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Abstract—This paper proposes a macroscopic model and two
control algorithms for the dynamic operation of reversible lanes
on freeways. The proposed model is an extension of the second-
order traffic flow model METANET. The reversible lanes are
modeled like variable lane drops (taking into account that the
cars in the closed/opened lanes need a certain time to leave/enter
the corresponding segments). Based on this model, two kinds of
dynamic controllers have been developed. The first one is an easy-
to-implement logic-based controller which takes into account the
congestion lengths generated by the reversible lane bottleneck
and uses this information for the dynamic operation of the lanes.
The second one is a discrete Model Predictive Control (MPC)
which minimizes the Total Time Spent (TTS) of the modeled
network within some constraints for the maximum values of
the generated bottleneck queues. The discrete optimization is
carried out via evaluation of the cost function for all the leafs
in a reduced search tree. The proposed model and control
algorithms are simulated and tested using loop detector data
collected over a section of the SE-30 freeway in Seville, Spain.
The modeled network includes the Centenario Bridge, which is a
bottleneck with a reversible lane that creates recurrent congestion
during the morning rush-hour period. The results show that the
proposed model is able to reproduce traffic congestion due to the
reversible lanes and that all the proposed controllers (which can
be computed in a short time) substantially reduce this congestion.

Index Terms—Reversible Lanes, Traffic Control, MPC,
METANET, Macroscopic Traffic Flow Modeling

I. INTRODUCTION

Reversible traffic operations [1] are widely regarded as
one of the most cost-effective methods to increase the ca-
pacity of an existing freeway. The principle of reversible
lanes is to match available capacity to the traffic demand
taking advantage of the unused capacity in the minor-flow
direction lanes to increase the capacity in the major-flow
direction. There are numerous examples of reversible lanes
successfully implemented during the last 85 years in many
countries (especially in USA, Australia, Canada and UK)
[2]. The reversible lanes are generally used in bottlenecks
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like bridges or tunnels but there are also examples of entire
roadways routinely reversed [3]. Surprisingly, despite the long
history and widespread use of reversible lanes worldwide,
there have been few quantitative evaluations and research
studies conducted on their performance [1]. There is also a
limited number of published guidelines and standards related
to their planning, design, operation, control, management, and
enforcement. Therefore, most reversible lane systems have
been developed and managed based primarily on experience,
professional judgment, and empirical observation.

It has been reported in the literature under different condi-
tions that dynamic traffic control is a good solution to decrease
congestion [4], [5] using ramp metering, Variable Speed Limits
(VSL) and other traffic control measures. In general, dynamic
traffic control takes the state of the traffic into account and
computes control signals that change the response of the traffic
system improving its behavior. However, to the best of our
knowledge, dynamic traffic control has never been applied to
the control of reversible lanes.

This paper proposes the use of on-line control techniques for
the reversible lane operation. For this purpose, a modification
of the second-order macroscopic model METANET [6] to
address reversible lanes is proposed and used for the design
of control algorithms. It has to be pointed out that the
model and control algorithms proposed in this paper can be
equivalently applied to other macroscopic traffic models as the
Cell Transmission Model (CTM) [7]).

Section II briefly introduces the general concepts of the
macroscopic model METANET. Section III presents the pro-
posed model for reversible lanes. Sections IV and V present
the proposed control strategies. Finally, numerical results are
presented and discussed in Sections VI and VII.

II. TRAFFIC MODEL METANET
The METANET model [6] is a macroscopic second-order

traffic flow model that provides a good trade-off between sim-
ulation speed and accuracy for online traffic control purposes
[8]. The original METANET model is deterministic and can
be adapted to freeway networks of arbitrary topology and
characteristics taking into account the effects of the most
common control actions (ramp metering, route guidance, and
VSL) but not reversible lanes. The freeway is discretized in
consecutive links with segments of length Li with density
ρi(k) and speed vi(k) as state variables at time step k. For
simplicity, this paper does not consider merge and join nodes,
nor other extensions, neither does it differentiate between links
and segments (See [6] for further details).



