
  

 

Abstract—With the increasingly widespread use of traffic 

flow simulation models, several questions concerning the 

reliability, efficiency and accuracy of such models need to be 

addressed convincingly. In general, the most time-efficient 

traffic flow models are based on the macroscopic approach to 

describe traffic dynamics. Macroscopic models reproduce the 

evolution of aggregated traffic characteristics over time and 

space with respect to observable variables, such as flow and 

speed, requiring much less computational time, compared to 

microscopic ones. This work assesses a second-order 

macroscopic gas-kinetic traffic flow (GKT) model and its 

numerical implementation using real traffic data from a 

motorway network in the U.K., where recurrent congestion 

originated from high on-ramp flows during the morning peak 

hours is observed. A parallel, metamodel-assisted Differential 

Evolution (DE) algorithm is employed for the calibration of the 

model parameters, and numerical simulations demonstrate that 

the DE algorithm can be a very promising method for the 

calibration of such traffic flow models. 

I. INTRODUCTION 

During the last decades, traffic flow simulation models 
have attracted a rapidly growing interest due to the need for 
improvements on safety, quality, efficiency and reliability of 
transportation systems, as well as the need to assess and 
optimize the highway traffic flow. However, several 
questions have been raised about the accuracy and 
applicability of such models when compared against actual 
measured traffic flow data. Hence, to ensure the validity of 
those models in performing real-world simulations and 
provide results that are credible and promising, the 
application of calibration and validation processes is 
mandatory. 

In general, traffic simulation models are classified, 
according to the level of detail they use, as microscopic or 
macroscopic. Specifically, microscopic simulation models 
describe traffic flow behavior at a high level of detail by 
capturing the behavior of each individual vehicle, while 
macroscopic approaches represent traffic in lesser detail by 
using aggregated variables, such as flow, density and mean 
speed [1]. In fact, the feature of macroscopic models to call 
for a relatively small number of partly directly measurable 
parameters, compared to microscopic ones, results in a less 
demanding and computationally expensive calibration and 
validation process and, therefore, in a more versatile 
development of such models for real applications. 
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The macroscopic traffic flow models, depending on the 
number of differential equations they involve, can be 
categorized as first-, second- or higher-order models. The 
approaches of the class of first-order models, originally 
developed by Lighthill–Whitham–Richards (LWR model) 
[2], consist of the continuity equation, which governs the 
evolution of traffic density, and a static flow-density 
relationship (fundamental diagram). However, these models 
suffer from several limitations and they prove less adequate 
to describe complicated dynamics of traffic flow; in 
particular, they do not allow for variations of speed around 
the equilibrium fundamental diagram and they fail to 
replicate some phenomena observed in real traffic, such as 
the hysteresis and capacity drop, the stop-and-go waves at 
bottlenecks, as well as the diffusion of traffic platoons. The 
second- or higher-order models, with the pioneer among 
them PW (Payne Whitham) model [3], utilize an additional 
dynamic equation, the momentum one, to describe 
flow/speed dynamics. Although such models have the 
potential to reproduce the above-mentioned complicated 
phenomena with higher accuracy when contrasted to real 
traffic data, they include a higher number of parameters, and 
small changes to them may result in very different prediction 
outcomes; consequently, they call for a complex but 
compulsory calibration process to enhance their prediction 
accuracy. 

As pointed out in [4], the validation process is the 
ultimate criterion for assessing the accuracy of representing 
real traffic phenomena, and hence the usefulness of an 
existing or new macroscopic traffic flow model. However, 
relatively few works, which also include methods for solving 
the parameter estimation problem, are available for the 
calibration and validation process of macroscopic models. 
Examples are the deterministic complex algorithm of Box in 
[5]–[10], the deterministic Nelder-Mead algorithm employed 
in [11], [12], the stochastic genetic algorithm in [13] and the 
stochastic cross-entropy method utilized in [13], [14]. The 
goal of the current study is to test the second-order GKT 
model [15]–[18] with respect to its accuracy in the 
reproduction of the congestion created at freeways close to 
on/off-ramps, using real traffic data from a freeway stretch in 
UK. A recently developed relaxation finite-volume scheme is 
utilized for the numerical approximation, in space and time, 
of the underlying partial differential equations [15]. The 
optimization algorithm considered here is a recently 
developed parallel, surrogate-model-assisted, Differential 
Evolution algorithm [19], [20].   
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II. THE GKT MODEL 

