
TECHNICAL UNIVERSITY OF CRETE

DIPLOMA THESIS

Implementation of decision trees for
data streams in the Spark Streaming

platform

Author:
Christos Ziakas

Supervisor:
Prof. Minos Garofalakis

A thesis submitted in fulfilment of the requirements
for the degree of Diploma in Electrical and Computer Engineering

in the

Software Technology And Network Applications Laboratory
School of Electrical & Computer Engineering

September 17, 2018

ii

Abstract

In the era of big data, enormous amounts of data are created, replicated
and transferred every day. The current technology for handling and analyzing
vast amounts of data allows us to develop applications for various problems
(e.g., DNA sequence analysis, medical imaging, traffic control) that could not
previously be solved efficiently. More precisely, the time required to process
large volumes of data can be minimized by using distributed computing plat-
forms such as Apache Spark. The Apache Spark framework includes various
implementations for large-scale machine learning, distributed data streaming
processing and parallel graph analytics. The Spark Streaming platform pro-
vides scalable and fault-tolerant data streaming processing. However, there is
only a limited number of implemented distributed incremental machine learn-
ing algorithms available in the Spark Streaming platform.

In this thesis, we propose a parallel implementation of an incremental and
scalable tree learning method for classification in Spark Streaming, the Ho-
effding decision tree. Our proposed implementation performs horizontal data
parallelism in the shared-nothing architecture of Spark. The Hoeffding bound
guarantees with high confidence that the Hoeffding decision tree is asymp-
totically identical to a batch-learning one. The high dimensional statistics, re-
quired for evaluating splits, are stored as sparse matrices in main memory
across the Spark cluster. These statistics are instantly updated, when new
training instances are available. Furthermore, distributed computations are
performed in order to identify the optimal split and assess whether the split-
ting criterion is satisfied. The generated model is used in order to make color
classification based on the spectral signature of each color. Each color has a
different chemical composition, and as a consequence a different spectral sig-
nature.

iii

Acknowledgements
Firstly, I would like to express my sincere gratitude to my advisor Prof. Mi-

nos Garofalakis for introducing me to research and for his guidance through-
out this thesis. I would also like to thank the members of committee, Prof.
Antonios Deligiannakis and Prof. Vasilis Samoladas, for evaluating this the-
sis. Furthermore, I would like to thank Prof. Costas Balas and all the members
of Electronics Laboratory for providing me with the data set used in the exper-
imental study of this thesis. Especially, Mr. Athanasios Papathanasiou who
helped me understand the theoretical background of these experiments and
create the data set. I would also like to thank Prof. Michail Lagoudakis and
Prof. Vasilis Samoladas for their kindness and support. Last but not least, I
am deeply thankful to my family and my friends for always supporting me
throughout my studies.

iv

Contents

Acknowledgements iii

1 Introduction 2

2 Decision Tree Classifiers 4
2.1 Overview of Decision Tree Classifiers 4
2.2 Scalable Decision Trees . 8
2.3 Incremental Decision Trees . 9
2.4 Hoeffding Decision Trees . 9

3 Machine Learning in Apache Spark 12
3.1 Apache Spark Core . 13
3.2 Apache Spark Streaming . 15
3.3 Decision trees in Apache Spark 17

4 Hoeffding Decision Trees in the Spark Streaming Platform 19
4.1 Our Contribution . 19
4.2 Updating the Global Statistics . 22
4.3 Updating the Hoeffding Decision Tree 24
4.4 The proposed implementation in Spark Streaming 27

5 Experimental Study 31
5.1 Hyper-spectral imaging . 31
5.2 Data sets . 32
5.3 Performance Evaluation . 35

5.3.1 Accuracy . 35
5.3.2 Scalability . 37

6 Conclusion 40

Bibliography 42

v

List of Figures

2.1 An example of decision tree classifiers 5
2.2 Algorithm for constructing basic decision tree classifiers 5
2.3 An example of computing information gain metric 7
2.4 Algorithm for constructing Hoeffding tree classifiers 10

3.1 The architecture of Apache Spark 14
3.2 The architecture of the Spark Streaming platform 15
3.3 An overview of the Spark Streaming platform 16

4.1 The data flow diagram for updating the global statistics 25
4.2 The data flow diagram for updating the Hoeffding decision tree 28
4.3 An execution plan of a Spark job in the proposed implementa-

tion . 29

5.1 The electromagnetic spectrum 31
5.2 Hyper-spectral data cubes . 32
5.3 The X-Rite ColorChecker SG . 33
5.4 Comparison between the batch and the Hoeffding decision tree

for different number of attributes in terms of accuracy 36
5.5 Comparison between the batch and the Hoeffding decision tree

for different number of training instances in terms of accuracy . 37
5.6 The throughput of the proposed implementation for training in-

stances increased proportionally to the number of executors . . 38
5.7 The processing time of each Spark batch for different number of

executors . 39

2

Chapter 1

Introduction

In the era of big data, enormous amounts of data are created, replicated and
transferred every day. In 2010 Eric Schmidt perfectly illustrated this new era
by stating: "From the dawn of civilization to 2003, five exabytes of data were cre-
ated. The same amount was created in the last two days". The current technology
for handling and analyzing vast amounts of data allows us to develop appli-
cations for various problems (e.g., DNA sequence analysis, medical imaging,
traffic control) that could not previously be solved efficiently. However, de-
spite the remarkable progress that has been achieved over the years, computer
scientists are still facing new challenges arising from the analysis of extremely
large data sets. Storing and processing massive data sets as well as applying
machine learning methods and private data analytics to them are the most
significant open research areas.

Machine learning is a scientific area combining the fields of computer sci-
ence, optimization and statistics in order to build effective prediction models
from data sets or discover patterns in them. The ultimate goal of machine
learning algorithms is to approximate a function y = f (x), where y is the out-
put and x the input, in order to accurately predict the output of future inputs.
Various problems can effectively be solved by machine learning algorithms
(e.g., classification, regression, clustering) with supervised or unsupervised
learning methods. In this thesis, we concentrate on the classification problem
addressed by supervised learning algorithms. Numerous models have been
proposed over the years in order to address that problem such as linear classi-
fiers, decision trees and neural networks.

Large-scale machine learning approaches re-consider machine learning al-
gorithms and data mining techniques in order to apply them to very large
or even unbounded data sets. Distributed machine learning, online machine
learning and deep reinforcement learning are just a few of the areas covered by
large-scale machine learning. Moreover, additional opportunities exist in ap-
plying large-scale machine learning to various problems in healthcare, finance
and cyber security.

Online machine learning is more and more popular because of the con-
stant increase in the volumes of data. Various applications are needed to
handle, process and analyze in-demand unbounded data sets known as data
streams. In this regard, building synopses of data streams and effective pre-
diction models from them remain open research areas. Furthermore, the time
needed to achieve that can be minimized by using fault-tolerant and scalable
cluster-computing frameworks such as Apache Hadoop, Apache Spark and
Apache Flink. Plenty of batch-learning machine learning methods have been
implemented in these platforms. However, despite the fact that existing dis-
tributed data streaming platforms can process quickly the unbounded data

Chapter 1. Introduction 3

sets, there is only a limited number of implemented distributed incremental
machine learning algorithms.

In this thesis, we propose a scalable implementation of Hoeffding deci-
sion trees in the Spark Streaming platform. Storing and updating the statistics
needed to evaluate the splits as well as computing the best split for each node
are performed in the memory of the worker nodes. The classification model is
used in order to predict the color of an object based on its spectral signature.

The remainder of this thesis is organized as follows. In chapter 2, we pro-
vide an overview of decision tree classifiers as well as we describe the Ho-
effding decision tree classifier and its extensions. Next, chapter 3 presents the
Spark Streaming platform and the available batch-learning decision tree clas-
sifiers in Spark. In chapter 4, we present the proposed implementation and
compare it with other approaches in the literature. In chapter 5, we evalu-
ate the proposed implementation in terms of accuracy and scalability. Finally,
chapter 6 concludes the thesis.

4

Chapter 2

Decision Tree Classifiers

2.1 Overview of Decision Tree Classifiers

Decision tree learning methods are supervised learning methods and can ef-
fectively address classification and regression problems. Decision trees are
divided into two broad categories based on their desired output. When it is a
discrete variable, decision trees are called classification trees. In case of contin-
uous output, decision trees are called regression trees. In this thesis, we con-
centrate on classification trees. The input of these models, known as training
data set, consists of multiple training instances (records), each one containing
a fixed number of variables. These variables, called attributes (features), are
characterized as either categorical or numerical. Categorical attributes take
values from a finite set of discrete values. When there is an ordering between
these discrete values such as {high, low}, categorical attributes are called ordi-
nal. Otherwise, they called nominal such as color and gender. Numerical or
continuous attributes take values from a subset of real numbers such as inte-
gers. Each training instance contains a categorical attribute, known as depen-
dent attribute or label, corresponding to its class. The other attributes, called
independent attributes, can be either categorical or numerical.

Constructing an optimal decision tree is an NP-complete problem [34].
Thus a recursive greedy algorithm, expanded in depth-first manner, has been
proposed in order to efficiently build decision trees. The basic approach for
building decision tree classifiers is to expand a tree until a stopping criterion
is satisfied. Decision trees are expanded by splitting each leaf node based on a
splitting criterion. So, starting with only one root node, the model is built by
recursively selecting the best split for each leaf node. The algorithm is halted
when a stopping criterion is fulfilled for each leaf node. Each leaf node is char-
acterized by the class containing the most instances in the node. For instance,
in figure 2.1, a decision tree classifier is built in order to predict the admission
decision for a PhD applicant based on his GPA and GRE performance. An al-
gorithm for constructing basic decision tree classifiers is described in figure 2.2.
Decision trees predict the output of an unseen instance, without a dependent
attribute, by asking a sequence of question on independent attributes. Each
internal node represents a test on an independent attribute and each leaf node
represents a class. More precisely, a classification tree is capable of predicting
the class of a new instance by traversing its internal nodes until a leaf node is
reached. Then, the new instance is classified to the class corresponding to the
leaf node class.

2.1. Overview of Decision Tree Classifiers 5

FIGURE 2.1: An example of decision tree classifiers

Data: Labeled Training Dataset D, root node N, Decision tree
containing only N

Result: Decision tree classifier T
1 Algorithm BuildTree(D,N,T)
2 if stopping criterion is satisfied then
3 Assign the most frequent class to N
4 Return T
5 Evaluate splits of N for each attribute based on a metric
6 Find best attribute split of N
7 Create child nodes NL and NR
8 Update T
9 Partition D to DL and DR based on best split

10 BuildTree(DL, NL, T)
11 BuildTree(DR, NR, T)
12 Return T

FIGURE 2.2: Algorithm for constructing basic decision tree
classifiers

6 Chapter 2. Decision Tree Classifiers

A signifianct amount of research has been conducted on decision trees clas-
sifiers over the years. THAID [52] was the first decision tree classifier extend-
ing AID [53] regression decision tree in order to address classification prob-
lems. However, decision trees were prone to adapt the patterns of their train-
ing data sets. This problem, known as overfitting, does not allow decison trees
to make accurate prediction on unseen data as it is too fitted to its training data
set. CART [10] proposed a novel approach known as pruning phase in order
to mitigate the influence of training data sets to decision trees. The main idea
of this technique is to let decision trees expand, most often with a loose stop-
ping criterion, and prune them during the expansion phase (pre-pruning) or
after that (post-pruning) by applying a pruning method to them. Numerous
post-pruning strategies [16] have been introduced over the years such as cost-
complexity pruning, pessimistic pruning [59], MDL pruning [60] and optimal
pruning based on dynamic programming [8, 1]

Evaluating splits and finding the best one is a hard problem in terms of
computational cost and in this regard many heuristics exist in the literature
[63]. The most notable metrics used for that purpose are information gain,
gain ratio and gini index. Further, there are many scientific works in litera-
ture for implementing multivariate splits and handling missing values [41].
Several decision tree classifiers with various pruning, splitting and stopping
criteria have been implemented (e.g, ID3 [58], C4.5 [57], FACT [47], QUEST
[46], CRUISE [38]) and compared [45] over the years.

