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Abstract 

Gas density as well as its derivative, are necessary in almost every upstream 

petroleum engineering calculation. Calculations in the wellbore are directly related to the 

hydrostatic head and hence directly related to the petroleum fluid density. Calculations 

in the reservoir are on the other hand mostly related to the fluid’s compressibility or in 

other words density’s first derivative with respect to pressure. 

Density calculation is directly related to compressibility z factor calculation and 

therefore the one problem reduces into another. The most common sources of 

compressibility z factor values are experimental measurement, equations of state and 

empirical correlations. Necessity for z factor values prediction arises when there is no 

available experimental data for the required composition, pressure and temperature 

conditions. In the present master thesis, a large database of real reservoir fluid PVT 

properties is utilized, where the z factor has been experimentally measured for various 

pressure values above the dew point pressure in the monophasic region. 

 Industry’s most commonly used z factor calculation methods were implemented 

using Microsoft Excel® and Mathworks Matlab® where appropriate. The results from 

the various methods implemented were compared to the experimental measurements 

while the methods were finally evaluated in terms of their quality and performance.  
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 Chapter 1  Introduction  

1.1  Preface 

The knowledge of density of natural gases is necessary in the majority of petroleum and 

natural gas engineering calculations. Some of these calculations include gas metering, 

gas compression, design of processing and transport units, and design of pipeline, 

separation and surface facilities. Properties of natural gases are also important in the 

calculation of gas flow rate through the reservoir medium, material balance calculations, 

estimation of natural gas reserves, and eventually reservoir simulations. Most commonly 

the natural gas properties are experimentally measured in the laboratory but occasionally 

however, this kind of data becomes unavailable. There comes the necessity to estimate 

natural gas properties, such as compressibility and density by other means rather than 

experimental measurements. The reasons for unavailability of experimental data are that 

it is hard to determine experimentally measured z factor values for all compositions of 

natural gases on the whole ranges of pressures and temperatures and also that the 

laboratory measurements are costly and most of the time these measurements are 

performed at reservoir temperatures exclusively. 

Heavy natural gases such as sour gases and gas condensates have been increasingly 

gaining in popularity as a number of fields have been discovered around the world in the 

past three decades. For these natural gases the available methods in the literature for the 

calculation of density and z factor are considered to be producing unsatisfactory 

predictions. These methods can be classified into three major families [Erdogmus et al, 

1997]. The first family of methods utilizes the natural gas composition or natural gas 

gravity to calculate pseudo-critical gas properties and predicts natural gas properties 

from empirical correlations. Commonly in such a kind of method, gas viscosity 

calculation involves the use of gas density and hence prediction of viscosity is dependent 
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on the choice of the method that is used to estimate the natural gas density. The second 

family of methods receives as input the natural gas composition to estimate gas 

properties by utilizing the principle of corresponding states. The third family of methods 

which is the most recent one is based on equation of state models and has the advantage 

of using a single equation to calculate k-values, the z factor, and natural gas density [Guo 

et al, 2001]. Last but not least, stable convergence in the vicinity of the fluid’s critical 

point is guaranteed by this last group of methods.  

1.2  Thesis’s Objective 

Today’s upstream petroleum engineering and wellbore calculations are directly related 

to the hydrostatic head which is also directly related to natural gas density. The 

calculation of gas density and its derivative requires the determination of z factor and 

pseudo-critical properties of the natural gas mixture. Furthermore, as more and more 

acid and sour environment reservoirs are being discovered, it becomes increasingly 

important to have simple and robust techniques to be able to accurately determine z 

factor and hence gas density of natural gases with high concentrations of non-

hydrocarbons such as carbon dioxide, nitrogen and hydrogen sulfide.  

The present thesis investigates the most widely used natural gas density calculation 

methods which can be implemented in a computer. For natural gases containing large 

quantities of non-hydrocarbons common correction techniques are applied. The results 

of each natural gas density calculation method are quality checked and the performance 

of each calculation method is evaluated against real gas density measurements. 

1.3  Thesis Outline  

In this master thesis, some of the most widely used compressibility z factor calculation 

methods were implemented. These methods are either based on the approaches of cubic 

equations of state or on the Standing – Katz compressibility factor chart and the 

corresponding states principle. The Peng-Robinson equation of state along with its 

variations and corrections, which is routinely being used in reservoir calculations as well 

as five improved pseudo critical property correlations for the Standing-Katz chart, are 
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utilized to match the experimentally obtained compressibility z factor of two hundred 

thirty four real reservoir gases and condensates of the database, including highly sour 

and acid gases (high concentration of H2S and CO2), slightly sour gases, lean and rich 

natural gases (significant amount of C12+). The steps followed for the completion of the 

present work are shown in the flowchart in Fig. 1.1 below. 

 

Figure 1.1 – Procedure for the calculation of the z factor with the various methods. 
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Chapter 2  Review of Gas Properties 

2.1  Background  

Compressibility factor z, or deviation factor as it is commonly also called, is a measure 

of the amount that a real gas deviates from the ideal gas behavior. It is a dimensionless 

property and by definition it is equal to the ratio of the volume actually occupied by a 

real gas at a given set of pressure and temperature conditions over the volume that it 

would occupy if it behaved like an ideal gas at the same conditions. A value of unity for 

the z factor would represent that the real gas behaves ideally.  

  
       

      
 

                                          

                                                  
 

According to the kinetic theory of gases, which laid the foundations for the Ideal gas 

law, neither the attractive forces between the gas molecules nor the repulsive forces are 

taken into account when describing gas behavior. In nature however, ideal gases do not 

really exist and gases behave as real ones. The molecules of real gases accept two kind 

of forces: to move apart from each other due to their perpetual kinetic motion, and to 

come close to each other because of electrostatic attractive forces between them. 

At standard conditions, or at conditions close to that, gas molecules are quite far apart 

from each other and the attractive forces are negligible. Attractive forces are also very 

weak at high temperatures, due to the molecules increased kinetic energy. Under such 

aforementioned conditions, real gases tend to approach ideal gas behavior. This 

approximation is not valid however in case that the real gas is under elevated pressure as 

the molecules are very close to each other which results in significant attractive forces 

between them. What has been described so far qualitatively explains the behavior of 
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ideal and real gases and general representations of the ideal and real gas behaviors are 

given in Eqs. 2.1 and 2.2 respectively. 

 Ideal Gas Law:        (2.1) 

Real Gas Law:          (2.2) 

2.2  Classification of Natural Gases 

Fig. 2.1 is a typical phase diagram of a reservoir fluid which can be conveniently used 

to describe various types of reservoir fluids. A reservoir contains natural gas if its 

temperature is higher than the fluid’s critical temperature. The depletion of the reservoir 

will result in retrograde condensation if the reservoir temperature lies between the 

critical temperature and the cricondentherm (Tcric), whereas no liquid will appear if the 

temperature is greater than the cricondentherm. Additionally, the oil in a reservoir with a 

temperature close to its critical point is more volatile than that at a lower temperature. A 

small reduction in pressure below its bubble point, in a reservoir with a temperature just 

below the fluid’s critical one, will lead to vaporization of some quantity of the oil. It is 

profound thereby that the location of reservoir temperature isotherm on the phase 

diagram can be used to classify reservoir fluids.  

Reservoir’s temperature is mainly determined by its depth. The phase behavior of a 

reservoir fluid is determined by its composition. In Table 2.1 typical compositions of 

various classes of reservoir hydrocarbon fluids are given. Critical temperatures of heavy 

hydrocarbons are higher than those of the lighter. The pseudo-critical temperature of a 

hydrocarbon mixture containing predominantly large quantities of heavier hydrocarbons 

will be therefore higher compared to that of a mixture which contains lighter 

components. 
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Table 2.1: Typical compositions of various reservoir fluids. 

Component, mole % Dry Gas Gas Condensate Volatile Oil Black Oil 

N2 6.25 0.29 0.12 0.16 

CO2 2.34 1.72 1.50 0.91 

C1 81.13 79.14 69.59 36.47 

C2 7.24 7.48 5.31 9.67 

C3 2.35 3.29 4.22 6.95 

iC4 0.22 0.51 0.85 1.44 

nC4 0.35 1.25 1.76 3.93 

iC5 0.09 0.36 0.67 1.44 

nC5 0.03 0.55 1.12 1.41 

C6 - 0.61 1.22 4.33 

C7+ - 4.80 16.64 33.29 

 

Figure 2.1 - Phase diagram of multicomponent mixture 
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2.2.1  Dry Gas 

Fig. 2.2 shows the phase diagram of a typical dry gas. Dry gases are predominantly 

composed of methane and light non-hydrocarbons such as nitrogen and carbon dioxide. 

The phase envelope is relatively tight and mostly located below the reservoir 

temperature. The gas remains single phase from the reservoir to the separator conditions, 

while the contained water however may condense at standard conditions due to the 

cooling of the gas. PVT tests in the laboratory are limited to the gas compressibility 

measurement.  

 

Figure 2.2 – Typical phase diagram of a dry gas 



 

8 

2.2.2  Wet Gas 

A wet gas is mainly composed by methane and other light hydrocarbons. As it was 

the case with dry gases, its phase envelope is located entirely over a temperature range 

below that of the reservoir, as shown in Fig. 2.3. A wet gas therefore will not form 

condensate in the reservoir during depletion. Separator conditions lie however within the 

phase envelope, producing in this way some quantity of condensate at standard 

conditions. The only PVT test applicable at reservoir conditions is the gas 

compressibility measurement, while separator tests are generally conducted to determine 

the amount and the properties of the condensed phase at standard conditions.  

 

Figure 2.3 – Typical phase diagram of a wet gas 
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2.2.3  Gas Condensate 

A typical phase diagram of a gas condensate is shown in Fig. 2.4. The presence of 

heavier hydrocarbons expands the phase envelope and rotates it clockwise compared to 

that of a wet gas and the reservoir temperature is between the critical one and the 

cricondentherm. Liquid droplets will be formed due to retrograde condensation in the 

reservoir when the pressure falls below the fluid’s dewpoint. Moreover at separator 

conditions, further condensation will take place due to the fluid’s cooling. The amount of 

potentially condensable hydrocarbons in the reservoir increases with the richness of the 

natural gas, as more heavy components shift the critical temperature towards the 

reservoir temperature, while a gas with a cricondentherm near the reservoir temperature 

will behave very similar to a wet gas.  

 

Figure 2.4 – Typical phase diagram of a gas condensate 
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The concentration of heptanes plus is generally less than 12% mole in gas 

condensates fluids, as fluids that contain more than that almost always behave like 

liquids in the reservoir. However, a number of exceptions have been reported with 

condensates exhibiting heptanes plus fraction as high as 15.5% mole and oils with as low 

as 10%. The condensate color can be water-white or dark. Dark condensates usually 

have relatively high specific gravity and are associated with high dewpoint gases. The 

specific gravity of condensates ranges from 0.74 to 0.82, although values as high as 0.88 

have been reported.  

2.3  Critical and Reduced Gas Properties 

 Most equations of state and correlations do not incorporate gas pressure and 

temperature explicitly to define the state of a system, but instead they utilize two or more 

reduced properties, according to corresponding states theory, which are dimensionless. 

The corresponding states theory is described in detail in the next chapter. Reduced 

pressure, temperature and reduced density are calculated by Eqs. 2.3a, 2.3b and 2.3c 

respectively.  

        (2.3a) 

        (2.3b) 

        (2.3c) 

Absolute units must be used for the calculation of reduced pressure and temperature. 

Pc Tc and ρc refer either to the true critical properties of a pure compound, or some 

average calculated by means of a mixing rule for the case of mixtures. The reduced 

pressure for the majority of hydrocarbon gases applications varies from 0.02 to 30; 

reduced temperature commonly ranges from less than 1 to 2.5 for hydrocarbon gases. 
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Reduced density may vary from zero at very low pressures to 3.5 at elevated pressures 

for hydrocarbon fluids.  

Critical properties are well known for pure compounds (like oxygen, nitrogen, carbon 

dioxide, methane, ethane and up to C5) and can be found in the literature. Regarding the 

hydrocarbon pseudo-components from C6 up to C11 average values from the literature 

can be used with only tiny deviations from the real ones. The discussed critical 

properties are presented tabulated in Table 2.2. The determination of the critical 

properties of the heavy end fraction is presented in a following section.  

Note that pseudo-critical properties are not necessarily approximations of the true 

critical properties, but are chosen instead so that mixture properties can be estimated 

correctly by means of various corresponding states based correlations. 

Table 2.2: Critical properties of pure substances 

Compound Formula Molar mass Liquid density Pc (MPa) Tc (K) Omega 

Oxygen O2 0.031999 0.00 5.04 154.6 0.025 

Nitrogen N2 0.028013 0.0 3.39 77.40 0.039 

Carbon dioxide CO2 0.044010 0.0 7.38 304.1 0.239 

Hydrogen sulfide H2S 0.034080 0.0 8.94 373.2 0.081 

Methane CH4 0.016043 300 4.60 190.4 0.011 

Ethane C2H6 0.030070 356 4.88 305.4 0.099 

Propane C3H8 0.044097 508 4.25 369.8 0.153 

iso-Butane i-C4H10 0.058124 567 3.65 408.2 0.183 

normal Butane n-C4H10 0.058124 586 3.80 425.2 0.199 

iso-Pentane i-C5H12 0.072451 625 3.39 460.4 0.227 

normal Pentane n-C5H12 0.072451 631 3.37 469.7 0.251 

Hexane C6H14 0.084000 690 3.33 512.8 0.250 

Heptanes C7H16 0.096000 727 3.12 547.2 0.280 

Octane C8H18 0.107000 749 2.89 575.6 0.312 

Nonane C9H20 0.121000 768 2.64 602.8 0.348 

Decane C10H22 0.134000 782 2.42 626.7 0.385 

Undecane C11H24 0.147000 793 2.24 647.8 0.419 
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2.3.1  Critical Properties of the Heavy End 

Nearly all naturally occurring gas fluids contain some heavy fractions that are not well 

defined. There arises the need of adequately characterizing those undefined plus 

fractions in terms of their critical properties [Gastón, 2007]. Several correlations have 

been developed to estimate the physical properties of petroleum fractions and are in 

principal function of the specific gravity, the normal boiling point temperature and the 

molecular weight. Some of the most important correlations are the Riazi-Daubert (1987), 

Twu (1984), Ahmed (1985), Kesler-Lee (1976), and Edmister (1958). 

2.3.1.1  Riazi-Daubert’s Correlation 

Riazi and Daubert (1987) developed a set of equations to evaluate properties of 

undefined petroleum fractions. This correlation is the one mostly used by the Industry to 

obtain physical properties of the heavy end fraction using the laboratory reported 

molecular weight and specific gravity as heavy fraction parameters. In this study, the 

Riazi-Daubert’s correlation was implemented for the calculation of the normal boiling 

point of the fluids under examination and is given by Eq. 2.4. 

                                                               

                   

(2.4) 

2.3.1.2  Twu Correlation 

This correlation is based on a perturbation-expansion model with normal paraffins as the 

reference system. To calculate critical pressure, for example, critical temperature, critical 

volume, and specific gravity of the paraffin with the same normal boiling point as the 

heavy hydrocarbon fraction must be calculated in advance. Kesler et al. first used the 

perturbation expansion method (with n-alkanes as the reference fluid) to develop a suite 

of critical-property and acentric factor correlations. Twu uses the same approach to 

develop a set of correlations for the calculation of critical properties and the acentric 
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factor of heavy petroleum ends. Below the normal paraffin correlations are given first, 

followed by the correlations for petroleum fractions. The critical temperature of the 

paraffin is given by Eq. 2.5. The critical pressure of the paraffin is given by Eq. 2.6. The 

critical volume of the paraffin is given by Eq. 2.7. Parameter    of the correlation is 

given by Eq. 2.8. The boiling temperature of the paraffin, which is assumed to be equal 

to that of the hydrocarbon mixture, is finally given by Eq. 2.9. 

                                                   
 

                   
  

              

           
 

  

  

(2.5) 

                                                            (2.6) 

                                                     (2.7) 

                                             (2.8) 

                                               

                                   

(2.9) 

In the above equations, α and θ parameters are given by Equations 2.10 and 2.11 

respectively. 

    
  

   
 (2.10) 
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           (2.11) 

The molecular weight of the hydrocarbon paraffin     cannot be computed 

explicitly with respect to Tb and Eqs. 2.5 through 2.11 must be solved iteratively. An 

initial approximation of the solution is however given by Eq. 2.12. 

    
  

               
 (2.12) 

It is claimed that the Twu normal paraffin correlation is valid for C1 through C100 but 

the properties at higher carbon numbers are only approximate because experimental data 

for paraffins heavier than approximately C20 do not essentially exist. Hydrocarbon heavy 

fraction properties are calculated by the formulas given below. Critical temperature of 

the heavy end fraction is calculated by Equations 2.13 to 2.15. 

