.13. The
tinyest discernible distance in the optical axis (depth axis) is larger that the lateral
one. It can be computed by:

2\n

Tazial = (NA)Q (217)
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F1GURE 2.12: PSF formed by 2,3 and 9 wavelets of the Huygens-
Fresnel model

Source: Youtube: "iBioEducation" channel - "iBiology Microscopy Course" -
"Microscopy: Point Spread Function (Jeff Lichtman)" - video snapshots

—

<« Image Plane

FiGURE 2.13: PSF formed by 'infinite" wavelets of the Huygens-

Fresnel model. The hourglass-like shape of the PSF in the center

defines the detail in which the point source is resolved. The red dot-
ted line is the optical axis along which the light travels

Source: Youtube: "iBioEducation" channel - "iBiology Microscopy Course" -
"Microscopy: Point Spread Function (Jeff Lichtman)" - video snapshots

This leads to the same conclusion as for the lateral resolution. That is, the shorter
the A or/and the larger the N A, the better the axial resolution.

The PSF can either be calculated theoretically by various models or be measured
experimentally.

2.2.1 Theoretical PSF

Taking into account how the wave fronts of light interfere with a propagation medium,
a mathematical expression can be built gradually [12]. This expression will be in terms
of wave amplitude and phase as a function of the 2D coordinates of the propagating
wave of light at a specific, perpendicular to the optical axis, plane z (depth plane).
The emission of waves from a point source can be seen as an input impulse:

uo(z,y) = Ao 0(z,y) (2.18)

, where Ag: initial wave amplitude of the emmitting source of light
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At first, light travels in free space meaning no lenses or apertures are included.
The free-space system has an impulse response, let it be h(z,y; z). Thus, the output
wave amplitude of this system at the depth plane zy just before the lens, will be:

u(x,y; 20) = h(x,y; 20) * Ao 6(x,y) = Ao h(x,y; 20) (2.19)

, where x is the convolution operation sign

The affected transmission of light through the lens-aperture system of focal length
f can be described with a pupil function which captures every optical aberration in the
amplitude and phase that takes place between the object focus plane and the image
plane. These aberrations [10] (deviations from the ideal optical path) happen due to
irregularities or misalignments in any component of the imaging system light path,
especially the objective lens but also other lenses, mirrors, filters or apertures. Such
aberrations are present in various forms. Speaking about rays of the same wavelength:
Astigmatism, where rays that propagate in two perpendicular planes, have different
focal spots. Coma, where slanted parallel rays entering a lens, eventually focus on
different spots on the image 3D space. Defocus, where rays do not focus on the a priori
designed focal spot. Chromatic aberration, where rays of different wavelengths have
different focal spots. Spherical aberrations, where rays from different points across the
lens, focus on different spots of the optical axis. Distortion, where a rectilinear object
eventually appears curved. These aberrations can be integrated to a scale-causing
factor as for the wave amplitude. Thus an ideal lens-aperture system will have a
scaling factor of 1 for every point of the pupil plane. Possible deviations will cause
the scaling factor to diminish. Consequently, a pupil function integrates amplitude
and phase factors, thus making it a complex function:

P(z,y) = p(z,y)e?* @) (2.20)

So, the wave fronts equation when light enters the free-space just after the exit of
the lens becomes:

W' (2, y; 20) = Ao h(z, y; 20)p(x, y) e 2 @S (2.21)

Note: no convolution operation here, as the pupil function plays a scaling role.
Finally, when light reaches the image plane, the free-space impulse response func-

tion at the image plane z; convolves with the so far computed wave front equation.

This leads to the wave function at the image plane which is the 2D PSF (on focus):

PSF(z,y) = u'(x,y; 20) * h(z,y;21) = ( Ao h(z, y; z0)p(a, y)e? 2 @¥:H) ) x h(z,y;21)
(2.22)
The above process can be also done in order to compute the wave function in
different planes from the image focus plane. Hence, a 3D PSF is formed. In reality,
though, a single 3D model is not sufficient to completely describe image formation
throughout the 3D object space. This is because PSF is often a function of the
location of the point source in the object space. Thus, in reality every point of the
object corresponds to a different PSF. A system, the Point Spread Functions of which
behave in this way, is called a shift-variant system.
Different approximations can be made, depending on the nature of diffraction,
the possible consideration of shift-variance and the amount and degree of effect of
possible aberrations, if the latter are taken into account.
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Assuming there are no aberrations and that the Fraunhofer approach is valid, a
more specific PSF can be built. A pupil function for a circular aperture of radius «
through which light is transmitted unaffected has the value 1 inside the area encom-
passed by the aperture in the axes system z’,3'. The polar coordinate translation is:
r=+/a? 4+ y? and 0 = arctan(y’ /x’)

At the image plane the axis system (x,y) is translated in polar coordinates as
p=+z?+y? and ¢ = arctan(y/z).

According to Principles of Optics by Born and Wolf, as stated in [16], the diffrac-
tion pattern wave function (amplitude) is the Fourier Transform of the pupil function.
From this it follows that:

a 2 .
D(z,y) = /0 /0 e Tikrpcos(0=v) gy (2.23)

, where k = 27/ (wavenumber)
Using the Bessel function of the first kind and order 0, the above equation can be
modified as:

D(p)=2nC /Oa Jo(krp)rdr (2.24)

, where C: constant

PSF is in terms of intensity of light which is proportional to the squared amplitude
of the wave function. So, from the above equation arises that:

2

PSF(p) = (2.25)

27rC/ Jo(krp)rdr
0

For an aberration-free and shift-invariant in all directions PSF, the 3D Born and
Wolf approximation can be useful [5]. The constraint is though, that the observed
fluorophore particle is located at the focal plane of the objective lens but right beneath
the coverslip. The model is expressed in the Kirchhoff’s diffraction integral formula
as:

PSF(z,y,z) =

1 NA ~LjkpRa(8A2)
2 2 JEPTZ\ "
/0 Jo {k w Vat+y p] e 2 pdp (2.26)

, where PSF: scalar, Jy: Bessel function of the first kind of order 0 (Bessel function
appear in problems of wave propagation), k: wavenumber of the emitted light in
vacuum (k = 27/\), n;: refractive index of the immersion oil

The Gibson and Lanni PSF model takes into consideration the consequences
of the optical path modifications that occur when light rays follow trajectories other
than that for which the optics were designed. It integrates the optical path difference
(ODP),which is the difference between ideal trajectories and real trajectories, taking
into account parameters determining path fluctuation: thickness (¢,;) and refrac-
tive index (nq;) of the immersion oil, thickness (t4) and refractive index (ny) of the
coverslip and the thickness (¢s) and refractive index (ns) of the sample.

Any deviation of any of these parameters from the optimal values for which the
optics were designed will cause spherical aberrations. The resulted prolonged focus
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spot has the effect of an assymetry in the 3D PSF on the depth axis. In the case of
microscopy, this is a common phenomenon which increases as the object focal plane
moves deeper into the sample, thus inducing more refractive index mismatches inside
the sample as well as between the sample, the coverslip and the immersion medium.
Spherical aberration is the reason why PSF is shift-variant on the depth axis.

As for the Gibson and Lanni model, it incorporates shift-variance only in the
depth axis. It can be seen as a generalization of Born and Wolf in the sense that the
fluorophore particle can be located at any depth within the sample. It also considers
three optical layers (sample-coverslip-immersion) instead of two (glass-immersion).
The model description again in the Kirchhoff’s diffraction integral formula is:

2
V'QCQZW] W (p) (2.27)

C 1
PSF(x,y,2) =| Zd/O Jo [k‘ap pdp

, where PSF: scalar, C': a normalizing constant, z4: tube lens-detector distance, W (p):
phase aberration induced:

2.2.2 Experimental PSF

Prediction of all the various phenomena that take place in the optical train is proved
to be a complex problem. Thus, the existing theoretical PSF models do not integrate
every optical path deviation from the ideal path. The problem of diffraction pattern
formation was examined using the concept of point sources of light. In fact, this is
abstract, since there cannot be an infinitelly small object. However, from the concept
of optical system resolution, it follows that a sub-resolution object can be considered
as an infinitelly small object. Hence, depicting such an object, a real PSF can be
built, which incorporates all optical train defects.

For that reason, several methods have been proposed, such as using quantum dots
and fluorescent microbeads. Quantum dots are semiconductor particles with size of
some nanometres that emit light of specific frequencies if electricity or light is applied
to them. The disadvantage, though, is that good preparations of these are hard to
obtain as they easily form aggregates, thus not being "single points" anymore.

[15] Fluorescent microbeads are of various materials. Even though in theory, they
must be as small as they can be, this is impractical because these beads exhibit low
Signal to Noise Ratio (SNR) and meagre signal. Thus, they are usually chosen to have
size more than half the resolution of the optical system, such as 150 nm. A sufficient
fluorescent signal by beads is possible either when they aggregate or when they receive
a bigger quantity of excitation light. Big aggregation hinders the determination of a
single bead because of the overlap by each single bead diffraction pattern. As for more
intense excitation light, this has the danger of causing untimely photobleaching to
the beads, thus diminishing their life span. Since the level of the light signal intensity
is meagre, photon noise of the bead image capture is very pronounced which means
a very low SNR.
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2.3 Modulation Transfer Function - Optical Transfer Func-
tion

2.3.1 Physical meaning and PSF-MTF-OTF relation

As examined in Seq. 2.1.2 - NUMERICAL APERTURE AND RESOLUTION, the distance
between the diffraction pattern crests of the images of two point sources of light,
defines the resolution of the optical system. So, expanding this concept to more point
sources aligned in a straight line, it is safe to say that the closer to each other they
are, the more the corresponding diffraction patterns are overlapped, deteriorating thus
the depicted contrast among the point sources. Further expanding to parallel lines
of point sources (line sources) in a way that they form bright and dark stripes upon
a plane parallel to the image sensor plane (square wave), the same conclusion can be
made. The depicted line sources will exhibit an overlap of their diffraction patterns,
thus diminishing the contrast among them. Consequently, the imaging lens, camera
sensor, and illumination play key roles in determining the resulting image contrast.
The lens contrast is typically defined in terms of the percentage of the object contrast
that is reproduced. The sensor’s ability to reproduce contrast is usually specified in
terms of decibels (dB) in analog cameras and bits in digital cameras.

The term modulation of Modulation Transfer Function (MTF) is exactly the
above-mentioned contrast. How well the optical system can transfer this contrast
/ modulation from the object to the image, is the second term. As for the term func-
tion, it is so because modulation transfer depends on the particular distance among
the aforementioned line sources (to keep the last example) or otherwise the spatial
frequency of these line pairs. A line pair is a bright (white) and a dark (black) stripe
altogether, mathematically forming a pulse of light. The unit of spatial frequency is
line pairs per milimeter or cycles per milimeter (Ip/mm or cycles/mm).

To express the contrast percentage of an image of bright and dark stripes, the
maximum and minimum intensity values must be used. A full-bright stripe is 1-
valued, whereas a full-dark stripe is O-valued. The contrast expression is given by:
[14]

I — I
% Modulation = —"*——"" x 100 (2.28)
Imam + Imzn

Assuming no resolution loss by the optical system, it is clear that the modulation
transfered is 100%. That is the optical system reproduces the contrast of the object
in its whole 100%.

