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Abstract

Driving style of road vehicles has a significant impact on the fuel economy, hence

the recent term eco-driving to denote a driving style that reduces fuel consump-

tion. In the last decades, autonomous driving, but also vehicular communications

are becoming more and more important. One application of vehicle connectivity

is to receive information about the next signal switching time when vehicles ap-

proach a traffic light. Based on this information, appropriately developed systems

(or apps), known as GLOSA (Green Light Optimal Speed Adaptation), compute a

fuel-efficient velocity profile for the vehicle to cross the traffic lights, e.g. without

stopping. The main purpose of this thesis is to generate optimal (fuel-minimising)

trajectories for vehicles crossing a signalized junction, with traffic signals operated

in either fixed-time or real-time mode. In the case of fixed-time signals, the next

switching time is known beforehand; in real-time signals, the next switching time

is decided in real time based on the prevailing traffic conditions and is therefore

uncertain in advance. This thesis approaches the problem by using traffic lights’ in-

formation and calculating a trajectory and a velocity profile for the vehicle, based

on the vehicle’s initial state (position and speed) and a fixed final destination

state (downstream of the junction). In the case of fixed signals, an appropriate

optimal control problem is formulated and solved analytically via the Pontrya-

gin’s Minimum Principle (PMP). In the case of real-time signals, availability of

a time-window of possible signal switching times, along with the corresponding

probability distribution, is assumed, and the problem is cast in the format of

a stochastic optimal control problem and is solved numerically using Stochastic

Dynamic Programming techniques.

i





Acknowledgements

Herewith, I would like to thank Dr. Mountakis Kyriakos and Typaldos Panagiotis

for their guidance and contribution to the implementation of the research and

results presented in this paper. Also, I’d like to express my gratitude to Professor

Markos Papageorgiou and Professor Papamichail Ioannis for the opportunity they

gave me, to work on such an interesting subject. Finally, I would like to thank

my parents, my friends and especially my sister and my partner Antonis for the

support they have provided me both during my studies and in the completion of

this thesis.

Ioanna Kalogianni, Chania, June 2018

iii



Table of Contents

List of Figures vi

List of Tables vi

1 Introduction 1

1.1 Vehicle Connectivity . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Green Light Optimal Speed Advisory GLOSA . . . . . . . . . . . . 3

2 Optimal Control Theory 5

2.1 Continuous-time Dynamic Systems . . . . . . . . . . . . . . . . . . 5

2.1.1 Free Final Time . . . . . . . . . . . . . . . . . . . . . . . . 6

2.1.2 Interior Point Constraints . . . . . . . . . . . . . . . . . . . 7

2.2 Discrete-time Dynamic Systems . . . . . . . . . . . . . . . . . . . . 8

2.2.1 Free Final Time . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2.2 Interior Point Constraints . . . . . . . . . . . . . . . . . . . 12

3 Dynamic Programming 15

3.1 Dynamic Programming Fundamentals . . . . . . . . . . . . . . . . 15

3.1.1 Discrete Dynamic Programming . . . . . . . . . . . . . . . 16

3.2 Stochastic Dynamic Programming . . . . . . . . . . . . . . . . . . 18

3.3 Complexity of Dynamic Programming . . . . . . . . . . . . . . . . 19

4 Development of analytic solution to trajectory optimization for

statically managed traffic lights 21

4.1 Optimal Control Problem Formulation . . . . . . . . . . . . . . . . 21

4.2 Case 1: Analytic Solution with fixed final time & no traffic light. . 22

4.3 Case 2: Analytic Solution with free final time & no traffic light. . . 24

4.4 Case 3: Analytic Solution with fixed final time & a traffic light. . . 26

4.5 Case 4: Analytic Solution with free final time & a traffic light . . . 32

5 Development of numerical solution to trajectory optimization for

dynamically managed traffic lights. 37

5.1 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

5.2 Probability density function . . . . . . . . . . . . . . . . . . . . . . 38



5.2.1 Uniform probability distribution . . . . . . . . . . . . . . . 38

5.2.2 Triangular probability distribution . . . . . . . . . . . . . . 39

5.3 The Hamilton-Jacobi-Bellman equation . . . . . . . . . . . . . . . 40

5.4 Stochastic Dynamic Programming Algorithm . . . . . . . . . . . . 40

5.4.1 Discretization factor . . . . . . . . . . . . . . . . . . . . . . 42

5.4.2 Computational effort . . . . . . . . . . . . . . . . . . . . . . 43

6 Results 44

6.1 Results to Velocity Profile Optimization Problem Based on Pon-

tryagin’s Minimum Principle . . . . . . . . . . . . . . . . . . . . . 44

6.1.1 Case 1: Analytic Solution with fixed final time & no traffic

light . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

6.1.2 Case 2: Analytic Solution with free final time & no traffic

light. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

6.1.3 The choice of weighting factors . . . . . . . . . . . . . . . . 46

6.1.4 Case 3: Analytic Solution with fixed final time & traffic light 47

6.1.5 Case 4: Analytic Solution with free final time & traffic light 48

6.1.6 Comparison of cost derived using free and fixed final time. . 49

6.2 Simulation Results for dynamically managed traffic lights . . . . . 50

6.2.1 Implementation of the Solver . . . . . . . . . . . . . . . . . 50

6.2.2 Comparative relation of discretization factor in relation to

cost and computational effort . . . . . . . . . . . . . . . . . 51

6.2.3 Comparative relation among costs derived via Dynamic pro-

gramming techniques. . . . . . . . . . . . . . . . . . . . . . 52

6.2.4 Comparison of optimal trajectories for different probability

distributions . . . . . . . . . . . . . . . . . . . . . . . . . . 55

7 Contributions and future work 57

8 Appendix A 60

v



List of Figures

1 Trajectories of informed and uninformed drivers. The uninformed

driver has to stop at the red light, while the informed driver arrives

when the signal turns green. . . . . . . . . . . . . . . . . . . . . . 3

2 Uniform probability distribution. . . . . . . . . . . . . . . . . . . . 39

3 Triangular Probability distribution. . . . . . . . . . . . . . . . . . . 40

4 Illustration of the 3D grid of time and state space. . . . . . . . . . 41

5 Performance of the Optimal Control Problem for scenario 1.1 with

cost = 3.04 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

6 Performance of the Optimal Control Problem for scenario 1.2 with

cost = 5.14 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

7 Performance of the Optimal Control Problem for scenario 2.1 with

cost= 5.14 and te = 59.1 . . . . . . . . . . . . . . . . . . . . . . . . 46

8 Performance of the Optimal Control Problem for scenario 2.2 with

cost=5.2 and te = 54.8 . . . . . . . . . . . . . . . . . . . . . . . . . 46

9 Graphical representation of the relationship between final time and

weighting factor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

10 Performance of the Optimal Control Problem for scenario 3.1 with

cost=3.04 and t1 = 25.0 . . . . . . . . . . . . . . . . . . . . . . . . 48

11 Performance of the Optimal Control Problem for scenario 3.2 with

cost = 5.28 and t1 = 15 . . . . . . . . . . . . . . . . . . . . . . . . 48

12 Performance of the Optimal Control Problem for scenario 4.1 with

cost = 5.14, te = 59.16s and t1 = 31.62s . . . . . . . . . . . . . . . 49

13 Performance of the Optimal Control Problem scenario 4.2 with cost

= 4.63, te = 68s and t1 = 15s . . . . . . . . . . . . . . . . . . . . . 49

14 Cost and execution time in relation to ∆X, ∆V and ∆U . . . . . . 52

15 Optimal derived position trajectories in relation to time for scenario 1 54

16 Optimal derived position trajectories in relation to time for scenario 2 54

17 Optimal derived position trajectory in relation to time with different

probability distributions for scenario 1 . . . . . . . . . . . . . . . . 55

18 Optimal derived position trajectory in relation to time with different

probability distributions for scenario 2 . . . . . . . . . . . . . . . . 56

19 Optimal derived trajectory in relation to time using uniform prob-

ability distribution for scenario 1. . . . . . . . . . . . . . . . . . . . 60

20 Optimal derived trajectory in relation to time using triangular prob-

ability distribution with c=5 for scenario 1. . . . . . . . . . . . . . 61

vi



21 Optimal derived trajectory in relation to time using triangular prob-

ability distribution with c=15 for scenario 1. . . . . . . . . . . . . 61

22 Optimal derived trajectory in relation to time using uniform prob-

ability distribution for scenario 2. . . . . . . . . . . . . . . . . . . . 62

23 Optimal derived trajectory in relation to time using triangular prob-

ability distribution with c=5 for scenario 2. . . . . . . . . . . . . . 62

24 Optimal derived trajectory in relation to time using triangular prob-

ability distribution with c=15 for scenario 2. . . . . . . . . . . . . 63

List of Tables

1 Case 1 with fixed final time and no traffic light . . . . . . . . . . . 44

2 Case 2 with free final time and no traffic light . . . . . . . . . . . . 45

3 Case 3 with fixed final time & traffic light . . . . . . . . . . . . . . 47

4 Case 4 with fixed final time and a traffic light . . . . . . . . . . . . 48

5 Cost comparison for fixed and free final time . . . . . . . . . . . . 50

6 Comparative relation of discretization rates in relation to cost and

computational effort . . . . . . . . . . . . . . . . . . . . . . . . . . 51

7 Comparative relation among costs derived by Dynamic program-

ming techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

8 Scenarios tested for several probability distributions . . . . . . . . 55

vii



1 Introduction

Transportation fuel consumption is a critical problem for our society. Driving style

and traffic conditions have been proved to have a significant impact on the fuel

economy and eco-driving. Both car manufacturers and transportation researchers

are trying to use new technologies, such as cylinder deactivation, start-stop system,

in order to reduce fuel consumption. The increasing need for traffic efficiency led

to the advent of cooperative (ITS), which is one of the effective solutions to critical

transportation problems. ITS includes telematics and all kinds of communication

in vehicles, between vehicles and between infrastructure and vehicles [1].

Traffic lights (TL) coordinate the traffic for most of the city intersections.

A busy intersection in a typical urban area might coordinate the movement of

thousands of vehicles a day. In this context, the accumulated energy waste due to

stopping at red light and the corresponding generated emissions become crucial.

Therefore, being able to fluently cross the Traffic Lights is of great value. A

Traffic Light Assistant (TLA) would therefore contribute to improve the overall

transportation system energy efficiency and, for the case of a fully electric vehicle,

to the all-electric range extension.