In our implementation, the information gain metric is used. The informa-
tion gain measures the difference in terms of entropy between a parent node
and child nodes after splitting based on an attribute. The entropy [67] of a
node can conceptualize the uncertainty of a node. If there are many training
instances, classified in different classes, the entropy is high. On the other hand,
if the most of training instances in a node belong to the same class, the entropy
metric is low. Let X be a random variable corresponding to the class of an in-
stance in a node with values in the set E = {0, 1, .., C}, where C is the number
of classes. Further, let ωi be the number of instances classified in class i in that
node, the entropy H(X) is

H(X) = −
m−1

∑
i=0

P{X = i} log2 P{X = i}

= −
m−1

∑
i=0

ωi

∑m−1
j=0 ωj

log2
ωi

∑m−1
j=0 ωj

A multi-way split S in a decision tree with degree d divides the instances
of parent node N into n1, ..., nd disjoint sets forming d child nodes. Let H(Xi)
be the entropy of each child node i ∈ {1, ..., d}. The information gain IG(N, S)
of split S in parent node N is

IG(N, S) = H(N)− H(N|S)

= H(N)−
d

∑
i=1

ni

∑m−1
j=0 ωj

H(Xi)

The split with the highest information gain is the best one. Therefore, the
decision tree is split based on that split. In figure 2.3, the information gain val-
ues of two splits are computed for the problem illustrated in 2.1. It is obvious

2.1. Overview of Decision Tree Classifiers 7

FIGURE 2.3: An example of computing information gain metric

that the second one is the best split.
In an effort to address the “overfitting” problem and as a consequence

achieving more accurate predictions, several ensemble methods [14, 80] have
been applied to decision trees over the years. A prominent among them is
bootstrap aggregation method, also known as "bagging" [9]. The main idea of
this method is to build a large number of decision trees, each one trained by an
equal part of the training data set choosing with sampling with replacement.
The set of decision trees predicts the class of a test instance by aggregating the
outputs of each classifier and choosing the most dominant class. Moreover,
several random subspace methods have been proposed over the years [30].
Random forests[11] and their variations [6] (e.g., Extra-trees [27], Rotation for-
est [62], Reinforcement Learning trees [81]) successfully combine the "bagging"
method with a random subspace method (f.e random selection of features) in
order to address the overfitting problem.

Another influential ensemble method used for improving the performance
of decision trees classifiers is boosting. The objective of boosting algorithms
[64, 18] is to convert a weak classifier to a strong one. This approach is con-
ceptualized in decision trees classifiers by training multiple versions of them.
Each one is constructed from a new version of the training data set which is
properly weighted in order to reduce the number of its misclassified instances.
Further, each version of decision trees contributes to the classification of a new
instance by voting based on its performance (prediction accuracy). There are
many effective implementation of boosted classification decision trees in liter-
ature such as Adaboost [19], LogitBoost [20] and BrownBoost [17].

8 Chapter 2. Decision Tree Classifiers

2.2 Scalable Decision Trees

Building scalable decision trees from massive data sets is a well-studied prob-
lem in the research area of decision trees. In many cases, training data sets
cannot fit in main-memory. So, several disk-based methods have been pro-
posed over the years in order to efficiently build decision trees by limiting or
removing the memory restrictions between main memory and the size of data
sets. Disk-based classifcation trees, grown in breadth-first manner (level by
level), require a scan over the training set per level of the tree. SLIQ [49] re-
quires only an amount of main memory increased proportionally to the size
of the training data set. In order to achieve that, a pre-sorting technique and a
state-of-the-art data structure, called class list, are used. The class list is stored
in main memory throughout the building phase, but the training data set is
stored in secondary storage. Further, a pass over the training data set is re-
quired at each level-wise step of the building phase. However, SLIQ cannot
entirely remove memory restrictions as the class list is required to be stored
in main memory. SPRINT [66] removes these memory restrictions between
the size of data set and main memory by proposing a different data structure,
not required to be stored in main memory. Both tree learning methods use
an identical MDL-based pruning method. RAINFOREST [26] framework re-
quires a reasonable amount of main memory for evaluating a split based on
attribute-value-class (AVC-group) statistics. Several well-known decision tree
classifiers such as C4.5, CART, SLIQ and SPRINT can be implemented in this
framework. Moreover, various statistical techniques have been applied to de-
cision tree learning methods in order to deliver more efficient implementations
(e.g., BOAT [25] , CLOUDS [61]).

Parallel implementations of decision tree learning methods can offer scal-
ability to decision tree classifiers as well. Parallel systems consist of multi-
ple computational nodes that can be cluster nodes, processors or threads. In
shared-memory architecture, computational nodes share a main memory. On
the other hand, in shared-nothing architecture, nodes have their own main
and secondary memory and they communicate via a message parsing system.
The most significant approaches for constructing decision trees in parallel are
task parallelism, data parallelism and hybrid parallelism. In case of task par-
allelism, the nodes of a decision tree are distributed to computational nodes.
Data parallelism can be achieved by distributing the data set to the computa-
tional nodes horizontally (instances) or vertically (attributes). These methods
are known as horizontal and vertical parallelism, respectively. Hybrid paral-
lelism approaches combine task and data parallelism in order to build decision
tree classifiers.

There are several implementations of parallel decision tree classifiers in
shared memory and shared nothing environments in the literature [56, 2].
Mostly, data parallelism and hybrid parallelism are preferred from task par-
allelism due to the latter’s lack of load balance. SPRINT decision tree classifier
uses vertical data parallelism in a shared-nothing environment and is one of
the most influential approaches. In the same work, two parallel implementa-
tions of SLIQ decision tree classifier (SLIQ/R, SLIQ/D) are proposed. ScalPar
[37] suggests an optimization of SLIQ/D by using parallel hash tables. Furher-
more, an implementation of SPRINT in shared-memory systems exists in lit-
erature [79]. SPIES [35] successfully combines RAINFOREST’s AVC-statistics
with a sampling method in a shared-memory environment. Finally, various

2.3. Incremental Decision Trees 9

implementations of decision tree classifiers (e.g., SUBTREE [79] , Pclouds [69],
PLANET [54]) using hybrid parallelism in shared-memory and shared-nothing
have been proposed over the years.

2.3 Incremental Decision Trees

Extensive research has been conducted in regard to develop techniques for in-
crementally updating decision trees when new information is available. Batch
(non-incremental) learning methods require to re-construct the decision tree
in order to adapt to new knowledge. Numerous incremental decision tree
learning methods for classification exist in literature. A novel approach to that
problem is to train a decision tree as a non-incremental model and then ad-
just it to the new instances. Whenever internal nodes are obsolete, they are
removed (ID.4 [65]) or the decision tree is reconstructed (ID5R [70], ITI [71])
in order to produce an up-to-date model. These models assume that the train-
ing dataset fits in memory. BOAT [25] addresses that problem by building a
coarse-grained decision tree from a sample of the dataset, fitting in memory.
and then by refining it with the remaining dataset including new arrivals.

The most influential approach for constructing incremental decision tree
classifiers is the Hoeffding tree learning method proposed by Domingos and
Hulten [15]. Hoeffding decision trees and their variations are based on Ho-
effding bound [31] in order to decide whether there is enough evidence for
splitting a node. It can be proven that by expanding a tree model with that
approach, it is likely to be identical to a batch-learning one. Moreover, only
the decision tree and the statistics for evaluating the splits need to be stored
in main memory. Various extensions of Hoeffding decision trees exist in the
literature [21] in order to handle concept-drift [22] and numerical attributes
[55] as well as minimize the time and space complexity. Furhermore, plenty
ensemble methods for data streams have been applied to Hoeffding trees over
the years [44].

2.4 Hoeffding Decision Trees

Hoeffding decision tree learning methods use the Hoeffding Bound [31] in or-
der to decide whether there is enough evidence for splitting a node. The Ho-
effding bound approximates the expected value of a random variable Y with
range R based on the mean value Y of a sequence of n independent obser-
vations of Y. More precisely, the expected value E[Y] is at least Y − ε, with
probability 1− δ, where

ε =

√
R2 log 1

δ

2n

Intuitively, as the sample size n increases, the expected value of Y con-
verges to the sample mean, regardless of the population distribution. In case
of Hoeffding trees, the random variable is Y = G(Xa)− G(Xb), where G, Xa
and Xb are the evaluation metric, the attributes with the best evaluation metric
and the attribute with the second best evaluation metric, respectively. Then,
the mean value of Y after observing n training instances is Y = G(Xa)−G(Xb).

10 Chapter 2. Decision Tree Classifiers

G(Xi) and G(Xb) are the attributes with the best and second best evaluation
metric after observing n training instances in a leaf node. As described previ-
ously, E[Y] ≥ Y − ε with probability 1− δ. When Y > ε, then E[Y] > 0 with
probability 1− δ. Sequentially, E[Y] > 0 ⇔ G(Xa)− G(Xb) > 0 ⇔ G(Xa) >
G(Xb), which means that the split on Xa is indeed the best one with 1− δ prob-
ability. In our implementation, the information gain metric, described previ-
ously, is used for evaluating splits. Xa and Xb are the attribute with the highest
and second highest information gain. The range of the information gain met-
ric is R = log2 c, where c is the number of classes. The Hoeffding decision
tree classifier is a binary decision tree. Thus only binary splits are evaluated.
Further, a null split with IG = 0 is considered in order to ensure that the split
with the highest information gain is better than not splitting.

So, the Hoeffding tree learning method starts with a root node and expands
based on the Hoeffding Bound. If Y = G(Xa)− G(Xb) > ε, the node is split
into two new nodes. For each leaf node is essential to hold some statistics in
order to compute the information gain of each split. The required statistics
are the frequency of each class-value of each attribute in each node of a tree.
Therefore, the space complexity of Hoeffding tree algorithm isO(n ∗ a ∗ v ∗ c),
where n, a, v and c are the leaf nodes, the attributes of each leaf node, the values
of each attribute and the possible classes, respectively. In addition, the tree
model needs to be stored in main memory as well. Each leaf node is assigned
with its majority class. An algorithm for constructing Hoeffding decision tree
classifiers is described in figure 2.4.

Data: Data stream of instances.
Result: Hoeffding tree classifier H

1 Algorithm BuildTree(Training Dataset, δ)
2 Create H containing only the root node
3 while true do
4 for each new instance do
5 Traverse H until a leaf node l
6 for each attribute a ∈ l do
7 Update the counts of attribute a
8 for each leaf node l ∈ H do
9 Evaluate the splits based on Information Gain ratio

10 Find the best split G(Xa)

11 Find the second best split G(Xb)

12 Compute ε =

√
R2 log 1

δ
2n

13 if (G(Xa)− G(Xb) > ε) and (G(Xa) > 0) then
14 Split H based on the best split
15 for each leaf node l ∈ H do
16 Assign the most frequent class to the leaf node l
17 return H

FIGURE 2.4: Algorithm for constructing Hoeffding tree
classifiers

A system based on the Hoeffding tree called VFDT [15] includes some

2.4. Hoeffding Decision Trees 11

mechanisms in order to improve its performance. Methods for handling at-
tributes with similar information gain values (ties) and with poor contribu-
tion to prediction are presented. Moreover, the evaluation of splits as well
as whether the Hoeffding bound is satisfied is executed when a great num-
ber of instances has arrived. However, this implementation assumes that the
data generated by a stationary distribution. In this regard, CVFDT [33] ex-
tends VFDT system in order to handle concept-drift. CVFDT achieves that by
holding statistics for both interior and leaf nodes, considering only training
instances arrived during a sliding window. When a split is no longer the most
informative, an alternative sub-tree is grown based on the new best split. The
outdated sub-tree is replaced by the new one when the latter become more
accurate.

Furthermore, significant amount of research has been conducted in order
to handle numerical attributes. In batch tree learning methods, when a nu-
merical attribute takes n different values, n − 1 splits are examined in order
to find the best one. The split is formed as attr ≤ mid, where mid is the mid-
point value of two successive values of the numerical attribute attr. However,
in streaming algorithms the values of numerical attributes are not known a
priori. The implementation of VFDT in VFML package [32] addresses that
problem by constructing a fixed-size histogram with N bins. The boundaries
of each bin are determined by the first N values arriving at the system.

VFDTc system [23] stores all values that have not been seen previously in
a B-tree data structure. However, this approach is inefficient because B-tree
is constantly increasing in size when numerical attributes take many values.
Furhermore, it proposes to classify test instances by using a Naive bayes clas-
sifier in each leaf node instead of assigning them with the majority class. An-
other apporach is Numerical Interval Pruning (NIP)[36] which builds a num-
ber of intervals and then it prunes them by applying statistical tests. Further-
more, a method for solving ties by combining Hoeffding trees with Option
trees [12] exists in the literature [39]. Whenever there are more than one good
choices for splitting a node, a set of binary trees is built for each good choice.
The training and test instances traverse more than one decision trees. A test
instance is classified by aggregating the votes of each traversed tree. So, Ho-
effding trees can handle a tie by using the strategy of Option trees.

UFFT system [24] follows a more sophisticated approach in an effort to
improve the time and space complexity of the tree learning algorithm. The
main idea is to hold only the incremental mean and variance of the values
of numerical attributes for each class in each leaf node. Then, the values per
class in each leaf node are modelled as a normal distribution and the best split
is found based on a discriminant analysis. This approach is only applied to
binary classification problems. Thus, in case of a multi-class problem with
n classes, UTTF divides the n-class problem into k binary classification prob-
lems, where k = (n

2) is the number of pairs of classes. For each binary classifi-
cation problem, a Hoeffding binary tree is constructed. When a new training
instance arrives, it traverses only the binary trees containing its class label. The
final model is a forest of decision trees and makes predictions by traversing all
trees. Each tree classifies the test instance in a class and assigns a probability
to its decision. The test instance is classified in the class taking the highest ag-
gregated probability based on the sum rule [40]. Furtheromore, an extension
of UTTF system [55] proposes to find the best split in a multi-class problem by
considering many splitting points and choosing the best one.