At a particular spatial frequency, the transfered contrast of an object depends on
its off-(optical)axis distance. Specifically, the MTF decreases as the object is farther
from the optical axis. Also, as the line pairs per milimiter get more and more, there
is a limit where the optical system cannot anymore resolve them. At this point the
modulation becomes 0%. The corresponding spatial frequency is the cut-off frequency.

A said above, changes in depicted contrast of an object pattern are described by
MTF. Yet, optical system aberrations also cause changes in PSF intensities which
in turn result in a linear lateral shift of the object pattern. This pattern-phase
shift is desbrived by a function called Phase Transfer Function (PTF). Altogether,
these contrast changes and phase shifts are incorporated in a complex function called
Optical Transfer Function (OTF): [18]

OTF = |OTF|e’™F = MTF TF (2.29)
OTF can also be defined in terms of PSF, as :
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OTF(v) = / PSF(z)e ™" dy (2.30)

, where x is the spatial coordinate in the image plane.

This equation implies that OTF is the Fourier transform of PSF. Intuitively, this
can be comprehensible and be deduced from the below thinking using only the MTF
(no lateral phase shifts of the image pattern): The point source acts like an input
impulse to the system, resulting to an impulse response which is the PSF. It is known
that, mathematically, in order to build an impulse, "all" frequences are needed. So,
the Fourier Transform of an impulse is a plane wave, integrating infinite frequences.
Ideally, if the PSF was identical to the point source, that plane wave would be the
Fourier Transform. But since the PSF is different incorporating a resolution limit,
instead of a plane wave, only a range of spatial frequencies will contribute to the
formation of the PSF. Yet, these contributing frequencies form the MTF. The upper
boundary of this spectrum depends on the above-mentioned resolution limit. As for
an ideal aberration-free PSF, the cut-off frequency of its MTF is: 1/2\f.

2.3.2 Experimental measurement of MTF - slanted edge

Generally, there are 3 ways of measuring a MTF. Either by using a square wave as
examined in 2.3.1 or by a sine wave (smoother changes between dark and bright areas)
or by the slanted edge method. What is examined below is related to the slanted edge
method.

From the aforementioned relation between inpulse response and infinite frequen-
cies, it is safe to say that in order to measure what band of spatial frequencies are
resolvable by an optical system, its output with an impulse as input must be found.
Specifically, the impulse is a 2D signal, allowing thus the imaging measurement of this
line profile which it turn gives the line spread function. In practice, the theoretical
impulse is not directly feasible as it requires zero width and infinite intensity. So,
eventually the measurent of the MTF is done indirectly with experimental processes
termed edge-gradient methods. [7]

Firstly, an edge profile is measured. An edge profile is ideally a step function. In
the case of images, it is a dark 2D area followed by a bright one, forming thus a "step
of light". The reproduced edge is translated through the optical system in a degraded
degree. Specifically, there is no immediate change in light intensity from dark to
bright, rather a smoother one. So, the acquired image of the edge can be called an
edge spread function (ESF). The terms edge profile and ESF are used alternately.
Then the computation of the discrete first derivative of the ESF will give the PSF.
Finally, the modulus of the Fourier Transform of the PSEF will grant the wanted
MTEF.

The above method can be executed with more than one ways. An edge profile
can be taken from picturing a very precisely designed edge for this purpose, thus
with no deformations along the edge. As a second way, an edge feature from image
data can be captured providing the wanted edge profile. However, this requires a
captured edge of sufficiently high optical quality, meaning negligible noise and clear
edge details.

Regarding the first approach, in order to capture the edge profile, it must be
sampled. As a first thought, the edge can be sampled parallel to the pixel columns
of the camera sensor. However, the theoretical resolution of a sensor array is not
sufficient to discern the luminance change of the edge with sufficient resolution. There
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can be different digitization occasions depending on the sensor. This can be visualized
in Fig. 2.14.

FIGURE 2.14: The true analog ESF (along 1 spatial direction for
simplification) (top left) will be digitized but with a quantization error
which depends on the number of pixels in the horizontal axis of the
sensor and the single pixel size. Top right, bottom left and bottom
right show 2, 0 and 1 samples respectively which define the edge.

Source: http://dougkerr.net/Pumpkin/articles/MTF_Slant_Edge.pdf

SLANTED EDGE PRINCIPLE

[17] Fortunately, "fake" enhanced resolution of the sensor can be realized by ro-
tating the edge profile (usually by 5 degrees), thus forming an angle between it and
the pixel grid (Fig. 2.15).
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FIGURE 2.15: Every center a pixel is assumed the role of a sample of
the ESF

Source: http://dougkerr.net/Pumpkin/articles/MTF_Slant_Edge.pdf

Since every evenly spaced vertical line, parallel to the edge, has the same lumin-
cance, it can be observed that every center of a pixel is assumed the role of a sample
of the ESF. Hence, this "trick" provides a much better sampling of the ESF. By apply-
ing trivial trigonometric equations: Spacing of ESF samples = pixel pitch xsin(a),
where «a is the angle of rotation of the edge profile. So, the smaller the pixel pitch
and the angle are, the better the sampling is. Because, though, the pixel detectors
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actually do not pick up the luminance at a point (dots in the example of Fig. 2.15),
but rather respond to an average of some sort over a region (bin) approaching the
domain of the pixel, certain special steps have to be taken in the evaluation of the
ESF from the set of collected pixel detector values (examined below).

STANDARDIZED MTF EVALUATION METHOD

The whole process of measuring the MTF is standardized by the ISO 12233 and
implemented by little or no modifications to the latter: [7]

e ROI identification: First, the region of interest (ROI) (m lines, n pixels) sur-
rounding the edge is selected. The luminance from each RGB photosensor of
the ROI is measured (a pixel consists of 1 red 2 green and 1 blue photosensors).

o OECF transformation: The image data are transformed with an opto-electronic
conversion function (OECF). This function is a relationship between input lu-
minance and digital output levels for an opto-electronic digital image capture
system.

e Luminance record computation: A luminance array is computed as a weighted
sum of red, green, and blue image records at each pixel.

e Derivative of each data line: The 1D discrete derivative of each line along
the horizontal axis of the sensor is taken. In that way, the edge location and
direction can be estimated. Note: the derivative of each line gives the 1D PSF
which with the rest PSFs form the LSF.

e (Centroid computation for each line: The centroid of a straight 1D line is actually
its middle point. It is a translation of the line "weight". When, though, each
point of the line has an intensity integrated to it, the centroid is found in a
different point along the line depending on the intensity distribution. In the
case of a first derivative of a line, the centroid is located upon or near the spike
of the derivative.

e Linear fit of the centroids: In order to define the slanted edge, all the locations
of the centroids are fitted with a linear equation.

e Projection of the image data along the edge direction: As stated in the SLANTED
EDGE PRINCIPLE of this subsection, each pixel or more precisely each element of
the luminance arrays, plays the role of a sample for the ESF. So, with a linear
fit to line, a 1D "super sampled" ESF is formed.

e Data binning with 1/4 of original sampling rate: The previous step results in a
4x oversampling. At this step, a binning process (replacing of each 4 samples
with a value that represents them) is done with a 1/4 x sampling rate.

e Derivative of ESF and windowing: This grants the LSF.

e Fourier transform of LSF: A discrete FT of the LSF (1D LSF = PSF) gives
the OTF, as examined in 2.3.1.

o Modulus of OTF and normalization: Asthe wanted MTF describes a percentage
of modulation transfer, the modulus of the OTF must be normalized in range
0-1.



24 Chapter 2. Background information and theory

2.4 Image formation and deblurring technologies

2.4.1 Sources of image degradation

Through different stages in the opto-electronic digital image capture system, many
aspects of unwanted noise are introduced. The sources of degradation to the image
can be classified as: [22]

e Photon shot noise: Due to the particle nature of light and the irregular distri-
bution of photons among the pixels, some fluctuations of photon events occur.
This is heavily observed when the light of the environment of the object is of
low intensity. Random arrivals of photons can be modeled with Poisson distri-
butions.

e Thermal noise: Electronics of the imaging system while in operation cause
thermal agitation of electrons that were previously at equibrium. This results in
faulty pixel electron charge measurements. The random activation of electrons
due to heat can be modeled with Gaussian distributions.

e Scatter: Specimens with high heterogeneity of refractive indeces cause a scat-
tering of light that because of its intrinsic complexity cannot be predicted and
therefore to be modeled. Scatter increases as specimen thickness.

e Glare: Imperfections or misalignments of the components across the optical
train cause a glare effect that can corrected with material and alignment im-
provement.

e Blur: Diffraction phenomena put a limit in image resolution. So, when an
optical system magnifies an object close to its intrinsic resolution, a blurred
version of the true object is observed. Also, blurring happens when light from
out-of-focus parts of the sample is recorded on the focus image plane and/or
light of adjacent areas mix among each other. This form of noise is independent
from the above-mentioned types of degradation. Blur removal is possible with
the use of deblurring techniques.

Currently used microscopy technologies are targeted in different aspects of blur
removal. One target is the eradication of effects related to diffraction phenomena or
more specifically the improvement of the Airy disk so as to have a smaller radius and
the surrounding diffraction pattern so as to exhibit ripples of lower intensity. This
goal has been achieved by the nobel-awarded Super Resolved Fluorescence Microscopy
technologies. They allow images to be taken with a higher resolution than the diffrac-
tion limit of an optical microscope, enhancing the resolution from 200 nm to 100 nm.
Two different methods accomplish the super resolution goal; Stimulated Emission
Depletion Microscopy (STED) and Single-Molecule Microscopy, just for mention.

The other target is the removal of defocused light from the focused image and
of superpositioned light of on-plane neighboring areas. For this goal there exist two
solutions: Confocal Microscopy and Deconvolution Microscopy.
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2.4.2 Deblurring technologies

CONFOCAL FLUORESCENCE MICROSCOPY

[20] The basic element of a fluorescence confocal microscope is a pinhole that is
place before a light detector (i.e photomultiplier tube or PMT). This pinhole allows
only light coming from planes very close to the focal one to pass through. The
advantage arising from this is that lateral as well as axial resolution are enhanced.
One disadvantage is though, that blocking a significant percentage of the incoming
cone of light leads to low signal intensity. This can be solved by long exposures
to fluorescent light. However, this has the danger of quicker photobleaching, thus
allowing less time for fluorescence observation as well as photoxicity phenomena.
The latter incorporate the toxic danger of some fluorochromes when the are attached
to cells under study. Light activates some processes within the labeled cells that
eventually compromise them entirely and damage their subcellular components. This
danger increases as fluorochromes are repeatedly or heavily exposed to light.

WIDEFIELD FLUORESCENCE DECONVOLUTION MICROSCOPY

[22] An alternative way to remove the out-of-focus light is to record images at a
series of focal planes using a widefield microscope and then use a detailed knowledge
of the imaging process to correct it by computer image processing. Apart from
defocused light, superpositioned light from on-plane neighboring areas has a blurring
effect across this single plane. This happens since PSFs of adjecent points on a
plane mix with each other. Fortunately, altogether the defocused and the on-plane
superpositioned light can be restored back to their area of origin. Restoration has
the meaning of reversing the process of blurring and ultimately the effect of the PSF
on the image (either on a 2D or a 3D image).