Greenlight optimal speed advisory (GLOSA) is one of the important applica-

tions to reduce traffic delay and fuel consumption in ITS. The GLOSA application

provides the driver with accurate speed advice about the approaching intersection

by taking advantage of traffic light timing and vehicle positions. The aim of this

application is to guide the vehicle going through signaled intersections with a more

appropriate speed in order to reduce stopped time and save fuel. Drivers need to

adjust their speed in order to pass the intersection without stopping as they are

approaching the intersection.

The known GLOSA implementations use data from statically behaved traffic

lights where the traffic lights’ times are constant. Nowadays most signals are

dynamically managed, which means that the green and red times are influenced

by the corresponding demands at the traffic lights. The green and red times always

have a minimum and maximum value. When the traffic intensity increases, most

traffic lights are specified such that the green times will increase and the system

can serve more vehicles.

This thesis aims to implement a GLOSA system in order to approach both

statically and dynamically managed traffic lights, by using traffic lights’ informa-
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tion in order to calculate a trajectory and a velocity profile, based on the initial

and the desired final destination point. The optimal velocity profile is advised to

the driver or can be used directly in autonomous vehicles. Therefore, for static in-

formation, a solution to the Optimal Control Problem, based on the Pontryagin’s

maximum principle (PMP) is developed, and in order to approach dynamically

managed traffic lights, the algorithm of Stochastic Dynamic Programming has

been implemented.

1.1 Vehicle Connectivity

The rapid advancement of vehicle technology is dramatically altering transporta-

tion models around the world. From early stage consumer infotainment features,

to ride sharing and on-demand mobility services, to fully autonomous vehicles in

the future, connectivity in the car has been the driving force behind recent auto-

motive technology advancements. As a result, vehicles have morphed into much

more than just a way to get from one place to another, but extensions of consumer

digital lifestyles and a catalyst for significant change in the way society will expe-

rience future mobility.

There are 5 ways a vehicle can be connected to its surroundings and commu-

nicate with them:

• (V2I) ”Vehicle to Infrastructure”: The technology captures data generated

by the vehicle and provides information about the infrastructure to the

driver. The V2I technology communicates information about safety, mo-

bility or environment-related conditions. [2]

• (V2V) ”Vehicle to Vehicle”: The technology communicates information about

speed and position of surrounding vehicles through a wireless exchange of

information. The goal is to avoid accidents, ease traffic congestion and have

a positive impact on the environment. [3]

• (V2C) ”Vehicle to Cloud”: The technology exchanges information about and

for applications of the vehicle with a cloud system. This allows the vehicle

to use information from other, though the cloud connected industries like

energy, transportation and smart homes and make use of IoT.[4]
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• (V2P) ”Vehicle to Pedestrian”: The technology senses information about its

environment and communicates it to other vehicles, infrastructure and per-

sonal mobile devices. This enables the vehicle to communicate with pedes-

trians and is intended to improve safety and mobility on the road. [5]

• (V2X) ”Vehicle to Everything”: The technology interconnects all types of

vehicles and infrastructure systems with another. This connectivity includes

cars, highways, ships, trains and airplanes. [6]

1.2 Green Light Optimal Speed Advisory GLOSA

Intelligent traffic lights are believed to play an important role in tomorrow’s trans-

portation system as they are a major factor in the optimization of traffic flows.

Dynamic traffic light programs can adapt to current traffic in order to lower waiting

times and increase traffic throughput [7]. Equipped with communication devices,

traffic lights could also inform approaching vehicles of the current traffic light pro-

gram to further reduce the amount of stops and starts in order to decrease CO2

emissions and fuel consumption [1]. As shown in Figure 1, this information can

be used by an approaching driver to alter his original trajectory through the use

of certain driving maneuvers to avoid having to stop at the red light but arrive

shortly after the signal turns green. [8]

Figure 1 Trajectories of informed and uninformed drivers. The uninformed
driver has to stop at the red light, while the informed driver arrives when
the signal turns green.
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GLOSA is a system that uses data in order to calculate an optimal speed at

which the vehicle could probably pass the next traffic light without stopping. When

a vehicle approaches a traffic light, it receives information regarding the location

of the intersection and the signal phase and timing. With this information and

its own position the vehicle can calculate a speed advice. The vehicle could either

notify the driver of the optimal speed or notify the autonomous car system directly.

The aim of this system is to prevent a stop-and-go situation, reduce the

fuel consumption and CO2 emission and thus lead to a more efficient infrastruc-

ture.Research shows that it can save up to 20 % of fuel and 17% of stop time

[1]. In addition to lower fuel consumption, GLOSA systems can provide higher

travel comfort, have lower environmental impact, and the traffic flow is smoothed

and increased.Furthermore, obtaining more and more information about handling

intersection can, finaly, lead to better road safety.

The recent years there have been several successful realizations of GLOSA sys-

tems in a real world environment. Most of these projects were implemented as

proofs of concept, usually to demonstrate abilities of the cooperative ITS technol-

ogy and its potential for the future. Most of them are also part of ongoing research

activities of major car manufacturers.

Audi Travolution is a collaboration between Audi and many of its partners.

One part of this project is a GLOSA system deployed at 25 intersections in In-

golstadt, Germany. Fifteen of these intersections use car-to-infrastructure wireless

local area networks (WLAN) allowing for a direct communication between cars

and the intersections. The remaining intersections send data to a back end server

located in Ingolstadt city centre. Besides displaying a recommended speed to the

driver, two of the test cars have been equipped with an adaptive cruise control con-

nected to the GLOSA system. Another large GLOSA implementation has been

carried out by Swarco and Audi in Berlin and it involves over 800 intersections.

However, they do not use any form of a direct V2I communication. An interesting

additional feature of this implementation is a connection with the start-stop sys-

tem in Audi vehicles. When the time to green is below a predefined threshold, the

engine is not stopped. Another project that offers GLOSA capabilities is Signal

Guru, a smart phone app of the Massachusetts Institute of Technology (MIT).

The smart phone needs to be positioned directly behind the windshield and the

app uses the smart phone camera to collect data of passed traffic lights. This data

will be saved in a database and is used to determine the traffic light signal phases.

When the system has collected sufficient data the app can display the remaining

red time and an optimal speed to pass green lights.
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2 Optimal Control Theory

Optimal Control theory is an extension of the calculus of variations, and is a

mathematical optimization method for deriving control policies. The method is

largely due to the work of Lev Pontryagin and Richard Bellman in the 1950s, after

contributions to calculus of variations by Edward J. McShane. Optimal control

theory deals with the problem of finding a control law for a given system such

that a certain optimality criterion is achieved. A control problem includes a cost

functional that is a function of state and control variables. An optimal control

is a set of differential equations describing the paths of the control variables that

minimize the cost function. The optimal control can be derived using (PMP), or

by solving the Hamilton–Jacobi–Bellman equation as a sufficient condition.

2.1 Continuous-time Dynamic Systems

A continuous-time dynamic system is described by an n-dimensional state vector

x(t) at time t. Choice of an m-dimensional control vector u(t) determines the time

rate of change of the state through the relations

ẋ = f(x,u, t) (2.1.1)

A general optimization problem for such a system is to find the optimal control

vector u(t) for t0 ≤ t ≤ te, in order to minimize a performance index in the

following form:

J = θ(x(te), te) +

∫ te

t0

φ[x(t),u(t), t]dt (2.1.2)

where [t0, te] is the time interval of interest. The final weighting function θ(x(te), te)

depends on the final state and final time, and the weighting function φ[x(t), u(t), t]

depends on the state and input at intermediate times in [t0, te].

Satisfying the boundary conditions given by:

x(t0) = x0 (2.1.3)

g[x(te), te] = 0 (2.1.4)
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Optimality Conditions

For the continuous time optimal control problem we define the Hamiltonian func-

tion as: [9]

H(x,u, t) = L(x,u, t) + λT f(x,u, t) (2.1.5)

where λ ∈ Rn are Lagrange multipliers, also known as co-states.

Then, the Pontryagin’s principle provides the following 1st order necessary condi-

tions for optimality [9]:

ẋ =
ϑH(x,u, t)

ϑλ
(2.1.6)

λ̇ =
ϑH(x,u, t)

ϑx
(2.1.7)

u = arg min
u

H(x,u, t) (2.1.8)

Furthermore, the following boundary and transversality conditions must be met:

x(t0) = x0 (2.1.9)

g[x(te), te] = 0 (2.1.10)

λ(te) = θx(te) + gx(te)
T ν (2.1.11)

2.1.1 Free Final Time

In the case with a free final time te, we wish to find the optimal control vector u(t)

for t0 ≤ t ≤ te and the final time te, in order to minimize the following performance

index:

J = θ(x(te), te) +

∫ te

t0

φ[x(t),u(t), t]dt (2.1.12)

The new element is the dependence of the performance index, the terminal

constraints and the dynamic equation on the final time te. The following necessary

condition is called transversality condition and determines the value of the final

time te.

H[x(te),u(te),λ(te), te] + θte = 0 (2.1.13)
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Eq. 2.1.13 with the initial and final conditions give us the following boundary

conditions, which can be used to solve the two-point boundary-value problem and

can be used to calculate the free end time te.

x(t0) = x0 (2.1.14)

g[x(te), te] = 0 (2.1.15)

λ(te) = θx(te) + gTx(te)ν (2.1.16)

H(x(te),u(te), (te), te) + θte = 0 (2.1.17)

2.1.2 Interior Point Constraints

In this problem it is required that position satisfies equality constraints at some

point t1, where t0 ≤ t1 ≤ te. This is known as interior point constraint and can be

expressed as:

N [x(t1)] = 0 (2.1.18)

where t1 is an intermediate time and N is a q-component vector function. We now

have a three-point boundary-value problem instead of two-point boundary-value

problem. Now eq. 2.1.18 represents a set of terminal constraints for t ∈ [t0, t1]

If we let t1− signify just before t1, and t1+ just after, we can derive the following:

λT (t−1 ) = λT (t+1 ) + πT
ϑN

ϑx(t1)
(2.1.19)

H(t−1 ) = H(t+1 ) + πT
ϑN

ϑt1
(2.1.20)

We then have the following boundary conditions, which can be used to solve the

three-point boundary-value problem.

For t ∈ [0, t1]:

x(t0) = x0 (2.1.21)

N [x(t1)] = 0 (2.1.22)

λ(t1) = θx(t1) +NT
x(t1)π (2.1.23)
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For t ∈ [t1, te]

N [x(t1)] = 0 (2.1.24)

g[x(te)] = 0 (2.1.25)

λ(te) = θx(te) + gTx(te)ν (2.1.26)

2.2 Discrete-time Dynamic Systems

A discrete-time system is described by an n-dimensional state vector x(k) at step

k. Choice of an m-dimensional control vector u(k) determines a transition of the

system to state x(k + 1) through the relation:

x(k + 1) = f [x(k),u(k), k], k = 0, ...,K − 1 (2.2.1)

where θ, φ ∈ Rq are twice continuous differential functions.The problem consists

of minimizing the discrete-time cost function [?]