        
         

   

            
        

   

      (2.13) 

                 (2.14) 

        
      

      
   

(2.15) 

Critical volume of the heavy end fraction is calculated by Equations from 2.16 to 2.18. 

        
        

   

            
       

   

      (2.16) 
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        (2.17) 

        
      

      
   

(2.18) 

Critical pressure of the heavy end fraction is calculated by Equations from 2.19 to 2.21. 

                 
       

   

               

           
      

   

                    
(2.19) 

                   (2.20) 

        
  

   
   

   

  
   

      

      
   

(2.21) 

2.3.1.3  Edmister Correlation 

In the present work, the Riazi-Daubert’s correlation is used for the calculation of the 

normal boiling point of the hydrocarbon paraffin, since it is the one mostly used by the 

industry; for calculating the acentric factor, Riazi-Daubert uses the Edmister’s 

correlation [Riazi, M. R., Daubert, T. E. (1987)]. The Edmister’s correlation for the 

acentric factor, which depends on critical temperature and critical pressure, is given by 

Eq. 2.22 [Edmister, W.C., 1958]. 
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   (2.22) 

2.3.2  Mixing Rules 

Mixing rules are used in order to calculate average properties for gas mixtures by 

incorporating the fluid composition. Natural gas mixtures contain hundreds of well-

defined and “undefined” components as well. These components are quantified in a 

composition set on the basis of mole, weight, and volume fractions. For a mixture of N 

components, i=1,.., N, the overall mole fractions are given by Eq. 2.23, where of zi 

always sums up to unity. Weight or mass fractions are given by Eq. 2.24 where the sum 

of wi is always equal to unity. 

   
  

   
 
   

 
      

         
   

 (2.23) 

   
  

   
 
   

 
      

       
 
   

 (2.24) 

Although the composition of a natural gas mixture is commonly expressed in terms of 

mole fractions, the measurement of composition by means of gas chromatography is 

usually based on mass, which is further converted to mole fraction via the molecular 

weight of each component. 

2.3.2.1  Kay’s mixing rule 

The simplest and perhaps the most widely used mixing rule is the linear Kay’s mixing 

rule, which is given by a mole-fraction average as shown in Eq. 2.25. This mixing rule is 

usually adequate for molecular weight, pseudo-critical temperature and acentric factor.  
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 (2.25) 

It can be thought of as a specific application of the generalized linear mixing rule that is 

given by Eq. 2.26. 

    
      

 
   

    
 
   

 (2.26) 

In the above formula,    is the weighting factor and is usually one of the 

following:      , mole fraction (Kay’s mixing rule),      , weight fraction or    

  , volume fraction. Depending on the quantity that is being averaged, other mixing rules 

may be appropriate. In a next chapter of the present work for instance, the Elsharkawy 

mixing rule is presented and used. Moreover, the mixing rules that are used for the 

calculation of the constants of various equations of state are chosen on the basis of 

statistical thermodynamics.  

2.3.2.2  Stewart–Burckhardt–Voo (SBV) mixing rule 

This is a standard method of calculating the compressibility factor for natural gases and 

it is based on computing pseudo-critical properties of the gases via the mixing rules that 

are given by Eq. 2.27 for pseudo-critical temperature and Eq. 2.28 for pseudo-critical 

pressure. 

    
  

 
 (2.27) 
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 (2.28) 

In the above equations, K and J are parameters which are calculated by Eqs. 2.29 and 

2.30 respectively. 

        
  

  
    

 

  (2.29) 

   
 

 
      

  

  
      

 

 
       

  

  
 

 

   

 

  

 (2.30) 

2.3.2.3  El Sharkawy mixing rule 

This simple mixing rule was developed by implementing multiple regression analysis to 

experimental compressibility factor data. The outcomes are two six-constant mixing 

parameters (Jinf and Kinf) that involve only molar fraction of gas (yi) and critical 

temperature (Tc) and critical pressure (Pc) of pure components. These mixing parameters 

are calculated by Eqs. 2.31 and 2.32 for Jinf and Kinf respectively. 

            
    

  
           

    

  
           

    

  
    

        
  

  
                        

(2.31) 
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(2.32) 

The constants α0 to α5 and β0 to β5 of the equations above were determined by the 

authors using multiple regression analysis and are listed in Table 2.3. In these mixing 

parameters one can distinguish three parts. The first part contains non-hydrocarbons (e.g. 

hydrogen sulfide, carbon dioxide, nitrogen), the second part comprises of the pure 

hydrocarbons from methane to Cn-1 whose critical properties and acentric factor are well 

known, or at least can be estimated safely. The last part contains the heavy end Cn+ 

whose molecular weight is experimentally measured. The necessity of estimating 

explicitly the critical properties and the acentric factor of the heavy end is eliminated by 

means of the present mixing method. 

Table 2.3: Constants of the El Sharkawy mixing parameters 

Constant Value Constant Value 

α0 0.036983 β0 −0.7765003 

α1 1.043902 β1 1.0695317 

α2 0.894942 β2 0.9850308 

α3 0.792231 β3 0.8617653 

α4 0.882295 β4 1.0127054 

α5 0.018637 β5 0.4014645 

 

Having calculated the above mixing parameters, critical pressure and temperature of 

the gas mixture can be determined by the following relationships: 
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 (2.33) 

    
   

    
 (2.34) 
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Chapter 3  Empirical Correlations based on 

the Corresponding States 

Principle 

3.1  Background 

The principle of corresponding states suggests that pure but similar gases exhibit the 

same deviation from the ideal gas behavior, or equivalently, the z factor value, at the 

same values of reduced pressure and temperature. After decades since its development, 

the Standing-Katz z factor chart (Fig. 3.1), is still widely used as a practical source of 

natural gas z factor values. The Standing-Katz chart was developed using data for binary 

mixtures of methane with propane, ethane, butane and other natural gases with a wide 

range of compositions. None of the gas mixtures had molecular weights in excess of 40. 

The Standing-Katz chart is actually a modification and extension of the generalized z 

factor chart developed by Brown and Holcomb (Fig. 3.2) and is identical to that at 

reduced pressures less than 4. For greater values of the reduced pressure, the Brown-

Holcomb chart was found to be consistently inaccurate; thereby, Standing and Katz used 

data from 16 natural gas mixtures, along with methane z factors as a guide, to extend the 

chart to reduced pressure as high as 15. The Standing-Katz z factor chart correlates the z 

factor as a function of pseudo-reduced pressure and pseudo-reduced temperature.  

The theory of corresponding states proposes that all gases will exhibit the same 

behavior (e.g. the z factor), when viewed in terms of reduced pressure, reduced volume 

and reduced temperature. Mathematically, this principle can be expressed as: 
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             (3.1) 

The mathematical derivation of the expression above is as follows. By multiplying and 

dividing the left-hand-side of the real gas law (Eq. 1.2) by pcVc we get: 

    

  

    
 

   

  
      

  

    
   

  

    

 

  
 (3.2) 

 

 

Figure 3.1 - Deviation factor z chart for low pressure gases (GPA Copyright) 

By definition it is valid that: 
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    (3.3) 

From the real gas law (Eq. 1.2) we have: 

    

    
 

 

 
      

 

  

  

  
       

  

    
 (3.4) 

             (3.5) 

Based on the derivation above, the following relationship can be established: 

      

      
 

      

      
 (3.6) 
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Figure 3.2 - The Standing-Katz generalized z factor chart 

From Fig. 3.3 to Fig. 3.12 that follow, various compressibility z factor curves are shown 

for pure substances and at various reduced conditions. 

 

Figure 3.3  - z factor of pure substances at reduced conditions (Tr=0.65) 
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Figure 3.4 - z factor of pure substances at reduced conditions (Tr=0.75) 

 

 

Figure 3.5  - z factor of pure substances at reduced conditions (Tr=0.85) 



 

26 

 

Figure 3.6 - z factor of pure substances at reduced conditions (Tr=1.02) 

 

 

Figure 3.7  - z factor of pure substances at reduced conditions (Tr=1.07) 
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Figure 3.8 - z factor of pure substances at reduced conditions (Tr=1.13) 

 

 

Figure 3.9 - z factor of pure substances at reduced conditions (Tr=1.24) 
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Figure 3.10  - z factor of pure substances at reduced conditions (Tr=1.55) 

 

 

Figure 3.11  - z factor of pure substances at reduced conditions (Tr=1.98) 
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Figure 3.12  - z factor of pure substances at reduced conditions (Tr=2.03) 

 

3.2  Correlations Based on the Corresponding States Principle 

Since the Standing-Katz chart firstly appeared in the literature in 1941, there was an 

apparent need for a simple mathematical description which would effectively reproduce 

and extend the chart. For years, engineers had been using empirical correlations instead 

of tables and charts for determining the gas z factor. The effective use of the correlations 

however, lies in an understanding of the way they were derived and the knowledge of 

their limitations.  

Today, numerous rigorous mathematical expressions have been proposed to 

accurately reproduce the Standing-Katz chart. This section presents a literature review of 

some of the most widely used empirical correlations for the calculation of z factor. The 

correlations presented here are divided into two groups, shown in Table 3.1: direct 

(explicit) and iterative (implicit) relationships. Most of these expressions have been 
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designed to be solved for the gas z factor at any pseudo-reduced pressure and pseudo-

reduced temperature.   

Table 3.1: Correlations for the calculation of z factor 

Iterative Relations: 
Hall and Yarborough 

Dranchuk and Abou-Kassem 

Direct Relations: 

Brill and Beggs 

Azizi, Behbahani and Isazedeh 

Shell Oil Company 

Niger Delta 

Heidaryan et al. 

 

The pseudo-critical properties of a natural gas mixture can readily be determined 

from gas composition and mixing rules or from correlations which yield pseudo-critical 

properties given the natural gas specific gravity γg. If the natural gas composition is 

known, the pseudo-critical pressure and temperature can be determined by using Kay’s 

linear mixing rule [Bradley, 1987] according to Eqs. 3.7a and 3.7b respectively. In these 

formulas, subscript   stands for the different components of the natural gas mixture. 

            (3.7a) 

            
(3.7b) 

For natural gases whose detailed chemical composition is not known, as it is the case 

at early production stages, numerous correlations have been proposed over the years to 

predict pseudo-critical properties as a function of their specific gravity solely, a property 

which is readily available in most cases. Standing for example developed two sets of 

such correlations: one for dry hydrocarbon natural gases with γgHC<0.75 (Eqs. 3.8a and 

3.8b for pseudo-critical temperature and pressure respectively) and one for wet natural 
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gases with γgHC>0.75 (Eqs. 3.9a and 3.9b for pseudo-critical temperature and pressure 

respectively). 

                             
  (3.8a) 

                              
  (3.8b) 

                             
  (3.9a) 

                             
  (3.9b) 

Similar correlations were also developed by Sutton for hydrocarbon natural gas 

mixtures (Eqs. 3.10a and 3.10b for pseudo-critical temperature and pressure 

respectively). The author claims that these correlations are the most reliable for the 

calculation of pseudo-critical properties with the Standing-Katz   factor chart. He even 

claims that his correlations are more accurate even than methods which use composition 

and mixing rules to calculate pseudo-critical properties.  

Fig. 3.13 illustrates a comparison of Standing and Sutton correlations for the 

calculation of pseudo-critical pressure and temperature. The Sutton and the Standing wet 

gas correlation for     yield basically the same results, whereas the three correlations for 

the calculation of      demonstrate significant deviations for          . 

                                 
  (3.10a) 

                             
  (3.10b) 
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Figure 3.13 – Comparison of Standing and Sutton correlations for the calculation of pseudo-

critical temperature and pressure 

An important point to be stressed here is that the correlations described in this 

paragraph predict pseudo-critical ‘average’ values, which are evidently not fully accurate 

estimates of the natural gas mixtures property values. Moreover, the existing correlations 

are characterized by poor accuracy when predicting values of pseudo-critical properties 

for natural gases which contain significant quantities of non-hydrocarbon components 

such as nitrogen (N2), carbon dioxide (CO2) and hydrogen sulfide (H2S). Improved 

prediction techniques for the calculation of pseudo-critical properties of natural gases, as 

well as corrections which can be applied to the outcomes of the aforementioned 

correlations are discussed later in this work. 
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3.2.1  Hall and Yarborough 

Hall and Yarborough (1973) published a method that can accurately predict the 

Standing-Katz z factor chart by using a Carnahan-Starling hard-sphere EoS model. 

Based on data taken from the Standing-Katz chart the authors derived best fit 

mathematical expressions. The mathematical formula of the Hall and Yarborough 

equation is: 

          (3.11) 

where, 

                            (3.12) 

In Eq. 3.12, t is the reciprocal of the pseudo-reduced temperature (t=Tpc/T). The 

reduced density parameter y of Eq. 3.11 which is a product of the VdW covolume times 

the density is calculated by Eq. 3.12. 

              
          

      
                            

                                       
(3.13) 

The first derivative of      is given by: 

     

  
 

               

      
                          

                                                
(3.14) 
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Since Eq. 3.13 contains both z and ρΜ (which is a function of z) the solution is thus 

obtained by using an iterative method. Whitson suggests the use of a Newton-Raphson 

method with an initial guess of y=0.001 with the convergence to be achieved in 3 to 10 

iterations for              . Hall and Yarborough pointed out that the method is not 

recommended for application if the pseudo-reduced temperature is less than one. 

 3.2.2  Dranchuk and Abou-Kassem  

In 1975 Dranchuk and Abou-Kassem proposed an equation of state with eleven 

constants C1 to C11 for calculating the deviation factor z of natural gases. The equation is 

as follows: 

      
  

   
 

  

   
  

  

   
 

 
  

   
         

  

   
 

  

   
 

   
      

  

   
 

  

   
 

   
 

             
  

  
 

   
             

     

(3.15) 

In Eq. 3.15, ρr is the reduced natural gas density which is defined by the following 

relationship: 

   
        

     
 (3.16) 

The constants C1 to C11 of Eq. 3.15 were determined by fitting the equation, using 

non linear regression models, to 1500 points from the Standing-Katz z factor chart. The 

values of the constants are listed in Table 3.2.  

As can be noticed from Eqs. 3.15 and Eq. 3.16, the calculation of z involves z value 

itself, hence in order to obtain a solution for Eq. 3.15, an iterative numerical method 

such as Newton-Raphson should be implemented. Dranchuk and Abou-Kassem method 
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has been found to be applicable over the ranges of 0.2 < ppr < 30 and 1.0 < Tpr < 3.0, 

with an average absolute error of 0.585 percent. 

Table 3.2: Constants of the Dranchuk and Abou-Kassem z factor 

correlation 

Constant Value 

C1 0.32650 

C2 1.07000 

C3 -0.5339 

C4 0.01569 

C5 -0.05165 

C6 0.54750 

C7 -0.73610 

C8 0.18440 

C9 0.10560 

C10 0.61340 

C11 0.72100 

The Newton-Raphson method regarding Eq. 3.15 is implemented as follows. Firstly, 

we state a new function f(z) by moving both parts of Eq. 3.15 on the left-hand side. Eq. 

3.17 corresponds to that f(z) function. 

        
       

   
  

 

 
     

       

   
 

 

 
 

 
 

 

    
       

   
 

 

 
 

 
 

 

 
   

   
  

       

   
 

 

 
 

 
 

 

           
       

   
 

 

 
 

 
 

 

 

  
      

   
  

       

   
 

 

 
 

 
 

 

             
       

   
 

 

 
 

 
 

 

   

   

By substituting Eq. 3.16 to Eq. 3.17 and differentiating with respect to the 

(3.17) 
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compressibility z factor we get the first derivative of Eq. 3.17. 

  

  

    
       

   
    

 

  
     

       

   
 

 

  
 

  
     

       

   
 

 

  
 

  
 

 
   

   
  

       

   
 

 

  
 

              
       

   
 

 

 
 

 
 

 

 

  
   

   
  

       

   
 

 

 
 

            
       

   
    

 

               
       

   
 

 

 
 

 
 

 

 

 
       

   
   

       

   
 

 

  
 

                
       

   
 

 

 
 

 
 

 

  

  
        

   
   

       

   
 

 

 
 

  
         

       

   
    

 

  
             

       

   
 

 

 
 

 
 

 

    

(3.18) 

 

By means of the Dranchuk and Abou-Kassem correlation combined with the 

Elsharkawy mixing rule, the z factor is calculated with adequate accuracy, compared to 

that of EoS models, without in tandem the need of characterizing the heavy end fraction. 

This method also eliminates the need for BIC calculations that are necessary in the case 

of EoS models, as it is discusses in next sections. 