12

Chapter 3

Machine Learning in Apache
Spark

In the era of big data, the time needed to analyze vast amounts of data is
an important factor for many applications. This time can be reduced by us-
ing distributed processing of data. Numerous cluster-computing frameworks,
achieving fault-tolerance and scalability, have been proposed over the past few
years. One of the most well-known cluster-computing framework is Apache
Hadoop [73] drawing high attention from both industry and academia. Hadoop
ecosystem consists of an execution engine, a distributed file storage system
(HDFS [68]) and a cluster manager. Hadoop is based on a master/slave
shared-nothing architecture. The execution engine of Apache Hadoop is an
implementation of MapReduce programming model [13] providing parallelism
in distributed environments.

A MapReduce program is a sequence of MapReduce jobs. Each MapRe-
duce job is executed in two phases, known as map and reduce phase, respec-
tively. In the map phase, a mapper is created in each worker node of the clus-
ter. Each mapper takes as an input a partition of data. To this end, data are par-
titioned across worker nodes. Then, all mappers apply a map function to their
corresponding partitions in parallel. A map function outputs information in
key-value pair format. All key-values pairs are sorted based on key and sent
across worker nodes based on a partition function. In order to achieve that,
shuffling of data is required in most cases. All information, regarding a key, is
accumulated in the same worker node. In reduce phase, a reducer is created
for each worker node containing accumulated information of a key. All val-
ues of a key are inserted in a list. Therefore, each reducer takes as an input
at least one key-value pair, where the value is aggregated information of each
key. Then, a reduce function is applied to each pair in parallel. The results
are stored in HDFS and they can be either consumed or used as an input to
another MapReduce job.

Despite the wide range of applications that Apache Hadoop can efficiently
be used, the necessity for implementing a map and a reduce phase is a bit
restrictive. Moreover, storing the output of each MapReduce job in secondary
storage is an expensive operation in terms of time and space complexity. In this
regard, Apache Spark [78] developed at Berkeley’s AMPLab can achieve dis-
tributed processing of data more efficiently than Apache Hadoop, especially
for iterative algorithms such as machine learning algorithms. Spark can"run
workloads 100X faster" than Hadoop. Spark extends the MapReduce program-
ming model by allowing multiple passes of data in main memory based on
the Resilient Distributed Dataset (RDD) abstraction [77]. An RDD is a dis-
tributed, read-only and immutable collection of serializible objects. Further,

3.1. Apache Spark Core 13

Spark achieves high performance for both batch and streaming data, using a
state-of-the-art DAG scheduler, a query optimizer, and a physical execution
engine.

3.1 Apache Spark Core

Apache Spark is a cluster-computing framework providing APIs in Scala, Java,
Python and R programming languages. Apache Core, implemented in Scala,
is the basic component of Apache Spark. Spark Core is responsible for task
scheduling, providing fault-tolerance and memory management. Various high-
level libraries have been developed on top of Spark Core over the past few
years. Spark SQL [3] library provides execution of SQL queries as well as
Dataset and Data-frame structured data structures. Machine learning (MLlib)
library [50] includes machine learning algorithms for RDDs and for structured
inputs. Further, there are two libraries for distributed streaming processing.
Spark Streaming library [76] is based on RDDs and Structured Streaming li-
brary built on Spark SQL library. Finally, Apache Spark contains GraphX [75]
library for parallel graph analytics and SparkR [72] for using Spark from R.

Each Spark application consists of a driver program, a cluster manager
and many worker nodes. The driver program contains the main program and
a SparkContext object. Spark applications acquire computational resources,
defined by SparkContext, through a cluster manager (e.g., standalone, Mesos,
YARN). A worker node is a cluster node that executes application programs
on it. Each worker node contains a number of executors. An executor is
responsible for running tasks and storing data. A task is a unit of work,
sent to one executor by SparkContext. In this regard, the driver program
schedules the executors in order to execute their tasks. The figure 3.1 (source:
www.spark.apache.org) illustrates Spark’s architecture described above.

A Resilient Distributed Dataset (RDD) is an immutable distributed collec-
tion of objects. An RDD is always re-computable (resilient) and partitioned
across worker nodes (distributed). It also contains any serializable data type
(dataset). An RDD can be generated by four different ways. An RDD can be
created by external data (e.g., HDFS), by transforming other existing RDDs,
by parallelizing a collection in the driver program or by changing the persis-
tence of an existing RDD. Further, each RDD holds information regarding its
parent RDDs or the external data from which it was created, known as de-
pendencies. However, all RDDs should be stored or derived from an RDD in
stable storage. In case of a node failure, an operation on an RDD can be re-
executed by recovering an ancestor RDD. An ancestor RDD can be found by
traversing a lineage graph of an RDD. A lineage graph of each RDD can be
created by its set of parent dependencies. Therefore, this mechanism achieves
fault-tolerant implementations. Apart from a set of dependencies on parents
RDDs, each RDD consists of a set of partitions and a function for computing
data partitions given dependencies. Further, each RDD holds meta-data in re-
gard to preferred data placement (data locality) and partition function (e.g.,
hash-partitioning, range-partitioning).

There are various operations in Spark and are divided into two broad cat-
egories, transformations and actions. Generally, transformations construct a
new RDD form previous ones by applying a function to them. On the other

14 Chapter 3. Machine Learning in Apache Spark

FIGURE 3.1: The architecture of Apache Spark

hand, actions make some computations on RDDs. The results of these com-
putations are either sent to the driver program or stored in external storage
(e.g., HDFS). When a spark application is launched, the scheduler creates one
or more Spark jobs. More, precisely, the scheduler creates a job for each action
of an application. Therefore, a job contains numerous transformations and
exactly one action. In order to execute a job, the scheduler builds a directed
acyclic graph (DAG) of stages based on the lineage graphs of all RDDs used
in this job. A new stage is started when a transformation of the previous stage
requires shuffling of data. Therefore, a stage can contain multiple transforma-
tions executed in pipeline, but at most one transformations requiring shuffling
of data. Most of the transformations can be executed in pipeline. However,
there are transformations that can be executed in pipeline when each parti-
tion of parent RDD is used by at most one partition of child RDD (narrow-
dependency). However, when the partitions of the parent RDD is used by
more than one partition of child RDD (wide-dependency), shuffling of data is
required. Finally, each stage is divided into tasks. A task is created for each
partition of parent RDD and operation of a stage. Each task contains a par-
tition of an RDD and an operations of its stage. Then, the scheduler assigns
each task to one executor of a worker node based on data locality.

Moreover, Spark allows persisting RDDs in worker nodes in order to avoid
re-computing them in future stages. Users can define the desired storage level
(e.g., Memory only, Disk only) based on his needs. In addition, Spark supports
sharing variables from the driver program to all worker nodes. There are two
types of shared variables available in Spark, the broadcast variables and the
accumulators, both cached in main memory of all worker nodes. Broadcast
variables can be read from an operation without being sent from the driver
program. On the other hand, accumulators are used for aggregating values
across all worker nodes and sending them to the driver program. Accumula-
tors cannot provide only-one guarantee when they are updated with a trans-
formation. For this reason, accumulators are not reliable when they used with
transformations. Local variables, required for a transformation, are sent from
the driver program to all worker nodes. Finally, users can specify how to par-
tition an RDD across worker nodes by declaring the number of partitions and
the partition function.

3.2. Apache Spark Streaming 15

FIGURE 3.2: The architecture of the Spark Streaming platform

3.2 Apache Spark Streaming

The Spark Streaming platform is built on top of Apache Core and provides
scalable, high-throughput and fault-tolerant distributed processing of data streams.
Data streams are considered as an unbounded sequence of RDDs, called Dis-
cretized Streams (DStreams). New information of data streams is received
from receivers and is stored in main memory of worker nodes. Then, at each
fixed user-defined time interval, known as batch interval, an RDD is created
in order to include new information in a DStream. Therefore, a DStream is
a collection (HashMap) of (Time,RDD) records. Each RDD in a Dstream con-
tains data from a certain interval. Numerous operations can be applied on
DStreams and, similarly to Core, are divided into transformations and output
operations. A DStream is created either form external data sources or from a
transformation on other DStreams. The architecture of Spark Streaming illus-
trated in figure 5.1 (source: [76]) is based on Spark’s architecture. To this end,
at each batch interval, a job is created for each output operation of a Spark
Streaming application. Each job contains numerous transformations and ex-
actly one output operation action. The scheduler builds a DAG of states based
on lineage graphs. Therefore, a stage can contain multiple transformations ex-
ecuted in pipeline, but at most one transformations requiring shuffling of data.
Finally, each stage is divided into tasks. Each task contains a partition of an
RDD and all operations of its stage. Then, the scheduler assigns a task to an
executor of a worker node based on data locality. Then, the scheduler assigns
a task to an executor of a worker node based on data locality.

Since a DStream is a sequence of RDDs, transformations can be performed
either on a fraction of RDDs or only on the new one. In this regard, transfor-
mations are divided into stateless and stateful. Stateless transformations are
applied separately on each new RDD. Stateful transformations demand infor-
mation of previous RDDs. Window stateful transformations require previous
RDDs during a sliding window. State tracking stateful transformations re-
quire only the previous RDD, representing the state. Moreover, DStreams can
be consumed from an external source by applying output operations on them.

16 Chapter 3. Machine Learning in Apache Spark

FIGURE 3.3: An overview of the Spark Streaming platform

Therefore, stateless transformations and output operations on DStreams are
similar to transformations and actions on RDDs, respectively. In this regard,
all transformations on DStreams follow a lazy evaluation triggered by an out-
put operation. Shared variables and persisting DStreams in a user-defined
level storage are also available. Further, each RDD recover from its lineage
graph in stateless transformations. However, lineage graphs may be very
large in stateful transformations and thus traversing a lineage graph is inef-
ficient. DStreams recover based on checkpoint mechanism in case of node fail-
ure. Checkpoint mechanism allows storing periodically in reliable storage all
RDDs of DStream required in case of node failure. An overview of the Spark
Streaming platform is illustrated in figure 3.3 (source: [76])

The stateful transformation UpdateStateByKey generates a new DStream by
combining previous values of a state with values of a new RDD. In order to
achieve that, new information is formed as a DStream key-value pair, identical
to the DStream pair of a state. All records of a state are stored in main memory
of worker nodes and in a reliable storage (checkpoint mechanism). All new
information, arrived at each batch interval, is shuffled over the cluster’s net-
work in order to update the previous version of a state based on a user-defined
function. An update function is applied to each record of a state, regardless of
whether new information contains a value for a record. To this end, an opti-
mization of UpdateStateByKey is available in the Spark Streaming platform, the
stateful MapWithState transformation. In contrast with the UpdateStateByKey
transformation, MapWithState applies an update function only to the records
of a state that their keys are contained in a new RDD. Consequently, updating
a state with MapWithState is significantly less time-consuming than updating
it with UpdateStateByKey. MapWithState can support a greater number of state
values as well. Therefore, "MapWithState can provide 6X lower latency and main-
tain state for 10X more keys than when using UpdateStateByKey" according to the

3.3. Decision trees in Apache Spark 17

Databricks company.
In our implementation we use the MapWithState stateful transformation as

well as numerous operations described below. The stateless Map transforma-
tion applies an 1-1 function to all elements of a new RDD in a DStream. The
stateless FlatMap transformation is similar to Map, but it returns zero or more
outputs for each element. The stateless ReduceByKey transformation can be
used only for DStream pairs and aggregates the values of each key for each
new RDD based on a reduce function. When ReduceByKey is applied on an
RDD, which is narrow dependent with its parent RDD (e.g., hash-partitioned
parent RDD), shuffling of data is not required. When an RDD is wide depen-
dent with its parent RDD, then ReduceByKey demands shuffling of data over
the cluster whether the parent RDD is not hash-partitioned based on the key.
The stateless GroupByKey transformation follows the same approach of Reduce-
ByKey, without applying a reduce function to aggregated values. The Group-
ByKey also requires shuffling when the parent RDD is not hash-partitioned
based on key. Finally, ForeachRDD output operation applies a user-defined
RDD action to all RDDs of a DStream.

The Apache Spark framework includes another library for distributed data
streaming processing called Structured Streaming. Structured Streaming is
built on the Spark SQL engine and capitalizes on its execution optimizations.
The approach of Structure Streaming is to handle a data stream as an un-
bounded Dataframe. An unbounded Dataframe is increased horizontally in
size when a new instance arrives. In contrast, Spark Streaming handles data
streams as a sequence of RDDs. For this reason, Structured Streaming is more
high-level and accessible from programmers than Spark Streaming. More-
over, Structured Streaming handles out-of-order data based on watermarks
and event-time analysis. Triggers and batch-stream joins are also available.
Despite the advantages of Structure Streaming, it does not contain any imple-
mentation of machine learning algorithms. On the other hand, Spark Stream-
ing includes various implementations of incremental machine learning algo-
rithms. Therefore, we preferred to implement the Hoeffding decision tree clas-
sifier in the Spark Streaming platform in order to extend the existing work of
Spark’s community.