J [x(k),u(k), k] = θ(x(K)) +

K−1∑
k=0

φ[x(k),u(k), k] (2.2.2)

The final state may be free or may be required to satisfy a final condition:

g[x(K)] = 0 (2.2.3)

Although expressing a dynamic physical procedure, the above formulated problem

is, from a mathematical point of view, a static optimization problem due to the

discrete-time nature of the involved process model. To see this, define the vectors:

X = [x(1)Tx(2)T ...x(K)T ]T (2.2.4)

U = [u(0)Tu(1)T ...u(K − 1)T ]T (2.2.5)
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The discrete optimal control may then be expressed as follows:

Minimize Φ(X,U)

subject to F (X,U) = 0

where Φ expresses the discrete-time cost function, and F the state equations for

all k ∈ [0,K − 1] and the terminal condition.

Optimality Conditions

In order to derive the necessary conditions of optimality for the discrete-time op-

timal control problem we use the following Lagrangian function.

L[x(k),u(k),λ(k), k] = Φ(X,U) + ΛTF (X,U) =

= θ[x(K)] + φ[x(k1)] +

K−1∑
k=0

φ[x(k),u(k), k]+

+

K−1∑
k=0

{λ(k + 1)T [f [x(k),u(k), k]− x(k + 1)]}+ νT g[x(K)]

where λ(k + 1) ∈ Rn , k=0,...,K-1, is Lagrange multiplier for the equality condi-

tions. The multipliers ν, π are assigned to the final and the intermediate condition

respectively.

Applying the necessary conditions of optimality [3]:

dL

dX
= 0⇒ λ(k) = φx(k) + fTx(k)λ(k + 1) (2.2.6)

dL

dU
= 0⇒ φu(k) + fTu(k)λ(k + 1) = 0 (2.2.7)

dL

dΛ
= 0⇒ x(k + 1) = f [x(k),u(k), k] (2.2.8)

We derive the necessary conditions of optimality for the discrete-time optimal

control problem. These conditions are expressed in terms of the discrete-time

Hamiltonian function that is defined as follows.

H[x(k),u(k),λ(k + 1), k] = φ[x(k),u(k), k] + λ(k + 1)T f [x(k), u(k), k] (2.2.9)
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We, then, have the following necessary conditions of optimality for the discrete-

time optimal control problem:

λ(k) = Hx(k) = φx(k) + fTx(k)λ(k + 1) (2.2.10)

Hx(k) = φu(k) + fTu(k)λ(k + 1) = 0 (2.2.11)

x(k + 1) = f [x(k),u(k), k] (2.2.12)

Moreover the following boundary and transversality conditions must be satisfied.

x(0) = x0 (2.2.13)

λ(K) = θx(K) + gTx(K)ν (2.2.14)

g[x(K)] = 0 (2.2.15)

2.2.1 Free Final Time

This extension of the optimal control problem, where the final time is free, is

simply to regard the final time as a parameter to be optimized, in addition to

control. We aim to find the control vector sequence u(k), k=0,...,K-1 and the final

free time te to minimize:

J [x(k),u(k), k] = θ(x(K)) +

K−1∑
k=0

φ[x(k),u(k), k] (2.2.16)

where the number of steps K is specified and

te = K∆t (2.2.17)

subject to the constraints:

g[x(K), te] = 0 (2.2.18)

x(k + 1) = f [x(k),u(k), k,∆t] (2.2.19)

x(x0) = x0 (2.2.20)
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where ∆t is the timestep.

Optimality conditions

The necessary conditions can be obtained by the extension of the Lagrangian

function [10]

L[x(k),u(k),λ(k), k] = Φ(X, U) + ΛTF (X, U) =

K−1∑
k=0

φ[x(k), u(k), k,∆t]+

+

K−1∑
k=0

{λ(k + 1)T [f [x(k),u(k), k,∆t]− x(k + 1)]}+ νT g[x(K)]

Using the Lagrangian function we derive the following necessary conditions of

optimality for the discrete-time optimal control problem with final free time.

λ(k) = Hx(k) = φx(k) + fTx(k)λ(k + 1) (2.2.21)

Hu(k) = φu(k) + fTu(k)λ(k + 1) = 0 (2.2.22)

x(k + 1) = f [x(k),u(k), k,∆t] (2.2.23)

Moreover the following boundary and transversality conditions must be satisfied

Θ∆t +

K−1∑
k=0

H∆t(k) = 0 (2.2.24)

λ(K) = θx(K) + gTx(K)ν x(t0) = x0 (2.2.25)

where Θ = θ[x(K), te] + νT g[x(K), te] (2.2.26)

is new necessary condition is a transversality condition that determines the opti-

mal time step ∆t.
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2.2.2 Interior Point Constraints

In this problem it is required that the states variables atisfies equality constraints

at some point k1 (the position of the traffic light), where 0 ≤ k1 ≤ K. This is

known as interior point constraint and can be expressed as:

N [x(k1)] = 0 (2.2.27)

where k1 is an intermediate point and N is a q-component vector function. We now

have a three-point boundary-value problem instead of two-point boundary-value

problem. Now eq. 2.2.27 represents a set of terminal constraints for k ∈ [0, k1].

The discrete-time cost function is transformed as follows:

J [x(k),u(k), k] = θ(x(K)) + φ[x(k1)]+ (2.2.28)

+

K−1∑
k=0

φ[x(k),u(k), k]

In order to derive the necessary conditions of optimality for the discrete-time op-

timal control problem we formulate the Lagrangian function

L[x(k),u(k),λ(k), k] = Φ(X,U) + ΛTF (X,U) = θ[x(K)] + φ[x(k1)]+ (2.2.29)

+

K−1∑
k=0

φ[x(k),u(k), k] +

K−1∑
k=0

{λ(k + 1)T [f [x(k),u(k), k]− x(k + 1)]}+

νT g[x(K)] + πTN [x(k1)]

where λ(k + 1) ∈ Rn , k=0,...,K-1, is Lagrange multiplier for the equality condi-

tions. The multipliers ν, π are assigned to the final and the intermediate condition

respectively.

Applying the necessary conditions of optimality:
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dL

dX
= 0⇒ λ(k) = φx(k) + fTx(k)λ(k + 1) (2.2.30)

dL

dU
= 0⇒ φu(k) + fTu(k)λ(k + 1) = 0 (2.2.31)

dL

dΛ
= 0⇒ x(k + 1) = f [x(k),u(k), k] (2.2.32)

We derive the necessary conditions of optimality for the discrete-time optimal

control problem. These conditions are expressed in terms of the discrete-time

Hamiltonian function that is defined as follows.

H[x(k),u(k),λ(k + 1), k] = φ[x(k),u(k), k] + λ(k + 1)T f [x(k),u(k), k] (2.2.33)

We, then, have the following necessary conditions of optimality for the discrete-

time optimal control problem:

λ(k) = Hx(k) = φx(k) + fTx(k)λ(k + 1) (2.2.34)

Hx(k) = φu(k) + fTu(k)λ(k + 1) = 0 (2.2.35)

x(k + 1) = f [x(k),u(k), k] (2.2.36)

Moreover the following boundary and transversality conditions must be satisfied.

For k ∈ [0, k1]:

x(0) = x0 (2.2.37)

N [x(k1)] = 0 (2.2.38)

λ(k1) = ϑx(k1) +NT
x(k1)π (2.2.39)

For k ∈ [k1,K]

N [x(k1)] = 0 (2.2.40)

λ(K) = ϑx(K) + gTx(K)ν (2.2.41)

g[x(K)] = 0 (2.2.42)
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The above three-point boundary-value problem can be extended as a problem with

multiple interior point constraints. Then the general form of the Lagrangian func-

tion can be expressed as:

L[x(k), u(k),λ(k), k] = Φ(X,U) + ΛTF (X,U) =

K−1∑
k=0

φ[x(k),u(k), k]+

+

K−1∑
k=0

{λ(k + 1)T [f [x(k),u(k), k]− x(k + 1)]}+ νT g[x(K)] +

M∑
i=1

πTN [x(ki)]

where g[x(K)] is the terminal boundary condition, Ni[x(ki)] is the ith interior

point constraint, and M in the total number of interior point constraints.
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3 Dynamic Programming

Dynamic programming (DP) is a very different approach to solve optimal control

problems than the ones presented previously. The methodology was developed in

1950s, most prominently by Richard Bellman who also coined the term dynamic

programming. In his work, Bellman writes ”An optimal policy has the property

that whatever the initial state and the initial decision are, the remaining decisions

must constitute an optimal policy with regard to the state resulting from the first

decision”. This is known as Bellman’s Principle and is the central idea to dynamic

programming. Interestingly, dynamic programming is easiest to apply to systems

with discrete state and control spaces. When DP is applied to discrete time sys-

tems with continuous state spaces, some approximations have to be made, usually

by discretization. Generally, this discretization leads to exponential growth of com-

putational cost with respect to the dimension nx of the state space, what Bellman

called the “curse of dimensionality”. In the continuous time case, DP is formulated

as a partial differential equation in the state space, the Hamilton-Jacobi-Bellman

(HJB) equation, suffering from the same limitation. On the positive side, DP can

easily deal with all kinds of hybrid systems or non-differential dynamics, and it

even allows us to treat stochastic optimal control with recourse. This chapter is an

attempt to present a brief overview of the most important concepts and ideas in

the Bellman theory of DP. Our emphasis is to review the basic concepts and defi-

nitions in DP and to show the many sources of difficulty in obtaining the optimal

solution.

3.1 Dynamic Programming Fundamentals

A discrete-time system is described by an n-dimensional state vector x(k) at step

k. Choice of an m-dimensional control vector u(k) determines a transition of the

system to state x(k+1) through the relation:

x(k + 1) = f [x(k),u(k), k], k = 0, ...,K − 1 (3.1.1)

The problem consists of minimizing the following discrete-time cost function [11].
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J [x(k),u(k), k] = θ(x(K)) +

K−1∑
k=0

φ[x(k),u(k), k] (3.1.2)

The final states may be free or may be required to satisfy a final condition

g[x(K)] = 0 (3.1.3)

The permissible control area is defined as:

u(k) ∈ U [x(k), k] = {u(k)|h∗[x(k),u(k), k] ≤ 0} (3.1.4)

For a given problem, the minimum transfer cost is J∗
k = min Jk (considering all

boundary conditions), depends exclusively from state x(k) and time k. We call

this minimum cost V [x(k), k] and we obtain the following equation:

V [x(k), k] = minJk = min {φ[x(k), u(k), k], Jk+1} (3.1.5)

where Jk+1 is called the cost-to-go from state xk+1, since it is encapsulates the

remaining cost of the trajectory, and θ, φ ∈ Rq are twice continuous difference

functions.