Here, we briefly recall basic definitions and equations 
concerning the second-order GKT model [15]–[18]. Let 
𝜌(𝑥, 𝑡) denote the traffic density (number of vehicles per unit 
length) as a function in space, 𝑥, and time, 𝑡; 𝑢(𝑥, 𝑡) the 
average speed of vehicles; while the traffic flow rate (number 
of vehicles per unit of time) is given as 𝑞(𝜌, 𝑢) =
 𝜌(𝑥, 𝑡)𝑢(𝑥, 𝑡). The GKT model in conservation law form 
with sources reads as 

𝜕𝑡𝜌 + 𝜕𝑥(𝜌𝑢) = 𝑟𝑟𝑚𝑝, 

𝜕𝑡(𝜌𝑢) + 𝜕𝑥(𝜌𝑢2 + 𝜃𝜌) = 𝜌 (
𝑉𝑒

∗(𝜌)−𝑢

𝜏
) + ℎ𝑟𝑚𝑝 

where the source terms 𝑟𝑟𝑚𝑝 and ℎ𝑟𝑚𝑝 on the right-hand sides 

of (1) and (2) reflect the impact of traffic flow from on-ramps 
(or to off-ramps) on the main road. According to [18], the 
term 𝑟𝑟𝑚𝑝 denotes the effective source density that is only 

active within the merging (diverging) sections with length 
𝑙𝑟𝑚𝑝 and inflow 𝑞𝑟𝑚𝑝 > 0 from (or outflow 𝑞𝑟𝑚𝑝 < 0 to) the 

ramps, determined as  

 𝑟𝑟𝑚𝑝(𝑥, 𝑡) = {
𝑞𝑟𝑚𝑝(𝑡)

𝑙𝑟𝑚𝑝
   𝑖𝑓 𝑥 𝑖𝑛𝑠𝑖𝑑𝑒 𝑚𝑒𝑟𝑔𝑖𝑛𝑔 𝑧𝑜𝑛𝑒 ,

0           𝑒𝑙𝑠𝑒𝑤𝑒𝑟𝑒.


The source term ℎ𝑟𝑚𝑝 in (2) describes changes of the 

macroscopic local speed by assuming that on-ramp vehicles 

merge to the main road at speed 𝑢𝑟𝑚𝑝 < u. On the contrary, 

the drivers considered to leave the main road reduce their 

speed to 𝑢𝑟𝑚𝑝 before they diverge to the off-ramp. Hence, 

this term can be expressed as 

ℎ𝑟𝑚𝑝(𝑥, 𝑡) =
𝑞 ∙ 𝑟𝑟𝑚𝑝

𝜌
+

(𝑢𝑟𝑚𝑝 − 𝑢)|𝑞𝑟𝑚𝑝|

𝑙𝑟𝑚𝑝
. (4) 

Further, the pressure-like term 𝜃 in (2) is a density-

dependent fraction 𝐴(𝜌) of the squared velocity 𝜃 =
 𝐴(𝜌)𝑢2, where 𝐴(𝜌)  is given by the Fermi function as 

 

𝐴(𝜌) = 𝐴0 + 𝛿𝐴 [1 + tanh (
𝜌 − 𝜌𝑐𝑟

𝛿𝜌
)], (5) 

where 𝜌𝑐𝑟 is the critical density, reflecting the boundary for 
the transition from the free flow to congested traffic state, 𝐴0 
and 𝐴0 + 2𝛿𝐴 represent the variance pre-factors between the 
aforementioned two states, while 𝛿𝜌 is the width of the 
transition region. Typical range of values for the constant 
parameters 𝐴0, 𝛿𝐴, and 𝛿𝜌, along with other typical used 
model parameters for the GKT model can be found in [15]–
[18]. Moreover, the model includes a traffic relaxation term 
that maintains the concentration of velocity in equilibrium 
state, with 𝑉𝑒

