

TE C H N I C A L UN I V E R S I T Y O F CR E T E

ELECTRONIC AND COMPUTER ENGINEERING DEPARTMENT

MICROPROCESSOR & HARDWARE LABORATORY

A novel Simulator for Heterogeneous Parallel

and Distributed Systems

NIKOLAOS G. TAMPOURATZIS

DISSERTETION SUBMITTED IN PARTIAL FULFILLMENT

OF THE REQUIREMENTS OF THE DEGREE OF

DOCTOR OF PHILOSOPHY

AT

TECHNICAL UNIVERSITY OF CRETE

CHANIA, GREECE

JUNE 2018

2

3

Doctoral Thesis Committee

Ioannis Papaefstathiou (Supervisor)

Associate Professor, Technical University of Crete

Dionisios Pnevmatikatos

Professor, Technical University of Crete

Apostolos Dollas

Professor, Technical University of Crete

Kostas Kalaitzakis

Professor, Technical University of Crete

Vasilis Samoladas

Associate Professor, Technical University of Crete

Dimitrios Soudris

Associate Professor, National Technical University of Athens

Nikolaos Bellas

Associate Professor, University of Thessaly

4

 Thesis Statement
The astonishing growing development of Heterogeneous

Parallel Systems and CPS trigger an emergence need of

efficient simulators for such platforms, simulators that

are extremely complex and processing hungry.

5

Abstract
In an era of complex networked heterogeneous systems, simulating independently only

parts, components or attributes of a system-under-design is not a viable, accurate or efficient

option. By considering each part of a system in an isolated manner, and due to the numerous

and highly complicated interactions between the different components, the system

optimization capabilities are severely limited. One of the main problems Cyber Physical

Systems (CPS) and Highly Parallel Systems (HPS) designers face is the lack of simulation

tools and models for system design and analysis. This is mainly because the majority of the

existing simulation tools can handle efficiently only parts of a system (e.g. only the processing

or only the network). Moreover, most of the existing simulators need extreme amounts of

processing resources while faster approaches cannot provide the necessary precision and

accuracy.

On top of that, the growing use of hardware accelerators in both embedded systems

(e.g. mobile phones) and high-end systems (e.g. HPC/Cloud systems) triggers an urgent

demand for simulation frameworks that can simulate in an integrated manner all the

components (i.e. CPUs, Memories, Networks, Hardware Accelerators) of a system-under-

design (SuD). By utilizing such systems, software design can proceed in parallel with

hardware development which will result in the reduction of the so important time-to-market.

The main problem, however, is that such systems do not exist; most current simulators used

for modelling the user applications (i.e. full-system CPU/Mem/Peripheral simulators) lack

any type of support for tailor-made hardware accelerators.

In this thesis we present the COSSIM simulation framework which is the first known

open-source, high-performance simulator that can handle holistically system-of-systems

including processors, peripherals and networks; such an approach is very appealing to both

CPS and Highly Parallel Heterogeneous Systems designers and application developers. In

the context of COSSIM, a novel intercommunication and synchronization scheme is

developed which is fully compliant with the IEEE HLA standard. Our highly integrated

approach is further augmented with accurate power estimation that can tap on all system

6

components and perform analysis of the overall system under design something which was

unfeasible up to know.

In addition, we present the ACSIM framework which is the first known open-source,

high-performance simulator that can handle holistically system-of-systems including

processors, peripherals, networks and accelerators. ACSIM is an extension of the COSSIM

simulation framework and it integrates, in a novel and efficient way, a combined system and

network simulator with a SystemC simulator, in a transparent to the end-user way. Finally,

a sophisticated Eclipse-based GUI has been developed to provide easy simulation set-up,

execution and visualization of results.

COSSIM and ACSIM have been evaluated when executing several real-world use

cases; the end results demonstrate that the presented approach has up to 99% accuracy in the

reported SuD aspects (when compared with the corresponding characteristics measured in

the real systems), while the overall simulation time can be accelerated almost linearly with

the number of CPUs utilized by the simulator. Finally, the presented ACSIM interconnection

scheme between the Processing and the SystemC simulators is orders of magnitude faster

than the existing solutions, while our simulation framework can efficiently simulate up to

several hundreds of processing nodes with hardware accelerators interconnected together,

in a full distributed manner.

7

Acknowledgements
I am especially grateful to my supervisor, Associate Professor Ioannis Papaefstathiou for his

guidance and support during all my years in my Ph.D. I would like to thank Antonios

Nikitakis, Andreas Brokalakis, Konstantinos Georgopoulos, Pavlos Malakonakis for the

excellent collaboration and their valuable contribution in this thesis work. Moreover, I would

like to thank Professors Dionisios Pnevmatikatos, Apostolos Dollas, Kostas Kalaitzakis,

Manolis Katevenis, Dimitrios Soudris, Pavlos Mattheakis for their co-advising and their

participation in my Ph.D. Thesis committee. Finally, I would like to thank my friends and

family, my father George, my mother Irene, my brother Manos, as well as Xrysa for their love,

support and encouragement. This work was carried out with the financial support of

Telecommunication Systems Institute (Chania Crete Greece) in the framework of the COSSIM

and ECOSCALE H2020 European projects with scientific support of Ioannis Papaefstathiou.

8

Contents
Doctoral Thesis Committee .. 3

Thesis Statement ... 4

Abstract.. 5

Acknowledgements ... 7

List of Tables ... 12

List of Figures ... 13

1. Introduction .. 17

1.1 Motivation ... 18

1.2 Contribution.. 19

2. Parallel Systems Simulators and COSSIM/ACSIM Approach ... 23

2.1 CPS Simulation Tools .. 24

2.1.1 TOSSIM (extensions: PowerTOSSIM) .. 24

2.1.2 ATEMU ... 25

2.1.3 AVRORA .. 26

2.1.4 WorldSens .. 26

2.1.5 Cooja (Contiki OS) .. 27

2.1.6 SunShine (TOSSIM – SimulAVR - GEZEL) ... 28

2.2 Cloud Simulation tools .. 31

2.2.1 CloudSim .. 32

2.2.2 BigHouse – CactoSim - GreenCloud .. 34

2.3 HPC Simulation tools .. 36

3. COSSIM/ACSIM Design Choices .. 39

3.1 An Overview of the Processor-Only Simulation Tools .. 40

3.1.1 Imperas Open Virtual Platforms (OVP) ... 41

3.1.2 SimpleScalar ... 41

3.1.3 CPU Sim ... 42

3.1.4 ESCAPE .. 42

9

3.1.5 HASE ... 42

3.1.6 MikroSim .. 43

3.1.7 SimNow .. 43

3.1.8 Zsim .. 43

3.1.9 GEM5 .. 44

3.2 An Overview of the Network-Only Simulation Tools .. 47

3.2.1 NS-2 ... 48

3.2.2 NS-3 ... 48

3.2.3 J-sim .. 49

3.2.4 NETSim ... 49

3.2.4 OMNET++ .. 50

3.3 Comparative Analysis Table of Existing Processing & Network Simulation Tools 51

3.4 H/W accelerators in Full System simulators .. 53

3.5 Integration Frameworks .. 54

4. COSSIM/ACSIM Architecture ... 57

4.1 The High-level architecture of the COSSIM simulator ... 58

4.2 GEM5 adaptation for COSSIM integration (cGEM5) .. 60

4.2.1 Extending the Network Model of GEM5 ... 60

4.2.2 Supporting Parallel/Distributed Simulation ... 63

4.3.1 HLA Enabled Node Functionality .. 65

4.3.2 Transparent micro-Routers Functionality ... 68

4.4 Integration of Security Tools & Pause-Resume functionality .. 71

4.4.1 Design and operation of the Fuzz Testing component .. 72

4.4.3 COSSIM Pause-Resume Functionality ... 73

4.5 General Purpose Input Output (GPIO) to include sensor devices to the processing

simulator part ... 76

4.6 Power/Energy Estimator for the Processing Sub-System of the COSSIM/ACSIM Simulator

 .. 77

4.6.1 An overview of Research Tools for High-Level Microprocessor Power Estimation 77

10

4.6.2 McPAT .. 78

4.6.3 Complimentary Power Model for ARM big.LITTLE Architecture 82

4.7 Graphical User Interface ... 83

5. Novel Intercommunication and Synchronization Mechanism .. 86

5.1 Overview of HLA and CERTI Implementation ... 87

5.2 CERTI HLA Services for COSSIM/ACSIM implementation .. 89

5.2.1 Federation Management Services for COSSIM/ACSIM implementation 90

5.2.2 Declaration Management Services for COSSIM implementation 94

5.2.3 Object Management Services for COSSIM/ACSIM implementation 95

5.2.4 Time Management Services for COSSIM/ACSIM implementation 95

5.3 COSSIMLib Architecture .. 97

5.4 Synchronization between COSSIM/ACSIM Modules... 100

5.5 SynchServer Implementation ... 103

6. A novel way to efficiently incorporate Hardware Accelerators ... 106

6.1 Architecture of ACSIM Hardware Accelerator ... 107

6.2 Accelerator Run-Time Environment ... 113

7. Validation and Performance Analysis .. 117

7.1 Evaluation of Processing Simulator Part .. 118

7.2 Evaluation of Network Simulator Part ... 121

7.2.1 TCP_STREAM Benchmark .. 121

7.2.2 TCP_RR Benchmark ... 125

7.3 Performance Evaluation of COSSIM ... 127

7.3.1 Performance Evaluation of Distributed COSSIM ... 127

7.3.2 COSSIM Scalability ... 130

7.3.3 COSSIM Bottleneck Analysis .. 131

7.3.4 Evaluation of COSSIM using multiple HLA Servers ... 134

7.4 COSSIM evaluation using two Real-world Use Cases ... 136

7.4.1 BMS (Building Management System) .. 136

7.4.2 MVS (Mobile Visual Search) .. 142

11

7.5 Validation and Performance Analysis of ACSIM .. 151

7.5.1 Evaluation of ACSIM .. 152

7.5.2 Evaluation of ACSIM within COSSIM framework .. 157

8. Conclusions and Future Work ... 162

Appendix – Lessons Learnt .. 164

Bibliography ... 169

12

List of Tables
Table 2.1. Comparative Analysis of Existing CPS Simulation Tools .. 31

Table 2.2. Comparative Analysis of the most widely used Cloud Simulation Tools 36

Table 2.3. Comparative Analysis of the most widely used HPC Simulation Tools........................ 38

Table 3.1. Comparative Analysis of Existing Simulation Tools (Part A) .. 52

Table 3.2. Comparative Analysis of Existing Simulation Tools (Part B) .. 53

Table 5.1. Federation Management Services for COSSIM implementation (services with a * are

sent from RTI to Federates (callbacks); all other services are from Federates to RTI) 91

Table 5.2. Declaration Management Services for COSSIM implementation 94

Table 5.3. Object Management Services for COSSIM implementation (services with a * are sent

from RTI to Federates (callbacks); all other services are from Federates to RTI) 95

Table 5.4. Time Management Services for COSSIM implementation (services with a * are sent

from RTI to Federates (callbacks); all other services are from Federates to RTI) 96

Table 5.5. Overview of COSSIMlib Architecture ... 98

Table 5.6. COSSIM Synchronization Parameters ... 102

Table 6.1. Type of Elements supported by the custom SystemC application 115

Table 7.1. The main configuration of the processors simulated .. 119

Table 7.2. TCP_STREAM benchmark Parameters ... 122

Table 7.3. TCP_RR benchmark Parameters .. 126

Table 7.4. Transmission rate of TCP_RR using different Global Synchronization 127

Table 7.5. BMS Scenario use cases ... 138

Table 7.6. BMS COSSIM Simulator Results from processing component 141

Table 7.7. MVS Simulated time comparison using ARM A7 model ... 146

Table 7.8. MVS Simulated time comparison using ARM A7 model ... 146

Table 7.9. MVS Energy & Power comparison using ARM A7 ... 147

Table 7.10. MVS Simulated time comparison using ARM A15 model ... 147

Table 7.11. MVS Energy & Power comparison using ARM A15 ... 148

13

List of Figures
Figure 2.1. WorldSens simulator .. 26

Figure 2.2. Cross-level simulation [132 – D7.1.X] .. 28

Figure 2.3. SunShine Architecture ... 30

Figure 2.4. CloudSim layered architecture ... 32

Figure 4.1. Top-level view of the COSSIM framework ... 58

Figure 4.2. GEM5 Systems Interconnection using Etherlink ... 62

Figure 4.3. COSSIM Systems Interconnection .. 63

Figure 4.4. COSSIM network subsystem (two HLA-enabled nodes are illustrated) 66

Figure 4.5. The En/De-capsulation vs serialization process inside OMNET++ HLA nodes 67

Figure 4.6. A simple Network simulation using two HLA Enabled Nodes 68

Figure 4.7. Cossim node with micro-router support ... 69

Figure 4.8. Ethernet & Wireless Network simulation with the micro-router functionality

exposed .. 70

Figure 4.9. Overall concept of the Security Module .. 71

Figure 4.10. Architecture and operation of Fuzz Testing component .. 73

Figure 4.11. COSSIM Pause/Resume Functionality .. 75

Figure 4.12. Integration of COSSIM Sensor Device with cGEM5 (full-system mode) 76

Figure 4.13. Integration of cGEM5 with McPAT and Energy component 79

Figure 4.14. Integration of cGEM5 with partitioned McPAT using real-time statistics 82

Figure 4.15. Integration of cGEM5 with big.LITTLE power component ... 83

Figure 4.16. Cluster configuration Parameters .. 84

Figure 4.17. Simulated node results for a specific combination of nodes .. 84

Figure 4.18. Comparison of "Number of seconds simulated" value ... 85

Figure 5.1. The High-Level Architecture (HLA) .. 88

Figure 5.2. The CERTI Architecture... 89

Figure 5.3. Federation Management Life Cycle [102] ... 92

Figure 5.4. Federate Management Synchronization (services with blue are sent from RTI to

Federates (callbacks), while services with orange are from Federates to RTI) [102] 93

Figure 5.5. Time advancement services .. 97

Figure 5.6. COSSIM HLA Federations .. 101

Figure 5.7. Abstract view of SynchServer requests for Synchronization per node 104

Figure 5.8. Abstract view of SynchServer requests for Global Synchronization 105

Figure 6.1. Full-system GEM5 Architecture ... 107

Figure 6.2. Integration of SystemC accelerator with cGEM5 (full-system mode) 109

Figure 6.3. Accelerator Wrapper Device ... 112

14

Figure 7.1. Performance results using typical GEM5 configuration ... 120

Figure 7.2. Simulation time using different synchronization intervals .. 120

Figure 7.3. TCP_Stream throughput for 1server/1client using different .. 123

Figure 7.4. CPU Utilization using TCP_Stream for 1server/1client & 1server/2clients

experiments ... 124

Figure 7.5. TCP_STREAM Throughput using 1server & 1-32 clients ... 125

Figure 7.6. Transactions per second using 1server/1client with different 127

Figure 7.7. COSSIM simulation time using Distributed Machines ((a) Upper: ARM-based nodes

(b) lower: X86-based nodes) ... 129

Figure 7.8. Typical network configuration for 8 simulated nodes .. 130

Figure 7.9. COSSIM simulation time using a cluster of 44 HP server blades 131

Figure 7.10. COSSIM Simulation Time using different Global Synchronization intervals

(TCP_STREAM) .. 133

Figure 7.11. OMNET++ CPU and Memory Utilization using different Global Synchronization

intervals (TCP_STREAM) ... 133

Figure 7.12. Example of COSSIM Synchronization Barrier using 4 nodes 134

Figure 7.13. COSSIM HLA Federations using 2 HLA Servers ((a) left: 1 HLA Server is used for

Global Synchronization & 1 HLA Server is used for Synchronization per node; (b) right: 1 HLA

is used for 50% of nodes & 1 HLA Server is used for another 50% of nodes) 135

Figure 7.14. CPU Utilization using 1 HLA & 2 HLA Servers ((a) upper: 1 HLA Server for Global

Synch & another one for Synch per node; (b) lower: 1 HLA per 50% of nodes) 136

Figure 7.15. KUBIK’s BMS + UFO layout .. 137

Figure 7.16. COSSIM’s test case target involving BMCN and Remote Sensing Nodes 139

Figure 7.17. Number of instructions simulated on each node ... 141

Figure 7.18. BMS Bandwidth for each simulated node... 142

Figure 7.19. Mobile Visual Search topology ... 143

Figure 7.20. Global and Local Matching scores on the Building Database (The result images

correctly depict the same object as the query one in both simulated and native system) 144

Figure 7.21. MVS Network Energy Consumption for the ARM device ... 149

Figure 7.22. COSSIM Co-Simulation using MVS use case ... 150

Figure 7.23. COSSIM Co-Simulation using MVS use case ... 151

Figure 7.24. (i) Standard (top) & (ii) Our novel method efficiently integrating GEM5 Full System

Simulator with Accellera Simulator (bottom) .. 152

Figure 7.25. Simulation time of (i) standard and (ii) our method using two use cases (10 # of

Accelerator calls are used) .. 155

Figure 7.26. Simulation time of two use cases using different # of Accelerator calls 155

Figure 7.27. ACSIM Simulated Transfer Time using different transfer rates 156

15

Figure 7.28. Overall ACSIM Simulation Time using different transfer rates 157

Figure 7.29. A representation of COSSIM simulator with ACSIM integration using Hyperbolic

SystemC cores ... 158

Figure 7.30. Simulated Time of Hyperbolic SystemC Processing and Data Transfer at 500MHz

and 1GHz versus ARM SW-based version at 2GHz using 800K samples (upper: 2-16 nodes;

lower 32-512 nodes) ... 159

Figure 7.31. Simulated Time of Hyperbolic SystemC Processing and Data Transfer at 1GHz

using 1-4 SystemC cores per node (upper: 2-16 nodes; lower 32-512 nodes) 160

16

17

1
Introduction

High Performance Computing (HPC), Cloud Computing and Cyber Physical Systems (CPS)

are considered “The Next Computing Revolution” after Mainframe computing (60’s - 70’s),

Desktop computing & Internet (80’s - 90’s) and Ubiquitous computing (00’s).

High performance computing refers to the computing system, including several

processors as part of a single machine or a cluster of several computers as an individual

resource. It owes its feature of high speed computing to its great ability to process

information. Therefore, the main methodology that is currently applied to high performance

computing is parallel computing. In short, high performance computing is legendary for its

processing capacity.

18

 Cloud computing is based on the utility and consumption of Internet services, usually

offering visualized resources with dynamic extensible performance through the Internet.

According to the definition of the National Institute of Standards and Technology [1], cloud

computing is based upon pay-per-use model, allowing available and required network. It

allows convenient network access to configurable shared pool of computing resources. These

resources include networks, servers, storage, applications and services. The users can access

the data center and carry out computing on demand with remote hosts and mobile devices.

Cyber-physical System (CPS) is a system of systems which tightly couple the

computing components between the physical components, governed by the underlying

processes and policies [2]. So that, CPS integrates networked computational resources into

physical processes in order to add new capabilities into the original system and realize real-

time perception, dynamic control, information services in large-scale projects.

1.1 Motivation
Nowadays, both Highly Parallel and Distributed Computing Systems (i.e. Clouds and

HPC systems) and Cyber Physical Systems (CPS) are growing in capability at an

extraordinary rate, incorporating processing systems that vary from simple microcontrollers

to high performance units and hardware accelerators connected with each other through

numerous networks. In order to meet the growing requirements of automated and assisted

features and the inherent complexity, developers have to model and simulate those

sophisticated systems at all the design stages. However, one of the main problems the

designers of such heterogeneous systems face is the lack of simulation tools that can offer

realistic insights beyond simple functional testing, such as the actual performance of the

processing and hardware accelerators, accurate overall system timing, power/energy

estimations and network deployment issues.

On top of that, software design is severally influenced by the high complexity of the

new hardware systems, which forced the emergence of new software that can take advantage

of the novel features incorporated into hardware accelerators. If the software development

19

cannot be done in parallel with the hardware implementation then the overall design cycle is

getting prohibitively large.

 In this thesis, we present the COSSIM Simulation Framework which is an open-source

framework that aims to address all the aforementioned limitations. The proposed solution

efficiently integrates a series of sub-tools that model the computing devices of the processing

nodes as well as the network(s) of the parallel systems. It provides cycle accurate results by

simulating the actual application and system software executed on each node, realistic

communication modeling of the different networks that are employed and power/energy

consumption estimates for both the processing elements and the network based on the actual

dynamic usage scenarios.

 In addition, ACSIM Simulation Framework is presented which is an extension of

COSSIM. Specifically, ACSIM introduces a novel flow that enables the designer to rapidly

prototype synthesisable SystemC hardware accelerators in conjunction with the Processing

systems without worrying about communication and synchronization issues. This allows

system designers to simulate not only the new software running on the processing units but

also the new hardware modules within the same environment; this novel aspect significantly

accelerates the final product delivery.

1.2 Contribution

The contributions of this work come mainly from the implementation of highly integrated

COSSIM simulation framework (and ACSIM extension) which is the first known open-

source, high-performance simulator that can handle holistically system-of-systems including

processors, peripherals, hardware accelerators and complex networks; such an approach is

very appealing to both Highly Parallel Heterogeneous Systems and CPS designers and

application developers. COSSIM/ACSIM offers a series of unique features and advantages

compared to what is available in the market, that we believe will make the framework

especially attractive as summarized in the following paragraphs.

20

A Novel High-Performance integrated simulation framework. The COSSIM/ACSIM

simulation framework can substantially accelerate the process of HPC, Cloud, CPS systems,

applications design and simulation in two significant ways:

• By being a distributed simulation tool, COSSIM/ACSIM can leverage the existing

infrastructure to design the next generations of systems. For example, an available

highly parallel system can be effectively used to provide the computational resources

to design its next iteration. Previously available tools (including the tools that

COSSIM/ACSIM also uses, such as GEM5) do not offer this scaling potential and as

such they are prohibitive to use. More specifically, COSSIM/ACSIM implements a

synchronization and interconnection mechanism to execute in parallel all instances of

the processing simulator (a distributed simulation is also available as an option).

• Compared to using tools such as the ones that COSSIM/ACSIM includes, the

integrated approach offers seamless real-time communication between components

and thus almost eliminates the process of converting results from one tool to inputs

for another and setting up series of sequential simulations in order to complete the

simulation of all aspects of a System.

A direct result of the increased performance of the framework, is that it enables the

much faster completion of the design process of HPC, Cloud and CPS applications or

systems. Apparently, a shorter time from concept to market translates also to significantly

reduced overall costs.

Additionally, as a consequence of the high accuracy of results that COSSIM/ACSIM

provides, system and application tuning can be performed to a large extend before an actual

deployment of an HPC, Cloud or CPS system. This reduces significantly the time between a

parallel or distributed system is brought up and actual production code is able to be executed

efficiently on top of it.

 A Novel Application-Centric Approach to Design Highly Parallel Heterogeneous

and Cloud Systems. The COSSIM/ACSIM simulation framework focuses on the precise

simulation of a specific application. It does not simply model application behavior, since it

21

actually executes all parts and tasks of the application. Therefore, it provides a way to

uncover all subtle characteristics of the application and as such provide great insights

regarding performance, as well as experimentation to uncover the best possible system

infrastructure to support it. Compared to other tools that generally rely on traces or network

behavior (as described in detailed in the next chapter), COSSIM/ACSIM can be slower and

less general. However, this is only true when general Cloud or HPC systems are designed

and currently the trend seems to follow a different path: designing the infrastructure for

specific applications in mind. This is where COSSIM/ACSIM excels and can provide excellent

value. Additionally, it is the tool that can help Cloud and HPC application designers the

most. Typically, those developers have to work with system specifications rather than actual

hardware (because they either try to evaluate the cost of a cloud solution or design an

application for a parallel system not yet released) and a precise framework, such as

COSSIM/ACSIM, can be the best solution to their needs.

 A Novel Approach Covering a Gap in Existing CPS Simulation Tools. The COSSIM

CPS simulation framework is a collection of already available tools, tightly connected

together in a single package. Although there is no novelty in the components of the package

itself, the framework proposition as a CPS simulation tool that can accurately simulate the

performance, timing and functional behavior of system of systems, estimate power

consumption per node and per overall system, provides functionality that no other CPS tool

on the market currently offers. Popular CPS simulation tools focus more on CPS functional

design by providing models of computation and physical process but not modeling of the

actual devices and networks. As such, COSSIM works complimentary to those tools and can

be used to verify the code and concepts derived through them without requiring an actual

CPS system to be deployed.

Our Approach Provides Reduced Design Effort. After an initial time required to

learn how to use the framework and setup simulations, the tight integration of all

components in the framework provides a coherent and straightforward way to automate the

whole process. The COSSIM framework does not alter the main properties of its components

22

and as a result a designer can take full advantage of previous knowledge (or work) on the

widely-used and documented tools, while at the same time he/she does not have to deal with

the tedious task of passing information from one tool to the other, properly converting inputs

and outputs to compatible representations and performing a simulation in discrete steps (e.g.

first simulating a component and then a model of the network). As a result, the simulation

process becomes more fluid and productivity rises significantly. In addition, the community

has already knowledge of processing and network subsystems which are used, and this

knowledge can be leveraged with COSSIM. Finally, our novel approach (i.e. ACSIM) allows

for the first time for global synchronization along the three (i.e. Processing, Network and

Hardware Accelerator) simulation domains. Such an integrated approach can severally

reduce the time needed for design space exploration while also accelerate the overall

development and verification process.

23

2
Parallel Systems Simulators and

COSSIM/ACSIM Approach

The COSSIM (as well as the ACSIM) simulator can be utilized mainly in the development of

three classes of systems; HPC, CPS and Cloud systems. This chapter presents an overview of

parallel systems simulators from the above domains as well as analytically comparison with

our approach. Specifically, Section 2.1 analytically presents the available tools for CPS

simulation, while Section 2.2 and Section 2.3 present the state of the art tools in Cloud and

HPC domains respectively.

24

2.1 CPS Simulation Tools
Starting from the CPS domain, the available tools for CPS simulation fall under two main

categories. The first one focuses mostly on the functionality of the system under design and

thus they try to model different entities in a CPS system: a physical process, an

electromechanical physical component, user behavior, events, message exchanges between

components etc. Such tools are mostly based on the use of well-defined models of

computation. Among them the most profound ones are Ptolemy [3], Matlab Simulink [4] and

Modelica-based1 simulation environments. While these tools can model physical processes,

they can only be used during the initial design phase of the CPS application (they can even

generate application code) since they mainly offer functional simulation. As a result, they

cannot handle cycle-accurate processing simulation, power consumption estimations of the

actual processing components nor the simulation of the actual networks that are going to be

employed.

Simulators that do handle those aspects can typically be found in the field of Wireless

Sensor Networks (WSNs), which is a certain subset of CPS. Most of these tools are designed

around a specific WSN-related operating system or a specific device. However, these

simulators either support only very simple microcontrollers (for example ATMega128) and

Real Networks (wireless IEEE 802.11 and/or 802.15.4 protocols) or very complex CPUs (ARM,

MIPS, PowerPC etc.) and dummy network communication.

In the following subsections, the available tools of WSN domain which support both

processing and network analytically presented. However, none of them can simulate both

the processing and network sub-systems of an actual CPS application.

2.1.1 TOSSIM (extensions: PowerTOSSIM)

TOSSIM [5] is an emulator specifically designed for WSN running on top of the TinyOS,

which is an open source operating system targeting embedded low-end systems. TOSSIM is

1 Modelica is an object-oriented, equation-based language used to construct models of systems. Multiple

free or commercial simulation environments that can import Modelica models exist such as OpenModelica,

JModelica, CyModelica while even conventional physical simulators, such as Simulink, can handle

Modelica models.

25

a bit-level discrete event network emulator built in Python, a high-level programming

language emphasizing code readability, and C++. It includes models for very simple CPUs

(ATMega128 microcontroller), analog-to-digital converters (ADCs), clocks, timers, flash

memories and radio components. The network communication over the wireless channel is

abstracted as a directed graph, in which each vertex is a processing node, and each edge has

a bit error probability. Each processing node has a private piece of state representing what it

hears on the radio channel, thus this abstraction allows testing under perfect transmission

conditions (bit error rate is zero).

However, this emulator has some limitations. Firstly, TOSSIM is designed to simulate

behaviors and applications running on top of TinyOS and developed only in nesC language,

and it is not designed to simulate any other applications/network protocols. Therefore,

TOSSIM cannot correctly simulate several issues of the energy consumption in WSN; users

can adopt PowerTOSSIM, another TinyOS simulator extending the power model of TOSSIM,

to estimate the power consumption of each node. Furthermore, because TOSSIM is

specifically designed for WSN simulation, motes2-like nodes are the only processing nodes

that TOSSIM can simulate.

2.1.2 ATEMU

ATEMU [6] is an emulator of an AVR processor (MICA 2 single chip microcontroller)

implemented in C and being utilized in WSNs. ATEMU can emulate not only the

communication among the sensors, but also every instruction executed in each sensor (low-

level operations of the processor, timers and radio system are all emulated). ATEMU can

simulate multiple sensor nodes at the same time, and each sensor node can run different

programs. Moreover, it can emulate power consumptions and radio channels. However,

although ATEMU can give highly accuracy results (cycle-accurate), the simulation time is

much longer than that of similar simulation tools, while it can support only Mica 2 motes.

2 Mote is a node in a sensor network that is capable of performing some processing, gathering sensory

information and communicating with other connected nodes in the network.

26

2.1.3 AVRORA

Avrora [7] simulates a network of motes, runs the actual microcontroller programs (rather

than models of the software), and runs accurate simulations of the devices as well as the radio

communication. Avrora is an instruction-level simulator built in Java, which removes the gap

between TOSSIM and ATEMU. The codes in Avrora run instruction by instruction, which

results in a higher simulation speed and better scalability. Avrora provides more accuracy

than TOSSIM while it scales at the same level as TOSSIM. However, Avrora practically

supports only the ATMega128L microcontroller while it can support only some features of

the IEEE 802.15.4 standard compliant radio chip CC24203 using AvroraZ (an Avrora

extension).

2.1.4 WorldSens

Worldsens [8] is actually an integrated environment for development and rapid prototyping

of wireless sensor network applications. The environment itself consists of two simulator

tools which can be used either independently or in a cooperation – WSim and WSNet as

illustrated in Figure 2.1.

Figure 2.1. WorldSens simulator

The task of WSim is to simulate the hardware behavior and the events that occur in

the actual hardware platforms. It relies on cycle accurate full platform simulation using

microprocessor instruction driven timings. The simulator is able to perform a full simulation

of hardware events which allows performance analysis. However, these platforms include

only Texas Instrument MSP430f16114 micro-controller unit including the full instruction set

3 https://www.ti.com/lit/ds/symlink/cc2420.pdf
4 https://www.ti.com/lit/ds/symlink/msp430f1611.pdf

WSim

MSP430
Peripher

als

WSNet

Radio

To network

To processor

27

as well as all the peripheral digital blocks (timers, basic clock module, serial ports, with UART

and SPI modes, etc).

WSNet is a modular event-driven wireless network simulator. Its architecture consists

of different blocks that model characteristics and properties of the radio medium. The list of

available MAC protocols is also relatively rich containing the IEEE 802.15.4 wireless protocol.

During one simulation, the behavior of a block is specified using a model which is a particular

implementation of the block functionalities.

Each node in the WorldSens network is simulated by a WSim. The WorldSens

simulator runs the native code as deployed in the sensor hardware without any change and

emulates all components embedded in the hardware sensor nodes. Thus, all instructions

sending commands to the CC11005 are executed and the behavior of the CC1100 is also

simulated. When the CC1100 actually transmits a byte, it is transferred to WSNet which

simulates the radio propagation and interferences according to its internal models, and

finally transmits the data to the simulated CC1100 RF transceivers in the other WSim

programs. Finally, it supports simple linear energy consumption model. However, it can

simulate only very simple microcontrollers (MSP430 microcontroller), while the official

WorldSens site is not available anymore (and the documentation).