3.2.3  Brill and Beggs 

Brill and Beggs (1986) proposed a best-fit equation to the Standing-Katz z factor chart 

which is as follows: 

                  
  (3.19) 

where 
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                                   (3.20) 

                       
     

        
            

 

  
    

           
    

  

(3.21) 

                       (3.22) 

                              
 

 (3.23) 

For many petroleum engineering calculations, the Brill and Beggs correlation gives a 

satisfactory representation (± 1 to 2%) of the original Standing-Katz z factor chart for the 

range of 1.2<Tpr<2. The major advantage of the Brill and Beggs correlation is that it can 

be solved explicitly with respect to z and thus not requiring an iterative approach. The 

main limitations are that reduced temperature must be Tpr>1.2  (≈ 540 
o
R) and Tpr<2 (≈ 

800 
o
R) and reduced pressure must be Ppr<15 (≈ 10000 psia). 

3.2.4  Azizi, Behbahani and Isazedeh  

In 2010, Azizi, Behbahani and Isazedeh proposed a new correlation (Eq. 3.24) for the 

calculation of z factor, which is based on 3038 points from the Standing-Katz z factor 

chart. 

    
   

   
 (3.24) 

In the above equation, A, B, C, D and E are parameters which are computed in various 

pressure and temperature conditions according to the following formulas: 
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     (3.25) 

        
        

         
        

      (3.26) 

           
               

                      
                (3.27) 

        
         

       
     (3.28) 

           
               

                       
                 (3.29) 

The tuned coefficients used in the above equations were determined by the authors 

with the utilization of curve-fitting software and are listed in Table 3.3.  

The advantage of this correlation is that it is explicit in z and thus does not require an 

iterative solution as is required by other methods such as the Hall and Yarborough and 

the Dranchuk and Abou-Kassem. The Azizi, Behbahani and Isazedeh z factor correlation 

has proven to be accurate for sweet natural gases over the range of 0.2 < Pp r< 11 and 

1.1 < Tpr < 2. 

Table 3.3: Tuned coefficients of the Azizi et al. 

correlation 

Constant Value 

a 0.0373142485385592 

b − 0.01408071514853 

c 0.0163263245387186 

d −0.03077764788198 

e 13843575480.943800 

f −16799138540.7637 

g 1624178942.6497600 
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h 13702270281.086900 

i −41645509.8964740 

j 237249967625.0130 

k −24449114791.1530 

l 19357955749.32740 

m −126354717916.600 

n 623705678.3857840 

o 17997651104.33300 

p 151211393445.0640 

q 139474437997.1720 

r −24233012984.0950 

s 18938047327.52050 

t −141401620722.689 

3.2.5  Shell Oil Company 

Kumar (2004) proposed the explicit shell company correlation for the estimation of z 

factor as follows: 

                          
   

  
     (3.28) 

In the above equation, A, B, C and D are correlation parameters which are given from 

the following formulas: 

                                    (3.29) 

       
       

        
 (3.30) 



 

40 

                   
   (3.31) 

                          (3.32) 

                   (3.33) 

  
      

        
       (3.34) 

                          (3.35) 

3.2.6  Niger Delta 

The Niger Delta correlation (2013) for the calculation of z factor is a simple explicit 

expression of the following form: 

                                    (3.36) 

3.2.7  Heidaryan et al. 

In 2010, Heidaryan et al. presented the following correlation (Eq. 3.37) which is based 

on the Standing-Katz chart and is explicit to z. 
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  (3.37) 

This model was derived from 1260 points of the Standing-Katz chart while multiple 

regression analysis was carried out to identify the relationships between the independent 

variables and the dependent one (z factor). In fact, the authors generated a multiple 

rational regression equation that provides z factor as a function of Ppr and the reciprocal 

of Tpr as follows: 

        
 

   
  (3.38) 

Table 3.4: Tuned coefficients of Heidaryan et al. z factor correlation (Eq. 

3.37) 

Coefficient 0.2 ≤ Ppr ≤3 3 ≤ Ppr ≤ 15 

A1 2.827793 3.252838 

A2 -0.4688191 -0.1306424 

A3 - 1.262288 - 0.6449194 

A4 - 1.536524 - 1.518028 

A5 - 4.535045 - 5.391019 

A6 0.06895104 - 0.01379588 

A7 0.1903869 0.06600633 

A8 0.6200089 0.6120783 

A9 1.838479 2.317431 
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A10 0.4052367 0.1632223 

A11 1.073574 0.5660595 

For increased accuracy, the authors introduced two sets of tuned coefficients A1 

through A11 which are given in Table 3.4 for different ranges of the pseudo-reduced 

pressure of the gas system. These coefficients were determined by minimizing the sum 

of squares of the residuals of Eq. 3.37 and may be changed if more accurate data in 

sensitive region of the Standing-Katz chart are available by another numerical method.  

3.3  Corrections Applied to Sour Natural Gases 

If hydrogen sulfide H2S is present, the natural gas mixture is termed sour natural gas. 

The existing methods of calculating z factor values when significant amounts of 

compounds like carbon dioxide (CO2) and hydrogen sulfide (H2S) are present in the 

natural gas mixtures incur high deviations from the actual values. 

Sour and acid natural gases which contain hydrogen sulfide and/or carbon dioxide 

frequently exhibit different z factor behavior than sweet natural gases do. Although 

Kay’s mixing rule is usually adequate for lean natural gases that contain no, or small 

quantities of non-hydrocarbons, this is not the case when the natural gas under 

examination contains significant quantities of the aforementioned compounds. Wichert 

and Aziz (1972) developed a calculation procedure to account for these differences. 

They introduced a pseudo-critical temperature adjustment factor   shown in Eq. 3.39, 

which is a function of CO2 and H2S concentrations in the natural gas mixture. After 

calculating the correction term    the mixture’s pseudo-critical temperature    
  and 

pressure    
  which have been calculated in advance based on Kay’s mixing rule are 

further corrected by using Eqs. 3.40 and 3.41 respectively. 

            
      

         
      

            
        

    (3.39) 
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    (3.40) 

    
   

      
    

   
                 

 (3.41) 

The Wichert and Aziz correction method has proven to be providing pseudo-critical 

properties that will yield reliable   factor values from the Standing-Katz chart. The 

method was developed from extensive data from natural gases containing 

nonhydrocarbons with CO2 molar concentrations ranging from 0% to 55% and H2S 

molar concentrations ranging from 0% to 74 %.  
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Chapter 4  Cubic Equations of State 

4.1  Background 

Cubic equations of state (EoSs) are simple polynomial equations relating pressure, 

volume, and temperature (PVT). They accurately describe the volumetric and phase 

behavior of pure compounds and mixtures, requiring only the critical properties and the 

acentric factor of each component. The same equation is used to calculate the properties 

of all hydrocarbon phases, thereby ensuring consistency in reservoir processes that 

approach critical conditions (e.g., miscible-gas injection and depletion of volatile-

oil/gas-condensate reservoirs). Problems involving multiphase behavior, such as low-

temperature CO2 flooding, can be treated with an EoS. Volumetric behavior is calculated 

by solving a simple cubic equation, usually expressed in terms of the form below. 

       
           (4.1) 

where 

  
  

  
 (4.2) 

In Eq. 4.1, A0, A1, A2 and A3 are constants-functions of pressure, temperature and 

phase composition. 

 Phase equilibria can also be treated with an EoS by satisfying the condition of 

chemical equilibrium. For a two-phase system, the chemical potential of each component 

in the liquid phase μi(x), computed by means of an EoS, must be equal to the chemical 
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potential of each component in the vapor phase μi(y). Chemical potential is usually 

expressed in terms of fugacity, fi, which is calculated by Eq. 4.3. 

                 (4.3) 

Constant λi(T ) terms drop out in most problems. For systems that do not react 

chemically, it can be readily shown that the condition μi(x) = μi(y) is satisfied by the 

equal-fugacity constraint, fLi = fvi, where fugacity is given by Εq. 4.4. below.  

       
  

   
 

 

  
  

  

   
 

  

 
       

 

 

 (4.4) 

Since the introduction of the van der Waals EoS, many cubic equations of state have 

been proposed. The Redlich and Kwong EoS (RK) in 1949, the Peng and Robinson EoS 

(PR) in 1976, and the Martin EoS in 1979, to name only a few. Most of these equations 

retain the original van der Waals repulsive term RT / (v-b), modifying only the 

denominator in the attractive term. The Redlich - Kwong equation has been the most 

popular basis for developing new equations of state. Another trend has been to propose 

generalized three-, four-, and five-constant cubic equations that can be simplified to the 

PR EoS, RK EoS, or other familiar forms. Kumar and Starling use the most general five-

constant cubic EoS to fit volumetric and phase behavior of nonpolar compounds, 

although they do not apply the equation to mixtures.  

Most petroleum engineering applications rely on the PR EoS or a modification of the 

RK EoS. Several modified Redlich-Kwong equations have found acceptance, with 

Soave’s modification (SRK EoS) being the simplest and most widely used. 

Unfortunately the SRK EoS yields poor liquid densities. Zudkevitch and Joffe proposed 

a modified RK EoS, the ZJRK EoS, where both EoS constants are corrected by 

temperature-dependent functions, resulting in improved volumetric predictions. 

Yarborough proposed a generalized form of the ZJRK EoS for petroleum reservoir 

mixtures. 
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 The PR EoS is comparable with the SRK EoS in simplicity and form. Peng and 

Robinson reported that their equation predicts liquid densities better than the SRK EoS, 

although PR EoS densities are usually inferior to those calculated by the ZJRK EoS. A 

distinct advantage of the Peng-Robinson and Soave-Redlich-Kwong equations where a 

simple temperature-dependent correction is used for EoS constant A, is reproducibility. 

The ZJRK EoS relies on tables or complex functions to represent the highly nonlinear 

correction terms for EoS constants A and B. In the sections that follow, the most 

commonly used EoS models are described in detail. 

4.2 Van der Waals EoS 

The first EoS was proposed by Van der Waals back in 1873 and had a simple and 

qualitatively accurate formula (Eq. 4.5) which relates pressure with temperature and 

molar volume.  

  
   

   
 

 

  
 (4.5) 

In Eq. 4.5, a is the attraction parameter and b is the repulsive parameter. Compared to 

the ideal gas law, the VdW EoS incorporates two important improvements. First, the 

prediction of liquid behavior is now possible because volume approaches a limiting 

value b in high pressures: 

   
   

       (4.6) 

Parameter b is often called as the ‘covolume’ (effective molecular volume). The term 

RT/(v-b) dictates liquid behavior and physically represents the repulsive component of 

pressure on a molecular scale. 

The van der Waals equation also improves the description of non ideal gas behavior, 

where the term RT/(v-b) approximates the ideal gas behavior (pRT/v) and the term a/v
2
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accounts for non ideal behavior. The a/v
2
 term reduces system pressure and traditionally 

is interpreted as the attractive component of pressure. 

Van der Waals also stated the critical criteria that are used to define the two EoS 

constants a and b, that is the first and second derivatives of pressure with respect to 

volume equal zero at the critical point of a pure component as shown in Eq. 4.7. 

 
  

  
 

      

   
   

   
 

      

   (4.7) 

Martin and Hou showed that this constraint above is equivalent to the condition (Z-

Zc)
3
=0 at the critical point. Fig 4.1 of the Appendix I shows the p-v relationship of a pure 

compound for T <Tc, T=Tc, and T >Tc, indicating the zero slope inflection point on the 

critical isotherm that represents the van der Waals critical criteria. Imposing Eq. 4.7 on 

Eq. 4.5 and specifying pc and Tc (as opposed to specifying two of the other critical 

properties), the constants a and b in the van der Waals equation are given by: 

  
  

  

    
 

  
 (4.8) 

  
 

 

    

  
 (4.9) 

The critical volume which is given by Eq. 4.10 results in a constant critical 

compressibility factor as shown below. 

   
 
 
       

  
    

    

    
 

 

 
       (4.10) 

The VdW EoS can also be written in terms of the z factor by substituting z = pv/RT: 
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                    (4.11) 

   
 

     
 

  

  

  

  
 
 (4.12) 

   
 

  
 

 

 

  

  
 (4.13) 

where for now A and B are dimensionless parameters. 

4.3 Redlich-Kwong EoS 

Redlich and Kwong (1948) developed an adjustment in the original van der Waals 

attractive term (a/V
2
), which could considerably improve the prediction of the 

volumetric and physical properties of the vapor phase. This attractive pressure term has a 

temperature dependence term and their equation can be represented as follows: 

  
  

   
 

    

      
 (4.14) 

where T is the system’s temperature in 
o
R.  

During the development of their equations the authors noted that as the system 

pressure increases largely, i.e. p→∞, the molar volume of the substance shrinks to 

approximately 26% of its critical volume regardless of the temperature of the system. 

The critical point constraint of van der Waals (Eq. 2.7) was appropriately adjusted to 

satisfy the condition         .  

Applying the critical point conditions as expressed by Eq. 4.7 on Eq. 4.8 and by 

solving the resulting equations simultaneously we get: 
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       (4.15) 

     
    

  
 (4.16) 

where constants Ωa and Ωb are equal to 0.42748 and 0.08664 respectively.  By equating 

Eq. 4.9 with Eq.4.13 we get: 

                (4.17) 

The expression above shows that the RK EoS produces a universal critical 

compressibility factor zc equal to 0.333 for all substances. In terms of the z factor Eq. 

4.14 becomes: 

                     (4.18) 

The fugacity expression for a pure component is as follows: 

  
 

 
                 

 

 
     

 

 
  (4.20) 

Redlich and Kwong extended the application of their equation to hydrocarbon liquid 

or gas mixtures by employing the following mixing rules: 

         
   

 

   

 

 

 (4.21) 
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  (4.22) 

Many scholars of the RK EoS have been intrigued by its simplicity, accuracy, and the 

pleasure of deriving its thermodynamic properties. This has led to innumerable attempts 

to improve and extend the original Redlich-Kwong equation. It is claimed that the 

remarkable success of the RK EoS results from its excellent prediction of the second 

virial coefficient (securing good performance at low densities) and reliable predictions at 

high densities in the supercritical region. This latter observation results from the 

compromise fit of densities in the near-critical region; all components have a critical 

compressibility factor of Zc=1/3, where, in fact, Zc ranges from 0.29 for methane to 0.2 

for heavy C7 fractions. The Redlich-Kwong value of Zc=1/3 is reasonable for lighter 

hydrocarbons but is unsatisfactory for heavier components. 

4.4  Soave-Redlich-Kwong (SRK) EoS 

Several attempts have been made to improve volumetric predictions of the RK EoS 

by introducing a component-dependent correction term α for the constant A of the EoS. 

Parameter a is dimensionless and becomes equal to unity when     . At temperatures 

other than the critical one, parameter a is defined by Eq. 4.21. Soave used vapor 

pressures to determine the functional relationship for the correction factor used in Eq. 

4.16. 

                
 
 (4.21) 

Parameter m is correlated with the acentric factor and it is given by the following 

formula: 

                         (4.22) 
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Values of the acentric factor ω for pure substances and pseudo-components are listed 

in the last column of Table 2.2.  

For any pure substance, the constants a and b of Eq. 4.1 are founded by imposing the 

classical van der Waals critical point constraints (Eq. 4.7) on Eq. 4.14 and solving the 

resulting equations to give. 

     
     

 

  
    (4.23) 

    

    

  
 (4.24) 

The SRK EoS is expressed with respect to the z factor as follows: 

                     (4.25) 

where,  

   
      

     
  (4.26) 

  
   

  
 (4.27) 

In the above equations, Ωa and Ωb are the SRK dimensionless pure component 

parameters and have the values of 0.42747 and 0.08664 respectively.  

In order to use Eq. 4.25 with mixtures, the following mixing rules were proposed by 

Soave: 
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 (4.28) 

          

 

 (4.29) 

A and B parameters in the case of a mixture are transformed as follows: 

   
        

     
  (4.30) 

  
    

  
 (4.31) 

The parameter kij is an empirically determined correction factor called binary 

interaction coefficient (BIC), characterizing the binary formed by component i and 

component j in the hydrocarbon mixture. In case of a pure compound, the value of 

binary interaction coefficient equals unity. 

The Soave-Redlich-Kwong equation is the most widely used RK EoS proposed to 

date even though it grossly overestimates liquid volumes (and underestimates liquid 

densities) of petroleum mixtures. The present use of the SRK EoS results from historical 

and practical reasons. It offers an excellent predictive tool for systems requiring accurate 

predictions of VLE and vapor properties. Volume translation which is discussed later on 

is highly recommended, if not mandatory, when liquid densities are computed by the 

EoS.  