2

The main equations of the METANET model are:
- Flow equation:

qi(k) = λiρi(k)vi(k) (1)

where qi(k) is the flow leaving segment i and λi is the number
of lanes.
- Density equation:

ρi(k + 1) = ρi(k) +
T

λiLi
(qi−1(k)− qi(k)+ (2)

+qr,i(k)− βi(k)qi−1(k))

where βi(k) is the split ratio for an off-ramp between segment
i and segment i + 1 (βi(k) = 0 if there is no off-ramp), T
is the model sample time, and qr,i(k) is flow entering by an
on-ramp at the start of segment i (qr,i(k) = 0 for a segment
without an on-ramp).
- Speed equation:

vi(k + 1) = vi(k) +
T

τi
(V (ρi(k))− vi(k)) + (3)

+
T

Li
vi(k)(vi−1(k)− vi(k))− µiT

τiLi

ρi(k + 1)− ρi(k)

ρi(k) +Ki

where Ki, τi, and µi are model parameters and V (ρi(k)) is
the speed desired for the drivers. In the segments where there
is an on-ramp, the following negative term is added to the
right-hand side of equation (3):

5rvi(k) = − δiTqr,i(k)vi(k)

Liλi(ρi(k) +Ki)
(4)

where δi is a model parameter that is positive if there is a on-
ramp at the end of segment i. Equivalently, in the segments
where there is a lane-drop of ∆λ,i lanes, the following negative
term is added:

5dvi(k) = −φiT∆λ,iρi(k)v2
i (k)

Liλiρc,i
(5)

where ρc,i is the critical density and φi is a model parameter
that is positive if there is a lane-drop at the end of segment i.
- Desired speed equation (as proposed in [9]):

V (ρi(k)) = (6)

= min(vf,i exp

(
− 1

ai

(
ρi(k)

ρc,i

)ai)
, (1 + αi)Vc,i(k))

where ai, αi are model parameters, vf,i is the free flow speed
and Vc,i(k) is the speed limit applied to segment i.
- Origin flow equation:

qr,i(k) = (7)

= min(ri(k)Cr,i, Di(k) +
wi(k)

T
,Cr,i

ρm,i − ρi(k)

ρm,i − ρc,i
)

where origins may be on-ramps or mainstream origins; Cr,i is
the origin capacity, Di(k) is the origin demand, wi(k) is the
origin queue length, ρm,i is the maximum density, and ri(k)
is the ramp metering rate.
- Queue length equation:

wi(k + 1) = wi(k) + T · (Di(k)− qr,i(k)) (8)

Segment i Segment i+1 Segment i+2Segment i-1

Δ
λ

 

Fig. 1. Freeway stretch with one reversible lane

III. MACROSCOPIC MODELING OF REVERSIBLE LANES ON
FREEWAYS

Consider the stretch of freeway in Figure 1 with λ̄i lanes in
each direction. For a certain number of consecutive segments,
there is a bottleneck for which ∆λ,i lanes have to be shared
between both directions. This is done by ∆λ,i reversible lanes
in which traffic may travel in either direction depending on
the current traffic conditions.

In each direction the reversible lanes may be modeled like
variable lanes drop (i.e. lanes drop which could appear or
disappear in a certain sample time). Different but equivalent
modeling has to be used for the closing and the opening of
the reversible lanes. Also different models have to be used
depending of the Variable Message Signs (VMS) location.

A. Closing of the lanes

1) VMS at the beginning of the reversible lane: Consider one
direction of the stretch of freeway in Figure 1 with initially λ̄i
lanes for all the segments. Assume that there are VMS located
at the beginning of the reversible lanes to inform drivers about
the current status of the reversible lanes (i.e. open or closed
for arriving traffic). Assume that, for a certain number of
consecutive segments, ∆λ,i reversible lanes which were open
to the arriving traffic, are closed at time step kC creating a
merging area as can be seen in Figure 2.

Segment i+2Segment i-1
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Fig. 2. One direction of freeway in Figure 1 with one lane being closed and
the VMS at the beginning of the reversible lanes

For the correct modeling of the reversible lanes, it has
to be taken into account that, although the lanes are closed
at time step kC , the remaining cars need a certain time to
leave the corresponding segments. This effect is modeled by
the definition of Dc(k), which is an estimation of the length
of the lane that is already car-free. It has to be pointed out
that using the common density equation with an instantaneous
change of the number of lanes would entail the violation of
the conservation equation.

The distance Dc(k) can be computed according to (9) as-
suming that the speed of the remaining cars in the closed lanes
equals the mean speed of all the lanes in the corresponding
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segment.

Dc(k + 1) = Dc(k) + T (vj(k)) (9)
with Dc(kC) = 0 and k ≥ kc

where vj(k) is the speed of the segment which has a reversible
lane partially closed at time step k.

In the segment upstream of the lane closing (i−1 in Fig. 2),
the lane-drop term 5dvi(k) (5) has to be added in the speed
equation (3) at sample time kC . This term remains active as
long as the lanes are closed. The density equation (2) of the
upstream segment i− 1 is not affected by the lane closing.