2.1.5 Cooja (Contiki OS)

The Cooja [9] simulator is similar to TOSSIM since its main purpose is to simulate the

behavior of an operating system. Cooja is a Java-based simulator developed for simulations

of sensor nodes running the Contiki operating system.

The authors of Cooja claim that their simulator can work on different levels enabling

the so-called cross level simulations (Figure 2.2). For example, ns-2 (networking level) is

principally a simulator designed for network and application levels without taking the

hardware properties into account. On the other hand, TOSSIM (operating system level) is

5 http://www.ti.com/lit/ds/symlink/cc1100.pdf

28

intended particularly for simulating the behavior of the operating system TinyOS, while the

purpose of Avrora is to simulate at the machine code level (instruction set execution level).

The Cooja simulator is implemented in Java, making the simulator easy very

extensible, since it also allows the sensor node software to be written in C by using the Java

Native Interface. Furthermore, it can execute the Contiki programs in two different ways:

either by compiling the application code directly on the host CPU, or by compiling it for the

MSP430 hardware. Moreover, it can simulate IEEE 802.15.4 wireless protocol, however it

cannot provide any power estimations, it can simulate only very simple microcontrollers

(MSP430 microcontroller) and it has low efficiency due to the cross-level simulation

extendibility [10].

Figure 2.2. Cross-level simulation [132 – D7.1.X]

2.1.6 SunShine (TOSSIM – SimulAVR - GEZEL)

SUNSHINE [11] is the first “sensor-net” simulator that supports joint evaluation and design

of sensor hardware and software performance in a networked context. SUNSHINE captures

the performance of network protocols, software and hardware up to cycle-level accuracy

through its seamless integration of three existing sensor-net simulators: a network simulator

TOSSIM, an instruction-set simulator SimulAVR [12] and a hardware simulator GEZEL [13]

(all simulators are built in C++ programming language).

The TOSSIM framework has been described above. Even though TOSSIM is able to

capture the sensor motes behaviors and interactions, such as packet transmission, reception

and packet losses at a high fidelity, it does not consider the sensor motes processors’

29

execution time. Therefore, TOSSIM cannot capture the fine-grained timing and interrupt

properties of software code.

On the other hand, SimulAVR is an instruction-set simulator that supports software

simulation for the Atmel AVR family of microcontrollers which are popular choices for

processors in sensor systems. SimulAVR provides accurate timing of the software execution

and can simulate multiple AVR microcontrollers in one simulation.

Finally, GEZEL is a hardware domain simulator that includes a simulation kernel and

a hardware description language (based on the Finite-State-Machine + Datapath (FSMD)

model). In GEZEL, a platform is defined as the combination of a microprocessor connected

with one or more other hardware modules. For example, a platform may include a

microprocessor, a hardware coprocessor, and a radio chip module. To simulate the

operations of such a platform, one has to combine different software modules, which capture

software executions over the microprocessor, and hardware simulation domain, which

captures the behaviors of hardware modules and their interaction with the microprocessor

as illustrated in Figure 2.3.

Cycle-level co-simulation can show details of sensor nodes’ behaviors, such as

hardware behavior, but are relatively slow to simulate. TOSSIM nodes do not simulate many

details of the sensor nodes but are simulated much faster. The mix of cycle-level simulation

with event-based simulation ensures that SUNSHINE can leverage the fidelity of cycle-

accurate simulation, while still benefiting from the scalability of event-driven simulation.

However GEZEL can support only co-simulations with AVR microcontrollers using

SimulAVR (e.g. SunShine), while the network communication is abstracted (slightly better

than TOSSIM).

30

Figure 2.3. SunShine Architecture

Summarizing from the previous sections, WSN simulators focus on specific micro-

controllers or motes (they can model the whole sensor node including sensors and the radio

communications chip). These simulators can effectively model both the actual software

executed on the processing nodes and the network between the devices, however their

applicability cannot be generalized neither in terms of software (e.g. support for different

operating systems or software packages), nor in terms of hardware (e.g. support for other

more complicated CPUs) or network (e.g. they can only simulate specific wireless protocols).

As a result, those tools cannot handle the simulation of general CPS that require the modeling

of very diverse processing devices together with a multitude of networks.

Table 2.1 provides a comparative view of the CPS simulation tools that have been

analyzed in the previous subsections.

Simulation

Tool

Simulation

Type

CPU

Simulation

Support

Network

Models

Power

Models

OS

Support

Application

Support

TOSSIM Discrete

Event

Only

ATmega128

L (MicaZ

mote)

Abstracted as

a directed

graph (not

802.15.4)

✓ (Power

Tossim)

✓ (Only

TinyOS)

Only nesC

applications

ATEMU Cycle

Accurate

Only

ATmega128

Abstracted as

a directed

graph

Very Simple

✓ (Only

TinyOS)

Only nesC

applications

31

L (Mica2

mote)

Avrora Instruction

Accurate

Only

ATmega128

L (MicaZ &

Mica2

motes)

AvroraZ

802.15.4

Very Simple



Only nesC

applications

WorldSens Instruction

Accurate

Wsim

TI MSP430

microcontrol

ler

WSNet

Supports

802.15.4

Linear Energy

Model



C

applications

Cooja Instruction

Accurate

TI MSP430

microcontrol

ler

Supports real

network



✓ (Contiki

OS)

Applications

compiled for

ContikiOS

SunShine Instruction

Accurate /

Event-

Driven

Microcontrol

ler-type

CPUs

AVR

(SimulAVR)/

ARM (v5)

(SimltARM)

Similar with

TOSSIM

(with FIFO)

Power

Sunshine

Only

TinyOS

Only nesC

applications

COSSIM/ACS

IM

Cycle

Accurate /

Discrete

Event

From simple

up to

multicore

complex

ARM & X86

CPUs

Ethernet/

Wireless/ 3G

✓
(McPAT/MiXi

M)

✓ (Linux-

based)

C/C++/Java

applications

Table 2.1. Comparative Analysis of Existing CPS Simulation Tools

2.2 Cloud Simulation tools

In the area of Cloud Simulators, the most powerful and commonly used cloud simulation

toolkit is CloudSim [14] and its numerous extensions or derivatives which supports the

modeling and simulation of Cloud computing architectures and environments for

application provisioning. In addition, there are a numerus of simulators (such as BigHouse

[15], GreenCloud [16], CACTOS [17]) which focus on specific aspects of the data center that are

useful for cloud providers such as, and mainly, resources’ provisioning as presented in the

next sections.

32

2.2.1 CloudSim

CloudSim implements generic application provisioning techniques which can be extended

with ease and limited effort, and this is the reason many other simulation tools have been

implemented as extensions of CloudSim. It can support system architecture at the level of

physical components, as well as behavior modeling of Cloud computing systems such as data

centers, virtual machines, etc. The following subsections present the most widely used of the

Cloud simulators that have been developed using the CloudSim toolkit. Figure 2.4 depicts the

layered architecture of CloudSim.

Figure 2.4. CloudSim layered architecture

2.2.1.1 CDOSim
CDOSim is a cloud simulator extending CloudSim whose purpose is, as its name indicates, to

optimize cloud deployment options. It uses reverse-engineering along with the Instruction

Count (IC) measure as input in order to compute response times, Service Level Agreement

(SLA) violations, delays and an overall cost which is the sum of the costs for the used

bandwidth and virtual machine instances.

2.2.1.2 NetworkCloudSim
NetworkCloudSim [18] is another extension of CloudSim which enables the simulation and

modeling of real applications such as cloud data centers and generalized applications such

33

as HPC and e-commerce. It supports scalable network models for cloud data centers and

enhances CloudSim with complex and more sophisticated application models such as

message passing applications and workflows in order to capture the relevant characteristics

of real systems.

2.2.1.3 CloudAnalyst
An extension of CloudSim which aims to model, analyze and evaluate the requirements of

large-scale Cloud applications in terms of geographic distribution of both users and

computing infrastructure, is CloudAnalyst [19]. Cloud infrastructures can be deployed in

different geographic locations and requests to these systems come from distant locations with

heterogeneous distributions and sizes.

2.2.1.4 CloudSimDisk
Another energy-aware simulation at the level of storage is CloudSimDisk [20]. It extends

CloudSim with a flexible module which allows energy-aware storage simulations including

hard disk drives (HDD) device models, HDD power models, disk array management

algorithms and energy-aware data center persistent storage. CloudSimDisk is designed to be

flexible and it can easily be extended in order to test and validate new algorithms and systems

for energy-aware storage in cloud systems. It can model the main characteristics of HDDs

like capacity, average rotation latency, average seek time, and maximum internal transfer

rate as well as power consumption in a particular operating mode, active or idle.

2.2.1.5 CloudSimSDN
CloudSimSDN [21] is another extension of CloudSim for Software-Defined Networking (SDN)

enabled cloud environments. It simulates cloud data centers, physical machines, switches,

network links and virtual topologies and it can evaluate resource management policies

applicable to SDN-enabled cloud data centers. CloudSimSDN measures both performance

metrics and energy consumption to ensure environment conservation and cost-reduction.

2.2.1.6 SmartSim
SmartSim [22] is a cloud simulation toolkit that has been built on the basis of CloudSim. Its

purpose is to model applications on smart mobile devices. It can support both system

modeling, which refers to the hardware functionalities such as processor and memory, as

34

well as behavior modeling which is the operational behavior such as resource provisioning

mechanisms, dynamic processing management policies, and statistics of resource utilization

for computational intensive mobile applications on smart mobile devices.

2.2.1.7 DynamicCloudSim
DynamicCloudSim [23] is an extension of CloudSim which introduces the simulation of

instabilities coming mainly from the heterogeneity of hardware on top of which VMs are

running, such as dynamic changes due to external loads as well as failures in task executions.

In order to achieve this goal it takes into account several parameters like: (i) external

bandwidth as a requirement of tasks and file I/O as additional performance characteristic of

tasks, VMs, and host, so that the execution of different kinds of tasks on VMs with different

performances can be simulated, (ii) heterogeneity and randomization among VMs’

performance and (iii) dynamic changes at runtime in order to simulate he influence of

external loads as a consequence of sharing common resources.

Summarizing, CloudSim and its extensions try to model a cloud infrastructure and use

application workload models and resource performance models in order to provide

information about system and user configurations and requirements. Compared to

COSSIM/ACSIM, these simulators are far more generic and do not employ precise simulation

of the actual execution of an application neither do they model the exact hardware used but

rather generic models of the underlying platforms.

2.2.2 BigHouse – CactoSim - GreenCloud

There are a number of simulators in cloud domain which focus on specific aspects of the data

center that are useful for cloud providers such as, and mainly, resources’ provisioning. These

simulators model user and application requirements through stochastic processes or

mathematical models in order to predict resource usage and provide optimization insights

for avoiding excessive overprovisioning and underutilization. The following subsections

present an overview of the existing such simulators.

35

2.2.2.1 BigHouse
Bighouse [15] is a simulator infrastructure for data centers which introduces a higher level of

abstraction. Its key feature is the usage of a stochastic queueing simulation methodology, by

representing the fundamental characteristics of workloads (resource requirements,

instructions, memory or disk access, etc.), using random variables. The first module is

responsible for the construction of the data centers including some models for the description

of the desired architectures which can be extended in order to create new functionality. The

second module creates the simulation using the statistical tools, handling the communication

and control infrastructure and giving the results of the simulation process.

2.2.2.2 CactoSim
CactoSim simulator [17] is a discrete event simulation framework which enables cost and risk

analysis by simulating cloud optimization strategies using a mix of workloads and resource

performance evaluating scenarios. It supports both behavior and system modeling of

heterogeneous components within a cloud computing environment, taking into account the

infrastructure (data centers, clusters, racks, virtual machines, etc.) provisioning policies,

providing energy consumption, resource utilization, application response time and costs.

2.2.2.3 GreenCloud
GreenCloud [16] is a simulation environment focusing mostly on energy-aware cloud

computing data centers. It models and calculate the energy consumption of each component

of a data center such as servers, switches, links, etc, by separating the energy consumption in

three types: (i) computing energy, (ii) communication energy, and (iii) the energy

consumption related to the physical infrastructure of a data center.

COSSIM/ACSIM on the other hand focuses on specific applications and simulates

them with high accuracy. As such, from a cloud provider perspective, it provides greater

insight on how to design and implement tiers, evaluate performance and latencies. From a

cloud application developer perspective, this increased accuracy and focus on a specific

application, provides better knowledge on the impact of using a cloud infrastructure and

reveals opportunities and methods to overcome bottlenecks or inherent difficulties.

36

Therefore, it becomes obvious that COSSIM/ACSIM covers a niche for cloud providers and

application developers that target specific use cases rather than general infrastructure.

Table 2.2 provides a comparative view of the most widely used Cloud simulation tools

that have been analyzed in the previous subsections.

Simulation

Tool

Underlyin

g Platform

Programmin

g Language

Cycle-

Accurate

Network

Models

Energy

Models

H/W

Accelerators

CloudSim SimJava Java 

limited

✓



CloudAnalyst CloudSim Java 

limited

✓



IcanCloud CloudSim C++



✓





NetworkClou

dSim

CloudSim Java 

✓

✓



GreenCloud NS-2 C++



✓

✓



COSSIM/ACS

IM

GEM5/OM

NET++

C++/python

✓

✓

✓

✓

Table 2.2. Comparative Analysis of the most widely used Cloud Simulation Tools

2.3 HPC Simulation tools

Cloud computing is mainly about sharing resources and making efficient use of

computational machines by multiple users and applications. Complimentary to the cloud

data servers, while also sharing certain aims and features, are the parallel systems intended

to execute highly complex and demanding applications (HPC). The problem in this case is

not to design an infrastructure that can be effectively used by multiple users but to make a

system of systems that is tuned to execute in the most efficient (performance, energy - or both

-wise) way a single (or a few) parallel application(s). The advent of applications that require

extreme computational resources (such as deep learning, AI, analytics, real-world

physical/chemical/biological simulations, etc.) both for academic/research and commercial

purposes makes the design and deployment of such systems and applications a very

interesting and expanding area; in HPC there are certain tools such as SST/GEM5 [24] which

37

model cycle accurate processing unit, while others (e.g. [25], [26]) that focus on the simulation

of real networks.

SST/GEM5 is a proposal for a tool which tries to explore key issue about HPC details

in terms of performances, energy and reliability. The developers have integrated the gem5

simulator with the Structural Simulation Toolkit (SST) [27], extended it by adding fast-

forwarding capabilities, by porting the HPC-oriented Kitten operating system [28], and by

adding reliability analysis capabilities. On the other hand, in [25], [26], the authors have

developed a simple general-purpose simulator using the OMNeT++/OMNEST simulation

framework making assumptions about the applications by using models of computation. As

such they either focus on providing high accurate results per node and more simplistic

network models or they replace the cycle-accurate simulation with application traces or

functional modeling and focus on the network part. COSSIM/ACSIM goes beyond those

approached by combining successfully both aspects while providing additional functionality

(such as testing the robustness of applications).

Other HPC/Parallel system simulation tools overcome performance and scaling issues

by using models of processors, application traces and specific assumptions for the network

topologies/technologies and middleware (such as communication libraries like MPI).

Example tools belonging in this category are BigSim[29], XSim [30] and MARS [31].

Compared to those tools, COSSIM/ACSIM is more general, being able to support arbitrary

network topologies and software tools, while by executing the applications on precise

processor models it is far more accurate.

Summarizing, it becomes apparent that no integrated solution exists that can handle

the simulation of actual CPS, Cloud and HPC systems, including their complete software

stack and network dynamics. In order to address the lack of such tools, COSSIM/ACSIM

efficiently integrates several well-established simulation sub-systems in a single framework

that works in the transparent to the user way (i.e. as if it was a single tool rather than a

framework). COSSIM/ACSIM is the only known tool that can handle the network, processing

and power simulation in an integrated and fully distributed manner utilizing custom H/W

accelerators allowing for much faster and more accurate development.

38

Table 2.3 provides a comparative view of the most widely used HPC simulation tools

that have been analyzed in the previous subsections.

Simulation

Tool

Cycle-

Accurate

Network Models

Energy

Models

H/W

Accelerators

SST/gem5 ✓ Limited (MPI +

external router)

 

BigSim  Limited (MPI based)  

xSim 

Limited (MPI based)  

COSSIM/ACSIM ✓

✓

✓

✓

Table 2.3. Comparative Analysis of the most widely used HPC Simulation Tools

39

3
COSSIM/ACSIM Design Choices

A highly parallel system comprises of a set of nodes and a number of networks that connect

those nodes together. The diversity of nodes used in such systems is high; there can be simple

micro-controllers that control an actuator device or provide readings from a sensor, network

devices, powerful main control units, server systems, etc. Thus, in order to accurately

simulate a processing node, a system simulator that is cycle-accurate, Instruction Set

Architecture (ISA) independent, configurable (in terms of supported devices and system

features), able to boot real-world operating systems and support real network modeling is

required. This chapter presents an overview of the existing processing and network

simulators as well as the most appropriate solution in order to meet the COSSIM

40

requirements in Sections 3.1 and 3.2 respectively. In addition, Section 3.3 overviews a

comparative analysis of existing processing and network simulation tools. Furthermore,

Section 3.4 presents the related work about the H/W accelerators in full system simulators.

Finally, Section 3.5 describes our solution for the integration of these components examining

the most widely-used integration frameworks.

3.1 An Overview of the Processor-Only Simulation Tools
The key concept is not to develop processing and/or network simulators from scratch but to

exploit the advantages of the most appropriate existing simulator frameworks. There are

numerous processing simulators and emulators that have been developed and implemented

during the last decades. This section presents the most widely-used of them focus on the

advantages and disadvantages in order to support the CPS, Cloud and HPC domains. In

other words, the processing simulation tool must support the following list of

requirements/specifications so as to be able to handle efficiently the above domains.

I. Handling multi-core CPUs

II. Being Cycle accurate

III. Able to efficiently simulate a complete system with devices and an operating

system (Full System mode)

IV. Integrate a Widely-used user interface (familiar to the community)

V. Should be open-source

VI. The simulation execution time should be high

VII. Integrate/handle power consumption models

VIII. Integrate/handle Hardware Accelerators

More analytically, it must support multi-core CPUs of different ISAs (with ARM and

x86 being mandatory due to their wide industry adoption) including several levels of

memory hierarchy and complex peripherals. In addition, it must be a cycle accurate simulator

because an accurate modeling and simulation environment can reduce the effort and cost of

deployment, testing and maintenance as mentioned in [32]. Moreover, since COSSIM/ACSIM

aims to model complete Systems, it must support complete processing systems with the I/O

41

devices and at least one operating system, in order to accurately capture realistic interactions

of an application running on top of an actual system. Equally important, a tool that can be

considered for COSSIM/ACSIM has to be open-source so as to allow modification and

adaptations required by the intricacies of the application domain targeted by

COSSIM/ACSIM. Lastly it must support state of the art energy models or at least it has to

provide hooks so that such tools can be effectively integrated.

3.1.1 Imperas Open Virtual Platforms (OVP)
OVP [33] is a high-performance simulator that can simulate advanced multi-core

heterogeneous or homogeneous platforms with complex memory hierarchies, cache systems

and peripherals. OVP is an instruction-accurate simulator (not cycle accurate) implemented

in C. Currently, it can support processor models of ARC, ARM, MIPS, PowerPC, NEC v850,

and OpenRisc families with many different types of system components including ram, rom,

trap, cache and peripheral models including dma, uart, fifo, etc. However, it does not provide

cycle-accurate simulation, power models and cannot model or run an operating system.

3.1.2 SimpleScalar

The SimpleScalar [34] tool set is a system software infrastructure used to run modeling

applications for program performance analysis, detailed micro-architectural modeling, as

well as for hardware-software co-verification. SimpleScalar can execute modeling applications

that simulate (cycle-accurate) real programs running on a range of modern processors and

systems. The toolset can model a variety of platforms ranging from simple unpipelined

processors to detailed dynamically scheduled microarchitectures with multiple-level

memory hierarchies, including Alpha, Power PC, x86 and ARM. In addition, an architecture-

level power modeling framework (Wattch [35]) has been developed in parallel with

SimpleScalar to perform power analysis. However, it cannot model or run an operating

system, since the simulation speed is low.

42

3.1.3 CPU Sim

CPU Sim [36] is a Java application that allows users to design simple computer CPUs at the

microcode level and to run machine-language or assembly-language programs on those

CPUs through simulation. It can be used to simulate a variety of architectures, including

accumulator-based, RISC-like, and stack-based (such as the JVM) architectures. However,

CPU Sim cannot support very complex CPUs (such as ARM, X86, etc.), while it can run only

machine-language or assembly-language programs.

3.1.4 ESCAPE

ESCAPE [37] is a PC-based simulation environment aimed at the support of computer

architecture education. The environment can simulate both a microprogrammed architecture

and a pipelined architecture with single pipeline. Both architectures are custom-made, with

a certain amount of configurability. Other tools, such as a memory monitor,

assembler/disassembler and analysis tools, such as on-the-fly generation of pipeline activity

and usage diagrams, are integrated with the environment. However, ESCAPE cannot

support very complex CPUs (such as ARM, X86, etc.), while it can be used only for education

purposes (due to simplicity of supported architecture).

3.1.5 HASE

HASE [38] is a Hierarchical Computer Architecture design and Simulation Environment

which allows for the rapid development and exploration of computer architectures at

multiple levels of abstraction, encompassing both hardware and software. HASE produces a

simulation trace file which can be used to animate the on-screen display of the model so as

to show data movements, parameter value updates, state changes, etc. HASE is available

mainly for academic purposes and it can support only some MIPS commands and not

complex CPUs (such as ARM, X86, etc.).

43

3.1.6 MikroSim

MikroSim [39] is an educational software computer program for hardware-non-specific

explanation of the general functioning and behaviour of a virtual processor, running on the

Microsoft Windows operating system. Devices like miniaturized calculators, microcontroller,

microprocessors, and computer can be explained on custom-developed instruction code on

a register transfer level controlled by sequences of micro instructions (microcode). Based on

this it is possible to develop an instruction set to control a virtual application board at higher

level of abstraction. MikroSim is available mainly for academic purposes and it can support

only micro instructions (microcoding) for a virtual control unit and not complex CPUs (such

as ARM, X86, etc.).

3.1.7 SimNow

The AMD SimNow [40] simulator is an AMD64 technology-compatible x86 platform

simulator for AMD’s family of processors. It is designed to provide an accurate model of a

computer system from the program, OS, and programmer’s point of view. It allows fast

simulation of an entire computer system, plus standard debugging features such as break-

pointing, memory-viewing and single-stepping. The simulator allows such work as BIOS and

OS development, memory-parameter tuning, and multi-processor system simulation.

However, SimNow is not an open-source tool and it can support only AMD-based processors.

3.1.8 Zsim

Zsim [41] is a fast x86-64 simulator. It was originally written to evaluate ZCache (Sanchez and

Kozyrakis, MICRO-44, Dec 2010), hence the name, but it has since outgrown its purpose.

Zsim's main goals are to be fast, simple, and accurate, with a focus on simulating memory

hierarchies and large, heterogeneous systems. It is parallel and uses DBT extensively,

resulting in speeds of hundreds of millions of instructions/second in a modern multicore host.

Unlike conventional simulators, Zsim is organized to scale well (almost linearly) with

simulated core count. However, Zsim cannot support ARM-based architecture.

44

3.1.9 GEM5

GEM5 simulator [42] is a modular platform for computer-system architecture research,

encompassing system-level architecture as well as processor microarchitecture. It is a cycle-

accurate simulator able to model different CPUs/ISAs and system components (full-system

and application-only modes are both supported). In addition, it is a widely used processing

simulator with active development by contributors from both the academic and the industrial

sectors.

The GEM5 simulation infrastructure is the merger of the best aspects of the M5 [43]

and GEMS [44] simulators. M5 provides a highly configurable simulation framework,

multiple ISAs, and diverse CPU models. GEMS complements these features with a detailed

and flexible memory system, including support for multiple cache coherence protocols and

interconnect models. Currently, GEM5 supports most commercial ISAs (ARM, x86, ALPHA,

MIPS, Power and SPARC), including booting Linux on three of them (ARM, x86 and

ALPHA).

More specifically, GEM5’s key capabilities are:

o CPU Model. The GEM5 simulator currently provides four different CPU models, each

of which lie at a unique point in the speed-vs.-accuracy spectrum. AtomicSimple is a

minimal single IPC CPU model, TimingSimple is similar but also simulates the timing

of memory references, InOrder is a pipelined, in-order CPU, and O3 is a pipelined,

out-of-order CPU model. GEM5 decouples ISA semantics from its timing CPU

models, enabling effective support of multiple ISAs. As a result, through a

combination of ISA and CPU model selection (along with proper processor

parameters, e.g. size of internal processor core structures, functional units, delays etc),

the simulator is able to closely model numerous available CPUs, such as ARM Cortex-

M series, ARM Cortex-A series, x86 processors.

o System Mode. Each execution-driven CPU model can operate in either of two modes.

System-call Emulation (SE) mode avoids the need to model devices or an operating

system (OS) by emulating most system-level services. Meanwhile, Full-System (FS)

45

mode executes both user-level and kernel-level instructions and models a complete

system including the OS and I/O devices (it should be noted though that Linux-based

OSes are currently only supported, including Android). Specifically, in SE mode,

whenever the program executes a system call, GEM5 traps and emulates the call, often

by passing it to the host operating system. On the other hand, in FS mode, GEM5

simulates a bare-metal environment suitable for running an OS. This includes support

for interrupts, exceptions, privilege levels, I/O devices, etc.

o Memory System. The GEM5 simulator includes two different memory system models,

Classic and Ruby. The Classic model (from M5) provides a fast and easily configurable

memory system, while the Ruby model (from GEMS) provides a flexible

infrastructure capable of accurately simulating a wide variety of cache coherent

memory systems. Ruby models inclusive/exclusive cache hierarchies with various

replacement policies, coherence protocol implementations, interconnection networks,

DMA and memory controllers, various sequencers that initiate memory requests and

handle responses.

It should be noted that GEM5 does not provide network simulation functionality, in

order to simulate frameworks of interconnected systems. However, when using FS mode

where devices can be added and used from the OS, GEM5 supports the use of network

interface cards that can provide hooks for connection to external network simulator tools.

Also, GEM5 does not support natively any power/energy estimations. It is possible though,

to link GEM5 with external widely used power estimators, such as McPAT [45].

Concerning performance, GEM5 as a cycle-accurate simulator is rather slow. In

practice, that means that for certain configurations, GEM5 can be one to two orders of

magnitude slower than the actual system it models. Works that attempt to bring the

performance of the simulator close enough to the performance of the actual system simulated

by trading either accuracy or verbosity level ([46]) have been presented. Other works in

progress [47], are focusing on using virtualization to accelerate simulation.

46

GEM5 is developed in C++, however it uses Python in order to perform all simulation

configuration tasks as well as the simulation setup. As a result, using available features of the

simulator to configure a system and prepare a simulation run is rather simple and can be

accomplished through Python scripts. However, adding new functionality requires extensive

lower-level coding in C++ and compiling the whole simulator.

Overall, the following list covers the main advantages of the GEM5 simulator in the context

of COSSIM:

i) GEM5 is a cycle-accurate simulator

ii) It can simulate single or multi-core homogeneous or heterogeneous platforms

iii) It can simulate a very broad range of modern CPUs, from microcontrollers to high-

performance processors while supporting all major ISAs

iv) It can simulate memory hierarchies, cache systems and peripherals (such as

Hardware Accelerators in Full System mode)

v) Simulation configuration and setup can be performed in high-level scripting

language (Python)

vi) It supports power modeling through widely used external tools

On the other hand, the only disadvantage is that its performance for complex CPU

models can be quite slow. However, it is not a significant disadvantage in the scope of

COSSIM/ACSIM since parallelism can be extracted at the process level, since multiple cGEM5

instances can be executed in parallel on the same physical machine or more efficiently in a

highly distributed manner.

Among those, GEM5 only satisfies the largest number of requirements defined for the

COSSIM/ACSIM processing sub-system. More specifically, while OVP presents several key

advantages, such as being a fast simulator able to model complex CPUs along with their

peripherals, it lacks certain features that are indispensable in the scope of COSSIM. First of

all, x86 processors cannot be modeled in OVP as required by the COSSIM application

domains. Furthermore, it is not a cycle-accurate simulator and cannot execute a full OS stack,

as required by COSSIM/ACSIM. Similarly, SimpleScalar cannot also execute a full operating

47

system, neither is it possible to extend the devices it models beyond a processor (i.e. it cannot

model peripheral devices, such as a network interface card). In addition, CPU Sim, ESCAPE,

HASE, MikroSim are simulators for academic purposes which support only simple

microcontrollers, while SimNow and Zsim cannot support ARM-based architectures. On the

contrary, GEM5 provides both ARM & x86 ISA modeling, cycle accurate simulation,

peripheral device modeling and finally OS execution support.

3.2 An Overview of the Network-Only Simulation Tools
GEM5 can provide system simulation up to the level of the Network Interface Card (NIC). It

does not support network modeling. Therefore, COSSIM employs a dedicated network

simulator that handles all network related modeling above the physical layer of a NIC. This

section aims to collect and analyze the requirements of network simulation tool by examining

a wide variety of existing network simulation tools. The following subsection describes the

main requirements which are needed from the network simulation tool. In other words, the

network simulation tool must fulfill a combination of the following requirements/

specifications in order to handle efficiently the CPS, Cloud and HPC domains

I. Support real network protocols

II. Widely-used emulation interface (familiar to the community)

III. Open-source simulation tool

IV. Fast execution time

V. Support power consumption models

Specifically, it must have the same interface with one of the existing widely-used

network and/or wireless signal network (WSN) simulation/emulation tools, while it must

support complex and heterogeneous real network protocols (e.g. wireless 802.15.41 protocol).

Finally, it must be an Open-Source tool to extend it for integration with our simulator, while

it must support energy models to measure the consumption of the network modules (radio,

physical etc). The following subsections present an overview of the most widely-used

existing network simulators.

48

3.2.1 NS-2

NS-2 [48] is a popular non-specific discrete event real network simulator built in an Object-

Oriented extension to the Tool Command Language (TCL) and C++. It provides the most

complete support of communication protocol models (such as wireless IEEE 802.11 and

802.15.4 protocols).

However, this simulator has some limitations. Firstly, when compared to other tools,

NS-2 has a long learning curve and requires advanced skills to perform meaningful and

repeatable simulations. Another drawback of NS-2 is the lack of customization available.

Packet formats, energy models, MAC protocols, and the sensing hardware models all differ

from those found in most sensors/systems. In addition, since NS-2 is originally targeted to IP

networks but not HPC/CPS Systems, there are some limitations when used for such

applications. Firstly, NS-2 can simulate the layered protocols but not application behaviors.

However, the layered protocols and applications interact and cannot be strictly separated in

HPCs/CPSs. So, in this situation, using NS-2 is inappropriate, and it can hardly produce

results with adequate accuracy for HPCs/CPSs. Secondly, because NS-2 is designed as a

general network simulator, it does not consider some unique characteristics of sensor-based

networks. For example, NS-2 cannot simulate problems of the limited available bandwidth

and energy resources, typical of the aforementioned applications. Thirdly, NS-2 has

scalability issues when HPCs/CPSs applications typically involve a large number of nodes

[49], [50]. Finally, increasing the number of nodes simulated in NS-2 results in tracing files

that are too large to manage and difficult to parse.

