
TECHNICAL UNIVERSITY OF CRETE
SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING

Reed-Solomon Burst Error Decoding

by

Ioannis Grypiotis

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF
THE REQUIREMENTS FOR THE DIPLOMA IN

ELECTRICAL AND COMPUTER ENGINEERING

June 2018

THESIS COMMITTEE

Associate Professor George N. Karystinos Thesis Supervisor
Associate Professor Aggelos Bletsas

Assistant Professor Daphne Manoussaki

2

3

Abstract

Reed-Solomon (RS) codes are some of the oldest error detection and correction codes.

However, they are widely used today in various applications, including communications

and storage systems. In this work, we study their structure and their conventional encoding

and decoding. Furthermore, we implement a novel burst error correction algorithm for

RS codes. As a prerequisite for this work, we first present a short introduction to Galois

Fields and the Bose-Chaudhuri-Hocquenghem (BCH) codes, a family of codes which are

closely related to RS codes.

4 Abstract

5

Acknowledgements

I would like to express my gratitude to my supervisor, Associate Professor George N.

Karystinos, who gave me the opportunity to study by his side. For his encouragement, his

dedication, his involvement, and guidance throughout every step of this thesis. I would

also like to thank the rest of my thesis committee, Associate Professor Aggelos Bletsas

and Assistant Professor Daphne Manoussaki.

I am also very grateful to my friends for always being by my side in the good times

and in the bad times.

Last but not least, I would like to thank my family, my parents Thanasis and Marijke,

my sister Lenna, and my brother Daniel for their endless encouragement and love.

6 Acknowledgements

7

Table of Contents

Table of Contents . 7

1 Introduction to Galois fields . 9

1.1 Integer Properties . 9

1.2 Groups, Rings, and Fields . 10

1.3 Galois Fields . 13

2 Designing BCH codes . 21

3 Reed-Solomon codes . 23

3.1 Designing a Reed-Solomon code . 23

3.2 Reed-Solomon Encoding . 24

3.3 Reed-Solomon Decoding . 24

3.3.1 Syndromes . 24

3.3.2 Error Locator Polynomial . 25

3.3.3 Roots of the Error Locator Polynomial 27

3.3.4 Error Magnitudes . 28

4 Reed-Solomon Burst Error Decoding . 29

Appendices . 35

A . 37

References . 41

8 Table of Contents

9

Chapter 1

Introduction to Galois fields

1.1 Integer Properties

In this chapter, we lay down our mathematical tools used through this thesis. More

specifically, we start off with some basic integer properties, definitions, and theorems,

followed by group, ring, and field definitions, and then we shortly introduce finite fields.

We discuss their structure, basic properties, and some theorems which will be proven

useful later on.

Theorem 1.1. (Division algorithm) For any integers a and b with a > 0, there exists

unique integers q and r such that

a = qb+ r

where 0 ≤ r < b. The number q is said to be the quotient and the number r the remainder.

By a (mod b) we denote the operation of taking the remainder after dividing a by b. Now,

if a (mod b) = 0, we say that b divides a or that b is a divisor of a.

Definition 1.1. An integer greater than 1 is said to be prime, if it can only be divided by

1 and itself.

By gcd(a, b) we denote the greatest common divisor of a and b, if gcd(a, b) = 1, then a

and b are said to be relatively prime.

Definition 1.2. The Euler totient function φ(n) is the number of positive integers less

than n that are relatively prime to n.

It can be shown that [1]

φ(n) = n
∏
p|n

p− 1

p
(1.1)

where the product is taken over all primes p dividing n. A few examples of the function

φ(n) follow.

i. φ(4) = 4 · 2−1
2 = 2 (the numbers 1 and 3 are relatively prime to 4).

ii. φ(63) = φ(3 · 3 · 7) = 63 · 2
3 ·

6
7 = 36.

iii. φ(64) = φ(26) = 64 · 1
2 = 32.

iv. φ(154) = φ(2 · 7 · 11) = 154 · 1
2 ·

6
7 ·

10
11 = 60.

10 Chapter 1. Introduction to Galois fields

Theorem 1.2. Fermat’s little theorem [1]: If p is a prime and if a is an integer such

that gcd(a, p) = 1, then p divides ap−1 − 1. That is if gcd(a, p) = 1 with p prime, then

ap−1 − 1 ≡ 0 (mod p).

Some examples, for the prime number p = 3, are shown below.

i. For a = 2, it holds that gcd(2, 3) = 1 and therefore p = 3 divides ap−1−1 = 22−1 = 3.

ii. For a = 4, it holds that gcd(4, 3) = 1 and therefore p = 3 divides ap−1−1 = 42−1 =

15.

iii. For a = 10, it holds that gcd(10, 3) = 1 and therefore p = 3 divides ap−1 − 1 =

102 − 1 = 99.

Theorem 1.3. Euler’s generalization of Fermat’s little theorem [1]: If n and a

are integers such that gcd(a, n) = 1, then:

aφ(n) − 1 ≡ 0 (mod n)

where φ is the Euler totient function.

If n is a prime then φ(n) = n− 1 and we get Fermat’s little theorem.

1.2 Groups, Rings, and Fields

Definition 1.3. A group < G, ∗ > is a set G of objects with a binary operation ∗ such

that:

1. G is closed under the operation ∗, i.e., ∀a, b ∈ G it holds that a ∗ b ∈ G.

2. The operator ∗ is associative, i.e., ∀a, b, c ∈ G it holds that (a ∗ b) ∗ c = a ∗ (b ∗ c).

3. There exists an element e ∈ G such that a ∗ e = e ∗ a = a, ∀a ∈ G. The element e is

called the identity element.

4. For every element a in G there exist an element b in G such that a ∗ b = e. The

element b is said to be the inverse of a.

A group < G, ∗ > is said to be commutative if a ∗ b = b ∗ a, ∀a, b ∈ G.

As an example of a group, let < Z3,⊕ > denote the addition of the numbers {0, 1, 2}
modulo 3. < Z3,⊕ > satisfies the definition of a group, as it can be seen in the table below.

⊕ 0 1 2

0 0 1 2

1 1 2 0

2 2 0 1

1.2. Groups, Rings, and Fields 11

Clearly the set Z3 is closed under the operation ⊕, the element 0 is the identity element.

The element 0 appears in every row and column of the table which means that there

exist an inverse for every element. The associative property can also be confirmed, thus

< Z3,⊕ > forms a group. Furthermore, the symmetry of the table shows that < Z3,⊕ >
is an commutative group.

Similarly, let < Z2,⊕ > denote the addition of the numbers {0, 1} modulo 2 and

let < Z4,⊕ > denote the addition of the numbers {0, 1, 2, 3} modulo 4. The respective

addition tables follow.

⊕ 0 1

0 0 1

1 1 0

⊕ 0 1 2 3

0 0 1 2 3

1 1 2 3 0

2 2 3 0 1

3 2 0 1 2

Once again, it can be confirmed that < Z2,⊕ > and < Z4,⊕ > form commutative groups.

In fact, we can generalize the above for any set Zn with n ≥ 2, as described in the following

theorem whose proof is given in the Appendix.

Theorem 1.4. Let Zn, with n ≥ 2, be the set {0, 1, 2, ..., n − 1} and ⊕ the operation of

addition of the elements in Zn modulo n. Then < Zn, ⊕ > is a commutative group.

For simplification the group < Zn, ⊕ > as described above, from now on will be denoted

by < Zn,+ >. Another example of a group is < Z,+ > which is the set of all integers Z
with the operation of normal addition, whereas < Z, · > is not a group since the element

0 does not have an inverse under normal multiplication. Likewise, the sets of rational

numbers Q and real numbers R form commutative groups under normal addition but do

not form groups under multiplication. Contrary to that, < Q∗, · > and < R∗, · > are

groups. Commutative groups with an addition-like operation are also called Abelian

groups, named after the mathematician Niels Henrik Abel.

Even though groups are useful in various of areas, they are limited due to the fact

that they only have one operation associated with them. This brings us into introducing

another algebraic structure, called a ring.

Definition 1.4. A ring < R,⊕, ∗ > is a set R of objects with two binary operations ⊕
(addition) and ∗ (multiplication) which satisfy the following properties.

1. R is closed under addition and multiplication, i.e., ∀a, b ∈ R, (a + b) ∈ R and

(a ∗ b) ∈ R

2. < R,⊕ > forms a commutative group. The additive identity is usually denoted by 0.