In the segments affected by the lane reduction (in Fig. 2,
segments i and i+1), the traffic states per lane are modeled by
defining an equivalent number of lanes λ̂i(k) ∈ [λ̄i−∆λ,i, λ̄i]
during the period of time that there are still cars leaving the
closed lanes. The equivalent number of lanes λ̂i(k+1) for the
first segment (in Fig. 2, segment i) can be computed for each
time step in terms of Dc(k + 1) by:

λ̂i(k + 1) =

{
λ̄i − ∆λ,iDc(k+1)

Li
for Dc(k + 1) < Li

λ̄i −∆λ,i for Dc(k + 1) > Li
(10)

In order to simplify, equation (10) can be also written as:

λ̂i(k + 1) = max(λ̄i −∆λ,i, λ̄i −
∆λ,iDc(k + 1)

Li
) (11)

This equation can be generalized for subsequent segments by:

λ̂i(k + 1) = min(λ̄i,max(λ̄i −∆λ,i, (12)

λ̄i −
∆λ,i(Dc(k + 1)−

∑n=i
n=I Ln)

Li
))

Where I is the first segment affected by the reversible lanes.
The term (Dc(k+ 1)−

∑n=i
n=I Ln) expresses the length of the

corresponding lane that is already empty of cars. This term
only applies when a part of segment is empty and the rest
of the segment is still occupied by vehicles. If the segment
is completely empty, the equivalent number of lanes is set to
λ̂−∆λ. If the segment is completely occupied, the equivalent
number of lanes is set to λ̂.

The density equations (2) are modified as can be seen in
(13). The first term is multiplied by λ̂i(k)

λ̂i(k+1)
in order to adapt

the previous density to the current equivalent number of lanes.
The second term takes into account the flows entering and
leaving the segment with respect to the equivalent number of
lanes in the previous time step.

ρi(k + 1) =
λ̂i(k)ρi(k)

λ̂i(k + 1)
+ (13)

+
T

λ̂i(k)Li
(qi−1(k)− qi(k) + qr,i(k)− βi(k)qi−1(k))

The speed equation (3) does not depend on the number
of lanes except in the case of having an on-ramp or a lane
drop. In this case, and assuming that the ramps are located at
the beginning of a segment, it is necessary to instantaneously
change the number of lanes (from λ̄i to λ̄i−∆λ,i) when Dc(k)
reaches the corresponding segment. This change only affects
to the on-ramp penalization term (4) and the lane-drop term
(5) as can be seen in (14) and (15):

5rvi(k) = (14)

=

{
− δiTqr,i(k)vi(k)

Liλ̄i(ρi(k)+Ki)
for Dc(k) <

∑n=i
n=I Ln

− δITqr,i(k)vi(k)

Li(λ̄i−∆λ,i)(ρi(k)+Ki)
for Dc(k) >

∑n=i
n=I Ln

5dvi(k) = (15)

=

{
0 for Dc(k) <

∑n=i
n=I Ln

−φiT∆λ,iρi(k)v2i (k)

Li(λ̄i−∆λ,i)ρc,i
for Dc(k) >

∑n=i
n=I Ln

The traffic flow leaving the affected segments should be
computed by equation (1) but using the equivalent number of
lanes λ̂i(k) instead of a constant number of lanes.

The complete model for the closing of the lanes is composed
of equations (1), (3), (6)-(9) and (12)-(15). The model of the
segment downstream the lane opening (in Fig. 3, segment i+2)
is not affected in any way.

2) VMS along the reversible lanes: In the case of having the
variable message signs (VMS) distributed along the segments
of reversible lanes, it has to be considered that the cars
may tend to leave the reversible lanes before they reach
their end. Therefore, it would be necessary to consider a
new model which takes this effect into account. However,
in real applications it is not recommendable to immediately
close the whole length of the reversible lanes for both safety
and operational reasons. Instead, the VMS should change
progressively in order to avoid unnecessary lane changes.

If the VMS are changed progressively, the traffic behavior
of the closing with the VMS along the reversible lanes will
be roughly the same as the one with the VMS located at the
beginning. Therefore, the authors propose to use the model
developed in the previous subsection for both cases.

Segment i+2Segment i-1

Δ
λ

 

Fig. 3. VMS at the beginning of the reversible lanes: Opening of the lanes.

B. Opening of the lanes

1) VMS at the beginning of the reversible lane: Consider
again one direction of the stretch of freeway in Figure 1 but,
in this case, initially ∆λ,i lanes are closed and, at time step
kO, these lanes are opened (see Fig. 3). Assuming that the
VMS are located at the beginning of the lanes or that the
VMS change progressively along the lanes, it has to be taken
into account that the cars need a certain time to fill the new
opened lanes. In the figure, Do(k) is the length of the lane
that is already occupied by cars and can be computed, as for
the lane closing, according to (16):

Do(k + 1) = Do(k) + T (vj(k)) (16)

where vj(k) is the speed of the segment which has a reversible
lane partially open at time step k.
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For the segment upstream of the reversible lanes (in Fig, 3
segment i − 1), the lane-drop term 5dvi(k) (5) is removed
from the speed equation at sample time kO so the traffic state
equations (1)-(3) of this segment are the same as in the original
model.