3.2.2 NS-3

NS-3 [51], like NS-2, is an open source discrete-event network simulator. NS-3 is considered

as a replacement of NS-2, (not an extension of it) and as a result it is not backwards compatible

with NS-2; thus, it cannot directly take advantage of the large base of protocols and models

that have been developed for NS-2. However, it is a real network simulator capable of

simulating networks such as Wireless Sensor Networks IEEE 802.15.4 and IEEE 802.11. It

provides significant improvements in performance, scalability and extensibility compared to

49

NS-2 simulator. Like its predecessor, NS-3 relies on C++ for the implementation of the

simulation models. NS-3 no longer uses Tcl scripts to control the simulation, thus skipping

the problems which were introduced by the combination of C++ and Tcl in NS-2. Instead,

network simulations in NS-3 can be implemented in pure C++, while parts of the simulation

optionally can be realized using Python as well. However, power/energy model is not

mentioned in documentation (probably not implemented) while it has very large trace files.

3.2.3 J-sim

J-Sim [52] is an open-source, component-based compositional network simulation

environment that is developed entirely in Java. J-Sim is a truly platform-neutral, extensible,

and reusable environment. J-Sim also provides a script interface to allow integration with

different script languages such as Perl, Tcl or Python, while in the current release, J-Sim is

fully integrated with a Java implementation of the Tcl interpreter (with the Tcl/Java

extension), called Jacl. So, similar to NS-2, J-Sim is a dual-language simulation environment

in which classes are written in Java (for NS-2, classes are written in C++) and "glued" together

using Tcl/Java. It supports energy modeling and has a component-based architecture, but it

does not support radio energy consumption. However, only the IEEE 802.11 MAC protocol

has been implemented so far in J-Sim, while the J-Sim model defines the generic structure of

a node (either an end host or a router) without any mention for the type of CPU which can

be simulated. Hence, it is not a preferred simulator tool for realistic WSN simulation.

Moreover, it introduces some additional overhead and some inefficiencies regarding to the

Java programming language [53].

3.2.4 NETSim

NetSim [54] is a popular network simulation and network emulation tool used for network

design & planning, defense applications and network R&D. Various technologies such as

Cognitive Radio, Wireless Sensor Networks, Wireless LAN, Wi-Max, TCP, IP, etc. are covered

in NetSim. NetSim is a stochastic discrete event simulator developed by Tetcos, in association

with Indian Institute of Science, with the first release in June 2002. However, NetSim is an

50

application that simulates only Cisco Systems' networking hardware and software and is

designed to aid the user in learning the Cisco IOS command structure.

3.2.4 OMNET++

OMNeT++ [55] is also a discrete event simulator; however it is more general than the

aforementioned simulators as it is not designed only for network simulations, thus providing

great extensibility. OMNeT++ is a general discrete event, component-based (modular) open

architecture simulation framework that includes the basic machinery and tools to write

network simulations. Although it does not provide any components specifically for computer

networks, queuing networks or any other domain, it offers “1-click” extensions to various

simulation models and frameworks such as the INET framework, Castalia or and MiXim [56]

for accurate modeling. Model frameworks are developed and maintained completely

independently of the simulation framework and follow their own release cycles.

Through OMNET++ different network protocols and topologies can be supported and

a realistic network behavior of the parallel system can be modeled; devices such as bridges,

switches, routers that are part of the infrastructure rather than the CPS/HPC/Cloud system

developed can also be modeled so as to further increase the simulation accuracy.

The key advantage of OMNeT++ is that it offers great extensibility not only in the

classical network simulation domain but also in the physical/environment domain [53] (i.e

node mobility in 3D space). Moreover, its modular and extensible architecture allows it to be

seamlessly integrated to a framework such as COSSIM/ACSIM, without compromising

future updates and/or backward compatibility. Furthermore, it features a much friendlier

graphical user interface compared to its alternatives, which makes tracing and debugging

easier.

Among the pure network simulation tools available, OMNET++ only satisfies the

largest number of CPS/Cloud/HPC requirements as defined in [57]. More specifically, NS-2

& NS-3 suffers from low performance as the number of nodes increases (bad scalability) due

to large trace files while NS-2 has very simple energy model (NS-3 power/energy model is

51

not mentioned). In addition, Jsim has low performance due to Java implementation, while

NETSim is a commercial network simulation tool.

3.3 Comparative Analysis Table of Existing Processing &

Network Simulation Tools
Tables 3.1 and 3.2 provide a comparative view of the processing and network simulation tools

that have been analyzed in the previous subsections. Tables demonstrate a fragmented

market that does not provide any single integrated solution. As a result, COSSIM/ACSIM is

the first known simulation framework that allows for the simulation of a complete modern

CPS/HPC utilizing complex SoCs interconnected with sophisticated networks combining the

features of the widely used GEM5/OMNET++ processing & network simulators. Finally, the

COSSIM system support accurate power estimations (using McPAT & INET/MiXiM power

simulators) as illustrated in the next chapter.

Simulation

Tool

Type of

Tool

Simulation

Type

CPU

Simulation

Support

Network

Models

Power

Models

Scalability

Imperas OVP Processor Instruction

Accurate

From simple

up to

multicore

complex

CPU

Not

Mentioned

Not Mentioned Good

SimpleScalar Processor Cycle

Accurate

From simple

up to

multicore

complex

CPU

Not

Mentioned

Wattch Significant

Overhead

CPU Sim Processor Instruction

Accurate

Simple

custom

virtual CPUS

Not

Mentioned

Not Mentioned Not

Mentioned

ESCAPE Processor Instruction

Accurate

Simple

custom

CPUS

Not

Mentioned

Not Mentioned Not

Mentioned

HASE Processor Instruction

Accurate

Simple

custom

CPUS / MIPS

Not

Mentioned

Not Mentioned Not

Mentioned

MikroSim Processor Register

Transfer

Level

Simple

microcontrol

lers

Not

Mentioned

Not Mentioned Not

Mentioned

52

SimNow Processor Cycle

Accurate

Complex

AMD CPUs

Yes/ Network

adapter

Yes Good

Zsim Processor Instruction

Accurate

Complex x86

CPUs

Not

Mentioned

Not Mentioned Good

GEM5 Processor

/ System

Cycle

Accurate

From simple

up to

multicore

complex

CPU

No (includes

only NIC)
Through

external power

estimation

tools

Significant

Overhead

NS-2 Network Discrete

Event

Not

Mentioned

Support

802.15.4

Very Simple Not

(inappro-

priate for

WSNs)

NS-3 Network Discrete

Event

Not

Mentioned

Support

802.15.4

Not Mentioned Good

Jsim Network Discrete

Event

Not

Mentioned

Only

802.11

Yes (without

radio)

Inappropri

ate for

WSNs

NETSim Network Discrete

Event

Not

Mentioned

802.11/802.15.

4

Yes Good

OMNET++ Network Discrete

Event

Not

Mentioned

MiXiM

Support

802.15.4

Linear Energy

Model

(MiXiM)

Good

COSSIM/ACSI

M

Processor

&

Network

Cycle

Accurate /

Discrete

Event

From simple

up to

multicore

complex

ARM & X86

CPUs

Ethernet/

Wireless/ 3G

Yes

(McPAT/INET

-MiXiM)

Good

Table 3.1. Comparative Analysis of Existing Simulation Tools (Part A)

Simulation Tool Tool

Adoption

Programming

Language

Source Code

Availability

OS

Support

Application

Support

Imperas OVP Widely

Used

C Open Source No C applications

SimpleScalar Widely

Used

C Open Source No Precompiled

(no OS

dependencies)

CPU Sim Educational

tool

Java Open Source No Machine-

Language

ESCAPE Educational

tool

Pascal Open Source No Machine-

Language

53

HASE Educational

tool

Java Open Source No Machine-

Language

MikroSim Educational

tool

Not

Mentioned

Open Source No Machine-

Language

SimNow Widely

Used

Not

Mentioned

Commercial Yes Precompiled

(no OS

dependencies)

Zsim Limited C++ Open Source No C/C++/Java

GEM5 Widely

Used

Python/C++ Open Source Yes

(Linux-

based)

Precompiled

linux binaries

(SE mode) / All

applications

supported by

OS (FS mode)

NS-2 Widely

Used

TCL/C++ Open Source No C/C++

applications

NS-3 Widely

Used

Python/C++ Open Source No C/C++

applications

Jsim Limited Java/ Jacl6 Open Source No C/C++

applications

NETSim Widely

Used

C# Commercial No C/C++

applications

OMNET++ Widely

Used

C++ Open Source No C/C++

applications

COSSIM/ACSIM - C++/Python Open Source Yes

(Linux-

based)

C/C++/Java

applications -

SystemC H/W

Accelerators

Table 3.2. Comparative Analysis of Existing Simulation Tools (Part B)

3.4 H/W accelerators in Full System simulators
On top of that, none of all the listed simulators has any notion or provide any hooks for the

co-simulation of hardware accelerators. However, there are also certain tools that can

simulate an accelerator together with a multi-core CPU. First of all, authors in [58] present a

tool which supports the simulation of natural language processing in a system comprising of

an accelerator interconnected to the last-level cache of a multi-core system. Furthermore

6 Tcl Interpreter with TCL/Java extension

54

Aladdin [59], is a ”pre-RTL” power performance simulator designed to enable rapid design

space exploration for accelerator-centric systems. Both of these approaches use the GEM5

processing simulator in its syscall emulation mode which means that no operating system can

be supported within their simulations making them impractical for general HPC/CPS/Cloud

system design; moreover, they cannot support any kind of networking.

Two approaches which are, in a way, similar to the ACSIM which presented in this

thesis can be found in [60] and [61]; the first work presents a synchronization scheme for

connecting GEM5 with a SystemC simulator. The main drawback is that, in their approach,

they replace the GEM5 simulate function with a SystemC simulate function thus GEM5 is

heavily slowed down while most of its features cannot be utilized. As a result, such an

approach cannot be used in highly parallel systems simulations that require very fast

processing simulation speeds as well as the full features provided by GEM5. In the second

work, authors present the PARADE, a cycle-accurate full-system simulation platform that

enables the design and exploration of the emerging accelerator-rich architectures. PARADE

can generate dedicated or composable accelerator simulation modules and simulate the

management of the accelerators, together with a customizable network-on-chip, at cycle-

level. However, in order to use the accelerators, the users must transform their applications

in a data flow language that provides the chaining information of the accelerators, thus

making their system much more difficult to be used than ACSIM which does not require any

kind of transformation. Moreover, they use AutoPilot tool and they synthesize the accelerator,

in order to get accurate timing information, and as a result their overall system is much

slower and less general than our approach.

Based on all the above, it is clear that currently there is no framework supporting all

the features of COSSIM/ACSIM, namely simulation of hardware accelerators together with

CPUs and networks in a fast and fully featured way.

3.5 Integration Frameworks

Binding the aforementioned processing and network simulators together is a very complex

task, requiring carefully designed communication interfaces and synchronization schemes.

55

These bidirectional interfaces have to pass information on the type and timing of events as

well as to provide a common data representation scheme throughout the framework.

During the last decades, a number of standards for distributed simulation have been

developed. Functional Mock-Up Interface (FMI) [62] is a tool-independent standard for the

exchange of dynamic models and for co-simulation. The primary goal is to support the

exchange of simulation models between suppliers and OEMs while the second goal was the

seamless co-simulation using communication technologies like COM/DCOM, CORBA,

Windows message based interfaces or signals and events. However, FMI does not currently

support any communication protocol for distributed/parallel simulation. Therefore, FMI

cannot be considered an appropriate standard for COSSIM’s processing and network

integration. Moreover, Test and Training Enabling Architecture (TENA) [63] is an

architecture proposed so as to bring interoperability to United States Department of Defense

test and training systems. TENA is designed to promote integrated testing and simulation-

based acquisition through the use of a real-time synthetic environment, which integrates

testing, training and simulation. However, TENA does not provide integrated Time

Management which is a necessary feature for simulation events because its aim is to integrate

real-time systems. Moreover, Distributed Interactive Simulation (DIS) [64] is a (mainly US)

government/industry initiative to define an interoperability infrastructure for linking

simulations of various types at multiple locations so as to create realistic, virtual worlds for

the simulation of highly interactive activities. Furthermore, the ALSP [65] concept was

initiated in January 1990 when ARPA sponsored MITRE to analyze the distributed

wargaming process with the goal of generalizing and systematizing the design of

constructive simulation interfaces. However, DIS & ALSP protocols are currently being

replaced by the IEEE High Level Architecture (HLA) [66] standard which unifies their

characteristics and mechanisms [67].

As a result, in order to efficiently integrate the Processing and the Network sub-

simulators, COSSIM/ACSIM employs the HLA standard. HLA determines the functional

entities, design rules and interfaces for each connected simulation system and specifies the

communication between the individual components. It requires a certain Run-Time

56

Infrastructure (RTI) which performs tasks such as synchronization and simulation control as

presented in Chapter 5 in detail.

The HLA specifies a software architecture and not an implementation. Although,

there exist several commercial as well as open-source RTI implementations [68], the most

widely used RTI implementations are Pitch pRTI (commercial), CERTI and Portico Project

(non-commercial). First of all, Pitch pRTI integrates simulations in an HLA compliant way;

the designer can mix different operating systems and programming languages while some

of the main advantages of Pitch pRTI™ are [69] that (i) it can provide advanced debugging

capabilities, (ii) it can handle unreliable federates gracefully including automatic resign,

ownership, time management recovery and (iii) It gives the ability to integrate existing C/C++

simulators with platform-independent Java systems. However, it is a commercial tool and it

cannot be used and incorporated with the COSSIM/ACSIM simulation tool because it is a

closed-source tool (free license only allows for up to 2 federates/instances).

Subsequently, Portico [70] has been examined as a possible solution but unfortunately

it had a bug in the time management services which was discovered during implementation

[71]. Looking at CERTI [72], the implementation of the RTI has been used extensively in

previous works concerning with simulation integration [71] [73] [74] [75] because it is an

open-source, widely used and stable implementation, so CERTI has adopted as the most

appropriate HLA implementation for processing and networking integration. Recently,

authors in [74] used CERTI in combination with Ptolemy II, an environment for modeling

and simulating physical processes of CPSs. As a result, COSSIM Simulation tool can be

extended to support Ptolemy II through CERTI HLA so as to become an integrated CPS

simulation tool.

57

4
COSSIM/ACSIM Architecture

This chapter presents the integration of processing and network simulator parts as well as

the structural elements which constitute the COSSIM/ACSIM. Initially, a top-level view of

the whole COSSIM/ACSIM simulator integration is described in Section 4.1. Subsequently,

modifications/adaptations of processing and network parts to achieve integration of them

and support network protocols are presented in Section 4.2 and 4.3 respectively. In addition,

Section 4.4 presents the pause-resume functionality, while General Purpose Input Output

(GPIO) which has been implemented in GEM5 side to include sensor devices in the

processing system is presented in Section 4.5. Furthermore, Section 4.6 describes the

integration of power estimation tools for the COSSIM/ACSIM framework in order to estimate

the energy and power consumption of processing subsystem. Finally, a sophisticated Eclipse-

based GUI which has been developed to provide easy simulation set-up, execution and

visualization of results is presented in Section 4.7.

58

4.1 The High-level architecture of the COSSIM simulator
Figure 4.1 demonstrates the COSSIM/ACSIM simulator with all its components and

interfaces (components which are implemented/modified in the context of this thesis

illustrated with red color). Multiple instances of a node simulator module (i.e. a GEM5-based

module called cGEM5) are required for the efficient simulation of the numerous processing

nodes of a parallel system. The network that binds together the different nodes is simulated

by the network simulation module (i.e. OMNET++ based module called cOMNET++). The

processing simulation instances are connected with the network one through IEEE HLA

compliant interfaces (interface #1). Additionally, each cGEM5 instance is connected through

a custom XML interface with a McPAT instance to estimate the energy/power consumption

of each node (interface #2), while cOMNET++ employs internally the MiXIM add-on to

estimate the power consumption of the network. Both cGEM5 and cOMNET++ instances have

been properly modified to provide hooks that allow security software components to interact

with the simulation process so that security tests can be performed during the simulation

(interfaces #3, #4, #5).

cGEM5 cOMNET++

1

McPAT

2

Security components

54

INET/MiXiM

3

System
Configuration

Application
Executable

OS Image &
Kernel

Network &
Topology

U
se

r
In

p
u

ts
O

u
tp

u
ts

Processing &
Network Stats

Application
Output

Security
Metrics

Power
Metrics

C
O

SS
IM

lib

C
O

SS
IM

lib

RTIG

SynchServer

COSSIM Server

1i 1ii

1iii 1iv

IEEE HLA

A
C

SI
MA
C

SI
MA
C

SI
M

H/W Acc
Description

Figure 4.1. Top-level view of the COSSIM framework

59

Figure 4.1 also illustrates the primary inputs that a user has to provide to the overall

system and the primary outputs of the simulation process. Specifically, System Configuration

(number of CPUs, memory sub-system, peripherals etc.) have to be defined either using a

configuration file or the supplied graphical interface. Furthermore, image files of the OSes

that will be executed on the nodes of the simulated platform have to be provided by the user.

An image file includes the OS kernel, the application executable7 and all the libraries that are

required. In addition, through a Network & Topology description, the user can define a

network topology (distance between nodes, topology, mobility between nodes, etc.) and

describe the interconnection channels and the selected network protocols. Finally, the user

may define optionally the Hardware Accelerator description in SystemC language.

Upon completion of a simulation, the COSSIM simulator provides a number of

outputs. Specifically, the COSSIM output comprises of: a) Processing & Network statistics

containing all the measured metrics of the simulation process (e.g. clock ticks, real time

execution, cache misses, number of packets sent, number of packet drops, delay of received

packets, peak throughput, etc.), b) the output of the actual application that is executed, c) the

security metrics (e.g. increase in response time, rejection rate, vulnerability density, system

robustness, etc.), d) power and energy estimations for each node (including further details

such as peak power, runtime dynamic power, leakage etc) as well as for the network.

Interface #1 is responsible for the integration of the processing and the network

simulation instances through HLA. The HLA compliant interfaces that have been added to

the GEM5 and OMNET++ simulators implement both the required interconnection and

synchronization functions. Interface #1 consists of four sub-parts per node; (i) two responsible

for the exchange of the Data Packets and the synchronization of the Processing with the

Network sub-tools and (ii) two responsible for the initialization and synchronization of the

overall COSSIM framework through custom-made SynchServer. Finally, COSSIMlib is

implemented so as to enable the interoperability between cGEM5/cOMNET++ and

CERTI/HLA as described in detailed in the next Chapter.

7 In the context of this thesis a number of preassembled linux-based OS images is implemented in which the user can

execute C/C++ and Java applications.

60

On top of that, this thesis presents a novel interconnection of processing full system

simulator with SystemC cycle-accurate hardware accelerator device providing both S/W and

H/W description in the same simulation environment (i.e. ACSIM). SystemC is selected

because of its cycle-accurate simulation features, while it is one of the most widely used input

languages for the HLS tools. In this work, the official effort for SystemC definition and

promotion known as Open SystemC Initiative (OSCI), now known as Accellera [76], provides

an open-source proof-of-concept simulator while it has been approved by the IEEE Standards

Association [77].

4.2 GEM5 adaptation for COSSIM integration (cGEM5)
In order for GEM58 to serve as the processing simulation sub-system in the COSSIM

framework, it has properly been extended to support certain additional features. Specifically,

in order to be able to simulate a processing node, it should support the simulation of a CPU

including several levels of memory hierarchy and complex peripherals (such as network

cards, accelerators or other components), as well as the execution of a full operating system

on top of the simulated device. Currently, cGEM5 can support single and multi-core ARM

and X86 architectures, real network cards and a complete TCP/IP protocol stack included in

a Linux-based OS Kernel module with the appropriate drivers. Additionally, cGEM5 can also

execute safety-critical systems (such as RTOS) [78].

In the following subsections the limitations of the current, publicly available, version

of GEM5 are described in tandem with the modifications and extensions that have been

implemented to alleviate those restrictions.

4.2.1 Extending the Network Model of GEM5
In GEM5’s publicly available repositories, the only network interface card implemented,

tested and verified is the Intel 8254x based gigabit Ethernet adapter. It is provided as a PCI

GEM5 network device using the e1000 Linux driver.

However, the latest version of GEM5 supports this real-network device only on ARM-

based architectures [79]. In the context of this thesis, GEM5 has been recently modified so as

8 The adapted version GEM5 for COSSIM will be referred as cGEM5

61

to support the Intel 8254x network card for the x86 ISA as described in the following code-

segment. Specifically, line 1 instantiates the Intel 8254x device as a normal PCI device to x86

PCI BUS, lines 3-5 connect the network device to the GEM5 memory system using 2 master

ports (for configuration) and 1 slave port (for data transfer), while line 7 connects the Intel’s

8254x interface with the Etherlink9 interface.

FSConfig Python File. Connect the Ethernet NIC to X86 Classic System

1 self.ethernet=IGbE_e1000(pci_bus=0,pci_dev=0,pci_func=0,InterruptLine=1,InterruptPin=1)

2 ...

3 x86_sys.ethernet.pio = x86_sys.iobus.master

4 x86_sys.ethernet.config = x86_sys.iobus.master

5 x86_sys.ethernet.dma = x86_sys.iobus.slave

6 ...

7 self.etherlink.interface = Parent.testsys.ethernet.interface

8 ...

On top of that, proper drivers to support it have been built; it should be noted though

that the available drivers required Linux kernel 3.x support and therefore such a kernel had

to be custom built since the GEM5 repositories only offered Linux kernel 2.x for x86 simulated

systems. Our solution is shared in GEM5’s community [80].

In addition to the network interface cards, GEM5 supports networking through a

simple Etherlink device. Etherlink is a virtual dummy link which emulates a cable over which

Ethernet packets are sent and received without any delay (no switching or routing

functionality is implemented – Figure 4.2).

In the scope of COSSIM, these limitations are unacceptably restrictive. Therefore,

Etherlink could not be used in its current form and thus it had been modified, while NICs

supporting more protocols have been developed. Since NIC device models cannot easily be

developed without specific information from their manufacturer -the Intel NIC model used

in GEM5 has been contributed by Intel itself- and in order to support different physical

networks, the COSSIM novel approach is to tap the Ethernet packets from Etherlink and send

9 Etherlink is a virtual dummy link which connects two homogeneous GEM5 systems.

62

them to the Networking Simulator modifying at the same time the packets to match the

specific network protocol required by the simulated application (i.e. Ethernet, WiFi, 3G, etc).

Figure 4.2. GEM5 Systems Interconnection using Etherlink

In order to achieve the aforementioned objectives, the CERTI HLA interface [72] has

been employed. Specifically, the COSSIMlib has been implemented and integrated to the

main core of the GEM5 system through Etherlink. COSSIMlib is a wrapper to an RTI

Ambassador Class which is responsible for the exchange of the messages over the network

with the HLA Server via TCP and UDP sockets. COSSIMlib exchanges Ethernet Packets

captured from the Etherlink Device and sends (and accordingly receives) them to (from) the

HLA Server. The HLA Server forwards these messages to a proper interface of the adopted

Network Simulator that implements all the network related functionality. Figure 4.3 provides

an overview of the implemented scheme.

GEM5 - System 0

CPU

NIC

Etherlink

CPU

NIC

GEM5 - System 1

Ethernet Packets

Master Port

Virtual
Link

PCI-E PCI-E

Slave Port

63

Etherlink.cc

COSSIMlib

libRTI

CERTI HLA (RTIG)

cGEM5 - System 0

NIC

CPU

Etherlink.cc

COSSIMlib

libRTI

cGEM5 - System 1

NIC

CPU

COSSIMlib

libRTI

cOMNET++

Node0

Node1

Master Port

Slave Port

Figure 4.3. COSSIM Systems Interconnection

4.2.2 Supporting Parallel/Distributed Simulation
The simplistic network model of GEM5 has another serious limitation. It only supports the

simulation of two identical networked systems (for example two identically configured ARM

processors with exactly the same peripherals and memory configuration). Furthermore, the

simulation of both systems is executed within the same thread, thus a serious performance

penalty is triggered while no synchronization primitives between the two systems are

provided.

By using HLA-complaint cGEM5 interfaces combined with a network simulator, as

described in the previous subsection, the different cGEM5 instances can be efficiently

connected. Each cGEM5 instance models a single node and different GEM5 instances are

connected through a simulated network (more precisely through HLA links and a network

simulator). As a result, all the following limitations of a conventional GEM5 simulation can

be overcome:

✓ there are no limitations for identically configured systems.

✓ there are no limitations on the number of cGEM5 instances that are interconnected

together; the overall system can be scaled to support as many processing nodes as

required.

64

✓ parallelism can be extracted at the process level, since multiple cGEM5 instances can

be executed in parallel. Furthermore, as CERTI HLA functions over IP, the different

cGEM5 instances do not even need to be on the same physical machine and the overall

COSSIM simulator can thus be executed efficiently in a highly distributed manner.

The parallel nature of our approach requires a novel mechanism so as to synchronize the

different cGEM5 instances as well as the network simulator; the need for synchronization

arises from the different notion of time in each GEM5 instance. GEM5 is an event-driven

simulator that schedules operations (events) on clock ticks. As a result, different GEM5

instances modeling different systems require different amounts of wall-clock time to reach

certain simulation milestones and the notion of the actual time in those GEM5 instances can

be different at any given wall-clock period. In addition to the limited accuracy the lack of

synchronization triggers, and in our case where the processing nodes are connected through

a network, the communication on top of the actual network protocol cannot be performed at

all, as ordering or other time-related functions cannot be accomplished. Therefore, COSSIM

introduces a novel synchronization system as described in the next Chapter.

Alleviating the above limitations, cGEM5 is able to serve as the processing simulation

sub-system in the COSSIM framework. In addition, we extend the publicity available GEM5

compatible images to facilitate the application import in COSSIM simulator, while a X86

GEM5-compatible image with full Ubuntu 12.04 is created from scratch. Specifically, our

version of cGEM5 can support:

➢ 2 lightweight Linux distributions

➢ Gentoo Base System (v1.12.11.1) for X86 processors (x86_64root.img)

➢ BusyBox (v1.15.3) for ARM processors (linux-aarch32-ael.img & linaro-minimal-

aarch64.img)

➢ In both systems Ubuntu-minimal package and JRE7 are installed so as to enable

execution of C, C++ and Java applications

65

➢ Ubuntu 12.04 Linux distribution are integrated for both X86 (ubuntu-12.04.img) &

ARM (aarch32-ubuntu-natty-headless.img & aarch64-ubuntu-trusty-

headless.img)

➢ Ubuntu-minimal & Ubuntu-essential packages are installed

➢ Apt-get is enabled for easy installation

4.3 OMNET++ adaptation for COSSIM integration (cOMNET++)

This section describes the OMNeT++ modifications/adaptations to support completed

Ethernet Wifi and 3G network protocols. The key idea behind using a dedicated network

simulator in COSSIM is to be able to support multiple network protocols, topologies and

devices through which nodes (represented by cGEM5 instances) can be interconnected.

OMNeT++ has been chosen as the most capable and feature-rich network simulator in that

context, however there are issues that arise. OMNeT++ does not support the real protocol

stacks (e.g. Linux ones) as GEM5 and therefore to be able to bridge the two packages and use

freely all OMNET++ legacy requires a procedure that encapsulates/decapsulates cGEM5

binary packets into OMNET++ - compatible packets. The latter can then be used throughout

OMNET++ and ensure 100% compatibility with all OMNeT++ packages and structures. In

addition, in order to support different network protocols (generally compatible till a certain

level, such as WiFi protocols) within OMNeT++, a micro-router functionality is implemented

as described in the next paragraphs.

4.3.1 HLA Enabled Node Functionality
cGEM5 instances are connected to OMNeT++ through HLA. For each cGEM5 instance, a node

is created within OMNeT++, called HLA-Enabled node. These nodes can transparently

communicate with cGEM5 through an HLA run-time infrastructure (RTI) wrapper, while

encapsulating/decapsulating network packets in a comprehensible form for both simulators.

Within OMNeT++, the HLA-Enabled nodes can communicate with any normal OMNeT++

node, e.g. a router or a switch, and thus any kind of topology can be supported. Furthermore,

it is even possible to have in the same simulation OMNeT++ nodes that model user-defined

systems, if the user of COSSIM is not interested in simulating them in cGEM5.

66

More specifically a CERTI-HLA compliant wrapper was developed within

OMNET++, offering a unique interface to each node simulated in the network subsystem in

order to communicate consistently and synchronized with the processing subsystem of the

COSSIM simulator. Figure 4.4 presents an overview of the OMNeT++ top level architecture

augmented with two HLA-enabled nodes. These nodes communicate (via the HLA sockets)

transparently with the processing simulator. All the added functionality was deployed in the

user space to assure 100% compatibility with OMNeT++ and its libraries (e.g. INET). As

mentioned earlier in order to increase COSSIM’s simulation accuracy the upper protocol

stack of the network should be simulated in the processing sub-system (that is cGEM5). On

the other hand, the network sub-system should be able to forward network packets in the

data link layer (L2) or in the network layer (L3) in order for other aspects of the network to

be modeled (e.g packet latency). Furthermore OMNeT++, like any other network simulator

(e.g ns2), does not produce RFC-compliant packets, meaning that there is no actual payload

data (from the application layer for simplicity and performance purposes) and actually, only

the payload length field in handled.

Figure 4.4. COSSIM network subsystem (two HLA-enabled nodes are illustrated)

67

On the other hand, and since the goal of COSSIM is to provide cycle-accurate

simulation, the whole Linux protocol stack is executed within cGEM5, thus producing a fully

RFC-compliant binary IP packet. In order for these packets to be forwarded, they have to be

properly encapsulated inside the cOMNeT++ L2/L3 packet structure. The first step towards

this direction was to modify the standard OMNeT++ cPacket structure to include payload

data. The second step was to develop a custom-fit functionality that will be automatically

inherited in each of the HLA enabled nodes of the simulation to seamlessly convert the

cGEM5 packets to cOMNeT++ packets and vice versa. Each packet sent from the cGEM5

subsystem into the OMNeT++ passes through a sequential de-capsulation procedure (i.e

parsing) from the Ethernet/L2 level to the L3 level (the IP level) followed by an encapsulation

procedure in the OMNeT++ protocol stack. In the opposite direction (from OMNeT++ to

cGEM5) all the L2/L3 fields had to be properly de-serialized into a single RFC-compliant

binary packet (i.e. a valid Ethernet packet) that will form the payload for the HLA channel.

Figure 4.5 summarizes this procedure. All this functionality is abstracted from the user as it

is built as a shared object that can be automatically linked in any simulation scenario that

demands precise processing simulation.

Figure 4.5. The En/De-capsulation vs serialization process inside OMNET++ HLA nodes

In order for the user to define HLA enabled nodes, he/she should only include the

HLA enabled node in the OMNeT++ NED description file which describes the network

topology. As the HLA Nodes are built as shared object they are able to be linked

automatically within any COSSIM simulation project. If the user wishes to add custom

functionality, he/she can inherit the basic functionality and extend as desired or directly edit

68

the reference code. In the following snippet it is shown how an HLA enabled node can be

included in a network topology. Figure 4.6 illustrates the two HLA-enabled nodes (which are

defined from the following code snippet) and two simples original OMNeT++ nodes (Client

& Server).

NED file network topology. Two HLA Enabled Nodes instantiated into a simulation network

1 import tic_toc.Txc0;

2 import tic_toc.Txc1;

3 import tic_toc.SyncNode;

4 network ARPTest

5 { . . .

6 submodules:

7 tic: Txc0 { @display("i=device/pc");}

8 toc: Txc1 { @display("i=device/pc");}

9 switch: EtherSwitch { @display("p=202,156"); }

10 . . .