3. Multiplication is associative, i.e., ∀a, b, c ∈ R it holds that (a ∗ b) ∗ c = a ∗ (b ∗ c).

4. The left and right distributive laws hold, i.e., ∀a, b, c ∈ R, it holds that:

a ∗ (b⊕ c) = a ∗ b⊕ a ∗ c, (a⊕ b) ∗ c = a ∗ c⊕ b ∗ c.

12 Chapter 1. Introduction to Galois fields

A ring < R,⊕, ∗ > is said to be commutative if a∗b = b∗a, ∀a, b ∈ R. A ring < R,⊕, ∗ >
is said to be a ring with identity, if there exists an element e such that a ∗ e = e ∗ a
= a, ∀a ∈ R. The identity element in this case is usually denoted by 1. As an example,

let < Z2,⊕, ∗ > denote the addition and multiplication of the numbers {0, 1} modulo 2.

Then < Z2,⊕, ∗ > forms a ring with the following addition and multiplication tables.

⊕ 0 1

0 0 1

1 1 2

∗ 0 1

0 0 0

1 0 1

Similarly, the addition and multiplication tables for the rings< Z3,⊕, ∗ > and< Z4,⊕, ∗ >
are shown below.

⊕ 0 1 2

0 0 1 2

1 1 2 0

2 2 0 1

∗ 0 1 2

0 0 0 0

1 0 1 2

2 0 2 1

⊕ 0 1 2 3

0 0 1 2 3

1 1 2 3 0

2 2 3 0 1

3 3 0 1 2

∗ 0 1 2 3

0 0 0 0 0

1 0 1 2 3

2 0 2 0 2

3 0 3 2 1

Note that none of the ring definitions above require that there exists a multiplicative

inverse of the elements in the ring. As an example, in < Z4,⊕, ∗ >, the element 2 does not

have a multiplicative inverse, whereas the element 3 does have an inverse since 3 ∗ 3 = 1.

Likewise as we did in groups, we will formalize that the set Zn forms a ring under

addition and multiplication modulo n in the theorem that follows.

Theorem 1.5. Let Zn, with n ≥ 2, be the set {0, 1, 2, ..., n − 1} and ⊕ and ∗ be the

operations of addition and multiplication, respectively, of the elements in Zn modulo n.

Then, < Zn, ⊕, ∗ > is a commutative ring with identity.

For simplification, from now on, the ring < Zn, ⊕, ∗ > as described above, will be denoted

by < Zn, +, · >.

Other examples of rings include < Z, +, · >, < Q, +, · >, and < R, +, · >, that is, the

sets of integers, rational numbers, and real numbers, respectively, under the usual rules of

addition and multiplication. All of the examples mentioned above refer to commutative

rings. If M is the set of all 2-by-2 matrices, then <M,+, · > is a ring with identity

[
1 0

0 1

]
.

In this case, multiplicative commutativity does not hold.

Definition 1.5. A field < F,+,· > is a set F of objects with two binary operations +

(addition) and · (multiplication), which satisfy the following properties.

1. F is closed under addition and multiplication, i.e., ∀a, b ∈ F, (a + b) ∈ F and

(a · b) ∈ F.

1.3. Galois Fields 13

2. Additive identity: There exists an element in F, which we denote by 0, such that

a+ 0 = 0 + a = a, ∀a ∈ F.

3. Multiplicative identity: There exists a non zero element in F, which we denote by 1,

such that a · 1 = 1 · a = a, ∀a ∈ F.

4. Additive Inverse: For every a ∈ F, there exist an element b in F, such that a+b = 0,

b is usually denoted as −a.

5. Multiplicative Inverse: For every a ∈ F, with a 6= 0 there exist an element b in F,

such that a · b = 1, b is usually denoted as a−1.

6. Addition and multiplication are associative, i.e., (a + b) + c = a + (b + c) and

(a · b) · c = a · (b · c), ∀a, b ∈ F.

7. Addition and multiplication are commutative, i.e., a + b = b + a, and a · b = b · a,

∀a, b ∈ F.

8. Multiplication distributes over addition, i.e., a · (b+ c) = a · b+ a · c, ∀a, b, c ∈ F.

That is, the set F with the addition operation + forms an Abelian group, the additive

identity is 0. The set F\{0} with the multiplication operation · forms a commutative group,

where the identity is 1. Furthermore, multiplication distributes over addition. Fields have

a similar structure with rings, they differ in that rings don’t require the existence of a

multiplicative inverse; in fact, they might not have a multiplicative identity. Every field

is a ring, but rings are not always fields.

The set of real numbers R under the operations of normal addition and multiplication

is the most commonly known field. Another example of a field is the ring < Q,+, · >.

Whereas, the ring < Z,+, · > does not form a field, since there does not exist a multi-

plicative inverse for every element in < Z,+, · >.

1.3 Galois Fields

Definition 1.6. If, for a field < F,+,· >, |F| is an integer q, then the field is said to be a

finite field or a Galois field, named after Évariste Galois, and is denoted by GF(q).

It is possible to construct such a field if q is a prime number or a power of a prime. Below

we start off by showing how to construct a field GF(p) for a prime p and then how to

extend the field GF(p) into a “bigger” field GF(pm).

If p is prime, then F = {0, 1, ..., p− 1} and the addition and multiplication operations

are defined as normal addition and multiplication modulo p. That is, the ring < Zp,+, · >
for p prime forms a finite field. For example, the ring < Z2,+, · > forms the field GF(2)

with the following addition and multiplication tables.

+ 0 1

0 0 1

1 1 0

· 0 1

0 0 0

1 0 1

14 Chapter 1. Introduction to Galois fields

The ring < Z3,+, · > forms GF(3). The corresponding addition and multiplication tables

are as follows.

+ 0 1 2

0 0 1 2

1 1 2 0

2 2 0 1

· 0 1 2

0 0 0 0

1 0 1 2

2 0 2 1

Note that, since 4 is not a prime number, the ring < Z4,+, · >, with normal addition and

multiplication modulo 4, does not form a field. As it can be seen in the multiplication table

below, the element 2 does not have a multiplicative inverse, therefore the ring < Z4,+, · >
does not form a field.

⊕ 0 1 2 3

0 0 1 2 3

1 1 2 3 0

2 2 3 0 1

3 3 0 1 2

∗ 0 1 2 3

0 0 0 0 0

1 0 1 2 3

2 0 2 0 2

3 0 3 2 1

The ring < Z5,+, · > with the following addition and multiplication tables forms GF(5).

+ 0 1 2 3 4

0 0 1 2 3 4

1 1 2 3 4 0

2 2 3 4 0 1

3 3 4 0 1 2

4 4 0 1 2 3

· 0 1 2 3 4

0 0 0 0 0 0

1 0 1 2 3 4

2 0 2 4 1 3

3 0 3 1 4 2

4 0 4 3 2 1

All of the above can be formalized in the following theorem.

Theorem 1.6. If p is a prime number then the ring < Zp,+, · > is a (Galois) field.

Proof. We have already established in Theorem 1.5 that < Zp,+, · > forms a commutative

ring with identity. The key remaining requirement to show that it is also a field is to prove

that every element in the set Zp\{0} has a multiplicative inverse.

Let a be a non zero element in Zp. Form the set A = {1 · a, 2 · a, ..., (p − 1) · a}, that

is, the set of all the nonzero elements of Zp multiplied by a. We will show that every

element in the set A is distinct, which would imply that A contains all non zero elements

of Zp. Thus, the element 1 ∈ A, which implies that the element a does indeed have a

multiplicative inverse.

Let m · a and k · a be two elements of the set A, with m · a = k · a. Then, m · a =

k · a =⇒ m · a− k · a = 0 =⇒ (m− k) · a = 0. If m 6= k, for the last equation to hold,

it must be the case that p divides (m− k) · a. But that can’t be true since p is prime and

both of the elements (m − k), a ∈ Zp\{0} are relatively prime to p and therefore do not

share any common divisors with p. Hence, for two elements m · a and k · a in A, with

m 6= k, it holds that m · a 6= k · a, therefore all elements in A are distinct.