4.5  Peng-Robinson (PR) EoS 

This equation of state is an important two-constant variation of the Van der Waals EoS 

which was introduced by Peng and Robinson in 1976 and created great expectations for 
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more accurate liquid densities predictions compared to the SRK equation of state. That 

was indeed the main motivation of the authors of the PR EoS, which in general gives 

density predictions of superior accuracy for reservoir fluid systems. 

Although this equation improves the liquid density prediction, it cannot describe 

volumetric behavior near the fluid’s critical point. However, the PR EoS is perhaps the 

most popular and widely used equation of state in the petroleum Industry. In terms of the 

molar volume Vm, Peng and Robinson proposed the following two-constant cubic 

equation: 

  
   

    
 

 

                  
 (4.32) 

In the equation above, a and b parameters depend on critical pressure and temperature 

as it is shown in Eqs. 4.33 and 4.34 respectively, by imposing the classical van der 

Waals critical point constraint in Eq. 4.7. Parameter’s α dimensions are psia*ft
3
 whilst 

parameter b is expressed at cu.ft./lbm mol. 

          
     

 

  
    (4.33) 

          
    

  
 

(4.34) 

The equation predicts a universal critical gas compressibility factor of 0.307 

compared to 0.333 of the SRK model. Peng and Robinson also adopted Soave’s 

approach for calculating the parameter ac.  

            
       (4.35) 

In Eq. 4.35 m is a correlating function in correction term α and it is calculated from 

Eq. 4.36. 
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                                (4.36) 

In 1979 a modified expression for m was proposed by Robinson et al. that is 

recommended for heavier components (Eq. 4.37). 

                                      (4.37) 

When expressed in terms of the deviation factor, the Eq.4.32 becomes: 

                                       (4.38) 

In the equation above, A and B are the dimensionless versions of a and b and are 

calculated from Eqs. 4.39 and 4.40 respectively. 

    
 

     
        

  

  
 
      (4.39) 

   
 

  
           

  

  
 

(4.40) 

where a(Tr)=Tr
-05

. 

Fugacity expressions are given by: 

  
 

 
                 

 

    
   

         

         
  (4.41) 

  
  

   
      

  

 
              

 

 
 

  

 
 

 

 
      

 

   

       
 

 
  (4.42) 
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The mixing rules for the PR EoS are defined as follows: 

           

 
  

 

 
     (4.43) 

        

 

 
(4.44) 

In Eq. 4.34, kij is the binary interaction coefficient and is discussed in detail in the 

coming section. The PR EoS does not calculate inferior saturation pressures compared to 

the SRK EoS equation, and the temperature-dependent correction term for EoS constant 

A is very similar to the Soave correction. The largest improvement offered by the PR 

EoS is a universal critical compressibility factor of 0.307, which is somewhat lower than 

the Redlich-Kwong value of one-third and closer to experimental values for heavier 

hydrocarbons. Although the PR EoS is another widely used cubic EoS in petroleum 

engineering calculations, the difference between PR EoS and SRK EoS liquid 

volumetric predictions can be substantial, although, in many cases, the error in oil 

densities is unacceptable from both equations.  

4.6  Binary Interaction Coefficient (BICs) 

Binary interaction coefficient values for N2, CO2 and H2S are shown in Table 4.1 for the 

PR EoS and the SRK EoS as found in the literature. BICs values accounting for the 

interactions between hydrocarbons compounds are calculated by means of the Oellrich 

correlation (Eq. 4.45). 

       
     

   
    

   

   
   

    
   

 

 

 (4.45) 
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In Eq. 4.45, vci is the critical volume of component i, approximate values of which 

can be found in the literature for hydrocarbon compounds up to the heavy end. 

Parameter θ is the hydrocarbon-hydrocarbon exponent. It has been shown that a value of  

Table 4.1: Binary Interaction Coefficients (BICs) for the PR EoS and SRK 

EoS 

 
PR EoS SRK EoS 

 
N2 CO2 H2S N2 CO2 H2S 

N2 - - - - - - 

CO2 0.000 - - 0.000 - - 

H2S 0.130 0.135 - 0.120 0.120 - 

C1 0.025 0.105 0.070 0.020 0.120 0.080 

C2 0.010 0.130 0.085 0.060 0.150 0.070 

C3 0.090 0.125 0.080 0.080 0.150 0.070 

iC4 0.095 0.120 0.075 0.080 0.150 0.060 

nC4 0.095 0.115 0.075 0.080 0.150 0.060 

iC5 0.100 0.115 0.070 0.080 0.150 0.060 

nC5 0.110 0.115 0.070 0.080 0.150 0.060 

C6 0.110 0.115 0.055 0.080 0.150 0.050 

C7 0.110 0.115 0.050 0.080 0.150 0.030 

 

θ=1.2 provides a good match of the paraffin-paraffin interaction coefficients of the 

correlation. However it is recommended that the value is obtained by matching 

experimental data (e.g. saturation pressure data).  

Critical compressibility factor is considered as fixed and equal to 0.307 for the PR 

EoS, 0.333 for the RK EoS and 0.333 for the SRK EoS, as shown in previous sections. 

Binary interaction coefficient values between the hydrocarbon compounds and the heavy 
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end fraction are calculated again by Eq. 4.36 with the heavy end’s critical volume to be 

calculated by Eq. 2.16 of the Twu correlation. Table 4.2 gathers the binary interaction 

coefficient values adopted by the present work. 

Table 4.2: Binary Interaction Coefficients (BICs) adopted by this work. 

 
N2 CO2 H2S C1 C2 C3 iC4 nC4 iC5 nC5 C6 C7 C8 C9 C10 C11 C12+ 

N2 0.00 0.00 0.13 0.03 0.01 0.09 0.10 0.10 0.10 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.11 

CO2 0.00 0.00 0.14 0.11 0.13 0.13 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 

H2S 0.13 0.14 0.00 0.07 0.09 0.08 0.08 0.08 0.07 0.07 0.06 0.05 0.05 0.05 0.05 0.05 0.05 

C1 0.03 0.11 0.07 0.00 0.00 0.01 0.02 0.02 0.02 0.02 0.03 0.03 0.04 0.05 0.05 0.06 0.00 

C2 0.01 0.13 0.09 0.00 0.00 0.00 0.01 0.01 0.01 0.01 0.01 0.02 0.02 0.03 0.03 0.04 0.00 

C3 0.09 0.13 0.08 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.01 0.02 0.02 0.02 0.00 

iC4 0.10 0.12 0.08 0.02 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.01 0.01 0.00 

nC4 0.10 0.12 0.08 0.02 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.01 0.01 0.00 

iC5 0.10 0.12 0.07 0.02 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.00 

nC5 0.11 0.12 0.07 0.02 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.00 

C6 0.11 0.12 0.06 0.03 0.01 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 

C7 0.11 0.12 0.05 0.03 0.02 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

C8 0.11 0.12 0.05 0.04 0.02 0.01 0.01 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

C9 0.11 0.12 0.05 0.05 0.03 0.02 0.01 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

C10 0.11 0.12 0.05 0.05 0.03 0.02 0.01 0.01 0.01 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

C11 0.11 0.12 0.05 0.06 0.04 0.02 0.01 0.01 0.01 0.01 0.01 0.00 0.00 0.00 0.00 0.00 0.00 

C12+ 0.11 0.12 0.05 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

4.7  Solution of the Cubic Polynomial 

Compressibility factor is calculated via a cubic EoS by solving a cubic polynomial 

expressed in terms of the z factor. This polynomial equation only slightly differs 

between the different EoS models. Eq. 4.11 is the cubic polynomial corresponding to the 

VdW EoS, Eq. 4.25 to the RK and SRK EoS ones and Eq. 4.38 corresponds to the PR 

EoS. 

                    (4.11) 
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                     (4.25) 

                                       (4.38) 

Constants A and B are individually calculated by each EoS as it has been described in 

the above paragraphs and using appropriate mixing rules. In this work, the Cardano 

analytical methodology was utilized in order to solve the cubic gas compressibility 

factor polynomials. 

4.7.1  Cardano 

The Cardano’s formula (named after Girolamo Cardano, 1501-1576), which is similar to 

the perfect-square method to quadratic equations is a standard way to find a real root of a 

cubic equation like: 

The two remaining roots, either real or complex, are afterwards found by polynomial 

division and the quadratic formula. The solution has two steps, the cubic polynomial’s 

depression and its solution.  

To depress the cubic equation we firstly substitute: 

Then we get: 

               (4.46) 

    
 

  
 (4.47) 
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The equation above has now be depressed in such a way that the term y
2
 is not present 

anymore. The next step is to solve the depressed equation of the form: 

We first substitute as follows: 

Then we solve for: 

    
 

  
 

 

     
 

  
 

 

     
 

  
       

        
  

  
 

  

    
     

   

  
  

  

   
    

  

  
       

       
  

  
     

   

    
 

  

  
    

(4.48) 

        (4.49) 

        (4.50) 

        (4.51) 

      (4.51) 



 

60 

The cubic polynomial of Eq. 4.46 has the solutions: 

where: 

In the above equations i stands for the square root of -1. If the three roots calculated 

are real numbers then the largest one corresponds to a gas phase, the lowest one to a 

liquid one and the middle one is rejected as it lacks any physical meaning. If the roots 

       
 

  
 (4.52) 
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 (4.57) 

  
              

    
 (4.58) 
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are comprised by a real one and a pair of complex, then the real one is selected for 

further calculations. 

4.8  Volume Shift Correction 

A comparison of the predicted liquid molar volume with the leading two-parameter EoSs 

with experimental data of pure compounds generally shows a systematic deviation. The 

deviation is almost constant over a wide pressure range away from the critical point. 

Hence, subtracting the predicted molar volume by a constant correction term can 

improve the predicted liquid density. The effect on the predicted vapor volume is 

generally insignificant due to its large value relative to that of liquid away from the 

critical point.  

The concept of volume translation or volume shift was firstly introduced in 1979 by 

Martin et al. who attempted to ease the comparison of his proposed generalized EoS with 

previously published equations.  

Later, Peneloux et al. published their volume translation method which modifies the 

two-constant cubic SRK EoS by introducing a third constant  , without changing the 

equilibrium calculations of the original two constant EoS. Their major contribution was 

indeed the fact that he showed that the volume shift applied does not affect equilibrium 

calculations either for pure components or mixtures and thereby does not affect the 

original volumetric capabilities of the SRK EoS. Jhaveri and Youngren later showed that 

volume translation works equally well with any other two constant EoS such as the PR 

EoS. 

According to the volume translation method, the molar volume that is calculated by 

the EoS,      is corrected by a simple correction term which is linear with respect to the 

fluid’s composition (Eq. 4.59). 

                 

 

   

 (4.59) 
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In the above expression    stands for the component’s   molar concentration and    is 

the volume translation component-specific parameter which is estimated from Eqs. 4.60 

and 4.61 for the SRK and the PR equations of state respectively. 

   
    

  
                      (4.60) 

   
    

  
                      

(4.61) 

The above equations for the calculation of ci involve the Rackett compressibility 

factor     which depends on the component’s acentric factor   and it is given by Eq. 

4.62. 

                      (4.62) 

The shift in the EoS calculated molar volume is according to the authors actually 

equivalent to adding a third constant to the EoS but it is special because equilibrium 

conditions remain unaltered. One can readily notice that fact for a pure component, 

where the van der Waals ‘loop’ defines vapor pressure by making the areas above and 

below the      line on a     plot equal in Fig. 4.1. The equal area balance of 

fugacities does not change when the curve is shifted to the left or to the right along the 

volume axis of the diagram and it can be readily seen that vapor-pressure predictions are 

unaltered by introducing the volume translation parameter   . 
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Figure 4.1 – p-V diagram of a pure component as calculated by a cubic EoS illustrating the 

van der Waals’s “loop” defining vapor pressure by the equal-area rule. 

Although primarily the Peneloux et al. volume translation method is applicable to 

liquid phase hydrocarbons, the present work adopted it for correcting the volume of 

hydrocarbon gases and condensate gases. The effect of the implementation of the 

aforementioned correction method is discussed in a next chapter. 
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Chapter 5 Experimental Compressibility 

Factor Values 

5.1  Background 

Among the existing methods for the determination of compressibility z factor, 

experimental measurement is clearly the most accurate and reliable one. It is hard 

however to determine experimentally measured z factor values for all compositions of 

gases at all ranges of pressures and temperatures that might be encountered during the 

exploitation of a field. At the same time, this method is expensive and most of the time 

these measurements are made at reservoir temperature only. At this point the necessity 

for vigorous and accurate z factor computational methods arises that can provide reliable 

forecast in an inexpensive and easy to implement fashion.  

To evaluate the performance of various z factor prediction methods, such as empirical 

correlations and equations of state such as those that were discussed in the previous 

chapters, along with their corrections and modifications a set of experimental 

compressibility z factor measurements is required. Within the context of the present 

study, a fluid database consisting of two hundred thirty four gas condensate reservoir 

fluids from various fields worldwide was utilized to evaluate the accuracy of the most 

commonly used z factor calculation methods. 

5.2  Fluid’s Database Properties 

Compressibility z factor prediction methods that were described in previous sections 

were evaluated over a database of experimentally measured data of two hundred thirty 

four real reservoir condensate gases. The z factor data that were retrieved from the 

database PVT reports included the composition, reservoir temperature, fluid 
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characterization data and compressibility factors of 234 gas and condensate gas samples. 

The latter were obtained from constant composition expansion lab PVT tests. The fluid 

samples range from lean, rich to slightly sour and highly sour gases. For each gas 

condensate composition, the data include experimentally measured gas gravity, 

compositional analysis from methane to C12+ and molecular weight and specific gravity 

of the C12+ fraction. These samples originate from different fields worldwide and vary in 

their characteristics, composition and properties. Table 5.1 summarizes their properties 

indicating also the variability of the utilized data. 

Table 5.1: Properties of the natural gases of the database (the outliers have been removed) 

 Minimum Maximum Average 

Composition (mole %)    

Hydrogen sulfide 0.0 14.1 0.4 

Carbon dioxide 0.0 72.6 3.2 

Nitrogen 0.0 10.6 0.9 

Methane 12.4 98.3 77.3 

Ethane 0.5 14.2 6.6 

Propane 0.0 10 3.3 

Iso-butane 0.0 2.4 0.7 

n-butane 0.0 3.6 1.3 

Iso-pentane 0.0 1.6 0.6 

n-pentane 0.0 1.6 0.5 

Hexane 0.0 2.1 0.8 

Eptane 0.0 2.7 0.9 

Octane 0.0 3.3 0.9 

Nonane 0.0 23.2 0.7 

Decane 0.0 1.5 0.4 

Undecane 0.0 0.9 0.3 

C12+ 0.0 6.2 1.1 

MW of C12+ 105.3 282.7 137.3 

SG of C12+ 0.718 0.869 0.795 

Reservoir pressure (psia) 3000 13000 6527.4 

Reservoir temperature (
o
F) 118.3 352.3 237.3 

z factor 0.7009 1.8813 1.0599 

 

5.2.1  Pressure Discretization 

The experimental z factor values that had been measured for each gas condensate had 

been interpolated by specific functions of pressure. In this work, the fitted experimental z 

factor curves were re-digitized at ten pressure steps varying between the sample’s 



 

66 

minimum pressure (Pmin, which is equal to the sample’s dewpoint pressure Pd) and the 

maximum fluid’s pressure which corresponds to the initial reservoir pressure (Pres).  

The pressure range of each z factor dataset, that is the difference between the 

maximum (reservoir) and the minimum fluid pressure for each specific fluid, exhibited 

various values with a maximum difference of approximately 7320 psia, while the 

minimum pressure difference was found equal to 279 psia. In Fig. 5.1 the frequency 

distribution of that pressure difference is shown. Those figures indicate that the pressure 

range in the single phase of each PVT report is quite large, thus justifying the need to 

divide that range into 10 distinct points for each gas condensate. 

 

Figure 5.1 – ΔP frequency distribution for the natural gases of the database  
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distribution is wide enough and can be considered that adequately represents the 

reservoir temperatures that are encountered worldwide. 

5.2.3  Composition Distribution 

The composition of the database fluids also varies with respect to concentration of 

methane, nitrogen, carbon dioxide, hydrogen sulfide and heavy end (C7+). The vast 

majority (156 natural gases) out of the 234 natural gases of the database are lean with 

respect to their heavy end content (less than 5%), while 78 of them can be considered 

rich in heavy hydrocarbons with concentrations greater than 5% mole, and thus more 

prone to condensation. In Fig. 5.3, the % mole concentration distribution of the heavy 

end for the natural gases of the database is shown. 

With respect to their hydrogen sulfide content, the natural gases under examination 

are divided into slightly sour gases, containing low concentration of hydrogen sulfide 

(less than 5%), and highly sour gases having high concentration of hydrogen sulfide 

(more than 5%). Based on the above categorization and in Fig. 5.4, just five out of the 

two hundred thirty four natural gases can be considered as highly sour.  