3.3 Decision trees in Apache Spark

Spark is efficient at iterative computations as RDDs can be persisted in main
memory for future use. Therefeore, Spark is well-suited for large-scale ma-
chine learning applications. To this end, a distributed machine learning li-
brary, called Machine Learning library [50] (MLlib), has been implemented on
top of Spark Core. Various machine learning algorithms for supervised, unsu-
pervised and deep learning are included in MLlib library. Numerous methods
for data-preprocessing, distributed linear algebra and statistical analysis are
included in MLlib as well. MLlib library allows programming on two differ-
ent APIs. The first one is based on RDD abstraction and it is more suitable
for programming by scratch; since it contains various data structures for local
and distributed matrices and vectors. Linear algebra operators are executed
by Breeze library. Also, RDD-based API contains streaming implementations
of significant testing, linear regression and k-means algorithms. The other API
is based on DataFrame data structure and follows a more high-level approach

18 Chapter 3. Machine Learning in Apache Spark

for programming machine learning algorithms influenced by scikit-learn li-
brary. It is able to program a machine learning work-flow by constructing a
pipeline. Each machine learning pipeline consists of a chain of transformers
and estimators as well as parameters and DataFrame inputs. Transformer al-
gorithms transform a Dataframe into a different one. An Estimator algorithm
receives a training data set and produces a machine learning model. However,
there is no implementation of streaming algorithms in this API since the Spark
Streaming library is based on RDDs.

Various supervised machine learning methods for classification are avail-
able in both libraries such as support vector machines, logistic regression and
decision trees. Decision trees classifiers and their ensemble methods, Ran-
dom forest and Gradient-boosted trees, have been implemented in both li-
braries. These implementations are based on PLANET framework [54] and
allow users to define a variety of parameters (e.g., evaluation metric, stop-
ping criterion). PLANET proposes a parallel implementation of decision trees
in a cluster computer platform based on MapReduce programming model.
Classifications trees grow in breadth-first manner (level-by-level).

As described previously, a MapReduce job consists of a map and a reduce
phase. A MapReduce job is created on each iteration of the tree learning al-
gorithm. On each iteration, each worker node of the cluster creates a mapper.
Each mapper consists of the up-to-date classification tree and an horizontal
partition of a training set. A mapper scans from HDFS its corresponding par-
tition. Then, it finds the leaf node of each training instance by traversing the
tree. A counter for each possible combination of leaf nodes, attributes, values,
and classes (〈lea f , attr, val, class〉 quadruple) is computed. Finally, each map-
per outputs a key value pair with key : 〈lea f , attr〉 and value : 〈val, class, aggr〉.
All information for each possible leaf node and attribute is sent to the same re-
ducer. Then, each reducer find the best split for its corresponding 〈lea f , attr〉
double. Each reducer outputs information about the best split for its corre-
sponding attribute attr in a leaf node lea f . This information is stored in HDFS.
Finally, the master node scans all this information and find the best split for
each leaf node. Then, it decides when to split a node based on a splitting cri-
terion and updates the classification tree. The up-to-date classification tree is
distributed to all worker nodes in order to repeat the procedure until a stop-
ping criterion is satisfied.

Classification trees, implemented in Spark MLlib, are similar to PLANET
ones. However, a partition of a training set, fitting in main memory, is per-
sisted in main memory of a worker nodes. Therefore, scanning of a partition
from secondary storage (HDFS), which is a very expensive operation in terms
of I/O costs, is omitted. In case of a partition does not fit in memory, a fraction
of it is persisted in secondary storage. Furthermore, all information regarding
a leaf node is accumulated in a worker node through ReduceByKey. Sequen-
tially, splitting decisions are executed in parallel on worker nodes, since infor-
mation required to decide a split on a leaf node is in the same worker node.
Therefore, the master node collects all splitting decisions and update the clas-
sification tree. Further, splitting points of numerical attributes are defined by
an equidepth histogram computed before the tree learning method.

19

Chapter 4

Hoeffding Decision Trees in the
Spark Streaming Platform

4.1 Our Contribution

In this thesis, we propose a parallel implementation of Hoeffding decision
trees in the Spark Streaming platform. In our approach, all information, re-
quired for evaluating splits, is stored in main memory of worker nodes. This
information, called global statistics, contains a counter for each possible com-
bination of leaf nodes, attributes, values of attribute, and classes. Global statis-
tics can be also considered as counters for all 〈lea f , attr, val, class〉 quadruples.
All new training instances, arrived during a batch interval, are horizontally
partitioned across worker nodes. Each worker node computes a counter for
each 〈lea f , attr, val, class〉 quadruple, appearing in its partition. These coun-
ters, appeared in a worker node during a batch interval, are called local statis-
tics. Therefore, each worker node, containing new training instances, has its
own local statistics. Then, all local statistics are aggregated in order to ob-
tain aggregated local statistics during a batch interval. Global statistics are
updated through a stateful operations, in order to include aggregated local
statistics, generated during a batch interval. All computations for evaluating
splits and finding the best one for each leaf node and attribute (〈lea f , attr〉
double) are locally executed in parallel. Splitting decisions based on the Ho-
effding bound are made for each leaf node in parallel as well. All splitting
decisions are sent to the driver program (master node) in order to update the
Hoeffding tree. The driver program holds only an up-to-date tree-structure of
the Hoeffding tree. The driver program splits the Hoeffding tree and updates
the majority classes whenever needed. Unseen instances are horizontally par-
titioned across worker nodes. All worker nodes use the up-to-date Hoeffding
tree in order to classify the unseen instances of their partition.

The proposed implementation stores global statistics of each leaf node and
attribute in a sparse data structure. The counters of each 〈lea f , attr〉 double is
stored in a sparse matrix. Global statistics are partitioned across worker nodes
based on 〈lea f , attr〉 doubles (hash-partitioning). The number of rows and
columns of a sparse matrix for a 〈lea f , attr〉 double correspond to the number
of values taking the attribute and the number of classes, respectively. Training
instances, labelled with the same class, are more likely to be classified in the
same leaf node as the Hoeffding tree becomes more and more accurate. This
assumption is based on that a Hoeffding tree is asymptotically identical to a
batch-learning one. In this regard, a matrix containing all possible combina-
tions of values and classes for an attribute in a leaf node, become more and
more sparse as the classification tree grows. Further, only a limited fraction

20 Chapter 4. Hoeffding Decision Trees in the Spark Streaming Platform

of global statistics is updated during a time interval. Holding global statis-
tics in main memory is expensive in terms of space complexity and demands
large amounts of main memory. Especially, for high-dimensional data sets
(e.g., hyper-spectral data cubes) and multi-class classifications problems (e.g.,
color classification), sparse matrices can significantly reduce the size of main
memory required for storing global statistics.

In our implementation, a stateful MapWithState transformation is used for
updating global statistics. This operation, described in the previous chapter,
allows us to maintain a state of global statistics in main memory and update
it when new aggregated local statistics are available. At each batch inter-
val, aggregated local statistics are added to global statistics. However, only
a limited fraction of global statistics is updated during a time interval since
aggregated local statistics rarely include information of all 〈lea f , attr〉 dou-
bles. Therefore, all information of each 〈lea f , attr〉 double is stored as a sparse
matrix in main memory. Further, global statistics of a 〈lea f , attr〉 double are
deleted from main memory when no new information of this double has ar-
rived during a user-defined time interval. Sequentially, global statistics of in-
terior nodes and obsolete leaf nodes are deleted from main memory. In case
of an obsolete 〈lea f , attr〉 double, its global statistics are re-initialized when
new information of this double is available. Therefore, the deactivation mech-
anism, proposed in VFDT, is implemented without communicating with the
master node. Our implementation includes the tie-breaking mechanism, pro-
posed in VFDT, as well. Numerical attributes are handled by constructing a
fixed-size histogram with B bins based on the first B observations (values) of
each numerical attribute. Finally, the user-defined parameters, required for
splitting decision based on the Hoeffding Bound (δ, R) and on the tie-breaking
mechanism (τ, nties), are distributed across worker nodes only once (broadcast
variables).

Our implementation follows a similar approach to the batch-learning clas-
sification tree learning method, implemented in Spark MLlib. In our case, a
training set is a fraction of a data stream of training instances. Both imple-
mentations partition a training set horizontally. Moreover, in both implemen-
tations splitting decisions for each leaf node are made in parallel. However,
the evaluation of attribute splits is executed in parallel in the proposed im-
plementation. In contrast, the evaluation of leaf nodes splits is executed in
parallel in the batch-learning implementation. Therefore, our implementation
is more scalable than the batch-learning. However, the proposed implementa-
tion demands shuffling of data in order to accumulate all best attribute splits in
the same worker node. In contrast, the batch learning implementation avoids
this shuffling of data, since all best attributes splits of a leaf node are in the
same worker node. Further, numerical attributes are handled by constructing
a fixed-size histogram before training the model in batch-learning method. In
this regard, only the boundary values of the fixed-size histogram are consid-
ered as candidate splitting points and they are immutable. On the other hand,
numerical attributes are handled by constructing a fixed-size histogram with
B bins based on the first B observations of each numerical attribute.

Furthermore, our implementation is more scalable compared to the other
existing parallel implementation of classification trees for data streams, known
as SPDT [5]. In this implementation, new training instances are also horizon-
tally partitioned across worker nodes. However, each worker node approx-
imates its local statistics by building an on-line histogram for all values of

4.1. Our Contribution 21

each 〈lea f , attr, class〉 triple. Then, all approximations of local statistics are
sent to the master node. The master node holds an approximation of global
statistics, consisting of a histogram for each 〈lea f , attr, class〉 triple. Therefore,
the histograms of global statistics are merged with the histograms of all lo-
cal statistics. Candidate splits are estimated based on approximated global
statistics. The master node evaluates all estimated candidate splits and de-
cides when to split a node. In contrast, the proposed implementation stores
global statistics, based on a sparse data structure, across worker nodes and
only a splitting decision is sent to the master node. Further, our implementa-
tion enumerates all possible candidate splits based on exact global statistics.
As numerical attributes are handled by constructing a fixed-size histogram
during the building phase, only the boundary values are considered as candi-
date splitting points and they are immutable.

Therefore, the proposed implementation scales out more efficiently than
SPDT due to the fact that only splitting decisions are sent to the master node.
In the SPDT, as the classification tree grows, data shuffling and the workload
of the master node increase as well. Therefore, it demands a large volume of
data shuffling over the cluster’s network and a large number of computations
in the master node. Moreover, estimating candidate splits, used in SPDT, is
more efficient than the exact approach, used in our implementation. How-
ever, enumerating all possible candidate splits based on exact global statistics
is more effective in terms of accuracy. SPDT also stores only an approximation
of global statistics in the master node. In contrast, exact global statistics are
stored across worker nodes in our implementation. Further, the size of main
memory, needed to store exact global statistics, is significantly reduced by us-
ing sparse matrices based on the assumption that a Hoeffding tree becomes
more and more accurate as the Hoeffding tree grows.

The proposed implementation follows a similar approach with VHT [43].
However, VHT is based on a different shared-nothing architecture, the Apache
SAMOA distributed streaming platform [51, 42]. In this implementation, new
training instances are vertically partitioned across worker nodes. Only one
worker node holds the counter for each 〈lea f , attr, val, class〉 quadruple. Thus,
global statistics are computed in parallel when a splitting decision is required.
The evaluation of splits is performed in parallel as well. However, the split-
ting decision is made in the master node. In our implementation, training in-
stances are horizontally partitioned, but global statistics are informed instantly
for each leaf node and attribute by aggregating local statistics. Moreover, split-
ting decisions are made in parallel. A splitting decision is made whenever a
new batch of training instances arrives. The batch interval is a user-defined
variable.

In the below sections, the proposed implementation is presented in more
detail. More precisely, the procedure of updating the global statistics, whether
a new batch of training instances is available, is presented in 4.2. The dis-
tributed computations for evaluating the splits, finding the best one and de-
ciding whether to split a node are presented in 4.3. Finally, the implementation
in the Spark Streaming platform is presented in 4.4.

22 Chapter 4. Hoeffding Decision Trees in the Spark Streaming Platform

4.2 Updating the Global Statistics

In the proposed implementation, a data stream of training instances is mod-
eled as a DStream. A Dstream, as described in the previous chapter, is a se-
quence of RDDs. Each RDD contains all training instances arrived at the re-
ceivers of worker nodes during a batch interval. At each batch interval, train-
ing instances of the new RDD are horizontally partitioned across the cluster.
A training instance, included in a partition of a worker node, traverses the
up-to-date Hoeffding tree H, until a leaf node lea f . To this end, the mas-
ter node sends all information, required for traversing the tree, to all worker
nodes. All training instances contain values for their fixed-size n attributes
and a class label. Therefore, a training instance, labeled as classj, generates
n 〈lea f , attr, val, classj〉 quadruples. A FlatMap operation transforms a train-
ing instances to n key-value pairs. Each key-value pair consists of a key :
〈lea f , attrn, valni, classj〉 and a value : 〈1〉, where attrn represents the attribute
of a training instance and valni its value. Each key-value pair of a training in-
stance shows that this training instance belongs to leaf node lea f and is labeled
as classj. Moreover, it shows that it contains an attribute attrn with value valni.