∗(𝜌) = (𝜌, 𝑢, 𝜌𝛼 , 𝑢𝛼) being the dynamic 
equilibrium speed, depending not only on the local (𝜌, 𝑢) but 
also on the non-local traffic state (𝜌𝛼 , 𝑢𝛼). Thus, the dynamic 
equilibrium speed, toward which the average speed relaxes, is 
determined as 

𝑉𝑒
∗(𝜌) = 𝑢𝑚𝑎𝑥 [1 −

𝜃 + 𝜃𝛼

2𝐴𝜌𝑚𝑎𝑥
(

𝜌𝛼𝑇

1 − 𝜌𝛼 𝜌𝑚𝑎𝑥⁄
)

2

𝐵(𝛿𝑢)]. (6) 

According to (6), the dynamic equilibrium speed is 
computed as the maximum desired speed, denoted as 𝑢𝑚𝑎𝑥, 
minus a braking non-local term in response to necessary 
deceleration maneuvers in traffic flow at the downstream 
interaction location 𝑥𝛼 = 𝑥 + 𝛾(1 𝜌𝑚𝑎𝑥 + 𝑇 ∙ 𝑢⁄ ), where 𝑇 is 
the desired time gap, 𝜌𝑚𝑎𝑥 is the maximum density, and 𝛾 is 
a scale parameter. Finally, 𝐵(𝛿𝑢) is a Boltzmann 
(interaction) factor that contains the standard normal 
distribution and the Gaussian error function, given as 

𝐵(𝛿𝑢) = 2 [𝛿𝑢
𝑒−𝛿𝑢2 2⁄

√2𝜋
+ (1 + 𝛿𝑢2) ∫

𝑒−𝑦2 2⁄

√2𝜋

𝛿𝑢

−∞

𝑑𝑦]. (7) 

The above monotonically increasing term describes the 
dependence of the braking interaction on the dimensionless 

velocity difference 𝛿𝑢 = (𝑢 − 𝑢𝑎) √𝜃 + 𝜃𝛼⁄ , taking into 

account the velocity and variance at the actual position 𝑥 and 
the interaction point 𝑥𝛼, respectively. The major difference 
comparing to other macroscopic traffic flow models is the 
non-local character of the GKT model. Specifically, this 
nonlocality has smoothing attributes like those of a diffusion 
or viscosity term, but its effect is more realistic as it is 
forwardly directed, which means that vehicles react on 
density or velocity gradients in front of them. Moreover, 
unlike other macroscopic models, the steady-state 
(equilibrium) speed-density relation of GKT model, 𝑉𝑒(𝜌), is 
implicitly given from the steady-state condition of 
homogeneous traffic. To numerically approximate system 
(1)-(2), we apply a higher-order finite-volume relaxation 
scheme. The spatial discretization is based on a fifth-order 
Weighted Essential Non-Oscillatory-type (WENO) 
interpolant approach, while for the temporal discretization a 
third-order implicit-explicit (IMEX) Runge-Kutta method 
was considered. The superiority and performance of this 
higher-order scheme, compared to low-order ones, in traffic 
flow simulations has been recently demonstrated in [15], 
where a detailed description of the spatial and temporal 
discretization schemes can be found. 

III. MODEL CALIBRATION 

The model parameter calibration constitutes an integral 
part of the development and application of any macroscopic 
traffic flow model. In fact, the reliability and versatility of the 
model to reflect different traffic conditions of a freeway 
network with the highest possible level of accuracy is of 
major importance. However, the assignment of appropriate 
values to the unknown model parameters is a challenging 
problem, because of the highly non-linear nature of the model 
equations.  

In this study, we present a methodology for the 
calibration of the GKT model parameter vector  𝑿 =
[𝑢𝑚𝑎𝑥,  𝜌𝑚𝑎𝑥,  𝜌𝑐𝑟 , 𝑇, 𝛾, 𝜏,  𝐴0, 𝛿𝐴, 𝛿𝜌] so as to minimize 
the discrepancy between the model estimations and real 
measured traffic data, using an appropriate cost function, 
hereafter denoted by 𝑓(𝑿). The calibration of the GKT model 
is defined as a problem of finding an optimal parameter 
vector 𝑿 subject to (1) and (2) for all 𝑿 ∈ Ω, where Ω is a 
constrained admissible region of the parameter space, 



  

determined by physical considerations. Such a calibration 
process takes the form of a multi-extrema continuous 
optimization problem, see e.g. [14], in which the cost 
function exhibits multiple local minima, which gradient-
based solution algorithms typically fail to avoid. In this work, 
we apply for the first time in the context of traffic flow 
modelling a recently developed parallel, metamodel-assisted 
Differential Evolution algorithm for the aforementioned 
calibration problem, that is able to handle such complex 
problems with multiple local minima [19], [20]. 