The image of an object can be divided in individual areas. Through the linearity
property of optical systems, the image of all the individual areas is equal to the
ensemble of the images of each area seperately. This means that:

Image(object) = Image(a; + a2+ ...+ ay)
= Image(ay) + Image(az) + ... + Image(ay)

, where a corresponds to a particular individual point.

Since, it is known that the depiction of an individual area of a particular lumin-
cance is spreaded by the weights of the PSF of the optical system and assuming a
shift-invariant PSF, it can be deduced from the above equation that:

Image(object) = Zal ® PSF + Zag O PSF+...+ Zan ® PSF
Aq As An

=a *x PSF

, where ®: element-wise multiplication, a: vector consisting of all the ’a’ areas of the
image, *: convolution operation sign, Ax: number of elements of aj area; same size
as PSF.
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Thus, the convolution result y (with an omnipresent noise) of a true underlying
fluorescent signal  with the PSF h is given by:

y=hxz+n (2.31)

, where the images and the noise are represented by matrices.

So, in order to reverse as said the above process of the convolution of the object
with the PSF, a de-convolution process must be realised. Deconvolution methods
vary, as deconvolution is not just a simple step back to the original underlying im-
age of the object to be depicted. These methods are computationally complex to
some significant degree and so a trade-off between restored image quality and time
consumed to produce it has to be determined.

Brief explanation of convolution: Let it be two matrices z and y. = will be con-
volved with y and the result will be z. y has to be at most the size of . The operation
is as follows: y matrix or else the convolution kernel ""scans' = in a top to down and
left to right direction. This "scan" is defined as the element-wise multiplication of x
and y elements and the assignment of the sum of the multiplications to the central
element of the sub-matrix of z that is scanned at that moment.

The discrete convolution is mathematically defined as:

ylpl = (@ xh)[p] =) a[r]h[p — 7] (2.32)
N3
, given at a 3D location p € IN?
The above equation can be transformed via notation of linear algebra into a more
easily read one:

y=Hzx+n (2.33)

, where n: additive noise

, €,y: vectors corresponding to true and observed image respectively. For a 2D image
a vector consists of the concatenation of the image rows.

, H: circulant matrix corresponding to the convolution operation.

It is not needed to examine further this concept of the convolution with a circulant
matrix, since for deconvolution of large or a big group of images it is way too time-
consuming for realistic applications.

Instead, the discrete FT of the Eq. 2.31 is used mostly in the deconvolution
algorithms due to higher speed of computation and less used memory compared to
non-FT solutions:

V=HoX+N (2.34)

, where the capital letters indicate the corresponding Fourier Transforms. Note: F'T of
a convolution in the spatial domain gives element-wise multiplication in the frequency
domain.

As Fourier analysis states, a periodic signal is considered an infinite sum of sines
and cosines of different harmonic frequencies with each sine and cosine contributing
with varying amplitude. This can be extended to non-periodic signals, assuming
their period is allowed to reach infinity. So, generally F'T gives all the frequencies
that contribute in building the original signal. In that notion, there exist another
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transform that uses signals limited in time and frequency, which are termed wavelets,
in order to decompose a signal to its contributing wavelets. This transform is called
Wavelet Transform. When a wavelet transform is executed, one wavelet from a wide
family of wavelets is used. The used wavelet is scaled in time in order to handle
higher or lower frequencies of the signal to be decomposed. Wavelet Transforms are
used in the algorithm explained at the end of this section (FISTA).

Thinking about solutions to the deconvolution problem, the first thing that comes
to mind is to modify Eq. 2.33 (assuming the noise power is low) as @ = H~'y. This
naive approach is proved not to work. The reason is that the inverse problem of de-
convolution is known to have a high condition number (rendering it an ill-conditioned
problem) which means that a small error in the input causes a big error in the output.
This means that from a set of observed images with little differences among them,
the estimated "true" images of each observed one will differ significantly. Specifically,
the explicit solution is a poor choice since it is sensitive to any noise in the observed
image. From the above, it occurs that there is no single solution to the naive inverse
deconvolution method.

Thus, the best solution is to find the estimate which provides the best approxima-
tion of the true image. To know if a good estimate has been found, the deconvolved
image is convolved again with the PSF and it is expected the difference of the ob-
served image with the re-convolved image estimate to be infinitesimal in some way.
This difference can be computed in many ways which will be examined in the next
chapter.

Generally, the best estimate minimizes a cost function which corresponds to the
aforementioned difference or otherwise residual:

€)= y— Ha || 2 (2.35)

Continuing with the FT-form of the cost function, the argmin €(z) is to be

x
found, or else the x that makes the first derivative of the cost function to be zero.
It is true that:

C(x)=(y—Hx) ' (y—Hz)=yly— 2" H 'y —y"Hz + 2T H Hx (2.36)
, where T denotes the transpose matrix.

From this it follows that:

9% (x) -1
o T Y (2.37)
or in the Fourier domain:
LY
X == (2.38)
H

As it can be seen, this solution corresponds to the aforementioned naive solution,
but in the frequency domain. Since, the FT of the observed image is divided by
the FT of the PSF which may contain close to zero elements, it is very probable for
the estimate to exhibit very large values, thus resulting in amplyfying the already
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existing noise. A better approach is to add some constraints (regularization) in the
cost function which helps easing noise amplification problem.
All the algorithms explained below are in agreement with [15] and [9)].

TIKHONOV REGULARIZATION (TRIF)
The cost function is modified as:

Ca)=lly—Ha | >+ x| z| 3 (2.39)

, where A is the regularizing parameter that balances the contribution of the two terms
and penalizes absolute high values of the solution. It consists a trade-off between data
fidelity and regularization, since transition in absolute high values might be image
details as well as noise. So, higher A gives a smoother image. Minimization of such a
problem (where more than one unkown terms appear) can be solved with Lagrange
multipliers. The solution is given by:

x=(HTH+XI)"'HTy (2.40)

, where I is the identity matrix.
This can be expressed in the Fourier domain as:

HY

X:?
HH + )1

(2.41)

, where H denotes the conjucate of H and 1 is a matrix of ones. When equations
refer to the frequency domain, ® is omitted for simplification.

REGULARIZED INVERSE FILTERING (RIF)

This method uses a cost function that when minimized it imposes smoothness on
the estimate. That is accomplished by penalizing high values of the 2" derivative of
X. That is, the cost function becomes:

Ca)=lly—Hax | *+X]| Lz | 3 (2.42)

, where L is a differential operator, like the Laplacian operator V2.

Differentiation of an image acts as a high-pass filter, so minimization also of the
2nd term of the @ (x) ends up in a smoother solution. But yet again, the "amount" of
smoothness imposed, depends on A. Again the method of Lagrange multipliers gives
the solution:

e=H"H+XLTL)"'Hy (2.43)
In the Fourier domain, this is expressed as:
aY
HH + \LL
Note: this FT solution gives a generalization of the classic Wiener filtering so-

lution. To derive Wiener filtering solution, A is defined as 1/0,,, with o, the noise
variance. Also LT L must impose a whitening transformation on .

X = (2.44)
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WIENER FILTER

The Wiener filter integrates an estimated Noise-to-Signal power ratio (NSR). The
solution is expressed as:

ay

X
HH + NSR

(2.45)

CONSTRAINED ITERATIVE ALGORITHMS

Inverse filtering algorithms suffer from sensitivity to the PSF. Small errors in the
estimation of the PSF may result in major artifacts in the solution. An alternative
to this, is the option of iterative methods. They minimize a residual/cost function as
well as inverse algorithms do, but by generating a series of improving approximate
solutions. Often, the Wiener Filter solution is used as the initial guess. The advantage
of them in contrast to the inverse solutions is that estimates exhibit better stability
and less sensitivity to errors of the PSF. The disadvantage is though, that they are
computationally intense.

LANDWEBER (LW)

This algorithm minimizes the unregularized €'(z) || y — Hx ||? using the iterative
gradient descent approach. More specifically, one way to find the local minimum of a
general function F'(x) starting from a particular point a, is to iterativelly take steps
proportional to the negative of the gradient of the function at the current point. This
is because F'(x) decreases faster if we move against the direction of V F'(a)

So, starting with a and with b being the next point closer to the local minimum
of F(x) (or global if F(x) is convex), we reach b via: b = a —yVF(z), with v being
the step size or relaxation factor describing the speed of convergence of this method.

Thus, this can be expanded to more iterations and with an initial guess xg and
the sequence xg,x1,%0,...,r, we take the gradient descent general solution:

Tnt1 = Tpn — WMVE(xy), n>0 (2.46)

The importance of the v step size can be explained with the concept of the level
sets. A level set is a set where the function takes on a given constant value. This
can be visualized in Fig. 2.16. In the center, the minimum of the function resides.
In this case, the wider the “circle”, the bigger the value of the function. So, taking
little steps each time against the derivative of the function in a point of a “circle”,
directs us to the minimum in the center. Here, we can see that the size of the step
plays an important role, in the issue of convergence to our solution. Specifically, A
small step-size guarantees convergence, but leads to very slow convergence, meaning
more time to reach the center. On the other hand, A big step leads to faster but less
stable convergence (more like circling around the center).

To continue with the gradient descent solution the gradient of %'(x) must be
computed.

V€(r)=-H'y+ H' Hz = —H" (y — Hx) (2.47)
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lllustration of gradient descent on a series of level sets. &l

FIGURE 2.16
Source: https://en.wikipedia.org/wiki/Gradient_descent

The same applies for vector functions, so substituting the gradient in the Eq. 2.46
gives:

Tpi1=an +yH (y— Hz), 0<7y<2/o} (2.48)

, where o1 the largest singular value of H, that is \/Apae(HTH)

When Fourier Transforms signals are inversed, the spatial-domain result exhibits
some overshoots and undershoots, especially in high-contrast areas where the signal
drops or rises abruptly. When undershoots happen they may cause the signal to have
negative values at some points. For this reason, a non-negative projection must be
imposed to the values of the result:

P wry{x} = maz(z,0) (2.49)
Hence, the final form of the solution becomes:

Tni1 = Pypry{ an+yH (y—Hzn) }, 0<y<2/o} (2.50)

, where .Z 1. inverse Fourier Transform
For the sake of speed, the above equation can be modified as below. In that way,
each iteration performs fewer operations. Thus, the solution becomes:

Tpp1 = Ppny{ Azn+G }, 0<y< 2/03 (2.51)

, where A=T—~yH"H and G =~vyH"y
In the practical form for algorithms, this is expressed as:

Tnt1 = Pyi){ FHAX +G} Y, 0<y<2/o? (2.52)

, where A =1 — ’yﬁﬁ and G = vﬁff
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ITERATIVE CONSTRAINED TIKHONOV-MILLER (ICTM)

ICTM uses iterative gradient descent to minimize the RIF cost function (Eq. 2.42).
The gradient of €(x) is:

VE ()= —H'y+ (H'H+ML"L)z (2.53)

Substituting in the gradient descent equation (Eq. 2.46) with projection to R |
gives the ICTM solution:

Tni1 = Pgn{ an+y(H y — (H'H+ AL"L)z,,) } (2.54)
As in the LW solution, the ICTM solution is modified as:

Tpt1 = Pyl Azn +G } (2.55)
, where A=T—~(H"H +\L"L) and G = vH"y
In the practical form for algorithms, this is expressed as:
Tni1 = Pgni F HAX +G} } (2.56)
, where A =1 — ’y(ﬁlﬁl + /\Eﬁ) and G = ’yEY
JANSSON-VAN CITTERT (JVC)

The Eq. 2.33 can be manipulated in the following way:

y—Hr=0=>y—-Hrx+zx=x (2.57)

In iterative form, along with the use of some weighting coefficients and the non-
negative projection, the JVC solution is:

Tpp1 = Py en+wo (y— Hz) } (2.58)
, where W: weighting coefficient matrix defined as K[ 1 — B2j |:nn — # ],
A,B: min and max values of x; respectively, K: constant
In the practical form for algorithms, this is expressed as:
Tpi1 = Pypnf e +wo F H{Y —HX} } (2.59)

This algorithm is quite straightforward and simple, but it exhibits slow conver-
gence to an acceptable solution. This might mean that more iterations are needed.
However, due to the fact that JVC does not take into account the additive noise of
the image, as iterations increase it is possible that resonance effects will be created
and constructive image artifacts will be generated. To partially overcome these prob-
lems, the initial guess is filtered with a Gaussian or a Wiener filter and each of 4-7
iterations is smoothed with a Gaussian filter of variable width.