The counters of all 〈lea f , attr, val, class〉 quadruples in the batch are com-
puted by applying a ReduceByKey transformation with hash-partitioning based
on key to the DStream. Firstly, the ReduceByKey operation aggregates locally all
appearances of each 〈lea f , attr, val, class〉 quadruple in a worker node during
the current batch interval. Therefore, a counter for each 〈lea f , attr, val, class〉
quadruple is computed. These counters are the local statistics of each worker
node during the current batch interval. Then, ReduceByKey partitions (hash-
partition) all local aggregated key-value pairs based on their keys across the
cluster. All key-value pairs with the same key are sent to the same worker
node. A counter of each 〈lea f , attr, val, class〉 quadruple is computed by ag-
gregating the local aggregated key-value pairs. These counters are the ag-
gregated local statistics of all worker nodes during the current batch interval
and data shuffling is required in order to compute them. Consequently, Re-
duceByKey transforms each key : 〈lea f , attrn, valni, classj〉, value : 〈1〉 to key :
〈lea f , attrn, valni, classj〉, value : 〈aggrn〉, where aggrn is the number of occur-
rences of 〈lea f , attrn, valni, classj〉 quadruple during the current batch interval.

The proposed implementation stores all counters of each 〈lea f , attr〉 dou-
ble, computed throughout the building phase, as a sparse matrix. In order
to achieve that, global statistics are stored as a DStream pair, where key :
〈lea f , attr〉 and value : SparseMatrix(val, class). For example in a binary clas-
sification problem, the counter of all training instances in the 1st leaf node,
classified to the 4th class, where its 2nd attribute takes the 3rd value, is 5
throughout the building phase. This information, included in global statis-
tics, is the entry value SparseMatrix(3, 4) = 5 of 〈1, 2〉 key. The key-value pair
containing this entry value is key : 〈1, 2〉, value : SparseMatrix(3, 4). However,
if the above example corresponds to the counter in all worker node during a
batch interval, then this information is formed as key : 〈1, 2〉, value : 〈3, 4, 5〉.

Sequentially, a Map operation is applied to the DStream, containing the ag-
gregated local statistics during the current time interval, in order to change the
key of all key-value pairs. Since the key is changed, all partitioning informa-
tion, generated by ReduceByKey, is forgotten. Next, all information regarding
each possible combination of leaf nodes and attributes is accumulated, as a

4.2. Updating the Global Statistics 23

list of 〈val, class, aggr〉 triples, in the same worker node by applying a Group-
ByKey operation based on key. Shuffling of data is required in order to ac-
cumulate all information of each 〈lea f , attr〉 to the same worker node. Data
shuffling could be avoided in another architecture by hash-partitioning based
either on 〈lea f , attrn〉 or on 〈lea f 〉 in both ReduceByKey and GroupByKey opera-
tions. However, partitioning information of RDDs, produced by ReduceByKey,
has been forgotten in Spark, since map operation changes the key. Generally, a
map transformation does not preserve partitioning information, even if it does
not change the key. In this regard, the stateless MapValues transformations
exists in order to preserve partitioning information of pair RDDs.

Global statistics, needed to evaluate all attribute splits for each 〈lea f , attrn〉
double, are stored as a state DStream. The state represents the occurrences
of each 〈lea f , attr, val, class〉 quadruple, until the previous batch interval. A
state is represented by key-value pairs, where key : 〈lea f , attr〉 and value :
SparseMatrix(val, class). Each entry (i, j) of a sparse matrix, containing in a
pair with key key : 〈lea f , attr〉, represents the counter of 〈lea f , attr, i, j〉 quadru-
ple. A state DStream is needed to be stored as HashMap[Time, RDD] in main
memory across worker nodes and be processed in main memory as well. The
states are only stored in secondary storage for achieving fault-tolerance as de-
scribed in the previous chapter. Therefore, holding the global statistics across
the cluster demands large amounts of main memory. In order to reduce the
size of main memory, required for storing the global statistics, they are stored
as sparse matrices. The entry values of a SparseMatrix(val, class) are stored
in Compressed Sparse Column (CSC) format. For example, consider a multi-
class problem with 4 classes (A,B,C,D) and an attribute of a leaf node taking
values from {1, 2, 3, 4, 5}. Suppose that 60 training instances, labelled as A,
and 10 training instances, labelled as C, have been classified to that leaf node.
In case of the training instances labelled as A, the attribute takes 45 times the
value 1 and 15 times the value 5. In case of the training instances labelled as
C, the attribute takes 10 times the value 3. The global statistics of this attribute
are described by the the following sparse matrix SparseMatrix(5, 4)

P =

45 0 0 0
0 0 0 0
0 0 10 0
0 0 0 0
15 0 0 0

However, this matrix is stored by holding only A =

[
45 15 10

]
, Row =[

0 2 4
]
, Col =

[
0 2 2 3 3

]
. A matrix contains the non-zero values in

column-major order. Row matrix contains the corresponding rows of each non-
zero values. Finally, let nj be the number of non-zero values on j− th column
and the number of columns be k (4 in our example), then

Col[j] =

{
0 f or j = 0
Col[j− 1] + nj−1 f or j = 1, ..., k

The aggregated local statistics in the current batch interval, generated by

24 Chapter 4. Hoeffding Decision Trees in the Spark Streaming Platform

GroupByKey, as well as the global statistics, throughout all previous batch in-
tervals, can be merged with a MapWithState stateful transformation. More
precisely, the aggregated local statistics are represented by key-value pairs,
with key : 〈lea f , attr〉 and value : List[val, class, aggr] for all combinations of
leaf nodes, attributes, values, and classes, appeared in the current batch. The
global statistics are also represented by key-value pairs, with key : 〈lea f , attr〉
and value : SparseMatrix(val, class) for all possible combinations of leaf nodes,
attributes, values, and classes. The aggregated local statistics of a leaf node and
an attribute are stored in main memory of the worker node, in which the state
of the leaf node and the attribute is stored. Therefore, data shuffling is not re-
quired. The update function adds the counter aggrn of a 〈lea f , attri, valni, classj〉,
contained in the list, to the entry value of SparseMatrix(valni, classj) of the pair
with key : 〈lea f , attri〉, contained in the state. In order to update a SparseMatrix,
it is converted to a DenseMatrix. In DenseMatrix, the entry values are stored
in a single array of doubles with columns listed in sequence. When the up-
date is finished, DenseMatrix converts to SparseMatrix again. Further, when
a key : 〈lea f , attr〉 is contained in the aggregated local statistics but not in
the state, then a new pair with state key : 〈lea f , attr〉 is initialized in the
state. When a key : 〈lea f , attr〉 is not contained in the aggregated local statis-
tics during a user-defined time-interval, but the state includes a pair with
key : 〈lea f , attr〉, the pair is deleted from the state. This mechanism deletes
global statistics of obsolete leaf nodes or interior nodes. In case of obsolete leaf
nodes, global statistics can be re-initialized when the aggregated local statistics
contain information for it.

The data flow diagram for updating the statistics is illustrated in 4.1. In
this figure, the red arrows represent the operations needed shuffling of data
across the cluster, while the white arrows represent the operations that do not
require shuffling. The blue arrows represent the operations that would avoid
shuffling of data in another platform if they were hash-partitioned based either
on 〈lea f , attrn〉 or on 〈lea f 〉. However, as described previously, shuffling of
data could not be avoided in Spark.

4.3 Updating the Hoeffding Decision Tree

By storing all counters of each 〈lea f , attr〉 double as a sparse matrix, all infor-
mation required for evaluating attribute splits is locally available. In order to
evaluate attributes splits, B− 1 splits are examined for a numerical attribute,
taking B values, in each leaf node. As described previously, a fixed-sized one-
dimensional histogram is built for each numerical attribute based on B first
observations. Therefore, the boundary values are these B first observations
and all midpoints of two successive boundary values are considered as candi-
date splits. A split on a numerical attribute attrn, taking valni value, is formed
as valni ≤ mid, where mid is the midpoint value of two successive boundary
values of the histogram of attribute attrn. On the other hand, 2B − 2 splits are
examined for a categorical attribute, taking values from a set of B values, in
each leaf node; because all possible subsets of this set, except for the empty set
and the set containing all values, are considered as candidate splits. The can-
didate split with the highest information gain in f obest is considered as the best
attribute split splitbest of attrn. The number of instances Nlea f and the majority

4.3. Updating the Hoeffding Decision Tree 25

FIGURE 4.1: The data flow diagram for updating the global
statistics

26 Chapter 4. Hoeffding Decision Trees in the Spark Streaming Platform

class classlea f in each leaf node are also computed from the matrices in paral-
lel. This information is modelled as a Dstream key-value pair. The key holds
all information regarding a leaf node and the value holds all information re-
garding the best attribute split of an attribute in this leaf node. More precisely,
the key and the value derived from the global statistics of each leaf node and
attribute is key : 〈lea f , Nlea f , classlea f 〉 and value : 〈attrn, splitn, in f on〉. This
output is generated by applying a Map operation to the snapshot of the state
DStream.

Then, a GroupByKey operation with hash partitioning based on key is ap-
plied in order to accumulate the best attribute splits for each leaf nodes and
find the two attributes with the highest G(Xa) and the second highest in-
formation gain G(Xb). Data shuffling could be avoided in this operation by
hash-partitioning based on 〈lea f 〉 in previous ReduceByKey and GroupByKey
operations. However, partitioning information of RDDs, produced by Map-
WithState, has been forgotten since Map operation has changed the key of the
snapshot of state. Moreover, the range R as well as δ are stored as broadcast
variables and they are distributed only once across worker nodes for read-
only usage. Therefore, all information required to decide whether to split a
leaf node based on the Hoeffding bound is available in the same worker node.
More precisely, the highest information gain G(Xa), the second highest infor-
mation gain G(Xb), the number of instances Nlea f in a leaf node, the range R
and δ are available in main memory of the worker nodes. So, a Map operation
is used in order to derive a splitting decision for each leaf node in parallel.
When split = −1, the inequality G(Xa)− G(Xb) > ε does not hold and as a
consequence the corresponding leaf node does not split. Otherwise, the leaf
node is split based on the splitbest of attrsplit attribute.

Moreover, the tie breaking mechanism, proposed in VFDT, has been imple-
mented. When G(Xa)− G(Xb) < ε < τ and Nlea f ≥ nties in a leaf node, there
is a tie between Xa and Xb. This mechanism prevents the Hoeffding tree from
not splitting when the attributes Xa and Xb have almost identical information
gain measures after nties observations in a leaf node. In this case, the leaf node
is split based on the attribute with the highest information gain Xa. The num-
ber of instance nties, assumed enough in order to decide that there is a tie, and
τ, are user-defined variables. In the proposed implementation, τ and nties are
stored as broadcast variables and they are distributed only once across worker
nodes for read-only usage. Finally, a ForeachRDD output operation applies
Collect RDD action to a new RDD of the DStream, containing splitting decision
at each new batch interval. The Collect action collect to the master node (driver
program) all splitting decisions and the new majority class of each leaf node.
Then, the driver program splits the Hoeffding tree and updates the majority
classes whenever needed. More precisely, splitting decisions are formed as
〈lea f , attrsplit, classlea f 〉 triples. When attrsplit = −1 then, the leaf node lea f is
not split. The leaf node lea f is assigned to the class classlea f . Otherwise, the
leaf node lea f is split based on attrsplit and two child leaf nodes are created.
Both child leaf nodes are not assigned to a class, until a training instance be
classified to them.

The tree-model is saved on secondary storage after the update phase of
each batch. The Hoeffding tree can be also initialized by loading this informa-
tion from secondary storage. In the prediction phase, described in the previ-
ous section, the unseen instances are horizontally partitioned and each worker
node contains an up-to-date model of the Hoeffding tree. Therefore, each new

4.4. The proposed implementation in Spark Streaming 27

unseen instance in this worker node traverses the tree until it reaches to a leaf
node. Then, the unseen instance is classified to the majority-class of this leaf
node. When this leaf node is not assigned as no training instance has not been
classified to it yet, the unseen instance is classified to the majority-class of its
parent interior node. Therefore, the proposed implementation allows making
predictions throughout the building phase.

The data flow diagram for updating the Hoeffding decision tree is illus-
trated in 4.3. In this figure, the red arrows represent the operations needed
shuffling of data across the cluster, while the white arrows represent the op-
erations that do not require shuffling. The green arrows represent the opera-
tions that would avoid shuffling of data if all operations were hash-partitioned
based on 〈lea f 〉. However,shuffling of data could not be avoided in Spark; be-
cause the previous operations have changed the key of future DStreams and
as a consequence the previous partitioning information has been forgotten.