By applying the principle of optimality we obtain:

V [x(k), k] = min {φ[x(k),u(k), k] + V [x(k),u(k), k), k + 1]} (3.1.6)

Eq. 3.1.6 is known as Bellman’s Equation and is the basis of dynamic program-

ming. Dynamic programming finds the optimal cost-to-go for a system by using

Bellman’s Equation backwards on a trajectory. If the terminal costs J∗
K are known,

then J∗
K−1 can be found by using Bellman’s Equation. This process can be repeated

until J∗
0 is known. The advantage of dynamic programming is that it computes

the optimal trajectory for every possible state.

3.1.1 Discrete Dynamic Programming

The general numerical resolution of a Discrete-time Optimal control problem is

possible if we introduce a distinct set of points in the permitted state region X(k)
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and in the permissible control area U(k) [11].

The discretization intervals X(k) and U(k) are chosen appropriately, depending on

the problem and the desired solution accuracy.

If we apply to a discrete xi(k) state, all discrete controls uj(k), we then have a

finite number of transitions in the next k + 1 stage with the corresponding costs.

Applying this process to all discrete states, we end up with a discrete system of

multi-tiered decisions.

The application of a discrete control value uj(k) to a discrete state xi(k) leads to

a state:

x(k + 1) = φ[xi(k),uj(k), k] (3.1.7)

Overall, we get a discrete environment to perform the multilevel dynamic pro-

gramming procedure, which is why this solution method is called discrete dynamic

programming. As a consequence of the discretization, for every point xi(k) there

are finitely many transitions uj(k), which lead to the next step k+1. The one-stage

optimization can thus be carried out by direct comparison of these transitional

lengths. The procedure for DP is to first consider the one-stage (instantaneous)

cost for being in the final state, for example at k = N . Moving backward in time

one step to k = N − 1 a control decision in each state will define the state at the

next time step (k = N), and so the one-stage cost of being in each state is added

to the optimal cost from the resulting state onward. By following this procedure

a table can be constructed containing the optimal cost of moving from any state

x at time k to the end of the problem, where non-optimal control trajectories

are ignored completely. The multi-stage optimization procedure thus assumes the

following form under the new circumstances, which can easily be converted into a

generally applicable computer program [11]:

Stage K - 1: For all grid points xi(K − 1) ∈ X(K − 1), the corresponding

discrete control values uj(K − 1) ∈ U(xi(K − 1),K − 1) should be determined,

which minimizes:

JK−1 = θ(x(K)) + φ(xi(K − 1),uj(K − 1),K − 1)

In this case applies:

x(K) = f(xi(K − 1),uj(K − 1),K − 1).

Stage K - 2: For all grid points xi(K − 2) ∈ X(K − 2), the corresponding

discrete control values uj(K − 2) ∈ U(xi(K − 2),K − 2) should be determined,

which minimizes:
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JK−2 = V (x(K − 1),K − 1) + φ(xi(K2),uj(K2),K2)

In this case applies:

x(K − 1) = f(xi(K − 2),uj(K − 2),K − 2).

Stage 0: For xi(0) the associated discrete control value uj(0) ∈ U(xi(0), 0) is

determined as:

J = V (x(1), 1) + (xi(0),uj(0), 0)

In this case applies:

x(1) = f(xi(0),uj(0), 0).

In this way, DP allows us to solve the optimal control problem up to global

optimality, but with a different complexity than simple enumeration. To assess its

complexity, let us remark that the most cost intensive step is the generation of the

cost-to-go functions Jk. Each recursion step needs to go through all nX states x.

For each state it needs to test nU controls u by evaluating once the system f(x, u)

and stage cost J(x, u), which by definition costs one computational unit. Thus,

the overall computational complexity is O(NnXnU).

3.2 Stochastic Dynamic Programming

Stochastic Dynamic Programming, which has originally introduced by Richard E.

Bellman in 1957, is a technique for modelling and solving problems of decision

making under uncertainty. Stochastic dynamic programming represents the prob-

lem under scrutiny in the form of a Bellman equation. The aim is to compute a

policy prescribing how to act optimally in the face of uncertainty.

We consider the discrete-time dynamic system:

x(k + 1) = φ[x(k),u(k), z(k), k] x(0) = x0 k = 0, ...,K − 1 (3.2.1)

with the state vector x(k) ∈ X(k) ⊂ Rn , the control vector u(k) ∈ U(k) ⊂ Rm and

the stochastic disturbances vector z(k) ∈ Z(k) ⊂ Rp. The stochastic disturbances

vector z(k) can contain arbitrary values of Z(k) with the time, state, and control-

dependent probability distribution P (z|x(k), u(k), k). Here, the disturbance values
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z(k) become independent of all previous values z(k − 1), z(k − 2),..., provided.

We first define the remaining expected costs (cost-to-go) Jk as follows:

Jk = E{θ[x(K)] +

K−1∑
k=k

φ[x(k),u(k), z(k), k]} (3.2.2)

For a given problem, the optimal cost-to go J∗ = min Jk depends exclusively from

x(k) and k. We denote this minimal cost (optimal cost-to-go) with the V-function,

and we obtain:

V (x(k), k) = minJk = minE{φ(x(k),u(k), z(k), k) + Jk+1} (3.2.3)

By applying the optimality principle in eq. 3.2.3 we obtain the stochastic version

of Bellman’s recursion formula:

V (x(k), k) = minE{φ(x(k),u(k), z(k), k) + V (f(x(k),u(k), z(k), k), k + 1)}
(3.2.4)

With the following boundary condition:

V [x(K),K] = θ[x(K)] (3.2.5)

3.3 Complexity of Dynamic Programming

The DP algorithm discussed in the previous section requires a minimization of cost

function for each time step, over the space of control inputs. This minimization

can result in a major difficulty known as curse of dimensionality. A numerical

solution of each minimization in DP is prone to curse of dimensionality, because

it has an exponential complexity with respect the dimensions of the state and the

control signal. To further explain the curse of dimensionality, one can observe

that in each iteration of the Bellman recursion, an expected value operation and a

minimization operation needs to take place. The multi-stage procedure also leads

to a global minimum of the entire problem, since the dynamic programming indi-

rectly investigates all possible combinations of transitions. This global minimum,

of course, refers to the discretized problem definition and will thus represent an

approximation of the solution of the original discrete-time (but value-continuous)

control task. However, for sufficiently short discretization intervals ∆x(k),∆u(k),
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this approximation can be made as precise as desired. The result of the discrete

dynamic programming is an optimal control law, which is present in tabular form:

for each grid point xi(k), the associated discrete control value ul(i)(k) is known

which optimally in the next time point k + 1 leads. Let ai(k), i = 1, ., , , n, be

the number of grid points for the individual components of the state vector x(k)

and βj(k), j = 1, ...,m, the number of discrete control values for the individual

components of the control vector u(k) [9].

Then the state grid includes a total of∑K
k=0

∏n
i=1 ai(k)

points, and the number of transfers for each of these points is:∏m
j=1 βj(k)

Assuming that the number of transitions for each of these points is, for simplifi-

cation, ai(k) = a and βj(k) = β for all i, all j, and all k, the computation time

required is:

τ ∼ Kanβm.

The memory required for the storage of the tabular control law is xi(k)m values.

This results in

m
∑K

k=0

∏n
i=1 ai(k)

total values to be stored. The above equations show that the computational effort

required when using discrete dynamic programming increases exponentially with

the problem dimensions n,m.
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4 Development of analytic solution to

trajectory optimization for

statically managed traffic lights

4.1 Optimal Control Problem Formulation

In this chapter we are focusing in the development an optimal trajectory for the

vehicle considering the existence of fixed-time traffic lights. In this case, an ap-

propriate optimal control problem is formulated and solved analytically via the

Pontryagin’s Minimum Principle (PMP) for four different case studies. For the

formulation of the Optimal Control Problem, the following are considered:

1. Only one vehicle and a single lane are considered.

2. The red traffic lights are detected at t0.

3. The traffic lights’ switching time is fixed and perfectly known.

4. The system is described by the following state variables where x is the po-

sition, ν is the speed and u is the acceleration as control variable.

ẋ = ν ν̇ = u (4.1.1)

5. The initial and final conditions of the vehicle, are denoted as:

x(t0) = x0 (4.1.2)

ν(t0) = ν0 (4.1.3)

x(te) = xe (4.1.4)

ν(te) = νe (4.1.5)
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4.2 Case 1: Analytic Solution with fixed final time &
no traffic light.

We consider the case of defining an optimal trajectory, which minimizes the re-

quired acceleration, starting from a known initial point to a fixed final destination

point. In Case 1, we assume that there is no traffic light interfering the vehicle’s

trajectory and the final time is fixed and known beforehand.