GOLD

This algorithm manipulates the Eq. 2.33 in a way to form an iterative multiplica-
tive solution. Note: the multiplications and division are element-wise.
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Y Y
Yy T = = R =T (2.60)
= Tnp1 = Py $n}§x } (2.61)
In the practical form for algorithms, this is expressed as:
Y

The same conclusions of JVC apply to the GOLD algorithm, although multiplica-
tive formulation of GOLD gives a more rapid convergence than JVC.

RICHARDSON-LUCY (RL)

The previously examined algorithms did not took into consideration any existing
noise. But, the statistical information of the noise in the observed image y can be
used in order to reconstruct a more precise image. To find the estimate x, one must
answer to the question: Which image of the very many possible ones, is the most likely
to be the desired underlying true image x, given the noisy image y?. The meaning of
probability is actually in terms of a normalized frequency of photon events in each
image pixel.

The above z and y symbols denote the image matrices. So, the unknown =z is
expressed as:

T = argmax p(x|y) (2.63)
x

, where T denotes the estimated image x.

Thus, the estimate is the image with the Maximum A Posteriori (MAP) proba-
bility.
It is known that:

_plr,y)  plyle)p(z)

p(xly) = = 2.64
(@) p(y) p(y) (264
From the two above equations it follows that:

T = argmax p(y|x)p(x) (2.65)

This is equal to minimizing the negative logarithm of the argument, providing the
cost function:

€ (y,x) = —In p(y|z) — XNin p(x) = Ly, x) + AQ(x) (2.66)

, where \: regularization parameter, Q(x): smoothing function.

There are two subfamilies of algorithms. Those that do not use the regularization
function and follow a Poisson-distributed noise and those that use the regularization
function but follow a Gaussian-distributed noise for the sake of math simplification.
Richardson-Lucy belongs to the first category, which minimizes the likelihood y|z,
thus making it a Maximum Likelihood Estimation (MLE) algorithm.

In the RL concept, every image pixel follows the Poisson distribution, that is the
probability of obtaining a noisy pixel y,, given its noise-free averaged value p,,, which
is expressed as:
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Y —H
mm e m

P(Ymlpm) = (2.67)

Ym!
Every pixel is statistically independent from the others, so the probability of the
whole image is equal to the product of the individual probabilities, giving:

luy’m efiu’m
p(yle) = p(ylp) = [T pmlpm) = [T =—— (2.68)
m m Ym:
Substituting the above expression into the cost function € (y,z) = —Inp(y|z)
gives:
Cg(yvﬂ) = Z ( P = Ym U1 fm, + 10 Yy ! ) (2'69)

m
Since p is the image of the noise-free averaged pixel values, it is true that p is
actually the noise-free convolution of the true image x and the PSF h (see Eq. 2.31).
That is: u =y * h. Since, though, the € (y, 1) contains a sum, it is better to express
the convolution (for a single image pixel) in the sum form as: p,, =Y. hj_m 2y
l

So, by setting the derivative of the €' (y, z;) to zero, with respect to z;, it follows
that:

OC (y,x1) Y L
e S (hml Shoo ) 1=0 (2.70)

l

Manipulating the above equation in order to convert it to an iterative multiplica-
tive form, it gives:

oEH — K gk (Z (Poms %) ) (2.71)

l

, where K: normalizing energy constant.

This can be written back again to the convolution and matrix notation, as in this
way the solution can be executed in the Fourier Transform domain:

k+1 _ K T Yy
=2k o h *<h*:ck’) (2.72)

, where multiplication and division are element-wise and h” is the flipped PSF matrix.

From the above solution it is apparent that the implementation of the RL algo-
rithm is easy as long as no extra parameters are included. Since noise is integrated in
the algorithm, RL is generally more robust to noise than the aforementioned meth-
ods. However, RL exhibits very slow convergence to an acceptable image-solution,
because it takes more computing time per iteration than the previously mentioned
classical algorithms.
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RICHARDSON-LUCY TOTAL VARIATION (RL-TV)

As examined in the previous methods, a regularization in the final solution helps
counterbalancing noise amplification. The same can be applied in the RL solution.
Specifically, regularization is achieved by minimizing the total variation of the image
which is defined as the integral of the absolute gradient of the image. To put it
practically, the total variation of a 1D signal is the length of the curve defining
the signal itself. This can be expanded for images too. So, to derive the solution-
image, a mutual minimization of the cost function of the RL (Eq. 2.69) plus the total
variation of the image must happen. In a convolution and matrix notation along with
a regularization factor, this can be expressed as:

C(x)=hxx—yln(h*z)+ )| Dz | (2.73)

, where D: 1% order differentiation operator of x, \: regularization parameter.
To derive the minimized solution from the ¢’ (r) a multiplicative form of the
gradient descent method is used:

Tp11 = 2p[ — AVE (21)] = (2.74)
1
:>xk+1:xk®hT*(h3xk)® 15 o (2.75)

, where gg: the derivative of a regularized version of || Dz ||;.
Note: The L1 norm penalization is known to better preserve image discontinuities
compared to L2 norm.

FAST ITERATIVE SOFT-THRESHOLDING ALGORITHM (FISTA)

Alternative regularization terms to the cost function of RIF (Eq. 2.42) can be
considered. In particular, sparsity (regularization) constraints in the wavelet domain
have proven to yield better preservation of image details and discontinuities. The
associated cost function is:

C(x)=|y—He | +A | Wz | (2.76)
, where W: a Wavelet Transform operator
Due to the nonsmoothness of the 1 norm, gradient-descent algorithms cannot be

used. However, the problem can be solved efficiently by fast iterative soft-thresholding
with the following iterations:

Zni1 = 8n —YHT (Hs, —y) (2.77)

Tny1 = W' T (Wzny1,70) (2.78)

, where 7 (-,7): a soft-thresholding operator with threshold 7. In general, soft-
thresholding means that a signal is srunk into a region determined by the following.
When a particular signal value z € [—7,7], it becomes 0. When = > |7|, then it
acquires the value sign(x) - (|x| — 7).
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pn+1:%(1+\/1+4p%) (2.79)

Pn — 1
Pn+1

Sp+1 = Tp41 + (mn-i-l) — Tn (280)

Again, it is better the equations containing convolution operations to be expressed
in the Fourier domain.

BLIND DECONVOLUTION

All the previously examined algorithms demand the knowledge of the PSF. But
when acquiring the PSF is proved to be difficult for reasons of any kind, then an
alternative approach is the use of blind deconvolution methods. They are termed
"blind" because they try to estimate the true image out of the blurred one without
knowing the impulse response function of the optical system (PSF). So, in order to
start making guesses about the estimate, they must apply some constraints both
on the estimate and the PSF. The constraints on the estimate may have the form
of non-negativity, finite support with the latter referring to the smallest rectangle
within which the true object is contained. Finite support has effect on fluorescence
and astronomy images where objects are easily identified. The constraints on the
PSF may have the form of symmetry, finite support, known parametric form with the
latter meaning a particular type of blurring like defocus or camera motion blur.

Implementations of this category of algorithms may vary. In the next chapter, the
blind deconvolution is realised with the algorithm explained below (as implemented
in the Image Processing Toolbox of MATLAB®). Again, « denotes the true image
vector, y the observed image vector and h the PSF image vector.

The algorithm uses the standard MLE algorithm described above, together with a
PSF estimation for each iteration. The object is computed, using the MLE estimation,
as follows:

k41 _ k T Y
= Kaboh *(h*xk> (2.81)

Using exactly the same mathematical reasoning, PSF is estimated by maximizing
the log likelihood function with respect to h, which gives:

1 y
k+1 __ k T
W= it *(x*hk) (2.82)

, where N is a normalization constant relating to the unit volume.

The following iterations take place as implemented in MATLAB. At first, estimate
and PSF predictions (j and k respectively) using the non-negativity constrained are
made:

j= '@(é}ﬁ){ T, + )\m,n(wn - wn_l) } (2.83)

k= gz(gﬁ){ h, + )\h,n(hn —hp_1)} (2.84)

As for the hg, a initial PSF is assumed. The critical part of the assumption is the
initial PSF image size, rather than an attempt to find a good PSF approach. Note: k
is normalised so that the PSF pixels sum to the value 1. Normalization is a necessary
constraint because given only input image, the algorithm cannot know how much
power is in the image vs the PSF.
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Az,n is a coefficient for the estimate prediction that is computed by:

Ao = agnﬁx,n/ﬂg,nﬁx,n , 0< A0 <1 (285)
Where:
Qpp =Ty —J (2.86)
and
ﬂx,n = ax,n—l (287)

Ahn is a coefficient for the PSF prediction that is computed by:

A = ag,m@h,n/ﬂ;;nﬂh,n ;o 0< A <1 (2.88)
Where:
Qppn = h,n -k (2.89)
and
Bhn = Qhn-1 (2.90)

The above computed estimate and PSF predictions are used in the Richardson-
Lucy algorithm that produces the deconvolved estimate of the true image in each
iteration.

GHOST ARTIFACTS, ZERO-PADDING AND EDGE TAPERING

Data subjected to a FFT must necessarily be assumed to be periodic. This implies
that borders at opposite sides of the image are implicitly adjoined once periodization
is taken into account. Consequently, structures near the borders of an image, once
processed, will spill over the opposite border, letting ghosts appear. For this reason,
images can be padded with zeros beyond all edges, resulting in an expanded image
with dark regions around. If the padding is sufficient the ghost artifacts appear only
in the dark regions. Finally, ghosts are cropped out. If it is not wanted images to be
expanded, another solution is to blur the regions near the boundaries with the PSF,
easing in that way the effect of ghosts after deconvolution. This technique is called
edgetapering.