A. Metamodel-assisted Differential Evolution (DE) 

algorithm 

During the last decades, Evolutionary Algorithms (EAs) 
have been extensively used in many different optimization 
problems, as a versatile and robust tool able to deal with 
demanding high-dimensional real-world problems; however, 
such problems ask for significantly increased computational 
resources. In order to overcome this barrier, the use of 
surrogate models (metamodels), in conjunction with parallel 
processing, appears to be mandatory. DE has proven to be 
very robust and computationally efficient, compared to other 
types of EAs, see for example the references in [19], [20]. 

Given a cost function 𝑓(𝑿): ℝ𝑛 → ℝ, the objective is the 
minimization of its value by optimizing the values of the 
parameter set 𝑿 = (𝑥1 , 𝑥2, … , 𝑥𝑛),   𝑥𝑖 ∈ ℝ. During the 
optimization process, the value of each parameter 𝑥𝑖 is 
bounded between pre-specified upper and lower values, 

𝑥𝑖
(𝐿)

≤ 𝑥𝑖 ≤ 𝑥𝑖
(𝑈)

, 𝑖 = 1, … , 𝑛. Starting the algorithm, the 𝑁𝑝 

individuals (chromosomes) of the initial population of 
candidate solutions are randomly initialized within the given 
boundaries as: 

𝑥𝑘,𝑖
(0)

= 𝑟 ∙ (𝑥𝑖
(𝑈)

− 𝑥𝑖
(𝐿)

) +  𝑥𝑖
(𝐿)

,   𝑘 = 1, … , 𝑁𝑝, 𝑖 = 1, … , 𝑛, (8) 

where 𝑟 denotes a random generated number with uniform 
probability distribution within the range [0, 1]. The alteration 
of the population is mainly based on differential mutation, 
where a triplet of randomly selected different individuals is 
used to generate a new chromosome by adding a weighted 
difference among the two individuals of the triad to the third 
one (donor). Subsequently, the perturbed individual and the 
current population member (parent) are subjected to a 
crossover recombination, generating in this way the final 
candidate solution 

𝑥𝑘,𝑖
′(𝐺+1)

= {
𝑥𝐶𝑘,𝑖

(𝐺)
+ 𝐹 ∙ (𝑥𝐴𝑘,𝑖

(𝐺)
− 𝑥𝐵𝑘,𝑖

(𝐺)
)   𝑖𝑓 (𝑟 ≤ 𝐶𝑟 ˅ 𝑖 = 𝑖∗) 

𝑥𝑘,𝑖
(𝐺)

            𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,


where 𝑥𝐶𝑘,𝑖
(𝐺)

 is the “donor”, 𝐺 is the current generation and 𝑖∗ 

is a randomly selected integer within the interval [1, 𝑛], 
computed once for all members of the population. The 

random number 𝑟 is seeded for every chromosome 

parameter, while the DE control parameters 𝐹 ∈ [0,1]  and 

𝐶𝑟 ∈ [0,1] for the mutation and crossover operations, 

respectively, remain constant during the search process and 

affect the convergence behavior and robustness of the 

algorithm. Thereafter, at the selection stage, each trial vector 

𝑿′𝑘
(𝐺+1)

competes only against its counterpart (parent) in the 

current population 𝑿𝑘
(𝐺)

. The survivors of the 𝑁𝑝 

competitions being better fitted than the corresponding final 

candidates, move to the next generation. The DE selection 

scheme ensures the survival of the elitists, described as 

follows for a minimization problem: 

 

 𝑿𝑘
(𝐺+1)

= {
𝑿𝑘

′(𝐺+1)
𝑖𝑓 𝑓 (𝑿𝑘

′(𝐺+1)
) ≤ 𝑓 (𝑿𝑘

(𝐺)
) ,

𝑿𝑘
(𝐺)

𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.
 (10) 

In most realistic applications, a classical DE algorithm 
requires a significant number of evaluations in order to 
succeed in delivering an adequate quality solution. Thus, in 
order to reduce the running time of the algorithm, two 
strategies have been explored in this work. More specifically, 
the DE algorithm was assisted by the introduction of 
surrogate models, which are used to substitute the 
computationally intensive exact evaluations of trial vectors 
with low-cost approximations, without compromising the 
robustness and the convergence of the DE algorithm [19], 
[20].  

