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Abstract— This study presents a thorough microscopic simu-
lation investigation of a recently developed model-based ap-
proach for per-lane density estimation, as well as on-ramp
and off-ramp flow estimation, for highways in the presence
of connected vehicles. The estimation methodology is mainly
based on the assumption that a certain percentage of vehicles is
equipped with Vehicle Automation and Communication Systems
(VACS), which provide the necessary measurements used by the
estimator, namely vehicle speed and position measurements. In
addition, a minimum number of conventional flow detectors
is needed. In the investigation, a calibrated and validated,
with real data, microscopic multi-lane model is employed,
which concerns a stretch of motorway A20 from Rotterdam to
Gouda in the Netherlands. It is demonstrated that the proposed
methodology provides satisfactory estimation performance even
for low penetration rates of connected vehicles.

I. INTRODUCTION

Most cities around the world experience ever-growing
traffic congestion in urban areas and motorway networks.
Congestion may be mitigated by optimizing the performance
of the traffic infrastructure through traffic management and
operational strategies. Real-time traffic information is a
prerequisite for traffic operations, such as freeway ramp
metering control, dynamic route guidance, incident detection,
and variable message sign operations. In recent years, VACS
are all the more receiving considerable attention since they
may create new principles in traffic management, as they are
capable of communicating real-time information and execute
novel control tasks [1]. Considering that density distribution
may be highly heterogeneous among the different lanes of
a highway, real-time lane assignment strategies may have
significant advantages in traffic management. Lane policies
and lane advice may be achieved if real-time traffic state
information per lane is available [2], [3].

Recently, research on exploiting the innovative character-
istics of VACS as a source of traffic data in traffic state
estimation has drawn some attention, primarily due to the
low cost, wide coverage and high accuracy of the extracted
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data. Connected vehicles use localization technologies that
can provide these data such as Dedicated Short-Range Com-
munications (DSRC), as well as Global Positioning Systems
(GPS), cellular and Bluetooth. Data stemming from con-
nected vehicles may contain a variety of essential dynamic
transportation information, while the most commonly used
are vehicle position (longitude, latitude, and altitude) and
vehicle speed. Global Positioning System (GPS) receivers are
stated as the most popular communication system because
they are low-cost, efficient and are already commonplace
in many vehicles, in use for navigation. GPS systems have
stated accuracy ranging from 5 to 15 meters in geographical
positioning [4], [5], [6]. But most modern methods adopt
a hybrid positioning system, combining differential GPS
(DGPS) with map-matching and dead-reckoning, which im-
proved vehicle position data up to 1 to 5 meters accuracy [7],
sufficient for lane-based applications. Speed measurements
are mostly reported to be quite accurate with a precision
error lower than 1 km/h [8], [4], while some studies claim
a tendency of underestimation in speed measurements and a
reported error around 5 km/h [9].

Traffic state estimation utilizing floating car data has been
investigated in numerous studies, such as, for example, [10]–
[28]. However, the existing studies that deal with lane-
based traffic state estimation are rare in the traffic literature,
while they mainly assume data obtained from conventional
detectors [29]–[32] with the exception of [33].

Previous work by [23], [27], [28] employed connected-
vehicle data to estimate the aggregate-lane traffic density on
highway segments. The distinguishing feature of that work
was the lack of any empirical modelling approach, such as
fundamental diagrams, that would call for tedious calibration
procedures. A similar approach, appropriately extended to
enable per-lane density estimation, is considered in this paper
and is thoroughly evaluated via microscopic simulation. The
estimation scheme uses a data-driven macroscopic model for
per-lane traffic density and employs real-time measurements
obtained from connected vehicles as well as a minimum
number of spot flow measurements. The flow measurements
from detectors are needed to guarantee the observability
property of the underlying model, see [34] for details. Den-
sity estimation is performed via the employment of a Kalman
Filter. The performance of the estimation scheme is examined
under various penetration rates of connected vehicles, using
data retrieved from a microscopic multi-lane model, which
was calibrated and validated in [35] with real data from a
stretch of motorway A20 from Rotterdam to Gouda in the