RINGING ARTIFACTS AND EARLY STOPPING

As far as all the algorithms are concerned, as it was previously explained in the
Landweber algorithm section, inversed signals from the Fourier domain to the spatial
one exhibit some overshoots and undershoots in areas of discontinuities and high
signal jumps. Fourier Transform is performed in a discretized form allowing a finite
number of harmonics to contribute in building the original signal. It is apparent that,
the more harmonics included the better the representation of the original signal and
the less the oscillations. However, these oscillations do not die out as the number of
harmonics increases, but they reach a limit. This peculiar fact is known as the Gibbs
phenomenon and explains the cause of ringing artifacts in images being processed
with Fourier Transforms.

Hence, oscillations are imposed progressively on oscillations caused by FT. So,
in order to avoid ringing artifact amplification in high contrast areas of images, the
number of iterations is preferable not to exceed a limit which can be better found
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by eye-evaluation of the resulted image. Algorithms in general though, can integrate
such an early stopping criterion with the aid of quantitative metrics. Specifically they
choose to stop the iterations, when they "see" that no substancial changes are made
to the image.

2.4.3 Standard Processing Techniques

There exist simpler methods of enhancing the image quality [13] that differ from
the deconvolution logic. Deconvolution methods enhance image resolution, whereas
Standard Processing Techniques (SPT) enhance image contrast for visual purposes
only. In the next chapter, a humble comparison between deconvolution methods and
SPT is done in terms of quantitave metrics showing image quality enhancement.

e Histogram FEqualization: A histogram shows the number of occurences of each
single grayscaled pixel value of the image. It is an indicator of image contrast.
Images with overwhelming percentages of white or black pixels have a low con-
trast, meaning difficulty in detail determination. For this kind of images, an
imposed balance(equalization) between bright and dark pixels can provide the
wanted high contrast.

e Histogram Equalization in tiles: Because images contain smooth regions as well
as very detailed ones, histogram equalization in the whole image may destroy
the details. So, the equalization is imposed in subregions of the image called
tiles.

e Sharpening: A way of sharpening an image is using an image termed "unsharp"
mask. Specifically, the original image is inverted, giving its negative image.
Then, the latter is blurred to some degree and scaled to lower intensities. Fi-
nally, the addition of the original image with the scaled and blurred one is
proved to provide a more sharp image than the initial.

o Adjustment/Scaling: A grayscaled image is known to have pixel values in the
range [0, 1]. This range can be changed in a way that for a quite bright image the
most bright pixels are saturated in a lower value than 1 (decreasing brightness)
and similarly, for a quite dark image the most dark pixels are saturated in a
higher value (decreasing darkness). With this "trick" the initial image obtains
a high contrast profile compared to the prior one.

e Local Laplacian Filter: This filter uses the Laplacian operator which imposed
on (convolved with) an image gives a measure of the 2" spatial derivative of an
image. The Laplacian of an image highlights regions of rapid intensity change
which in turn can provide edge-detection information. It is desired intensity
changes to be more highlighted in high-contrast regions whereas less highlighted
in low-contrast regions.

2.5 Quantitative metrics of image quality and enhance-
ment

After the deconvolution process is done, evaluating the quality of the result can be
done in several ways.
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RESIDUAL NORM

By reblurring the true image estimate (z) after the deconvolution process, it
can be seen how similar this degraded image is with the original (y). If the reblurred
image is close to the original image, this means that the deconvolution process worked
effectively. The reblurred image is constructed convolving the deconvolution result
with the PSF (circulant matrix H).

Hence, the difference y — Hz is desired to be computed. This is called the residual
between y and Hz. In order to obtain a single scalar number index, the sum of the
squared values of the elements of the residual image [19] or equivalently the squared
£5 norm of the residual image is computed and normalized by the square root of the
total number of the residual elements. This is written as:

Residual Norm =

1
m |ly—Hz ||§ (2.91)

, where numel: total number of residual image pixels

I-DIVERGENCE

Based on the Kullback-Leibler divergence [8] which is a measure of how a proba-
bility distribution diverges from a second expected probability distribution, a metric
of difference between images can be computed. Probability distributions are substi-
tuted by the images which therefore gives a modified Kullback-Leibler measure, called
I-divergence:

. _ 2t i () oy
I—dwergence—%:{([{ )ij + 1 v, J <(H )ij y”)} (2.92)

, where subscripts 4, j denote the image pixel of the i-th row and the j-th column.

STRUCTURAL SIMILARITY INDEX (SSIM)

SSIM [23] is a perception-based model that considers image degradation as per-
ceived change in structural information, while also incorporating important percep-
tual phenomena, including both luminance masking and contrast masking terms.
Structural information is the idea that the pixels have strong inter-dependencies es-
pecially when they are spatially close. These dependencies carry important informa-
tion about the structure of the objects in the visual scene. Luminance masking is a
phenomenon whereby image distortions tend to be less visible in bright regions, while
contrast masking is a phenomenon whereby distortions become less visible where
there is significant activity or "texture" in the image.

The SSIM index is calculated on various windows of an image. The SSIM formula
is based on three comparison measurements between the samples of two windows
u and v (of Hz and y respectively) of common size N x N. These comparison
measurements concern luminance (1), contrast (¢) and structure (s). The product of
them produces the following formula in its final form:

(2pupty + €1) (200 + ¢2)

SSIM (u,v) =
W) = e 2t a0 + o2 + o)

(2.93)

, where p,,: average of u
1y average of v



2.5. Quantitative metrics of image quality and enhancement

39

variance of u

variance of v

Ouwy: covariance of u and v

c1,co: variables to stabilize divisions with weak denominators.
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with measuring and modelling
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The deconvolution algorithms GUI (deconv__gui.mlapp) is built on MATLAB® App
Designer and is supported on versions R2017a +. Later work will make it operational
for older versions. The GUI integrates a set of inverse and iterative deconvolution
algorithms along with some standard image processing techniques (SPT). The users
of the GUI can examine the effectiveness and efficiency of deconvolution and SPT
methods on their own images and PSFs but also on several a priori provided images
and PSFs through a set of prepared demo tests. The latter implement a comparison
of deconvolution algorithms in terms of convergence time with respect to the residual
norm as well as in terms of efficiency of measuring and modelling PSF methods.

3.1 Getting to know the GUI

4] I's Veil Ripper

Preparation

Title
T

PSF Gen
Import Image
Hot/ Dead Pixels Correction
Import PSF
—
Convergence

Standard Processing Techniques

Test Specific Algorithm 03l

TestInverse
NIF 02|
Wiener
RIF
Tiknonov 01l

Test lterative

imported files [ Image: unset

PSF: unset

BlindMLE T
Landweber

Gold

ICTM

FISTA

Richardso

RL-Total V.

Jansson-V.

Prepared Demos

Visual Comparisen of Algorithms

Slanted Edge vs Theorstical PSF - Metrics

Slanted Edge vs Theoretical PSF - Convergence

SPT vs Deconvolution

Images | fluorescence image 1v

PSF Measured v

Reset

FIGURE 3.1: Initial deconvolution algorithms GUI with highlighted

panels
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Fig. 3.1 shows the initial GUI with highlighted areas indicating the 5 operational
and informational panels. On the left side of the GUI, there are the panels that
are oriented for images and PSFs loaded by the users. The blue highlighted panel (
Preparation ) is responsible for image and PSF import. As an additional function,
the users can specify settings for constructing a PSF. The red highlighted panel (
Operations ) is about the deconvolution convergence depiction and SPT operations
which use the images and PSFs loaded or generated in the preparation step. On
the yellow highlighted panel ( Test specific algorithm ) the users can select a single
deconvolution algorithm to test with the imported image and PSF. On the right side
of the GUI, the users can see the results and graphs of some prepared demo tests by
selecting the operations on the brown highlighted panel ( Prepared Demos ). Lastly,
the green highlighted panel shows the filenames of the imported image and PSF along
with the PSF set filename generated in the Preparation step.

Preparation step

e PSF Gen: Setting parameters for generating a single PSF or a set of PSFs.
Born and Wolf model of PSF is used. The users must specify the wavelength
of light used in brightfield microscopy imaging or the emission wavelength of
light in fluorescence microscopy. The users might not know the specifications of
the microscope that was used for capturing their image. So, they can generate
a set of PSFs and examine the results, aiming at finding an NA-magnification
combination that is close to the real one. Therefore, regarding a set of PSFs,
the users must set the possible minimum and maximum values of NA. Also: the
sensor pixel size (or else size of the effective pixel pitch) which is measured in
nm. The probable minimum and maximum magnification of the objective lens
and lastly the wanted dimensions of the PSF. When a generation of a single
PSF is the case, minimum and maximum values of both NA and magnification
must be identical.

arithm

NIF
Wiener
RIF hd 0 0.1 02 03 04 05 06 07 0.8 0.9

BlindMLE
Landwe.... Options for multiple PSF generation:

Gold Emission A [ 580 | MNA min 01| NAmax | 09| Sensor pixel size | 2400
ICTM Confirm

FISTA Magnification min | 10 | Maagnification max | 40| Height| 65| Width | &5
Richard. ..

FIGURE 3.2: PSF generation

e Import Image: Image to be improved.

e Import PSF: Mat file containing the PSF. PSF can be selected also from a
mat file which contains a PSF set.

Operations
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e Convergence: The users have to define the parameters of each deconvolution
algorithm. Then, every algorithm is executed using the imported PSF. In each
iteration of every algorithm, the residual norm is computed providing in that
way a curve of convergence.

e Standard Processing Techniques: Execution and depiction of the tech-
niques explained in Subsec. 2.4.3.

Test Specific Algorithm

A single deconvolution process is executed. Selection of an inverse or an iterative
deconvolution algorithm is followed by a panel of parameter setting.

Prepared Demos

Results from pre-executed deconvolution processes using a set of images and mod-
elled or experimental PSFs, as well as pre-produced graphs are available for demon-
stration. The users can select a particular image and a PSF produced by the Born
and Wolf formula or by the Slanted Edge method.

e Visual Comparison of Algorithms: All the results of the deconvolution
processes are demonstrated with multiple subplots, zooming in a specific region
of the images for better illustration of the differences.

e Slanted Edge vs Modelled PSF - Metrics: For the particular image se-
lected by the users, deconvolution results using the experimental PSF along
with the corresponding modelled one, are compared via residual norm, SSIM
and I-divergence. For each metric, a different scatter graph is illustrated.

e Slanted Edge vs Modelled PSF - Convergence: As above, but the com-
parison is done via illustration of the convergence of the residual norm of the
iterative deconvolution algorithms.

e SPT vs Deconvolution: It shows how SPT perform compared to decon-
volution methods. For the selected image and PSF category, the results are
demonstrated in a scatter graph.

3.2 Code implementation

3.2.1 Files and directories
startup.m:
path (path, genpath(’./7));
It adds all the folders, subfolders and files to the end of the MATLAB search path.

ALGORITHMS
"/DL/Algorithms" and "/Other Techniques" folders.