More precisely, the DE algorithm was combined with two 
Artificial Neural Networks (ANNs), a multi-layer perceptron 
(MLP) and a radial basis functions network (RBFN), which 
serve as surrogate models. In each generation, the two ANNs 
are re-trained to enhance their accuracy and predictive 
capability, while the most accurate of the two (based on their 
testing errors) is used in each generation for the pre-
evaluations of the trial vectors. If a trial vector is pre-
evaluated as better fitted than its parent, an exact evaluation 
is then performed; otherwise the trial vector is abandoned in 
favor of its parent. Parallel implementation was developed, 
based on MPI (Message Passing Interface) and the idea of 
“external-coupling” of the DE algorithm with the cost 
function evaluation software (i.e. the numerical solver of the 
GKT model in our case). A detailed description of the 
utilized parallel surrogate-assisted DE algorithm is presented 
in [19], [20].  

B. Cost function formulation 

As mentioned before, the optimization problem addressed 
herein consists of minimizing the deviation between the 
model calculations and the real-measured traffic data. 
Specifically, the model is fed with real measured boundary 
data [21] to produce the complete traffic state. For evaluation 
of the resulting model accuracy, three different cost functions 
have been tested, formulated in terms of discrete 
combinations of the speed, flow, and density values of real 
and simulated virtual detectors, within the simulated area. 
Specifically, a combined total mean square normalized errors 
of the model estimated and real measured speed and flow is 
used first, specifically 

𝑓(𝑿) =
1

𝐶
∑ ∑ [(1 − 𝜇) (1 −

𝑢𝑖,𝑘

𝑢𝑖,𝑘
𝑑 )

2

+ 𝜇 (1 −
𝑞𝑖,𝑘

𝑞𝑖,𝑘
𝑑 )

2

]

𝑛

𝑖=1

𝐾

𝑘=1

, (11) 

where 𝜇 is a weighting factor equal to 0.5. Alternatively, by 

substituting flow with density in equation above, the cost 

function is reformulated as 

 



  

𝑓(𝑿) =
1

𝐶
∑ ∑ [(1 − 𝜇) (1 −

𝑢𝑖,𝑘

𝑢𝑖,𝑘
𝑑 )

2

+ 𝜇 (1 −
𝜌𝑖,𝑘

𝜌𝑖,𝑘
𝑑 )

2

] .

𝑛

𝑖=1

𝐾

𝑘=1

   (12) 

Moreover, by following the root mean square speed and 

density normalized errors the cost function is given as  

 

𝑓(𝑿)

= √
1

𝐶
∑ ∑ (

𝑢𝑖,𝑘
𝑑 − 𝑢𝑖,𝑘

𝑢𝑚
𝑑

)

2𝑛

𝑖=1

𝐾

𝑘=1

√
1

𝐶
∑ ∑ (

𝜌𝑖,𝑘
𝑑 − 𝜌𝑖,𝑘

𝜌𝑚
𝑑

)

2𝑛

𝑖=1

𝐾

𝑘=1

 
(13) 

where, 𝑢𝑖,𝑘, 𝜌𝑖,𝑘, and 𝑞𝑖,𝑘 represent, respectively, the 

predicted mean speed, density and flow, computed at detector 
location 𝑘 (𝐾 is the number of detectors that are available for 
calibration) and time instant 𝑖 (𝑛 is the simulation time 

horizon) and 𝐶 = 𝑛𝐾; 𝑢𝑖,𝑘
𝑑 , 𝜌𝑖,𝑘

𝑑  and 𝑞𝑖,𝑘
𝑑  represent, 

respectively, the observed mean speed, density and flow 
computed at location 𝑘 and time instant 𝑖, while 𝑢𝑚

𝑑  and 𝜌𝑚
𝑑  

denote the corresponding maximum values of the observed 
mean speed and density. 