Netherlands. The case-study highway stretch includes several
on-ramps, off-ramps, and a lane-drop, while the employed
simulation scenario is characterized by both congested and
free-flow traffic conditions. It is worth mentioning that, in
the investigation, simple algorithms are employed in case
of inconsistencies in the probe vehicle data (such as, for
instance, in the case there are temporarily no measurements
available from connected vehicles). The performance of the
tested estimation scheme is shown to be satisfactory even for
low penetration rates.

The remainder of the paper is organized as follows.
The model for the per-lane density dynamics and the
proposed estimation scheme are presented in Section II.
The description of the microscopic simulation configuration
as well as the highway network under study and the traffic
conditions are presented in Section III, which includes also
the details of the computation of the data employed by the
estimator. Subsequently, the results of the estimation are
presented in Section IV. Finally, in Section V the main
findings of this study are summarized.

II. PER-LANE TRAFFIC STATE ESTIMATION USING A
DATA-DRIVEN MODEL

A. General Set-Up

We consider a highway stretch consisting of M lanes,
indexed by j = 1, . . . ,M , subdivided into N segments,
indexed by i = 1, . . . , N . We define a cell (i, j) to be the
highway part that corresponds to lane j of segment i. The
length of each segment is denoted by ∆i, i = 1, . . . , N .

The following variables are extensively used in the paper:
• Average speed

[
km
h

]
of vehicles in cell (i, j), denoted

by vi,j , for i = 1, . . . , N and j = 1, . . . ,M .
• Total traffic density

[
veh
km

]
at cell (i, j), denoted by ρi,j ,

for i = 1, . . . , N and j = 1, . . . ,M .
• Total longitudinal inflow

[
veh
h

]
of cell (i+1, j), denoted

by qi,j , for i = 0, . . . , N − 1 and j = 1, . . . ,M .
• Total on-ramp flow

[
veh
h

]
entering at cell (i, j), denoted

by ri,j , for i = 1, . . . , N and j = 1, . . . ,M .
• Total off-ramp flow

[
veh
h

]
exiting from cell (i, j), de-

noted by si,j , for i = 1, . . . , N and j = 1, . . . ,M .
• Total lateral flow

[
veh
h

]
at segment i that enters lane j2

from lane j1, denoted by Li,j1→j2 , for i = 1, . . . , N ,
j1 = 1, . . . ,M , and j2 = j1 ± 1.

Note that, the attribute “total” refers to the total population
of both connected and conventional vehicles.

B. Available Information from Connected Vehicle Reports

The data-driven model presented in the next subsection,
requires the availability of the following measurements:
• Average speed of connected vehicles at cell (i, j),

denoted by vci,j , for i = 1, . . . , N and j = 1, . . . ,M .
• Density of connected vehicles at cell (i, j), denoted by
ρci,j , for i = 1, . . . , N and j = 1, . . . ,M .

• Lateral flow of connected vehicles at segment i that
enters lane j2 from lane j1, denoted by Lc

i,j1→j2 , for
i = 1, . . . , N , j1 = 1, . . . ,M , and j2 = j1 ± 1.

Fig. 1. Model of the exiting longitudinal flow from cell (i, j) as described
in (2).

Average speeds, densities, and lateral flows of connected
vehicles may be readily obtained from position and speed
reports.