11 connections:

12 tic.gate <--> ethline_slow <--> switch.ethg++;

13 toc.gate <--> ethline_slow <--> switch.ethg++;

14 . . .}

Figure 4.6. A simple Network simulation using two HLA Enabled Nodes

4.3.2 Transparent micro-Routers Functionality
Currently, there are no other Network Interface Cards available for GEM5 besides Ethernet

ones. To be able to support different network protocols (generally compatible till a certain

level, such as WiFi protocols) within OMNeT++ a micro-router functionality is implemented

HLA Enable Node

HLA Enable Node

69

within OMNeT++ allowing user to change the physical medium (and as a result the network

adapter) from Ethernet to any other supported option without affecting at all the cGEM5

node hook point implementation. In this way, the GEM5 nodes could always "sees" an

"Ethernet attached" network on the OMNeT++ side.

COSSIM transparent micro-routers from the one side always have an Ethernet

interface 100% compatible with the Linux protocol stack talking to the GEM5 node

counterpart and from the other side an interchangeable option for the user to switch the

network interface.

As shown in the Figure 4.7 the HLAnode0 is the attachment point with the cGEM5

node into the cOMNeT++ functionality. On the left of the same figure the micro_router0 is a

multiple interface micro-router which is capable of changing the network interface from

Ethernet to wireless, ppp etc. Specifically, the micro-router is implemented as an INET

StandardHost enhanced with routing capabilities and multiple interfaces. All the

aforementioned functionality is preset and obscured from the user in order to make

instantiation of a node with a desired interface as simple as possible.

Figure 4.7. Cossim node with micro-router support

Figure 4.8 (left) depicts a scenario where 2 HLA enabled nodes are connected via an

Ethernet link, while in Figure 4.8 (right) is depicted a scenario where the COSSIM micro-

router links an HLA enabled node to a wireless interface. In both configurations, the IP

assignment between the OMNeT++ nodes could be set either automatic or manual with

similar results. In the automatic way, the configurator module assigns a whole class C

network IP range for each router’s separate interface, while in the manual way user specifies

70

exactly the IPs and Subnet Masks according to the underlying network architecture using a

custom routing table. This is necessary as OMNeT++ cannot handle the auto-routing in the

case that all the IPs in the network are not defined at the configuration time (case where the

HLA node is not assigned with an IP inside OMNeT++). The same scenario could be

generalized using any other interfaces exposed to the outer network.

Figure 4.8. Ethernet & Wireless Network simulation with the micro-router functionality

exposed

The above shortcoming can be easily addressed by using a relative simple routing

configuration. In the following snippet we see the routing configuration for the node0 and

node1 respectively considering the above network simulation scenario.

node0. Routing table

1 route:

2 10.0.2.0 10.0.0.2 255.255.255.0 G 0 wlan0

3 10.0.1.0 * 255.255.255.0 H 0 eth0

4 routeend.

node1. Routing table

1 route:

2 10.0.1.0 10.0.0.1 255.255.255.0 G 0 wlan0

3 10.0.2.0 * 255.255.255.0 H 0 eth0

4 routeend

71

4.4 Integration of Security Tools & Pause-Resume functionality
The COSSIM simulation framework integrates a number of tools that allow the CPS designer

to evaluate the security of the system simulated. COSSIM’s security module consists of three

main sub-modules; the DoS Testing System (DTS), the Fuzz Testing System (FTS) and the

Metrics Management (MM) as illustrated in Figure 4.9. The DTS is responsible for testing the

resilience of a parallel system under simulation against various types of denial-of-service

(DoS) attacks. As DoS is a network attack, DTS is tightly connected with the network

simulation components of the COSSIM framework. The FTS provides automated testing of

components’ interfaces for discovering vulnerabilities. It produces input test vectors that are

fed into the parallel system/application under test. This process (fuzzing) is capable of

exposing errors that arise as a result of the processing of these input vectors. Fuzzing is not

only used for security testing; it is also employed in quality assurance for evaluating a

system’s robustness. Finally, the MM observes the state of the simulated parallel system to

calculate various types of security metrics, allowing the system developers to assess its

behavior in certain situations.

Figure 4.9. Overall concept of the Security Module

In the context of this thesis, we implement pause-resume functionality in order to

integrate Fuzz testing system with the COSSIM framework. Initially, an overview of Fuzz

Testing component implementation is described, while subsequently pause-resume

72

functionality is presented so as to provide cGEM5 state and memory to Fuzz Testing

component.

4.4.1 Design and operation of the Fuzz Testing component
As described in previous Section, Fuzzing is an approach to software testing whereby the

system being tested is bombarded with test vectors generated by another program. The

system is then monitored, in the hope of finding errors that arise as a result of processing this

input. It is typically an automated or semi-automated process that involves repeatedly

manipulating and supplying data to the software for processing. Thus, fuzz testing can help

increase the quality of the software.

COSSIM Fuzz testing is based on [81] and it is made up of two sub-systems: the

Harness Client and the Harness Server as illustrated in Figure 4.10. The Harness Server

provides C based interfaces for instrumentation of the code. It is responsible for catching the

data on the hooked interfaces, providing them to the Harness Client, fetching back the

modified / fuzzed values and continuing the execution with these modified data fields. It is

also possible to block the target process and wait for an instruction of the Harness Client.

The Harness Client manages the fuzzing effort: it has interfaces for providing the test

vectors for the data fields that the Harness Server provides id’s for. However, it requires to

start and restore GEM5 simulations and run the test vectors from the always the same

checkpoint, e.g. the same processor state which results in clean test cases. For this reason,

pause-resume functionality is implemented in which all COSSIM components can be paused

and resumed the simulation from the same simulated time as described in the following

subsection in detail.

73

Figure 4.10. Architecture and operation of Fuzz Testing component

4.4.3 COSSIM Pause-Resume Functionality
Pause/resume functionality of COSSIM simulator is developed (without stopping the

execution of cGEM5) in order to provide cGEM5 state and memory to Fuzz Testing

component. As described in the previous section, the main concept behind fuzz testing is to

send a large number of test vectors to the system under test, making sure the system is in the

same exact state before each request; sending even a single test vector to the system will

change its internal state and have a possible effect on the processing of subsequent test

vectors, thus potentially invalidating the results of the test. In other words, it needs to take a

cGEM5 checkpoint and restore cGEM5 simulations from the same checkpoint a lot of times.

Although, this is possible in standalone GEM5, this is not possible in COSSIM framework

because even though GEM5 is able to store and restore its own state (using checkpoints),

cOMNeT++ on the other hand cannot support this feature (store/restore).

74

Moreover, cGEM5 cannot be stopped but paused in every checkpoint. That's why

HLA connections will be dropped if some of GEM5 node stops its execution. On the other

hand, GEM5 –r (restore) option can be performed only in a new GEM5 execution [82]. To

encounter the above limitation, pause-resume functionality is implemented in COSSIM

environment. The following steps describe an overview of this functionality.

1) Initially, the pause of particular cGEM5 node is achieved using m5_checkpoint inside the

simulated application and send a notification to fuzz testing module to inform that there

is a checkpoint (step 1). During pausing of particular GEM5 node, all COSSIM

environment (other cGEM5s & cOMNET++) will be paused through Global

Synchronization.

2) In turn, fuzz testing module checks periodically if there is a checkpoint. If so, it can

get information of this checkpoint calling the startChanges function. During this state

(which all COSSIM subparts are paused), fuzz testing module can restore the state of

this specific cGEM5 node using -r option in a standalone GEM5 instance (as many

times as needed – steps 2&3) but without network (because it is a standalone GEM5).

3) When fuzz testing finishes the tests, it can resume all COSSIM simulator (step 4) calling

the stopChanges function.

75

cGEM5 (Node 1)

Operating System

Application
Code

m5_checkpoint
Non Network Code

m5_checkpointStandAloneExit
Code

m5_checkpoint
Non Network Code

m5_checkpointStandAloneExit
Code

GEM5
core

Checkpoint
Implementation

Fuzz testing module

GEM5 – Fuzz testing

Interface

while (1){
 if (isinCheckpoint){
 startChanges();
 for(i=0;i<100;i++){
 system(gem5.opt -r –standalone
 Run Harness Client
 }
 stopChanges();
 }
}

Standalone GEM5 (Node 1)

(1)

(2)

(4)

(3)

Checkpoint Folder
Checkpoint 1

Checkpoint 2

W
ri

te
 C

h
ec

kp
o

in
t

Operating System

Application
Code

m5_checkpoint
Non Network Code

m5_checkpointStandAloneExit
Code

m5_checkpoint
Non Network Code

m5_checkpointStandAloneExit
Code

GEM5
core

Checkpoint
Implementation

Read Checkpoint

Figure 4.11. COSSIM Pause/Resume Functionality

Additionally, a mechanism to stop the standalone GEM5 is developed before the next

checkpoint. For this reason, a new pseudo-instruction (which is called m5_checkpointStand

AloneExit) is developed to stop GEM5 standalone simulation and exit the standalone

execution. This pseudo-instruction is recognized only by standalone GEM5 and it is ignored

by cGEM5. It is necessary because both cGEM5 and standalone GEM5 have the identical

application code as illustrated in Figure 4.11. In other words, standalone GEM5 simulates the

application code from m5_checkpoint to m5_checkpointStandAloneExit. Furthermore, GEM5-

FuzzTesting interface is developed in order to synchronize the processing with the Fuzz

Testing component extending the SynchServer functionality, while cGEM5 Terminals are

modified to support the different terminals of each cGEM5 and StandAloneGem5 instance. It

should be noted that pause/resume functionality can be used independently of Fuzz Testing

76

component in case of the user needs to pause and resume the whole COSSIM/ACSIM

framework modifying the cGEM5 state and memory.

4.5 General Purpose Input Output (GPIO) to include sensor

devices to the processing simulator part

In the case of the application of COSSIM in the simulation of CPS, our framework can

simulate the computation along with the networking aspects of a CPS in a holistic approach.

As a result, COSSIM/ACSIM mainly simulates the cyber part rather than the physical part of

a CPS system; in order to support the efficient simulation of the physical part as well,

COSSIM provides two main options. The first one, extends cGEM5 by adding support for

sensor devices in the processing system. GEM5 provides a Memory Bus to interconnect all

architecture components such as CPUs, Caches, RAMs as well as I/O devices using master

and slave ports. In COSSIM/ACSIM, each sensor is connected through programmed I/O

using one memory bus master port to read the sensor values. To incorporate efficiently each

GEM5 with the sensors a set of device drivers has been developed, while an ioctl [83] function

was developed to achieve efficient user-kernel space communication. Figure 4.12 illustrates

an abstract view of our COSSIM Sensor Device when integrated with cGEM5.

pio

COSSIM
Sensor Device

port

Cache

CPU

DRAM

BUS

I/O
Device

DMA
Device

...

Operating System

Linux Kernel

User Space

D
ri

ve
rs

Applications

master

Figure 4.12. Integration of COSSIM Sensor Device with cGEM5 (full-system mode)

77

In addition, the COSSIM framework is able to seamlessly interconnect with other open-

source approaches simulating physical aspects of the system (e.g. Ptolemy II [3]). Specifically, our

tool can be connected with any other tool that has HLA interfaces in order (for each processing

node) to have access to the physical processes that "generate" the sensing data. Regarding the

physical aspects that relate to the network performance, those are already included in the tool

through the OMNET++ simulator which offers an extension that models the physical world

regarding the reaction between the physical and network processes. For example, we could

model the movement of the nodes in the space, obstacles in the wave propagation, attenuation,

noise, re-transmissions etc.

4.6 Power/Energy Estimator for the Processing Sub-System of the

COSSIM/ACSIM Simulator

This section presents the integration of a widely used Power Estimation tool with our

Processing subsystem (i.e. cGEM5) so as to estimate the Energy, Delay and Area metrics for

a design with quantitative properties and activity factors10. In addition, in the scope of this

thesis, an energy estimator is implemented which calculates the energy consumed during a

specific period. Finally, a complimentary Power Model for ARM big.LITTLE Architecture

based on [84] is integrated in our simulator.

4.6.1 An overview of Research Tools for High-Level Microprocessor

Power Estimation

Initially, an overview of the bibliography for the current state of research-oriented tools for

modelling the power consumption of microprocessors is presented. It should be noted that

the bibliographic references presented cannot be exhaustive since high-level power

estimation presents an active challenge in the microprocessor and electronic system design

research fields and new works are frequently introduced, while older approaches and tools

are deprecated or significantly altered.

10 Power/Energy estimator for the Network sub-system is calculated from INET/MiXiM OMNET++ extension which
is fully integrated in COSSIM/ACSIM.

78

Starting from the Cache and Memory level, the most well-known tools used are

Dramsim2 and Cacti which can be used for timing and energy analysis of DRAMs and caches

respectively [85] [86]. In addition, Orion2 is a model used to estimate the energy of Networks

on Chip (NOCs) that are the de-facto interconnects used for chip multiprocessors [87].

On the other hand, Wattch [35] is a processor energy simulation tool that can provide

architects with pre-silicon energy estimation. Wattch works together with the popular

microarchitecture simulator SimpleScalar [34] and provides parameterized activity-based

power estimates. It is more suitable to microarchitectural research rather than whole system

(also since attached to SimpleScalar it does not support OS simulation) and it is not really

suitable to describe custom hardware blocks (e.g. an accelerator).

For a wider system approach McPAT can be used to estimate the Energy, Delay and

Area metrics for a design with quantitative properties and activity factors as inputs for the

simulation [45]. McPAT is based on the aforementioned Cacti tools and tries to map

architectural and technological descriptions of a CPU system to Cacti blocks in order to

estimate power. The tool is designed to work together with performance simulators in order

to receive activity vectors as inputs and provide power estimations that these simulators can

use for power-aware functionality (e.g. hotspots, DVFS, power states etc). Gem5 is a full-

system performance simulator that is widely used and most often coupled with McPAT,

however there is not an automated process to integrate these tools.

4.6.2 McPAT

McPAT is selected as Power Estimation tool for processing simulator subsystem as it is very

efficient since it uses the well-established CACTI models [88] and provides accurate and valid

results according to the literature. Specifically, McPAT developers have provided validation

studies for a number of commercially available architectures [45] [89]. The output of McPAT

has been compared against published data for the 90nm Niagara processor running at 1.2

GHz with a 1.2V power supply [90], the 65nm Niagara2 processor running at 1.4 GHz with a

1.1V power supply [91], the 65nm Xeon processor running at 3.4 GHz with a 1.25V power

supply [92], the 180nm Alpha 21364 processor running at 1.2 GHz with a 1.5V power supply

79

[93], the 45nm dual-core Diamondville Atom processor running at 1.6 GHz with a 1.0V power

supply [94], and the 40nm Cortex A9 dual-core hard IP implementation running at 2.0 GHz

[95]. These include in-order and out-of-order processors, single-threaded and multithreaded

processors, as well as high performance and embedded processors in the validation targets.

Thus, the validations stress McPAT in a comprehensive and detailed way.

Although there is a number of works which integrate the McPAT with GEM5

simulator11 12, this is not a trivial process because there are issues about the compatibility of

Gem5 outputs and CACTI thresholds as described in the following subsections. In the scope

of this thesis, we provide an integrated solution which seamlessly interconnect the cGem5

with the McPAT. The proposed solution can be used with the generic versions of gem5 and

McPAT (available from the official gem5 and McPAT repositories) [96]. Figure 4.13

demonstrates the block diagram of our solution; boxes with dashed lines are implemented in

the scope of COSSIM/ACSIM.

cGEM5
stats.txt

config.ini

cGEM5toMcPAT
parser

McPAT
McPAT.xml

X86/ARM
Power Models

model.xml

Area/Power
Results

Energy
component

Energy
Results

config.json

Figure 4.13. Integration of cGEM5 with McPAT and Energy component

11 https://github.com/markoshorro/gem5McPATparse
12 https://github.com/harvard-acc/gem5-aladdin/blob/master/sweeps/gem5tomcpat/GEM5ToMcPAT.py

80

As illustrated from Figure 4.13 McPAT requires as input an XML file that holds both

parameter information (at the architectural, circuit and modeling level) and usage (runtime

statistics) information. On the other hand, a GEM5 simulation run upon completion will

generate three files (among other data that are not relevant in the scope of this thesis):

• stats.txt – a text file containing the statistics of a specific run. The simulation statistics

provide run-time usage information of the different units present in the system

modeled by GEM5. This run-time usage information are the activity factors that

McPAT requires in order to estimate the run-time power consumption.

• config.ini / config.json – files describing the configuration of the system modeled in

GEM5 (conveys architectural information).

GEM5toMcPAT parser which is presented in [97] is used and modified. Specifically, a series

of changes have been made to address the following issues.

• Reporting issues in stats.txt output from GEM5 When used with the simpleCPU

models, GEM5 presents some values in decimal form while they should be displayed

in integer form. Apparently McPAT cannot handle decimal values for cycles. The

conversion parser has been properly modified to handle such cases and provide

correct roundings (the correct roundings can be found when parsing the stats.txt files

and retrieving the overall values for the specific numbers).

• Issues with McPAT (CACTI) CACTI will not handle cases where certain properties

have values below a threshold. A prime example is the width of the cache lines. While

CACTI will prompt an error on such cases, it can handle without issue these corner

cases. Therefore, we have patched CACTI (and therefore McPAT) to handle those

cases internally without issuing an error and halting execution. We have validated the

results and a newer version of McPAT has been produced.

In addition, we have designed two basic processor description templates that can be used

with GEM5’s simpleCPU models. The first one is for ARM-based processors and the second

for x86-64 processors. In order to construct those power models, we have used the

configuration and statistics information as provided by GEM5 as well as internal knowledge

81

on how GEM5 models the specific CPUs. The result are two xml template files that can be

used with the GEM5-to-McPAT conversion tool that will produce working and acceptable

McPAT inputs.

In its current form, McPAT only reports power estimations. For COSSIM/ACSIM

though, energy estimations are also required. From the outputs of GEM5 (stats.txt file) the

overall time required to execute the desired software application is provided. Similarly, from

the output of McPAT, the dynamic power as well as the leakage power are reported. We have

developed a simple energy component that parses the outputs of GEM5 and McPAT and

calculates the energy consumed during the specific run as:

𝐸 =
𝑃𝑑𝑦𝑛𝑎𝑚𝑖𝑐 + 𝑃𝑙𝑒𝑎𝑘𝑎𝑔𝑒

𝑅𝑢𝑛𝑇𝑖𝑚𝑒

The above functionality is executed automatically given the Gem5 requirement outputs, and

it is integrated in our Graphical User Interface as described in the next Section.

McPAT consist of two phases: the chip representation building phase and the runtime

power computation phase. For the 1st phase, only the statically config.ini / config.json files are

required in order to represent the chip, while in the 2nd phase, the statistics file (stats.txt) is

required in order to calculate the final runtime power dissipation. Authors in [98] presents a

novel partition of these two phases so as to gain speedup in the whole process. In order to

exploit this functionality, cGEM5 is modified to produce gem5 stats in real time and therefore

to produce power/energy results in predefined simulated time intervals. Specifically, the m5

dumpstats pseudo-instruction has been extended to incude this functionality providing a

number of statDump<x>.txt, where x indicates the statDump file number which increments

by one for each file generated. As described above, McPAT tool cannot parse directly a

statDump<x>.txt files produced by cGEM5. So, each of the statDump<x>.txt files are

converted to mcpatIn<x>.xml, which follow the McPAT expected input format, using the

GEM5ToMcPAT parser as illustrated in Figure 4.14.

82

Figure 4.14. Integration of cGEM5 with partitioned McPAT using real-time statistics

4.6.3 Complimentary Power Model for ARM big.LITTLE Architecture

In contrast with McPAT that tries to build a chip representation of the simulated processor,

authors in [84] propose power model which requires as input the instruction mix of the

program executed. Specifically, they analyze an ARM big.LITTLE architecture and study the

performance and energy tradeoffs of the big and the LITTLE ARM cores at different voltage

and frequency levels. They investigate how the workload characteristics and their execution

on a particular core type affect energy consumption. Finally, they develop a lightweight

energy model, suitable for runtime use, using as input parameters only the instructions per

cycle (IPC) and instruction mix.

 In the context of this thesis, we integrate the big.LITTLE complementary power model

with our cGEM5 processing simulator as illustrated in Figure 4.15. As referred in [99] Gem5

can produce a trace file with all simulated commands using appropriate configuration. This

functionality is used to get the simulated instruction mix, while stats file is used to get the

number of execution cycles. In order to get the number of instructions executed per

instruction type and statistics from cGEM5 according to big.LITTLE specific categories13,

GEM5toBigLittle parser is implemented. A significant problem was that the trace file can

become very large very quickly due to millions of simulated instructions and it is practically

impossible to use the big.LITTLE power model. For this reason, Pause-resume and real-time

statistics functionalities (which are presented in the previous sections) are used in order to

pause the whole COSSIM process in predefined intervals, get the appropriate cGEM5 outputs

and calculate the power using the big.LITTLE architecture.

13 Authors categorize the ARM instruction set in a logical way that differentiates instructions based on their

functionality and what part of the processor datapath they utilize. Specifically, they differentiate them

internally in each category based on operands type and instruction flavor for each case. As they referred,

their categorization consists of Arithmetic/Logic, Data Movement, Compare/test and Load/Store

instructions.

83

cGEM5
trace.out

stats.txt

cGEM5toBigLittle
parser

big.LITTLE

big.LITTLE
Instruction
Categories

Power/Energy
Results

Figure 4.15. Integration of cGEM5 with big.LITTLE power component

4.7 Graphical User Interface

This section presents the simulation configuration and execution monitoring tool. The tool

allows for the configuration of the nodes, the network and the selection of the monitoring

metrics. According to the simulation configuration only the required parts of the simulator

will be engaged in the simulation (e.g., a power consumption model will not be committed if

relevant results are not requested) so as to provide reasonable matches between the speed of

the simulation and the requested simulation detail.

The Eclipse-based GUI of OMNeT++ has been extended so as to fully integrate the

capabilities of the COSSIM tool. Specifically, our GUI consists of two Eclipse plugins: (i) the

simulation configuration tool and (ii) the execution monitoring tool.

The simulation configuration tool has the form of a wizard which is installed as a

plugin in Eclipse/OMNeT++ and guides the user through the GEM5 configuration process

for each of the simulated nodes. This process is a very time-consuming one as it is usually

performed through the command line and needs a large number of parameters to be set for

each of the nodes. Based on our initial measurements within the COSSIM/ACSIM design

team, the GUI, by itself, reduces the configuration time of the simulation by 90% in the case

of a 10-node system. In addition, our GUI prevents the user from setting wrong parameters

and thus minimizing the risk of starting a time-consuming simulation that will latterly be

proven wrong or inadequate. Figure 4.16 depicts the 3rd step of the wizard in which the user

can define a number of parameters of each cluster depending on the 2nd step configuration.

84

Figure 4.16. Cluster configuration Parameters

The second plugin that has been developed is the COSSIM/ACSIM execution

monitoring tool which is a graphical interface that integrates and visualize the most

important cGEM5 and McPat results. The output results that the monitoring tool displays,

can be presented either per node or per simulated parallel system. That means that the tool

can show the results of each node separately or of all of them together. Figure 4.17 and Figure

4.18 illustrate the cGEM5 & McPaT results for a certain simple application scenario with 6

nodes.

Figure 4.17. Simulated node results for a specific combination of nodes

85

Figure 4.18. Comparison of "Number of seconds simulated" value

86

5

Novel Intercommunication and

Synchronization Mechanism

One of the main novel aspects of COSSIM/ACSIM is the developed intercommunication and

synchronization scheme in order to communicate seamlessly the processing with the network

components, which is fully compliant with the IEEE HLA standard. In this Chapter, initially,

an overview of both HLA and CERTI implementation is presented in Section 5.1.

Subsequently the subset of HLA services necessary to allow cGEM5/cOMNET++ models to

participate in an HLA federation are described (Section 5.2), focusing on the time

management in HLA simulation. Furthermore, Section 5.3 describes in detail COSSIMlib

which provides the interface between cGEM5/cOMNET++ and HLA/CERTI environment.

Finally, Section 5.4 presents our COSSIM/ACSIM Synchronization scheme, while Section 5.5

presents the SynchServer which is responsible to initialize both cOMNET++ and cGEM5

federations.

87

5.1 Overview of HLA and CERTI Implementation
Bringing the processing and the network simulators together requires carefully designed

communication interfaces and synchronization schemes. This bidirectional interface will

have to pass information of the type and timing of events and to provide a common data

representation, since data are represented differently in the processing and the network

simulators. Passing actual data between the two simulators is necessary for supporting

simulation of real use cases. As referred in Chapter 3, the IEEE standard High-Level

Architecture (HLA) is selected for interconnection of the processing and networking

simulation sub-systems, while specifically CERTI HLA is configured and extended as the

most appropriate HLA implementation for the COSSIM simulator.

HLA is a standard for distributed discrete-event simulations, generally used to

support analysis, engineering and training; it has been developed so as to promote reusability

and interoperability. In HLA terminology, the logical representation of an interconnection of

different simulators is called a Federation and includes multiple modules, which are called

Federates, and which communicate via a Runtime Infrastructure (RTI). The RTI provides a

number of services like Federation Management, Time Management and Object Management that

are utilized in simulation control, synchronization and data exchange [71]. The connection

between the simulators, based on the HLA standard, is established by a federate library

which encapsulates the HLA interfaces and which can be specialized to a certain simulation

scenario; the communication from the RTI to a federate and vice versa is established via the

RTI-Ambassador and the Federate-Ambassador modules which cause a strict segregation of

simulation while supporting several communication primitives as illustrated in Figure 5.1.

Specifically, Figure 5.1 presents one Federation for one cGEM5 instance (Federate 1) together

with the communication with the cOMNET++ counterpart node (Federate 2). Finally, the

Federation Object Model (FOM) is a file that contains a description of the data exchange process

within the federation, including for example the objects and interactions that will be

exchanged.

88

cGEM5/Node0

Federate-Ambassador

cOMNET++/Node0

Federate-Ambassador

Runtime Infrastructure (RTI)

RTI-Ambassador RTI-Ambassador

Federation

FOM

Figure 5.1. The High-Level Architecture (HLA)

CERTI is an HLA RTI implementation which developed since 1996 by ONERA, the

French Aerospace Lab. Figure 5.2 illustrates the HLA layered implementation using CERTI.

The lower layers consist of two types of processes, local ones called RTI Ambassadors (RTIA)

and a central one called RTI Gateway (RTIG). These processes are linked with each other

using Unix and TCP sockets. Thereby, the RTIG is of predominant importance since any form

of communication between federates, either for data exchange or for synchronization

purposes, is done via the RTIG.

Specifically, each federate process interacts locally with an RTI Ambassador process

(RTIA) through a Unix-domain socket. The RTIA processes exchange messages over the

network, in particular with the RTIG process, via TCP (and UDP) sockets, in order to run the

various distributed algorithms associated with the RTI services. A specific role of the RTIA is

to immediately satisfy some federate requests, while other requests require network message

sending or receiving. The RTIA manages memory allocation for the message FIFOs and

always listens to both the federate and the network (the RTIG).

On the other hand, the RTI Gateway (RTIG) is a centralization point in the

architecture in order to simplify the communication implementation. The RTIG manages the

creation and destruction of federation executions and the publication/subscription of data. It

plays a key role in message broadcasting which has been implemented by an emulated

multicast approach. When a message is received from a given RTIA, the RTIG delivers it to

the interested RTIAs, avoiding a true broadcasting.

89

Federate 1
cGEM5 Node 0

(e.g. X86-based)

LibRTI

RTIA 1

RTIG

RTIA 2

Unix Socket

RTIA 3

TCP Socket

COSSIMlib

Federate 2
cGEM5 Node 1

(e.g. ARM-based)

LibRTI

COSSIMlib

Federate 3
cOMNET++

LibRTI

COSSIMlib

Figure 5.2. The CERTI Architecture

Each federate communicates with RTIA using libRTI; a library which links each

federate containing a number of functions such as federation creation/destruction, object

manipulation, time management etc. as described in the next sections. COSSIMlib is

implemented to enable the interoperability between cGEM5/cOMNET++ model and the

HLA/CERTI federation.

5.2 CERTI HLA Services for COSSIM/ACSIM implementation
HLA services are grouped into four groups based on where they are utilized in the federate

life cycle. The services used in COSSIM/ACSIM cover the following aspects:

i. Federation management - Defines how federates can connect to the RTI, create, join

and manage federations, save and restore federation states and defines a system

implementing an accurate synchronization scheme for all the federates.

ii. Declaration management - Defines how federates declare their intentions with regard

to publication and subscription of classes and interactions.

iii. Object management - Defines how federates can utilize objects and interactions.

90

iv. Time management - Defines how time is used in a federation and how it affects object

and interaction updates, federate saves as well as all the other implemented services.

The following subsections describe the subset of HLA services used in our framework

together with a brief description of each service. The reader is referred to [100], [101] for a

complete description of all HLA services. Specifically, Section 5.2.1 describes the Federation

management services used by the RTI to manage the whole federation; Section 5.2.2 the

Declaration management services, i.e. which object or objects attributes each federate will

publish or subscribe to; Section 5.2.3 the Object management services, i.e. the way federates

produce attribute updates or receive updated attributes from the federation; and Section 5.2.4

the Time management services, i.e. the mechanisms required to implement time management

policies and to negotiate time advances.

5.2.1 Federation Management Services for COSSIM/ACSIM

implementation
Table 5.1 summarizes the Federation Management Services which are used for the

COSSIM/ACSIM implementation.

Services Description

createFederationExecution() Creates a named federation execution

(FedExecution) and registers it with the RTIG.

destroyFederationExecution() Unregisters a named federation and shuts

down the associated FedExecution.

joinFederationExecution() Requests permission to participate in a

named federation and initializes the RTI

ambassador with federation specific data.

resignFederationExecution() Terminates the federate’s participation in a

federation.

registerFederationSynchronizationPoint() Register a synchronization Point

synchronizationPointRegistrationSucceeded() * Synchronization point succeeded

91

announceSynchronizationPoint() *

If the registration succeeds, all federates to

which the synchronization point is

applicable will receive an announcement in

the form of this callback

synchronizationPointAchieved() Release from a synchronization point

federationSynchronized() * Announce synchronization to relevant

federates

tick()

This service is invoked by the federate to

yield processor time to the RTIA. During a

tick() invocation, the RTIA will process

incoming traffic, deliver callbacks to the

federate, and perform various internal RTI

maintenance essential to the operation of the

federation

Table 5.1. Federation Management Services for COSSIM implementation (services with a *

are sent from RTI to Federates (callbacks); all other services are from Federates to RTI)

Figure 5.3 illustrates the primary functions associated with the federation

management life cycle. Initially, the local RTIA communicates (for the first time) with the

RTIG process calling the createFederationExecution() function. If the specified federation does

not exist, the RTIG process creates a new FedExececution process and associates it with the

supplied federation name. If the specified federation already exists, a

FederationExecutionAlreadyExists exception is raised. Τhe same executable may at times be

called upon to create a federation and at other times may be asked to participate in an

established federation14. If the FederationExecutionAlreadyExists exception is caught and

ignored, then the call to createFederateExecution() is robust – creating the federation if required

and tolerating the existence of an existing federation execution.

Subsequently, the joinFederationExecution() method is called to associate a federate

with an existing federation execution. The method provides the name of the calling federate

and the name of the federation execution that the federate is attempting to join. If the

14 This is certainly the case if the same simulation code is executed multiple times to function as multiple

federates in a federation.

92

joinFederationExecution() is called too quickly following a createFederationExecution() call, the

FedExecution process may not yet be initialized to communicate with the federate that

successfully created the FedExecution (typically the first federate). For this reason SynchServer

is implemented to ensure the correct order of createFederationExecution() and join

FederationExecution() among different (cGEM5s and cOMNET++) executable instances as

described in Section 5.4.