Acid natural gases are these gases with significant content of carbon dioxide CO2. 

CO2 mole concentration distribution is shown in Fig. 5.5 for the natural gases of the 

database. Methane CH4 concentration distribution is shown in Fig. 5.6 for the natural 

gases of the database. Natural gases with high CH4 content have low CO2 content and 

vice versa as verified by Fig. 5.5 and 5.6. 

From the discussion above it becomes clear that the PVT reports database that has 

been utilized in this thesis is quite representative as it contains various types of gas 

condensate fluids. It is exactly that property that provides validity to the statistics of the 

obtained deviations between the measured z factor values and those obtained from the 

various computational methods, as shown in the following chapter. 
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Figure 5.2 – Tres frequency distribution for the natural gases of the database (
o
F)  

 

Figure 5.3 – C7+ concentration distribution for the natural gases of the database 
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Figure 5.4 – H2S concentration distribution for the natural gases of the database 

 

Figure 5.5 – CO2 concentration distribution for the natural gases of the database 
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Figure 5.6 – CH4 concentration distribution for the natural gases of the database 
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Chapter 6  Results and Discussion 

6.1  Statistical Tools 

In this section, some of the most commonly used statistical metrics for measuring the 

accuracy of continuous variables are summarized.  

6.1.1  Mean Absolute Deviation 
The mean absolute deviation (MAD or MAE i.e. mean absolute error) is the sum of 

absolute differences between the actual experimental z factor value and the forecasted 

value divided by the number of pressure increments. It is given by Eq. 6.1 below: 

    
        

 
   

 
 (6.1) 

MAD takes only positive values and constitutes the statistical mean of the 

absolute deviations, giving thus an estimate of the expected average absolute error 

between the experimental z factor measurements and the computational method.  

6.1.2  Mean Square Error 

Mean square error (MSE or R
2
, or coefficient of determination) is probably the most 

commonly used error metric. It penalizes larger errors because squaring larger numbers 

has a greater impact than squaring smaller ones.  The MSE is the sum of the squared 

errors divided by the number of observations (pressure steps) as it is shown in Eq. 6.2. 

As a statistical metric however, the mean square error has a disadvantage as it lacks any 

physical meaning due to its squared dimensions. 
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 (6.2) 

6.1.3  Root Mean Square Error 

The root mean square error (RMSE) is the square root of the mean square error MSE and 

it is calculated by Eq. 6.3 below. 

      
          

   

 
 (6.3) 

RMSE measures the average magnitude of the errors in a set of predictions 

without considering their direction. Contrary to the MSE, the average model 

prediction error is expressed in the units of the variable of interest.  

6.1.4  Mean Absolute Relative Deviation 

Mean absolute relative deviation (MARD) is the average of absolute errors divided by 

the actual experimental compressibility z factor values. It is calculated by Eq. 6.4. 

     
  

     

  
  

   

 
 

(6.4) 

6.1.5  Mean Relative Deviation 

The mean relative deviation (MRD) is the sum of the differences between the 

experimental z factor values and the forecasted values divided by the number of pressure 

increments. It is given by Eq. 6.5 below and it is used for checking whether the 

predictions over or underestimate the actual values. 

    
        

 
   

 
 (6.5) 
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MRD measures the average magnitude of the deviations occurred in a set of 

predictions by considering their direction. Ideally, MRD would be equal to zero if 

a computational method predicts equal values to those of the experimental 

measurement.  

6.1.6  Outliers Removal 

An outlier is an observation (i.e. an experimental measurement) that is not alike the other 

observations. It is rare, or distinct, or it does not fit in some way. Outliers can have many 

causes such as measurement or input error, data corruption or just being real outliers. 

There is not a specific way to define and identify outliers in general because of the 

specific properties of each dataset.  

In a Gaussian (and Gaussian-like) distribution within a distance of one standard 

deviation from the mean, the 68% of the data is covered. Similarly within two standard 

deviations the 95% of the total data is covered and within three standard deviations the 

99.7%. Three standard deviations from the average MRD is a common cut-off in 

practice for identifying outliers in MRD error distributions. That approach was also 

adopted from the present work, with respect to the MRD of the implemented z factor 

calculation methods, given the large volume of available z factor data.  

6.2  Results Comparison 

6.2.1  Correlations 

Results of in total five empirical correlations are presented in this section combined with 

two of the most commonly used mixing rules and the Wichert-Aziz correction for sour 

and acid gases, which modifies the pseudo-critical pressure and temperature before 

introducing them into the correlations. This leads to twenty different combinations that 

were examined and are presented in this section.  

Table 6.1 reports the application range for each correlation in terms of pseudo-

reduced pressure and temperature. For the fluid database under examination this range is 

approximately 1.981 ≤ Ppr ≤ 18.909 and 1.31 ≤ Tpr ≤ 2.335. Clearly, some fluid samples 
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could not be treated by specific methods and they were not taken into account when 

computing the method statistics. 

Table 6.1: Recommended application ranges for the correlations 

Correlation Range, Ppr Range, Tpr 

Hall and Yarborough n/a 1 ≤ Tpr 

Shell Oil Company n/a n/a 

Brill and Beggs 15 ≤ Ppr 1.2 ≤ Tpr ≤ 2 

Azizi et al. 0.2 ≤ Ppr≤11 1.1 ≤Tpr ≤ 2 

Heidaryan et al. 0.2 ≤ Ppr ≤ 15 n/a 

 

6.2.1.1  Azizi-Behbahani-Isazedeh correlation 

In Fig 6.1 to 6.4, the frequency distributions of MRD of the different combinations of 

mixing rules with the inclusion or not of the Wichert-Aziz correction method are shown. 

The calculation of the z factor is done by the Azizi-Behbahani-Isazedeh correlation 

which was discussed in chapter 3.2.4. Additionally in Table 6.2 the statistical metrics are 

reported. 

 

Figure 6.1 – MRD of the Azizi, Elsharkawy combination 
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Figure 6.2 – MRD of the Aziz, Elsharkawy, Wichert combination 

 

Figure 6.3 – MRD of the Azizi, Kays combination 
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Figure 6.4– MRD of the Azizi, Kays, Wichert combination 

 
Table 6.2: Statistical metrics for the different combinations (Azizi et 

al.) 

Mixing Rule Correction Av. MAD  Av. MARD (%) R
2
 

Kays Yes 0.029 3.04 0.98769 

Kays No 0.030 3.08 0.98983 

Elsharkawy Yes 0.030 3.63 0.98184 

Elsharkawy No 0.030 2.88 0.98597 

The number of gases that fall into the application range of the method slightly differs 

for each combination as the choice of the mixing rule and the inclusion or not of the 

correction slightly changes the pseudo-reduced properties. By examining Fig 6.1 to 6.4, 

141 (85.45%) gases out of the 165 that fall into application range have MRD of ±5% 

with the Azizi, Kay’s combination, 135 (84.91%) out of 159 with the Azizi, Kay’s, 

Wichert, 105 (73.43%) out of 143 with the Azizi, Elsharkawy, Wichert and 125 

(82.24%) out of 152 with the Azizi, Elsharkawy combination.  
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6.2.1.2  Brill and Beggs correlation 

In Fig 6.5 to 6.8, the frequency distributions of MRD of the different combinations of 

mixing rules with the inclusion or not of the Wichert-Aziz correction method are shown. 

The calculation of the z factor is done by the Brill and Beggs correlation which was 

discussed in chapter 3.2.3. In Table 6.3 the statistical metrics are reported. 

 

Figure 6.5 – MRD of the Brill and Beggs, Elsharkawy combination 
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Figure 6.6 – MRD of the Brill and Beggs, Elsharkawy, Wichert combination 

 

Figure 6.7 – MRD of the Brill and Beggs, Kays combination 
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Figure 6.8 – MRD of the Brill and Beggs, Kays, Wichert combination 

Table 6.3: Statistical metrics for the different combinations (Brill and Beggs) 

Mixing Rule Correction Av. MAD  Av. MARD (%) R
2
 

Kays Yes 0.033 3.16 0.99031 

Kays No 0.034 3.29 0.99055 

Elsharkawy Yes 0.030 3.05 0.98943 

Elsharkawy No 0.027 2.68 0.98989 

The number of gases that fall into the application range of the method slightly differs 

for each combination as the choice of the mixing rule and the inclusion or not of the 

correction slightly changes the pseudo-reduced properties. By examining Fig 6.5 to 6.8, 

177 (79.02%) gases out of the 224 that fall into application range have MRD of ±5% 

with the Brill and Beggs, Kay’s combination, 165 (82.09%) out of 201 with the Brill and 

Beggs, Kay’s, Wichert, 177 (77.97%) out of 227 with the Brill and Beggs, Elsharkawy, 

Wichert and 167 (85.39%) out of 197 with the Brill and Beggs, Elsharkawy 

combination.  
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6.2.1.3  Shell Oil Company correlation 

In Fig 6.9 and 6.12, the frequency distributions of MRD of the different combinations of 

mixing rules with the inclusion or not of the Wichert-Aziz correction method are shown. 

The calculation of the compressibility z factor is done by the Shell Oil Company 

correlation which was discussed in section 3.2.5. Moreover, in Table 6.4 the statistical 

metrics are reported. 

 

Figure 6.9 – MRD of the Shell, Elsharkawy combination 
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Figure 6.10 – MRD of the Shell, Elsharkawy, Wichert combination 

 

Figure 6.11 – MRD of the Shell, Kays combination 
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Figure 6.12 – MRD of the Shell, Kays, Wichert combination 

Table 6.4: Statistical metrics for the different combinations (Shell correlation) 

Mixing Rule Correction Av. MAD  Av. MARD (%) R
2
 

Kays Yes 0.089  8.13  0.99519  

Kays No 0.086  7.95  0.99250  

Elsharkawy Yes 0.099  9.02  0.99265  

Elsharkawy No 0.083  7.74  0.99088  

For this correlation no application range was found in the literature. By examining 

Fig 6.9 to 6.12, 89 (38.69%) gases out of 230 exhibit MRD of ±5% with the Shell, Kay’s 

combination, 89 (38.69%) out of 230 with the Shell, Kay’s, Wichert, 110 (47.82) out of 

230 with the Shell, Elsharkawy and 80 (34.93%) out of 229 with the Shell, Elsharkawy, 

Wichert combination.  

6.2.1.4  Heidaryan correlation 

In Fig 6.13 to 6.16 the frequency distributions of MRD of the different combinations of 

mixing rules with the inclusion or not of the Wichert-Aziz correction method are shown. 

The calculation of the compressibility z factor is done by the Heidaryan et al. correlation 

which was discussed in section 3.2.7. In Table 6.5 the statistical metrics are reported. 
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Figure 6.13 – MRD of the Heidaryan, Elsharkawy combination 

 

Figure 6.14 – MRD of the Heidaryan, Elsharkawy, Wichert combination 
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Figure 6.15 – MRD of the Heidaryan, Kays combination 

 

Figure 6.16 – MRD of the Heidaryan, Kays, Wichert combination 
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Kays No 0.095 8.53 0.96897 

Elsharkawy Yes 0.096 8.63 0.96370 

Elsharkawy No 0.094 8.49 0.96622 

By examining Fig 6.13 to 6.16, 110 (51.40%) gases out of 214 exhibit MRD of ±5% 

with the Heidaryan, Kay’s combination, 113 (54.07%) out of 209 with the Heidaryan, 

Kay’s, Wichert, 112 (52.58%) out of 213 with the Heidaryan, Elsharkawy and 110 

(5.26%) out of 216 with the Heidaryan, Elsharkawy, Wichert combination.  

6.2.1.5  Hall and Yarborough correlation 

In Fig 6.17 and 6.20, the frequency distributions of MRD of the different combinations 

of mixing rules with the inclusion or not of the Wichert-Aziz correction method are 

shown. The calculation of the compressibility z factor is done by the Hall and 

Yarborough correlation which was discussed in chapter 3.2.1. In Table 6.6 the statistical 

metrics are reported and the values in parentheses correspond to the metrics prior to the 

removal of the outliers. 

 

Figure 6.17 – MRD of the Hall and Yarborough, Elsharkawy combination 
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Figure 6.18 – MRD of the Hall and Yarborough, Elsharkawy, Wichert 

combination 

 

Figure 6.19 – MRD of the Hall and Yarborough, Kays combination 
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Figure 6.20 – MRD of the Hall and Yarborough, Kays, Wichert combination 

Table 6.6: Statistical metrics for the different combinations (Hall and 

Yarborough) 

Mixing Rule Correction Av. MAD  Av. MARD (%) R
2
 

Kays Yes 0.036  3.39  0.99468  

Kays No 0.034  3.16 0.99514  

Elsharkawy Yes 0.039  3.72  0.99113  

Elsharkawy No 0.033  3.15  0.99383  

By examining Fig 6.17 to 6.20, 184 (81.42%) out of 224 gases have MRD of ±5% 

with the Hall and Yarborough, Kay’s combination, 184 (81.42%) out of 224 with the 

Hall and Yarborough, Kay’s, Wichert, 182 (80.89%) out of 225 with the Hall and 

Yarborough, Elsharkawy and 172 (76.11%) out of 226 with the Hall and Yarborough, 

Elsharkawy, Wichert combination.  

6.2.2  Equation of State Results 

The equation of state adopted by the present work was the PR EoS which is one of 

the most widely used in the petroleum industry. The Peneloux volume translation 

method was also implemented to identify if it leads to better accuracy results. Moreover, 
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nonzero binary interaction coefficient values that were discussed in section 4.6 were also 

incorporated to account for molecular forces.  

 

Figure 6.21 – MRD of the PR, Volume shift, nonzero BICs 

 

Figure 6.22 – MRD of the PR, nonzero BICs 
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Figure 6.23 – MRD of the PR, Volume shift 

 

Figure 6.24 – MRD of the PR 
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shift-non zero BICs, 169 (75.45%) with the PR EoS-non zero BICs and 147 (65.37%) 

with the PR EoS without Volume shift or the incorporation of nonzero BICs.  

Table 6.7: Statistical metrics for the different combinations of the PR 

EoS 

Volume shift Nonzero BICs Av. MAD  Av. MARD (%) R
2
 

No No 0.048  4.37  0.98249  

Yes No 0.029  2.77  0.97192  

No Yes 0.042  3.86  0.98122  

Yes Yes 0.029  2.83  0.97145  

6.2.3  Discussion 

This section attempts to discuss particularities and special cases encountered during the 

calculations. A number of specific (approximately ten) natural gases of the database 

have been found to systematically have high values of MAD and MARD, regardless of 

the z factor computational method. These gases do not seem to share any common or 

similar properties and they are rather irrelevant with each other. Their deviations can 

therefore be attributed to errors occurred during the experimental measurement 

procedure. Table 6.8 reports the recorded MARD range for three of these gases. 

Table 6.8: MARD range for gases with experimental error 

Reference Method Min MARD (%) Max MARD (%) 

1 Azizi et al. 16.20 17.28 

Brill and Beggs  13.99 15.87 

Hall and Yarborough 16.15 17.15 

Heidaryan et al. 11.59 13.45 

Shell Oil Company 15.42 16.57 

PR EoS 12.22 17.56 

2 Azizi et al. 25.19 28.74 

Brill and Beggs  23.08 26.25 

Hall and Yarborough 22.96 28.25 

Heidaryan et al. 22.71 27.92 

Shell Oil Company 12.30 17.23 

PR EoS 20.96 27.56 

3 Azizi et al. 16.36 17.73 

Brill and Beggs  15.02 16.60 

Hall and Yarborough 16.40 17.78 

Heidaryan et al. 16.75 22.69 
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Shell Oil Company 17.45 19.69 

PR EoS 12.00 16.73 

 

Apart from the entries of the database which probably carry experimental error, in the 

vast majority of the considered natural gases all methods yield comparable results. In 

some other cases however, certain methods have been proven to be inconsistent in 

accurately predicting the experimental z factor curves of particular gases. The Heidaryan 

et al. correlation for instance fails to accurately describe the behavior of z factor in at 

least seven cases as shown in Table 6.9 below.  