C. Model Description for the Density and Ramp Flow Dy-
namics

The conservation equation yields the following model for
the density dynamics in each cell (i, j)

ρi,j(k + 1)=ρi,j(k) +
T

∆i
(qi−1,j(k)− qi,j(k)

+Li,j−1→j(k) + Li,j+1→j(k)− Li,j→j−1(k)

−Li,j→j+1(k) + ri,j(k)− si,j(k)) , (1)

where T is the time discretization step. For convenience, we
assume ri,j ≡ si,j ≡ 0, ∀i and 1 ≤ j ≤ M − 1, where M
denotes the right-most lane (assuming right-hand traffic); we
have Li,j1→j2 ≡ 0 if either j1 or j2 equals zero or M + 1.
Moreover, in case there is a lane-drop at cell (i, j), then we
define qi,j(k) ≡ 0. We note that the per-lane inflows at the
highway entry, namely, q0,j , j = 1, . . . ,M , are treated as
measured inputs to system (1).

The following relation is employed for total flows (Fig. 1)

qi,j(k) = vi,j(k)ρi,j(k) + pi,j−1→jLi,j−1→j(k)

+pi,j+1→jLi,j+1→j(k) + p̄i,jri,j(k), (2)

for i = 1, . . . , N , j = 1, . . . ,M , where pi,j1→j2 , p̄i,j ∈
[0, 1], ∀(i, j), j1 = 1, . . . ,M , and j2 = j1 ± 1, indicate
the percentages of “diagonal” lateral movements, including
lateral flows from an on-ramp acceleration lane, for each
specific cell. While the first term in (2) is well-known (see,
e.g., [36]), the motivation for the rest of the terms may be
less obvious. Their choice is guided from the fact that, at
locations featuring strong lateral flows (e.g., at cells where
an on-ramp is located or at segments that feature lane-drops),
a significant amount of the lateral flow may appear close to
the cell end (e.g., in the former case, at the acceleration lane
end). As a result, the flow modeling may be more accurately
described considering that a percentage of lateral or on-ramp
flows actually acts as additional exiting longitudinal flow.
This formulation is also employed in other works, e.g., [37].

For the lateral flows, we employ the following relation

Li,j1→j2(k) =
Lc
i,j1→j2(k)

ρci,j1(k)
ρi,j1(k), (3)



for i = 1, . . . , N , j1 = 1, . . . ,M , and j2 = j1± 1. Equation
(3) is based on the reasonable assumption that the behavior
of the population of connected vehicles in a given cell, with
respect to lateral movements, is representative for the total
vehicle population in that cell. This allows one to quantify
the total lateral movements from a cell using (3), namely, by
scaling the lateral movements of connected vehicles with the
inverse of the percentage of connected vehicles in that cell.

Plugging (2) and (3) into (1), we get for all (i, j)

ρi,j(k + 1)=

(
1− T

∆i
vi,j(k)− T

∆i

Lc
i,j→j−1(k)

ρci,j(k)
− T

∆i

×
Lc
i,j→j+1(k)

ρci,j(k)

)
ρi,j(k) +

T

∆i
vi−1,j(k)

×ρi−1,j(k) +
T

∆i
((1− pi,j−1→j)

×
Lc
i,j−1→j(k)

ρci,j−1(k)
ρi,j−1(k) + (1− pi,j+1→j)

×
Lc
i,j+1→j(k)

ρci,j+1(k)

)
ρi,j+1(k) +

T

∆i

(
pi−1,j−1→j

×
Lc
i−1,j−1→j(k)

ρci−1,j−1(k)
ρi−1,j−1(k) + pi−1,j+1→j

×
Lc
i−1,j+1→j(k)

ρci−1,j+1(k)
ρi−1,j+1(k)

)
+
T

∆i

(
(1− p̄i,j)

×ri,j(k) + p̄i−1,jri−1,j(k)−si,j(k)

)
. (4)

We adopt, as usual in absence of a descriptive dynamic
model (see [38]) a random walk to describe the dynamics of
on-ramp and off-ramp flows. The deterministic parts of such
models read

ri,M (k + 1) = ri,M (k) (5)
si,M (k + 1) = si,M (k). (6)

We write next compactly the overall system (4)–(6). For
this, we define first the state vector x as follows

x = (ρ1,1, · · · , ρN,1, · · · , ρ1,M · · · , ρN,M , r1,M , · · · ,
rN,M , s1,M , · · · , sN,M )