The objective is to bring the system from the initial condition x0 = [x0, ν0]T to

the final condition xe = [xe, νe]
T by time te while minimizing the fuel-consumption

cost criterion:[12]

J =
1

2

∫ te

t0

u(t)2dt (4.2.1)

Using the optimality condition (eq. 2.2.30) we define the Hamiltonian function as:

H(t) =
1

2
u2 + λ1ν + λ2u (4.2.2)

Where λ1, λ2 are co-state variables.Using the Pontryagin’s principle, we derive the

following 1st order necessary conditions for optimality:

ẋ =
ϑH

ϑλ1
= ν (4.2.3)

ν̇ =
ϑH

ϑλ2
= u (4.2.4)

λ̇1 =
−ϑH
ϑx

= 0 (4.2.5)

λ̇2 =
−ϑH
ϑν

= −λ1 (4.2.6)

Hu = u+ λ2 = 0 (4.2.7)

Solving the ODE system (eq. 4.2.3 - 4.2.5) we obtain that:

λ1(t) = c1 (4.2.8)

λ2(t) = −c1t− c2 (4.2.9)

and
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u(t) = −λ2 = c1t+ c2 (4.2.10)

ν(t) =
1

2
c1t

2 + c2t+ c3 (4.2.11)

x(t) =
1

6
c1t

3 +
1

2
c2t

2 + c3t+ c4 (4.2.12)

Where c1 − c4 are constants to be computed. In order to calculate these four

constants the initial and the final conditions (eq. 6.2.8-6.2.7) of the problem are

used, resulting in the derivation of the following system of equations.

x0 =
1

6
c1t0

3 +
1

2
c2t0

2 + c3t0 + c4 (4.2.13)

ν0 =
1

2
c1t0

2 + c2t0 + c3 (4.2.14)

xe =
1

6
c1te

3 +
1

2
c2te

2 + c3te + c4 (4.2.15)

νe =
1

2
c1te

2 + c2te + c3 (4.2.16)

Solving the above system we obtain four constants c1 − c4 which depend on the

initial and finally conditions and can easily computed using differential computing

(e.g Mathematica).

c1 =
6(t0ν0 − teν0 + t0ve − teνe − 2x0 + 2xe)

(t0 − te)3
(4.2.17)

c2 = −2t20ν0 − teν0t0 − 2t2eν0 + 2t20νe − t0teve − t2eve − 3t0x0 − 3tex0 + 3t0xe + 3texe
(t0 − te)3

(4.2.18)

c3 = −−2t20v0te + t2ev0t0 + t3ev0 − t30ve − t20teve − t2eve + 2t0t
2
eve + 6tex0t0 − 6t0xete

(t0 − te)3

(4.2.19)

c4 = −
t20v0t

2
e − t3ev0t0 + t30vete − t20t2eve − 3t0t

2
ex0 + t3ex0 − t30xe + 3texet

2
0

(t0 − te)3

(4.2.20)
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Hence, the derived four constants lead to an analytic solution of the state equations,

which due to the complexity of the equations cannot be presented.

4.3 Case 2: Analytic Solution with free final time &
no traffic light.

In this section, we propose an extension of Case 1. Particularly, we consider the

minimization of vehicle’s acceleration, but with free final time (te).

The objective is to bring the system from the initial condition x0 = [x0, ν0]T to

the final condition xe = [xe, νe]
T by time te while minimizing the cost criterion:

J =
1

2

∫ te

t0

u(t)2dt+
1

2
wte (4.3.1)

where w is the weighting factor of the final free time.

Using the optimality conditions (eq. 2.2.30) we define the Hamiltonian function

as:

H(x, ν, u, t) =
1

2
u2 + λ1ν + λ2u (4.3.2)

where λ1, λ2 are co-state variables. Using the Pontryagin’s principle, we derive the

following 1st order necessary conditions for optimality.

ẋ =
ϑH

ϑλ1
= ν (4.3.3)

ν̇ =
ϑH

ϑλ2
= u (4.3.4)

λ̇1 =
−ϑH
ϑx

= 0 (4.3.5)

λ̇2 =
−ϑH
ϑν

= −λ1 (4.3.6)

Hu = u+ λ2 = 0 (4.3.7)

Solving the ODE system (eq. 4.3.3 - 4.3.5) we obtain that:

λ1(t) = c1 (4.3.8)
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λ2(t) = −c1t− c2 (4.3.9)

and

u(t) = −λ2 = c1t+ c2 (4.3.10)

ν(t) =
1

2
c1t

2 + c2t+ c3 (4.3.11)

and

x(t) =
1

6
c1t

3 +
1

2
c2t

2 + c3t+ c4 (4.3.12)

For the final free time the following transversality condition must be satisfied.

H(te) +
1

2
w = 0 (4.3.13)

In order to calculate the for constants c1−c4 the the initial and the final conditions

o the trajectory are used, which lead to the following system of equations.

x0 =
1

6
c1t0

3 +
1

2
c2t0

2 + c3t0 + c4 (4.3.14)

ν0 =
1

2
c1t0

2 + c2t0 + c3 (4.3.15)

xe =
1

6
c1te

3 +
1

2
c2te

2 + c3te + c4 (4.3.16)

νe =
1

2
c1te

2 + c2te + c3 (4.3.17)

H(te) +
1

2
w = 0⇒ −c2

2 + 2c1c3 + w = 0 (4.3.18)

Solving the above system we obtain the following four constants c1 − c4.
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c1 =
6(t0ν0 − teν0 + t0ve − teνe − 2x0 + 2xe)

(t0 − te)3
(4.3.19)

c2 = −2t20ν0 − teν0t0 − 2t2eν0 + 2t20νe − t0teve − t2eve − 3t0x0 − 3tex0 + 3t0xe + 3texe
(t0 − te)3

(4.3.20)

c3 = −−2t20v0te + t2ev0t0 + t3ev0 − t30ve − t20teve − t2eve + 2t0t
2
eve + 6tex0t0 − 6t0xete

(t0 − te)3

(4.3.21)

c4 = −
t20v0t

2
e − t3ev0t0 + t30vete − t20t2eve − 3t0t

2
ex0 + t3ex0 − t30xe + 3texet

2
0

(t0 − te)3

(4.3.22)

− c2
2 + 2c1c3 + w = 0 (4.3.23)

Hence, these conditions lead to an analytic solution of the c1 − c4 and the final

free time. Therefore we can derive the state equations, which due to complexity

of the equations can not be presented.

Using Mathematica, there are two options in order to derive the state equations.We

can either use the solution of the four constants from Case 1 and then add the

equation for the final free time (eq.4.3.13), or solve the system of the five equations

directly. Both options have the same results, but the second option needs 108.54

seconds in order to derive the equations of motion and the first option needs

8.26 seconds. For this reason, the first option is preferred as for the aspect of

computational time.

4.4 Case 3: Analytic Solution with fixed final time &
a traffic light.

In case 3, we consider the minimization of the vehicles trajectory, starting from

a known initial point to a final destination, but with a traffic light interfering

the vehicle’s trajectory. The traffic light is detected at red phase. For the case

with traffic light, extra consideration is needed for the calculation of the optimal

velocity profile. The problem can be divided into two parts, the first part is the

region until the vehicle reaches where the traffic light is located and the second

part is the region from the traffic light to the destination point.
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For the formulation of the Optimal Control problem the following are consid-

ered:

1. The red traffic light is detected at t0.

2. The traffic light’s switching time is known and is defined as T

3. The traffic light’s position is known and is defined as x1

4. We define as t1 the moment that our vehicle passes the red traffic light.

5. In order to avoid creating a trajectory where vehicle passes through the

red traffic light, in addition to the initial and final conditions, we set the

following point constraint which allows us to specify the position of the

vehicle at moment t1.

x(t1) = x1 (4.4.1)

6. We define the following inequality constraint, which ensures that the Op-

timal time that the vehicle passes through the traffic light (t1) is equal or

greater than the traffic light’s switching time.

h[x(t), ν(t), u(t), t] = T − t1 ≤ 0 (4.4.2)

For case 3 we assume that the final time is fixed.

Using the optimality conditions (2.2.30) we define the Hamiltonian function:

H(x, ν, u, t) =
1

2
u2 + λ1ν + λ2u (4.4.3)
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where λ1, λ2 are co-state variables.

Using the Pontryagin’s principle, we derive the following 1st order necessary con-

ditions for optimality.

ẋ =
ϑH

ϑλ1
= ν (4.4.4)

ν̇ =
ϑH

ϑλ2
= u (4.4.5)

λ̇1 =
−ϑH
ϑx

= 0 (4.4.6)

λ̇2 =
−ϑH
ϑν

= −λ1 (4.4.7)

Hu = u+ λ2 = 0 (4.4.8)

Solving the ODE system (eq. 4.4.4 - 4.4.7) we obtain that:

λ1(t) = c1 (4.4.9)

λ2(t) = −c1t− c2 (4.4.10)

and

u(t) = −λ2 = c1t+ c2 (4.4.11)

ν(t) =
1

2
c1t

2 + c2t+ c3 (4.4.12)

Now eq. (4.4.2) represents a set of terminal constraints for the point of the path

t = t0 to t = t1. If we let t−1 signify just before t1 and t+1 just after t1, we may

interpret the influence functions and the Hamiltonian function at t1 as:

λ1(t+1 ) = λ1(t−1 ) + πτ
ϑN

ϑx(t1)
(discontinuity) (4.4.13)

λ2(t+1 ) = λ2(t−1 ) (continuity) (4.4.14)

H(t−1 ) = H(t+1 ) (continuity) (4.4.15)
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where π is a q-component vector of constant Lagrange multipliers, determined so

that the q conditions are satisfied. According to the derived equations there’s

continuity of speed and position at t1.

Applying the necessary conditions of optimality as in the previous section, the

constraint eq. (4.4.2) leads into two linear accelerations and therefore the equa-

tions of motion are transformed as follows:

u(t) =

c1t+ c2 t0 ≤ t ≤ t−1
c1t+ c2 + c3(t− t1) t+1 ≤ t ≤ te

(4.4.16)

ν(t) =

1
2c1t

2 + c2t+ c3 t0 ≤ t ≤ t−1
(c1t1 + c2)(t− t1) + 1

2c5(t− t1)2 + c6 t+1 ≤ t ≤ te
(4.4.17)

x(t) =

1
6c1t

3 + 1
2c2t

2 + c3t+ c4 t0 ≤ t ≤ t−1
1
2(c1t1 + c2)(t− t1)2 + 1

6c5(t− t1)3 + c6(t− t1) + c7 t+1 ≤ t ≤ te
(4.4.18)

For simplification reasons we transform the above equations as:

For 0 ≤ t ≤ t−1 we have the following equations:

u1(t) = c1t+ c2 (4.4.19)

ν1(t) =
1

2
c1t

2 + c2t+ c3 (4.4.20)

x1(t) =
1

6
c1t

3 +
1

2
c2t

2 + c3t+ c4 (4.4.21)
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For t+1 ≤ t ≤ te we have the following equations:

x2(t) =
1

2
(c1t1 + c2)(t− t1)2 +

1

6
c5(t− t1)3 + c6(t− t1) + c7 (4.4.22)

ν2(t) = (c1t1 + c2)(t− t1) +
1

2
c5(t− t1)2 + c6 (4.4.23)

u2(t) = c1t1 + c2 + c5(t− t1) (4.4.24)

The objective of this approach is to bring the system from the initial condition to

the final state by a fixed final time (te ) while minimizing the following extended

cost criterion: [13]

J =
1

2

∫ t1

t0

u2
1dt+

1

2

∫ te

t1

u2
2dt (4.4.25)

Obeying the following initial and final conditions:

x1(t0) = x0 ν1(t0) = ν0 (4.4.26)

x2(te) = xe ν2(te) = νe (4.4.27)

The resulting value of t1, is derived from the following applied KKT condition.