The model equations for the segments with the reversible
lanes (In Fig. 3, segments i and i+ 1) are defined in terms of
Do(k) similarly as for the closing of the lanes explained in
the previous subsection (the model of the segment downstream
the lane opening is not affected in any way):

λ̂i(k + 1) = max(λ̄i −∆λ,i, (17)

min(λ̄i, λ̄i −
∆λ,i(Do(k + 1)−

∑n=i
n=I Ln)

Li
))

ρi(k + 1) =
λ̂i(k)ρi(k)

λ̂i(k + 1)
+

T

λ̂i(k)Li
(qi−1(k)− qi(k)) (18)

5rvi(k) = (19)

=

{
− δiTqr,i(k)vi(k)

Li(λ̄i−∆λ,i)(ρi(k)+KI)
for Do(k) <

∑n=i
n=I Ln

− δiTqr,i(k)vi(k)

Liλ̄i(ρi(k)+Ki)
for Do(k) >

∑n=i
n=I Ln

Segment i+2Segment i-1
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Fig. 4. VMS along the reversible lanes: Opening of the lanes.

2) VMS along the reversible lanes: Consider now that the
VMS are distributed along the ∆λ,i reversible lanes which are
opened at time step kO (see Fig. 4). In this case, the cars in the
non-reversible lanes are going to change to the reversible lanes
as soon as they are able to (especially if the non-reversible
lanes are congested before the opening of the lanes).

In contrast to the closing, it is recommendable to immedi-
ately open the whole length of the reversible lanes if the VMS
are distributed along them entailing a better performance in
terms of congestion without a decrease in safety.

For the modeling of this case, It is assumed that the number
of lanes instantaneously changes from λ̄i − ∆λ,i to λ̄i at
time step kO for all the considered segments. Therefore the
densities have to change instantaneously on time step kO
according to (20) in order to respect the conservation equation.

ρi(ko) =
λ̄i

λ̄i −∆λ,i
ρi(ko) ∀ i with lanes opened at ko (20)

Equation (20) assumes that the cars in the non-reversible lanes
will instantaneously occupy the reversible lanes, homogenizing
the densities. The common equations of the METANET model
may be used for all the following time steps, including kO.

It has to be pointed that the speed is not instantaneously
affected except for the upstream segment where the lane-drop
term is removed or in the case of having an on-ramp. The
speed increase due to the higher number of lanes will appear
in the following time steps due to the lower densities.

C. Simulation Example

In order to analyze the performance of the previously pro-
posed model, one direction of the stretch of freeway in Figure
1 with one reversible lane (∆λ,i = 1) has been simulated.
Constant mainstream demand and typical and uniform values
for model parameters have been used. Each segment has a
length of 2 kilometers in order to obtain figures which a
considerable portion of time with the lane closing or opening
so the effects can be easily analyzed. When shorter lengths are
used, results are equivalent. The reversible lanes are assumed
to be open at the beginning of the simulation. Subsequently,
they are closed during a period of time and opened again. The
lane-drop parameter φ is chosen to be 0 in order to analyze
the behavior of the proposed model without being affected by
the speed decrease due to the merging.

In the first simulation, a low enough mainstream demand
was used to avoid congestion (even with the reversible lane
closed). The results can be seen in Figure 5.
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Fig. 5. Freeflow example of closing and opening a reversible lane

The results show that, as expected, the flow leaving the
reversible lanes is almost unaffected by the lane closing if the
traffic is totally uncongested. The density is increased during
the time that the cars are leaving the reversible lane, because
the same number of cars is forced to drive in 2 lanes instead
of 3. The speeds are not directly affected by the lane closing
but they are slightly modified in the following time steps due
to the anticipation term and the change in density.

Equivalent results are obtained for the opening of the lane.
The flow and speed almost do not change while the density is
decreased in order to adapt to the equivalent number of lanes.

In the second simulation, a mainstream demand was used
which does not create congestion with 3 lanes but, in this case,
congestion appears when the lane is closed. The results can
be seen in Figure 6.

As in the previous case, the density quickly increases during
the transient in which the cars are leaving the reversible
lane. When the density starts to approach the critical density,
the speed starts to decrease with the corresponding outflow
decrease. When the reversible lane is empty, the increase in
density due to the closing of the lane finishes. However, the
system is already in an unstable congested point so the density
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keeps increasing (and the speed and flow decreasing) until the
lane is opened again. Equivalent results are obtained for the
lane opening.
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Fig. 6. Congested example of closing and opening a reversible lane

In both simulations, it has been checked that the conserva-
tion equation is respected in all the time steps (i.e. there is no
loss of vehicles).