T
. (7)

The average speed of connected vehicles is representative
of the average cell speed, as motivated in [28] and justified
with real data and in microscopic simulation in [27] and
[23], respectively, even for connected-vehicle penetrations as
low as 2%. Thus, the unmeasured cell speeds vi,j may be
replaced by the corresponding measured speeds vci,j ; and,
using (7), we re-write (4)–(6) in a compact form as

x(k + 1) = A (vc(k), Lc(k), ρc(k))x(k) +Bu(k), (8)

where vc, Lc, and ρc denote vectors that incorporate all
average cell speeds of connected vehicles vci,j , lateral flows of
connected vehicles Lc

i,j1→j2 , and densities of connected ve-
hicles ρci,j , respectively; while u denotes the vector of inflows

at the highway entrance, namely u = (q0,1, · · · , q0,M )
T,

A ∈ R(N×M+2N)×(N×M+2N), and B ∈ R(N×M+2N)×M .
Together with (8), we associate an output vector y, which

holds all mainstream total flows that are measured by cor-
responding mainstream fixed detectors and, as follows from
(2) and (3), is given by

y(k) = C (vc(k), Lc(k), ρc(k))x(k), (9)

where C ∈ R(M+lr+ls−1)×(N×M+2N), with lr and ls being
the number of on-ramps and off-ramps, respectively. The
minimum number of rows of C equals M + lr + ls − 1
in order for system (8), (9) to be observable (see [28],
[34] for details). Note that we assume 2N ramp flows. In
the case where there are less on-ramp or off-ramp flows,
the dimensions of the matrices A, B, and C are reduced
accordingly.

D. Per-Lane Total Density and Ramp Flow Estimation Uti-
lizing a Kalman Filter

We employ a standard Kalman filter utilizing model (8),
(9) for per lane total density estimation. Defining the vector
x̂ as the system state to be estimated,

x̂ = (ρ̂1,1, · · · , ρ̂N,1, · · · , ρ̂1,M · · · , ρ̂N,M , r̂1,M , · · · ,
r̂N,M , ŝ1,M , · · · , ŝN,M )

T
, (10)

the filter equations are

x̂(k + 1) =A (υc(k), Lc(k), ρc(k)) x̂(k) +Bu(k)

+A (υc(k), Lc(k), ρc(k))K(k)(z(k)

− C (υc(k), Lc(k), ρc(k)) x̂(k)) (11)

K(k) =P (k)C (υc(k), Lc(k), ρc(k))
T

× (C(υc(k), Lc(k), ρc(k))P (k)

× C (υc(k), Lc(k), ρc(k))
T

+R)−1 (12)
P (k + 1) =A (υc(k), Lc(k), ρc(k)) (I −K(k)

× C (υc(k), Lc(k), ρc(k)))P (k)

×A (υc(k), Lc(k), ρc(k))
T

+Q, (13)

where z is a noisy version of the measurement y defined in
(9), whereas Q = QT � 0 and R = RT � 0 are tuning
parameters. The Kalman Filter is initialized as

x̂(k0) = µ, P (k0) = H, (14)

where µ and H = HT � 0.

III. MICROSCOPIC SIMULATION SET-UP

The behavior of the proposed estimation scheme is ex-
amined and evaluated through microscopic simulation using
AIMSUN [39]. Traffic measurements are extracted from a
specific subset of the whole population of vehicles in the
network that are considered to be connected. Vehicles enter-
ing the network are all of the same vehicle type, featuring
a probabilistic distribution of movement behaviors, and are
randomly marked as connected according to an assumed
penetration rate, based on a uniform distribution.



Fig. 2. Schematic representation of the case study network. Field detector
positions are indicated as the distance (in km) from the network entrance.
The detectors used by the estimator for obtaining flow measurements within
the case study are colored in red.