(4.4.2).

µ(T − t1) = 0 (4.4.28)

More explicitly there we distinguish an active and an inactive inequality constraint

as follows:

µ =


> 0 h = 0 (active)

= 0 h < 0 (inactive)

(4.4.29)
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In order to derive time t1 which leads to the optimal cost criterion (J∗) we formu-

late the following equations, which consist of the gradient of J∗ and h = (T − t1)

Finally, from eq. (4.4.29) we obtain:

For µ > 0:

T = t1 (4.4.30)

ϑJ∗

ϑt1
+
ϑ[µ(T − t1)]

ϑt1
= 0 (4.4.31)

For µ = 0:

µ(T − t1) = 0 (4.4.32)

ϑJ∗

ϑt1
= 0 (4.4.33)

In the event that the obtained time t1 is before the traffic lights switching time (T)

then the inequality constraint eq. (4.4.2) is inactive and the value of t1 becomes

equal to the traffic lights switching time (T).

In this case, 8 constants (c1 − c7) and KKT multiplier µ have to be defined. Using

the initial and final condition, the point constraint eq. (4.4.1), and the continuity

of speed and position at t1, we derive the following system of equations.

x1(t0) =
1

6
c1t0

3 +
1

2
c2t0

2 + c3t0 + c4 (4.4.34)

ν1(t0) =
1

2
c1t0

2 + c2t0 + c3 (4.4.35)

x2(te) =
1

2
(c1t1 + c2)(te − t1)2 +

1

6
c5(te − t1)3 + c6(te − t1) + c7 (4.4.36)

ν2(te) = (c1t1 + c2)(te − t1) +
1

2
c5(te − t1)2 + c6 (4.4.37)

x1(t1) = x1 ⇒ x1 =
1

6
c1t1

3 +
1

2
c2t1

2 + c3t1 + c4 (4.4.38)

x1(t1) = x2(t1)⇒ 1

6
c1t1

3 +
1

2
c2t1

2 + c3t1 + c4 = c7 (4.4.39)

ν1(t1) = ν1(t1)⇒ 1

2
c1t1

2 + c2t1 + c3 = c6 (4.4.40)

By solving the above system, using symbolic differentiation tools (e.g Mathemat-

ica), we can calculate the eight constants c1 − c7 and the KKT multiplier µ.
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Therefore we can obtain the equations of motion, which due to complexity of the

equations can not be presented.

4.5 Case 4: Analytic Solution with free final time & a
traffic light

In this approach, we consider an extension of all the previous approaches. The

purpose of this approach is the minimization of the vehicles acceleration, starting

from a known initial state to a final destination, with free final time and a traffic

light interfering the vehicle’s trajectory. Moreover the final time (te)is free.

Using the optimality conditions (see section 2.2.30) we define the Hamiltonian

function:

H(x, ν, u, t) =
1

2
u2 + λ1ν + λ2u (4.5.1)

where λ1, λ2 are co-state variables.

Using the Pontryagin’s principle , we derive the following 1st order necessary con-

ditions for optimality.

ẋ =
ϑH

ϑλ1
= ν (4.5.2)

ν̇ =
ϑH

ϑλ2
= u (4.5.3)

λ̇1 =
−ϑH
ϑx

= 0 (4.5.4)

λ̇2 =
−ϑH
ϑν

= −λ1 (4.5.5)

Hu = u+ λ2 = 0 (4.5.6)

Solving the ODE system (eq. 4.5.2 - 4.5.5) we obtain that:

λ1(t) = c1 (4.5.7)

λ2(t) = −c1t− c2 (4.5.8)

and

u(t) = −λ2 = c1t+ c2 (4.5.9)

32



ν(t) =
1

2
c1t

2 + c2t+ c3 (4.5.10)

Now eq. 4.4.2 represents a set of terminal constraints for the point of the path

t = t0 to t = t1. If we let t−1 signify just before t1 and t+1 just after t1, we may

interpret the influence functions and the Hamiltonian function at t+1 as:

λ1(t+1 ) = λ1(t−1 ) + πτ
ϑN

ϑx(t1)
(discontinuity) (4.5.11)

λ2(t+1 ) = λ2(t−1 ) (continuity) (4.5.12)

H(t−1 ) = H(t+1 ) (continuity) (4.5.13)

where π is a q-component vector of constant Lagrange multipliers, determined so

that the q conditions are satisfied. According to the derived equations there’s

continuity of speed and position at t1.

Applying the necessary conditions of optimality as in the previous section, the

constraint eq. (4.4.2) leads into two linear accelerations and therefore the equa-

tions of motion are transformed as follows:

u(t) =

c1t+ c2 t0 ≤ t ≤ t−1
c1t+ c2 + c3(t− t1) t+1 ≤ t ≤ te

(4.5.14)

ν(t) =

1
2c1t

2 + c2t+ c3 t0 ≤ t ≤ t−1
(c1t1 + c2)(t− t1) + 1

2c5(t− t1)2 + c6 t+1 ≤ t ≤ te
(4.5.15)

x(t) =

1
6c1t

3 + 1
2c2t

2 + c3t+ c4 t0 ≤ t ≤ t−1
1
2(c1t1 + c2)(t− t1)2 + 1

6c5(t− t1)3 + c6(t− t1) + c7 t+1 ≤ t ≤ te
(4.5.16)
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For simplification reasons we transform the above equations as:

For 0 ≤ t ≤ t−1 we have the following equations:

u1(t) = c1t+ c2 (4.5.17)

ν1(t) =
1

2
c1t

2 + c2t+ c3 (4.5.18)

x1(t) =
1

6
c1t

3 +
1

2
c2t

2 + c3t+ c4 (4.5.19)

For t+1 ≤ t ≤ te we have the following equations:

x2(t) =
1

2
(c1t1 + c2)(t− t1)2 +

1

6
c5(t− t1)3 + c6(t− t1) + c7 (4.5.20)

ν2(t) = (c1t1 + c2)(t− t1) +
1

2
c5(t− t1)2 + c6 (4.5.21)

u2(t) = c1t1 + c2 + c5(t− t1) (4.5.22)

The objective of this approach is to bring the system from the initial condition to

the final state by a fixed final time (te ) while minimizing the following extended

cost criterion:

J =
1

2

∫ t1

t0

u2
1dt+

1

2

∫ te

t1

u2
2dt+

1

2
wte (4.5.23)

With the following initial and final conditions:

x1(t0) = x0 ν1(t0) = ν0 (4.5.24)

x2(te) = xe ν2(te) = νe (4.5.25)

The resulting value of t1, is derived from the following applied KKT condition.

[13]

µ(T − t1) = 0 (4.5.26)

More explicitly there we distinguish an active and an inactive inequality constraint

as follows:
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µ =


> 0 h = 0 (active)

= 0 h < 0 (inactive)

(4.5.27)

In order to derive time t1 which leads to the optimal cost criterion (J∗) we formu-

late the following equations, which consist of the gradient of J∗ and h = (T − t1)

Finally, from eq. (4.5.27) we obtain:

For µ > 0:

T = t1 (4.5.28)

ϑJ∗

ϑt1
+
ϑ[µ(T − t1)]

ϑt1
= 0 (4.5.29)

For µ = 0:

µ(T − t1) = 0 (4.5.30)

ϑJ∗

ϑt1
= 0 (4.5.31)

In the event that the obtained time t1 is before the traffic lights switching time

(T) then the inequality constraint eq. 4.4.2 is inactive and the value of t1 becomes

equal to the traffic lights switching time (T).

In this case, 8 constants (c1 − c7), KKT multiplier µ and final free time have to

be defined. Using the initial and final condition, the point constraint eq. (4.4.2),

and the continuity of speed and position at t1, we derive the following system of

equations.
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x1(t0) =
1

6
c1to

3 +
1

2
c2to

2 + c3to + c4 (4.5.32)

ν1(t0) =
1

2
c1t0

2 + c2t0 + c3 (4.5.33)

x2(te) =
1

2
(c1t1 + c2)(te − t1)2 +

1

6
c5(te − t1)3 + c6(te − t1) + c7 (4.5.34)

ν2(te) = (c1t1 + c2)(te − t1) +
1

2
c5(te − t1)2 + c6 (4.5.35)

x1(t1) = x1 ⇒ x1 =
1

6
c1t1

3 +
1

2
c2t1

2 + c3t1 + c4 (4.5.36)

x1(t1) = x2(t1)⇒ 1

6
c1t1

3 +
1

2
c2t1

2 + c3t1 + c4 = c7 (4.5.37)

ν1(t1) = ν1(t1)⇒ 1

2
c1t1

2 + c2t1 + c3 = c6 (4.5.38)

H(te) +
1

2
w = 0⇒ −c2

2 + 2c1c3 + w = 0 (4.5.39)

The solution of the system gives us several values for the final free time, from

which some of them are infeasible and from the feasible ones we choose the one

that leads to the minimum value of the cost function.

Therefore we can obtain the equations of motion, which due to the complexity of

the equations cannot be presented.
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5 Development of numerical solution

to trajectory optimization for

dynamically managed traffic lights.

5.1 Problem Statement

In previous chapters of this thesis the generation of optimal velocity profile, based

on the information about the traffic and the route, has been discussed. Further-

more, traffic light related information may not be static and might be subject of

change. For example in high density traffic the operation sequence of traffic lights

can change, according to the traffic flow rate. In the case of real-time signals,

availability of a time-window of possible signal switching times, along with the

corresponding probability distribution, is assumed, and the problem is cast in the

format of a stochastic optimal control problem and is solved numerically using

SDP techniques For the formulation of the Problem the following are considered:

1. Only one vehicle and a single lane are considered.

2. The position of the traffic light is known by the vehicle.

3. The traffic light is detected in red phase.

4. The state variables should obey the following linear discrete-time state equa-

tions:

x(k + 1) = x(k) + ν(k)τ +
τ2

2
u(k) (5.1.1)

ν(k + 1) = ν(k) + u(k)τ (5.1.2)

5. The traffic light’s switching time T is not perfectly known by the vehicle.

However, the switching time is bounded between a known minimum and a

known maximum value, where:

Tmin ≤ T ≤ Tmax (5.1.3)

6. We also enforce the following hard inequality constraints:

νmin ≤ νk ≤ νmax (5.1.4)

umin ≤ uk ≤ umax (5.1.5)
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where νmin and νmax are the road speed limits and umin, umax are the feasible

bounds for deceleration and acceleration.