The calibration procedure of the GKT model can be 
summarized as follows. At the beginning of the optimization 
procedure, an initial population is created by randomly 
initializing the parameter vectors 𝑿 (calibrated model 
parameters), within their predefined bounds. Each candidate 
solution (a vector 𝑿 of parameters for the GKT model) is 
used, along with the boundary input data, to set-up a 
numerical simulation for the traffic flow situation at hand and 
produces a space-time distribution of flow, speed and density. 
Subsequently, the cost function is computed for the 
corresponding candidate set of parameters, using one of (11), 
(12) and (13). The alteration, recombination and evaluation 
procedures of the DE algorithm are used to provide a new 
population of candidate vectors, with likely better cost 
function values. The evolution process is terminated when a 
pre-defined number of generations is reached.  

IV. TEST NETWORK AND TRAFFIC DATA 

The 9.45 km long 3-lane freeway stretch considered in 
this study is part of the M56 motorway in the United 
Kingdom, from Chester to Manchester. This 3-lane stretch 
includes one off-ramp and a two-lane on-ramp, which, before 
merging onto the motorway, splits into two separate lanes. In 
this work, a single lane with the mean values of the flow 
quantities of the 3-lane stretch is considered. Fig. 1 illustrates 
the layout of the simulated stretch, including the location of 
the on-ramps and off-ramp and the locations of the detectors. 

  

 

Figure 1.  Layout of the considered 9.45 km freeway stretch in the U.K. 

The real traffic data used in this work was provided by 
MIDAS database [21], including aggregate flow and speed 
measurements at the corresponding detector locations along 
the freeway, with a time resolution of 60 s. Measured data 

corresponding to the stretch boundaries, including on/off 
ramps, were also available. The quantitative traffic data 
analysis showed that the chosen freeway stretch is subject to 
recurrent congestion that is induced by the high on-ramp flow 
in the morning rush hours. In particular, Fig. 2 (left) displays 
the space-time evolution of the real speed measurements for 
June 3rd, 2014, while Fig. 5 (left) for June 24th, 2014; it is 
observed that traffic congestion is formed upstream of the 
second on-ramp between 7–8 a.m. for both days; this 
congestion propagates upstream, creating an intensive low-
speed area of several kilometers on the freeway mainstream. 

V. CALIBRATION AND VALIDATION RESULTS 

The numerically discretized GKT model is first 

calibrated to specify the optimal parameter values for the 

considered network, using the measured data for a specific 

day. Eventually, the GKT model is validated using data 

collected at the same freeway on a different day, to ensure 

that the model is able to reliably reproduce the traffic 

conditions of the examined site.  

A. Calibration results 

The calibration results were obtained using real traffic 
data from June 3rd. The model parameters with their 
corresponding feasible bounds, conform with those given in 
[15]–[18], are presented in Table I. The DE algorithm was 
employed with a population size equal to 50, whereas the 
maximum number of generations was set equal to 1100; the 
control parameters for the mutation and crossover operations 
were 𝐹 = 0.6 and 𝐶𝑟 = 0.45. 

TABLE I.  ADMISSIBLE RANGE OF THE PARAMETER VECTOR 

USED FOR THE GKT MODEL CALIBRATION 

Model parameters Units Bounds 

Desired free speed, 𝑢𝑚𝑎𝑥,  km/h [105, 135] 

Maximum density, 𝜌𝑚𝑎𝑥  veh/km [100, 200] 

Critical density, 𝜌𝑐𝑟 veh/km [30, 60] 

Desired time gap, 𝑇 s [0.5, 2.5] 

Anticipation factor, 𝛾  [1, 2] 

Relaxation time, 𝜏 s [10, 40] 

Variance pre-factor for free traffic, 𝐴0  [0.0025, 0.015] 

Pre-factor, 𝛿𝐴  [0.01, 0.03] 

Transition width, 𝛿𝜌 veh/km [0.0035, 0.02] 

 