A. Network and Experimental Configuration

The case-study network (see Fig. 2) is a stretch of mo-
torway A20 from Rotterdam to Gouda, in the Netherlands.
The multi-lane microscopic model employed in AIMSUN
was designed and calibrated in [35] with real, lane-specific
traffic data obtained from detectors [40], thus providing a
realistic ground truth scenario.

The considered highway stretch, shown in Fig. 2, con-
stitutes a challenging test-bed for the proposed estimation
scheme, as it incorporates a non-trivial combination of a
lane-drop, on-ramps and off-ramps, which trigger a variety
of corresponding lane-changing behaviours. The considered
stretch is about 9.33 km in length, comprises 3 homo-
directional lanes until 3.53 km, where there is a lane-drop.
For the purpose of estimation, the stretch is space-discretised
in N = 21 segments. Two on-ramps and two off-ramps
are located at 3.08 km, 5.48 km and 4.17 km, 7.24 km,
respectively.

The ground truth in our experiments, used to evaluate
the performance of the developed estimation scheme, is
represented by the total density in each cell and the total
ramp flows. The cell densities ρi,j are computed by counting
the number of all vehicles that are present within cell (i, j) at
a time instant kT , divided by the segment length ∆i; whereas
all ramp flows are computed by counting the number of
vehicles that cross the corresponding location within the time
interval (kT, (k+ 1)T ]. However, since lane-based densities
and ramp flows are very noisy, a moving average of the 6
latest available measurements is considered as ground truth.
Average segment speeds υi,j that represent ground truth are
computed by averaging arithmetically at time step kT the
instant speeds of all vehicles present in a segment.

B. Employed Scenario

The employed scenario utilizes available real demand mea-
surements and replicates traffic conditions, whereby a strong
congestion is created at 4 km at around 6:30 AM because
of the increased flow entering from on-ramp “Nieuwerkerk
a/d IJssel”. The congestion spills back, strengthens at the
lane-drop at 3.6 km, and covers the stretch up to 1.2 km.
From 7:00 AM until 7:30 AM, the congestion persists
downstream of the lane-drop, while congestion upstream
thereof dissolves. Fig. 3, illustrates the speeds along each
lane from 5:00 AM to 9:00 AM. This congestion pattern
allows to test and evaluate the proposed estimator under
varying traffic conditions, which include the formation and

Fig. 3. Contour plot of the per lane simulated speed, Wednesday 26-05-
2010, as calibrated in [35].

dissipation of a stretch-internal congestion, which is not
visible at the stretch boundaries.

C. Computation of Data Employed by the Estimator

Prior to the performance evaluation of the proposed es-
timation scheme, we detail the information provided to the
estimator. The estimation performance depends critically on
the quality of this information, thus we employ simple
algorithms to ensure that this information is reliable and as
representative as possible.

Especially at low penetrations rates, only few or even
no connected vehicles may be present in a cell. Therefore,
a moving average, utilizing available speed measurements
from previous times steps, is considered to compensate for
potential large variations or nonexistence of speed measure-
ments utilized by the estimator. Specifically, we feed the
Kalman Filter with a moving average of the last n available
speed measurements as

υci,j(k) =

n−1∑
l=0

νci,j(k − l)
n

, (15)

where νci,j(k) is the average speed of connected vehicles at
cell (i, j), computed from speed reports that are collected
every 2 s and averaged arithmetically every time step kT . In
cases where there are no connected vehicle reports available
at cell (i, j) during a time interval ((k − 1)T, kT ], we replace
this νci,j(k) with the speed reported at the previous time step
as, i.e., we set νci,j(k) = νci,j(k−1). Within our experiments,
at low penetration rates or light traffic, a cell may feature
complete absence of connected vehicle’s reports, for more
than one minute. For this reason, a moving average (15) of
the last n = 12 speed measurements available is chosen.