Figure 5.3. Federation Management Life Cycle [102]

During process termination, resignFederationExecution() method is called to terminate

a federate's participation in a federation. When one federate leaves the federation, something

must be done with the objects for which the federate has update responsibility. Finally, the

destroyFederationExecution() method attempts to terminate an executing federation. If

successful, the FedExecution associated with the federation terminates. If the invoking

federate isn't the last federate participating in the targeted federation, a

FederatesCurrentlyJoined exception is raised.

Moreover, RTI provides functions for synchronizing activities between federates

participating in a federation using mechanisms for exchanging information between

93

federates. It's possible to associate times with exchanged information and thereby coordinate

federate activities. The Federation Management synchronization functions allow federates to

communicate explicit synchronization points. Figure 5.4 illustrates the RTIambassador service

functions as well as FederateAmbassador callbacks that together support the synchronization

capability.

Specifically, registerFederationSynchronizationPoint() initiates the establishment of a

named checkpoint that serves to synchronize some or all federates according to federation-

defined semantics. Subsequently, the federate is appraised of the success of a synchronization

point through synchronizationPointRegistrationSucceeded() service. If the registration succeeds,

all federates to which the synchronization point is applicable will receive an announcement

in the form of a announceSynchronizationPoint() callback. SynchronizationPointAchieved()

informs the federation that the federate has met the federation-defined criteria associated with

a synchronization point that has previously been announced to the federate. When all

federates included in the synchronization point (including recently joined federates if a

universal synchronization point was registered) have achieved synchronization or resigned,

the relevant federates will be informed of synchronization through a federationSynchronized()

callback.

Figure 5.4. Federate Management Synchronization (services with blue are sent from RTI to

Federates (callbacks), while services with orange are from Federates to RTI) [102]

94

5.2.2 Declaration Management Services for COSSIM implementation
Table 5.2 summarizes the Declaration Management Services which are used in the

implementation of our framework.

Services Description

publishInteractionClass() Conveys the intention of a federate to begin

generating interactions of a specified class

unpublishInteractionClass() Conveys the intention of a federate to cease

generation of interactions of a specified class

subscribeInteractionClass() Declares a federate’s interest in receiving a

specified class of interactions

unsubscribeInteractionClass() Withdraws a federate’s interest in receiving a

specified class of interactions

Table 5.2. Declaration Management Services for COSSIM implementation

PublishInteractionClass() informs the RTIA that the federate may begin generating

interactions of the specified class, while the subscribeInteractionClass() service instructs the

RTIA to deliver interactions of a specified class to the federate. Subsequent instances of the

specified interaction class occurring in the federation will be delivered to the federate in the

form of receiveInteraction() callbacks as described in the next subsection. Finally,

unsubscribeInteraction Class() service instructs the RTIA to cease delivering interactions of the

specified class to the federate, while unpublishInteractionClass() service informs the RTIA that

the federate will no longer generate interactions of the specified class.

In other words, the functions mentioned in Table 5.2 are used to announce the

DataPacket exchange and direction. For example, cGEM5 instance publishes Interaction Class

“GEM5_TO_OMNET” to send Interactions (Data Packets) from cGEM5 to cOMNET++

counterpart node, while it subscribes Interaction Class “OMNET_TO_GEM5” to receive

Interactions from cOMNET++ to cGEM5 counterpart node.

95

5.2.3 Object Management Services for COSSIM/ACSIM

implementation
Table 5.3 summarizes the Objects Management Services which are used in the

implementation of our framework. Specifically, COSSIM uses two services to exchange Data

Packets (Header, Payload, Length, etc.) from cGEM5 to cOMNET++ counterpart node;

sendInteraction() service to send COSSIM Interaction and receiveInteraction() callback to deliver

the interaction.

Services Description

sendInteraction() Generates an interaction event in the

federation

receiveInteraction() *

Interaction instances will be delivered, using

this callback, to remote federates subscribing

to the associated interaction class

Table 5.3. Object Management Services for COSSIM implementation (services with a * are

sent from RTI to Federates (callbacks); all other services are from Federates to RTI)

5.2.4 Time Management Services for COSSIM/ACSIM implementation
HLA time management services enable, for the first time in the area of highly parallel system

simulation, deterministic, cycle accurate and reproducible distributed simulations. Each

federate manages its own logical time and communicates this time to the RTI. The RTI

ensures correct coordination of federates by advancing time coherently. Logical time is

roughly equivalent to "simulation time" in the classical discrete event simulation terminology

and is used to ensure that federates observe events in the same order [103]. However, logical

time is not necessarily mapped to real time. The following paragraphs introduces the HLA

Federate’s time policies and progress, while Table 5.4 summarizes the Time Management

Services which are used in the implementation of our framework.

i. Federate’s time policies. HLA time policies describe the involvement of each federate

in the progress of time. It may be necessary to map the progress of one federate to the

progress of another. There are two sets of federates: A regulating federate participates

96

actively in the decisions for the progress of time while a constrained federate follows the

time progress imposed by other federates. A combination of both federates is also

allowed by HLA. However, since our approach focuses on the synchronization of

logical time from different simulation tools, only pure regulating and constrained

federates are allowed.

ii. Time progress. Time advancement requests by federates are made through the HLA

timeAdvanceRequest service (TAR) which is used to implement time-stepped federates,

while the granted time is provided by timeAdvanceGrant (TAG) callback. The time

advancement phase of a Federate F in HLA is a three-step process: i) F sends a request

using the TAR service; ii) F can receive interactions (Data Packets) using

receiveInteraction callback; iii) F waits for the granted time tG (TAG). At the TAG(tG)

reception, the federate’s local time will be advanced to tG according to the data in the

TAR request.

Services Description

enableTimeRegulation() Declare that federate is regulator

timeRegulationEnabled() * Federate as regulator succeeded

enableTimeConstrained() Declare that federate is constrained

timeConstrainedEnabled() * Federate as constrained succeeded

queryFederateTime() Allows the federate to query the RTI for its

current logical time

timeAdvanceRequest(), TAR Requests an advance of the logical time of the

federate to a specified federation time

timeAdvanceGrant(), TAG * Notify that time Advancement granted

Table 5.4. Time Management Services for COSSIM implementation (services with a * are sent

from RTI to Federates (callbacks); all other services are from Federates to RTI)

The time management scheme and its semantics are shown in Figure 5.5. As

demonstrated in this example, a federate produces an event at time t1 sending one DataPacket

using sendInteraction(). The current (logical) time is t1; let us consider that the next event is e2

97

with timestamp t2, t2 = t1 + Δ, Δ > 0. The federate asks the RTI whether the time should be

progressed with the invocation of TAR(t2). Until the reception of the TAG(t2) callback, the

logical time of the federate is stalled at t1, and it can receive a ReceiveInteraction(v,t1’) callback.

Timestamp t1’ is in the interval [t1, t2]. Subsequently, Federate can execute a computation

step with the values received within the ReceiveInteraction callback. The federate then receives

TAG(t2) and can increase its local time to t2. In a nutshell, if a TAR(t2) has been sent, the time

granted by the TAG service is tG = t2.

Figure 5.5. Time advancement services

5.3 COSSIMLib Architecture
The implemented COSSIMlib enables the interoperability between cGEM5/cOMNET++ and

the CERTI/HLA Federations. It is built on top of the CERTI API, a C++ binding of CERTI based

on HLA version 1.3. Since the HLA communication mechanisms are based on TCP/IP

packets, both RTIG and SynchServer can be executed either in the same physical machine or

in a remote server. The same applies for all components of the simulator (i.e. each cGEM5

instance and cOMNET++), thus enabling fully distributed simulation of large parallel

systems. Table 5.5 summarizes the implemented methods in COSSIMlib and the

corresponding HLA services of previous subsections.

t1

t2

Federate RTI

98

 cGEM5/cOMNET++

attribute

CERTI bindings HLA
p

re
-i

n
it

ia
li

ze

fu
n

ct
io

n
s

join()

createFederationExecution

 Federation
joinFederation

publish() publishInterctionClass

 Declaration
subscribe() subscribeInteractionClass

In
it

ia
li

ze
 f

u
n

ct
io

n
s

setTimeRegulation()

enableTimeRegulation

Time

timeRegulationEnabled (callback)

enableTimeConstrained

timeConstrainedEnabled (callback)

pause()

registerFederationSynchronizationPoint

 Federation

announceSynchronizationPoint

(callback)

synchronize()

synchronizationPointAchieved

federationSynchronized (callback)

In
te

ra
ct

io
n

 f
u

n
ct

io
n

s

sendInteraction() sendInteraction Object

step()

queryFederateTime

Time timeAdvanceRequest

timeAdvanceGrant (callback)

getPacket() receiveInteraction (callback) Object

finalize

function

resign()

resignFederationExecution

 Federation
destroyFederationExecution

Table 5.5. Overview of COSSIMlib Architecture

99

The Pre-initialize methods of the COSSIMlib implement certain services of the

Federation management (e.g. create and join tasks for a federation) and some services of the

Declaration management which have to do with the publication and subscription of object’s

instances in a federation. Specifically, 3 basic methods are implemented: Join which is

responsible for creating a Federation and join the Federate to this Federation; Publish which

is responsible to publish the interaction class so as to allow for the sending of Data Packets;

Subscribe which is responsible to subscribe to the interaction classes in order to receive Data

Packets.

The Initialize methods of the COSSIMlib implement certain services of the Federation &

Time management which are relevant to the HLA synchronization and time policy (e.g.

constrained and regulating federates). Specifically, 3 basic methods are implemented:

a. SetTimeRegulation to declare the federate policy; Firstly, it calls queryFederateTime

service to get its local federate time and subsequently, it calls enableTimeRegulation

service to declare the regulating policy, with its local time plus the next TIME_STEP15

(lookahead). There is a possibility the local plus TIME_STEP to be less than

FEDERATION_TIME (local + TIME_STEP < FEDERATION_TIME) as a result

FederationTime AlreadyPassed exception is raised so that Federate proceeds its local time

step by step. This task is implemented using timeAdvanceRequest HLA service to

request to advance the federate’s time and tick() HLA service to yield processor time

to the RTIA.

b. Pause to initiate the establishment of a named checkpoint that serves to synchronize

all federates according to federation-defined semantics (it is necessary so that RTI

pauses the global time until all federates to enter in this federation).

c. Synchronize to declare that all other federates (in same federation) have joined.

The Send & Receive Interaction methods of the COSSIMlib implement certain Time

management and Object management Services. Specifically, 3 basic methods are implemented

which support the send & receive Interactions within the HLA Federations: SendInteraction

15 In COSSIM simulator the TIME_STEP is defined equal to 1 for both simulators.

100

sends Data Packets from cGEM5/cOMNET++ Federate to the CERTI server; getPacket which

inherits the receiveInteraction callback decodes and reads the DataPacket whenever is triggered

(Specifically, one queue is created (packetBuffer) so as to save the DataPackets in the correct

order; whenever receiveInteraction callback is triggered, an RTI::MessageBuffer is created to

read the interactionParameters); Step which requests an advance of the logical time of the

federate to a specified federation time using the timeAdvanceRequest HLA service. Finally, the

Resign (finalize) method is implemented which is related to the Declaration and Federation

management services and which is responsible for the correct termination (i.e. resignation)

of the federates as well as the destruction of a federation.

5.4 Synchronization between COSSIM/ACSIM Modules
The actual COSSIM/ACSIM synchronization scheme consists of two levels:

1) Synchronization per node Each node simulator (i.e. cGEM5) needs to communicate,

in a consistent way, with its corresponding node in the network simulator (i.e.

cOMNET++) and exchange data packets. This type of synchronized communication is

necessary because certain network data between the two simulators must be

exchanged in a manner that will preserve the exact time ordering. For this reason, one

federation is created per node pair so as to support full synchronization as illustrated

in Figure 5.6 (upper). The user can define the minimum simulated time within which

the two simulators can exchange Data Packets as illustrated in Table 5.6.

2) Global Synchronization The COSSIM simulator needs to periodically synchronize all

nodes. This is because it supports different types of CPUs with potentially different

clock cycles and/or different network protocols, all resulting in varying workload for

the simulators’ engines. Therefore, the simulated time (i.e the time aspect of the

modeled system) in each node can be completely different given the same wall clock

time. For this reason, a Global Synchronization federation is created to achieve a

unified notion of time which contains all cGEM5 nodes and one OMNET++ helper

Node (SynchNode) as illustrated in Figure 5.6 (lower). The SynchNode is a normal user-

space instantiated node (as the rest of the HLA Enabled Nodes) inside OMNeT++ that

101

follows the standard Node structure and as a result it is 100% compatible with

OMNeT++. The user can define the simulated time in which all COSSIM/ACSIM

instances are fully synchronized periodically as illustrated in Table 5.6.

Figure 5.6. COSSIM HLA Federations

The Synchronization time per node and the Global Synchronization time are two different

entities that can be separately defined by the user. The first one is mostly defined by the

latency of the network interface and it doesn’t constrain the simulation speed while the

second is a trade-off between simulation speed and simulation accuracy.

102

The proposed global synchronization scheme is responsible for the preservation of the

cycle-accurate notion of the simulation process, including the Hardware Accelerators.

OMNET++ is natively an event driven simulator, however by employing the global

synchronization scheme, it becomes hooked to the ”cycle-events” of each of the cGEM5

simulated nodes. This not only prevents the clocks of all the nodes from any drift but also

implicitly ”forces” the cOMNET++ to act like a ”cycle-driven” event simulator. In this respect

every component of the simulated system has the exact same notion of time (i.e. in terms of

clock cycles).

Table 5.6 describes the additional parameters that have to be defined in order to

configure the communication between cgem5 and the network simulator as well as among

different cgem5 instances. First of all, --SynchTime is the Global Synchronization Time which is

a trade-off between simulation speed and simulation accuracy, while the --RxPacketTime

(Synchronization per node) is mostly defined by the latency of the network interface and it

doesn’t constrain the simulation speed. Finally, --nodeNum and --TotalNodes are the number

ID of simulated system and the total number of simulated systems in the network

respectively. In all of the above parameters the simulated time is converted automatically to

CPU ticks based on CPU frequency because each cgem5 system can simulate different types

of CPUs with different clock cycles.

Parameter Name Usage example Description

SynchTime --SynchTime=10ms Simulated time which all COSSIM

components are synchronized periodically

RxPacketTime --RxPacketTime=2ms The minimum simulated time which the

cgem5/cOMNET++ system can receive Packet

nodeNum --nodeNum=0 The number ID of simulated system

TotalNodes --TotalNodes=2 The total number of simulated systems

Table 5.6. COSSIM Synchronization Parameters

103

5.5 SynchServer Implementation
A multi-threaded SynchServer is implemented to ensure the correct order of COSSIMlib

functions during initialization phase among different (cGEM5s and cOMNET++) instances.

Specifically, a TCP Server (SynchServer) is implemented to reply in the different simulator

instances. Pthread library and pthread mutexes are used so as to avoid to write two (or more)

COSSIM/ACSIM nodes in the same storage element simultaneously (consistency). Both RTIG

and SynchServer can be executed either on localhost or on remote physical machine to extract

process parallelization. Figure 5.7 and Figure 5.8 illustrate the abstract view of SynchServer

requests for synchronization per node and global synchronization respectively.

Specifically, for synchronization per node, two SynchServer structures are created to

store the requests from cOMNET++ (cOMNETtocGEM5) and cGEM5 (cGEM5tocOMNET).

Each of these structures contains MAX_NODE16 elements to support requests from all

COSSIM HLA enable nodes. Figure 5.7 illustrates a scenario for the 2nd simulated node.

Initially, Pre-initialize methods are called from cOMNET++ to define federation and federate

characteristics. Subsequently, it updates the correct position in cOMNETtocGEM5 structure

(step 1), while at the same time cGEM5 reads the corresponding position (step 2). Whenever,

cGEM5 and cOMNET++ complete the Pre-initialize and Initialize methods, cGEM5 updates the

cGEM5tocOMNET structure (step 3) as acknowledgment and cOMNET++ waits to read this

value (step 4). Finally, both cGEM5 and cOMNET++ call synchronize function which is used

from the federate at the last state of initialization to declare that all other federates (in same

federation) have been joined.

16 MAX_NODE is the total number of COSSIM HLA enable nodes.

104

Figure 5.7. Abstract view of SynchServer requests for Synchronization per node

Finally, for Global Synchronization, one SynchServer structure is created to store the

requests from cGEM5 nodes and reply to cOMNET++ during initialization phase. It contains

MAX_NODE elements to support requests from all COSSIM HLA enabled nodes as well. In

the Global Synchronization Federation, all cGEM5 nodes and one cOMNET++ transparent

helper node (SynchNode) have to be joined, as illustrated in Figure 5.8. Specifically, all cGEM5

nodes call Pre-initialize & Initialize methods and subsequently they update the corresponding

GlobalSynchSignal positions and call synchronize functions until all federates to be joined.

cOMNET++ (after Pre-initialize and Initialize methods) waits all federates to be joined and

finally, it calls synchronize function. To be noticed that all non-creator federates are paused

(through synchronize function) until synchronize function from creator federate is called. In

COSSIMlib, cOMNET++ is selected as creator and for this reason it waits for all federates to

be joined before calling synchronize().

0

1

2

3

MAX
NODE

...

OMNETtoGEM5Signal

0

1

2

3

MAX
NODE

...

GEM5toOMNETSignal

SynchServer Structures

GEM5_NODE 2
OMNET_NODE 2

(OMNET is creator)

Pre-Initialze Methods

Send true in OMNETtoGEM5
structure

Wait until true in
GEM5toOMNET structure

Initialize Methods

synchronize()

Wait until true in
OMNETtoGEM5 structure

Pre-initialize Methods

Send true in GEM5toOMNET
structure

Initialize Methods

synchronize()

(1)

(2)

(3)

(4)

H
LA

In
it

ia
liz

at
io

n
() H

LA
In

itializatio
n

()

105

Figure 5.8. Abstract view of SynchServer requests for Global Synchronization

0

1

2

3

MAX
NODE

...

GlobalSynchSignal

SynchServer Structures

OMNET
(it is creator)

GEM5_NODE 1

Pre-Initialze Methods

Initialize Methods

Send true in GlobalSynch
structure

synchronize()

GEM5_NODE 3

Pre-Initialze Methods

Initialize Methods

Send true in GlobalSynch
structure

synchronize()

Pre-Initialze Methods

Initialize Methods

Wait until sum == MAX_NODE

synchronize()

su
m

H
LA

In
itializatio

n
()H

LA
In

it
ia

liz
at

io
n

()

106

6
A novel way to efficiently incorporate

Hardware Accelerators
This chapter presents a novel interconnection which is developed in the context of this thesis

in order to expand the COSSIM simulator so as to support our novel SystemC accelerator and

create ACSIM. Specifically, we introduce a novel flow that enables us to rapidly prototype

synthesisable SystemC hardware accelerators in conjunction with cGEM5 simulator without

worrying about communication and synchronisation issues. SystemC is selected because of

its cycle accurate simulation features, while it is one of the most widely used input languages

for the HLS tools. In addition, the official effort for SystemC definition and promotion known

as Open SystemC Initiative (OSCI), now known as Accellera [76], provides an open-source

proof-of-concept simulator while it has been approved by the IEEE Standards Association

[77, pp. 1666–2011]. We use the full-system mode of the simulator so as to be able to simulate

107

a complete system comprised of a number of devices and a full Operating System (OS). As a

result, the application can be verified in a cycle-accurate manner via whole system

simulation, including memory hierarchy, caches, peripherals, etc, with full operating system

interaction (e.g. scheduler, drivers etc.), thus making the simulation more realistic/accurate.

Figure 6.1 presents an abstract view of the GEM5 full-system simulator when coupled

with a full operating system. It consists of a central bus onto which several devices can be

attached, DRAM memories, caches, CPUs, etc. In order for a new accelerator to be

incorporated, the designer must ensure that is connected to the bus as well as that the

appropriate OS drivers have been developed, as analytically described in the following

sections.

Figure 6.1. Full-system GEM5 Architecture

6.1 Architecture of ACSIM Hardware Accelerator
This section describes the most significant enhancements/modifications developed in order

to expand the GEM5 full-system simulator functionality so as to support our novel SystemC

accelerator. Figure 6.2 illustrates the integration of our SystemC simulator with the COSSIM;

in particular the interconnection is between the SystemC simulator and cGEM5 and then

there is an interconnection (which is described in Section 7.5.2) of cGEM5 with cOMNET++

which allows for the complete simulation of a heterogeneous parallel system. The following

paragraphs describe the components in detail:

Cache

CPU

DRAM

 BUS

I/O
Device

DMA
Device

...

Operating System

Linux Kernel

User Space

D
ri

ve
rs

Applications

108

A. Operating System (OS) The OS can be represented as a layered structure, as in Figure

6.2. It contains the User Space with the user applications and all the appropriate

libraries, and the Kernel Space (in our case a Linux Kernel), which is strictly reserved

for running a privileged operating system kernel and most of the device drivers. In

order to incorporate efficiently our accelerator module, we have developed a set of

device drivers. The accelerator is activated through programmed I/Os that provides

the start address and the size of the array used for the descriptors of the accelerator.

The CPU can then sleep until an interprocessor interrupt from the accelerator is

delivered to indicate task completion; this approach allows for full overlap of the two

sub-simulations. In addition, an ioctl function was developed in order to achieve

efficient user-kernel space communication; this novel function can mainly perform the

following tasks:

• QUERY SET DATA - Initialise the Direct Memory Access (DMA) copy

transaction from Host (Kernel Space) to Accelerator Wrapper.

• QUERY GET DATA - Initialise the DMA copy transaction from Accelerator

Wrapper to Host (Kernel Space).

• QUERY CALL DEVICE - Trigger the SystemC accelerator to execute a specified

application.

Finally, an interrupt handler has been implemented in order to receive appropriate

interrupts from the Accelerator Wrapper, such as the SystemC accelerator finish

signal, the memcpy finish signal, etc.

109

Figure 6.2. Integration of SystemC accelerator with cGEM5 (full-system mode)

B. Memory Bus (Advanced Microcontroller Bus Architecture - AMBA)

cGEM5 provides a Memory Bus to interconnect all architecture components such as

CPUs, Caches, RAMs as well as I/O devices using master and slave ports. Our novel

Accelerator Wrapper device is attached to cGEM5’s interconnection system using one

master and one slave port. Specifically, one bus master port is connected to the

peripheral I/O Accelerator Wrapper port pio in order to read and write into the

accelerator’s wrapper registers; similarly, one bus slave port is connected to the DMA

AcceleratorWrapper port in order to write/read large amounts of data to/from the

accelerator device memory, as shown in Figure 6.2.

C. Accelerator Wrapper

Our novel Accelerator Wrapper device is responsible for the efficient communication

and synchronisation of cGEM5 with the SystemC accelerator. For the memory-related

tasks (e.g. transferring data from the CPU’s memory to the accelerator’s memory) we

have mimicked the corresponding approaches from CUDA since those are widely

used and thus the designers are already familiar with them. Our Accelerator Wrapper

inherits all the GEM5 DMA device characteristics so that full DMA transactions

utilizing the full operating system can be performed. In addition, it contains a large

Device Memory to store the data from the OS memcpy, allowing for the accurate

Operating System

Linux Kernel

User Space

A
c
ce

le
ra

to
r

D
ri

v
e
r

Applications

A
M

B
A

Accelerator Wrapper

M
as

te
r

S
la

v
e

pio

dma

Core
(C++/SystemC)

Device Memory

Sy
st

em
C

A

cc
e

le
ra

to
rport

port

110

simulation of the DDR memory found in most of the real systems incorporating PCI-

connected acceleration (e.g. FPGA-based) boards.

Subsequently, a core containing mixed C++ and SystemC code was

implemented for the connection of the cGEM5 C++ functions and the accelerator’s

SystemC threads, as shown in Figure 6.3. Here we must note that the GEM5 and

SystemC simulators run concurrently on different threads. Specifically, when the

cGEM5 OS requests a SystemC accelerator call, a new thread emerges using the pthread

library and starts the SystemC simulation by calling function sc_start. Consequently,

at the end of the SystemC accelerator, the new thread is killed; if cGEM5 requests

another SystemC call, a new thread will be created, etc.

The Accelerator Wrapper consists of, in total, eight C++ and SystemC-thread

modules as described below:

1) Dynamic Memory Allocator C++ Module - The Buddy dynamic memory

allocation algorithm scheme [104] is implemented in the Accelerator Wrapper to

allocate and free Device Memory segments through the cGEM5 operating system,

similar to the cudaMalloc of NVIDIA GPUs [105].

2) DMA Write/Read C++ Modules – Two Direct Memory Access engines have

been developed so that the cGEM5 dma device can efficiently transfer high data

volumes from the Linux driver to the Accelerator Wrapper and vise versa, similar

to the cudaMemcpy of NVIDIA GPUs [105]. The user can define, through one

parameter, the delay of the DMA data transfer in order to achieve a realistic

latency.

3) Synchronisation Event C++ Module – A cGEM5 synchronisation event function

is implemented and it is triggered at every SystemC accelerator device cycle. This

function checks whether the SystemC accelerator has reached the next simulation

cycle. Finally, in case cGEM5 is faster than the SystemC accelerator17, it

17 This can happen when GEM5 has not any processing work to do and SystemC accelerator has to

manipulate a lot of threads.

111

reschedules the synchronisation event function to wait for the SystemC

accelerator.

4) InitSystemC Thread - The initialisation thread is implemented in SystemC so

as to generate the reset and start signals both of which are essential for SystemC’s

module execution. Furthermore, the thread calls the sc_pause18 command when

the SystemC acceleration task is finished.

5) Clock SystemC Thread - The clock thread is implemented in SystemC in order

to generate the actual clock signal of the accelerator when called by cGEM5’s OS;

the DeviceClock option is used in order to define the clock frequency (e.g. --

DeviceClock=200MHz). Moreover, at every SystemC cycle, the full

synchronisation with cGEM5 is achieved by checking whether the cGEM5 has

completed its tasks within this time frame; whenever required, the SystemC

accelerator waits for the cGEM5; this is achieved, in our module, by using the wait

SystemC function at SC_FS time granularity.

6) MemCpyToDevice/ToHostSystemC Threads - The Two MemCpy SystemC

threads developed so as to pass the data from the Wrapper Device Memory to the

corresponding synthesisable I/O ports, which depend upon the data type, such

as int, double, etc., so that they eventually arrive at the SystemC accelerator. The

user can define through one parameter the amount of data to be read/written per

SystemC cycle.

18sc_pause command is selected instead of sc_stop because the latest destroys all SystemC structure and

as a result, the same SystemC module cannot be called twice.

112

Figure 6.3. Accelerator Wrapper Device

D. SystemC Accelerator

In order to simulate the hardware accelerator, the Accelera open-source libraries have

been incorporated with the cGEM5 SCons construction tool [106]; this allows for the

compilation and execution of complete system applications running on top of

COSSIM and utilizing hardware accelerators. Moreover, a reference accelerator

module has been developed, in SystemC, in order to evaluate the Accelerator Wrapper

and the Linux Kernel Drivers; this module, which is also provided in open-source, can

also act as a reference for the designers/users that will develop their own SystemC

accelerators on top of ACSIM.

It must be highlighted that the designer can fully simulate synthesisable

SystemC, such as the one supported by Xilinx’ Vivado HLS or Mentor’ Catapult, since

the interconnection port modules utilized in the Accelerator Wrapper, are fully

synthesizable as well, as illustrated in Figure 6.3.

The reference SystemC accelerator module consists of a main SystemC thread

and two SystemC functions as described below:

• Controller/Scheduler SystemC Thread - This is the main SystemC thread which is

called by cGEM5’s OS while the user has the ability to create as many individual

cores as required so as to best serve his/her application, as represented in Figure

SystemC AcceleratorDevice

Memory

DMA

Read

DMA

Write

Dynamic

Memory

Allocator

Synchronization

Event

C++ code SystemC code

Init Thread
(reset, start device)

Clock Thread
(create clock pulse,

Synchronization with

GEM5 in every cycle)

MemCpyToDevice

MemCpyToHost

I/
O

 P
o

rt
s

Controler/

Scheduler

Thread

Computation

Thread 0

Computation

Thread N

...

Inte rnal

RAM 0

Internal

RAM M

...

User Application

MemCpy

Functions

113

6.3 by the dashed line threads. These threads can be scheduled by the

Controller/Scheduler SystemC Thread.

• MemCpyToDevice/ToHostSystemC functions - Two SystemC memcpy functions

have been implemented which are responsible for the transfer of data from/to the

Wrapper Device Memory to/from the accelerator’s internal memories. Those

functions mainly call the corresponding Wrapper functions (MemCpy SystemC

Threads), in order to allow for the efficient communication with the Accelerator

Wrapper.

6.2 Accelerator Run-Time Environment
This section describes the interface of our integrated system, and how the users can develop

the description of their accelerators in SystemC and their application in C/C++ from within

the cGEM5 operating system.

Code segment 1 describes the header functions of the developed drivers library. The

user can simply include the <AccelDriver.h> in their file so as to utilize them. In more detail,

we have implemented two functions (AccelInitialization & AccelFinalization) which handle the

initialisation and the finalisation of the Accelerator Wrapper Device; in other words, they

initialise and terminate the Kernel Driver, Wrapper Memory Device, etc. Moreover, the

AccelInitialization function must be called before any SystemC device call, while, the

AccelFinalization function must be called at the end of the simulation of the SystemC

accelerator.

Code Segment 1. Header of Accelerator Driver (AccelDriver.h)

1 typedef uint64_t DevMemAddr;

2 void AccelInitialization();

3 void AccelFinalization();

4 DevMemAddr AccelMalloc(size_t size, const char label);

5 void AccelFree(DevMemAddr SWAddr);

6 void AccelMemcpy(DevMemAddr SWAddr, void * data, size_t size, uint8_t TransferType);

7 void AccelCallDevice();

114

Subsequently, two functions AccelMalloc and AccelFree were implemented in order to

allocate and free space in the Accelerator Wrapper’s Device Memory. Specifically, AccelMalloc

uses the Buddy Memory Allocator to allocate space in the Device Memory, while a single

queue has been implemented in order to keep the allocation segment characteristics. The

parameters of this function are the allocation size (in bytes) and the label which is the name of

the corresponding segment. The last parameter is used to access the specific segment from

within the code of the SystemC accelerator, as presented in Code segment 2, during the

MemCpy function. The AccelFree function frees up the segment that has been allocated by

AccelMalloc while its input parameter is DevMemAddr type which has been returned by

AccelMalloc.

Function AccelMemcpy has been implemented so as to allow for the efficient copying

of the data from cGEM5’s RAM to the Accelerator Device’s Memory and vice versa. This

function takes four parameters, i) DevMemAddr returned from AccelMalloc, ii) a pointer (void

*) to the local data, iii) the size in bytes which should be copied and iv) the TransferType; for

the last parameter, the user can employ either SystemCMemcpyHostToDevice or

SystemCMemcpyDeviceToHost.

In addition, the AccelCallDevice function has been implemented which actually calls

the SystemC accelerator and utilizes all the synchronisation mechanisms described in Section

6.1. It must be noted that both AccelMemcpy and AccelCallDevice functions have been

implemented as asynchronous functions. As a result, the application running on cGEM5

(including the OS) can continue execute its computational tasks while the SystemC accelerator

is also executing tasks. This is possible since the DMA engines used to transfer the Data from

the Host to the Device (and vice versa) as well as the SystemC actual simulation are executed

on different threads from the cGEM5 one, as analytically described in Section 6.1.

There are also the MemCpyToDevice/ToHost SystemC functions which allow for the

efficient data transfer from the Wrapper’s Device Memory to the SystemC internal Memory

(Code segment 2). The MemCpy function takes 5 parameters: i) the name of the SystemC

internal memory, ii) the label (e.g. ’A’), as it has been declared in the AccelMalloc function of

115

the application running on cGEM5, iii) the SWOffset (in the presented example it is 0) which

is the offset of the wrapper Device Memory, iv) the size of the elements to copy and v) the

ElementType which is the type of elements to be copied. Table 6.1 summarizes the element

types which can be supported by our SystemC Device (the most widely-used types);

moreover, it is a trivial process to add any other desired element type.