1.3. Galois Fields 15

It is possible to extend the field GF(p) to a field GF(pm). In this case, GF(p) is

called the base field and GF(pm) the extension field. Any element b ∈ GF(pm) can be

represented as an m-tuple b = (b1, b2, ..., bm) with bi ∈ GF(p) for i = 1, 2, ...,m, or it can

be represented in a polynomial form as b(α) = b1 + b2α + ... + bmα
m−1. Below follows a

table of all the elements of GF (23) in their different representations.

Polynomial Vector Integer

Representation Representation Representation

0 000 0

1 100 1

α 010 2

α2 001 4

1 + α 110 3

α+ α2 011 6

1 + α2 101 5

1 + α+ α2 111 7

The addition in the extension field is defined as follows. Let b = (b1, b2, ..., bm), c =

(c1, c2, ..., cm) ∈ GF(qm), then b + c = (b1 + c1, b2 + c2, ..., bm + cm). Equivalently, in

polynomial form, b(α) + c(α) = (b1 + c1) +(b2 + c2)α++ (bm+ cm)αm−1, where in both

cases the addition of bi and ci is done as defined in the base field. The addition tables of

GF(8) elements in vector and integer, respectively, representations can be seen below.

+ 000 100 010 001 110 011 101 111

000 000 100 010 001 110 011 101 111

100 100 000 110 101 010 111 001 011

010 010 110 000 011 100 001 111 101

001 001 101 011 000 111 010 100 110

110 110 010 100 111 000 101 011 001

011 011 111 001 010 101 000 110 100

101 101 001 111 100 011 110 000 010

111 111 011 101 110 001 100 010 000

+ 0 1 2 4 3 6 5 7

0 0 1 2 4 3 6 5 7

1 1 0 3 5 2 7 4 6

2 2 3 0 6 1 4 7 5

4 4 5 6 0 7 2 1 3

3 3 2 1 7 0 5 6 4

6 6 7 4 2 5 0 3 1

5 5 4 7 1 6 3 0 2

7 7 6 5 3 4 1 2 0

Before defining multiplication, the following definition is needed.

16 Chapter 1. Introduction to Galois fields

Definition 1.7. A nonconstant polynomial p(x) with coefficients over GF(q) (i.e., p(x) ∈
GF(q)[x]) is said to be irreducible over GF(q) if and only if it cannot be factored to a

product f(x)g(x) where both f(x), g(x) are polynomials in GF(q)[x] and are of degree less

than the degree of p(x).

To define multiplication in GF(pm), it is necessary to find an irreducible polynomial p(α) =

p0 + p1α + ... + pmα
m over GF(p). Then, the multiplication between two elements b, c ∈

GF(qm) is defined as

b(α)c(α) mod p(α)

where each individual addition and multiplication is done as defined in the base field

GF(q). As an example, let p(α) = 1 + α + α3 be an irreducible polynomial over GF(2).

Let b = (1, 0, 1) = 1 + α2 and c = (1, 1, 0) = 1 + α. Then b · c = b(α)c(α) mod p(α) =

(1 + α2)(1 + α) mod p(α) = 1 + α+ α2 + α3 mod p(α) = α2 = (0, 0, 1).

Now we will show that the extension GF(pm) of a field GF(q), as described above, is

indeed a field. Most of the properties of the definition of the field are straightforward to

show. Let b,c,d be some elements in GF(pm) with

b = (b1, b2, ..., bm), b(a) = b1 + b2a+ ...+ bma
m−1,

c = (c1, c2, ..., cm), c(a) = c1 + c2a+ ...+ cma
m−1,

d = (d1, d2, ..., dm), d(a) = d1 + d2a+ ...+ dma
m−1.

Also, let p(a) be the m-th degree irreducible polynomial used to define multiplication.

Then, it holds that:

� b + c = (b1 + c1, b2 + c2, ..., bm + cm) = (k1, k2, ...km) = k with k ∈ GF(pm) as an

m-tuple with ki = (bi + ci) ∈ GF(p). Therefore, GF(pm) is closed under addition.

� b(a) · c(a) = b(a)c(a) mod p(a) = k(a) where k(a) is a polynomial with coefficients

in GF(p) and of degree less than m. Therefore, k ∈ GF(pm) and GF(pm) is closed

under multiplication.

� The additive identity is the m-tuple (0, 0, ..., 0), which we will denote as simply 0:

0 + b = b+ 0 = (b1 + 0, b2 + 0, ..., bm + 0) = (b1, b2, ..., bm) = b.

� The multiplicative identity, denoted by 1, is the constant polynomial 1:

1 · b = b · 1 = b(a)1 mod p(a) = b(a) mod p(a) = b.

� The additive inverse of an element b, denoted by−b, is the element−b = (−b1,−b2, ...,−bm)

(where −bi is the additive inverse of the element bi in GF(p)):

b− b = (b1 − b1, b2 − b2, ..., bm − bm) = (0, 0, ..., 0) = 0.

� To show that any non zero element b in GF(pm) does have a multiplicative inverse,

we will once again form the set A = {k · b : k ∈ GF(pm), k 6= 0} and show that the

elements in A are distinct and thus the multiplication identity element 1 must be in

A. Let t · b and s · b be two elements in A with t · b = s · b. Then, it holds that:

t · b = s · b =⇒ t · b− s · b = 0 =⇒ (t− s) · b = 0.

Substitute (t− s) with d and note that d is in GF(pm). Rewrite the above relation

as:

1.3. Galois Fields 17

(t− s) · b = 0 =⇒ d · b = 0 =⇒ d(a)b(a) mod p(a) = 0.

Since b(a) 6= 0, if also d(a) 6= 0, then, for the above equation to hold, it must be the

case that p(a) divides d(a)b(a). But p(a) is an irreducible polynomial of m-th degree

and b(a) is a polynomial of degree less than m, which means that gcd(p(a), b(a)) =

1 and, hence, it must be the case that p(a) divides d(a). But p(a) cannot divide d(a)

because gcd(p(a), d(a)) = 1 (for the same reasoning as above). Thus, it must be the

case d(a) = 0 which yields d(a) = 0 =⇒ d = 0 =⇒ t− s = 0 =⇒ t = s. Thus, we

have proved that the elements in the set A are distinct and, therefore, every nonzero

element a in GF(pm) does have a multiplicative inverse.

� Addition is commutative:

b+ c = (b1 + c1, b2 + c2, ..., bm + cm) = (c1 + b1, c2 + b2, ..., cm + bm) = c+ b.

� Addition is associative:

(b+ c) + d = ((b1 + c1) + d1, (b2 + c2) + d2, ..., (bm + cm) + dm) = (b1 + (c1 + d1), b2 +

(c2 + d2), ..., bm + (cm + dm)) = b+ (c+ d).

� Multiplication is commutative:

b · c = b(a)c(a) mod p(a) = c(a)b(a) mod p(a) = c · b.

� Multiplication is associative:

(b·c)·d = (b(a)c(a) mod p(a))d(a) mod p(a) = b(a)c(a)d(a) mod p(a) = [b(a)[c(a)d(a)

mod p(a)]] mod p(a) = b · (c · d).

� Multiplication distributes over addition: b · (c+ d) = b · c+ b · d.

Here we take advantage of the division algorithm for polynomials. That is, we can

write a polynomial a(x) as:

a(x) = q(x)d(x) + r(x) with a(x) mod d(x) = r(x) and deg(r(x)) < deg(d(x)).

It holds that b · (c + d) = b(a)(c(a) + d(a)) mod p(a). Applying the division algo-

rithm on b(a)(c(a) + d(a)) yields:

b(a)(c(a) + d(a)) = q1(a)p(a) + r1(a) =⇒
r1(a) = b(a)(c(a) + d(a)) − q1(a)p(a), with deg(r1(x)) < deg(p(x)) = m. Thus, we

can write:

b(a)(c(a)+d(a)) mod p(a) = r1(a) = b(a)(c(a)+d(a))−q1(a)p(a) =
m∑
i=1

bia
i−1(

m∑
j=1

cja
j−1+

dja
j−1)− q1(a)p(a) =

m∑
i=1

m∑
j=1

bicja
i+j−2 +

m∑
i=1

m∑
j=1

bidja
i+j−2 − q1(a)p(a) =

b(a)c(a) + b(a)d(a)− q1(a)p(a).

In the step before the last one, we took advantage of the fact that the opera-

tions are in the base field and thus multiplication distributes over addition. Thus,

r1(a) = b(a)c(a) + b(a)d(a)− q1(a)p(a).