4.4 The proposed implementation in Spark Streaming

Generally, a Spark streaming application in the Spark Streaming platform con-
sists of a sequence of jobs. At each fixed time interval, known as batch interval,
a new job is created for each output operation of a Spark streaming applica-
tion. As described in the previous chapter, every job in Spark Streaming con-
tains numerous transformations and exactly one output operation. In order to
execute a job, the scheduler builds a directed acyclic graph (DAG) of stages
based on the lineage graphs of each RDD of the Dstream, used in this job.
A new stage is started, when a transformation of the previous stage requires
shuffling of data. Therefore, a stage can contain multiple transformations exe-
cuted in pipeline, but at most one transformation requiring shuffling of data.
Finally, each stage is divided into tasks. Each task contains a partition of an
RDD and all operations of its stage. Then, the scheduler assigns a task to an
executor of a worker node based on data locality.

The proposed implementation, presented in the previous sections, is a Spark
streaming application. At each batch interval, a new job is created, correspond-
ing to the ForeachRDD output operation. The ForeachRDD output operation
applies the Collect RDD action to the new RDD, containing all splitting de-
cision during a batch interval. In our implementation, each job consists of 4
stages. A job of the proposed streaming application is presented in figure 4.3.

The first stage is performed in order to read new training instances from
Hadoop Distributed File System (HDFS) and aggregate all local statistics gen-
erated during a batch interval. It starts when the textFileStream transforma-
tion is executed and it ends when the ReduceByKey transformation is executed.
When new files, containing new training instances, are created in a directory of
HDFS during a batch interval, the TextFileStream includes the new training in-
stances in the new RDD of the DStream. However, TextFileStream is not able to
detect changes in a file and thus it is mandatory to store new training instances
as a new file in a directory of HDFS.

The second stage is used for sending aggregated local statistics to the worker
nodes containing global statistics. It starts after the execution of the Reduce-
ByKey transformation and it ends when the GroupByKey transformation is ex-
ecuted. These jobs could be merged to one job by replacing the ReduceByKey
and the GroupByKey transformations with a ReduceByKey transformation with

28 Chapter 4. Hoeffding Decision Trees in the Spark Streaming Platform

FIGURE 4.2: The data flow diagram for updating the Hoeffding
decision tree

4.4. The proposed implementation in Spark Streaming 29

FIGURE 4.3: An execution plan of a Spark job in the proposed
implementation

hash-partitioning based on 〈lea f , attr〉. However, in this case, large amounts
of data would send to the worker nodes holding global statistics. Sequentially,
worker nodes would use a large amount of main memory to store this infor-
mation. Further, these worker nodes would perform a large number of com-
putations. Therefore, we prefer to perform two jobs in order to accumulate
aggregated local statistics and global statistics of each leaf node and attribute
in the same worker nodes.

The third stage is used for updating global statistics, evaluating all at-
tribute splits, and aggregating all best attribute splits of each leaf node. It
starts after the execution of the GroupByKey transformation and it ends when
another GroupByKey transformation is executed. The latter one is performed
in order to accumulate all best attribute splits of each leaf node in the same
worker node. This stage is by far the most time-consuming of our implemen-
tation. Further, the third stage in the current job is independent of the first and
the second stage of future jobs. When the third stage has not finished, Spark
Streaming executes the first and the second stages of the pending jobs. There-
fore, the aggregated local statistics have already been shuffled in the worker
nodes containing the global statistics.

Generally, this mechanism, called timestep pipelining, allows submitting
tasks of stages from the pending jobs before the active one has finished. The
only requirement is that the stages of the pending jobs should be independent
of the stages of the active job. Therefore, this is another one reason for choos-
ing the stage of aggregating local statistics not to perform in the same stage
of updating global statistics. In order to leverage on Spark Streaming opti-
mizations, the batch interval should be less than the averaged time required
for completing a job (processing time). However, the aggregated local statis-
tics of pending jobs have been computed with the version of Hoeffding tree
during the batch interval of the active job. If a leaf node is split during the
active job, then the aggregated local statistics of the pending jobs for this node
are useless. As a consequence, all information, included in pending jobs, is
lost for the leaf nodes of an internal node, which is split during the active job.

30 Chapter 4. Hoeffding Decision Trees in the Spark Streaming Platform

However, each leaf node of a Hoeffding tree requires a large number of train-
ing instances in order to split, and thus it can tolerate losing information of a
number of training instances.

The forth stage is used for accumulating the best attribute splits of a leaf
node, and making a splitting decision for the leaf node based on the Hoeffd-
ing bound. It starts after the execution of the GroupByKey transformation and it
ends when the ForeachRDD output operation is executed. Then, all spitting de-
cisions are sent to the driver program which updates the Hoeffding tree. Then,
the next job, regarding training instances arrived at the next batch interval, is
executed.

31

Chapter 5

Experimental Study

5.1 Hyper-spectral imaging

Hyper-spectral imaging is a non-destructive detection technology used for re-
mote sensing. It combines spectroscopy with imaging in order to acquire both
spatial and spectral information of objects. Hyper-spectral imaging has been
used in a broad range of applications (e.g., agriculture, biomedicine, and satel-
lite imaging) over the years. Hyper-spectral images represent observations
of a scene at many different wavelengths, beyond the visible electromagnetic
spectrum. In figure 5.1 (source: [29]), the whole electromagnetic spectrum
is illustrated. From spectral and spatial information of these observations, a
hyper-spectral data cube can be constructed. A hyper-spectral data cube can
also be considered as a stack of images, each of them acquired at a different
wavelength. The intensity of each pixel at a different wavelength is measured
and thus a complete spectrum of each pixel is available in a data cube. A
complete spectrum of a pixel is considered the light emerging from an ob-
ject as a function of the wavelength. Figure 5.2a (source: [4]) represents a
hyper-spectral data cube, comprising a set of images acquired at N different
wavelengths. The corresponding complete spectrum of two pixel vectors of
this cube is presented in figure 5.2b (source: [4]) as well. A more detailed de-
scription of the theoretical background of hyper-spectral imaging is available
in this work [29].

FIGURE 5.1: The electromagnetic spectrum

32 Chapter 5. Experimental Study

(A) Two
pixel vectors
of a hyper-
spectral data

cube

(B) The complete spec-
trum of two pixels

FIGURE 5.2: Hyper-spectral data cubes

Various machine learning methods [48, 7, 28] have been applied to hyper-
spectral data cubes over the years in order to provide surveillance, reconnais-
sance and biomedical diagnosis. Decision tree learning algorithms [74] can ef-
fectively address classification problems based on hyper-spectral data cubes.
The reason is that every substance reacts in a unique manner to light at differ-
ent wavelengths; because it has a different chemical composition. Therefore,
spectral information of each substance is unique and this principle is known as
spectral signature of each substance. A hyper-spectral data cube is an instance
of the training set. Each possible combination of pixels and wavelength is a
numerical attribute taking a value from 0 to 255. This value corresponds to the
intensity of a pixel at a specific wavelength, extracted from a grayscale image.
In many applications, spatial information is not informative and is discarded.

Despite the predictive accuracy of decision trees, their building phase de-
mands high computational power and large amounts of main memory; since
a data cube is high-dimensional. In this regard, Apache Spark can satisfy the
requirements of building a decision tree from a large amount of data cubes.
Moreover, the proposed incremental decision tree learning algorithm can min-
imize the memory requirements as only the statistics needed to evaluated the
splits are required to be stored. More precisely, a data cube, arriving at the sys-
tem, is processed only once and then it is discarded from main memory. Thus,
it is possible to efficiently build a decision tree from an unbounded stream of
data cubes. As far as we concerned, the approach of handling hyper-spectral
data cubes as data streams has not been proposed in any work in the literature.

5.2 Data sets

In this thesis, the Hoeffding decision tree is used in order to predict the color
of an object based on its spectral signature. Each color has a different chem-
ical composition, and as a consequence a different spectral signature. In or-
der to evaluate our implementation, we use a real-time hyper-spectral data
cube, generated from the Electronics Laboratory of the School of Electronic and

5.2. Data sets 33

FIGURE 5.3: The X-Rite ColorChecker SG

Computer Engineering (ECE) of the Technical University of Crete (TUC). The
data cube contains spectral and spatial information of the X-Rite ColorChecker
SG. X-Rite ColorChecker SG, illustrated in figure 5.3, is a unique test pattern,
designed to help determine the true color balance or optical density of any
color rendition system. The X-Rite ColorChecker SG provides 140 different
color and extends the X-Rite ColorChecker, offering 24 colors. The basic prin-
ciple of our analysis is that each color has a different chemical composition,
and as a consequence a different spectral signature. In X-Rite ColorChecker
SG, 44 colors are identical and they are removed from the data cube. There-
fore, there are 96 classes in our classification problem.

In our problem, spatial information of the hyper-spectral data cube is not
useful, as the color of a target object is not related with its position. Our scope
is to make color classification based on the spectral signature of each color. The
number of classes is 96 since 96 colors are unique in ColorChecker SG. Gener-
ally, spectrometers measure the intensity of the light emerging from an object
as a function of the wavelength. This information is captured by converting
every image to a gray-scale representation. In our case, the intensity of each
color (96 unique colors) is measured at 1,600 different positions (pixels) for 60
different bands of wavelength (400nm first band, 10nm band step, 990nm last
band). The size of real-time data set, derived by the hyper-spectral data cube,
is 153,600 (1600 pixels * 96 colors) instances.

A noise, drew from a zero-mean normal distribution with variance 5, is
added to each measured intensity of the real-time data set. When the value
(intensity) of an attribute (band) is out of 0− 255 range, the real value is used.

34 Chapter 5. Experimental Study

The procedure of creating a noisy data set form the real data set is repeated
10 times. Therefore, the noisy data set, used in our experiments, contains
1,536,000 (10 times * 1600 pixels * 96 colors) instances. The data set has 60
numerical attributes (60 different bands). Each attribute can take an integer
value from 0 to 255. Finally, each instance has a class label from 96 colors. The
data set contains 16,000 instances for each color and is stored in 16,000 batches.
Each batch (96 instances) contains only one training instance for each color (96
colors). Moreover, all instances are stored in a specific format in order to be
converted into the labeled points data type of Spark MLlib. From this noisy
data set, various data sets are generated in order to evaluate our implementa-
tion based on the number of attributes and instances.

The procedure of creating the data sets for evaluating our implementation
based on attributes is the following. Firstly, only the first 153,600 instances
(1,600 batches) of the noisy data set are used. The data set, derived from hold-
ing only the first 153,600 instances of the noisy data set, is called the data set
of full bands. The data set of full bands contains the intensity of 60 different
bands of wavelength (400nm first band, 10nm band step, 990nm last band).
The low spectral resolution data set is created by sampling the intensity of
15 bands from the data set of full bands (400nm first band, 40nm band step,
960nm last band). The data set of featureless bands (9_L) is created by sam-
pling the intensity of 9 bands from the data set of full bands. These bands
(400nm, 500nm, 600nm, 700nm, 750nm, 800nm, 850nm, 900nm, 950nm) are not as
informative as the other bands, based on previous experience. The feature-
based data set (9_H) is created by sampling from the data set of full bands,
the intensity of 9 specific bands (410nm, 470nm, 520nm, 550nm, 580nm, 610nm,
650nm, 700nm, 850nm). Finally, a reduced feature-based data set is generated
by sampling 7 bands (410nm, 480nm, 530nm, 580nm, 640nm, 710nm, 900nm).

The size of all these data sets is identical (153,600 instances). Each data set
is stored in 1,600 batches, each containing 96 training instance classified to dif-
ferent classes. The 80 percent of these batches (1,280 batches = 122,880 training
instances) is used as the training set and the other 20 percent (320 batches) is
used as the test set. However, the number of numerical attributes of each data
set is not identical. More precisely, the data set of full bands contains 60 at-
tributes. The low spectral resolution data set has 15 attributes. The featureless
and the feature-based data sets have both 9 attributes. However, the bands of
the first data set holds less significant spectral information than the latter one.
Finally, the reduced feature-based data set contains 7 attributes.

The procedure of creating the data sets for evaluating our implementation
based on the size of the training set is the following. The noisy data set, gener-
ated by the real-time data set, contains 1,536,000 instances. The noisy data set
is stored in 16,000 batches. The first 1,6000, 3,200, 8,000 batches and all batches
(16,000) are used in order to create four data sets with different size. The first
1,6000 batches, combining 153,600 instances, are used in order to evaluate the
performance of our model for almost 125K training instances. The first 3,200
batches, combining 307,200 instances, are used in order to evaluate the perfor-
mance of our model for almost 250K training instances. The first 8,000 batches,
combining 768,000 instances, are used in order to evaluate the performance of
our model for almost 625K training instances. Finally, all batches, combin-
ing 15,360,000 instances, are used in order to evaluate the performance of our
model for almost 1.25M training instances. The 80 percent of the instances of
each data set is used as the training set and the other 20 percent is used as the

5.3. Performance Evaluation 35

test set. More precisely, the training sets contain 1,280 (122,880 ≈ 125K train-
ing instances), 2,560 (245,760≈ 250K training instances), 6,400 (614,400≈ 625K
training instances) and 12,800 (1,228,800 ≈ 1.25M training instances) batches
and the test data sets contain 320, 640, 1,600 and 3,200 batches.