Data Type Size Data Type Size

ACC_CHAR 1 byte ACC_UINT8_T 1 byte

ACC_FLOAT 4 bytes ACC_UINT16_T 2 bytes

ACC_INT 4 bytes ACC_UINT32_T 4 bytes

ACC_DOUBLE 8 bytes ACC_UINT64_T 8 bytes

Table 6.1. Type of Elements supported by the custom SystemC application

Moreover, Code Segment 2 shows some essential segments that should be placed on

the SystemC file describing the accelerator module. The first eight lines should be placed in

the Header SystemC file, while the remaining lines should be put in the implementation file.

In the Header file, an internal memory of the accelerator (for example this can be an FPGA’s

BRAM) is declared in line 2 with a predefined size, while SC_CTHREAD is utilized since it is

an integral part of the synthesisable SystemC subset and uses the clock and reset signals that

are provided by the Wrapper’s Clock & Init threads respectively.

Code Segment 2. Segments of SystemC Application

1 SC_MODULE(SystemCDevice){

2 int INTER_MEM[MEM_SIZE]; #Create an Internal Memory

3 ...

4 SC CTOR(SystemCDevice){

5 SC CTHREAD(main thread, clk.pos());

6 async reset signal is(reset, true);

7 }

8 }

9 void SystemCDevice::main thread(){

10 while(true){

11 uint64 t size = 18; #Copy 18 elements

12 memcpyToDevice(INTER MEM,’A’, 0, size, ACC INT);

116

13 <Some Processing... / Call other computational Threads>

14 memcpyToHost(INTER MEM,’A’, 0, size, ACC INT);

15 wait();

16 }

17 }

Finally, lines 9 to 17 describe the functionality of a simple reference accelerator

module, using an infinite while loop. Since this process describes the intended hardware, the

function of the thread never returns, keeping the thread always alive; in order to mark the

end of a clock cycle and suspend the process until the next clock event, the wait() function is

called.

117

7
Validation and Performance Analysis

This chapter provides the experimental results of our work. Evaluation of the COSSIM

simulation framework has been initially analysed using light versions of two Linux

distributions; Gentoo Base System [107] for x86 processors and BusyBox [108] for ARM ones.

Subsequently, full Ubuntu images are configured for both ARM and X86 architectures to

evaluate complex real-world applications. In all systems the Linux-minimal package and the

JRE7 are installed so as to enable execution of C, C++ and Java applications (thus resembling

a realistic deployment scenario). Specifically, Section 7.1 and 7.2 present the evaluation of

Processing and Network Simulator parts respectively; Section 7.3 examines the Performance

analysis of COSSIM using multiple cores in multiple distributed machines. In addition,

COSSIM bottleneck is evaluated examining both network and processing bound applications

118

as well as multiple HLA Servers implementation. Moreover, COSSIM framework is

evaluated simulating two real world applications consisting of complex CPS with very

different requirements and characteristics as described in Section 7.4. The first case study is

a Building Management System (BMS) with relatively simple CPS nodes and relatively low-

speed interconnecting networks whereas the second one is a Mobile Visual Search (MVS)

framework involving high-end CPS and HPC nodes interconnected with high speed

network. Finally, Section 7.5 presents the evaluation and performance analysis of integration

with Hardware Accelerators (i.e. ACSIM) using three financial applications.

7.1 Evaluation of Processing Simulator Part
COSSIM utilizes a modified version of the mainstream GEM5 simulator. However, all

modifications are mainly related to the Ethernet interface and the developed HLA

components. As such, the main computation engine of the GEM5 simulator is left intact and

therefore the performance of the GEM5 component of the COSSIM simulator is in line with

the reported performance of the publicly available version of the simulator. GEM5’s

performance varies greatly with the complexity of the system that is being simulated. As

referred in the literature, a typical simple CPU (InOrder CPU) in GEM5 can be simulated at

a rate of 1 to 3 MIPS (Million Instructions / Sec), while more complex CPU structures (e.g.

Out of Order-OoO CPUs) and memory subsystems can reduce the rate of simulated

instructions to as low as 0.1 - 0.3 MIPS [109], [46].

The key concept of our approach is to execute the cOMNET++ simulator in a typical

workstation so as to easily utilize the GUI that facilitates the orchestration and visualization

of the simulation, while the cGEM5 instances are run in one or more servers (distributed

simulation). For this reason, in the following experiments, the cOMNET++ simulation was

executed on a workstation based on an Intel i5-4590 processor (3.3GHz) running Ubuntu

Linux 14.04 with 16GB of RAM (Machine 1). On the other hand, the simulation of the CPUs

as well as the HLA Server were executed on two servers based on four Intel Xeon E5-2440v2

(8 physical cores/Xeon) running CentOS 7.2 (totally 32 physical cores with 128GB of RAM -

Machines 2&3). The main configuration of the simulated processors is described in Table 7.1.

119

CPU

Type

CPU/System

Clock

Memory L1I/L1D/L2/L3

Cache Size

X86 Atomic

(In Order)

2GHz/1GHz DDR3

(2048MB)

32KB/64KB/2MB

/16MB

ARM Atomic

(In Order)

2GHz/1GHz DDR3

(512MB)

32KB/64KB/2MB

/16MB

Table 7.1. The main configuration of the processors simulated

Figure 7.1 illustrates the mean instructions per second simulated when several real-

world applications are executed in the COSSIM system including the time needed for the

negotiations and set-up of the corresponding networks interconnecting the different nodes

for both X86 and ARM processors. Those numbers do not include any communication with

the Accelerator Simulator. Our results demonstrate that as the number of nodes increases,

the rate of simulated instructions (thus performance) decreases. This is mainly due to the

Global Synchronization schemes for the 2-32 node experiments, while there is a steep

performance drop when more than 32 cGEM5 instances are executed on the 32 physical cores

due to lack of processing resources. For the specific experiment, the synchronization interval

is set at 10ms. Consequently, after every 10ms of simulated time, all nodes are halted so that

they can all be synchronized and then resume operation. Apparently, this synchronization

interval determines the accuracy of captured events. A short synchronization interval will

yield the most accurate results at the cost of lower overall performance, as each simulation

instance will be forced to halt very frequently and the time required for synchronizations will

become significant compared to the actual computation time. A more relaxed (i.e. longer)

synchronization interval will result in higher speeds, with a potential loss of accuracy, as

interactions between nodes that occur within this interval are not properly handled.

120

Figure 7.1. Performance results using typical GEM5 configuration

Figure 7.2 demonstrates the impact of the synchronization interval in the performance

of the overall simulation, as measured by the wall-clock time required to complete a

simulation with 16 nodes (all nodes are configured as in Table 7.1 and executed on the above

system). There is a dramatic drop in performance for very short interval times (smaller than

100us) mainly due to the increased number of messages that OMNET++ has to manipulate.

Figure 7.2. Simulation time using different synchronization intervals

0

200000

400000

600000

800000

1000000

1200000

1400000

2 4 8 16 32 64 128

In
st

ru
ct

io
n

s
p

er
 s

ec
o

n
d

of Nodes

ARM X86

0

200

400

600

800

1000

1200

10us 100us 1ms 10ms 100ms 1000ms

Si
m

u
la

ti
o

n
 T

im
e

 (
s)

SynchTime

Simulation Time vs Accuracy

ARM (16 Nodes) X86 (16 Nodes)

121

7.2 Evaluation of Network Simulator Part
The network performance of COSSIM’s novel approach has been evaluated using the widely

used Netperf 2.7.0 benchmark suite and specifically the very demanding TCP_STREAM &

TCP_RR benchmarks. Netperf [110] was developed by Hewlett-Packard, while it is widely

used in measuring the performance of many different types of networks and it provides tests

for throughput, and end-to-end latency.

The suite is designed around a basic client-server model which consists of the

netserver and netperf executables. When netperf is executed it establishes a "control

connection" to the remote system. This connection is used in order to pass the test

configuration information and results to and from the remote netserver. Regardless of the

type of the test that is executed, the control connection is a TCP one using BSD [111] sockets.

The control connection can use either IPv4 or IPv6. After the configuration information has

been transmitted, a separate "data" connection is opened which can utilize any network API

and/or protocol. When the test is completed, the data connection is terminated and the results

from the netserver are passed-back, via the control connection, to netperf and together

netperf’s results they are displayed to the user.

7.2.1 TCP_STREAM Benchmark
The TCP_STREAM test is the most widely-used test in netperf. It transfers certain data from

the system where netperf is executed to that running netserver. Figure 7.3 illustrates the

throughput (Mbits/sec) achieved on this benchmark in the case of two COSSIM simulated

x86 systems and two real x86 systems; in both cases the simulated and real systems are

connected through Gigabit Ethernet. Specifically, 5MB19 of total data are exchanged in each

experiment, while different buffer sizes are utilized in the "send" calls of the test. Command

1 shows the netperf TCP_STREAM configuration which is used for 100bytes buffer size, while

Table 7.2 summarizes the parameters.

netperf -H IP -t TCP_STREAM-c -C -l -5000k -- -m 100 (1)

19 5MB was selected as adequate quantity of data to reach the maximum speed of experiment.

122

Parameter Description

-m [bytes] Set the size of the buffer passed-in to the “send” calls of a

STREAM test (in bytes)

-H [IP] Set the name of the remote system

-l [testlen] Controls the length of the requested test

-c Requests CPU Utilization for the local system

-C Requests CPU Utilization for the remote system

Table 7.2. TCP_STREAM benchmark Parameters

As described in Section 5.4, COSSIM/ACSIM Synchronization is based on two

different entities that can be separately defined by the user; for the TCP_STREAM

experiments, the synchronization per node interval is set at 10us (i.e. each node guarantees

that can receive at most one Data Packet every 10us). This interval is selected due to the

Gigabit Ethernet interconnection between the nodes. Specifically, since the maximum

Ethernet packet is 1536bytes [112], by selecting a synchronization period of 10us, each node

can receive up to 1536bytes/10us or 153.600.000bytes/sec or 1.228.800.000bits/sec so it can

support full Gigabit Ethernet speed. On the other hand, three different intervals have been

tested for the Global Synchronization, from 100us to 10ms. Figure 7.3 demonstrates that as

the Global Synchronization decreases, more accurate results are obtained (i.e. much closer to

the real systems ones), while using 100us as the Global Synchronization interval, triggers

extremely accurate results for all buffer sizes. Furthermore, as the number of buffer messages

increases the throughput moves toward the maximum possible speed.

123

Figure 7.3. TCP_Stream throughput for 1server/1client using different

Global Synchronization intervals

CPU utilization is an important, and very often overlooked component of the overall

networking performance. Unfortunately, it can be one of the most difficult metrics to measure

accurately and portably. Netperf is one of the most accurate benchmarks for measuring CPU

utilization [110]. CPU utilization in netperf is reported as a value between 0 and 100%

regardless of the number of CPUs involved. In addition to CPU utilization, netperf reports a

metric called "service demand". The service demand is the normalization of CPU utilization

in terms of the work performed; for a TCP_STREAM test it is the microseconds of CPU time

consumed to transfer on 1024 Bytes of data.

Figure 7.4 illustrates the CPU utilization (in the simulated node) for 1-server/1-client

and 1-server/2-clients experiments using a Global Synchronization interval of 100us, which

is adequate for full speed simulation, and Synchronization per node 10us. Figure 7.4

demonstrates that as the buffer-size is less than 10bytes, the CPU utilization is steadily at

100% for both 1 client and 2 clients experiments (i.e. they are CPU-bound). This is reasonable

because the clients need to truncate the 5MBs in a lot of small packets, while the throughput

achieved is much lower than the maximum one (Figure 7.3). In addition, as the buffer size

gets greater to 1000bytes, the CPU utilization is much lower and the experiment becomes

network-bound. The 2-client experiment needs less CPU processing in each client CPU

0

200

400

600

800

1000

1200

1 byte 10 bytes 100 bytes 1000 bytes 10000 bytes

Th
ro

u
gh

p
u

t
(M

b
it

s/
se

c)

Size of Buffer

TCP_Stream Throughput (1server/1client)

10ms 1ms 100us Real Systems

124

because the packets are sent at lower rates while the server CPU utilization is similar to that

of the 1-client with smalled differences due to the higher number of total packets the server

gets.

Figure 7.4. CPU Utilization using TCP_Stream for 1server/1client & 1server/2clients

experiments

Figure 7.5 demonstrates the throughput for the TCP_STREAM experiments using 1

server and 1 up to 3220 clients. In that configuration a router has been configured with 2-33

Gigabit Ethernet ports to establish a star network topology. Figure 7.5 demonstrates that as

the number of clients increases, the throughput decreases because the server has to serve all

clients. The maximum throughput achieved by our simulator using 1000bytes in each

Ethernet packet is ranging from 998Mbits/sec to 69 Mbits/sec for 1 and 32 clients respectively.

20 COSSIM tool is tested up to 32 clients, due to physical cores bound; the aim of this experiment was to

take measurements assigning one gem5 instance per core to not suffer from performance degradation due

to physical cores limit.

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

120.00%

Server Utilization
(1 client)

Client Utilization
(1 client)

Server Utilization
(2 clients)

Client Utilization
(2 clients)

C
P

U
 U

ti
liz

at
io

n

CPU Utilization using 1&2 clients

Global Synchronization 100us

1 byte 10 bytes 100 bytes 1000 bytes 10000 bytes

125

Figure 7.5. TCP_STREAM Throughput using 1server & 1-32 clients

7.2.2 TCP_RR Benchmark
Request/Response performance is often overlooked, but it is just as important as bulk-transfer

performance. While things like larger socket buffers and TCP windows, as well as stateless

offloads like TSO (TCP segmentation offload) and LRO (Large Receive Offload) [113] can

cover numerous latency and even path-length sins, those sins do surface in the

request/response tests. While in a bulk-transfer test the reporting metric is the units of bits

(or bytes) transferred per second, TCP_RR test reports the transactions per second where a

transaction is defined as the completed exchange of a request and a response.

Figure 7.6 illustrates the transactions per second in the case of two COSSIM-simulated

x86 systems and two Real x86 systems; the configuration consists of one server and one client

running the netperf TCP_RR benchmark and connected through Gigabit Ethernet. In more

detail, different request/response packet sizes have been evaluated ranging from 1 byte to

10K bytes within 121 second of total time. Command 2 shows the netperf TCP_RR

configuration which is used for a request/response packet size of 100 bytes, while Table 7.3

summarizes all the parameters of our experiment.

netperf -H IP -t TCP_RR -l 1 -- -r 100,100 (2)

21 1second was selected as adequate quantity of time to reach the maximum speed of experiment.

0

200

400

600

800

1000

1200

1 byte 10 bytes 100 bytes 1000 bytes 10000 bytes

Th
ro

u
gh

p
u

t
(M

b
it

s/
se

c)

Size of Buffer

TCP_Stream Throughput (1server/1-32 clients)

Synchronization Time 100us

1 2 4 8 16 32

126

Parameter Description

-H [IP] Set the name of the remote system

-r [req,resp] Set the request and response packet size

-l [testlen] Controls the time of the requested test

Table 7.3. TCP_RR benchmark Parameters

In all the TCP_RR experiments, the synchronization per node interval is set at 10us so

as to achieve full Gigabit Ethernet rates (as described in the previous paragraph) between the

nodes. On the other hand, three different intervals are selected for Global Synchronization

from 10us to 1ms. Figure 7.6 demonstrates that as the Global Synchronization decreases, more

accurate results are obtained (i.e. much closer to the Real Systems’ ones), while when using a

Global Synchronization of 10us, the transactions/second is very similar to those achieved by

the Real Systems for all request/response sizes. TCP_RR requires smaller Global

Synchronization interval (10us) than the TCP_STREAM experiment (100us) in order to obtain

very accurate results due to smaller length of each packet in TPC_RR (i.e. higher number of

packets are sent per second). Finally, Table 7.4 summarizes the transmission rate of the above

systems; the highest transmission rate for the simulated system is achieved using 1byte

request/response packets and a 10us Global Synchronization interval (99,9 microseconds/

packet (Simulated nodes) instead of 98,3 microseconds/packet (Real-nodes)).

Summarizing, both netperf experiments demonstrate that with a relatively low Global

Synchronization Interval COSSIM/ACSIM can extremely accurately simulate both network-

bound and CPU-bound applications.

 1ms 100us 10us Real Systems

1 byte 1883.24 us/pkt 395.88 us/pkt 99.90 us/pkt 98.32 us/pkt

10 bytes 1757.47 us/pkt 395.90 us/pkt 99.94 us/pkt 99.60 us/pkt

102 bytes 1972.38 us/pkt 396.98 us/pkt 101.83 us/pkt 102.67 us/pkt

127

103 bytes 2012.78 us/pkt 434.78 us/pkt 163.93 us/pkt 151.74 us/pkt

104 bytes 6802.72 us/pkt 801.28 us/pkt 431.03 us/pkt 331.89 us/pkt

Table 7.4. Transmission rate of TCP_RR using different Global Synchronization

Figure 7.6. Transactions per second using 1server/1client with different

Global Synchronization intervals

7.3 Performance Evaluation of COSSIM
In this Section, the performance of the COSSIM simulator is presented using multiple cores

in multiple distributed machines. In addition, the scalability of the COSSIM simulator is

presented using multiple cores in a cluster of multiple distributed machines. Finally, an

analysis is performed about COSSIM bottleneck as well as the speedup achieved through

multiple HLA Servers.

7.3.1 Performance Evaluation of Distributed COSSIM
The performance of parallelism COSSIM/ACSIM simulation framework has been analyzed

using the distributed scenario as described in Section 7.1 (3 Systems - one workstation and

two servers). Specifically, Figure 7.7 demonstrates the performance of the simulator when the

main COSSIM components (OMNET++, HLA servers and all GEM5 instances) are executed

on the same physical machine (machine 1 - straight line) and when they are executed in the

distributed scenario (machine 2 and machines 2&3 - dashed lines). Figure 7.7a illustrates the

0

2000

4000

6000

8000

10000

12000

1ms 100us 10us Real Systems

Tr
an

sa
ct

io
n

s
p

e
r

se
co

n
d

COSSIM Global Synchronization Time

Transactions per second using TCP_RR

1 byte 10 bytes 100 bytes 1000 bytes 10000 bytes

128

simulation time required to boot the OSs with their network card configuration for 2-32

ARM-based nodes, while Figure 7.7b for 2-32 X86-based nodes.

As it can be seen from the Figure 7.7, it becomes evident that performance is heavily

impacted when the number of GEM5 instances spawned becomes higher than the number of

physical processor cores present in the simulation machine (there is a steep performance drop

when more than 4 cGEM5 instances are executed on the 4-core machine and more than 16

cGEM5 instances are executed on one of two servers).

On the other hand, the effect of the network has a negligible impact on the overall

performance. Specifically, in 2&4 nodes experiments, Machine 1 is faster than distributed

scenario due to faster single thread execution on Intel i5-4590 than E5-2440v2. However,

when the number of cGEM5 instances increases, 2 System distributed scenario is actually

faster comparing with the other two simulation experiments up to 16 cGEM5 instances (1

System simulation & 3 Systems simulation). This happens because there is slightly

performance degradation in 3 Systems simulation due to 3 different physical machines

instead of 2. However, in 32 nodes experiment, 3 Systems simulation surpasses the 2 System

simulation (70% approximately faster). The similar results are obtained in X86-based nodes

which requires more processing time to boot the OS (Figure 7.7b). Summarizing, in case of 3

Systems distributed simulation, the simulation time is almost constant for all simulated nodes

(each cGEM5 node is executed per physical core), while in 32 cGEM5 instances, COSSIM

distributed scenario can achieve up to 337% and 423% speedup for ARM and X86 based

architecture respectively.

129

Figure 7.7. COSSIM simulation time using Distributed Machines ((a) Upper: ARM-based

nodes (b) lower: X86-based nodes)

0

200

400

600

800

1000

2 4 8 16 32

S
im

u
la

ti
o

n
 T

im
e

(i
n

 s
ec

o
n

d
s)

of nodes

ARM-based nodes

1 System Simulation (cGEM5s are executed in Machine 1)

2 Systems - Distributed Simulation (cGEM5s are executed in Machine 2)

3 Systems - Distributed Simulation (cGEM5s are executed in Machines 2&3)

0

500

1000

1500

2000

2500

2 4 8 16 32S
im

u
la

ti
o

n
 T

im
e

(i
n

 s
ec

o
n

d
s)

of nodes

X86-based nodes

1 System Simulation (cGEM5s are executed in Machine 1)

2 Systems - Distributed Simulation (cGEM5s are executed in Machine 2)

3 Systems - Distributed Simulation (cGEM5s are executed in Machines 2&3)

130

7.3.2 COSSIM Scalability
In this section, the scalability of the COSSIM simulator is presented using multiple cores in a

cluster of multiple distributed machines. Specifically, a 42U HP RACK 10000 G2 Series cabinet

contains 44 HP Proliant BL465c server blades with two AMD Opteron Model 2218 (2.6GHz),

4GB of RAM and Gigabit ethernet per blade (totally 176 physical cores are contained with

176GB of RAM in the above cluster).

Specifically, Figure 7.9 demonstrates the performance of the simulator when the

network part of COSSIM (cOMNET++) is executed in typical workstation based on an Intel

i5-4590 processor (3.3GHz) running Ubuntu Linux 14.04 with 16GB of RAM, while the

processing parts (cGEM5 instances) and HLA server are executed in the cluster which is

described above running Ubuntu Linux 16.04. Figure 7.9 illustrates the simulation time

required to boot the OSs with their network card configuration for 16-1024 ARM-based nodes

and X86-based nodes. The network configuration in cOMNET++ are configured

automatically using scripts and it contains both micro-routers and switches. Figure 7.8

illustrates a sample configuration for 8 nodes using Ethernet from nodes to micro-routers

(through switch) and Wireless among micro-routers.

Figure 7.8. Typical network configuration for 8 simulated nodes

As it can be seen from the Figure 7.9, it becomes evident that performance is heavily

impacted when the number of cGEM5 instances spawned becomes higher than the number

131

of physical processor cores present in the simulation machine (there is a steep performance

drop when more than 176 cGEM5 instances are executed on the 176-core cluster).

Specifically, in 16-128 nodes experiments, the simulation time is almost constant,

while doubling the number of cGEM5s instances the simulation time increases by factor of

two due to physical cores limitation. The similar results are obtained in X86-based nodes

which requires more processing time to boot the OS. Summarizing, the effect of the network

has a negligible impact on the overall performance; as a result, COSSIM has good scalability

in case of cGEM5 instances is lower or equal to the number of physical cores.

Figure 7.9. COSSIM simulation time using a cluster of 44 HP server blades

7.3.3 COSSIM Bottleneck Analysis
This section presents the bottleneck analysis of COSSIM using TCP_STREAM netperf

benchmark. Figure 7.10 demonstrates the Simulation time for TCP_STREAM experiments

using 1 server and 1 up to 3222 clients. To be noticed that one router has been configured with

22 COSSIM tool is tested up to 32 clients, due to physical cores bound; the aim of this experiment was to

take measurements assigning one gem5 instance per core to not suffer from performance degradation due

to physical cores bound.

0

20

40

60

80

100

120

140

160

180

200

16 32 64 128 256 512 1024

Si
m

u
la

ti
o

n
 T

im
e

 (
in

 m
in

u
te

s)

of Nodes

Cluster of 44 HP server blades (4cores/blade)

ARM-based X86-based

132

2-33 Gigabit Ethernet ports to establish a star network topology. Figure 7.10 illustrates that,

as the number of clients increases, the simulation time of COSSIM increases by factor of 2

because the cOMNET++ needs to manipulate double Data Packets and double Global

Synchronization points in each experiment. This happens because TCP_STREAM is a

network-bound application, however, in a common application which uses more the

processing unit, the bottleneck is created in the cGEM5 side (Section 7.1). This is evident from

the similar simulation time using different Global Synchronization intervals (the time

required for the Synchronization is quite less than the time required for the network

messages).

Exploring with more insight the simulation time increasing, we end up to measure the

cOMNET++ performance behavior (cGEM5 not causes bottleneck; each GEM5 instance is

executed per physical core). Figure 7.11 illustrates the CPU and Memory Utilization of

cOMNET++ using TCP_STREAM benchmark for 16-32 nodes. It is evident that, OMNET++

utilizes the same memory for all Global Synchronization Intervals (this is reasonable because

exactly the same number of packets are exchanged in total), while it requires 1/3 more

memory doubling the number of simulated nodes. On the other hand, CPU Utilization

increases only 4%, increasing the Global Synchronization interval one order of magnitude,

while there is slight different from 16 nodes to 32 nodes. It is evident that doubling the

simulated nodes, OMNET++ requires more time waiting for all GEM5 nodes to “reach” in the

specific synchronization barrier as illustrated in Figure 7.12. As a result, this is a non-CPU

intensive process since the CPU is in idle mode waiting for all nodes to “reach” in the

synchronization barrier.

133

Figure 7.10. COSSIM Simulation Time using different Global Synchronization intervals

(TCP_STREAM)

Figure 7.11. OMNET++ CPU and Memory Utilization using different Global Synchronization

intervals (TCP_STREAM)

0

20

40

60

80

100

120

140

1 2 4 8 16 32

Si
m

u
la

ti
o

n
 T

im
e

 (
m

in
u

te
s)

of Clients

COSSIM Simulation Time using TCP_STREAM

10ms 1ms 100us

0.00% 5.00% 10.00% 15.00% 20.00%

10ms

1ms

100us

CPU Utilization

C
O

SS
IM

 G
lo

b
al

 S
yn

ch
ro

n
iz

at
io

n
 I

n
te

rv
al

OMNET++ CPU Utilization using
TCP_STREAM benchmark

32 nodes 16 nodes

0 1000 2000 3000 4000

10ms

1ms

100us

Memory Utilization (KB)

C
O

SS
IM

 G
lo

b
al

 S
yn

ch
ro

n
iz

at
io

n
 I

n
te

rv
al

OMNET++ Memory Utilization
using TCP_STREAM benchmark

32 nodes 16 nodes

134

Figure 7.12. Example of COSSIM Synchronization Barrier using 4 nodes

7.3.4 Evaluation of COSSIM using multiple HLA Servers
TCP_RR benchmark is used to evaluate the HLA Server performance due to huge number of

messages, and the short Global Synchronization Intervals. Specifically, 1byte

request/response packets are used for 1 second of total time as described in the following

command (10us Global Synchronization Interval is used).

netperf -H IP -t TCP_RR -l 1 -- -r 1,1 (3)

Figure 7.14a illustrates the CPU utilization of HLA Server (using 1 Global HLA Server

for both Global Synchronization & Synchronization per node). The CPU Utilization of HLA

Server increases by factor of 2 and 4 doubling the number of simulated nodes due to small

Global synchronization intervals and the huge number of packets. For this reason, we

decentralize the HLA Server using 2 identical HLA Servers in two scenarios.

In first scenario, 1 HLA Server is used for Global Synchronization (blue federation),

and the other for Synchronization per node (orange federations) as described in Figure 7.13

left. In this scenario, the CPU Utilization concentrates on the 1st HLA Server due to small

Global Synchronization intervals, while the 2nd HLA Server is under-utilized (Figure 7.14a

right).

135

On the other hand, in second scenario, 1 HLA Server is used to serve 50% of the

simulated nodes (both Global & per node Synchronization), and another one to serve the

remainder 50% of simulated nodes (Figure 7.13 right). In this case, the CPU Utilization drops

dramatically in a quarter, and specifically, it is similar with the nodes/2 CPU utilization of 1

Global HLA Server (Figure 7.14b right). Using this scenario, COSSIM is able to decentralize

the HLA bottleneck (if needed) supporting two or more HLA Servers.

Figure 7.13. COSSIM HLA Federations using 2 HLA Servers ((a) left: 1 HLA Server is used

for Global Synchronization & 1 HLA Server is used for Synchronization per node; (b) right: 1

HLA is used for 50% of nodes & 1 HLA Server is used for another 50% of nodes)

0%
10%
20%
30%
40%
50%
60%
70%
80%

1 global HLA Server HLA Server for Global
Synchronization

HLA Server for
Synchronization per

Node

C
P

U
 U

ti
liz

at
io

n

CPU Utilization using 1 HLA Server & 2 HLA Servers (1 for
Global Synchronization & 1 for Synchronization per Node)

8 nodes 16 nodes 32 nodes

136

Figure 7.14. CPU Utilization using 1 HLA & 2 HLA Servers ((a) upper: 1 HLA Server for

Global Synch & another one for Synch per node; (b) lower: 1 HLA per 50% of nodes)

7.4 COSSIM evaluation using two Real-world Use Cases
This Section presents two complex real-world applications which are used to evaluate the

COSSIM framework; Building Management System and Mobile Visual Search developed by

Tecnalia [114] and STM [115] respectively. To compare the performance of the COSSIM

simulator as applied to the BMS and MVS applications, three different kind of times were

defined:

• Native time the time recorded in the real native system while executing the native

application.

• Simulated time the time recorded inside the simulator while executing the

simulation.

• Simulation (Host) time the time measured outside of the simulator by the host

machine while executing the simulation.

7.4.1 BMS (Building Management System)
The environment selected to run the Building Management System (BMS) use case is based

on TECNALIA’s KUBIK building, which consists of modular and removable structures that

allow the installation and monitoring of a wide range of structural elements, devices and

energy efficiency control systems. It is divided into three 100 m2 dedicated floors and a larger

cellar where all the HVAC (Heat Ventilation and Air Conditioning) equipment is installed.

0%
10%
20%
30%
40%
50%
60%
70%
80%

1 global HLA Server HLA Server for 50%
of Nodes

HLA Server for other
50% of Nodes

C
P

U
 U

ti
liz

at
io

n

CPU Utilization using 1 HLA Server & 2 HLA Servers (50%
of Nodes are served from each HLA Server)

8 nodes 16 nodes 32 nodes

137

The main purpose of the BMS deployed in KUBIK is to ensure the boundary conditions for

each of the tests running in the “testing cells” or measurement rooms, which involves a single

apartment or a specific area in the building. In brief, the BMS could be described as the

platform that delivers the appropriate set-points (energy consumption, air flow, temperature

and others) to the available HVAC equipment, taking into consideration the boundary

conditions of each of the measurement room. The system identified as the most suitable and

representative target for the test case in KUBIK building is the Unit For Optimization (UFO)

that evaluates the heating/cooling and lighting conditions in order to deliver optimized set-

points to the BMS.

The UFO is composed of the Intelligent Control System (ICS), the Building

Management Communication Node (BMCN) and an additional set of Remote Sensing Nodes

that collect environmental data. The ICS module performs the overall building energy

consumption forecasting in the long-term (several days), while the BMCN performs a

simplified local forecasting in the short-term (next hours) involving a measurement room or

small area. Besides, the BMCN also functions as a gateway for the ICS, enabling the

communication with the Remote Sensor Nodes. The Remote Sensing Nodes collect data

needed by the forecasting processes. Figure 7.15 illustrates the BMS layout.

Figure 7.15. KUBIK’s BMS + UFO layout

138

7.4.1.1 Description of BMS simulated scenario
Two use case scenarios are configured in order to evaluate the processing and network

performance of the BMS application using the COSSIM simulation framework. As

summarized in Table 7.5, simple and complex sensor network is used, while both regular and

burst traffic situations were tested. In regular traffic, each node sends one message every 15

seconds (there is no overlap between the messages sent by each node). On the other hand, in

burst traffic, each node sends one message every second (messages are sent at the same time).

Scenario Description Message frequency

S1.1 BMS simple scenario Evaluate performance of a BMS (forecasting

module, message broker and database) with a simple network.

Every 15 s /

Regular traffic

S1.2 BMS simple scenario Evaluate impact, in terms of BMS

performance, of sending more frequent messages.