Regarding the implementation of each algorithm, all the iterative deconvolution
methods incorporate residual norm computation in each iteration along with early
stopping criterion. The latter is defined in the code as the case when the rate of
change of the residual norm falls below —1%.
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e NIF, RIF, TRIF, GOLD, JVC, LW, ICTM and FISTA algorithms are imple-
mented by the transfer of the formulae that give the particular image estimates
(Subsec. 2.4.2) into MATLAB code. The corresponding files are namesake and
located in subfolder DL/Algorithms.

e For the RL, Wiener and Blind Deconvolution algorithms, their implementations
of the Image Processing Toolbox of MATLAB are used (deconvrl, deconvwnr and
deconvblind respectively). RL and Blind Deconvolution are modified only for
integrating residual norm computation and early stopping criterion. These two
algorithms are located in rl.m and deconv_blind.m files respectively.

e For the RLTV algorithm, the Total Variation factor is "attached" to the RL
result in each iteration. It is located in ritv.m file.

e For the Standard Processing Techniques, their implementations of the Image
Processing Toolbox of MATLAB are used. The next fucntions to be mentioned
are called in file runSPT.m of the folder "/SPT'. Histogram Equalization is
implemented by function histeq, Histogram Equalization in tiles by adapthisteq,
Sharpening by imsharpen, Adjustment /Scaling by imadjust and Local Laplacian
Filter by locallapfilt. Locallapfilt is introduced in MATLAB version R2016b.

UTILITIES

"/Util" folder: Functions that are used throughout the source code files.

e imzeropad__mk.m: Not used in the deconvolution processes. It expands the
size of the input image by zero-padding for ghost-elimination in a way that the
padded image size is a common multiple of 2,3 and 5 which is known to facilitate
faster F'T computations. If it is needed to be used, it can be called before the
algorithm selection switch case, but the resulted image must be cropped at the
end and the quality metrics computations must change so as to use only the
unpaaded images.

e multiplesof235.m: Used by deconvPrepare.m. It computes the numbers that
are common multiples of 2,3 and 5 till number 27000. So, apparently, images
of length or width bigger than 27000 are not padded.

e cropResult.m: Used if deconvPrepare.m is used. Given the initial dimensions
of the padded image, the pads are cropped out.

e resnorm.m: It computes the residual norm between P.S Fxdeconvolution result
and initialimage.

e i divergence.m: It computes the I-divergence between PS Fxdeconvolution result

and initialimage.

e iterations__stop.m: It returns a flag = 1 when the rate of change of the last
two residual norms falls below —1%. Every iterative algorithm, in each itera-
tion checks if this flag == 1 so as not to continue with further deconvolution
iterations.

e iterations__stop2.m: Another early stopping criterion. Instead of the fall rate
of the residual norms, it computes the relative difference between two successive
iterations. This criterion is not used in the algorithms.
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e diffraction__psf.m: Computation of the model of Born and Wolf. Although,
it is used for 2D PSFs, it can compute 3D PSFs too.

e imoutliers__rm.m: Removal of outliers of image data. When the deviation
of a pixel from its surrounding disk-like neighbourhood is larger than a given
threshold, then this pixel is replaced by the median of this particular region.
The total area of the neighbourhood can be specified by the given radius.

GUI

"/qui" folder: Functions that are used in source code of deconuv__gui.mlapp.

e psfgen.m: Functionality of "PSF Gen" button.
o testConvergence.m: Functionality of "Convergence” button.
e Ispec.m: It produces diverse colors and marks for lines of plot graphs.

e savegraphs.m: Auxiliary file for saving of graphs initially generated in the
GUI

IMAGES AND PSF's

"/I0images" folder: It contains originals and deconvolved images along with im-
ages processed with SPTs. It also contains PSF .mat files. The users have to copy
their images and PSFs in "/Images/Originals" and "/PSFs" subfolders, respectively.

3.2.2 Software Experiments
Experimental vs Modelled PSF comparison using quantitative metrics

For this test, 3 images were used: 1 from a fluorescence microscope and 2 from a
brightfield microscope. For the capture of the fluorescence image, a vibrator mecha-
nism is utilized. This is due to the fact that the specific specimens are wet mounted,
meaning that they float through liquid molecules that keep the specimens together
on top of the mounting slip of the test glass. These chaotically moving molecules
collide with the samples in all directions and when the acting force is stronger in the
short term from one direction, the water molecules grant the particle acceleration in
that direction; everything then repeats in a new location. The resulting motion is
therefore disordered and abrupt [6], therefore causing ripples across the image. For
this reason, the use of the vibrator is tested which eliminates such ripples, since the
pre-existing tendency is isotropically rearranged because of the constant provision of
external energy. Back to the image specifics, it is an RGB image, but the selected
channel to operate on is selected to be the green one (even though 580 nm is inter-
preted as yellow light by our eyes and it is closer to the peak of the red band than
that of the green band). Also in this image, there are several spots that can be con-
sidered as hot pixels. Because of the emerging ringing effect after deconvolution it is
better to remove these spots. This is done with imoutliers.m. As for the brightfield
images they are grayscaled images and they are not pre-processed in any way prior
to deconvolution.

Filenames of used images:
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1) fluor_AREA1_15x_NAO,28_100dB_Ex532nm_Em580nm_LUMNIAPLEX+VIB.png
2) brfield_case2_40x_NAO,4_530nm.png
3) brfield_case3_23x_NA0,28_505nm.png

Fluorescence image information:

Excitation wavelength: 532 nm
Emmision wavelength: 580 nm

NA: 0.28

Overall magnification 15x

Sensor pixel pitch size: 2400 nm
Vibrator use: Yes

Dimensions: 2080x3096

Brightfield image # 1 information:

Wavelength: 530 nm

NA: 0.4

Overall magnification 40x

Sensor pixel pitch size: 2400 nm
Vibrator use: No

Dimensions: 2080x3096

Brightfield image # 2 information:

Wavelength: 505 nm

NA: 0.28

Overall magnification 23x

Sensor pixel pitch size: 2400 nm
Vibrator use: No

Dimensions: 2080x3096

These images are deconvolved with every algorithm, iterative or inverse. Regard-
ing iteratives, the goal is to show how every algorithm converges with respect to the
residual norm. The results are displayed on a plot graph. Due to the imposition of
the early stopping criterion (iterations_stop.m , Subsec. 3.2.1) each algorithm stops
at different number of iterations. Regarding inverse algorithms, their corresponding
residual norms are displayed as straight lines in the convergence vs iterations plot
graph.

Besides the effectiveness of the algorithms as far as the the residual norm is
concerned, their execution times are definitely of great significance and display their
efficiency as well. Every image is deconvolved with both its corresponding modelled
(Born and Wolf) PSF and the experimental one which is originated from the Slanted
Edge method. In order to eradicate the ghost artifacts that emerge on the boundaries
of the image, it is chosen the regions near the boundaries to be blurred using the
edgetaper function from the Image Processing Toolbox. Edgetaper method requires
PSF size to be at most half the size of the image to be deconvolved. Since, the PSF
obtained by the Slanted Edge method has the same size with the image, it needs to
be cropped. More specifically, the cropping process centralizes the PSF, since the
modelled PSF is also centralized. The PSF size is chosen as 65x65 for both modelled
and experimental PSFs.

When it comes to the deconvolution algorithms, the results of the deconvolution
operations can be seen by clicking on the Visual Comparison button of the Prepared
Demos panel. All the deconvolution results are displayed in a figure. Specifically,
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the images are zoomed in a specific region to allow better visual perception of the
differences between the algorithms.

The convergence of the iterative algorithms with respect to the residual norms
and in comparison with the inverse algorithms plus their execution times, is shown
by clicking on the Slanted Edge vs Modelled PSF - Convergence button. In
addition to this, all the image quality metrics can be shown by clicking on the Slanted
Edge vs Modelled PSF - Metrics button. As an extra, SPTs can be compared
with deconvolution algorithms by clicking on the SPT vs Deconvolution button.

The algorithms are tested with several different combinations of their particular
parameters. The final parameters that are used, were selected having in mind the
residual norm convergence and the other metrics results as well as the visual per-
ception of the resulted image. More specifically, it is observed that in some cases
the residual norm might continue to fall (and also the I-divergence which follows a
similar behavior) even if the deconvolution result keeps deteriorating as perceived
by the human eye. In these cases, SSIM acts as a good compass, which integrates
human eye particularities regarding image perception. As for speed, the maximum
iterations are set to 15. If a specific algorithm does not stop automatically by the
early stopping criterion, then the best number of iterations for this algorithm is set
by visual examination of the results.

For the fluorescence image, the used parameters of the algorithms are as follows:
Blind deconvolution: iterations = 5 | initial PSF size = 5x5

Deconvolution with modelled PSF:
Wiener: NSR = 1le-2

RIF: lambda = le-1

TRIF: lambda = 1le-2

LW: iterations = 14 | gamma = 1.7

ICTM:  iterations = 14 | gamma = 1.7 | lambda = 1le-3
GOLD: iterations = 3

JVC: iterations = 10

RL: iterations =7

RLTV: iterations = 5 | lambda = 1le-2

FISTA: iterations = 8 | gamma = 1.2 | lambda = le-4

| wavelet: symlet2 | decomposition levels = 3
Deconvolution with experimental PSF:

Wiener: NSR = 1le-2

RIF: lambda = le-1

TRIF: lambda = 1le-2

LW: iterations = 12 | gamma = 1.7

ICTM:  iterations = 12 | gamma = 1.7 | lambda = 1le-3
GOLD: iterations = 4

JVC: iterations = 10

RL: iterations = 6

RLTV: iterations = 5 | lambda = 1le-2

FISTA: iterations =7 | gamma = 1.2 | lambda = le-4

| wavelet: symlet2 | decomposition levels = 3

The following images and graphs display:
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e Fig. 3.3-Fig. 3.4 The original fluorescence image along with the Blind decon-
volution result and the deconvolved images using the experimental PSF.

e Fig. 3.5-Fig. 3.6 The original fluorescence image along with the Blind decon-
volution result and the deconvolved images using the modelled PSF.

e Fig. 3.7 Standard Processing Techniques results.

e Fig. 3.8-Fig. 3.9 Intensity profile across a defined line on the image. A thin
object with abrupt changes of luminance was chosen.

e Fig. 3.10 Convergence of the iterative algorithms with respect to the residual
norms, along with the inverse deconvolution results (the straight lines) and the
time of executions

e Fig. 3.11 Comparison of the residual norms of the deconvolution results.
e Fig. 3.12 Comparison of the SSIM of the deconvolution results.
e Fig. 3.13 Comparison of the I-divergence of the deconvolution.

e Fig. 3.14 Comparison of Standard Processing Techniques.
For the brightfield image # 1, the used parameters of the algorithms are as follows:

Blind deconvolution: iterations = 5 | initial PSF size = 5x5

Deconvolution with modelled PSEF:
Wiener: NSR = 2e-2

RIF: lambda = 1le-1

TRIF: lambda = 1le-2

LW: iterations = 15 | gamma = 1.7

ICTM:  iterations = 15 | gamma = 1.7 | lambda = le-3
GOLD: iterations = 5

JVC: iterations = 5

RL: iterations = 10

RLTV:  iterations = 5 | lambda = le-2

FISTA: iterations = 10 | gamma = 1.2 | lambda = le-4

| wavelet: symlet2 | decomposition levels = 3

Deconvolution with experimental PSF:

Wiener: NSR = be-3

RIF: lambda = le-1

TRIF: lambda = le-2

LW: iterations = 15 | gamma = 1.8

ICTM:  iterations = 15 | gamma = 1.8 | lambda = le-4
GOLD: iterations = 5

JVC: iterations = 10

RL: iterations = 10

RLTV: iterations = 10 | lambda = le-3

FISTA: iterations = 15 | gamma = 1.2 | lambda = le-4

| wavelet: symlet2 | decomposition levels = 3

The following images and graphs display:
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original GOLD

lterative Constrained Tikhonov-Miller Richardson-Lucy

Regularized Inverse Filter Tikhonov Regularized Inverse Filter

FIGURE 3.3: Deconvolution results with the use of the measured PSF
(in comparison with the original image and the Blind deconvolution
result).
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Jansson-Van Cittert Landweber

Richardson-Lucy Total Variation Wiener

Fast Iterative Soft-Thresholding Algorithm Blind Deconvolution

FIGURE 3.4
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original GOLD

Iterative Constrained Tikhonov-Miller Richardson-Lucy

Regularized Inverse Filter Tikhonov Regularized Inverse Filter

FIGURE 3.5: Deconvolution results with the use of the modelled PSF
(in comparison with the original image and the Blind deconvolution
result).
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Jansson-Van Cittert Landweber

Richardson-Lucy Total Variation Wiener

Fast Iterative Soft-Thresholding Algorithm Blind Deconvolution

FIGURE 3.6
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e Fig. 3.15-Fig. 3.16 The original brightfield image # 1, along with the Blind
deconvolution result and the deconvolved images using the experimental PSF.

e Fig. 3.17-Fig. 3.18 The original fluorescence image along with the Blind de-
convolution result and the deconvolved images using the modelled PSF.

e Fig. 3.19 Standard Processing Techniques results.

e Fig. 3.20-Fig. 3.21 Intensity profile across a defined line on the image. A round
cell was chosen.

e Fig. 3.22 Convergence of the iterative algorithms with respect to the residual
norms, along with the inverse deconvolution results (the straight lines) and the
time of executions.

e Fig. 3.23 Comparison of the residual norms of the deconvolution results.

e Fig. 3.24 Comparison of the SSIM of the deconvolution results.

e Fig. 3.25 Comparison of the I-divergence of the deconvolution.

Fig. 3.26 Comparison of Standard Processing Techniques.

For the brightfield image # 2, the used parameters of the algorithms are as follows:

Blind deconvolution: iterations = 5 | initial PSF size = 5x5

Deconvolution with modelled PSEF"

Wiener: NSR = 5e-3
RIF:
TRIF: lambda = 1le-2

lambda = 1le-1

Lw: iterations = 156 | gamma = 1.7

ICTM:  iterations = 15 | gamma = 1.7 | lambda = 1e-3
GOLD: iterations = 5

JVC: iterations = 5

RL: iterations = 10

RLTV: iterations = 5 | lambda = le-3

FISTA: iterations = 10 | gamma = 1.3 | lambda = 1le-3

| wavelet: symlet2 | decomposition levels = 3

Deconvolution with experimental PSF:

Wiener: NSR = 5e-3
RIF:

TRIF: lambda

lambda

le-1
le-2

Lw: iterations = 156 | gamma = 1.8

ICTM:  iterations = 15 | gamma = 1.8 | lambda = le-4
GOLD: iterations = 5

JVC: iterations = 5

RL: iterations = 10

RLTV:  iterations = 5 | lambda = le-3

FISTA: iterations = 10 | gamma = 1.2 | lambda = le-4

| wavelet: symlet2 | decomposition levels = 3

The following images and graphs display:
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e Fig. 3.27-Fig. 3.28 The original brightfield image # 2, along with the Blind
deconvolution result and the deconvolved images using the experimental PSF.

e Fig. 3.17-Fig. 3.18 The original fluorescence image along with the Blind de-
convolution result and the deconvolved images using the modelled PSF.

e Fig. 3.31 Standard Processing Techniques results.

e Fig. 3.32-Fig. 3.33 Intensity profile across a defined line on the image. A round
cell was chosen.

e Fig. 3.34 Convergence of the iterative algorithms with respect to the residual
norms, along with the inverse deconvolution results (the straight lines) and the
time of executions.

e Fig. 3.35 Comparison of the residual norms of the deconvolution results.
e Fig. 3.36 Comparison of the SSIM of the deconvolution results.
e Fig. 3.37 Comparison of the I-divergence of the deconvolution.

e Fig. 3.38 Comparison of Standard Processing Techniques.
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FIGURE 3.14: Standard Processing Techniques comparison
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original

Iterative Constrained Tikhonov-Miller Richardson-Lucy

Regularized Inverse Filter Tikhonov Regularized Inverse Filter

FIGURE 3.15: Deconvolution results with the use of the measured PSF
(in comparison with the original image and the Blind deconvolution
result).
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Iterative Constrained Tikhonov-Miller Richardson-Lucy

FIGURE 3.17: Deconvolution results with the use of the modelled PSF

(in comparison with the original image and the Blind deconvolution
result).



64 Chapter 3. Deconvolution algorithms GUI with measuring and modelling PSF

Jansson-Van Cittert Landweber

Fast Iterative Soft-Thresholding Algorithm Blind Deconvolution

£

A

\

FIGURE 3.18



3.2. Code implementation

65

Adjustment Histeq

Histeq in tiles

Local Contrast

Local Laplacian Filter Sharpen

R |

FIGURE 3.19: SPT results



66

Chapter 3. Deconvolution algorithms GUI with measuring and modelling PSF

180

Original
160 17y, .

U
|
120 \

100 - \ [

0 50 100 150 200 250 300
Distance along profile

[~ riTA-expermenta [
W i
ual |
e | |

|

\/

LA A A
40t A/ \\ \/ \J
100

0 50 150 200 250 300

Distance along profile

250

——— GOLD - experimental ﬂ

|
50 Bﬂ% j'mm Jf'}WM vlﬂ | M,f’

0 50 100 15 200 250 300
Distance along profile

220

ICTM - experimental

200 -

180 N \/\ /\/\

80+
60 -

|
4 ANAUY

0 50 100 150 200 250 300
Distance along profile

220

JVC - experimental
200 -, = I\

1:3%“ i

| |
ot hﬂg\/&m\n" ﬂﬂ“fm J)” Wﬂ&mf

0 50 100 150 200 250 300
Distance along profile

220

200 - ’W\
180 /\/’ \
160 \ [\

140 - H

120 -

wb | [l
80~ \ (
60 -

“0r \*\f\/\\/a /M/

0 50 100 150 200 250 300
Nistance alana nrofile

350

180

160

140 |

120

100

i

Vs, S

50 100 150 200 250 300
Distance along profile

FISTA - modelled

b\\\ J/(\ V4 \\/\/\j

50 100 150 200 250 300
Distance along profile

——— GOLD - modelled

% \/JH’/M’W‘A %’WMV M/\/

50 100 150 200 250 300
Distance along profile

=
\
/\A

50 100 150 200 250 300
Distance along profile

180

160

140

120

100

H,\ /Jx,mw,wmf

50 100 150 200 250 300
Distance along profile

vr \

W /\ /\
\

\

\/\ f\
\\ / \,/

\“\/\MV V/

100 150 200 250 300
Nistance alona neafile

FIGURE 3.20: Intensity profiles

350



3.2. Code implementation

67

250

200

150

100

250

100

0

250

200

150

100

250

200

150

100

RIF - experimental

PN

160

140

120

100

RIF - modelled

50 100 150 200 250 300
Distance along profile

50 100 150 200 250 300
Distance along profile

———RL-modelled P\

Mo

150 200 250 300
Distance along profile

/v

l

——— RLTV - experimental

W

\\/{\”\JK/ W/

\
\J /\\ W/\J/

150 200 250 300
Distance along profile

) RLTV - modelled i

\ ]

0

50 100 150 200 250 300
Distance along profile

TRIF - experimental

50 100 150 200 250 300
Distance along profile

Wiener - experimental

180

160

140

120

100

180

160

140

120

100

p
\v/\ - M \J
0 100 150 200 250 300
Distance along profile

5

50 100 150 200 250 300
Distance along profile

Wiener - modelled

0

(TRVAW U"J

100 150 200 250 300
Distance along profile

350

50 100 150 200 250 300
Distance along profile

FiGURE 3.21



68 Chapter 3. Deconvolution algorithms GUI with measuring and modelling PSF
0.07 . .
gold-edge 4.72 s
—=—— gold-model :4.38 s
jvc-edge :5.53 s
006 1 |—=—jvc-model :3.20 s
“— lw-edge :11.61 s
—=— |lw-model :11.18 s
0.05 —4&—ictm-edge :11.55 s
' ictm-model :111.69 s
—=—rl-edge :17.36 s
rl-model :17.60 s
0.04 r —&—rltv-edge :23.03 s
—+=—rltv-model :11.95 s
—&S— wiener-edge :1.01 s
0.03 b ——— wiener-model :1.02 s
rif~edge :2.05 s
. —&—rif-model :2.07 s
SN trif-edge :1.46 s
0.02 c 3@ Q Y OO P oO—Oo0—0—606-—0 ;) —+H—trif-model :1.52 s
P S §§\§\;’ b e fe g g 4 | ——— fista-edge :33.39 s
8 ‘*\g\g\j g = ? B | —<—fista-model :22.47 s
0.01 :
0 5 10 15
FIGURE 3.22: Convergence of iterative algorithms - execution times
0 CASE?2 - residual norms by algorithm
0.09 [ ¢
0.08 -
0.07
0.06 - Py
0.05 [
0.04
¢
¢ . . ]
0.03 [ ¢ .
L ]
0.02 - ¢ .
Py L ¢ ¢ Py
001 | | | | | ’ | ’ | ‘ | | | | | | | | | Q |
= = = = = =~ =~ =~ = ~
FIZIEISIEISESIEISLEIE
SISO SO B RSl S S B S RS
@p §_\°Po§ _g'gg 5}3' o ’\\?\ﬁﬁ\' _\:'8 é‘p(& %‘pu g‘p'ﬂi @ptb}&
] S PAES : .
SRR A R
Ny
K3
FI1GURE 3.23: Residual norms of every algorithm



69

3.2. Code implementation

CASE2 - Structural Similarity Indeces by algorithm

*

*

0.98
0.96
0.94
0.92

09r
0.88
0.86 -
0.84

FI1GURE 3.24: SSIM of every algorithm

CASE2 - I-divergence by algorithm

FIGURE 3.25: I-divergence of every algorithm




70  Chapter 3. Deconvolution algorithms GUI with measuring and modelling PSF

CASE2 - SPT vs Deconvolution

03r

0.25

0.2

015
01r

FIGURE 3.26: Standard Processing Techniques comparison
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FIGURE 3.27: Deconvolution results with the use of the measured PSF
(in comparison with the original image and the Blind deconvolution
result).
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FIGURE 3.29: Deconvolution results with the use of the modelled PSF
(in comparison with the original image and the Blind deconvolution
result).
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Chapter 4

Explanation of software
experiments results

4.1 Conclusions

Residual norm, SSIM and I-divergence compute the overall deviation (with the general
meaning of the word) of two images. Each pixel has its own deviation, but the metrics
sum all these deviations leading to an overall scalar number-index. This process is
prone to non-unique indeces, meaning that more than one and probably quite different
visually perceived images share the same index. For this reason, the human eye does
the last inspection of the deconvolution results. Definitelly, as stated on the previous
chapter, SSIM is a good compass for choosing a parameter setting for a specific
deconvolution algorithm.