Table 6.9: MARD error of selected natural gases  

Reference Method Min MARD (%) Max MARD (%) 

4 Azizi et al. 2.53 5.36 
Brill and Beggs  0.27 6.33 
Hall and Yarborough 2.55 9.12 
Heidaryan et al. 18.73 21.55 
Shell Oil Company 6.25 10.76 
PR EoS 1.12 3.24 

5 Azizi et al. 4.66 5.87 
Brill and Beggs  6.86 8.09 
Hall and Yarborough 5.86 7.15 
Heidaryan et al. 18.61 21.54 
Shell Oil Company 7.05 8.62 
PR EoS 6.59 9.75 

6 Azizi et al. 2.45 8.43 
Brill and Beggs  3.78 5.52 
Hall and Yarborough 3.56 6.16 
Heidaryan et al. 12.59 13.33 
Shell Oil Company 6.50 8.72 
PR EoS 1.83 2.32 

7 Azizi et al. 3.30 5.70 
Brill and Beggs  5.34 7.47 
Hall and Yarborough 4.84 5.24 
Heidaryan et al. 12.27 14.61 
Shell Oil Company 7.82 9.13 
PR EoS 6.93 8.52 

8 Azizi et al. 0.42 4.24 
Brill and Beggs  1.43 3.15 
Hall and Yarborough 4.08 4.12 
Heidaryan et al. 11.06 12.21 
Shell Oil Company 6.45 7.71 
PR EoS 2.78 6.46 
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9 Azizi et al. 1.47 4.29 
Brill and Beggs  4.19 7.68 
Hall and Yarborough 1.77 7.33 
Heidaryan et al. 12.06 15.78 
Shell Oil Company 7.52 8.72 
PR EoS 6.98 7.35 

10 Azizi et al. 4.27 5.03 
Brill and Beggs  2.25 2.81 
Hall and Yarborough 3.48 4.99 
Heidaryan et al. 13.57 15.55 
Shell Oil Company 1.97 2.97 
PR EoS 1.16 4.00 

 

All gases for which the Heidaryan et al. z factor correlation exhibits poor performance 

have a narrow range of reservoir temperature and pseudo-reduced temperature, 276 
o
F < 

Tres < 289 
o
F and 1.4 < Tpr < 1.7 respectively, while the H2S concentration is zero for all 

of them. Most importantly, nearly half of the pseudo-reduced pressures that were 

introduced into the correlation are greater than the upper limit of the correlation’s 

application range (Ppr ≤ 15) which is shown in Table 6.1. 

Application ranges for the Shell Oil Company correlation have not been reported in 

Table 6.1 as they were not found in the literature. However, the correlation failed in a 

limited number of cases with the following characteristics: low H2S content (from 0 to 

0.5%), low N2 content (from 0 to 0.7%), C7+ content from 12% to 14%, pseudo-reduced 

pressure in the range 11.5 ≤ Ppr ≤ 13.5 and pseudo-reduced temperature in the range 1.31 

≤ Tpr ≤ 1.41. 

6.3  Conclusions 

o The Peng-Robinson equation of state with the inclusion of the volume shift 

method had 189 cases exhibiting a maximum deviation of ±5% from the 

experimental values. 

o Although the volume translation correction method is primarily being used for 

liquid EoS calculations, when implemented for gases it leads to increased 

accuracy compared to the utilization of nonzero binary interaction 

coefficients. 
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o The Azizi et al. correlation proved to be the most accurate empirical 

correlation among those examined in this study. Although it is a simple 

explicit in z formula it provides slightly better accuracy than the also explicit 

Brill and Beggs correlation and the implicit Hall and Yarborough which needs 

an iterative solution. 

o A fair performance comparison between the PR EoS and the Azizi et al. 

correlation cannot be established due to their different application range. 

o If the Azizi et al. correlation is to be used for the calculation of z factor then it 

is recommended to be combined to the mixing rule of Kay’s instead of that of 

Elsharkawy. The correlation slightly underestimates z factor. 

o If the Brill and Beggs correlation is to be implemented for the calculation of z 

factor then it is recommended to adopt the Elsharkawy mixing rule and not to 

apply the Wichert and Aziz correction. 

o If the Hall and Yarborough correlation is implemented for the calculation of z 

factor then the Kay’s mixing rule is suggested while the inclusion or not of the 

Wichert and Aziz correction does not affect accuracy. 

o If the Shell Oil Company is to be implemented, the use of Elsharkawy mixing 

rule is recommended and the combination to the Wichert and Aziz correction 

is not. 

o Databases containing experimental z factor data need to be subjected to 

detailed screening and quality control in order to be utilized for comparison of 

z factor calculation methods. Errors during the experimental process are 

common and lead to data corruption. 

o The application range of each z factor computational method should be 

reviewed and respected in order to ensure accurate and reliable predictions as 

well as fair performance comparisons. 

o There are numerous other z factor calculation methods (e.g. SVM, neural 

networks) which were not evaluated by the present work. 
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APPENDIX  

Matlab code: 

clear all 

clc 

format short e 

 

% Composition which sums at unity 

z_i_11 = importdata('Composition.txt')       ; 

z_i_1  = z_i_11.data                         ; 

% Molecular Weight 

MW1 = importdata('MolecularWeight.txt')      ; 

MW  = MW1.data                               ; 

% Molecular Weight of the Heavy End 

MW_heavyend1 = importdata('MW_HeavyEnd.txt') ; 

MW_heavyend  = MW_heavyend1.data             ; 

% Density STO 

Dens_STO1 = importdata('DensitySTO.txt')     ; 

Dens_STO  = Dens_STO1.data                   ; 

% Specific Gravity 

SG = (1/1000) * Dens_STO                     ; 

 

% Constants for the Calculation of Boiling Temperature (Tb) 

a_bp = 6.77857     ; 

b_bp = 0.401673    ; 

c_bp = -1.58262    ; 

d_bp = 0.00377409  ; 

e_bp = 2.984036    ; 

f_bp = -0.00425288 ; 

% Boiling Temperature (Tb) 

% Preallocation for Speed 

Tb_R = zeros(1,size(z_i_1,1)); 

 

for i = 1 : size(z_i_1,1) 

  Tb_R(i) = a_bp * (MW_heavyend(i)^b_bp) * (SG(i)^c_bp) * 

exp(d_bp*MW_heavyend(i)+e_bp*SG(i)+f_bp*MW_heavyend(i) * SG(i)) ; 

end 

 

% Lab Measurements 

Plab_psia1 = importdata('PressureSteps.txt')   ; 

Plab_psia  = Plab_psia1.data                   ; 

Tlab_R1    = importdata('ResTemperatures.txt') ; 
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Tlab_R     = Tlab_R1.data                      ; 

 

% Critical Properties: non-HCs & HCs from C1 to C11 (Katz Table) 

Tc_i    = [227.16 547.38 671.76 342.72 549.72 665.64 734.76 765.36 828.72

 845.46 923.04 984.96 1036.08 1085.04 1128.06 1166.04 ] ; 

Pc_i    = [492 1070 1297 667 708 616 529 551 492 489 483 453 419

 383 351 325 ] ; 

% Critical Properties: Heavy End 

% Preallocation for Speed 

Tcp            = zeros(1,size(z_i_1,1)) ; 

a_Twu          = zeros(1,size(z_i_1,1)) ; 

gama_P         = zeros(1,size(z_i_1,1)) ; 

delta_gama_T   = zeros(1,size(z_i_1,1)) ; 

ef_T           = zeros(1,size(z_i_1,1)) ; 

Tc_heavyend    = zeros(1,size(z_i_1,1)) ; 

delta_gama_P   = zeros(1,size(z_i_1,1)) ; 

ef_P           = zeros(1,size(z_i_1,1)) ; 

Pcp            = zeros(1,size(z_i_1,1)) ; 

delta_gama_V   = zeros(1,size(z_i_1,1)) ; 

ef_V           = zeros(1,size(z_i_1,1)) ; 

Vcp            = zeros(1,size(z_i_1,1)) ; 

Vcr            = zeros(1,size(z_i_1,1)) ; 

Pc_heavyend    = zeros(1,size(z_i_1,1)) ; 

T_pc_Kays      = zeros(1,size(z_i_1,1)) ; 

P_pc_Kays      = zeros(1,size(z_i_1,1)) ; 

epsilon        = zeros(1,size(z_i_1,1)) ; 

T_pc_Wichert   = zeros(1,size(z_i_1,1)) ; 

P_pc_Wichert   = zeros(1,size(z_i_1,1)) ; 

 

T_pr           = zeros(1,size(z_i_1,1)) ; 

P_pr           = zeros(size(Plab_psia)) ; 

 

A              = zeros(size(P_pr)) ; 

B              = zeros(size(P_pr)) ; 

C              = zeros(size(P_pr)) ; 

D              = zeros(size(P_pr)) ; 

E              = zeros(size(P_pr)) ; 

 

z_factor       = zeros(size(P_pr)) ; 

 

for i = 1 : size(z_i_1,1) 

    % Critical Temperature of the Heavy End (Twu correlation) 

Tcp(i)          = Tb_R(i)*(0.533272 + (0.191017 * 0.001) * Tb_R(i) + (0.779681 * 

0.0000001)*(Tb_R(i)^2) -(0.284376 * 0.0000000001)*(Tb_R(i)^3) + 0.959468*100 /((0.01 * 

Tb_R(i))^13))^-1 ; 

a_Twu(i)        = 1 - (Tb_R(i) / Tcp(i)) ; 

gama_P(i)       = 0.843593 - 0.128624 * a_Twu(i) - 3.36159 * (a_Twu(i)^3) - 13749.5 * 

(a_Twu(i)^12) ; 

delta_gama_T(i) = exp(5*(gama_P(i) - SG(i))) - 1 ; 

ef_T(i)         = delta_gama_T(i) * (-0.362456 / (Tb_R(i)^0.5) + (0.0398285 - 0.948125 / 

(Tb_R(i)^0.5)) * delta_gama_T(i) ) ; 

Tc_heavyend(i)  = Tcp(i) * ((1 + 2 * ef_T(i)) / (1 - 2 * ef_T(i)))^2 ; 

    % Critical Pressure of the Heavy End (Twu correlation) 
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delta_gama_P(i) = exp(0.5*(gama_P(i) - SG(i)))-1 ; 

ef_P(i)         = delta_gama_P(i) * ((2.53262 - 46.1955 / ((Tb_R(i))^0.5) -0.00127885 * 

Tb_R(i)) + (-11.4277 + (252.14 / (Tb_R(i))^0.5) + 0.00230535*Tb_R(i))*delta_gama_P(i)) ; 

Pcp(i)          = (3.83354 + 1.19629 * (a_Twu(i)^0.5) + 34.8888 * a_Twu(i) + 36.1952 * 

(a_Twu(i)^2) +104.193 * (a_Twu(i)^4))^2 ; 

delta_gama_V(i) = exp(4*(gama_P(i)^2 - SG(i)^2)) - 1 ; 

ef_V(i)         = delta_gama_V(i) * ((0.46659 / (Tb_R(i)^0.5)) + (-0.182421 + 

3.01721/(Tb_R(i)^0.5)) * delta_gama_V(i)) ; 

Vcp(i)          = (1 - (0.419869 - 0.505839 * a_Twu(i) - 1.56436 * (a_Twu(i))^3 - 9481.7 

* (a_Twu(i))^14)) ^(-8) ; 

Vcr(i)          = Vcp(i) * ((1 + 2 * ef_V(i)) / (1 - 2 * ef_V(i)))^2 ; 

Pc_heavyend(i)  = (Pcp(i) *(Tc_heavyend(i) / Tcp(i))  *(Vcp(i) / Vcr(i))*((1 + 2 * 

ef_P(i))/(1 - 2 * ef_P(i)))^2) ; 

 

% Pseudo-criticals (Kay's mixing rule) 

T_pc_Kays(i)    = z_i_1(i,[1:size(z_i_1,2)-1]) * transpose(Tc_i) + 

z_i_1(i,size(z_i_1,2))* Tc_heavyend(i) ; % Rankine 

P_pc_Kays(i)    = z_i_1(i,[1:size(z_i_1,2)-1]) * transpose(Pc_i) + 

z_i_1(i,size(z_i_1,2))* Pc_heavyend(i) ; % psia 

 

% Wichert & Aziz Correction 

epsilon(i)      = 120 * ((z_i_1(i,2) + z_i_1(i,3))^0.9-(z_i_1(i,2) + z_i_1(i,3))^1.6 + 

15*((z_i_1(i,3))*0.5-(z_i_1(i,3))^4)) ; 

T_pc_Wichert(i) = T_pc_Kays(i) - epsilon(i) ; 

P_pc_Wichert(i) = (P_pc_Kays(i) * T_pc_Wichert(i)) / (T_pc_Kays(i) + z_i_1(i,3) * (1 - 

z_i_1(i,3)) * epsilon(i)) ; 

 

% Pseudo-reduced Properties 

T_pr(i) = Tlab_R(i) ./ T_pc_Wichert(i)      ; 

 

for j = 1 : size(Plab_psia,2) 

    P_pr(i,j) = Plab_psia(i,j) / P_pc_Wichert(i) ; 

 

 

% Azizi, Behbahani, Isadebeh Correlation for z factor calculation 

% Parameters 

a_ABI = 0.0373142485385592  ; 

b_ABI = -0.0140807151485369 ; 

c_ABI = 0.0163263245387186  ; 

d_ABI = -0.0307776478819813 ; 

e_ABI = 13843575480.9438    ; 

f_ABI = -16799138540.7637   ; 

g_ABI = 1624178942.64976    ; 

h_ABI = 13702270281.0869    ; 

i_ABI = -41645509.8964746   ; 

j_ABI = 237249967625.013    ; 

k_ABI = -24449114791.1531   ; 

l_ABI = 19357955749.3274    ; 

m_ABI = -126354717916.607   ; 

n_ABI = 623705678.385784    ; 

o_ABI = 17997651104.333     ; 

p_ABI = 151211393445.064    ; 

q_ABI = 139474437997.172    ; 
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r_ABI = -24233012984.095    ; 

s_ABI = 18938047327.5205    ; 

t_ABI = -141401620722.689   ; 

 

A(i,j) = a_ABI * (T_pr(i)^2.16) + b_ABI * (P_pr(i,j)^1.028) + c_ABI * (P_pr(i,j)^1.58) * 

(T_pr(i)^-2.1) + d_ABI * log(T_pr(i))^-0.5 ; 

B(i,j) = e_ABI + f_ABI * (T_pr(i)^2.4) + g_ABI * (P_pr(i,j)^1.56) + h_ABI * 

(P_pr(i,j)^0.124) * (T_pr(i)^3.033) ; 

C(i,j) = i_ABI * log(T_pr(i))^(-1.28) + j_ABI * log(T_pr(i))^(1.37) + k_ABI * 

log(P_pr(i,j)) + l_ABI * log(P_pr(i,j))^2 + m_ABI * log(P_pr(i,j)) * log(T_pr(i)) ; 

D(i,j) = 1 + n_ABI * (T_pr(i)^5.55) + o_ABI * (P_pr(i,j)^0.68) * (T_pr(i)^0.33) ; 

E(i,j) = p_ABI * log(T_pr(i))^1.18 + q_ABI * log(T_pr(i))^2.1 + r_ABI * log(P_pr(i,j)) + 

s_ABI * log(P_pr(i,j))^2 + t_ABI * log(P_pr(i,j)) * log(T_pr(i)) ; 

 

z_factor(i,j) = A(i,j) + ((B(i,j) + C(i,j))/(D(i,j) + E(i,j))) ; 

end 

end 

 

 

% Cell 

h={'Pmin' 'step1'  'step2' 'step3' 'step4' 'step5' 'step6' 'step7' 'step8' 'step9' 

'Pmax'} ; 

% Add pressure steps labels 

z_factor_Table = [h;num2cell(z_factor)] ; 

Published with MATLAB® R2017a 

clear all 

clc 

format short e 

 

% Composition which sums at unity 

z_i_11 = importdata('Composition.txt')       ; 

z_i_1  = z_i_11.data                         ; 

% Molecular Weight 

MW1 = importdata('MolecularWeight.txt')      ; 

MW  = MW1.data                               ; 

% Molecular Weight of the Heavy End 

MW_heavyend1 = importdata('MW_HeavyEnd.txt') ; 

MW_heavyend  = MW_heavyend1.data             ; 

% Density STO 

Dens_STO1 = importdata('DensitySTO.txt')     ; 

Dens_STO  = Dens_STO1.data                   ; 

% Specific Gravity 

SG = (1/1000) * Dens_STO                     ; 

 

% Constants for the Calculation of Boiling Temperature (Tb) 

a_bp = 6.77857     ; 

b_bp = 0.401673    ; 

c_bp = -1.58262    ; 

d_bp = 0.00377409  ; 

http://www.mathworks.com/products/matlab
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e_bp = 2.984036    ; 

f_bp = -0.00425288 ; 

% Boiling Temperature (Tb) 

% Preallocation for Speed 

Tb_R = zeros(1,size(z_i_1,1)); 

 

for i = 1 : size(z_i_1,1) 

  Tb_R(i) = a_bp * (MW_heavyend(i)^b_bp) * (SG(i)^c_bp) * 

exp(d_bp*MW_heavyend(i)+e_bp*SG(i)+f_bp*MW_heavyend(i) * SG(i)) ; 

end 

 