Every Second /

Burst Traffic

S2.1 BMS complex scenario Evaluate performance of a realistic BMS

with a complex sensor network including bi-directional

communication and digital signatures.

Every 15 s /

Regular traffic

S2.2 BMS complex scenario Evaluate impact, in terms of BMS

performance, of sending more frequent messages.

Every Second /

Burst Traffic

Table 7.5. BMS Scenario use cases

For both scenarios, the network is composed of a server node (node 0) and three remote

sensing nodes (node 1 to 3). The server node has a forecasting module to predict short term

energy consumption from historic data and environmental sensor measurements by means

of an artificial neural network (ANN). The sensing nodes send measurement to the server

node using RabbitMQ message broker as illustrated in Figure 7.16. The simulation starts off

by the training of the ANN, and subsequently the remote sensing nodes starts to send data

for 2 minutes. The server node receives that data, makes the energy predictions and saves the

received and predicted data to a SQLite database.

139

Figure 7.16. COSSIM’s test case target involving BMCN and Remote Sensing Nodes

In the first scenario, all the data are sent via wireless connection and the

communication is unidirectional (from the nodes to the server). In the second scenario,

various levels of complexity are added. First, mixity is included to the topology of the

network: node 1 remains wireless while the two other nodes transmit via Ethernet.

Bidirectional communication is also introduced, via a reconfiguration of node 1. Lastly, a

process of digital signature is used to verify the reliability of the data sent by node 1. Key

lengths of up to 2048-bits were used successfully with the SHA256withRSA encryption

algorithm.

7.4.1.2 Native and simulated CPS description
From a physical architecture point of view, depending on the complexity of the facilities and

the number of remote sensing nodes, the BMCN can be located in an ARM-7 based embedded

device or in a separate process located in the same machine as the ICS, an i586 based CPU.

An architecture where the BMCN is located in the same machine with the ICS, an i586 based

CPU, is chosen for the simulations. On the other hand, the Remote Sensing Nodes are

implemented by means of ARM-7 based boards, Raspberry Pi or similar. The CPS

descriptions are as following:

• BMCN: i586 based CPU, 1 GB RAM, 16GB Non Volatile storage, Full TCP/IP stack

• Remote Sensing Nodes: ARM-7 based boards with 512MB RAM, 4GB Non Volatile

storage, Full TCP/IP and GPIO (general purpose input output) ports.

• Ethernet and Wi-Fi communications.

BMCN

Local

forecasting

module

Data exchange

module

Neural Network

implementation
Rabbit MQ

Remote

Sensing Nodes

WiFi

Ethernet

140

The BMS test scenarios have been simulated in the COSSIM framework using the following

system:

• BMCN: Ubuntu12.04 GEM5 with 4GB of RAM and 4GB of disk space.

• Remote Sensing Nodes: ARM-32 GEM5 with 512MB RAM.

• Ethernet and WiFi communications.

In the BMS test case scenarios, an ubuntu12.04 GEM5 image was implemented with

the BMCN as a server machine that communicates with ARM GEM5 images as Remote

Sensing Nodes.

Concerning the simulations, it should be noted that in an Intel® Xeon(R) CPU E5-2680

v3 Ubuntu machine at 2.50GHz, 16 GB of RAM memory and 70GB of hard disk each

simulation for BMS test case lasts approximately 12 to 16 hours. The most significant time-

consuming processes are the X86 ubuntu12.04 GEM5 image boot up that lasts near one hour,

the RabbitMQ services half an hour, the neural network-based forecasting process several

hours and the digital signature application around two hours.

7.4.1.3 Experimental Results
Table 7.6 summarises the processing performance simulation results from both scenarios

under regular and burst traffic. The simulated time is coherent with the design of the

application. In the second scenario the simulated time is a bit longer because the

communication channels stay open a longer to enable the bidirectional communication.

Regarding the time elapsed on the host, the simulations took between 10 and 20 hours. The

addition message handling of the burst scenario increases the duration by 13.5% for S1 and

by 41.5% for S2. The additional complexity of S2 increases the execution time by 32% for

regular traffic and by 65% for burst traffic.

Parameter S1.1 S1.2 S2.1 S2.2

Instructions simulated 39.1G 41.1G 56.0G 97.3G

141

Seconds simulated 204.22 204.21 239.48 239.49

Time elapsed on host (hh:mm:ss) 10:42:33 12:09:20 14:09:57 20:02:28

Simulated/ Real time 0.00530 0.00467 0.00470 0.00332

Instructions/sec. 1,014,908 938,781 1,098,698 1348,386

Table 7.6. BMS COSSIM Simulator Results from processing component

Figure 7.17 shows how the number of instructions simulated is generally concentrated

on node0 (the BMS server). Most of the processing data comes from the ANN training and,

to a less extend, from saving the data to the database. This explains the small relative increase

in simulation time between the two simulations and suggests that the network handling is

not the most resource consuming part of the application. For S2, an increased number of

instructions is simulated on node 1. This demonstrates that adding digital signatures to the

nodes messages, significantly increases the processing time of the application.

Figure 7.17. Number of instructions simulated on each node

Looking at the network performance metrics from the COSSIM simulator, the

bandwidth utilization for regular traffic is noticeably lower than in burst traffic (Figure 7.18).

However, even in burst traffic conditions, the bandwidth used is very low compared to the

Wi-Fi connection capacity. The information interchanged between the BMS nodes has very

142

low bandwidth requirements. Thus, there are not foreseen issues associated to the scalability

of the solution.

Figure 7.18. BMS Bandwidth for each simulated node

7.4.2 MVS (Mobile Visual Search)
Mobile Visual Search (MVS) [116] is a computer vision application built on the idea of retrieving

interesting information about physical objects using only image content; multimedia content can

be send back in response to a search or to a user’s action. The aim of MVS is to analyze a query

image taken by the user and search for similar images inside a large database as illustrated in

Figure 7.19. MVS is already used in many different applications such as interactive museum

guides, e-commerce mobile applications, localization systems and many more.

The MVS algorithm is composed of two consecutive modules: the Image Analyzer

(IA) and the Retrieval Stage (RS). Firstly, in the IA, a series of advanced image processing

techniques are applied on the image acquired by the user in order to localize relevant region

of it (key-points). Each selected key-point is then analyzed and, for each one of them, a local

descriptor is extracted. The last operation of the IA is the aggregation of the computed local

descriptors into a compact global descriptor which describes the whole image. These

descriptors are concatenated and further compressed in order to reach a size of around 15-20

KB for each VGA image. The whole IA stage can be performed directly by the user’s mobile

device.

143

On the other hand, the RS is able to compare the image descriptor created in the IA

with a plethora of other descriptors extracted off-line from each image in the database. In the

first step of RS, the images in the database are quickly ranked in respect to the similarity of

their global descriptor in respect to the one computed from the query image. In this way, only

a short list of the images in the database are selected as possible matches. A more precise

comparison using local descriptors, including geometry checks and outliers rejection, is

performed and the most similar image to the query one is finally selected. The RS requires

access to the whole database and for this reason it is performed server-side.

Figure 7.19. Mobile Visual Search topology

7.4.2.2 Native and simulated CPS description

In order to compare the result obtained using COSSIM we used the following native system:

• 1 central node with Intel Core i5-5200 2.2 GHz quad Core CPU and 4 Gbytes of RAM

• 1 ARM based device chosen from the following two: Hardkernel Odroid XU3 (Cortex-

A15 2.0 GHz quad core and Cortex-A7 1.4 GHz quad core CPU and 2Gbytes of RAM).

• Wireless Network

Having two different ARM based devices let us compare the ARM machines

simulated in COSSIM (based on Atomic Simple and Out Of Order models) with different real

ARM processors (A7, A15). Moreover, with these two devices we can assign specific task to

be executed by a specific core and we can also set the maximum frequency of each core in

144

order to compare more precisely the results obtained in the simulation. Lastly, the Odroid

XU3 comes integrated with the power analysis tool that was modified and used by us in order

to collect the data reported in the next sessions.

The MVS cloud application simulated inside COSSIM is composed as follow:

• 1 central node with X86 GEM5 Atomic Simple 2 GHz CPU and 512 Mbyte of RAM

• 1 imaging node with 2 possible different processors: ARM GEM5 Atomic Simple at 1

GHz CPU (In-order), ARM GEM5 Out Of Order at 2 GHz CPU. All of them have 512

Mbytes of RAM.

• Wireless Network (using Microrouters)

7.4.2.3 Quality of Results
In order to test the correctness of the simulation the final output of the application was

compared with the output of the native system. In particular, the local and global descriptor

scores (defined in Section 7.4.2) extracted from the ordered list of results were compared.

Figure 7.20 reports the top three matches for the given query image on the left. As can be

observed, all the result images depict the same building as the query one. For each result we

report the local (result of local matching) and global (result of global matching) scores in the

simulated and real scenarios. The simulation replicates exactly the computations performed

by the native system, with a complete agreement between native and simulated search

results.

Figure 7.20. Global and Local Matching scores on the Building Database (The result images

correctly depict the same object as the query one in both simulated and native system)

145

7.4.2.4 Experimental Results
The simulation involves the complete MVS application running on a CPS composed by a

mobile imaging node and a central one. In this case, the query image is first processed on the

mobile device (ARM) in order to extract some descriptors, thus creating a compact

representation of it, and then it is sent to the central node to be compared with all the other

descriptors extracted from each image in the database, in order to find visually similar

images. In this configuration, only compressed information about the image (descriptor) is

sent through the network from the mobile device to the central node.

Two different simulations have been run:

• ARM simulated with Atomic Simple CPU model with 1 GHz as frequency (In-Order)

• ARM simulated with Out of Order CPU model with 2 GHz as frequency

The native and simulated systems were tested on the same three VGA images that depict an

object included in the database viewed by a different angle.

7.4.2.4.1 Atomic Simple (In-Order)

The results described in this section are related to the following set up:

• Simulated CPS with ARM CPU Atomic Simple at 1 GHZ

• Native CPS Odroid Xu3 using just 1 ARM A7 core limited at 1 GHz

Regarding the power and energy measurements they are collected just from the Odroid

device as described in Section 7.4.2.2.

Time measurements

Table 7.7 describes the Imaging node application time measured by the cGEM5, while it was

compared with internal timers located inside of the MVS application time. The two-time

measurements are almost the same (mean error of 0.19 ms), that means that inside the

simulation the time is measured in a consistent fashion. From now on we will simply refer to

them as simulated time.

146

Imaging node

application time (ms)

Internal

Timers

cGem5 stats Native

(ARM A7)

Host (Simulation

Time)

Image 1 14499.3 14499.1 15613.7 10941930

Image 2 21459.3 21459.08 23229.2 16133510

Image 3 14437.3 14437.14 15855.9 10750010

Average 16798.63 16798.44 18232.93 12608483

Table 7.7. MVS Simulated time comparison using ARM A7 model

From Table 7.7 we can also observe that the Imaging node application time (that

coincide with the overall simulation time) is close to the time that we get from a native system

that includes an ARM A7 device (7.8 % mean error23). In addition, the average host time is

approximately of 3 hours and 30 minutes. Similar results are obtained for the central X86

node as described in Table 7.8.

Central node execution time(ms) Simulated Time (X86) Intel i5-5200

Image 1 645.068 508.8

Image 2 641.135 498.793

Image 3 644.614 502.894

Average 643.6057 501.4957

Table 7.8. MVS Simulated time comparison using ARM A7 model

Energy/Power measurements

Table 7.9 compares the Energy and Peak Power of simulated and native ARM A7. We can

observe that in the majority of the case and also on average (less than 400 mJ of difference)

the ARM energy consumption estimated in the simulation is quite close to the real one.

Furthermore, it could also be noticed that the peak power estimation is satisfactorily accurate

(average error of 0.05 W).

23 This error is due to different clock frequencies (1GHz in simulated time vs 1.4GHz in A7).

147

 Simulated ARM A7

Energy (mJ)

Native ARM A7

Energy (mJ)

Simulated ARM A7

Peak Power (W)

Native ARM A7

Peak Power (W)

Image 1 889.856348 1381.52 0.172926 0.12

Image 2 1333.858905 1982.53 0.172926 0.14

Image 3 887.620033 899.63 0.172926 0.11

Average 1037.111762 1421.226667 0.172926 0.123

Table 7.9. MVS Energy & Power comparison using ARM A7

7.4.2.4.2 Out of Order

In order to test the Out Of Order ARM CPU model to the following set ups are compared:

• Simulated CPS with ARM CPU Out Of Order at 2 GHz

• Native CPS with Odroid Xu3 using just 1 ARM A15 core limited at 2 GHz

Time measurements

Table 7.10 describes the simulated time of Imaging node application time measured by the

COSSIM simulator using ARM A15 Out Of Order model. As can be observed, the simulated

time of native ARM 15 device is similar with Out Of Order ARM model available in COSSIM.

In addition, the simulation with Out of Order ARM CPU model takes more than 31 hours

comparing with the Atomic Simple which takes only 3 hours.

Imaging node

application time(ms)

Simulated Time

OoO

Native

(ARM A15)

Host (Simulation Time)

OoO

Image 1 5068793 5824470 98857310

Image 2 6678295 8956860 145087200

Image 3 5078255 6148150 99378850

Average 5608447 6976493 114441120

Table 7.10. MVS Simulated time comparison using ARM A15 model

148

Energy/Power measurements

Table 7.11 compares the Energy and Peak Power of simulated and native ARM A15. As can

be observed, the energy consumption and peak power is closer to the native result.

 Simulated ARM A15

Energy (mJ)

Native ARM A15

Energy (mJ)

Simulated ARM A15

Peak Power (W)

Native ARM A15

Peak Power (W)

Image 1 692.661715 753.71 1.503026 1.54

Image 2 941.130709 1236.84 1.503026 1.55

Image 3 693.604826 771.97 1.503026 1.54

Average 775.7990833 954.173333 1.503026 1.54

Table 7.11. MVS Energy & Power comparison using ARM A15

Network Energy consumption

Figure 7.21 reports the communication energy consumption by COSSIM of the micro router

return associated with the ARM device. From the figure we can observe that before 10.2

seconds there is no communication between the devices (before that time the mobile node is

executing the descriptor extraction and the retrieval stage on the local database). The energy

consumed before that time is 0.0206 J (in 10.3 seconds) which is coherent with the idle power

set of 2mW. Between time 10.4s and 10.6s (in which the slope of the curve locally increases)

the transmission of the descriptors occurs and at the end the central node sends back the

result to the imaging node.

149

Figure 7.21. MVS Network Energy Consumption for the ARM device

7.4.2.5 COSSIM Co-Simulation
Authors in [117] presents a co-simulation method in COSSIM framework moving some

heavy computations outside of COSSIM and executed natively on the machine hosting the

simulation (host) or an additional machine, i.e. in a co-simulation configuration. Specifically,

the co-simulation uses a Universal Asynchronous Receiver Transmitter (UART) peripheral

on the cGEM5 machine to allow it to communicate with its host, which sees the peripheral as

a socket. The external component runs on the host machine and connects to this socket, from

which it can read what an application running in cGEM5 writes on the UART output channel

and the application can read on the UART input what the external component writes on the

socket. The application sends the parameters to the external component, that receives them

and calls the specific function we want to run externally. Once finished returns to cGEM5

application the results. The user can configure the external component to call on a remote

machine. In particular in the MVS simulation, the IA needs to be executed by an ARM

machine while the host of the simulation is an x86. In this case, an Ethernet connection

between the host and the ARM device is created and the external components on the host call

the function on the ARM machine through Ethernet connection as illustrated in Figure 7.22.

150

Figure 7.22. COSSIM Co-Simulation using MVS use case

Figure 7.23 reports in hours, minutes and seconds the simulated and host times for

the imaging node in both the co-simulation and the simple simulation (COSSIM) scenarios.

Two different ARM machines are used for the co-simulation. The first one is the same used

in the native system (i.e. Hardkernel Odroid XU3 including ARMcortex-A15), while the

second one is a STMicroelectronics B2260 2 using a ST Cannes2-STiH410-EJB SoC including

a dual ARMcortex-A9 at 1.5 GHz.

The native time of the IA is only 0.6s on the Odroid XU3. After setting in the Odroid

XU3 the number of active cores and their maximum frequencies in line with the simulated

device inside COSSIM the native time increases to 5.2s.

The simulation of the descriptor extraction takes 10426.46s (about 2 hours and 53

minutes) of host time on a single VGA image due to the complex computer vision algorithms

involved, as described in Section 7.4. When co-simulating takes place using an Odroid XU3,

the host time decreases significantly to 78.45s (less than 1 minute and a half), which is the

0.75% of COSSIM simulation time. On the other hand, co-simulating with the ST B2260 takes

82.41s. The difference, in term of host time, between co-simulating using the ST B2260 and

ODROID XU3 is due to the slower ST B2260 processor compared to the ODROID one (ARM

A9 vs A15).

In the accelerated version we have benefits in term of host time and thus simulator

speed, but we get incorrect results in the application and CPU times. Due to the fact that the

151

two systems (simulation and co-simulation component) do not exchange messages to

synchronize their time and also run with different real-time clock rates the simulation times

measured in the accelerated version of the application are slightly different from the real

execution times. After the string of the descriptor is sent to the external component, the time

of the two systems runs differently, since the simulator is slower than a real component.

Moreover, the descriptor needs to be split into small packets and sent with some delay from

one to the other due to channel synchronization issues. In this case, each packet is 200 Bytes

and it is sent at one-second intervals (as measured by the host machine).

Summarizing, this solution is a good fit if the user needs to prove the correctness of

the application, as could be the case in the first stage of the development process, while it is

unfit if the user wants to test the times of the system in a real environment.

Figure 7.23. COSSIM Co-Simulation using MVS use case

7.5 Validation and Performance Analysis of ACSIM
Initially, the efficiency of SystemC integration with full system simulator (i.e. GEM5) has been

evaluated comparing our proposed method (i.e. ACSIM - Chapter 6) with the conventional

manual approach. Subsequently, a validation and performance results of SystemC

152

integration with whole COSSIM simulator is presented using a SystemC-described

accelerator of a real application.

7.5.1 Evaluation of ACSIM

In order to evaluate the efficiency of our novel approach we have used two SystemC-

described accelerators and the ACSIM approach is compared with the conventional manual

approach; both simulations approaches are illustrated in Figure 7.24. In general, the

integrated simulation utilizing a full-system simulator and a SystemC one is not a trivial

process mainly due to the data exchange needed between the two stand-alone simulators.

GEM5
Boot OS

GEM5
Run App

InputData
(Write File)

Accellera
(SystemC)

OutputData
(Write File)

(1)

GEM5
Boot OS

GEM5
Run App

Accellera
(SystemC)

(2)

(3)

(4)
(5)

(1)
(2)

(3)

DMA

Figure 7.24. (i) Standard (top) & (ii) Our novel method efficiently integrating GEM5 Full

System Simulator with Accellera Simulator (bottom)

Based on the existing conventional flow, the application executed in GEM5 writes the

data that should be fed to the SystemC simulator in files, denoted as Steps 1 & 2 of Figure

7.24. Then, the full-system simulator has to terminate or stall its execution so that the SystemC

simulator can read the data from those files without any synchronization problem, i.e. Step

3. Subsequently, in the conventional method, the SystemC simulator returns its results to the

GEM5 application using output files, denoted as Steps 4 & 5. Another important remark is

that normally in every SystemC simulator call, the full-system must boot the OS from scratch,

while, and more importantly, no notion of synchronisation exists in such a file-based

exchange.

In contrary, our novel ACSIM method resolves efficiently all those issues since the

full-system simulator boots the OS only once and, since it communicates with the SystemC

153

simulator through programmed I/Os and DMA engines, full global synchronisation is

supported. Moreover, the proposed approach is orders of magnitude faster than the

conventional one as demonstrated in Figure 7.24.

7.5.1.1 Use Cases
The following paragraphs offer a short but necessary theoretical background to each of the

selected use cases. The main reason behind the selection of those two use cases is that the

complexity of the accelerator hardware implementing them depends on the number of

iterations supported in each hardware core. In such a way, in our experiments, we have

evaluated the whole range of accelerators, from very simple ones (i.e. implementing just one

or very few iterations) to quite complicated ones (i.e. implementing tens of iterations).

1) Mutual Information: Mutual Information (MI) [118] measures the information that

two random variables, X and Y, share. Alternatively, it measures the extent to which

the uncertainty about one of the two is reduced through the information known on

the other (i.e. to what degree the knowledge of one of these variables reduces the

uncertainty of the other one). For instance, if X and Y are independent, knowing the

value of X does not give any information about Y and thus their Mutual Information

is zero. On the other hand, if X is a deterministic function of Y and Y is a deterministic

function of X, then all the information conveyed by X is shared with Y. In this case the

Mutual Information is the same as the uncertainty contained in X or Y alone.

2) Transfer Entropy: Transfer Entropy (TE) [119] is a nonparametric statistic, which

measures the amount of directed (time-asymmetric) transfer of information between

two random processes. Moreover, Transfer Entropy is able to distinguish the driving

and the responding elements and to detect asymmetry in the interaction of

subsystems. Also, it constitutes a conditional Mutual Information, which uses the

history of the influenced variable in the condition. Transfer Entropy is very frequently

utilized in the analysis of nonlinear signals; however, it usually requires a very large

number of samples in order to end up with an accurate estimation. While it was

originally defined for bivariate analysis, it has been extended to multivariate forms,

154

either conditioning on other potential source variables or considering transfer from a

collection of sources.

7.5.1.2 Comparative Results
The processing platform used in the comparative analysis is an Intel i5-4590 at 3.3GHz with

16GB of RAM. Furthermore, the MI and TE results are based on a typical data size of 40K

samples while the number of iterations range from 100 to 500 for MI and from 20 to 100 for

TE, as shown in Figure 7.25; these ranges have been selected due to the fact that they

constitute typical values in order to get high accuracy results. In addition, the results of Figure

7.26 focus only on the two high-end values for both ranges, i.e. 500 iterations for MI and 100

iterations for TE since those are the worst cases for our system. In those two first experiments

we concentrate on a single node setting (i.e. just a cGEM5 instance connected to the Accellera

simulator).

 Figure 7.25 first illustrates the overall simulation time when calling 10 times the

SystemC accelerator (i.e. our MI and TE SystemC code executed on top of the Accellera

Simulator). It becomes apparent that the proposed method is one order of magnitude faster

than the conventional file-based method in all cases and that is because the cGEM5 simulator

boots the OS only once. Furthermore, the overall simulation time does not radically change

in this case since the simulation of our very small SystemC-based accelerators is orders of

magnitude faster than the actual time needed by cGEM5. Moving to more complicated

accelerators (such as for example a TE module handling 100 iterations) we clearly see the

efficiency of our approach since the complex code takes slightly more time than a code half

or even 5 times smaller (i.e. cores handling 50 or 20 TE iterations respectively) due to our

novel synchronization approach.

 Figure 7.26 compares the overall simulation times between the conventional and the

proposed method using a different number of SystemC accelerator calls, when the

complexity of the accelerators remains constant (i.e for the same number of iterations). For

the case of the first call, our method needs slightly more time due to synchronisation issues,

in the order of a second, however, as the number of calls to the accelerator increases, it

155

gradually surpasses and eventually dominates over the conventional method. For example,

our method is one order of magnitude faster for all three last cases (10 or more SystemC

accelerator calls) for both the MI and the TE hardware cores.

(a) Mutual Information Algorithm (b) Transfer Entropy Algorithm

Figure 7.25. Simulation time of (i) standard and (ii) our method using two use cases (10 # of

Accelerator calls are used)

(a) Mutual Information Algorithm (b) Transfer Entropy Algorithm

Figure 7.26. Simulation time of two use cases using different # of Accelerator calls

1

10

100

100 200 500

Si
m

u
la

ti
o

n
 T

im
e

 (
in

 m
in

u
te

s)

of Iterations (Complexity of Algorithm)

Standard Method
Our Method

1

10

100

20 50 100

Si
m

u
la

ti
o

n
 T

im
e

 (
in

 m
in

u
te

s)

of Iterations (Complexity of Algorithm)

Standard Method
Our Method

0

50

100

150

200

250

300

350

1 5 10 50 100

Si
m

u
la

ti
o

n
 T

im
e

 (
in

 m
in

u
te

s)

of SystemC Application Calls

Standard Method Our Method

0

50

100

150

200

250

300

350

1 5 10 50 100

Si
m

u
la

ti
o

n
 T

im
e

 (
in

 M
in

u
te

s)

of SystemC Application Calls

Standard Method Our Method

156

Finally, in order to evaluate the host/device interactions in ACSIM, we measure both the

simulated transfer time from GEM5 to our accelerator as well as the overall ACSIM

simulation time as illustrated in Figure 7.27 and Figure 7.28 respectively. Specifically, in our

experiments, three different amounts of data are measured from 100MB to 400MB using three

transfer rates (from 8Bytes up to 32Bytes per SystemC cycle24). In case of 100MB and

8Bytes/cycle for example, ACSIM reports 28ms as simulated time using 500MHz accelerator

(100MB/8Bytes = 12,5M cycles or 25ms) plus overhead for the transaction initialization. As a

result, the simulated time which reported by ACSIM is quite accurate. In addition, as

illustrated in Figure 7.27 the simulated time is decreased approximately by 1,93x doubling

the transfer rate due to overhead during initialization of the transaction. Finally we can

observe from Figure 7.28 that ACSIM has negligible overhead in overall simulation doubling

the amount of transfer data.

Figure 7.27. ACSIM Simulated Transfer Time using different transfer rates

24 The user can define the transfer rate through a parameter.

157

Figure 7.28. Overall ACSIM Simulation Time using different transfer rates

7.5.2 Evaluation of ACSIM within COSSIM framework
Moving to the overall evaluation of ACSIM (in conjunction with COSSIM) it is based on a

Reservoir Simulation (RS) application which is the state-of-the-art technology used to predict

field performance under several possible production schemes. Within this application we

have developed a SystemC-based accelerator of the Hyperbolic method. The Hyperbolic

algorithm facilitates the calculation of the Rachford-Rice [120] (RR) equation which is

effectively responsible for providing insight as to the flow of liquids within an oil reservoir

and it is used extensively in the field of oil Reservoir Simulation. RR is a variation of the

Newton-Raphson method [121] that provide results at less iterations and, therefore, in less

time.

 Figure 7.29 illustrates the ACSIM system when simulating the overall the RS system

including the Hyperbolic SystemC cores. Specifically, each processing node represents an

ARM-based System running BusyBox OS tightly interconnected with two SystemC instances

of the Hyperbolic algorithm. In node0 a single server (producer) is simulated which initializes

the overall processing tasks and distributes the data among the rest of the nodes (consumers)

through real network protocols (i.e. both Ethernet and wireless). The consumer nodes, in

158

turn, send the corresponding data to the hardware accelerators and after the processing is

complete, they return the results back to the Server.

BusyBox (OS)

ARM Linux

Kernel

User Space

A
cc

e
le

ra
to

r

D
ri

v
er

Hyperbolic

A
M

B
A

 B
U

S

Accelerator Wrapper

M
as

te
r

S
la

v
e

pio

dma

Core
(C++/SystemC)

Device Memory

H
yp

e
rb

o
lic

Sy

st
em

C
 0

port

port H
yp

e
rb

o
lic

Sy

st
em

C
 Ν

NIC

HLAlib
libRTI

BusyBox (OS)

ARM Linux

Kernel

User Space

A
cc

e
le

ra
to

r

D
ri

v
er

Hyperbolic

Accelerator Wrapper

M
as

te
r

S
la

v
e

pio

dma

Core
(C++/SystemC)

Device Memory

H
yp

e
rb

o
lic

Sy

st
em

C
 0

port

port H
yp

e
rb

o
lic

Sy

st
em

C
 N

NIC

HLA Server

HLAlib
libRTI

HLAlib

libRTI

cOMNET++

A
M

B
A

 B
U

S

... ...
NodeM

Node0

SimulatedNode1 SimulatedNodeM

BusyBox (OS)

ARM Linux

Kernel

User Space

Hyperbolic

NIC

HLAlib
libRTI

Figure 7.29. A representation of COSSIM simulator with ACSIM integration using

Hyperbolic SystemC cores

Figure 7.30 demonstrates the simulated time reported when the whole application is

simulated without the accelerators (grey bars) and when ACSIM also simulates the

accelerators. Those numbers are from 2-512 consumer nodes using 800K samples. The

experiment is executed using multiple physical cores in a cluster of multiple distributed

machines. Specifically, a 42U HP RACK 10000 G2 Series cabinet is used which contains 44 HP

Proliant BL465c server blades with two AMD Opteron Model 2218 (2.6GHz), 4GB of RAM

and Gigabit ethernet per blade (totally 176 physical cores are contained in the above cluster).

The network part of COSSIM (OMNET++) is executed in typical workstation based on an

Intel i5-4590 processor (3.3GHz) running Ubuntu Linux 14.04 with 16GB of RAM, while the

processing parts (GEM5 instances) and HLA server are executed in the cluster which is

described above running Ubuntu Linux 16.04.

Figure 7.30, demonstrates that the simulated time is decreased by a factor of two,

every time we double the number of consumer nodes to which the data are distributed and

processed. Moreover, as we can see if the accelerators are simulated at 500Mhz the overall

latency reported by ACSIM is 2x times smaller when compared with the purely S/W scenario

(this includes the simulation of the required data transfer from the CPU to the Accelerator

159

and back25 which is denoted with the Orange line). When doubling the clock frequency of the

simulated accelerators we get a 2x increase in the speedup as well. This is inline with the

trend reported by a real implementation of the application in FPGA-based parallel

heterogeneous systems as described in [122] and show the efficiency of our approach.

Figure 7.30. Simulated Time of Hyperbolic SystemC Processing and Data Transfer at

500MHz and 1GHz versus ARM SW-based version at 2GHz using 800K samples (upper: 2-16

nodes; lower 32-512 nodes)

25 In our simulation the DMA engine is used to transfer the data from the memory of cGEM5 to the

Accelerator’s DRAM, and subsequently the SystemC main thread reads/writes two memory elements in

every SystemC cycle.

0

20000

40000

60000

80000

100000

120000

140000

160000

2 4 8 16 2 4 8 16 2 4 8 16

SystemC 500MHz SystemC 1GHz ARM A7 SW-based (2GHz)

Si
m

u
la

te
d

 T
im

e
 (

u
s)

Simulated Time of Hyperbolic SystemC and ARM (2-16 nodes)

SystemC Processing Data Transfer SW Time

0
1000
2000
3000
4000
5000
6000
7000
8000
9000

10000

32 64 128 256 512 32 64 128 256 512 32 64 128 256 512

SystemC 500MHz SystemC 1GHz ARM A7 SW-based (2GHz)

Si
m

u
la

te
d

 T
im

e
 (

u
s)

Simulated Time of Hyperbolic SystemC and ARM (32-512 nodes)

SystemC Processing Data Transfer SW Time

160

In Figure 7.31 we illustrate the simulated time for the same application when we have

from 1 to 4 accelerator cores per processing node. In this experiment we can see that the

application latency reported is decreased approximately by 1.7x when we double the

accelerators per node; this is a reasonable number since the application execution also

involves the data transfer from the single processing system to multiple Accelerators’

memories.