IV. LOGIC-BASED CONTROL FOR REVERSIBLE LANES

The first controller proposed is a logic-based controller
that changes the state of the reversible lane by a simple
feedback of the system state. Such a controller can be easily
implemented in real applications without the need of an on-line
optimization. The proposed control algorithm is designed for
networks with only one reversible lane, but similar controllers
could be proposed for cases of more than one reversible lanes.

The proposed controller uses a controller sample time Tc

which is a multiple of the model sample time T (i.e. t =
k · T = kc · Tc). This work uses a controller sample time
of 2 minutes. The discrete input variable R(kc), which has
to be computed for each controller time step, indicates if the
reversible lane is open in the increasing direction (1), or in
the decreasing direction (−1) or close for both directions (0).

For safety reasons, the reversible lane has to be closed
during a certain period of time whenever the opened direction
of the lane changes. In this work, it is assumed that the
reversible lane has to be closed during one sample time during
any direction change (i.e. if R(kc−1) = 1 =⇒ R(kc) 6= −1).

The feedback of the controller will be done with respect
to the congestion lengths Lc(kc) generated by the bottleneck
with the reversible lane in both directions. The congestion
lengths may be estimated for each direction by using the speed
measured in the segments upstream the bottleneck:

Lc(kc) =

n=I−1∑
n=Z+1

Ln (21)

with vZ(kc) > Vcg and vi(kc) < Vcg ∀i ∈ (Z, I)

where I is the first segment affected by the reversible lanes and
Z is the first uncongested segment. Vcg is a speed threshold
below which the system can be considered uncongested. This
speed may differ from one network to another but it can

be easily estimated looking the data (for example, using the
fundamental diagram). This paper uses a speed threshold (Vcg)
of 60 km/h.

Once we have an estimation of the congestion lengths,
it is necessary to differentiate between three cases for the
operation of the reversible lane:

1) Congestion lengths are 0 for both directions: In this
case, the assignment of the reversible lane is not really critical.
A reasonable strategy is to refrain from any change, that is,
unless the flow in the direction currently using the reversible
lane becomes much lower than in the opposite direction. This
can be implemented via:

R(kc + 1) = (22)

=


1 if R(kc − 1) = 1 and χ · qb,I(kc) > qb,D(kc)

−1 if R(kc − 1) = 1 and χ · qb,I(kc) < qb,D(kc)

1 if R(kc − 1) = −1 and qb,I(kc) > χ · qb,D(kc)

−1 if R(kc − 1) = −1 and qb,I(kc) < χ · qb,D(kc)

where qb,I(kc) and qb,D(kc) are the flows through the
bottleneck in the increasing and decreasing directions
respectively, and χ is a parameter bigger than 1 (in this paper,
χ = 1.3). For χ = 1, we would have the highest frequency
of switching, but the reversible lane will be always open for
the direction with the greatest flows.

2) Any congestion length (or both) is (are) bigger than 0
and smaller than the maximum congestion length: In this
case, it is reasonable and equitable to attempt a balance
of the congestion lengths on both directions via appropriate
switchings. This may be achieved via the following switching
regulator:

R(kc + 1) = (23)

=


1 if R(kc − 1) = 1 and Λ · Lc,I(kc) > Lc,D(kc)

−1 if R(kc − 1) = 1 and Λ · Lc,I(kc) < Lc,D(kc)

1 if R(kc − 1) = −1 and Lc,I(kc) > Λ · Lc,D(kc)

−1 if R(kc − 1) = −1 and Lc,I(kc) < Λ · Lc,D(kc)

where Lc,I(kc) and Lc,D(kc) are the congestion lengths in the
increasing and the decreasing direction, respectively) and Λ is
a parameter bigger than 1 (in this paper, Λ = 1.3).

It should be noted that each switching decision has a cost
due to the mandatory intermediate state R(kc) = 0 whereby
no direction can profit from the capacity of the reversible lane.
For Λ = 1, we would have the highest frequency of switching,
but also the lowest differences in congestions lengths in both
directions. Thus, the selected value of Λ reflects a trade-off
between overall efficiency versus equity of the control system.