5.3 Performance Evaluation

In order to evaluate the performance of the proposed implementation, we con-
ducted three experiments. All experiments run on the cluster of the Software
Technology and Network Applications Laboratory. In our experiments, the
Spark applications are launched on YARN cluster manager in client-mode. In
client mode, the driver runs in the client process, and the application master
is only used for requesting resources from YARN. The driver node has 8 cores
and 12 GB of RAM. The number of executors are changes based on the experi-
ment, but the number of cores is 8 and the size of RAM is 8 GB for each execu-
tor. The batch interval of the Spark Streaming programs, at which a new RDD
is created, is also changed. The accuracy of the Hoeffding tree for different
number of attributes is measured. Further, the scalability of the proposed im-
plementation is evaluated by measuring the throughput for training instances
increased proportionally to the number of executors. The parameters of Ho-
effding trees, used in all experiments, are δ = 10−3, R = log2 96 ≈ 6.584,
τ = 0.05, nties = 200. For each numerical attribute, a histogram with 256 bins
is built. Finally, global statistics of interior nodes and obsolete leaf nodes are
deleted after 20 minutes.

5.3.1 Accuracy

The accuracy of the Hoeffdinig tree for different number of attributes and
training instances is compared to a batch learning one. In these experiments,
the batch-learning classification tree, implemented in Spark MLlib, is used.
Batch-learning classification trees in Spark MLlib, presented in 3.3, allow users
to define an evaluation metric a stopping criterion. In our experiments the in-
formation gain is used as the evaluation metric. Moreover, the depth of tree is
used as the stopping criterion. The maximum depth of tree is denoted 15.

In the first experiment, the accuracy of the Hoeffding tree is measured for
different number of attributes. As described previously, five different data sets,
each containing 1,600 batches of 96 instances, are used. For each data set, the 80
percent of these batches is used as the training data set and the other 20 percent
is used as the test data set. Each instance of the data set of full bands has 60
attributes. The low spectral resolution data set and the reduced feature-based
data set have 15 and 7 attributes, respectively. Finally, the featureless data set
and the feature-based data set have both 9 attributes, and they are denoted as
9_L and 9_H, respectively. Therefore, the performance of the Hoeffding tree,
compared to the batch decision tree, can be evaluated for different number of
attributes. The number of executors is 4 for both decision trees. The batch
interval in the Spark Streaming program of the Hoeffdinng tree is 20 seconds.
The results of our experiment are presented in figure 5.4.

In the second experiment, conducted in order to evaluate our implemen-
tation, we compare the accuracy of the batch-learning decision tree and the
Hoeffding tree for different number of training instances. In this case, the

36 Chapter 5. Experimental Study

FIGURE 5.4: Comparison between the batch and the Hoeffd-
ing decision tree for different number of attributes in terms of

accuracy

Model 60 15 9_H 9_L 7
Batch-learning tree 92.44 % 90.84 % 88.65 % 88.55 % 88.63 %
Hoeffding tree 85.02 % 84.02 % 84.16 % 83.01 % 83.88 %

TABLE 5.1: The accuracy of the batch-learning decision tree
and the Hoeffding tree for different number of attributes

number of attributes is 60 (full-band) and the number of training instances
are 125K, 250K, 625K and 1.25M. The batch intervals in the Spark Streaming
programs of the Hoeffdinng tree are 20, 30, 40 and 60 seconds for 125K, 250K,
625K and 1.25M training instances, respectively. The results of our experiment
are presented in figure 5.5.

In table 5.1, the percentage of accuracy for different number of attributes is
presented. Both decision trees are more accurate as the number of attributes
increases in almost all cases. The only exception is the trees, trained with the
reduced feature-based data set, which are more effective than the trees, trained
with the featureless data set. Moreover, the number of attributes has more im-
pact on the batch learning decision tree than on the Hoeffding tree. In table 5.2,
the percentage of accuracy for different number of training instances is pre-
sented. Both decision tree models are more accurate as the number of training
instances increases. The number of training instances has more impact on the
Hoeffding tree than on the batch-learning decision tree.

5.3. Performance Evaluation 37

FIGURE 5.5: Comparison between the batch and the Hoeffding
decision tree for different number of training instances in terms

of accuracy

Model 125K 250K 625K 1.25M
Batch-learning tree 92.44 % 93.62 % 93.81 % 94.18 %
Hoeffding tree 85.02 % 88.42 % 89.28 % 90.24 %

TABLE 5.2: The accuracy of the batch-learning decision tree
and the Hoeffding tree for different number of training in-

stances

5.3.2 Scalability

In order to evaluate the scalability in our implementation, we compute the pro-
cessing time of each training instance for different number of executors. The
procedure of this experiment is the following. Firstly, our decision tree model
is initialized by the tree-structure of a Hoeffding decision tree, trained with
1,228,800 training instances with 60 attributes, loaded from secondary storage.
The global statistics of each node are not loaded and they are initialized when a
training instance is classified to this node. Global statistics consist of 60 sparse
matrices of 256 rows and 96 columns for each leaf node. In this experiment, as
the number of executors increases, the number of training instances increases
proportionally. More precisely, the number of executors are 1, 4, 8 and 16 and
the number of training instances arrived every second are 10, 40, 80 and 160,
respectively. In order to generate identical Hoeffding trees for all different ex-
ecutors, the number of training instances at each batch interval equals to 9,600.
This is achieved by denoting the batch interval 16, 8, 4 and 1 minutes for the
programs with 1, 4, 8 and 16 executors, respectively. The generated Hoeffding

38 Chapter 5. Experimental Study

FIGURE 5.6: The throughput of the proposed implementation
for training instances increased proportionally to the number

of executors

trees are identical as they are updated for each new RDD, created at the batch
interval in order to capture all new information. Therefore, Spark Streaming
programs with 1, 4, 8 and 16 executors have 16, 4, 2 and 1 minutes batch in-
tervals and last 128, 64, 32, and 8 minutes, respectively. Finally, the number of
partitions of each RDD for Spark Streaming programs with 1, 4, 8 and 16 are
8, 32, 64 and 128, respectively.

The processing time of 8 Spark batches (RDDs), each containing 9,600 train-
ing instances, is measured. The measurements for all different number of ex-
ecutors are illustrated in figure 5.7, extracted from the Spark UI. The averaged
processing time of the last five measurements is used in order to compute the
average processing time of each Spark batch. Then, the throughput (training
instances/second) for each number of executors is measured by dividing the
number of instances in each Spark batch (9,600 training instances) with the av-
eraged processing time of the last five Spark batches. The throughput metric
is the number of processed training instances per second. In figure 5.6, the
throughput of the proposed implementation for different number of executors
is presented.

It is observed from figure 5.6 that the throughput of our implementation
significantly increases for 16 executors. As the number of executors increases,
aggregated local statistics and global statistics are partitioned proportionally.
However, a major factor for the improvement in performance of our imple-
mentation is that the batch interval is less than the averaged time required
for completing a job (processing time). Therefore, our implementation lever-
ages on Spark Streaming optimizations, described in 4.4. More precise, the

5.3. Performance Evaluation 39

timestep pipelining allows executing stages of pending jobs before the active
job is finishes. As a consequence, the aggregated local statistics of pending
jobs have already been shuffled to the worker nodes containing global statis-
tics. Therefore, the proposed implementation scales well, capitalizing on the
optimizations of Spark Streaming.

(A) 1 executor

(B) 2 executors

(C) 8 executor

(D) 16 executors

FIGURE 5.7: The processing time of each Spark batch for dif-
ferent number of executors

40

Chapter 6

Conclusion

In this thesis, we propose an implementation of Hoeffding decision trees in
the Spark Streaming platform. The implementation performs horizontal data
parallelism in the shared-nothing architecture of Spark. The high dimensional
global statistics, required to evaluate the splits, are stored as sparse matrices
across the cluster. These statistics are instantly updated, when new training
instances are available. Furthermore, distributed computations are performed
in order to identify the optimal split and assess whether the splitting criterion
is satisfied. The generated model is used to predict the color of an object based
on its spectral signature. We evaluated our implementation by comparing it
with a batch learning classification tree in terms of accuracy for different num-
ber of attributes and training instances. The results show that a Hoeffding
tree is always less effective than a batch learning decision tree. However, the
differences between the accuracy of these models are not significant. Further-
more, as the training instances and the number of attributes increase, we per-
ceive increased level of accuracy for both models. The number of attributes
has more impact in terms of accuracy on a batch learning decision tree than
on a Hoeffding tree. On the other hand, the size of training data set is more
significant in terms of accuracy on a Hoeffding tree than on a batch-learning
decision tree. Finally, the proposed implementation scales well, capitalizing
on the optimizations of the Spark Streaming platform.

Chapter 6. Conclusion 41

———————————————

42

Bibliography

[1] Hussein Almuallim. An efficient algorithm for optimal pruning of deci-
sion trees. Artificial Intelligence, 83(2):347–362, 1996.

[2] Nuno Amado, Joao Gama, and Fernando Silva. Parallel implementation
of decision tree learning algorithms. In Portuguese Conference on Artificial
Intelligence, pages 6–13. Springer, 2001.

[3] Michael Armbrust, Reynold S Xin, Cheng Lian, Yin Huai, Davies Liu,
Joseph K Bradley, Xiangrui Meng, Tomer Kaftan, Michael J. Franklin, Ali
Ghodsi, et al. Spark sql: relational data processing in spark. In Proceed-
ings of the 2015 ACM SIGMOD International Conference on Management of
Data, pages 1383–1394. ACM, 2015.

[4] Costas Balas. Lecture notes in advanced topics in electronic imaging,
2018. Technical University of Crete.

[5] Yael Ben-Haim and Elad Tom-Tov. A streaming parallel decision tree
algorithm. Journal of Machine Learning Research, 11(Feb):849–872, 2010.

[6] Gérard Biau and Erwan Scornet. A random forest guided tour. Test, 25(2):197–
227, 2016.

[7] José M Bioucas-Dias, Antonio Plaza, Nicolas Dobigeon, Mario Parente,
Qian Du, Paul Gader, and Jocelyn Chanussot. Hyperspectral unmix-
ing overview: geometrical, statistical, and sparse regression-based ap-
proaches. IEEE journal of selected topics in applied earth observations and
remote sensing, 5(2):354–379, 2012.

[8] Marko Bohanec and Ivan Bratko. Trading accuracy for simplicity in de-
cision trees. Machine Learning, 15(3):223–250, 1994.

[9] Leo Breiman. Bagging predictors. Machine learning, 24(2):123–140, 1996.

[10] Leo Breiman. Classification and regression trees. Routledge, 2017.

[11] Leo Breiman. Random forests. Machine learning, 45(1):5–32, 2001.

[12] Wray Buntine. Learning classification trees. Statistics and computing, 2(2):63–
73, 1992.

[13] Jeffrey Dean and Sanjay Ghemawat. Mapreduce: simplified data pro-
cessing on large clusters. Communications of the ACM, 51(1):107–113, 2008.

[14] Thomas G Dietterich. Ensemble methods in machine learning. In Inter-
national workshop on multiple classifier systems, pages 1–15. Springer, 2000.

[15] Pedro Domingos and Geoff Hulten. Mining high-speed data streams. In
Proceedings of the sixth ACM SIGKDD international conference on Knowledge
discovery and data mining, pages 71–80. ACM, 2000.

[16] Floriana Esposito, Donato Malerba, Giovanni Semeraro, and J Kay. A
comparative analysis of methods for pruning decision trees. IEEE trans-
actions on pattern analysis and machine intelligence, 19(5):476–491, 1997.

Bibliography 43

[17] Yoav Freund. An adaptive version of the boost by majority algorithm.
Machine learning, 43(3):293–318, 2001.

[18] Yoav Freund. Boosting a weak learning algorithm by majority. Informa-
tion and computation, 121(2):256–285, 1995.

[19] Yoav Freund and Robert E. Schapire. A decision-theoretic generalization
of on-line learning and an application to boosting. Journal of computer and
system sciences, 55(1):119–139, 1997.

[20] Jerome Friedman, Trevor Hastie, Robert Tibshirani, et al. Additive lo-
gistic regression: a statistical view of boosting (with discussion and a
rejoinder by the authors). The annals of statistics, 28(2):337–407, 2000.

[21] Joao Gama. Knowledge discovery from data streams. CRC Press, 2010.

[22] Joao Gama, Indre Zliobaite, Albert Bifet, Mykola Pechenizkiy, and Ab-
delhamid Bouchachia. A survey on concept drift adaptation. ACM com-
puting surveys (CSUR), 46(4):44, 2014.