Figure 7.31. Simulated Time of Hyperbolic SystemC Processing and Data Transfer at 1GHz

using 1-4 SystemC cores per node (upper: 2-16 nodes; lower 32-512 nodes)

0

5000

10000

15000

20000

25000

30000

35000

40000

2 4 8 16 2 4 8 16 2 4 8 16

1 SystemC core per node 2 SystemC cores per node 4 SystemC cores per node

Si
m

u
la

te
d

 T
im

e
 (

u
s)

Simulated Time of Hyperbolic SystemC (1-4 cores per node)

SystemC Processing (1GHz) Data Transfer (1GHz)

0

500

1000

1500

2000

2500

32 64 128 256 512 32 64 128 256 512 32 64 128 256 512

1 SystemC core per node 2 SystemC cores per node 4 SystemC cores per node

Si
m

u
al

te
d

 T
im

e
(u

s)

Simulated Time of Hyperbolic SystemC (1-4 cores per node)

SystemC Processing (1GHz) Data Transfer (1GHz)

161

162

8
Conclusions and Future Work

In this work, we present the COSSIM Simulation Framework, an open-source novel solution

that addresses, in a single integrated toolset, the simulation of both the processing and the

networking parts of highly parallel systems, while also taking into account the power

consumption aspects of them. By using a novel dual-stage synchronization scheme COSSIM

is the first known system providing global cycle accurate simulation, highly

parallel/distributed execution and high extensibility.

On top of that, we present the ACSIM Simulation Framework, an open-source novel

solution that addresses, in a single integrated tool-set, the simulation of the processing and

the networking parts of highly parallel systems together with custom hardware accelerators

that are designed in synthesizable SystemC; if needed non-synthesizable SystemC can also

be utilized.

163

Our novel approach allows for the first time for global synchronization along the three

(i.e. Network, Processing and Hardware Accelerator) simulation domains. Such an integrated

approach can severally reduce the time needed for Design Space Exploration in highly

parallel heterogeneous systems since different number of nodes, different number of

accelerators per node and different clock frequencies of the accelerators can all be seamlessly

simulated and evaluated, while also accelerate the overall development and verification

process.

Based on a number of experiments the COSSIM/ACSIM simulator proved to produce

very accurate results (up to 99% accuracy) for both network and processing heavy

applications, while it is most probably the only simulator that can efficiently simulate up to

a thousand of processing nodes interconnected together in a full distributed manner.

Moreover, it is, to the best of our knowledge, the first ever simulator that can efficiently

simulate highly parallel systems (such as those used in Cloud and infrastructures) containing

several hundreds of processing nodes each one interconnected with a number of hardware

accelerators.

As future work, and in order to further extend the functionality of the Simulation

Framework in the CPS domain, we aim to integrate COSSIM with a widely used physical

process simulator (i.e. Ptolemy) by using the already developed HLA interface. Additionally,

we have already started working on accelerating the framework through the use of FPGA

devices. At this stage, we have focused on accelerating the power/energy estimation

processes.

164

Appendix – Lessons Learnt
This appendix describes the most important lessons learnt regarding the implementation

issues of the sub-systems developed in the context of the COSSIM/ACSIM simulation

frameworks.

✓ First of all, in GEM5’s publicly available repositories, the only network interface card

implemented, tested and verified is the Intel 8254x based gigabit Ethernet adapter. It

is provided as a PCI GEM5 network device using the e1000 Linux driver.

Unfortunately, the latest version of GEM5 supports the real-network device only on

ARM-based architectures. In order to support the COSSIM requirements as stated

above we had to modify GEM5 for x86 ISA and configure it properly. In the process

to achieve this functionality on x86, proper drivers for the specific network device

were also required. These drivers, however, required a more modern Linux kernel

build for x86 than the one available in the GEM5 repositories (only 2.6.x kernels were

available and drivers required 3.x kernels) and as a result we custom-built such a

kernel and a custom-made network card of the x86-based systems.

✓ In addition to the network interface cards, GEM5 supports networking through a

simple Etherlink device. Etherlink is a virtual dummy link which emulates a cable over

which Ethernet packets are sent and received without any delay (no switching or

routing functionality is implemented). In the scope of COSSIM, this limitation (only a

single NIC and a single type of network) are unacceptably restrictive. Therefore,

Etherlink could not be used in its current form at all and it had to be modified. Since

device models are not easy to develop without inside information from their

manufacturer (the Intel NIC model used in GEM5 has been contributed by Intel itself),

in order to support a varying number of physical networks, we focus on tapping the

Ethernet packets from Etherlink and send them to a Networking Simulator. To achieve

the aforementioned, we employ CERTI HLA and specifically a virtual device named

COSSIMlib is developed and integrated to the main core of the GEM5 system through

165

Etherlink to synchronize and interconnect the GEM5 with OMNET++ simulator

implementing two synchronization levels (Synchronization per node and Global

Synchronization) as described in Chapter 4 & Chapter 5. Specifically, COSSIMlib is a

wrapper to an RTI Ambassador Class serving to exchange messages over the network

with the HLA Server (RTIG process) via TCP (and UDP) sockets. COSSIMlib

exchanges Ethernet Packets captured from the Etherlink Device and sends (and

accordingly receives) them to (from) the HLA Server (RTIG). The HLA Server

forwards these messages to a proper interface in Network Simulator (cOMNET++)

that implements all the network related functionality (NIC physical layer and actual

network). Finally, SynchServer is developed to initialize the HLA connections in both

GEM5 and OMNET++.

✓ On the other hand, a dedicated network simulator in COSSIM is to be able to support

multiple network protocols, topologies and devices through which nodes

(represented by cGEM5 instances) can be interconnected. OMNeT++ has been chosen

as the most capable and feature-rich network simulator in that context, however there

are issues that arise. Initially, OMNeT++ does not support the real protocol stacks (e.g.

Linux ones) as GEM5 and therefore to be able to bridge the two packages and use

freely all OMNET++ legacy requires a procedure that encapsulates/decapsulates

cGEM5 binary packets into OMNET++ - compatible packets. In addition, in order to

support different network protocols (generally compatible till a certain level, such as

WiFi protocols) within OMNeT++, a micro-router functionality is implemented as

described in Chapter 4.

✓ Based on the related work which is described in Section 3.4, it is clear that currently

there is no framework supporting all the features of COSSIM/ACSIM, namely

simulation of hardware accelerators together with CPUs and networks in a fast and

fully featured way. Specifically, the existing approaches mainly use the GEM5

processing simulator in its syscall emulation mode which means that no operating

system can be supported within their simulations making them impractical for

166

general HPC/CPS/Cloud system design; moreover, they cannot support any kind of

networking. In order to eliminate the above restriction, we have developed a set of

device drivers as well as Accelerator Wrapper Device to achieve efficient

communication between the H/W accelerator and the processing simulator.

✓ In the context of security vulnerabilities and specifically for fuzz-testing integration,

pause-resume functionality is implemented in order to integrate Fuzz-testing system

with the COSSIM framework. The main concept behind fuzz testing is to send a large

number of test vectors to the system under test, making sure the system is in the same

exact state before each request; sending even a single test vector to the system will

change its internal state and have a possible effect on the processing of subsequent

test vectors, thus potentially invalidating the results of the test. In other words, it

needs to take a GEM5 checkpoint and restore GEM5 simulations from the same

checkpoint a lot of times (Chapter 4). Of course, this is possible in standalone GEM5,

but this is not possible in COSSIM framework because even though GEM5 is able to

store and restore its own state (using checkpoints), OMNeT++ on the other hand

cannot support this feature (store/restore). Moreover, GEM5 in the COSSIM

environment cannot be stopped but paused in every checkpoint. That's why HLA

connections will be dropped if some of GEM5 node stops its execution. On the other

hand, GEM5 restore option can be performed only in a new GEM5 execution. The

proposed solution in COSSIM (to encounter the above limitation) is the pause/resume

functionality which is developed in the context of this thesis and it is integrated in

cGEM5. This implementation allows a particular GEM5 instance to be pause, while

sending an appropriate message to the fuzz-testing module and bringing up a

separate standalone GEM5 instance featuring the saved state, in order to perform all

kind of tests without interfering with the overall COSSIM simulation.

✓ The COSSIM framework can simulate the computation along with the networking

aspects of a CPS in a holistic approach. Since this creates a bias towards the cyber part

rather than the physical part of a CPS system, COSSIM need to provide an option to

167

integrate simulation of components of the physical world. For this reason, GEM5 is

extended to include sensor devices in the processing system as memory mapped

peripherals. This provides an interface to include physical world components (their

behavior) to the overall simulation.

✓ In GEM5 community, there is not any x86 full Ubuntu image to support apt-get

installation packages. It was necessary because one of the COSSIM use cases needs a

lot of Ubuntu packages with dependencies. As a result, we create from scratch a x86

GEM5-compatible image with full Ubuntu 12.04.

✓ OMNET++ is not support any function to measure the traffic rate of packets. As a

result, we implement a function to measure traffic rate in OMNET++ statistics.

✓ There is not a standard method to integrate the GEM5 with McPAT. So, we integrate

cGEM5 with McPAT execution after COSSIM simulation through our Graphical User

Interface.

168

169

Bibliography
[1] “NIST | National Institute of Standards and Technology,” NIST. [Online]. Available:

https://www.nist.gov/national-institute-standards-and-technology.

[2] H. Gill and R. Baheti, “‘Cyber-physical systems’, The Impact of Control Technology,”

Wash. C IEEE, p. 161−166, 2011.

[3] “The Ptolemy Project.” [Online]. Available: https://ptolemy.eecs.berkeley.edu/.

[4] “Model-Based Design of cyber-physical systems in MATLAB and Simulink.”

[Online]. Available: https://www.mathworks.com/discovery/cyber-physical-systems.html.

[5] “TOSSIM.” [Online]. Available: http://tinyos.stanford.edu/tinyos-

wiki/index.php/TOSSIM.

[6] “ATEMU - Sensor Network Emulator / Simulator / Debugger.” [Online]. Available:

http://www.hynet.umd.edu/research/atemu/.

[7] “Avrora - The AVR Simulation and Analysis Framework.” [Online]. Available:

http://compilers.cs.ucla.edu/avrora/.

[8] G. Chelius, É. Fleury, and A. Fraboulet, “Worldsens - Development and Prototyping

Tools for Application Specific Wireless Sensors Networks.”

[9] “Cooja Simulator - Contiki.” [Online]. Available:

http://anrg.usc.edu/contiki/index.php/Cooja_Simulator.

[10] H. Sundani et al., “Wireless Sensor Network Simulators A Survey and Comparisons,”

Comp. Int. J. Comput. Netwroks, pp. 249–265, 2010.

[11] F. Osterlind, A. Dunkels, J. Eriksson, N. Finne, and T. Voigt, “Cross-Level Sensor

Network Simulation with COOJA,” in Proceedings. 2006 31st IEEE Conference on Local

Computer Networks, 2006, pp. 641–648.

[12] “SimulAVR.” [Online]. Available: http://www.nongnu.org/simulavr/.

[13] “GEZEL Hardware/Software Codesign Environment.” [Online]. Available:

http://rijndael.ece.vt.edu/gezel2/.

170

[14] R. N. Calheiros, R. Ranjan, A. Beloglazov, C. A. F. De Rose, and R. Buyya, “CloudSim:

a toolkit for modeling and simulation of cloud computing environments and evaluation of

resource provisioning algorithms,” Softw. Pract. Exp., vol. 41, no. 1, pp. 23–50, Jan. 2011.

[15] D. Meisner, J. Wu, and T. F. Wenisch, “BigHouse: A simulation infrastructure for data

center systems,” 2012, pp. 35–45.

[16] D. Kliazovich, P. Bouvry, Y. Audzevich, and S. U. Khan, “GreenCloud: A Packet-Level

Simulator of Energy-Aware Cloud Computing Data Centers,” in 2010 IEEE Global

Telecommunications Conference GLOBECOM 2010, 2010, pp. 1–5.

[17] P.-O. Östberg et al., “The CACTOS Vision of Context-Aware Cloud Topology

Optimization and Simulation,” in Proceedings of the 2014 IEEE 6th International Conference on

Cloud Computing Technology and Science, Washington, DC, USA, 2014, pp. 26–31.

[18] S. K. Garg and R. Buyya, “NetworkCloudSim: Modelling Parallel Applications in

Cloud Simulations,” in 2011 Fourth IEEE International Conference on Utility and Cloud

Computing, 2011, pp. 105–113.

[19] B. Wickremasinghe, R. N. Calheiros, and R. Buyya, “CloudAnalyst: A CloudSim-

Based Visual Modeller for Analysing Cloud Computing Environments and Applications,” in

2010 24th IEEE International Conference on Advanced Information Networking and Applications,

2010, pp. 446–452.

[20] B. Louis, K. Mitra, S. Saguna, and C. Åhlund, “CloudSimDisk: Energy-Aware Storage

Simulation in CloudSim,” in 2015 IEEE/ACM 8th International Conference on Utility and Cloud

Computing (UCC), 2015, pp. 11–15.

[21] J. Son, A. V. Dastjerdi, R. N. Calheiros, X. Ji, Y. Yoon, and R. Buyya, “CloudSimSDN:

Modeling and Simulation of Software-Defined Cloud Data Centers,” in 2015 15th IEEE/ACM

International Symposium on Cluster, Cloud and Grid Computing, 2015, pp. 475–484.

[22] M. Shiraz, A. Gani, R. H. Khokhar, and E. Ahmed, “An Extendable Simulation

Framework for Modeling Application Processing Potentials of Smart Mobile Devices for

Mobile Cloud Computing,” in 2012 10th International Conference on Frontiers of Information

Technology, 2012, pp. 331–336.

[23] M. Bux and U. Leser, “DynamicCloudSim: Simulating heterogeneity in computational

clouds,” Future Gener. Comput. Syst., vol. 46, pp. 85–99, May 2015.

171

[24] M. Hsieh, K. Pedretti, J. Meng, A. Coskun, M. Levenhagen, and A. Rodrigues, “SST +

Gem5 = a Scalable Simulation Infrastructure for High Performance Computing,” in

Proceedings of the 5th International ICST Conference on Simulation Tools and Techniques, ICST,

Brussels, Belgium, Belgium, 2012, pp. 196–201.

[25] C. Minkenberg, W. Denzel, G. Rodriguez, and R. Birke, “End-to-End Modeling and

Simulation of High- Performance Computing Systems,” in Use Cases of Discrete Event

Simulation, Springer, Berlin, Heidelberg, 2012, pp. 201–240.

[26] W. Hurst, S. Ramaswamy, R. Lenin, and D. Hoffman, “Development of Generalized

HPC Simulator,” in Distributed Computing and Internet Technology, 2010, pp. 176–179.

[27] A. F. Rodrigues et al., “The Structural Simulation Toolkit,” SIGMETRICS Perform Eval

Rev, vol. 38, no. 4, pp. 37–42, Mar. 2011.

[28] J. Lange et al., “Palacios and Kitten: New high performance operating systems for

scalable virtualized and native supercomputing,” in 2010 IEEE International Symposium on

Parallel Distributed Processing (IPDPS), 2010, pp. 1–12.

[29] G. Zheng, G. Kakulapati, and L. V. Kale, “BigSim: a parallel simulator for performance

prediction of extremely large parallel machines,” in 18th International Parallel and Distributed

Processing Symposium, 2004. Proceedings., 2004, pp. 78-.

[30] S. Böhm and C. Engelmann, “xSim: The extreme-scale simulator,” in 2011 International

Conference on High Performance Computing Simulation, 2011, pp. 280–286.

[31] W. E. Denzel, J. Li, P. Walker, and Y. Jin, “A Framework for End-to-End Simulation of

High-performance Computing Systems,” SIMULATION, vol. 86, no. 5–6, pp. 331–350, May

2010.

[32] J. E. Kim and D. Mosse, “Generic Framework for Design, Modeling and Simulation of

Cyber Physical Systems,” SIGBED Rev, vol. 5, no. 1, pp. 1:1–1:2, Jan. 2008.

[33] “Open Virtual Platforms.” [Online]. Available: http://www.ovpworld.org/.

[34] “SimpleScalar LLC.” [Online]. Available: http://www.simplescalar.com/.

[35] D. Brooks, V. Tiwari, and M. Martonosi, “Wattch: a framework for architectural-level

power analysis and optimizations,” in Proceedings of 27th International Symposium on Computer

Architecture (IEEE Cat. No.RS00201), 2000, pp. 83–94.

172

[36] “CPU Sim.” [Online]. Available: http://www.cs.colby.edu/djskrien/CPUSim/.

[37] J. Campenhout, P. Verplaetse, and H. Neefs, “ESCAPE: Environment for the

simulation of computer architectures for the purpose of education,” p. 9, Dec. 1998.

[38] N. Brown, “HASE - a computer architecture simulation environment.” [Online].

Available: http://www.icsa.inf.ed.ac.uk/research/groups/hase/.

[39] “MikroSim,” Wikipedia. 14-Feb-2017.

[40] “SimNowTM Simulator,” AMD. [Online]. Available:

https://developer.amd.com/simnow-simulator/.

[41] D. Sanchez and C. Kozyrakis, “ZSim: Fast and Accurate Microarchitectural Simulation

of Thousand-Core Systems,” p. 12.

[42] N. Binkert et al., “The Gem5 Simulator,” SIGARCH Comput Arch. News, vol. 39, no. 2,

pp. 1–7, Aug. 2011.

[43] N. L. Binkert, R. G. Dreslinski, L. R. Hsu, K. T. Lim, A. G. Saidi, and S. K. Reinhardt,

“The M5 Simulator: Modeling Networked Systems,” IEEE Micro, vol. 26, no. 4, pp. 52–60, Jul.

2006.

[44] M. M. K. Martin et al., “Multifacet’s General Execution-driven Multiprocessor

Simulator (GEMS) Toolset,” SIGARCH Comput Arch. News, vol. 33, no. 4, pp. 92–99, Nov. 2005.

[45] S. Li, J. H. Ahn, R. D. Strong, J. B. Brockman, D. M. Tullsen, and N. P. Jouppi, “McPAT:

An integrated power, area, and timing modeling framework for multicore and manycore

architectures,” in 2009 42nd Annual IEEE/ACM International Symposium on Microarchitecture

(MICRO), 2009, pp. 469–480.

[46] Trevor Carlson, Andreas Sandberg, David Black-Schaffer, and Erik Hagersten, “Full-

System Simulation at Near-Native Speed.”

[47] Andreas Sandberg and Ali Saidi, “Gem5 Virtual Machine Acceleration.”

[48] “The ns-2 Network Simulator.” [Online]. Available: https://www.isi.edu/nsnam/ns/.

[49] M. Stehlık, “Comparison of Simulators for Wireless Sensor Networks,” p. 92.

173

[50] M. Korkalainen, M. Sallinen, N. Kärkkäinen, and P. Tukeva, “Survey of Wireless

Sensor Networks Simulation Tools for Demanding Applications,” in 2009 Fifth International

Conference on Networking and Services, 2009, pp. 102–106.

[51] “The ns-3 Network Simulator.” [Online]. Available: https://www.nsnam.org/.

[52] “The JSim Network Simulator.” [Online]. Available: http://www.physiome.org/jsim/.

[53] H. M. Ammari, Ed., The Art of Wireless Sensor Networks: Volume 1: Fundamentals. Berlin

Heidelberg: Springer-Verlag, 2014.

[54] “NetSim Cisco Network Simulator & Router Simulator.” [Online]. Available:

http://www.boson.com/netsim-cisco-network-simulator.

[55] “OMNeT++ Discrete Event Simulator.” [Online]. Available: https://omnetpp.org/.

[56] “The MiXiM framework.” [Online]. Available: http://mixim.sourceforge.net/.

[57] M. D. Ilic, L. Xie, U. A. Khan, and J. M. F. Moura, “Modeling of Future Cyber-Physical

Energy Systems for Distributed Sensing and Control,” IEEE Trans. Syst. Man Cybern. - Part

Syst. Hum., vol. 40, no. 4, pp. 825–838, Jul. 2010.

[58] P. Tandon, J. Chang, R. G. Dreslinski, V. Qazvinian, P. Ranganathan, and T. F.

Wenisch, “Hardware Acceleration for Similarity Measurement in Natural Language

Processing,” in Proceedings of the 2013 International Symposium on Low Power Electronics and

Design, Piscataway, NJ, USA, 2013, pp. 409–414.

[59] Y. S. Shao, S. L. Xi, V. Srinivasan, G. Y. Wei, and D. Brooks, “Co-designing accelerators

and SoC interfaces using gem5-Aladdin,” in 2016 49th Annual IEEE/ACM International

Symposium on Microarchitecture (MICRO), 2016, pp. 1–12.

[60] Mingyan Yu, Junjie Song, Fangfa Fu, Siyue Sun, and Bo Liu, “A Fast Timing-Accurate

MPSoC HW/SW Co-Simulation Platform based on a Novel Synchronization Scheme,” 2010. .

[61] J. Cong, Z. Fang, M. Gill, and G. Reinman, “PARADE: A cycle-accurate full-system

simulation Platform for Accelerator-Rich Architectural Design and Exploration,” in 2015

IEEE/ACM International Conference on Computer-Aided Design (ICCAD), 2015, pp. 380–387.

[62] “Functional Mock-up Interface.” [Online]. Available: http://fmi-standard.org/.

174

[63] J. R. Noseworthy, “The Test and Training Enabling Architecture (TENA) Supporting

the Decentralized Development of Distributed Applications and LVC Simulations,” in 2008

12th IEEE/ACM International Symposium on Distributed Simulation and Real-Time Applications,

2008, pp. 259–268.

[64] “IEEE Standard for Distributed Interactive Simulation - Communication Services and

Profiles,” IEEE Std 12782-1995, pp. 1–20, Nov. 1996.

[65] A. L. Wilson and R. M. Weatherly, “The aggregate level simulation protocol: an

evolving system,” in Proceedings of Winter Simulation Conference, 1994, pp. 781–787.

[66] “HLA 1516 - Standard for Modeling and Simulation (M&S) High Level Architecture

(HLA) -- Framework and Rules.” [Online]. Available:

https://standards.ieee.org/develop/project/1516.html.

[67] S. P. Griffin, E. H. Page, C. Z. Furness, and M. C. Fischer, “Providing Uninterrupted

Training to the Joint Training Confederation (JTC) Audience During Transition to the High

Level Architecture (HLA).”

[68] “Run-time infrastructure,” Wikipedia. 20-Mar-2018.

[69] “Pitch pRTI – A Certified HLA RTI.” [Online]. Available:

http://www.pitchtechnologies.com/products/prti/.

[70] “The Portico Project.” [Online]. Available:

http://www.porticoproject.org/comingsoon/.

[71] C. Roth, O. Sander, M. Kühnle, and J. Becker, “HLA-based Simulation Environment

for Distributed SystemC Simulation,” in Proceedings of the 4th International ICST Conference on

Simulation Tools and Techniques, ICST, Brussels, Belgium, Belgium, 2011, pp. 108–114.

[72] “CERTI Project,” 2015. [Online]. Available: http://savannah.nongnu.org/projects/certi.

[73] C. Roth, J. Meyer, M. Rückauer, O. Sander, and J. Becker, “Efficient Execution of

Networked MPSoC Models by Exploiting Multiple Platform Levels,” Int J Reconfig Comput,

vol. 2012, pp. 6:6–6:6, Jan. 2012.

[74] G. Lasnier, J. Cardoso, P. Siron, C. Pagetti, and P. Derler, “Distributed Simulation of

Heterogeneous and Real-Time Systems,” in 2013 IEEE/ACM 17th International Symposium on

Distributed Simulation and Real Time Applications, 2013, pp. 55–62.

175

[75] C. Roth, O. Sander, and J. Becker, “Flexible and Efficient Co-simulation of Networked

Embedded Devices,” in Proceedings of the 24th Symposium on Integrated Circuits and Systems

Design, New York, NY, USA, 2011, pp. 61–66.

[76] “Accellera SystemC wiki website.” 05-Mar-2018.

[77] “IEEE 1666-2011 - IEEE Standard for Standard SystemC Language.” [Online].

Available: https://standards.ieee.org/findstds/standard/1666-2011.html.

[78] N. Gopalakrishna, “Execution time analysis of audio algorithms,” 2014.

[79] Pete Stevenson, “GEM5 mailing List. X86 full system dual,” 2014. [Online]. Available:

https://www.mail-archive.com/gem5-users@gem5.org/msg09897.html.

[80] Nikolaos Tampouratzis, “GEM5 mailing List. X86 full system dual Solution.,” 2016.

[Online]. Available: https://www.mail-archive.com/gem5-users@gem5.org/msg12680.html.

[81] Balázs Kiss, Gergő Hosszú, and Attila Szász, “COSSIM Public Deliverable D4.2.

‘Initial prototype of security and robustness testing platform.’” .

[82] “GEM5 Checkpoints.” [Online]. Available: http://www.m5sim.org/Checkpoints.

[83] “Ioctl - Control Device.” [Online]. Available: http://man7.org/linux/man-

pages/man2/ioctl.2.html.

[84] E. Vasilakis, I. Sourdis, V. Papaefstathiou, A. Psathakis, and M. G. H. Katevenis,

“Modeling energy-performance tradeoffs in ARM big.LITTLE architectures,” in 2017 27th

International Symposium on Power and Timing Modeling, Optimization and Simulation

(PATMOS), 2017, pp. 1–8.

[85] S. J. E. Wilton and N. P. Jouppi, “CACTI: an enhanced cache access and cycle time

model,” IEEE J. Solid-State Circuits, vol. 31, no. 5, pp. 677–688, May 1996.

[86] P. Rosenfeld, E. Cooper-Balis, and B. Jacob, “DRAMSim2: A Cycle Accurate Memory

System Simulator,” IEEE Comput. Archit. Lett., vol. 10, no. 1, pp. 16–19, Jan. 2011.

[87] A. B. Kahng, B. Li, L. S. Peh, and K. Samadi, “ORION 2.0: A fast and accurate NoC

power and area model for early-stage design space exploration,” in Automation Test in Europe

Conference Exhibition 2009 Design, 2009, pp. 423–428.

176

[88] S. Thoziyoor, J. H. Ahn, M. Monchiero, J. B. Brockman, and N. P. Jouppi, “A

Comprehensive Memory Modeling Tool and Its Application to the Design and Analysis of

Future Memory Hierarchies,” in 2008 International Symposium on Computer Architecture, 2008,

pp. 51–62.

[89] S. Li, J. H. Ahn, R. D. Strong, J. B. Brockman, D. M. Tullsen, and N. P. Jouppi, “The

McPAT Framework for Multicore and Manycore Architectures: Simultaneously Modeling

Power, Area, and Timing,” ACM Trans Arch. Code Optim, vol. 10, no. 1, pp. 5:1–5:29, Apr.

2013.

[90] A. S. Leon et al., “A Power-Efficient High-Throughput 32-Thread SPARC Processor,”

in 2006 IEEE International Solid State Circuits Conference - Digest of Technical Papers, 2006, pp.

295–304.

[91] U. G. Nawathe, M. Hassan, K. C. Yen, A. Kumar, A. Ramachandran, and D. Greenhill,

“Implementation of an 8-Core, 64-Thread, Power-Efficient SPARC Server on a Chip,” IEEE J.

Solid-State Circuits, vol. 43, no. 1, pp. 6–20, Jan. 2008.

[92] S. Rusu, S. Tam, H. Muljono, D. Ayers, and J. Chang, “A Dual-Core Multi-Threaded

Xeon Processor with 16MB L3 Cache,” in 2006 IEEE International Solid State Circuits Conference

- Digest of Technical Papers, 2006, pp. 315–324.

[93] A. Jain et al., “A 1.2 GHz Alpha microprocessor with 44.8 GB/s chip pin bandwidth,”

in 2001 IEEE International Solid-State Circuits Conference. Digest of Technical Papers. ISSCC (Cat.

No.01CH37177), 2001, pp. 240–241.

[94] “Intel Atom® Processors,” Intel. [Online]. Available:

https://www.intel.com/content/www/us/en/products/processors/atom.html.

[95] A. Ltd, “ARM Cortex-A9,” ARM Developer. [Online]. Available:

https://developer.arm.com/products/processors/cortex-a/cortex-a9.

[96] cMcPAT: A modified version of McPAT for the COSSIM framework. The code is based on

McPAT v1.3 and integrates with cgem5. H2020 COSSIM, 2018.

[97] “GEM5ToMcPAT.” [Online]. Available:

https://bitbucket.org/dskhudia/gem5tomcpat.

[98] prajithrg, Modified vanilla McPAT application to perform batch Runtime Dynamic Power

computation. 2017.

177

[99] “GEM5 - Trace Based Debugging.” [Online]. Available:

http://www.gem5.org/Trace_Based_Debugging.

[100] “1516.1-2010 - IEEE Standard for Modeling and Simulation (M&S) High Level

Architecture (HLA)-- Federate Interface Specification - IEEE Standard.” [Online]. Available:

https://ieeexplore.ieee.org/document/5557728/.

[101] “IEEE Standard for Modeling and Simulation (M amp;S) High Level Architecture

(HLA)– Framework and Rules,” IEEE Std 1516-2010 Revis. IEEE Std 1516-2000, pp. 1–38, Aug.

2010.

[102] “HLA Federation Managment.” [Online]. Available:

http://www.cs.cmu.edu/afs/cs/academic/class/15413-s99/www/hla/doc/rti_synopsis/05-

Federation_Management/Federation_Management.html.

[103] E. A. Lee, “Heterogeneous Actor Modeling,” in Proceedings of the Ninth ACM

International Conference on Embedded Software, New York, NY, USA, 2011, pp. 3–12.

[104] D. E. Knuth, The Art of Computer Programming, Volume 1 (3rd Ed.): Fundamental

Algorithms. Redwood City, CA, USA: Addison Wesley Longman Publishing Co., Inc., 1997.

[105] J. Sanders and E. Kandrot, CUDA by Example: An Introduction to General-Purpose GPU

Programming, 1st ed. Addison-Wesley Professional, 2010.

[106] W. Deegan, “SCons: A software construction tool,” SCons. [Online]. Available:

https://scons.org/.

[107] “Gentoo Linux.” [Online]. Available: https://www.gentoo.org/get-started/about/.

[108] “BusyBox Operating System,” Wikipedia. 15-Mar-2018.

[109] A. Saidi and A. Sandberg, “Accelerating Simulation with Virtual Machines.”

[110] “Network Performance Benchmark - Netperf,” 2015. [Online]. Available:

https://hewlettpackard.github.io/netperf/.

[111] “BSD Sockets Interface Programmer’s Guide.” .

[112] “IEEE Standard for Ethernet,” IEEE Std 8023-2015 Revis. IEEE Std 8023-2012, pp. 1–

4017, Mar. 2016.

178

[113] Jonathan Corbet, “Large Receive Offload.” [Online]. Available:

https://lwn.net/Articles/243949/.

[114] “Tecnalia KUBIK: Intelligent Energy Building.” .

[115] M. GUARNERA, “Visual Search - Computer Vision @ STMicroelectronics,” p. 14,

2012.

[116] M. Paracchini, M. Marcon, E. Plebani, and D. P. Pau, “Visual Search of multiple objects

from a single query,” in 2016 IEEE 6th International Conference on Consumer Electronics - Berlin

(ICCE-Berlin), 2016, pp. 41–45.

[117] D. Martino, Y. Shen, M. Paracchini, M. Marcon, E. Plebani, and D. P. Pau, “Accurate

cyber-physical system simulation for distributed visual search applications,” in 2017 IEEE

3rd International Forum on Research and Technologies for Society and Industry (RTSI), 2017, pp. 1–

5.

[118] T. M. Cover and J. A. Thomas, Elements of information theory. New York: Wiley, 1991.

[119] T. Schreiber, “Measuring Information Transfer,” Phys. Rev. Lett., vol. 85, no. 2, pp. 461–

464, Jul. 2000.

[120] C. H. Whitson and M. L. Michelsen, “The negative flash,” Fluid Phase Equilibria, vol.

53, pp. 51–71, Dec. 1989.

[121] “The Newton-Raphson Method.”

[122] P. Malakonakis, K. Georgopoulos, A. Ioannou, L. Lavagno, I. Papaefstathiou, and I.

Mavroidis, “HLS Algorithmic Explorations for HPC Execution on Reconfigurable Hardware

- ECOSCALE,” 2018, pp. 724–736.