5.2 Probability density function

In the stochastic case we define a probability density function p(z|k) where:

z(k) =

0, If the traffic lights switch at (k + 1)τ

1, else
(5.2.1)

In particular, the chance that the traffic light will switch between the interval

[kτ, (k + 1)τ ], under the condition that it has not switched up to k,can be cal-

culated for various distributions, and can be cropped and scaled in every time

step according to the knowledge we have the traffic light’s switching time. In the

event that the traffic light will switch at time step (k + 1)τ the vehicle follows

the trajectory from the previous optimal control problem with cost J∗
opt. Different

distributions have been formulated and are presented in sections 5.2.1 and 5.2.2.

5.2.1 Uniform probability distribution

In probability theory and statistics, the discrete uniform distribution is a symmet-

ric probability distribution whereby a finite number of values are equally likely to

be observed; every one of n values has equal probability 1/n. For p being uniform

between the interval [Tmin, Tmax] we obtain that:

p(z = 0|k) =
1

n
where n = (Tmax − Tmin) + 1 (5.2.2)

where the probabilities are cropped and scaled in every stage that the traffic light

does not switch into green [14].
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Figure 2 Uniform probability distribution.

5.2.2 Triangular probability distribution

In probability theory and statistics, the triangular distribution is a continuous

probability distribution with lower limit a, upper limit b and mode c, where a < b

and a ≤ c ≤ b. In our problem we define the lower limit as Tmin, the upper limit

as Tmax and the mode probability as p[c] = 2
Tmax−Tmin

. The triangular probability

density function formulated in the SDP, is denoted as:

p[z = 0|k] =



2(k−Tmin)
(Tmax−Tmin)(c−Tmin) if Tmin ≤ k < c

2
Tmin−Tmax

, if k = c

2(Tmax−k)
(Tmax−Tmin)(Tmax−c) if c < k ≤ Tmax

(5.2.3)
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Figure 3 Triangular Probability distribution.

5.3 The Hamilton-Jacobi-Bellman equation

The cost function consists of minimizing the cost of the action φ[x(k), u(k), z(k)],

and the expected cost of the situation of the next time step. That leads to the

following modified Bellman’s equation:

V [x(k), x̃(k), k] = min{φ[x(k), u(k), z(k)] + P(z = 0|k)J∗
opt+ (5.3.1)

+ (1− P(z = 0|k))V [x(k + 1), z(k), k + 1)]}

5.4 Stochastic Dynamic Programming Algorithm

In order to find an optimal trajectory, the algorithm of discrete-time stochastic

dynamic programming has been used. An illustration of the grid-based solution

can be seen in Fig. 4.
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Figure 4 Illustration of the 3D grid of time and state space.

The grid is representing the dimension of time in the interval [0, Tmax] and the

two dimensional state space x in [0, xmax] and ν in [0, νmax]. Each cell is a discrete

point k with a state x(k).

The presented algorithm of stochastic dynamic programming (SDP) has been im-

plemented. We define as checkpoint-states, the states between Tmin and Tmax.

For these states the optimal cost function consists of minimizing the actual cost

for the action φ[x(k), u(k), z(k)] with a probability P(z = 0|k) and the cost of the

optimal control problem with a probability 1 − P(z = 0|k) (the traffic light will

not switch to green).

If the state is not a checkpoint-state then the probability of switching P(z = 0|k)

is zero and the cost function consists of minimizing only the actual cost for the

action φ[x(k), u(k), z(k)] and the cost-to-go.

For a constant input uk the cost for the action is:

φ(x(k), u(k), z(k) :=
1

2
u(k)2 (5.4.1)

Where, P(z = 0|k) indicates the event of observing the traffic light switch to green

at time kτ . Moreover,

u∗(k) := arg min Jk(x(k), u(k)) : u(k) ∈ Uk (5.4.2)
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Algorithm 1 Stochastic Dynamic Programming

1: J∗
K(x(K))← Jopt(x(K), K) ,∀x(K) ∈ XK

2: for each k = K − 1, K − 2, . . . , 0 do
3: for each state x(k) ∈ Xk do
4: for each control u(k) ∈ Uk do
5: construct x(k + 1), v(k + 1)
6: Jk(x(k), u(k))← φ(x(k), u(k)) + J∗

k+1(x(k + 1))
7: end for
8: if k is a checkpoint-state then
9: J∗

k (x(k)) ← P(z = 0|k)Jopt(x(k), k) + (1 − P(z =
0|k)Jk(x(k), u∗(k))

10: else
11: J∗

k (x(k))← Jk(x(k), u∗(k))
12: end if
13: end for
14: end for

5.4.1 Discretization factor

The value of discretization factor not only has a significant impact on the com-

putational time and the memory requirements but it is important for the level of

accuracy of the resulting trajectory. More particularly the discretization factor of

acceleration plays an important role in the minimization of fuel consumption, as

higher values can lead to sudden changes in speed and severe driving. Using eq.

(6.2.7), we can derive that the relation between speed and acceleration is linear,

and therefore, for τ = 1s, we can set the discretization factor of speed equal to

the discretization factor of acceleration (∆V = ∆U). Likewise, in order to obtain

an suitable discretization factor of position, we assume that if x, ν, u are discrete

points in the grid then the following equations apply.

x = n∆X (5.4.3)

ν = m∆U = m∆V (5.4.4)

u = l∆U (5.4.5)

Where n, m, l are integer numbers.

Using the following equation:

∆x =
1

2
∆u∆t2 (5.4.6)
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and eq.(5.4.3-5.4.5) it can be justified, as follows, that if u, x, v are discrete points

in the grid, then x(k+1) and ν(k + 1) are discrete points too.

x(k + 1) = n∆x+m∆Uτ +
1

2
l∆Uτ2 =

1

2
∆Uτ2 +m∆Uτ +

1

2
l∆Uτ2 =

1

2
∆Uτ2(n+

2

τ
m+ l) =

∆X(n+
2

τ
m+ l)

(5.4.7)

Where n, m, l, τ are integer numbers.

5.4.2 Computational effort

The computational effort of an optimization method is often a significant factor

that determines whether a method is being applied in practice for a given problem

or not. Therefore, not only the accuracy of a solution is relevant, but also the

corresponding computational effort. The number of model-function evaluations

for the basic DP with an equally spaced grid, as presented in section 3.3 is given

by:

KDP = KxKuKMAX (5.4.8)

The variable Kx represents the number of grid points for the state space, Ku for

the control signal, and KMAX the total number of stages.
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6 Results

6.1 Results to Velocity Profile Optimization Problem
Based on Pontryagin’s Minimum Principle

Using the derived equations of motion via the solution of the formulated optimal

control problem, several scenarios have been tested for each approach presented in

section 4. The following figures present the vehicle’s speed, position, and acceler-

ation over time.

We assune that we have two scenarios where in scenario 1.1 the vehicle starts from

immobility and then accelerates until it reaches the final destination point with

the given final conditions. In Scenario 2.2 the vehicle starts with an initial velocity

until it reaches immobility at the final destination point. Using the formulated

problem from case 2, the same scenarios have been tested, but assuming that the

final time is free. The derived trajectories for each scenario, seem to have the same

behavior with case 1.

In Case 3 (fixed final time and a traffic light) and Case 4 (free final time and a

traffic light), four different scenarios have been tested. Scenario 3.1 and 4.1 ex-

amine a resulting optimal trajectory where time T is before the optimal time (t1),

which allows the vehicle to pass through the traffic light at an optimal time and

minimize the cost criterion. In contrast to the previous examination, in scenarios

3.2 and 4.2 time T is after the resulting optimal time t1 and therefore the inequal-

ity constraint applied in the optimal control problem, force the vehicle to pass

through the traffic lights at time t1 = T .

6.1.1 Case 1: Analytic Solution with fixed final time & no traffic
light

For the case with fixed final time and no traffic light different scenarios have been

tested with the following initial and final conditions. Furthermore the weighting

factor is set as w = 0.1.

Scenario t0 x0 v0 te xe ve
Scenario 1.1 0 0 0 50 500 16
Scenario 1.2 0 0 16 50 500 0

Table 1 Case 1 with fixed final time and no traffic light
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The following figures represent the resulting optimal trajectory derived from

the formulation of optimal control problem in section 4 for each scenario tested.

Figure 5 Performance of the Optimal Control Problem for scenario 1.1 with
cost = 3.04

Figure 6 Performance of the Optimal Control Problem for scenario 1.2 with
cost = 5.14

6.1.2 Case 2: Analytic Solution with free final time & no traffic
light.

For the case with free final time and no traffic light the following scenarios have

been tested with the presented initial and final conditions. Furthermore the weight-

ing factor is set as w = 0.1

Scenario t0 x0 v0 xe ve
Scenario 2.1 0 0 0 500 16
Scenario 2.2 0 0 16 500 0

Table 2 Case 2 with free final time and no traffic light

The following figures represent the resulting optimal trajectory derived from

the formulation of optimal control problem in section 4 for each scenario tested.
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Figure 7 Performance of the Optimal Control Problem for scenario 2.1 with
cost= 5.14 and te = 59.1

Figure 8 Performance of the Optimal Control Problem for scenario 2.2 with
cost=5.2 and te = 54.8

6.1.3 The choice of weighting factors

The choice of weighting factors plays an important role for the shape of the result-

ing optimal trajectories. Using scenario 1.1 in section 6.1.2 for different weight-

ing factors but identical boundary values, as the following figure shows, if as the

weighting factor w increases, the final free time te has the opposite behaviour.
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Figure 9 Graphical representation of the relationship between final time and
weighting factor

6.1.4 Case 3: Analytic Solution with fixed final time & traffic
light

The following table represents the scenarios that have been used in order to derive

the vehicle’s trajectory and speed profile for Case 3.

Scenario t0 x0 v0 xe ve xred T te
Scenario 3.1 0 0 0 500 16 150 15 50
Scenario 3.2 0 0 10 500 0 150 15 50

Table 3 Case 3 with fixed final time & traffic light

The following figures represent the resulting optimal trajectory derived from

the formulation of optimal control problem in section 6.1 for each scenario tested.
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Figure 10 Performance of the Optimal Control Problem for scenario 3.1 with
cost=3.04 and t1 = 25.0

Figure 11 Performance of the Optimal Control Problem for scenario 3.2 with
cost = 5.28 and t1 = 15

6.1.5 Case 4: Analytic Solution with free final time & traffic light

The following table represents the scenarios that have been used in order to derive

the vehicle’s trajectory and speed profile for case 4.