We apply the division algorithm again on b(a)c(a) and on b(a)d(a), which yields:

b(a)c(a) = q2(a)p(a) + r2(a), with deg(r2(x)) < deg(p(x))

and b(a)d(a) = q3(a)p(a) + r3(a), with deg(r3(x)) < deg(p(x)).

18 Chapter 1. Introduction to Galois fields

Now, b · c+ b · d can be written as:

b ·c+b ·d = (b(a)c(a) mod p(a))+(b(a)d(a) mod p(a)) = r2(a)+r3(a) = b(a)c(a)−
q2(a)p(a) + b(a)d(a)− q3(a)p(a) =⇒
r2(a) + r3(a) = b(a)c(a) + b(a)d(a)− q2(a)p(a)− q3(a)p(a). In the last equation we

can substitute (b(a)c(a) + b(a)d(a)) with r1 + q1(a)p(a):

r2(a) + r3(a) = r1 + q1(a)p(a)− q2(a)p(a)− q3(a)p(a) =⇒
r2(a) + r3(a)− r1(a) = (q1(a)− q2(a)− q3(a))p(a) =⇒ r(a) = q(a)p(a).

Now note that the above relation can only hold if the degree of the polynomial

on the left hand side is the same as the degree of the polynomial on the right

side. On the left hand side, if r(a) 6= 0 we have a polynomial of degree less than

m. While on the right side, since p(a) is of degree m and is multiplied by the

polynomial q(a), if q(a) 6= 0 the degree becomes greater or equal to m. And thus

the above relation cannot be true. Therefore, it must be the case that q(a) = 0 and

r(a) = 0 =⇒ r1(a) = r2(a) + r3(a) =⇒ b(a)(c(a) + d(a)) mod p(a) = (b(a)c(a)

mod p(a)) + (b(a)d(a) mod p(a)) =⇒ b · (c+d) = b · c+ b ·d. Thus, we have proven

that multiplication distributes over addition.

We have shown that GF(pm) satisfies all the properties of the field definition, there-

fore GF(pm) is a field. An extended field GF(pm) can be further extended into a field

GF((pm)n)).

Definition 1.8. Let a be a non zero element in GF(q), the order of a, denoted by ord(a),

is the smallest positive integer n such that an = a · a · ... · a︸ ︷︷ ︸
n

= 1.

For example, we calculate the order of 4 and 2 in GF (5). For 4 ∈ GF(5), 41 = 4, 42 = 1,

therefore ord(4) = 2. For 2 ∈ GF(5), 21 = 2, 22 = 4, 23 = 3, 24 = 1, therefore ord(2) = 4.

Definition 1.9. An element a ∈ GF (q) is said to be a primitive element if and only if

ord(a) = q − 1.

The powers a1, a2, ...aq−1 of a primitive element a ∈ GF(q) generate all the non zero

elements of GF(q). In the previous example, it can be seen that the element 2 in GF(5)

is of order 4, therefore it is a prime element. In the same example, it is also clear that the

powers 21, 22, 23, 24 generate all the non zero elements of GF(5).

Theorem 1.7. [2] For a Galois field GF(q), if t|q − 1, then there exist φ(t) elements of

order t in GF(q), where φ(t) is the Euler Totient function.

As a direct corollary we get the following theorem.

Theorem 1.8. There exist φ(q − 1) primitive elements in GF(q).

The existence of a primitive element enables a new representation of the nonzero Galois

field elements, called the power representation. As an example, we present the GF(23)

elements. The element b = α is a primitive element.

1.3. Galois Fields 19

Polynomial Vector Integer Power

Representation Representation Representation Representation

(b = α)

0 000 0 -

1 100 1 b0

α 010 2 b1

α2 001 4 b2

1 + α 110 3 b3

α+ α2 011 6 b4

1 + α2 101 5 b5

1 + α+ α2 111 7 b6

Then, the multiplication table of GF(8) elements in power representation is as follows.

· 0 1 α1 α2 α3 α4 α5 α6

0 0 0 0 0 0 0 0 0

1 0 1 α1 α2 α3 α4 α5 α6

α1 0 α1 α2 α3 α4 α5 α6 1

α2 0 α2 α3 α4 α5 α6 1 α1

α3 0 α3 α4 α5 α6 1 α1 α2

α4 0 α4 α5 α6 1 α1 α2 α3

α5 0 α5 α6 1 α1 α2 α3 α4

α6 0 α6 1 α1 α2 α3 α4 α5

Definition 1.10. Let b ∈ GF(qm).

a) The conjugates of b with respect to the subfield GF(q) are the elements: b, bq, bq
2
, bq

3
,

b) The conjugates of b with respect to GF(q) form a set called the conjugacy class of b

with respect to GF(q).

For example, let a be a primitive element in GF(23). The conjugates of a with respect to

GF(2) are

a, a2, a4, a8 = a.

Now, let b = a3. The conjugates of b with respect to GF(2) are

b = a3, b2 = a6, b4 = a12 = a5, b8 = a24 = a3.

The only other elements left in GF(23) are 0 and 1, each of them always form their own

conjugacy class. Hence, the conjugacy classes of the elements of GF(23) with respect to

GF(2) are

{0}, {1}, {a, a2, a4}, {a3, a5, a6}.

Definition 1.11. Let b ∈ GF(qm). The minimal polynomial of b with respect to GF(q)

is the smallest-degree, nonzero, monic polynomial M(x) ∈ GF(q)[x] such that M(b) = 0.

Theorem 1.9. [2] Let A ⊆ GF(qm) be a conjugacy class with respect to GF(q). Then

M(x) =
∏
b∈A

(x− b) is a minimal polynomial of b with respect to GF(q) for every b ∈ A.

20 Chapter 1. Introduction to Galois fields

For example, the following table shows the conjugacy classes of GF(8) with respect to

GF(2) and corresponding minimal polynomials with respect to GF(2).

Conjugacy Class Minimal Polynomial

{0} M(x) = x

{1} M0(x) = x+ 1

{α, α2, α4} M1(x) = (x− α)(x− α2)(x− α4) = x3 + x+ 1

{α3, α6, α5} M3(x) = (x− α3)(x− α6)(x− α5) = x3 + x2 + 1

21

Chapter 2

Designing BCH codes

Transmitting information over a medium includes the risk of the information to be altered.

In order to retrieve the original information-message we make use of error correction

algorithms, which aim into developing ways of correcting the altered message (Illustration

in Fig. 2.1). Such mediums, referred to as channels, may be electrical wires, the air in the

case of wireless communications, or even storage mediums like a hard drive. A message

that has been altered is said to be a message containing errors. In this section, we deal

with error correction coding more specifically we show how to design a BCH code

(Bose–Chaudhuri–Hocquenghem code).

Figure 2.1: Channel adds errors to the transmitted codeword.

Definition 2.1. An (n, k) block code C over an alphabet of q symbols is a set of qk n-

vectors called codewords. Associated with the code is an encoder which maps a message

k-tuple m to its associated codeword.

Definition 2.2. A block code C over a field Fq of q symbols of length n and qk codewords

is a q-ary linear (n, k) code if and only if its qk codeword form a k-dimensional vector

subspace of the vector space of all the n-tuples Fnq . The number n is said to be the length

of the code and the number k is the dimension of the code.

Definition 2.3. A (n, k) block code C is said to be cyclic, if it is linear and, for every

codeword c = (c0, c1, ..., cn−1) in C, its right cyclic shift c′ = (cn−1, c0, c1, ..., cn−2) is also

in C.

It can be shown that an (n, k) cyclic code has a unique minimal monic polynomial g(x),

called the generator polynomial, such that every code polynomial in the code can be

expressed as a multiple of the generator and the message:

c(x) = m(x)g(x).

22 Chapter 2. Designing BCH codes

BCH codes are cyclic codes and thus can be specified by a generator polynomial g(x).

The process of calculating g(x) for a BCH code over GF(q) is described below.

Let q be the number of different symbols over the code alphabet, under the restriction

that q is a power of a prime number. Let n be the code length, under the restriction that

n and q are relatively prime, and t be the error correction capability. Begin by finding

the smallest m such that n|qm − 1. Since n|qm − 1 from Theorem 1.7, there exist φ(n)

elements of order n in GF(qm). Let one of them be β, then βn = 1.