% Lab Measurements 

Plab_psia1 = importdata('PressureSteps.txt')   ; 

Plab_psia  = Plab_psia1.data                   ; 

Tlab_R1    = importdata('ResTemperatures.txt') ; 

Tlab_R     = Tlab_R1.data                      ; 

 

% Critical Properties: non-HCs & HCs from C1 to C11 (Katz Table) 

Tc_i    = [227.16 547.38 671.76 342.72 549.72 665.64 734.76 765.36 828.72

 845.46 923.04 984.96 1036.08 1085.04 1128.06 1166.04 ] ; 

Pc_i    = [492 1070 1297 667 708 616 529 551 492 489 483 453 419

 383 351 325 ] ; 

% Critical Properties: Heavy End 

% Preallocation for Speed 

Tcp            = zeros(1,size(z_i_1,1))   ; 

a_Twu          = zeros(1,size(z_i_1,1))   ; 

gama_P         = zeros(1,size(z_i_1,1))   ; 

delta_gama_T   = zeros(1,size(z_i_1,1))   ; 

ef_T           = zeros(1,size(z_i_1,1))   ; 

Tc_heavyend    = zeros(1,size(z_i_1,1))   ; 

delta_gama_P   = zeros(1,size(z_i_1,1))   ; 

ef_P           = zeros(1,size(z_i_1,1))   ; 

Pcp            = zeros(1,size(z_i_1,1))   ; 

delta_gama_V   = zeros(1,size(z_i_1,1))   ; 

ef_V           = zeros(1,size(z_i_1,1))   ; 

Vcp            = zeros(1,size(z_i_1,1))   ; 

Vcr            = zeros(1,size(z_i_1,1))   ; 

Pc_heavyend    = zeros(1,size(z_i_1,1))   ; 

T_pc_Kays      = zeros(1,size(z_i_1,1))   ; 

P_pc_Kays      = zeros(1,size(z_i_1,1))   ; 

epsilon        = zeros(1,size(z_i_1,1))   ; 

T_pc_Wichert   = zeros(1,size(z_i_1,1))   ; 

P_pc_Wichert   = zeros(1,size(z_i_1,1))   ; 

 

T_pr           = zeros(1,size(z_i_1,1))   ; 

P_pr           = zeros(size(Plab_psia))   ; 

 

A              = zeros(size(P_pr))        ; 

B              = zeros(size(Plab_psia))   ; 

C              = zeros(size(P_pr))        ; 

D              = zeros(size(P_pr))        ; 

 

z_factor       = zeros(size(P_pr))        ; 
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for i = 1 : size(z_i_1,1) 

    % Critical Temperature of the Heavy End (Twu correlation) 

Tcp(i)          = Tb_R(i)*(0.533272 + (0.191017 * 0.001) * Tb_R(i) + (0.779681 * 

0.0000001)*(Tb_R(i)^2) -(0.284376 * 0.0000000001)*(Tb_R(i)^3) + 0.959468*100 /((0.01 * 

Tb_R(i))^13))^-1 ; 

a_Twu(i)        = 1 - (Tb_R(i) / Tcp(i)) ; 

gama_P(i)       = 0.843593 - 0.128624 * a_Twu(i) - 3.36159 * (a_Twu(i)^3) - 13749.5 * 

(a_Twu(i)^12) ; 

delta_gama_T(i) = exp(5*(gama_P(i) - SG(i))) - 1 ; 

ef_T(i)         = delta_gama_T(i) * (-0.362456 / (Tb_R(i)^0.5) + (0.0398285 - 0.948125 / 

(Tb_R(i)^0.5)) * delta_gama_T(i) ) ; 

Tc_heavyend(i)  = Tcp(i) * ((1 + 2 * ef_T(i)) / (1 - 2 * ef_T(i)))^2 ; 

    % Critical Pressure of the Heavy End (Twu correlation) 

delta_gama_P(i) = exp(0.5*(gama_P(i) - SG(i)))-1 ; 

ef_P(i)         = delta_gama_P(i) * ((2.53262 - 46.1955 / ((Tb_R(i))^0.5) -0.00127885 * 

Tb_R(i)) + (-11.4277 + (252.14 / (Tb_R(i))^0.5) + 0.00230535*Tb_R(i))*delta_gama_P(i)) ; 

Pcp(i)          = (3.83354 + 1.19629 * (a_Twu(i)^0.5) + 34.8888 * a_Twu(i) + 36.1952 * 

(a_Twu(i)^2) +104.193 * (a_Twu(i)^4))^2 ; 

delta_gama_V(i) = exp(4*(gama_P(i)^2 - SG(i)^2)) - 1 ; 

ef_V(i)         = delta_gama_V(i) * ((0.46659 / (Tb_R(i)^0.5)) + (-0.182421 + 

3.01721/(Tb_R(i)^0.5)) * delta_gama_V(i)) ; 

Vcp(i)          = (1 - (0.419869 - 0.505839 * a_Twu(i) - 1.56436 * (a_Twu(i))^3 - 9481.7 

* (a_Twu(i))^14)) ^(-8) ; 

Vcr(i)          = Vcp(i) * ((1 + 2 * ef_V(i)) / (1 - 2 * ef_V(i)))^2 ; 

Pc_heavyend(i)  = (Pcp(i) *(Tc_heavyend(i) / Tcp(i))  *(Vcp(i) / Vcr(i))*((1 + 2 * 

ef_P(i))/(1 - 2 * ef_P(i)))^2) ; 

 

% Pseudo-criticals (Kay's mixing rule) 

T_pc_Kays(i)    = z_i_1(i,[1:size(z_i_1,2)-1]) * transpose(Tc_i) + 

z_i_1(i,size(z_i_1,2))* Tc_heavyend(i) ; % Rankine 

P_pc_Kays(i)    = z_i_1(i,[1:size(z_i_1,2)-1]) * transpose(Pc_i) + 

z_i_1(i,size(z_i_1,2))* Pc_heavyend(i) ; % psia 

 

% Wichert & Aziz Correction 

epsilon(i)      = 120 * ((z_i_1(i,2) + z_i_1(i,3))^0.9-(z_i_1(i,2) + z_i_1(i,3))^1.6 + 

15*((z_i_1(i,3))*0.5-(z_i_1(i,3))^4)) ; 

T_pc_Wichert(i) = T_pc_Kays(i) - epsilon(i) ; 

P_pc_Wichert(i) = (P_pc_Kays(i) * T_pc_Wichert(i)) / (T_pc_Kays(i) + z_i_1(i,3) * (1 - 

z_i_1(i,3)) * epsilon(i)) ; 

 

% Pseudo-reduced Properties 

T_pr(i) = Tlab_R(i) ./ T_pc_Wichert(i)      ; 

 

% Brill and Beggs Correlation for z factor calculation 

A(i)   = 1.39 * ((T_pr(i) - 0.92)^(0.5)) - 0.36 * T_pr(i) -0.101 ; 

C(i)   = 0.132 - 0.32 * log10(T_pr(i)) ; 

D(i)   = 10^(0.3106 - 0.49 * T_pr(i) + 0.1824 * T_pr(i)^2) ; 

 

for j = 1 : size(Plab_psia,2) 

    P_pr(i,j) = Plab_psia(i,j) / P_pc_Wichert(i) ; 

 

B(i,j) = (0.62 - 0.23 * T_pr(i)) * P_pr(i,j) + ((0.066 / (T_pr(i) - 0.86)) - 0.037) * 
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(P_pr(i,j)^2) + (0.32 / (10000000000 * (T_pr(i)-1))) * (P_pr(i,j)^6) ; 

 

z_factor(i,j) = A(i) + (1 - A(i)) * exp(-B(i,j)) + C(i) * P_pr(i,j)^D(i) ; 

end 

end 

 

 

% Cell 

h={'Pmin' 'step1'  'step2' 'step3' 'step4' 'step5' 'step6' 'step7' 'step8' 'step9' 

'Pmax'} ; 

% Add pressure steps labels 

z_factor_Table = [h;num2cell(z_factor)] ; 

Published with MATLAB® R2017a 

clear all 

clc 

format short e 

 

% Composition which sums at unity 

z_i_11 = importdata('Composition.txt')       ; 

z_i_1  = z_i_11.data                         ; 

% Molecular Weight 

MW1 = importdata('MolecularWeight.txt')      ; 

MW  = MW1.data                               ; 

% Molecular Weight of the Heavy End 

MW_heavyend1 = importdata('MW_HeavyEnd.txt') ; 

MW_heavyend  = MW_heavyend1.data             ; 

% Density STO 

Dens_STO1 = importdata('DensitySTO.txt')     ; 

Dens_STO  = Dens_STO1.data                   ; 

% Specific Gravity 

SG = (1/1000) * Dens_STO                     ; 

 

% Constants for the Calculation of Boiling Temperature (Tb) 

a_bp = 6.77857     ; 

b_bp = 0.401673    ; 

c_bp = -1.58262    ; 

d_bp = 0.00377409  ; 

e_bp = 2.984036    ; 

f_bp = -0.00425288 ; 

% Boiling Temperature (Tb) 

% Preallocation for Speed 

Tb_R = zeros(1,size(z_i_1,1)); 

 

for i = 1 : size(z_i_1,1) 

  Tb_R(i) = a_bp * (MW_heavyend(i)^b_bp) * (SG(i)^c_bp) * 

exp(d_bp*MW_heavyend(i)+e_bp*SG(i)+f_bp*MW_heavyend(i) * SG(i)) ; 

end 

 

% Lab Measurements 

http://www.mathworks.com/products/matlab
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Plab_psia1 = importdata('PressureSteps.txt')   ; 

Plab_psia  = Plab_psia1.data                   ; 

Tlab_R1    = importdata('ResTemperatures.txt') ; 

Tlab_R     = Tlab_R1.data                      ; 

 

% Critical Properties: non-HCs & HCs from C1 to C11 (Katz Table) 

Tc_i    = [227.16 547.38 671.76 342.72 549.72 665.64 734.76 765.36 828.72

 845.46 923.04 984.96 1036.08 1085.04 1128.06 1166.04 ] ; 

Pc_i    = [492 1070 1297 667 708 616 529 551 492 489 483 453 419

 383 351 325 ]                                                         ; 

% Critical Properties: Heavy End 

% Preallocation for Speed 

Tcp            = zeros(1,size(z_i_1,1)) ; 

a_Twu          = zeros(1,size(z_i_1,1)) ; 

gama_P         = zeros(1,size(z_i_1,1)) ; 

delta_gama_T   = zeros(1,size(z_i_1,1)) ; 

ef_T           = zeros(1,size(z_i_1,1)) ; 

Tc_heavyend    = zeros(1,size(z_i_1,1)) ; 

delta_gama_P   = zeros(1,size(z_i_1,1)) ; 

ef_P           = zeros(1,size(z_i_1,1)) ; 

Pcp            = zeros(1,size(z_i_1,1)) ; 

delta_gama_V   = zeros(1,size(z_i_1,1)) ; 

ef_V           = zeros(1,size(z_i_1,1)) ; 

Vcp            = zeros(1,size(z_i_1,1)) ; 

Vcr            = zeros(1,size(z_i_1,1)) ; 

Pc_heavyend    = zeros(1,size(z_i_1,1)) ; 

T_pc_Kays      = zeros(1,size(z_i_1,1)) ; 

P_pc_Kays      = zeros(1,size(z_i_1,1)) ; 

epsilon        = zeros(1,size(z_i_1,1)) ; 

T_pc_Wichert   = zeros(1,size(z_i_1,1)) ; 

P_pc_Wichert   = zeros(1,size(z_i_1,1)) ; 

 

T_pr           = zeros(1,size(z_i_1,1)) ; 

P_pr           = zeros(size(Plab_psia))    ; 

 

t_HY           = zeros(1,size(z_i_1,1)) ; 

a_HY           = zeros(1,size(z_i_1,1)) ; 

 

maxIter = 10 ; 

 

F              = zeros(size(P_pr,1),size(P_pr,2),maxIter) ; 

F_prime        = zeros(size(P_pr,1),size(P_pr,2),maxIter) ; 

z_factor       = zeros(size(P_pr))                        ; 

 

% Loop of Fluids 

for i = 1 : size(z_i_1,1) 

    % Critical Temperature of the Heavy End (Twu correlation) 

Tcp(i)          = Tb_R(i)*(0.533272 + (0.191017 * 0.001) * Tb_R(i) + (0.779681 * 

0.0000001)*(Tb_R(i)^2) -(0.284376 * 0.0000000001)*(Tb_R(i)^3) + 0.959468*100 /((0.01 * 

Tb_R(i))^13))^-1 ; 

a_Twu(i)        = 1 - (Tb_R(i) / Tcp(i)) ; 

gama_P(i)       = 0.843593 - 0.128624 * a_Twu(i) - 3.36159 * (a_Twu(i)^3) - 13749.5 * 

(a_Twu(i)^12) ; 
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delta_gama_T(i) = exp(5*(gama_P(i) - SG(i))) - 1 ; 

ef_T(i)         = delta_gama_T(i) * (-0.362456 / (Tb_R(i)^0.5) + (0.0398285 - 0.948125 / 

(Tb_R(i)^0.5)) * delta_gama_T(i) ) ; 

Tc_heavyend(i)  = Tcp(i) * ((1 + 2 * ef_T(i)) / (1 - 2 * ef_T(i)))^2 ; 

    % Critical Pressure of the Heavy End (Twu correlation) 

delta_gama_P(i) = exp(0.5*(gama_P(i) - SG(i)))-1 ; 

ef_P(i)         = delta_gama_P(i) * ((2.53262 - 46.1955 / ((Tb_R(i))^0.5) -0.00127885 * 

Tb_R(i)) + (-11.4277 + (252.14 / (Tb_R(i))^0.5) + 0.00230535*Tb_R(i))*delta_gama_P(i)) ; 

Pcp(i)          = (3.83354 + 1.19629 * (a_Twu(i)^0.5) + 34.8888 * a_Twu(i) + 36.1952 * 

(a_Twu(i)^2) +104.193 * (a_Twu(i)^4))^2 ; 

delta_gama_V(i) = exp(4*(gama_P(i)^2 - SG(i)^2)) - 1 ; 

ef_V(i)         = delta_gama_V(i) * ((0.46659 / (Tb_R(i)^0.5)) + (-0.182421 + 

3.01721/(Tb_R(i)^0.5)) * delta_gama_V(i)) ; 

Vcp(i)          = (1 - (0.419869 - 0.505839 * a_Twu(i) - 1.56436 * (a_Twu(i))^3 - 9481.7 

* (a_Twu(i))^14)) ^(-8) ; 

Vcr(i)          = Vcp(i) * ((1 + 2 * ef_V(i)) / (1 - 2 * ef_V(i)))^2 ; 

Pc_heavyend(i)  = (Pcp(i) *(Tc_heavyend(i) / Tcp(i))  *(Vcp(i) / Vcr(i))*((1 + 2 * 

ef_P(i))/(1 - 2 * ef_P(i)))^2) ; 

 

% Pseudo-criticals (Kay's mixing rule) 

T_pc_Kays(i)    = z_i_1(i,[1:size(z_i_1,2)-1]) * transpose(Tc_i) + 

z_i_1(i,size(z_i_1,2))* Tc_heavyend(i) ; % Rankine 

P_pc_Kays(i)    = z_i_1(i,[1:size(z_i_1,2)-1]) * transpose(Pc_i) + 

z_i_1(i,size(z_i_1,2))* Pc_heavyend(i) ; % psia 

 

% Wichert & Aziz Correction 

epsilon(i)      = 120 * ((z_i_1(i,2) + z_i_1(i,3))^0.9-(z_i_1(i,2) + z_i_1(i,3))^1.6 + 

15*((z_i_1(i,3))*0.5-(z_i_1(i,3))^4)) ; 

T_pc_Wichert(i) = T_pc_Kays(i) - epsilon(i) ; 

P_pc_Wichert(i) = (P_pc_Kays(i) * T_pc_Wichert(i)) / (T_pc_Kays(i) + z_i_1(i,3) * (1 - 

z_i_1(i,3)) * epsilon(i)) ; 

 

% Pseudo-reduced Properties 

T_pr(i) = Tlab_R(i) ./ T_pc_Wichert(i)      ; 

 

% Hall and Yarborough Correlation for z factor calculation 

% Parameters 

t_HY(i) = 1 / T_pr(i) ; 

a_HY(i) = 0.06125 * t_HY(i) * exp(-1.2 * (1-t_HY(i))^2) ; 

 

% Loop of Pressure-steps 

for j = 1 : size(Plab_psia,2) 

    P_pr(i,j) = Plab_psia(i,j) / P_pc_Wichert(i) ; 

 

y0 = 0.001 ; 

y_est = y0 ; 

y_old = y0 ; 

 