On the other hand, speaking apart from the number of pixels in an image, the
dynamic range and the presence of noise, human eye assumes that an image is of high
quality when it has a high contrast in the useful optical information. As observed in
Local Laplacian Filter and Local Contrast results of SPTs (Fig. 3.7-3.19-3.31), they
may exhibit a boost of contrast, at least in the region of interest, but at the expense
of realism. It is obvious that the images are deformed even if some fibres for example
(fluorescence image) are seen more cleary than in the original image.

Now, in the basic subject of the deconvolution outcomes, deconvolved fluorescence
and brightfield # 2 images using the corresponding experimental PSF, achieve better
results as far as the quantitative metrics are concerned. On brightfield image # 1 it
seems that the modelled PSF provide better metrics than the experimental one. This
is shown in the corresponding plot and scatter graphs. One can see the metrics results
of the deconvolution outcomes in the relative subfolders in the "/Demos" folder of the
MATLAB implementation ("/areal data" for the fluorescence image, "/case2 data"
for the brightfield image # 1 and "/case3_data" for the brightfield image # 2).

FLUORESCENCE IMAGE

Convergence with respect to the residual norms

Regarding the fluorescence image specifically (Fig. 3.10), it is observed that as the
algorithms are set (explained in the previous chapter how), ICTM and LW achieve the
smallest residual norms. Because the metrics results of these two algorithms seem
to be indistinguishable, they will be mentioned as LW-ICTM hereafter. Continuing,
after LW-ICTM,the RLTV, RL, RIF, FISTA, GOLD and TRIF algorithms follow.
These occasions are with the use of the experimental PSF. At this point of the
conversation, the time of execution of these methods must be taken into account. Of
course, RIF and TRIF as inverse algorithms exhibit the most rapid given solutions
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in just 1.5 — 2 seconds. The rest iterative methods that follow RIF and TRIF, reach
execution times ranging from 10 to 18 seconds. This is definitely quite a big difference
among inverse and iterative algorithms. As an extra deduction from the convergence
graph, RL and RLTV are of greater rapidness as opposed to FISTA which need the
double number of iterations to reach a satisfactory residual norm. RLTV generally
and as seen in the graph too, exhibits slightly better results for the same number of
iterations than RL despite the extra and time-consuming Total Variation integration.
In total, two cases differ blatantly from the others. Gold diverges from the very
beginning and Blind deconvolution does almost no work at all. In conclusion, as far
as the residual norms are concerned, the experimental PSF yields better results than
the modelled one.

Certainly, constraints regarding visual perception of the images and speed of algo-
rithms must be included in order to have a complete view before arriving to any final
conclusions. Visual perception may falls to the field of subjectivity, but it is oblig-
atory since images are used by humans as diagnostic tools and they have to be in
position to discern useful information in an image. In addition to this, one may have
a look at the intensity profiles to compare the original image with the deconvolved
one with the experimental PSF along with the modelled PSF. However, it might be
unclear if higher contrast in the intensity profile means more details or more noise.
For this reason, the intensity profile of the original image must be used necessarily as
a reference. Hence, keeping what is mentioned above in mind, with an operation of
visual examination, it is deduced that the order of the best algorithms as set based
on the residual norms only, changes into RIF,LW-ICTM,RLTV,RL. If though, in
some applications, execution time of up to 10 seconds is not crucial, the LW-ICTM
could be preferred, even though visual differences are not too strong.

I-divergence

Using I-divergence in order to compare the results, a new view of them emerges.
The inverse Wiener algorithm, which is the fastest of all with 1 second of execution
time, using the experimental PSF exhibit the best outcome. TRIF, RLTV, RL, and
LW-ICTM follow. Again the results relative to the experimental PSF, provide a lower
metric result, with I-divergence being smaller than in the results with the modelled
PSF.

Including visual and speed constraints, the above-mentioned order changes a bit
and becomes LW-ICTM, RL, RLTV, Wiener and TRIF. If though, execution
time is crucial, Wiener could be preferred, even though it exhibits little ringing effects
and the visual differences are clear.

SSIM

As with I-divergence, SSIM outcomes show that Wiener with the experimental
PSF behave better. More specifically, Wiener, TRIF, GOLD, RLTV and LW-ICTM
act as the best methods. Once again, using the experimental PSF yields results
with higher SSIM indeces. Consequently, SSIM is the third quantitative metric that
validates the argument that deconvolution of an observed image of an object with an
experimental PSF provides an image which is closer to the true underlying image of
this object.

With visual and speed constraints, the best-order changes into LW-ICTM, RLTV,
GOLD, Wiener, TRIF. Again, if execution time is crucial then Wiener could be
preferred, despite its ringing effect problem.
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BRIGHTFIELD IMAGE # 1

Convergence with respect to the residual norms

Deconvolution with this specific brightfield image gives a quite different view.
The modelled PSF seems to yield better results with respect to the residual norm
as it is seen in Fig. 3.22. Observing the convergence graph, results with the use
of the experimental PSF and those with the modelled one are very distinguishable,
like forming two clusters of convergence curves. The lower cluster corresponds to
the modelled PSF. More specifically, FISTA yields the lower residual norm and RL,
LW-ICTM, TRIF and GOLD follow, with the last two sharing the same residual
norm.

With the visual and speed constraints, this order changes into TRIF, LW-
ICTM, GOLD, RL, FISTA.

I-divergence

Regarding this metric, the best-order is formed as: FISTA, RL, LW-ICTM,
Wiener, RLTV. By visual examination and speed constraint inclusion, this order
changes into: Wiener, LW, RLTV, RL, FISTA.

SSIM

Regarding SSIM, the best-order is as: RIF, TRIF, Wiener, GOLD, FISTA and
LW-ICTM. Wiener and Gold share the same metric value. With visual examination
and speed constraint taken into account, this order changes into: Wiener, LW,
TRIF, RIF, GOLD, FISTA. Of course, again if execution time of up to 10 seconds
is forbidding in some applications, Wiener, TRIF and RIF could be preferred.

BRIGHTFIELD IMAGE # 2

Convergence with respect to the residual norms

On this occasion, as far as the experimental and modelled PSFs are concerned,
the results are "mixed up". The best-order of the algorithms with respect to the resid-
ual norm is: Wiener(experimental PSF), Wiener(modelled PSF), FISTA (modelled),
FISTA (experimental), RL(experimental), LW-ICTM (experimental), RL(modelled).
Taken visual and speed factors into account, FISTA is the least preferred algorithm,
since it is the most timeconsuming (double execution time compared to LW-ICTM)
and with subtle visual differences. The only drawback of Wiener on this occasion,
is the more noticeable ringings as opposed to the iterative algorithms that exhibit
almost no ringing effects. However, the useful information of the image (inside the
cells) as viewed by the human eye, remains intact. Hence, Wiener should be preferred
among the other algorithms. To tidy this up, from the view of algorithms, the best-
order including speed and visual examination becomes: Wiener, RL, LW-ICTM
and FISTA.

I-divergence
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Regarding this metric, the best-order is: Wiener(experimental PSF), Wiener(modelled),
FISTA (experimental), FISTA (modelled), RL(experimental), LW-ICTM (experimental).
This order changes if visual and speed factors are taken into account and from the
view of algorithms only, becomes: Wiener, RL, LW-ICTM and FISTA. For a
particular algorithm, using the experimental PSF or the modelled one, makes no
noteworthy difference for the eye.

SSIM

Finally, SSIM shows the following best-order: Wiener(experimental PSF), Wiener(modelled
PSF), TRIF (experimental), GOLD (experimental), FISTA (modelled), FISTA (experimental).
TRIF and GOLD share the same metric value. Now, with the visual and speed
constraints, no changes are made in this specific order. That is, from the view of

algorithms only, it is: Wiener, TRIF, GOLD, FISTA.

CONCLUSION

On some occasions, even though FISTA yields better results, with respect to the
metrics, from the majority of the other algorithms, it is the last algorithm to be
preferred because it is the slowest. Again, if the execution time is not forbidding for
some applications, it should be characterized as the best option for deconvolution.
Apart from the metrics results, wavelet decomposition does NOT amplify the pos-
sible ringing effects and it may eradicate completely some regions that consist false
information, such as marks of the coverslip of the microscope which are evident in
the brightfield cases.

Between the fluorescence image and the two brightfield ones, it is easily seen that
deconvolution outcomes of the latter are quite improved and much more as opposed to
the former. This can be explained since brightfield images contain much more optical
information than the fluorescence ones. Deconvolution in general, cannot reconstruct
lost signals. So, if the optical signal is meagre, deconvolution cannot enhance the
image as good as it does in the brightfield occasion.

Regarding the comparison of the experimental PSF and the modelled one, there
is a contradiction between the outcomes of the metrics and the images as perceived
visually by the human eye. One can say that on the occasions where the quantitative
metrics show better results using the experimental PSF, the deconvolved images with
the modelled PSF exhibit better resolution. This can be also said for the converse
case where modelled PSF yield better metrics than the experimental one. In general,
what is perceived as good by the eye does not necessarily mean that it is in agreement
with reality. But specifically in the brightfield image # 2 it can be noticed that when
comparing the deconvolution outcomes of the experimental and the modelled PSF
with the original image, the outlines of the depicted cells and other details in the
image are thickened in the case of the modelled PSF which yields worse results of the
metrics but it is perceived as better visually. The same applies for the fluorescence
image, even though it is not so evident as in the brightfield image. Regarding the
brightfield image # 1, the results of the metrics show a superiority of the modelled
PSF, but when the image is deconvolved with the experimental PSF, the results
please the human eye more.

Consequently, this is a trade-off situation. If deconvolution applications do not
include quantitative measurements of cells for example, with precision being of high
significance, then deconvolution outcomes more pleasant to the eye can be preferred.
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4.2 Discussion

The results shown in this work were produced via a meticulous examination of the
possible paramaters that each algorithm can be set with. It is known that Image
Processing as a field is not fully independent from the human factor, meaning that
visual perception of images in many cases may contradict with the mathematical
models, relations or results in general. As an evaluation of the deconvolution results,
three quantitative metrics were used as explained in the previous chapter. However,
only SSIM in particular seems to be a satisfactory match between the math integrated
in the algorithms and the human eye. So, a method has yet to be designed that will
act as compass for the development of new algorithms without the so far obligatory
inclusion of a human to validate or dismiss their results. This may fall in the field of
Deep Maching Learning which in fact has proved to yield tremendous results when it
comes to image processing.

As for the PSF estimation, due to the complexity of the inherent physical limits
and the possible deviations of an optical train from the ideal one in a microscope,
mathematical models need to be very intricate involving parameters that may be not
known while being in the process of image acquisition. For this reason, experimental
methods in general and apart from the testing that was operated in the current work,
seem to be preferable since they incorporate every misalignment and every aberration
of the optical system and do not demand detailed knowledge of it. Consequently, the
main weight of potential efforts in that domain need the development or enhance-
ment of new or current experimental methods instead of more detailed mathematical
models.
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