Lateral flows of connected vehicles Lc
i,j1→j2 are computed

based on position reports of connected vehicles. Specifically,
we count first the number of connected vehicles moved
from lane j1 to lane j2 within a time interval of 2 s; then,
every time instant kT , these lateral flow measurements are
accumulated for the time interval ((k − 1)T, kT ] to produce
an intermediate lane-changing measurement L̄c

i,j1→j2(k).



This lateral flow vector of connected vehicles L̄c, may
exhibit some spiky behaviour due to the rare appearance
of connected vehicle lateral movements; and therefore, this
value may not be representative for the occurring lane-
changing flow of the total vehicle population. To account for
this fact and obtain representative, though averaged lateral
flows, we feed the estimation scheme with an exponentially
smoothed version of the lateral flows of connected vehicles,
rather than the original measured lateral flows. Thus, for each
lateral flow measurement, we have for all i = 1, . . . , N,
j1 = 1, . . . ,M, and j2 = j1 ± 1

Lc
i,j1→j2(k+1) = (1−a)Lc

i,j1→j2(k)+aL̄c
i,j1→j2(k), (16)

where the smoothing factor a ∈ [0, 1] is chosen based on
statistical analysis (see [41]) and Lc

i,j1→j2(0) = 0.
Also for the density measurements ρci,j(k), that are fed to

the Kalman Filter every time step k, we employ, for similar
reasons as above, a moving average of the m = 6 (time
window of 1 min) latest available measurements as

ρci,j(k) =

m−1∑
l=0

ρ̃ci,j(k − l)
m

, (17)

where ρ̃ci,j(k) is the instant density at cell (i, j) for every
time step k. In cases where there are no connected vehicle
reports available at cell (i, j) at a time instant kT , we replace
the corresponding ρ̃ci,j(k) with the density reported at the
previous time step, i.e., we set ρ̃ci,j(k) = ρ̃ci,j(k − 1).

Assuming that the (smoothed) lateral flow of connected
vehicles exiting from the lane-drop cell, namely, Lc

8,1→2, is
always non-zero, it is shown in our companion paper [34]
that the utilized flow measurement configuration, shown in
Fig. 2, guarantees observability of the underlying model (8),
(9) (see also [28] for the aggregated-lane case). Specifically,
sets of detectors (one in each lane) located at the highway
entrance (0 km) and exit (9.33 km) are used to obtain
the input and output of system (8), (9), respectively. All
ramp flows are assumed unmeasured; therefore, to establish
observability, an additional flow measurement on the right-
most lane of a (arbitrarily chosen) segment between every
pair of consecutive unmeasured ramps is needed. In the
present evaluation, we exceed these minimum measurement
requirements for observability by assuming the presence of
fixed flow detectors at all lanes (cross-section), rather than
only the right-most lane, of the aforementioned segments;
this is deemed reasonable, since detectors are usually in-
stalled for a cross-section. In conclusion, we employ a set of
additional flow detectors (one per lane) located at 3.83 km
(segment i = 9), 4.52 km (segment i = 11), and 6.82 km
(segment i = 15).

IV. PERFORMANCE EVALUATION FOR VARYING
PENETRATION RATES OF CONNECTED VEHICLES

Based on the microscopic environment configuration de-
scribed in Section III, we simulate traffic conditions featuring
various penetration rates of connected vehicles. To account
for a variety of possible current and future traffic scenarios,

the performance of the estimation scheme is evaluated for a
wide range of penetration rates of connected vehicles, more
specifically, for 2%, 5%, 10%, 20%, and 50%.

We employ the estimation scheme (11)–(13) for per-lane
total density and ramp flow estimation. We choose Q = 10
and R = 10.000, which, according to our experiments
achieve a satisfactory estimation performance. In general, the
estimation scheme is expected to not be very sensitive to the
choice of Q and R, see [23] for details.

It should be noted that, since we expect strong diagonal
flows mainly at the lane-drop cell (in comparison with the
rest of the cells), we set all percentages pi,j1→j2 , p̄i,j equal
to zero except for the percentage

p ≡ p8,1→2, (18)

which corresponds to the diagonal lateral flow of cell (8, 2).