3) Both congestion lengths are at or beyond their respective
maximum values: The situation is overcritical and the control
strategy to be pursued should be based on a policy decision by
the responsible authority. In the present study, the reversible
lane will be opened in each direction after a fixed time TR (in
this paper, 15 minutes).
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V. DISCRETE MODEL PREDICTIVE CONTROL FOR
REVERSIBLE LANES

The main concepts behind a MPC [10] strategy are:
1) The use of a prediction model to obtain the trajectories of
the relevant variables of the system.
2) The optimization of an objective/cost function to determine
the best sequence of control actions for the system.
3) The application of the rolling horizon procedure; from the
best sequence of control actions only the first component is
applied to the system and in the next control step the initial
conditions are updated and the procedure is repeated again.

To formalize these concepts, consider the freeway traffic
system with reversible lanes whose dynamic evolution is
described in Sections II and III. The control inputs will be
considered constant during one controller sample resulting in
the following state-space model:

x(kc + 1) = f(x(kc), u(kc), d(kc)) (24)

with x(kc) the state vector that includes speeds, densities
and queues and d(kc) the non-controllable input vector that
includes demand profiles, upstream speeds and downstream
densities. u(kc) is the discrete input vector containing a
discrete variable Rj(kc) for each reversible lane j.

In an MPC controller, the core is the optimization (25) of a
cost function J(kc), which is used to measure the performance
of the system along the prediction horizon Np with respect to
the input control sequence along the control horizon Nu:

min
Rt(kc)

J(kc) with Rt(kc) ∈ {−1, 0, 1} (25)

where Rt(kc) = [Rj1(kc), Rj1(kc + 1), ..., Rj1(kc + Nu −
1), Rj2(kc), Rj2(kc + 1), ..., RjNR

(kc +Nu − 1)] is the set of
reversible lanes and NR the number of reversible lanes. The
control inputs are kept constant after the control horizon Nu.

In this work, the MPC controller uses a cost function (26)
containing one term for the TTS and another term that limits
(using a soft constraint) the maximum values of the queues:

J(kc) =

Np∑
`=1

[T
∑
i∈O

wi(kc + `) + T
∑
i∈I1

(ρi(kc + `)Liλi)+

+T
∑
i∈I2

(ρi(kc + `)Liλ̂i(kc + `)) +
∑
i∈O

Ωi(kc + `)] (26)

where Ωi(k+ `) is a penalization term that is different to zero
if the corresponding queue constraint is violated and O, I1 and
I2 are the set of all the segments with an on-ramp, without
reversible lanes and with reversible lanes, respectively. If it
is desired to limit or reduce the frequency of reversible lane
switching, an additional term penalizing each switching may
be readily included in the cost function.

In order to solve optimization (25), we use a search tree
including all the feasible profiles for the opening of the
reversible lanes Rt(kc). As we are dealing with non-convex
integer optimization, a direct way to obtain the global optimum
of (25) is to evaluate the cost function for all the feasible points
in the search tree. Limiting the number of feasible nodes in
the mixed integer optimization problem is a technique that
has been successfully used before in the context of freeway

traffic MPC for VSL [11]. The feasible nodes limitation can
be obtained by using the following constraints:
– A reversible lane has to be closed in both directions during
one controller sample time for all direction switches, in order
to allow the cars to leave the corresponding lane.
– It is always suboptimal to keep lane closed in both direction
during more than one controller sample time.
– If the lane is closed in both directions, it is always subop-
timal to open the lane in the same direction in which it was
previously open.
– For the last prediction step, it is not allowed to set the last
value of the input along the control horizon as 0, because it is
suboptimal to keep the reversible lane closed if it is not going
to be opened during the next steps.

Fig. 7 shows an example of the search tree if only one
reversible lane is used and initially the lane is opened in the
increasing direction:

1 kc

1 0 kc+1

1

1

1 -10

0 0 -1

-1 01 0 -1 1

0

-1

-1 0

kc+2

kc+3

kc+4

kc+5-1 0 1 1 00-1 -1 0 1-101

Fig. 7. Search tree for a reversible lane with R(kc) = 1 and Nu = 5

The number of leafs Nl(Nu) increases with respect to the
control horizon according to the one-step delayed Fibonacci
series (1,2,3,5,8,13,21,34,55,89,...):

Nl(Nu) =
φNu+1 − (1− φ)Nu+1

√
5

with φ =
1 +
√

5

2
(27)

If the reversible lane is closed for the current controller step
(Rt(kc) = 0), it has to be allowed to open the lane in both
directions for kc + 1 due to unpredicted changes during the
last controller time step Tc. Therefore, the number of leafs
increases according to:

Nl(Nu) = 2 · φ
Nu − (1− φ)Nu

√
5

(28)

The a-priori knowledge of the number of leafs allows to
know the maximum horizons for which the optimal solution
can be computed within a controller time step. The com-
putation time needed for obtaining each MPC solution is
the number of leafs multiplied by the time needed for the
simulation of the network during the prediction horizon.