The considered 9.45 km stretch was simulated for 3 
morning peak hours (i.e. from 6 a.m. to 9 a.m.), whereas the 
space discretization was 𝛥𝑥 = 100 m and the Courant-
Friedrichs-Lewy (CFL) value was set equal to 0.5. The 
numerical scheme is stable under the usual CFL stability 
condition for explicit discretization schemes. The runs of the 
DE algorithm have been performed on a DELL PowerEdge 
R815 server with four 16-core, 2.5GHz processors (64 cores 
total). The clock computational time for 1100 generations 
was 146.5 min. Table II contains the minimum value of the 
three alternative cost functions (which were obtained in three 
respective optimization runs for the same calibration 
problem). Very good agreement with the measured data set 
and very similar optimal parameter vectors have been 
produced with all three cost functions; for brevity only the 
results for cost function (11) are presented next. 
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Figure 2.  Phase space speed dynamics for real measured speed (left) and 

the model prediction (right) for the calibration date. 

 
Figure 3.  DE algorithm convergence history. 

Fig. 2 displays the space time evolution of the speed 

reproduced by simulation compared to the observation for 

the calibration day. Fig. 3 contains the DE convergence 

history of the best value of the cost function in each 

generation, computed using (11). Figure 4 displays the speed 

dynamics for all detector locations, produced using the 

optimal parameter values of the calibration procedure with 

(11). The optimal parameters obtained for the three 

alternative cost functions are listed in Table III. It is clear 

that the real traffic conditions are well reproduced by the 

calibrated model, capturing with sufficient accuracy when 

and where the traffic flow becomes congested, for the 

correct duration and extent, as observed in the real traffic 

data. 

TABLE II.  COST FUNCTION VALUES FOR THE CALIBRATION 

PHASE  

Cost Function (11)  (12) (13) 

(%) 1.16 1.45 0.2 

TABLE III.  OPTIMAL MODEL PARAMETERS 

Cost 

Function 

𝒖𝒎𝒂𝒙 𝝆𝒎𝒂𝒙 𝝆𝒄𝒓 𝑻 𝜸 𝝉 𝑨𝟎 𝜹𝑨 𝜹𝝆 

(km/h) (veh/km) (s)  (s)   (veh/km) 

(11) 115 170 42 2 2 20 0.0025 0.015 10 

(12) 120 150 40 2.3 2 24 0.0025 0.019 11 

(13) 115 140 45 2.4 2 22 0.0025 0.027 12 

 

B. Validation results 

In order to assess the robustness of the produced 

calibrated parameters, the resulting GKT model was 

validated using real traffic data in the same freeway stretch 

on a different day, which is June 24th, 2014, using the 

optimal parameters of the previous calibration procedure. 

The validation results presented in Fig. 5 (right) and Fig. 6, 

are seen to capture with sufficient accuracy the real traffic 

flow conditions in the particular freeway stretch, although 

not at the exact same level of accuracy as the calibrated 

ones. The cost function value for (11) for this validation 

procedure was 1.64 %.  

 

 

 
Figure 4.  Time-series of the real speed measurements (black) and the 

model prediction of speed (red) at various detector locations for the 

calibration day.  

 

Figure 5.  Phase space speed dynamics for real measured speed (left) and 

the model prediction (right) for the validation date. 
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VI. CONCLUSIONS 

Α recently developed parallel, metamodel-assisted DE 

algorithm was employed for the automated calibration of the 

parameters of a second-order GKT traffic flow model, using 

real traffic data. The macroscopic model has been 

numerically intergraded using a fifth-order in space finite-

volume relaxation scheme. The calibration and validation 

results demonstrate a very good agreement with the 

corresponding measured data, showing that the GKT model 

is able to reproduce, with sufficient accuracy, the prevailing 

traffic conditions. Τhe DE algorithm proved to be a useful 

and robust tool for the calibration of such macroscopic 

traffic flow models. It has the advantage that it can be used 

without the need of tuning its parameters for the problem at 

hand, while wide bounds can be used for the unknown 

vector without convergence problems. The well-known 

computational inefficiency of evolutionary algorithms was 

successfully addressed in our implementation with parallel 

processing and surrogate-model assistance. 

 

 

 

Figure 6.  Time-series of the real speed measurements (black) and the 

model prediction of speed (red) at various detector locations for the 

validation day. 
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