A. Quantitative Performance Measure

To assess the overall performance of the suggested es-
timation scheme, a performance index formulated as the
Coefficient of Variation (CV) of the root mean square error
of the 60-second moving averages of estimated densities ρ̂i,j
and ramp flows θ̂i with respect to the corresponding ground
truth, is adopted as

CVρ =

√
1

MNK

∑N
i=1

∑M
j=1

∑K
k=1 [ρ̂i,j(k)− ρi,j(k)]

2

1
MNK

∑N
i=1

∑M
j=1

∑K
k=1 ρi,j(k)

(19)

CVr,s =

√
1

K(lr+ls)

∑K
k=1

∑lr+ls
i=1

[
θ̂i(k)− θi(k)

]2
1

K(lr+ls)

∑K
k=1

∑lr+ls
i=1 θi(k)

, (20)

where θ1 = r10, θ2 = r16, θ3 = s18, θ4 = s14, and
M = 3, N = 21, lr = ls = 2, K = 1440.

B. Performance Evaluation for a Baseline Case

For the sake of brevity, only specific results of the cell
densities and ramp flow estimation for 20% penetration rate
of connected vehicles are presented, as illustrated in Figs. 4
and 5, respectively. The results are obtained with p = 0.3
and a = 0.05, chosen after a sensitivity analysis presented
in [41].

It is evident from the plots that the proposed scheme suc-
cessfully estimates and tracks the dynamics of both segment
densities and ramp flows under various traffic conditions,
including congestion and free-flow, as well as for (short-
lived) time intervals where no information from connected
vehicle reports is available. Density estimation is charac-
terized by a performance index CVρ = 34.4%, whereas
ramp flow estimation is characterized by a performance index
CVr,s = 78.0%.



Fig. 4. Contour plot for the ground truth (left column) and estimated (right
column) densities.

Fig. 5. Comparison between ground truth (black line) and estimated (blue
line) ramp flows for all on-ramps and off-ramps in the network.

C. Performance Evaluation for Various Penetration Rates

Fig. 6 illustrates the performance for density and ramp
flow estimation with regard to different penetration rates of
connected vehicles. A moderate sensitivity is observed in
the performance of the estimation scheme, which is seen
to deteriorate with decreasing penetration rates of connected
vehicles present at the highway. This is mainly due to the
accordingly reduced adequacy of the available traffic infor-
mation feeding the estimation scheme. In fact, the proportion
of time intervals without any connected vehicle in a cell
increases with decreasing penetration rate, reaching up to
70% for a penetration rate of 2% (see also [41]).

V. CONCLUSIONS

The validity of a per-lane traffic density as well as ramp
flow estimation scheme, which is based on an appropriate
multi-lane traffic flow model and a standard Kalman filter,
has been thoroughly tested using the AIMSUN microscopic

Fig. 6. Performance comparison of density (left) and ramp flow (right)
estimations for various penetration rates of connected vehicles.

traffic simulator. The proposed scheme is mainly based on
speed and position information obtained from connected ve-
hicle reports. The effectiveness of the proposed methodology
was examined in carefully designed experiments for a real
highway stretch and real demand scenarios. The obtained
results demonstrate that the estimation scheme captures the
onset of congestion with accurate timing and more gener-
ally, reproduces reliably the challenging traffic conditions in
space and time. Density estimation is satisfactory even for
penetration rates as low as 2%.

The presented approach has several advantages for possi-
ble future real-world applications, including:
• the use of a macroscopic model that has now calibration

requirements (e.g. no fundamental diagram)
• the extensive use of low-cost connected vehicle data that

are already available and are expected to increase in the
near future;

• the use of only a limited amount of fixed flow sensors.
It should be emphasized that the availability of real-time
traffic density per lane estimates is a prerequisite for the
application of lane-based traffic control algorithms.
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