For a larger freeway network with many reversible lanes,
the main problem is the computation time needed for the
evaluation of such a large number of possible combinations
of the discrete variables. In these cases, additional constraints
connecting the reversible lanes may be used. For instance, the
lanes closed in one direction should be on the left hand side of
the opened lanes (in the countries with left-hand drive). When
even using the new constraints, it is not possible to find the
optimal solution within a limited computation time available,
thus genetic or distributed MPC could be used as in [5], [11].
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Fig. 8. Sketch of the modeled network

VI. ANALYZED NETWORK

Fig. 8 shows the freeway stretch that has been considered
as a simulation-based testbed. The modeled freeway is a
subsection of the ring road SE-30 (Spain) from marker post 7/5
to 12/0 (S-N direction) and from 13/1 to 10/0 N-S direction.

The modeled network includes the Centenario bridge, which
is a bottleneck that creates, during the peek hours in the
morning, the biggest recurrent congestion in the region of
Seville. The bridge has 2 lanes fixed in each direction and
one reversible lane. The reversible lane is currently changed
manually by the traffic operators looking at the cameras
along the bridge. This real-time manual control is deemed to
perform better than fixed control, which would operate with
pre-specified switching intervals during pre-specified (peak)
periods of the day. The rest of the modeled freeway has 3 lanes
in each direction (except segment 2 in the S-N direction which

has two lanes). The morning rush-hour congestion usually
occurs between 8 and 9 am. The congestion is created by
the bottleneck on the bridge and propagates upstream for
both directions. The detector measurements indicate that the
traffic downstream the bridge is always uncongested in both
directions and there is no other source of recurrent congestion.

This simulation uses loop detector data over the 6AM-
11AM time range for ten different weekdays from four loop
detectors located in the mainline at the beginning and the
end of both directions (marked (red) cycles in Fig. 8). Each
loop detector provides measurements of aggregated speeds and
flows every 15 minutes. There is also data available of the
state of the reversible lane Rt(k) indicating the time when
the lane is closed or opened in one direction. For stability, the
segment length and the simulation time step should satisfy
Li > vfree,iT for every link i. Therefore, the model sample
time has to be smaller than the data sample time (15 minutes).
Since this paper uses a model sample time T of 10 seconds,
a zero-order interpolation was applied to the data

The ramp flow data have been directly estimated by taking
the difference between the aggregated flow data in the mainline
and distributing between the ramps using a-priori knowledge
about the ramp flows. The second and third on-ramps in the
S-N direction are modeled as only one ramp in order to avoid
stability problems due to their proximity.

The process of validating the developed model consists of
manually calibrating a number of parameters via repeated
computer simulations similarly to the validation done in [12].
The results are compared to real data from loop detectors after
each simulation, and a manual adjustment of a number of
parameters is performed based on the observation of whether
or not congestion is predicted accurately enough. A more
detailed validation cannot be carried out due to the lack of
ramp data, the aggregation of the detector data (15 minutes)
and the absence of enough mainline detectors (especially in
the segments with the reversible lane).

For a proper identification, the upstream end of the freeway
stretch should be congestion-free; otherwise the entering flows
are determined by the internal congestion. Due to a lack
of measurements at the upstream end of the modeled part
of the freeway (in both directions), one additional (virtual)
measurement point was produced in the same way as in [13].

For the controller simulations, it is assumed that there
is a sensor in each segment which provides density and
speed measurements for each controller step; alternatively,
an appropriate estimation scheme [14] may be employed.
The control parameters were manually selected by performing
some simulations with different values of the parameters.

The simulations were carried out using MATLAB and an
Intel Core i5 CPU. The average time needed is 1.25 seconds
for the network simulation (from 6 AM to 11 AM), 0.0003
seconds (any controller step) for the logic-based controller and
0.65 seconds (any controller step) for the MPC (with Nu = 5
and Np = 5). It can be seen that the logic-based control can
be computed almost instantaneously so to be implemented at
the same time when the measures are taken. The MPC can be
computed within a controller time step (i.e. implemented at
kc + 1 for the measures taken at kc).
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Fig. 9. Comparison between simulated speeds and flows (blue) and interpolation of 15 minutes aggregated data (red) for 11th, 16th and 17th of April 2012.

VII. SIMULATION RESULTS

A. Model Validation

Fig. 9 shows the speeds and flows measured upstream of
the bridge for both directions and the corresponding values
estimated by the proposed model. It can be seen that the model
shows a relatively good speed and flow estimation for three
typical days with relatively different congestion profiles.