Scenario t0 x0 v0 xe ve xred T
Scenario 4.1 0 0 0 500 16 150 15
Scenario 4.2 0 0 10 500 0 150 15

Table 4 Case 4 with fixed final time and a traffic light

The following figures represent the resulting optimal trajectory derived from

the formulation of optimal control problem in section 6.1 for each scenario tested.
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Figure 12 Performance of the Optimal Control Problem for scenario 4.1 with
cost = 5.14, te = 59.16s and t1 = 31.62s

Figure 13 Performance of the Optimal Control Problem scenario 4.2 with
cost = 4.63, te = 68s and t1 = 15s

6.1.6 Comparison of cost derived using free and fixed final time.

In case 1 and 3 the final time is fixed and the cost criterion is:

J =
1

2

∫ te

t0

u2dt (6.1.1)

which consists of the integral of acceleration from the initial to final time. In case

2 and 4, where the final time is free the cost criterion is:

J =
1

2

∫ te

t0

u2dt+
1

2
wte (6.1.2)

The first term consists of the integral of acceleration from the initial to final time

and the second term consists of penalizing the derived final free time with a weight-

ing factor w. A comparison is made using only the first term of the cost criterion

for the case studies with free final time. The resulting costs from case with free

final time are less, as the formulated optimal control problem derives the optimal

time te. The following table presents the resulting costs for each scenario presented

in section 6.1.
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Scenarios Cost Scenarios Cost Scenarios Cost Scenarios Cost
Scenario 1.1 3.04 Scenario 1.2 3.04 Scenario 3.1 3.04 Scenario 3.2 5.28
Scenario 2.1 2.18 Scenario 2.2 2.46 Scenario 4.1 2.18 Scenario 4.2 1.23

Table 5 Cost comparison for fixed and free final time

6.2 Simulation Results for dynamically managed traf-
fic lights

6.2.1 Implementation of the Solver

The presented algorithm of Stochastic Dynamic Programming (STP) in section 5.4

has been implemented, in order to approach dynamically managed traffic lights.

The main parameters of the problem are assumed the following:

• The maximum distance to the traffic lights are:

xmax = 300m (6.2.1)

• The maximum speed of the vehicle is:

νmax = 11m/s (6.2.2)

• The input space is U = [umin, umax], where:

umax = −umin = 3m/s2 (6.2.3)

• The final position of the vehicle is denoted as:

xe = 350m νe = 11m/s (6.2.4)

• The minimum and the maximum traffic light’s switching time is:

Tmin = 5s Tmax = 15s (6.2.5)

• The state variables should obey the following linear discrete-time state equa-

tions:

x(k + 1) = x(k) + ν(k)τ +
τ2

2
u(k) (6.2.6)

ν(k + 1) = ν(k) + u(k)τ (6.2.7)
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• Furthermore, time has been discretized in:

τ = 1s. (6.2.8)

6.2.2 Comparative relation of discretization factor in relation to
cost and computational effort

In addition to the parameters presented in section 6.2.1 the following initial con-

ditions are assumed:

x0 = 0m v0 = 10m/s (6.2.9)

In this section, for every scenario tested, uniform probability distribution has been

used. Table 6 presents the resulting cost and the overall computing time of both

SDP and optimal control problem solutions, in relation to the discretization factor

that has been tested.

∆U ∆V ∆X Cost Execution time (s) DP complexity (10−6)
0.5 0.5 0.25 0.93 113.85 6.0
1.0 1.0 0.5 3.98 32.21 0.8
1.5 1.5 0.75 5.80 15.55 0.28
2.0 2.0 1.0 9.12 8.75 0.11

Table 6 Comparative relation of discretization rates in relation to cost and
computational effort

Figure 14 presents the derived values of cost and computing time in relation

to the presented scenarios in table 6. As the discretization factor becomes higher,

the cost has an upward movement, in contrast to computational time which has

the opposite behavior. Taking into consideration that the solution is computed

once and stored for each intersection, then an accurate solution is critical. Con-

sequently, an efficient discretization factor of speed, acceleration and position is

∆U = 0.5m/s2, ∆V = 0.5m/s, and ∆X = 0.25m respectively. In this section,

for every scenario tested, uniform probability distribution has been used. Table

6 presents the resulting cost and the overall computing time of both SDP and

optimal control problem solutions, in relation to the discretization factor that has

been examined.
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Figure 14 Cost and execution time in relation to ∆X, ∆V and ∆U .

6.2.3 Comparative relation among costs derived via Dynamic pro-
gramming techniques.

In this section, a comparison is made among the costs derived from dynamic pro-

gramming techniques. For each scenario tested, uniform probability distribution

has been applied.

Using the implemented SDP algorithm, we can derive the expected cost (Ecost),

which is resulted from the combination of all possible checkpoint times (T ) with

the corresponding probabilities. Furthermore from SDP algorithm, for a particular

scenario, we can obtain the vehicle’s trajectory cost (VTC), which consists of the

amount of transition cost for every stage and then from optimal control cost until

the final destination point. From the same deterministic version of the problem,

considering that time T is perfectly known by the vehicle, we derive the vehicle’s

trajectory cost (DVTC) and a cost calculated using the resulting trajectory from

the DDP algorithm, but with the corresponding probabilities in every possible

time T (hybrid).
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The optimal control problem (Jopt) becomes smaller as the vehicle approaches the

final destination point. Due to this observation, when the traffic light changes to

green in greater stages, the VTC cost is less than Ecost. In the event, that the

traffic light changes to green earlier, Ecost and VTC have the opposite behavior.

The cost acquired from DDP in relation to the SDP cost is smaller as the vehicle

has the leverage of full knowledge, in addition to SDP which combines the mini-

mization of all possible trajectories.

The optimal performance of SDP can be verified from the comparison of Ecost

and hybrid cost. The Ecost from the implemented algorithm of SDP is smaller

than Hybrid in every scenario examined, due to the fact that SDP forms only one

trajectory for every possible checkpoint time.

Scenarios x0 v0 Tmin Tmax
Checkpoint
time

Ecost VTC DVTC Hybrid

Scenario 1 0.0 10.0 5.0 15.0 15.0 2.18 0.93 0.08 4.30
Scenario 2 0.0 7.5 5.0 15.0 15.0 2.18 3.34 3.25 3.25
Scenario 3 0.0 10.0 5.0 15.0 5.0 2.18 3.34 3.25 3.5
Scenario 4 0.0 7.5 5.0 15.0 5.0 1.52 2.60 2.31 2.32

Table 7 Comparative relation among costs derived by Dynamic programming
techniques

Figures (17 & 18) represent the resulting optimal trajectories from SDP and

DDP. The optimal trajectory of the same deterministic problem is more directed

into reaching the position of a state at the known checkpoint time, which has the

lowest optimal control cost, in addition to the trajectory derived from SDP, which

combines the minimization of cost for all potential checkpoint times.
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Figure 15 Optimal derived position trajectories in relation to time for scenario
1

Figure 16 Optimal derived position trajectories in relation to time for scenario
2
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6.2.4 Comparison of optimal trajectories for different probability
distributions

In this section some notable scenarios are examined in the implemented algorithm

of SDP for different probability distributions, based on the derived equations of

section 5.2. The scenarios examined are presented in table 8

Scenarios x0 v0 Tmin Tmax Checkpoint time
Scenario 1 0.0 9.25 5.0 15.0 15.0
Scenario 2 0.0 11.0 5.0 15.0 15.0

Table 8 Scenarios tested for several probability distributions

Figure 17 Optimal derived position trajectory in relation to time with differ-
ent probability distributions for scenario 1
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Figure 18 Optimal derived position trajectory in relation to time with differ-
ent probability distributions for scenario 2

The previous figures present the resulting vehicle’s trajectory applying uni-

form and triangular probability distribution. From the initial point until the traffic

light’s switching time (T) the trajectory is derived from the implemented algorithm

of SDP, and after that until the final destination point the formulated optimal con-

trol problem, presented in section 4, has been used. Applying uniform probability

distribution, where every stage between Tmin and Tmax has the same probability

of switching to green, the vehicle develops an optimal strategy in order to com-

bine the minimization of cost criterion for each possible checkpoint T . Regarding

triangular distribution, the resulting trajectory has different behavior for various

modes (c). Considering that the mode time is c=5, the vehicle tries to create a

trajectory, in order to pass the traffic light at the given mode value. More specif-

ically, in the event that the given mode value is c=15 the resulting trajectory is

more determined into achieving the state with the lowest optimal control cost in

T=15. In overall,the simulation results clearly demonstrate that a full-horizon

SDP solution has a smooth trajectory, in addition to an uninformed driver, who

would stop and start more often at traffic lights.
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7 Contributions and future work

This thesis presents the solutions to the vehicle’s velocity profile in order to de-

crease the fuel consumption in different driving situations. In section 4 different

cases with fixed and free final time traffic lights are presented. An appropriate

optimal control problem is formulated for different traffic scenarios and solved

analytically via PMP. In section 5 we propose and implement and efficient and

accurate algorithm of SDP for the case of the existence of dynamically managed

traffic lights.

As a future work, our goal is to extend the estimation of real time traffic in-

formation, in the presence of accident, road work or any kind of traffic incidence,

then to incorporate these real time information with the static information ob-

tained from the traffic light and generate a more comprehensive optimal velocity

profile. Currently, generated optimal velocity profile is only suggested to the driver.

In that framework, the driver is indeed the controller that follows the suggested

speed. In the future the advised velocity profile can be fed to the advanced cruise

control (ACC) system for better following of the optimal speed profile.

Another approach would be to extend the use of speed advisory system (SAS)

for real time information traffic conditions. For example, when there is an accident

on the road the driver would not be able to follow the advised optimal speed.

Therefore the system needs to track the driven velocity profile and in the case

when the driver can not follow the optimal speed, it should be re-calculated. The

re-calculation can be achieved by the vehicle, using SDP techniques with more

efficient complexity (e.g Differential Dynamic Programming).
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8 Appendix A

This appendix includes the figures that represent the vehicle’s position, speed and

acceleration in each time step for each scenario tested in section 6.2.4.

Figure 19 Optimal derived trajectory in relation to time using uniform prob-
ability distribution for scenario 1.
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Figure 20 Optimal derived trajectory in relation to time using triangular
probability distribution with c=5 for scenario 1.

Figure 21 Optimal derived trajectory in relation to time using triangular
probability distribution with c=15 for scenario 1.
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Figure 22 Optimal derived trajectory in relation to time using uniform prob-
ability distribution for scenario 2.

Figure 23 Optimal derived trajectory in relation to time using triangular
probability distribution with c=5 for scenario 2.

62



Figure 24 Optimal derived trajectory in relation to time using triangular
probability distribution with c=15 for scenario 2.
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