For example, let n = 85, q = 2. By some trial and error we find that the smallest

m such that n|qm − 1 is m = 8, since 85|28 − 1 =⇒ 85|255. Now, let α be a primitive

element in GF(28) = GF(256). The element β = α3 is of order 85. It holds that β85 =

(α3)85 = α255 = 1.

Another example is the following. Let n = 15, q = 2. Then, the smallest m such that

n|qm − 1 is m = 4, since qm − 1 = 24 − 1 = 15. Let α be a primitive element in GF(24) =

GF(16). Then, β = α is of order 15. It holds that β15 = α15 = 1.

Now, take 2t consecutive powers of β, i.e., β, β2, ..., β2t, and determine the minimal

polynomials with respect to GF(q) of each of these powers of β.

In the previous example with q = 2, n = 15, and m = 4, β = α is an element of order

15 in GF(16). Furthermore, let t = 2 and b = 1. Then, the 2t consecutive powers of β are

β1, β2, β3, β4. By finding the conjugacy classes with respect to GF(2) of these powers, we

obtain the conjugacy class of β1, β2, β4 which is A = {β1, β2, β4, β8} and the conjugacy

class of β3 which is B = {β3, β6, β12, β9}. Thus, the minimal polynomials of β1, β2, β3, β4

with respect to GF(2) are:

mA(x) = (x− β1)(x− β2)(x− β4)(x− β8) = x4 + x+ 1,

mB(x) = (x− β3)(x− β6)(x− β12)(x− β9) = x4 + x3 + x2 + x+ 1.

The generator polynomial g(x) is calculated as the multiple of these minimal polynomials,

that is, g(x) = mA(x)mB(x) = (x4 + x+ 1)(x4 + x3 + x2 + x+ 1) = x8 + x7 + x6 + x4 + 1.

The code is a (n, n− deg(g(x))) cyclic code.

The minimal polynomials were taken with respect to GF(q), therefore g(x) ∈ GF(q)[x].

Another effect of using the minimal polynomials with respect to GF(q) is that g(x) might

have more than 2t roots, hence the code might exceed the error capability of t. For

encoding purposes, it is sufficient to work on the “small field” GF(q). Decoding, however,

requires operations in the “big field” GF(qm).

23

Chapter 3

Reed-Solomon codes

3.1 Designing a Reed-Solomon code

Reed-Solomon (RS) codes are a family of cyclic error correction codes, they were intro-

duced by Irving S. Reed and Gustave Solomon in 1960 [3]. Despite of them being some of

the oldest error correction codes, they are widely used today in communications, in data

storage systems and other applications such as QR codes and barcodes. As we will see in

this chapter, Reed-Solomon codes are closely related with BCH codes. We will show how

to construct an RS code and how encoding and decoding is done.

Definition 3.1. A Reed-Solomon code is defined as a q-ary BCH code of length n = q−1.

The design of an RS code is straightforward, from definition we have n = q − 1. The

smallest m such that n|qm − 1 is m = 1. So the ”big field” GF(qm) is GF(q), in which we

are looking for an element of order n = q−1, such an element can be any primitive element

in GF(q). In GF(q), the minimal polynomial with respect to GF(q) of any element β ∈
GF(q) is simply (x− β). Therefore the generator polynomial for an RS code is:

g(x) = (x− α)(x− α2)...(x− α2t)

where α is a primitive element in GF(q).

As an example, consider a double error correction (t = 2) RS code of length n =

24 − 1 = 15 over GF(24). Let α be a primitive element in GF(24), the code generator

polynomial g(x) has α1, α2, α3, α4 as roots. The generator polynomial is:

g(x) = (x− α)(x− α2)(x− α3)(x− α4) =⇒ g(x) = x4 + α13x3 + α6x2 + α3x+ α10

In Reed-Solomon codes the degree of g(x) is always equal to 2t. thus n− k = 2t. The

design distance is δ = n − k + 1 which means Reed-Solomon codes achieve the singleton

bound and hence are maximum distance separable(MDS) codes.

In the following table we compare the design of BCH and RS codes.

BCH code over GF(q) RS code over GF(q)

Length n n|qm − 1 n = q − 1

Element of β an element in GF(qm) α a primitive element in GF(q)

order n such that ord(β) = n ord(α) = n

Minimal polynomials M1(x),M2(x), ... (x− α), (x− α2), ..., (x− α2t)

Generator g(x) = g(x) =

Polynomial M1(x)M2(x)... (x− α)(x− α2)...(x− α2t)

g(x) coefficients g(x) with coefficients in GF(q) g(x) with coefficients in GF(q)

24 Chapter 3. Reed-Solomon codes

3.2 Reed-Solomon Encoding

Reed-Solomon codes may be encoded just as any other cyclic code. The systematic en-

coding can be defined as:

c(x) = m(x)xn−k −Rg(x)[m(x)xn−k]

where Rg(x)[p(x)] denotes the operation of taking the remainder after dividing p(x) by g(x).

One of the advantages of the systematic encoding, is that, the codeword c(x) contains the

message m(x).

To give an example of encoding, we use the generator polynomial g(x) of the previous

example, in integer representation

g(x) = x4 + 13x3 + 12x2 + 8x+ 7.

Let the message polynomial be

m(x) = 3 + x+ 2x2 + 3x3 + 6x4 + 14x6 + 15x7 + 7x8 + 7x9 + 5x10.

This results into the codeword:

c(x) = 12 + 13x+ 6x2 + 14x3+

+3x4 + x5 + 2x6 + 3x7 + 6x8 + 14x10 + 15x11 + 7x12 + 7x13 + 5x14

In the example above it is clear that the message is included in the codeword.

3.3 Reed-Solomon Decoding

3.3.1 Syndromes

The algebraic decoding of Reed-Solomon codes has the following general steps:

� The syndrome computation.

� Finding the error locator polynomial.

� Calculation of the roots of the error locator polynomial.

� Calculation of the error values.

The syndromes indicate whether an error occurred or not. The next two steps are related

with finding the locations, of the received word, where errors occurred. Having found

the erroneous locations, in order to correct the errors, it is required to calculate the error

values, which is the final step.

By design g(a1) = g(a2) = ... = g(a2t) = 0, it follows that for a coderword c(x):

c(a1) = c(a2) = ... = c(a2t) = 0

3.3. Reed-Solomon Decoding 25

Now, for a received polynomial r(x) = c(x) + e(x), let:

Sj = r(aj) = e(αj) =
n−1∑
k=0

eka
jk, j = 1, 2, . . . , 2t.

The values S1, S2, ..., S2t are called the syndromes of the received polynomial. The syn-

drome polynomial S(x) is defined as

S(x) = S1 + S2x+ ...+ S2tx
2t−1.

If S(x) = 0, then the received polynomial is a codeword. As an example, consider that

the received polynomial is the codeword c(x) of the last example,

c(x) = 12+13x+6x2 +14x3 +3x4 +x5 +2x6 +3x7 +6x8 +14x10 +15x11 +7x12 +7x13 +5x14

The syndromes can be calculated by evaluating c(x) at α, α2, α3, α4:

S1 = c(α) = 0,

S2 = c(α2) = 0,

S3 = c(α3) = 0,

S4 = c(α4) = 0.

Now assume that, due to channel noise, two errors are added, on the coderword c(x) and

the received polynomial becomes

r(x) = 12+13x+6x2+14x3+3x4+x5+2x6+3x7+6x8+2x9+14x10+x11+7x12+7x13+5x14.

Evaluating r(x) at α, α2, α3, α4 yields:

S1 = r(α) = 12,

S2 = r(α2) = 11,

S3 = r(α3) = 4,

S4 = r(α4) = 12.

Thus we determine that the received polynomial contains errors.

3.3.2 Error Locator Polynomial

Suppose that r has v errors, at the locations i1, i2, . . . iv. Then:

Sj =
n−1∑
k=0

eka
jk =

v∑
l=1

eilα
jil =

v∑
l=1

eilα
ilj , j = 1, 2, . . . , 2t

Now let Xl = αil , we can write Sj =
v∑
l=1

eilX
j
l , j = 1, 2, . . . , 2t.