[23] Joao Gama, Ricardo Rocha, and Pedro Medas. Accurate decision trees
for mining high-speed data streams. In Proceedings of the ninth ACM
SIGKDD international conference on Knowledge discovery and data mining,
pages 523–528. ACM, 2003.

[24] Joao Gama, Pedro Medas, and Ricardo Rocha. Forest trees for on-line
data. In Proceedings of the 2004 ACM symposium on Applied computing,
pages 632–636. ACM, 2004.

[25] Johannes Gehrke, Venkatesh Ganti, Raghu Ramakrishnan, and Wei-Yin
Loh. Boat—optimistic decision tree construction. In ACM SIGMOD Record,
volume 28 of number 2, pages 169–180. ACM, 1999.

[26] Johannes Gehrke, Raghu Ramakrishnan, and Venkatesh Ganti. Rainforest-
a framework for fast decision tree construction of large datasets. In VLDB,
volume 98, pages 416–427, 1998.

[27] Pierre Geurts, Damien Ernst, and Louis Wehenkel. Extremely random-
ized trees. Machine learning, 63(1):3–42, 2006.

[28] Utsav B Gewali, Sildomar T Monteiro, and Eli Saber. Machine learning
based hyperspectral image analysis: a survey. arXiv preprint arXiv:1802.08701,
2018.

[29] Ioannis Gkouzionis. Spectral Cube Reconstruction from Multiplexed Spatial
and Spectral Data. Master’s thesis, Technical University of Crete, Chania
,Greece, 2017.

[30] Tin Kam Ho. The random subspace method for constructing decision
forests. IEEE transactions on pattern analysis and machine intelligence, 20(8):832–
844, 1998.

[31] Wassily Hoeffding. Probability inequalities for sums of bounded ran-
dom variables. Journal of the American statistical association, 58(301):13–
30, 1963.

[32] Geoff Hulten and Pedro Domingos. Vfml–a toolkit for mining high-speed
time-changing data streams. Software toolkit:51, 2003.

[33] Geoff Hulten, Laurie Spencer, and Pedro Domingos. Mining time-changing
data streams. In Proceedings of the seventh ACM SIGKDD international con-
ference on Knowledge discovery and data mining, pages 97–106. ACM, 2001.

44 Bibliography

[34] Laurent Hyafil and Ronald L Rivest. Constructing optimal binary deci-
sion trees is np-complete. Information processing letters, 5(1):15–17, 1976.

[35] Ruoming Jin and Gagan Agrawal. Communication and memory effi-
cient parallel decision tree construction. In Proceedings of the 2003 SIAM
International Conference on Data Mining, pages 119–129. SIAM, 2003.

[36] Ruoming Jin and Gagan Agrawal. Efficient decision tree construction
on streaming data. In Proceedings of the ninth ACM SIGKDD international
conference on Knowledge discovery and data mining, pages 571–576. ACM,
2003.

[37] Mahesh V Joshi, George Karypis, and Vipin Kumar. Scalparc: a new
scalable and efficient parallel classification algorithm for mining large
datasets. In Parallel processing symposium, 1998. IPPS/SPDP 1998. proceed-
ings of the first merged international... and symposium on parallel and dis-
tributed processing 1998, pages 573–579. IEEE, 1998.

[38] Hyunjoong Kim and Wei-Yin Loh. Classification trees with unbiased
multiway splits. Journal of the American Statistical Association, 96(454):589–
604, 2001.

[39] Richard Brendon Kirkby. Improving hoeffding trees. PhD thesis, The Uni-
versity of Waikato, 2007.

[40] Josef Kittler. Combining classifiers: a theoretical framework. Pattern anal-
ysis and Applications, 1(1):18–27, 1998.

[41] Sotiris B Kotsiantis. Decision trees: a recent overview. Artificial Intelli-
gence Review, 39(4):261–283, 2013.

[42] Nicolas Kourtellis, Gianmarco De Francisci Morales, and Albert Bifet.
Large-scale learning from data streams with apache samoa. arXiv preprint
arXiv:1805.11477, 2018.

[43] Nicolas Kourtellis, Gianmarco De Francisci Morales, Albert Bifet, and
Arinto Murdopo. Vht: vertical hoeffding tree. In Big Data (Big Data), 2016
IEEE International Conference on, pages 915–922. IEEE, 2016.

[44] Bartosz Krawczyk, Leandro L Minku, Joao Gama, Jerzy Stefanowski,
and Michał Woźniak. Ensemble learning for data stream analysis: a sur-
vey. Information Fusion, 37:132–156, 2017.

[45] Tjen-Sien Lim, Wei-Yin Loh, and Yu-Shan Shih. A comparison of predic-
tion accuracy, complexity, and training time of thirty-three old and new
classification algorithms. Machine learning, 40(3):203–228, 2000.

[46] Wei-Yin Loh and Yu-Shan Shih. Split selection methods for classification
trees. Statistica sinica:815–840, 1997.

[47] Wei-Yin Loh and Nunta Vanichsetakul. Tree-structured classification via
generalized discriminant analysis. Journal of the American Statistical Asso-
ciation, 83(403):715–725, 1988.

[48] Dimitris Manolakis and Gary Shaw. Detection algorithms for hyper-
spectral imaging applications. IEEE signal processing magazine, 19(1):29–
43, 2002.

[49] Manish Mehta, Rakesh Agrawal, and Jorma Rissanen. Sliq: a fast scal-
able classifier for data mining. In International Conference on Extending
Database Technology, pages 18–32. Springer, 1996.

Bibliography 45

[50] Xiangrui Meng, Joseph Bradley, Burak Yavuz, Evan Sparks, Shivaram
Venkataraman, Davies Liu, Jeremy Freeman, DB Tsai, Manish Amde,
Sean Owen, et al. Mllib: machine learning in apache spark. The Journal of
Machine Learning Research, 17(1):1235–1241, 2016.

[51] Gianmarco De Francisci Morales and Albert Bifet. Samoa: scalable ad-
vanced massive online analysis. Journal of Machine Learning Research, 16(1):149–
153, 2015.

[52] James N. Morgan and Robert C Messenger. Thaid, a sequential analysis
program for the analysis of nominal scale dependent variables, 1973.

[53] James N. Morgan and John A Sonquist. Problems in the analysis of sur-
vey data, and a proposal. Journal of the American statistical association,
58(302):415–434, 1963.

[54] Biswanath Panda, Joshua S Herbach, Sugato Basu, and Roberto J Ba-
yardo. Planet: massively parallel learning of tree ensembles with mapre-
duce. Proceedings of the VLDB Endowment, 2(2):1426–1437, 2009.

[55] Bernhard Pfahringer, Geoffrey Holmes, and Richard Kirkby. Handling
numeric attributes in hoeffding trees. In Pacific-Asia Conference on Knowl-
edge Discovery and Data Mining, pages 296–307. Springer, 2008.

[56] Foster Provost and Venkateswarlu Kolluri. A survey of methods for scal-
ing up inductive algorithms. Data mining and knowledge discovery, 3(2):131–
169, 1999.

[57] J. Ross Quinlan. C4. 5: programs for machine learning. Elsevier, 2014.

[58] J. Ross Quinlan. Induction of decision trees. Machine learning, 1(1):81–
106, 1986.

[59] J. Ross Quinlan. Simplifying decision trees. International journal of man-
machine studies, 27(3):221–234, 1987.

[60] J. Ross Quinlan and Ronald L Rivest. Inferring decision trees using the
minimum description lenght principle. Information and computation, 80(3):227–
248, 1989.

[61] Sanjay Ranka and V Singh. Clouds: a decision tree classifier for large
datasets. In Proceedings of the 4th Knowledge Discovery and Data Mining
Conference, volume 2 of number 8, 1998.

[62] Juan José Rodriguez, Ludmila I Kuncheva, and Carlos J Alonso. Rota-
tion forest: a new classifier ensemble method. IEEE transactions on pattern
analysis and machine intelligence, 28(10):1619–1630, 2006.

[63] S. Rasoul Safavian and David Landgrebe. A survey of decision tree clas-
sifier methodology. IEEE transactions on systems, man, and cybernetics, 21(3):660–
674, 1991.

[64] Robert E. Schapire. The strength of weak learnability. Machine learning,
5(2):197–227, 1990.

[65] Jeffrey C. Schlimmer and Douglas Fisher. A case study of incremental
concept induction. In AAAI, volume 86, pages 496–501, 1986.

[66] John Shafer, Rakesh Agrawal, and Manish Mehta. Sprint: a scalable par-
allel classi er for data mining. In Proc. 1996 Int. Conf. Very Large Data
Bases, pages 544–555. Citeseer, 1996.

46 Bibliography

[67] Claude Elwood Shannon. A mathematical theory of communication. ACM
SIGMOBILE Mobile Computing and Communications Review, 5(1):3–55, 2001.

[68] Konstantin Shvachko, Hairong Kuang, Sanjay Radia, and Robert Chansler.
The hadoop distributed file system. In Mass storage systems and technolo-
gies (MSST), 2010 IEEE 26th symposium on, pages 1–10. Ieee, 2010.

[69] Mahesh K Sreenivas, Khaled Alsabti, and Sanjay Ranka. Parallel out-
of-core divide-and-conquer techniques with application to classification
trees. In Parallel Processing, 1999. 13th International and 10th Symposium
on Parallel and Distributed Processing, 1999. 1999 IPPS/SPDP. Proceedings,
pages 555–562. IEEE, 1999.

[70] Paul E Utgoff. Incremental induction of decision trees. Machine learning,
4(2):161–186, 1989.

[71] Paul E. Utgoff, Neil C. Berkman, and Jeffery A Clouse. Decision tree in-
duction based on efficient tree restructuring. Machine Learning, 29(1):5–
44, 1997.

[72] Shivaram Venkataraman, Zongheng Yang, Davies Liu, Eric Liang, Hos-
sein Falaki, Xiangrui Meng, Reynold Xin, Ali Ghodsi, Michael Franklin,
Ion Stoica, et al. Sparkr: scaling r programs with spark. In Proceedings of
the 2016 International Conference on Management of Data, pages 1099–1104.
ACM, 2016.

[73] Tom White. Hadoop: The definitive guide. " O’Reilly Media, Inc.", 2012.

[74] Junshi Xia, Peijun Du, Xiyan He, and Jocelyn Chanussot. Hyperspectral
remote sensing image classification based on rotation forest. IEEE Geo-
science and Remote Sensing Letters, 11(1):239–243, 2014.

[75] Reynold S. Xin, Joseph E. Gonzalez, Michael J. Franklin, and Ion Sto-
ica. Graphx: a resilient distributed graph system on spark. In First In-
ternational Workshop on Graph Data Management Experiences and Systems,
page 2. ACM, 2013.

[76] Matei Zaharia, Tathagata Das, Haoyuan Li, Timothy Hunter, Scott Shenker,
and Ion Stoica. Discretized streams: fault-tolerant streaming computa-
tion at scale. In Proceedings of the Twenty-Fourth ACM Symposium on Op-
erating Systems Principles, pages 423–438. ACM, 2013.

[77] Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur Dave, Justin
Ma, Murphy McCauley, Michael J. Franklin, Scott Shenker, and Ion Sto-
ica. Resilient distributed datasets: a fault-tolerant abstraction for in-memory
cluster computing. In Proceedings of the 9th USENIX conference on Net-
worked Systems Design and Implementation, pages 2–2. USENIX Associa-
tion, 2012.

[78] Matei Zaharia, Mosharaf Chowdhury, Michael J. Franklin, Scott Shenker,
and Ion Stoica. Spark: cluster computing with working sets. HotCloud,
10(10-10):95, 2010.

[79] Mohammed Javeed Zaki, Ching-Tien Ho, and Rakesh Agrawal. Paral-
lel classification for data mining on shared-memory multiprocessors.
In Data Engineering, 1999. Proceedings., 15th International Conference on,
pages 198–205. IEEE, 1999.

[80] Zhi-Hua Zhou. Ensemble methods: foundations and algorithms. CRC press,
2012.

Bibliography 47

[81] Ruoqing Zhu, Donglin Zeng, and Michael R Kosorok. Reinforcement
learning trees. Journal of the American Statistical Association, 110(512):1770–
1784, 2015.

	Acknowledgements
	Introduction
	Decision Tree Classifiers
	Overview of Decision Tree Classifiers
	Scalable Decision Trees
	Incremental Decision Trees
	Hoeffding Decision Trees

	Machine Learning in Apache Spark
	Apache Spark Core
	Apache Spark Streaming
	Decision trees in Apache Spark

	Hoeffding Decision Trees in the Spark Streaming Platform
	Our Contribution
	Updating the Global Statistics
	Updating the Hoeffding Decision Tree
	The proposed implementation in Spark Streaming

	Experimental Study
	Hyper-spectral imaging
	Data sets
	Performance Evaluation
	Accuracy
	Scalability

	Conclusion
	Bibliography