Table I shows the mean relative errors for speeds and flows
for the detectors upstream the bridge (marker post 7/5 for the
S-N direction and marker post 13/1 for the N-S direction). The
days used for the identification of the model parameters are
11th, 16th and 17th of April 2012. The rest of the days (9th,
10th, 12th, 13th, 18th, 19th and 20th of April 2012) are used
to validate the model identification (parameter values).

TABLE I
MODELING ERRORS

Speed Error (%) Flow Error (%)

Identification
S-N direction 8.47 % 3.46 %
N-S direction 8.79 % 5.21%

Validation
S-N direction 15.68 % 4.10 %
N-S direction 12.90 % 6.29%

B. Control

Two different MPC controllers have been simulated. The
first one has a constraint of a maximum of 100 vehicles waiting
in the queues. The second one has a constraint of 500 vehicles
which means to have in practice unconstrained queues.

The results of the reversible lane operations computed by
each controller can be seen in Fig. 10. The figure shows that
the MPC controllers tend to reduce the time that the reversible
lane is closed by decreasing the number of direction changes
in the reversible lane. For the constrained MPC, the queue

Fig. 10. Reversible lane operations on April 11, 2012

constraint causes that the reversible lane has to change the
direction one more time than for the unconstrained MPC in
order to keep the queues under 100 vehicles. This can be seen
in Fig. 11 where the queues at the mainstream origins obtained
for the different reversible lane operations are shown (the
increasing queue for the Logic-Based controller is 0 during
the all simulation). None of the simulations carried out create
on-ramp queues. Fig. 11 shows that the constrained MPC is
the only controller simulated that keeps both queues under the
constraint. The logic-based controller provides an intermediate
solution between the real implemented manual controller and
the MPC controller proposed.

The density contour plots obtained with the different con-
trollers are shown in Fig. 12. It can be seen that the uncon-
strained MPC removes the congestion completely in the N-S
direction by increasing the congestion substantially in the S-
N direction. This solution may be optimal in terms of cost
function performance but it may be difficult to implement due
to equity reasons (one direction is seen to be clearly benefitted
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Fig. 12. Densities for the different controllers applied on April 11, 2012
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Fig. 11. Mainstream queues on April 11, 2012

versus the other). On the other hand, the constrained MPC and
the logic-based controller provide control inputs that tend to
equalize the congestion in both directions. Therefore, these
controllers may be good solutions for real implementations.

In the numerical results on Table II, it can be seen how the
three proposed controllers substantially reduce the TTS with
respect to the manually controlled case. The TTS reductions
obtained for the three controllers are very close to each other.
However, it can be seen that unconstrained MPC results in a
higher TTS reduction than the other proposed controllers.

The TTS reduction shown covers both directions. This
reduction is obtained by decreasing the TTS in one direction
while increasing the TTS in the opposite direction or by
decreasing the TTS for both directions. For example, for April
17 the TTS is decreased for the N-S direction with all the used
controllers (38.95 % with the logic-based controller, 40.58 %
with the unconstrained MPC and 46.61 % with the constrained

MPC). However, for the N-S direction the TTS is increased
with two controllers (1.35 % with the logic-based controller
and 6.39 % with constrained MPC) and decreased with one
controller (6.85 % with the unconstrained MPC).

TABLE II
CONTROLLER PERFORMANCES IN TERMS OF TTS REDUCTION (%)

April 11 April 16 April 17
Manually controlled system 0 % 0 % 0 %

Logic-based controller 8.84 % 19.97 % 22.68 %
Discrete MPC with wmax = 500 11.94 % 22.24 % 26.97 %
Discrete MPC with wmax = 100 9.43 % 19.82 % 25.22 %

VIII. CONCLUSION

This paper has proposed a macroscopic model and two con-
trol algorithms for the dynamic operation of reversible lanes
on freeways. The proposed extension of model METANET,
which uses the concept of an equivalent number of lanes, has
been validated with real data over the Centenario Bridge of
the SE-30 freeway in Seville, Spain. The results show that the
proposed model is able to reproduce traffic congestion due to
the reversible lanes with a mean error on the identification days
of 8.63% and 4.33% for speed and flows, respectively. The
errors are 14.29% and 5.19% for the days used for validation.

Based on this model, two kinds of dynamic controllers
have been developed. The first one is an easy-to-implement
logic-based controller, which takes into account the congestion
lengths generated by the reversible lane bottleneck. The second
one is a discrete Model Predictive Control (MPC) where
the discrete optimization carried out is via evaluation of
the cost function for all the leafs in a reduced search tree.
The main advantages of the proposed MPC are larger TTS
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reductions, reduction of the number reversible lane switching
and possibility of using constraints. The main advantages of
the logic-based controller are ease of real implementation,
intuitive tuning and equity for opposite directions. All the
proposed controllers show a substantial reduction of the TTS
and can be computed in a short time.
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