If there was a way to calculate Xl, then we could also calculate il, which is by definition

the location of the error. Hence, the Xl are called error locators. The error locator

polynomial is defined as

Λ(x) =
v∏
l=1

(1−Xlx) = Λ0 + Λ1x+ · · ·+ Λvx
v

where Λ0 = 1. The roots of Λ(x) are the reciprocals of the error locators, since Λ(X−1
k) = 0,

for any k = 1, 2, . . . , v. Thus, by finding the roots of the error locator polynomial, we can

find the error locators. We aim at finding the coefficients of Λ(x), the next relations is

particularly helpful in doing so. The syndromes and the locator polynomial coefficients

are related by the following equation:

26 Chapter 3. Reed-Solomon codes

ΛvSj−v + Λv−1Sj−v−1 + · · ·+ Λ1Sj−1 + Sj = 0 ⇐⇒

Sj = −
v∑
i=1

ΛiSj−i, for j = v + 1, v + 2, ..., 2t

Proof. Let Xl be an error locator, then:

Λ(X−1
l) = 0 =⇒

ΛvX
−v
l + ...+ Λ1X

−1
l + Λ0 = 0

For j = v + 1, v + 2, ..., 2t, we can write:

eilX
j
l (ΛvX

−v
l + ...+ Λ1X

−1
l + Λ0) = 0 =⇒

eil(ΛvX
j−v
l + ...+ Λ1X

j−1
l + Λ0X

j
l) = 0

Summing the last relation over l yields:
v∑
l=1

eil(ΛvX
j−v
l + ...+ Λ1X

j−1
l + Λ0X

j
l) = 0 =⇒

Λv
v∑
l=1

eilX
j−v
l + ...+ Λ1

v∑
l=1

eilX
j−1
l + Λ0

v∑
l=1

eilX
j
l = 0 =⇒

ΛvSj−v + ...+ Λ1Sj−1 + Λ0Sj = 0

Since Λ0 = 0 the last relation can be written as: Sj = −
v∑
i=1

ΛiSj−i

Below we present the Peterson-Gorenstein-Zierler algorithm. Which is one of many

ways of calculating the error locator polynomial. The previous equation can be written in

matrix form as follows.

S1 S2 ... Sv

S2 S3 ... Sv+1

S3 S4 ... Sv+2

...

Sv Sv+1 ... S2v−1


︸ ︷︷ ︸

Mv



Λv

Λv−1

Λv−2

...

Λ1


= −



Sv+1

Sv+2

Sv+3

...

S2v


(3.1)

Since the number of actual errors v is not know in advance, the Peterson-Gorenstein-

Zierler algorithm operates as follows. It starts off, by setting v = t and forms the matrix

Mv. If Mv is not invertible then v is reduced by 1, and then the new Mv matrix is formed.

This is repeated until Mv is invertible. For an invertible matrix Mv, the equation 3.1 can

be solved for the coefficients Λ1,Λ2, ...,Λv.

Algorithm 1: Peterson-Gorenstein-Zierler algorithm

Data: S1, S2, ..., S3

Result: Λ1,Λ2, ...Λv

1 Set v = t and form the matrix Mv

2 while Mv not invertible do

3 reduce v by one and form Mv again.

4 Solve for the coefficients Λ1,Λ2, ...,Λv

By continuing the last example, where the syndromes where calculated as S1 = 12, S2 =

11, S3 = 4, S4 = 12. For v = t = 2 the matrix Mv =

[
S1 S2

S2 S3

]
=

[
12 11

11 4

]
is invertible.

3.3. Reed-Solomon Decoding 27

By solving the equation[
S1 S2

S2 S3

][
Λ2

Λ1

]
= −

[
S3

S4

]
=⇒

[
12 11

11 4

][
Λ2

Λ1

]
= −

[
4

12

]
.

We find Λ1 = 4,Λ2 = 6, so the output is the locator polynomial Λ(x) = 1 + 4x+ 6x2.

The Peterson-Gorenstein-Zierler algorithm involves straightforward linear algebra, as

simple as it seems, there exist other algorithms that are computationally more efficient

like the Sugiyama algorithm [4] and the Berlekamp-Massey algorithm [5].

3.3.3 Roots of the Error Locator Polynomial

The roots of the error locator polynomial are typically found with a process called chien

search. Chien search is an exhaustive search over all of the nonzero elements of the finite

field of interest GF(q). It operates by simply evaluating Λ(x) at every nonzero element in

the field, in succession, i.e., evaluating Λ(x) at x = 1, x = a, x = a2, ..., x = aq−2. Which

yields:

Λ(1) = 1 + Λ11 + Λ212 + · · ·+ Λv1
v

Λ(a) = 1 + Λ1a+ Λ2a
2 + · · ·+ Λva

v

Λ(a2) = 1 + Λ1a
2 + Λ2(a2)2 + · · ·+ Λv(a

2)v

...

Λ(aq−2) = 1 + Λ1a
q−2 + Λ2(aq−2)2 + · · ·+ Λv(a

q−2)v.

The roots are the elements xl for which Λ(xl) = 0, l = 1, 2, . . . , v. If a root xl = aj is

known, the error locator Xl = x−1
l = ail can be calculated and thus the error can be

located.

If the roots are not distinct, or lie in the wrong field, then the error pattern is said

to be an uncorrectable error pattern, which results in a decoder failure. An uncorrectable

error pattern may be observed if the error locator polynomial of degree v does not have v

roots in GF(q).

Given the locator polynomial of the previous example, Λ(x) = 1 + 4x + 6x2 = 1 +

a2x+ (a+ a2)x2. By utilizing the Chien search algorithm, we find the roots a4, a6.

Λ(a4) = 1 + a2a4 + (a+ a2)(a4)2 = 1 + a6 + a9 + a10 = 10002 + 00112 + 01012 + 11102 = 0,

Λ(a6) = 0.

The corresponding error locators are:

X1 = (a4)−1 = a11 =⇒ i1 = 11,

X2 = (a6)−1 = a9 =⇒ i2 = 9.

Thus the errors are located on r11, r9 of the received polynomial. Now if we recall the c(x)

and r(x) polynomials

c(x) = 12+13x+6x2+14x3+3x4+x5+2x6+3x7+6x8+14x10+15x11+7x12+7x13+5x14,

r(x) = 12+13x+6x2+14x3+3x4+x5+2x6+3x7+6x8+2x9+14x10+x11+7x12+7x13+5x14,

we observe that, the error locations are indeed r11 and r9.

28 Chapter 3. Reed-Solomon codes

3.3.4 Error Magnitudes

In order to correct the received polynomial, the error values must be determined. The

error values are given by Forney’s formula:

eil = − Ω(X−1
l)

Λ′(X−1
l)

where Ω(x) = S(x)Λ(x) (mod x2t) and Λ′(x) is the formal derivative of Λ(x).

As an example, let S(x) = 12 + 11x+ 4x2 + 12x3, Λ(x) = 1 + 4x+ 6x2. Then:

Ω(x) = S(x)Λ(x) (mod x2t) =

= (12 + 11x+ 4x2 + 14x3)(1 + 4x+ 6x2)(mod x4) =

= (12 + 14x+ 14x4 + 14x5) (mod x4) =

= (12 + 14x)

Λ′(x) = (0 + 4 + (6 + 6)x) = 4.

In the previous example we found that X1 = (a4)−1 and X2 = (a6)−1. Thus, the error

values are:

ei1 = e11 = − Ω(X−1
1)

Λ′(X−1
1)

= − Ω(a4)
Λ′(a4)

= −12+14a4

4 = 14,

ei2 = e9 = − Ω(X−1
2)

Λ′(X−1
2)

= − Ω(a6)
Λ′(a6)

= 2.

We now can form the error polynomial e(x) = 2x9 + 14x11. Finally we decide that,

ĉ(x) = r(x)− e(x) =

12 + 13x+ 6x2 + 14x3 + 3x4 + x5 + 2x6 + 3x7 + 6x8 + 2x9 + 14x10 + x11 + 7x12 + 7x13 +

5x14 − 2x9 − 14x11 =

12+13x+6x2+14x3+3x4+x5+2x6+3x7+6x8+14x10+15x11+7x12+7x13+5x14 = c(x),

which is the error-free codeword.

Given the code length n, the message length k, the received polynomial r(x), and the

primitive element a used for the encoding. The decoding process can be summarized into

Algorithm 2.

Algorithm 2: Reed-Solomon decoding algorithm

Data: n, k, α, r(x)

Result: m(x)

1 Calculate the syndrome polynomial S(x)

2 if S(x) = 0 then

3 The coefficients of m(x) are the last k coefficients of r(x)

4 else

5 Compute the error locator polynomial

6 Apply the chien-search on the locator polynomial to find its roots.

7 if succesful then

8 Calculate the error magnitudes using Forney’s formula

9 Correct the received polynomial

10 Retrieve the message polynomial m(x).

11 else

12 Declare decoding failure. Algorithm end.

13 Return m(x)

29

Chapter 4

Reed-Solomon Burst Error

Decoding

Reed-Solomon code decoding competes favorably to other algorithms in burst error cor-

rection. Below we present a novel burst error correction algorithm by Yingquan Wu. The

algorithm is able to correct a burst error of length f up to d−2, where d = n−k+1 is the

design distance of the RS code. The decoding failure probability is bounded by q−(d−3−f)

[6].

Definition 4.1. Denote by B(s, f,u) a burst of errors u = [u0, u1, ..., uf−1] that starts

from s and has length f , such that:

i. More than half the elements of the error vector u are nonzero

ii. The boundary locations s and s+ f − 1 are erroneous i.e., u0 6= 0, uf−1 6= 0.

iii. It is maximal in the sense that no super interval [s′, s+f ′−1] ⊃ [s, s+f−1] satisfies

(i) and (ii)

It is important to note that, if less than df2 e(< d
d−1

2 e) elements of u are nonzero, then the

errors are more convenient to be treated as random errors. In which case, the conventional

RS decoder is able to correct them. However, the conventional decoder fails to correct

more than dd−1
2 e errors. On the other hand, given that the errors appear in bursts, the

proposed algorithm can correct up to d− 2 errors. Finally if f ≥ d− 1, then the proposed

algorithm fails to correct the errors and the error pattern is said to be uncorrectable. Thus

the limit on the burst error correction capability of an (n, k) RS code is d− 2.

In order to correct the burst error, we will first try to locate it’s position, which brings

us in introducing the following theorem.

Theorem 4.1. [6] Let Λ(x) =
d−3∏
i=0

(1 − as′+ix). If a single burst B(s, f,u) has occurred

such that the burst interval [s, s+f −1] ⊆ [s′, s′+d−3] then regardless of the actual burst

error length f , the following holds.

Sd−2Λ0 + Sd−3Λ1 + · · ·+ S0Λd−2 = 0

A graphical illustration of Theorem 4.1 is shown at Figure 2.1. Since Theorem 4.1 holds

true for any super-interval, with length d − 2, of the actual burst interval we get the

following theorem, which is illustrated in Fig. 4.2.

30 Chapter 4. Reed-Solomon Burst Error Decoding

Figure 4.1: Graphical illustration of Theorem 4.1.

Theorem 4.2. Let Λ(j)(x) =
d−3∏
i=0

(1−as+i−jx) for j = 0, 1, .., d−3. A single burst B(s, f,u)

has occurred if and only if:

Sd−2Λ
(0)
0 + Sd−3Λ

(0)
1 + . . . S0Λ

(0)
d−2 = 0

Sd−2Λ
(1)
0 + Sd−3Λ

(1)
1 + . . . S0Λ

(1)
d−2 = 0

...

Sd−2Λ
(d−3−f)
0 + Sd−3Λ

(d−3−f)
1 + . . . S0Λ

(d−3−f)
d−2 = 0.

Figure 4.2: Graphical illustration of Theorem 4.2.

Define

Λ̄(p)(x) =
0∏

i=−(p−1)

(1− aix)

where p is related to the maximum allowable length of burst, in this case p = d− 2.

Also define

Γ(x) = Sd−2Λ̄
(d−2)
0 + Sd−3Λ̄

(d−2)
1 x+ · · ·+ S0Λ̄

(d−2)
d−2 xd−2

Now, note that

Sd−2Λ
(i)
0 + Sd−3Λ

(i)
1 + · · ·+ S0Λ

(i)
d−2 =

Sd−2Λ̄
(d−2)
0 + Sd−3Λ̄

(d−2)
1 as−i+d−3 + · · ·+ S0Λ̄

(d−2)
d−2 a(d−2)(s−i+d−3) =

Γ(as−i+d−3)

By the last relation, Theorem 4.2 is translated to the following theorem.

31

Figure 4.3: Graphical illustration of Theorem 4.3.

Theorem 4.3. A single burst B(s, f,u) has occurred if and only if Γ(x) has d − f − 1

consecutive roots as+f−1, as+f , . . . , as+d−3.

According to Theorem 4.3 the first index of the consecutive root sequence of Γ(x) corre-

sponds to the end of the error burst, as it is illustrated on Figure 4.3. For this reason it is

easier to keep track of the end of the error burst instead of it’s start. Also note that Γ(x)

has degree up to d− 2 and thus it may have up to d− 2 valid roots. That is up to d− 2

candidate error bursts in the worst case scenario. The objective is to determine the short-

est error burst, which is given by the longest consecutive root sequence of Γ(x). Finally

given a burst B(s, f,u), the error locator polynomial is calculated as Λ(x) = Λ̄(f)(as+f−1),

which can be later used in Forney’s formula to calculate the error magnitudes.

All of the above can be summarized into the algorithmic procedure of Algorithm 3.

Algorithm 3: Reed-Solomon burst error decoding algorithm

1 Precalculate the coefficients of Λ̄(d−2)(x)

2 Run Algorithm 2, if successful then stop.

3 Compute the coefficients of Γ(x).

4 Apply the chien search on Γ(x) to obtain the shortest single-burst by tracking the

longest consecutive root sequence. Record the end position of the desired

shortest burst.

5 Compute the burst error magnitudes using Forney’s formula.

6 Correct the received polynomial and retrieve the message from the last k

positions.

7 Return m(x)

As an example of the above, consider the (24,16) shortened Reed-Solomon code over

GF(25). The design distance of the code is d = 9, thus, the burst error correction capa-

bility is f = d− 2 = 7. Let the transmitted codeword be

c = [a8, a3, a21, a8, a21, a0, a3, a18, a1, a27, a1, a25, a12, a26, a10, a10, a17, a28, a2, a29, a18, a3, a8, a22]

and the received word

r = [a8, a26, a1, a2, a17, a14, a29, a18, a1, a27, a1, a25, a12, a26, a10, a10, a17, a28, a2, a29, a18, a3, a8, a22]

Its syndrome values are computed as

S = [a28, a12, a4, a4, a27, a13, a28, a17],

which yield

32 Chapter 4. Reed-Solomon Burst Error Decoding

Γ(x) = a7x7 + a26x6 + a10x5 + a16x4 + a11x3 + a28x2 + a26x1 + a17.

The chien search identifies five valid roots, a6, a7, a9, a16, a22, respectively. By Theo-

rem 4.3, the first two consecutive roots result in a burst of length 6, which leads to the

candidate codeword

c1 = [a8, a3, a21, a8, a21, a0, a3, a18, a1, a27, a1, a25, a12, a26, a10, a10, a17, a28, a2, a29, a18, a3, a8, a22].

The root a9 leads to a candidate codeword

c2 = [a8, a26, a1, a27, a15, a3, a20, a0, a24, a9, a1, a25, a12, a26, a10, a10, a17, a28, a2, a29, a18, a3, a8, a22].

The root a16 leads to a candidate codeword:

c3 = [a8, a26, a1, a2, a17, a14, a29, a18, a1, a27, a15, a9, 0, a5, a3, a9, a30, a28, a2, a29, a18, a3, a8, a22].

The last root, a22 results in a candidate codeword:

c4 = [a8, a26, a1, a2, a17, a14, a29, a18, a1, a27, a1, a25, a12, a26, a10, a10, a2, a23, a21, a17, a15, a28, a15, a22].

The algorithm picks the shortest burst, which corresponds to the longest consecutive root

sequence thereby successfully retrieves the transmitted codeword. The last example is

illustrated in the figures below.

Figure 4.4: Transmitted codeword.

Figure 4.5: Received word.

Figure 4.6: Candidate codeword of the consecutive roots a6, a7.

Figure 4.7: Candidate codeword of the consecutive roots a9.

Figure 4.8: Candidate codeword of the consecutive roots a16.

Figure 4.9: Candidate codeword of the consecutive roots a22.

Figure 4.10 presents the results of a simulation of an (255, 237) RS code over GF(256).

The error correction capability of the code is t = 9 and the design distance is d = 19.

During the simulation we generate random codewords, and then we add a random burst

33

error of length f between t = 9 and d − 2, which can be seen on the horizontal axis.

Trying to correct the burst error, we keep track of the probability of decoding failure of

the conventional decoding algorithm in comparison with the probability of decoding failure

of the proposed algorithm. The decoding failure probability is displayed on the vertical

axis. On the same figure we present the theoretical upper bound of the decoding failure

probability of the proposed decoding algorithm.

Burst length (f)
9 10 11 12 13 14 15 16 17

D
e
co

d
in

g
 f

a
ilu

re
 p

ro
b
a
b
ilt

y

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
RS decoding failure probability

Bound (q-(d-3-f))
conventional decoding
proposed decoding

Figure 4.10: RS decoding simulation.

Observe that the conventional decoding corrects all burst errors with length f up to

t = 9 with probability 1. For burst errors of larger length, the conventional decoding

fails with a very high probability. Whereas the proposed algorithm starts failing when the

burst error length reaches the burst error length limit of f = d−2. Note that, if f exceeds

d− 2 then both decoding techniques fail with probability 1.

34 Chapter 4. Reed-Solomon Burst Error Decoding

35

Appendices

37

Appendix A

A.1 Theorem 1.4

Proof. For any a, b, c in Zn it holds that:

� a⊕ b = a + b (mod n) = r where r is an integer with 0 ≤ r ≤ n− 1 and therefore

r ∈ Zn. Thus Zn is closed under addition modulo q.

� In order to show that the associative property holds, i.e.,

(a⊕ b)⊕ c = a⊕ (b⊕ c), we start by showing that:

(a⊕ b)⊕ c = (a+ b+ c) (mod n).

By the division algorithm, it holds that:

(a+ b) = d1n+ r1 =⇒ r1 = (a+ b)− d1n, with 0 ≤ r1 < n

Then, (a⊕b)⊕c = (((a+b) (mod n))+c) (mod n) = r1+c (mod n) = (a+b)−d1n+c

(mod n)

By employing the division algorithm again we get that:

(a+ b)− d1n+ c = d2n+ r2 =⇒ r2 = a+ b+ c− (d1 + d2)n, with 0 ≤ r2 < n

So it holds that (a⊕ b)⊕ c = r2

By the division algorithm on (a+ b+ c) (mod n) = r3 we get that:

a+ b+ c = d3n+ r3 =⇒ r3 = a+ b+ c− d3n, with 0 ≤ r3 < n.

Now note that from 0 ≤ r2 < n and 0 ≤ r3 < n it holds that:

−n < r2 − r3 < n =⇒
−n < (a+ b+ c− (d1 + d2)n)− ((a+ b+ c)− d3n) < n =⇒
−n < (d3 − d1 − d2)n < n =⇒
−1 < d3 − d1 − d3 < 1, but d3 − d1 − d3 is an integer (as sum of integers) and so it

must be the case that d3 − d1 − d3 = 0 =⇒ d3 = d1 + d2.

Finally we find that (a⊕ b)⊕ c = r2 = a+ b+ c− (d1 + d2)n = a+ b+ c− (d3)n =

r3 = (a+ b+ c) (mod n). Therefore it holds that:

(a⊕ b)⊕ c = (a+ b+ c) (mod n).

In a similar manner we can also show that (a⊕ (b⊕ c)) = (a+ b+ c) (mod n) and

thus proving that associativity holds.

� The element 0 acts as the identity element since:

a⊕ 0 = 0⊕ a = a+ 0 (mod n) = a (mod n) = a.

� If a 6= 0, let b = n− a =⇒ 1 ≤ b ≤ n− 1 =⇒ b ∈ Zq. Now note that a⊕ b = a+ b

(mod n) = a+ n− a (mod n) = n (mod n) = 0 thus b is the inverse of a. There is

also the case that a = 0 in which, its inverse is the element 0. Thus every element

in Zn has an inverse.

38 Appendix A.

� Commutativity also holds, since:

a⊕ b = a+ b (mod n) = b+ a (mod n) = b⊕ a.

Thus < Zn,⊕ > is an Abelian group.

A.2 Theorem 1.5

Proof. For any a, b, c in Zn it holds that:

� a ∗ b = a · b (mod n) = r, with 0 ≤ r ≤ n − 1 =⇒ r ∈ Zn thus Zn is closed under

multiplication. The same holds for addition.

� According to Theoreom 1.4, < Zn,⊕ > forms a commutative (Abelian) group. The

additive identity is 0.

� We will now show that multiplication is associative.

In order to do so, we will begin by showing that:

(a ∗ b) ∗ c = a · b · c (mod n).

We can write (a ∗ b) ∗ c = (((a · b) (mod n)) · c) (mod n)

By utilizing the division algorithm we get:

(a · b) (mod n)) = r1, with a · b = d1 · n+ r1 =⇒ r1 = a · b− d1 · n and 0 ≤ r1 < n.

Thus now we can write

(a ∗ b) ∗ c = (((a · b) (mod n)) · c) (mod n) = (r1 · c) (mod n).

Again by the division algorithm we get:

(r1 · c) (mod n) = r2 with r1 · c = d2 · n + r2 =⇒ r2 = r1 · c − d2 · n =⇒ r2 =

(a · b− d1 · n) · c− d2 · n =⇒ r2 = a · b · c− (d1 · c+ d2) · n, where 0 ≤ r2 < n.

Finally by the division algorithm on a · b · c we can write:

a · b · c (mod n) = r3 where a · b · c = d3 · n + r3 =⇒ r3 = a · b · c − d3 · n, where

0 ≤ r3 < n.

Now note that from: 0 ≤ r2 < n and 0 ≤ r3 < n, it holds that:

−n < r2 − r3 < n =⇒
−n < (a · b · c− (d1 · c+ d2) · n)− (a · b · c− d3 · n) < n =⇒
−n < (d3 − d1 · c− d2) · n < n =⇒ −1 < d3 − d1 · c− d2 < 1, but d3 − d1 · c− d2 is

an integer so it must be the case that:

d3 − d1 · c− d2 = 0 =⇒ d3 = d1 · c+ d2.

Thus it holds that:

(a ∗ b) ∗ c = r2 = a · b · c− (d1 · c+ d2) = a · b · c− d3 · n = r3 =

= (a · b · c) (mod n).

In a similar manner we can show that a∗ (b∗c) = (a ·b ·c) (mod n) and thus proving

that associativity holds.

A.2. Theorem 1.5 39

� The left distributivity law holds: a ∗ (b ⊕ c) = (a ∗ (b + c) (mod n)) = (a · (b + c))

(mod n) = (a · b+ a · c) (mod n) =

((a ·b) (mod n)+(a ·c) (mod n)) (mod n) = (a∗b+a∗c) (mod n) = (a∗b)⊕(a∗c).
Similarly it can be shown that the right distributivity law holds:

(a⊕ b) ∗ c = (a ∗ c)⊕ (b ∗ c).

� Multiplication is commutative: a ∗ b = (a · b) (mod n) = (b · a) (mod n) = b ∗ a.

� The multiplicative identity is the element 1: (a ∗ 1) = (1 ∗ a) = (1 · a) (mod n) = a

(mod n) = a.

Thus < Zn,⊕, ∗ > forms a commutative ring with identity.

40 Appendix A.

41

References

[1] D. Burton, Elementary Number Theory, ser. Asia Higher Education Mathematics and

Statistics Higher Mathematics. McGraw-Hill, 2010.

[2] T. K. Moon, Error Correction Coding: Mathematical Methods and Algorithms. New

York, NY, USA: Wiley-Interscience, 2005.

[3] I. Reed and G. Solomon, “Polynomial codes over certain finite fields,” Journal of the

Society for Industrial and Applied Mathematics, vol. 8, no. 2, pp. 300–304, 1960.

[4] Y. Sugiyama, M. Kasahara, S. Hirasawa, and T. Namekawa, “A method for solving

key equation for decoding goppa codes,” Information and Control, vol. 27, no. 1, pp.

87 – 99, 1975.

[5] J. Massey, “Shift-register synthesis and bch decoding,” IEEE Transactions on Infor-

mation Theory, vol. 15, no. 1, pp. 122–127, Jan 1969.

[6] Y. Wu, “Novel burst error correction algorithms for reed-solomon codes,” IEEE Trans-

actions on Information Theory, vol. 58, no. 2, pp. 519–529, Feb 2012.