% Loop of NR 

for k = 1 : maxIter 

    F(i,j,k)       = - a_HY(i) * P_pr(i,j) + ((y_est + y_est^2 + y_est^3 - y_est^4) / 

((1-y_est)^3)) - (14.76 * t_HY(i) - 9.76 * t_HY(i)^2 + 4.58 * t_HY(i)^3) * (y_est^2) + 

(90.7 * t_HY(i) - 242.2 * t_HY(i)^2 + 42.4 * t_HY(i)^3) * (y_est^(2.18 + 2.82 * 
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t_HY(i))) ; 

    F_prime(i,j,k) = ((1 + 4 * y_est + 4 * y_est^2 - 4 * y_est^3 + y_est^4)/(1 - 

y_est)^4) - (29.52 * t_HY(i) - 19.52 * t_HY(i)^2 + 9.16 * t_HY(i)^3) * y_est + (2.18 + 

2.82 * t_HY(i)) * (90.7 * t_HY(i) - 242.2 * t_HY(i)^2 + 42.4 * t_HY(i)^3) * (y_est^(1.18 

+ 2.82 * t_HY(i))) ; 

 

    y_est = y_est - F(i,j,k) / F_prime(i,j,k) ; 

    y_old = y_est                             ; 

end 

 

z_factor(i,j) = (a_HY(i) * P_pr(i,j)) / y_est ; 

 

end 

end 

 

% Cell 

h={'Pmin' 'step1'  'step2' 'step3' 'step4' 'step5' 'step6' 'step7' 'step8' 'step9' 

'Pmax'} ; 

% Add pressure steps labels 

z_factor_Table = [h;num2cell(z_factor)] ; 

Published with MATLAB® R2017a 

clear all 

clc 

format short e 

 

% Composition which sums at unity 

z_i_11 = importdata('Composition.txt')       ; 

z_i_1  = z_i_11.data                         ; 

% Molecular Weight 

MW1 = importdata('MolecularWeight.txt')      ; 

MW  = MW1.data                               ; 

% Molecular Weight of the Heavy End 

MW_heavyend1 = importdata('MW_HeavyEnd.txt') ; 

MW_heavyend  = MW_heavyend1.data             ; 

% Density STO 

Dens_STO1 = importdata('DensitySTO.txt')     ; 

Dens_STO  = Dens_STO1.data                   ; 

% Specific Gravity 

SG = (1/1000) * Dens_STO                     ; 

 

% Constants for the Calculation of Boiling Temperature (Tb) 

a_bp = 6.77857     ; 

b_bp = 0.401673    ; 

c_bp = -1.58262    ; 

d_bp = 0.00377409  ; 

e_bp = 2.984036    ; 

f_bp = -0.00425288 ; 

% Boiling Temperature (Tb) 

% Preallocation for Speed 

http://www.mathworks.com/products/matlab
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Tb_R = zeros(1,size(z_i_1,1)); 

 

for i = 1 : size(z_i_1,1) 

  Tb_R(i) = a_bp * (MW_heavyend(i)^b_bp) * (SG(i)^c_bp) * 

exp(d_bp*MW_heavyend(i)+e_bp*SG(i)+f_bp*MW_heavyend(i) * SG(i)) ; 

end 

 

% Lab Measurements 

Plab_psia1 = importdata('PressureSteps.txt')   ; 

Plab_psia  = Plab_psia1.data                   ; 

Tlab_R1    = importdata('ResTemperatures.txt') ; 

Tlab_R     = Tlab_R1.data                      ; 

 

% Critical Properties: non-HCs & HCs from C1 to C11 (Katz Table) 

Tc_i    = [227.16 547.38 671.76 342.72 549.72 665.64 734.76 765.36 828.72

 845.46 923.04 984.96 1036.08 1085.04 1128.06 1166.04 ] ; 

Pc_i    = [492 1070 1297 667 708 616 529 551 492 489 483 453 419

 383 351 325 ] ; 

% Critical Properties: Heavy End 

% Preallocation for Speed 

Tcp            = zeros(1,size(z_i_1,1)) ; 

a_Twu          = zeros(1,size(z_i_1,1)) ; 

gama_P         = zeros(1,size(z_i_1,1)) ; 

delta_gama_T   = zeros(1,size(z_i_1,1)) ; 

ef_T           = zeros(1,size(z_i_1,1)) ; 

Tc_heavyend    = zeros(1,size(z_i_1,1)) ; 

delta_gama_P   = zeros(1,size(z_i_1,1)) ; 

ef_P           = zeros(1,size(z_i_1,1)) ; 

Pcp            = zeros(1,size(z_i_1,1)) ; 

delta_gama_V   = zeros(1,size(z_i_1,1)) ; 

ef_V           = zeros(1,size(z_i_1,1)) ; 

Vcp            = zeros(1,size(z_i_1,1)) ; 

Vcr            = zeros(1,size(z_i_1,1)) ; 

Pc_heavyend    = zeros(1,size(z_i_1,1)) ; 

T_pc_Kays      = zeros(1,size(z_i_1,1)) ; 

P_pc_Kays      = zeros(1,size(z_i_1,1)) ; 

epsilon        = zeros(1,size(z_i_1,1)) ; 

T_pc_Wichert   = zeros(1,size(z_i_1,1)) ; 

P_pc_Wichert   = zeros(1,size(z_i_1,1)) ; 

 

T_pr           = zeros(1,size(z_i_1,1)) ; 

P_pr           = zeros(size(Plab_psia))    ; 

 

nom            = zeros(size(P_pr))        ; 

denom          = zeros(size(P_pr))        ; 

 

z_factor       = zeros(size(P_pr))        ; 

 

for i = 1 : size(z_i_1,1) 

    % Critical Temperature of the Heavy End (Twu correlation) 

Tcp(i)          = Tb_R(i)*(0.533272 + (0.191017 * 0.001) * Tb_R(i) + (0.779681 * 

0.0000001)*(Tb_R(i)^2) -(0.284376 * 0.0000000001)*(Tb_R(i)^3) + 0.959468*100 /((0.01 * 

Tb_R(i))^13))^-1 ; 
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a_Twu(i)        = 1 - (Tb_R(i) / Tcp(i)) ; 

gama_P(i)       = 0.843593 - 0.128624 * a_Twu(i) - 3.36159 * (a_Twu(i)^3) - 13749.5 * 

(a_Twu(i)^12) ; 

delta_gama_T(i) = exp(5*(gama_P(i) - SG(i))) - 1 ; 

ef_T(i)         = delta_gama_T(i) * (-0.362456 / (Tb_R(i)^0.5) + (0.0398285 - 0.948125 / 

(Tb_R(i)^0.5)) * delta_gama_T(i) ) ; 

Tc_heavyend(i)  = Tcp(i) * ((1 + 2 * ef_T(i)) / (1 - 2 * ef_T(i)))^2 ; 

    % Critical Pressure of the Heavy End (Twu correlation) 

delta_gama_P(i) = exp(0.5*(gama_P(i) - SG(i)))-1 ; 

ef_P(i)         = delta_gama_P(i) * ((2.53262 - 46.1955 / ((Tb_R(i))^0.5) -0.00127885 * 

Tb_R(i)) + (-11.4277 + (252.14 / (Tb_R(i))^0.5) + 0.00230535*Tb_R(i))*delta_gama_P(i)) ; 

Pcp(i)          = (3.83354 + 1.19629 * (a_Twu(i)^0.5) + 34.8888 * a_Twu(i) + 36.1952 * 

(a_Twu(i)^2) +104.193 * (a_Twu(i)^4))^2 ; 

delta_gama_V(i) = exp(4*(gama_P(i)^2 - SG(i)^2)) - 1 ; 

ef_V(i)         = delta_gama_V(i) * ((0.46659 / (Tb_R(i)^0.5)) + (-0.182421 + 

3.01721/(Tb_R(i)^0.5)) * delta_gama_V(i)) ; 

Vcp(i)          = (1 - (0.419869 - 0.505839 * a_Twu(i) - 1.56436 * (a_Twu(i))^3 - 9481.7 

* (a_Twu(i))^14)) ^(-8) ; 

Vcr(i)          = Vcp(i) * ((1 + 2 * ef_V(i)) / (1 - 2 * ef_V(i)))^2 ; 

Pc_heavyend(i)  = (Pcp(i) *(Tc_heavyend(i) / Tcp(i))  *(Vcp(i) / Vcr(i))*((1 + 2 * 

ef_P(i))/(1 - 2 * ef_P(i)))^2) ; 

 

% Pseudo-criticals (Kay's mixing rule) 

T_pc_Kays(i)    = z_i_1(i,[1:size(z_i_1,2)-1]) * transpose(Tc_i) + 

z_i_1(i,size(z_i_1,2))* Tc_heavyend(i) ; % Rankine 

P_pc_Kays(i)    = z_i_1(i,[1:size(z_i_1,2)-1]) * transpose(Pc_i) + 

z_i_1(i,size(z_i_1,2))* Pc_heavyend(i) ; % psia 

 

% Wichert & Aziz Correction 

epsilon(i)      = 120 * ((z_i_1(i,2) + z_i_1(i,3))^0.9-(z_i_1(i,2) + z_i_1(i,3))^1.6 + 

15*((z_i_1(i,3))*0.5-(z_i_1(i,3))^4)) ; 

T_pc_Wichert(i) = T_pc_Kays(i) - epsilon(i) ; 

P_pc_Wichert(i) = (P_pc_Kays(i) * T_pc_Wichert(i)) / (T_pc_Kays(i) + z_i_1(i,3) * (1 - 

z_i_1(i,3)) * epsilon(i)) ; 

 

% Pseudo-reduced Properties 

T_pr(i) = Tlab_R(i) ./ T_pc_Wichert(i)      ; 

 

% Heydaryan et al Correlation for z factor calculation 

% Parameters 

A1_heid  = 3.252838    ; 

A2_heid  = -0.1306424  ; 

A3_heid  = -0.6449194  ; 

A4_heid  = -1.518028   ; 

A5_heid  = -5.391019   ; 

A6_heid  = -0.01379588 ; 

A7_heid  = 0.06600633  ; 

A8_heid  = 0.6120783   ; 

A9_heid  = 2.317431    ; 

A10_heid = 0.1632223   ; 

A11_heid = 0.5660595   ; 

 

for j = 1 : size(Plab_psia,2) 
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    P_pr(i,j) = Plab_psia(i,j) / P_pc_Wichert(i) ; 

 

nom(i,j)   = A1_heid + A3_heid * log(P_pr(i,j)) + (A5_heid / T_pr(i)) + A7_heid * 

(log(P_pr(i,j)))^2 + (A9_heid / T_pr(i)^2) + (A11_heid / T_pr(i)) * log(P_pr(i,j)) ; 

denom(i,j) = 1 + A2_heid * log(P_pr(i,j)) + (A4_heid / T_pr(i)) + A6_heid * 

(log(P_pr(i,j)))^2 + (A8_heid / T_pr(i)^2) + (A10_heid / T_pr(i)) * log(P_pr(i,j)) ; 

 

z_factor(i,j) = log(nom(i,j) / denom(i,j)) ; 

end 

end 

 

% Cell 

h={'Pmin' 'step1'  'step2' 'step3' 'step4' 'step5' 'step6' 'step7' 'step8' 'step9' 

'Pmax'} ; 

% Add pressure steps labels 

z_factor_Table = [h;num2cell(z_factor)]                                                    

; 

Published with MATLAB® R2017a 

clear all 

clc 

format short e 

 

% Composition which sums at unity 

z_i_11 = importdata('Composition.txt')       ; 

z_i_1  = z_i_11.data                         ; 

% Molecular Weight 

MW1 = importdata('MolecularWeight.txt')      ; 

MW  = MW1.data                               ; 

% Molecular Weight of the Heavy End 

MW_heavyend1 = importdata('MW_HeavyEnd.txt') ; 

MW_heavyend  = MW_heavyend1.data             ; 

% Density STO 

Dens_STO1 = importdata('DensitySTO.txt')     ; 

Dens_STO  = Dens_STO1.data                   ; 

% Specific Gravity 

SG = (1/1000) * Dens_STO                     ; 

 

% Constants for the Calculation of Boiling Temperature (Tb) 

a_bp = 6.77857     ; 

b_bp = 0.401673    ; 

c_bp = -1.58262    ; 

d_bp = 0.00377409  ; 

e_bp = 2.984036    ; 

f_bp = -0.00425288 ; 

% Boiling Temperature (Tb) 

% Preallocation for Speed 

Tb_R = zeros(1,size(z_i_1,1)); 

 

for i = 1 : size(z_i_1,1) 

http://www.mathworks.com/products/matlab
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  Tb_R(i) = a_bp * (MW_heavyend(i)^b_bp) * (SG(i)^c_bp) * 

exp(d_bp*MW_heavyend(i)+e_bp*SG(i)+f_bp*MW_heavyend(i) * SG(i)) ; 

end 

 

% Lab Measurements 

Plab_psia1 = importdata('PressureSteps.txt')   ; 

Plab_psia  = Plab_psia1.data                   ; 

Tlab_R1    = importdata('ResTemperatures.txt') ; 

Tlab_R     = Tlab_R1.data                      ; 

 

% Critical Properties: non-HCs & HCs from C1 to C11 (Katz Table) 

Tc_i    = [227.16 547.38 671.76 342.72 549.72 665.64 734.76 765.36 828.72

 845.46 923.04 984.96 1036.08 1085.04 1128.06 1166.04 ] ; 

Pc_i    = [492 1070 1297 667 708 616 529 551 492 489 483 453 419

 383 351 325 ] ; 

% Critical Properties: Heavy End 

% Preallocation for Speed 

Tcp            = zeros(1,size(z_i_1,1)) ; 

a_Twu          = zeros(1,size(z_i_1,1)) ; 

gama_P         = zeros(1,size(z_i_1,1)) ; 

delta_gama_T   = zeros(1,size(z_i_1,1)) ; 

ef_T           = zeros(1,size(z_i_1,1)) ; 

Tc_heavyend    = zeros(1,size(z_i_1,1)) ; 

delta_gama_P   = zeros(1,size(z_i_1,1)) ; 

ef_P           = zeros(1,size(z_i_1,1)) ; 

Pcp            = zeros(1,size(z_i_1,1)) ; 

delta_gama_V   = zeros(1,size(z_i_1,1)) ; 

ef_V           = zeros(1,size(z_i_1,1)) ; 

Vcp            = zeros(1,size(z_i_1,1)) ; 

Vcr            = zeros(1,size(z_i_1,1)) ; 

Pc_heavyend    = zeros(1,size(z_i_1,1)) ; 

T_pc_Kays      = zeros(1,size(z_i_1,1)) ; 

P_pc_Kays      = zeros(1,size(z_i_1,1)) ; 

epsilon        = zeros(1,size(z_i_1,1)) ; 

T_pc_Wichert   = zeros(1,size(z_i_1,1)) ; 

P_pc_Wichert   = zeros(1,size(z_i_1,1)) ; 

 

T_pr           = zeros(1,size(z_i_1,1)) ; 

P_pr           = zeros(size(Plab_psia))    ; 

 

ZA              = zeros(size(P_pr))        ; 

ZB              = zeros(size(P_pr))        ; 

ZC              = zeros(size(P_pr))        ; 

ZD              = zeros(size(P_pr))        ; 

ZE              = zeros(size(P_pr))        ; 

ZF              = zeros(size(P_pr))        ; 

ZG              = zeros(size(Plab_psia))    ; 

 

z_factor       = zeros(size(P_pr))        ; 

 

for i = 1 : size(z_i_1,1) 

    % Critical Temperature of the Heavy End (Twu correlation) 

Tcp(i)          = Tb_R(i)*(0.533272 + (0.191017 * 0.001) * Tb_R(i) + (0.779681 * 



 

108 

0.0000001)*(Tb_R(i)^2) -(0.284376 * 0.0000000001)*(Tb_R(i)^3) + 0.959468*100 /((0.01 * 

Tb_R(i))^13))^-1 ; 

a_Twu(i)        = 1 - (Tb_R(i) / Tcp(i)) ; 

gama_P(i)       = 0.843593 - 0.128624 * a_Twu(i) - 3.36159 * (a_Twu(i)^3) - 13749.5 * 

(a_Twu(i)^12) ; 

delta_gama_T(i) = exp(5*(gama_P(i) - SG(i))) - 1 ; 

ef_T(i)         = delta_gama_T(i) * (-0.362456 / (Tb_R(i)^0.5) + (0.0398285 - 0.948125 / 

(Tb_R(i)^0.5)) * delta_gama_T(i) ) ; 

Tc_heavyend(i)  = Tcp(i) * ((1 + 2 * ef_T(i)) / (1 - 2 * ef_T(i)))^2 ; 

    % Critical Pressure of the Heavy End (Twu correlation) 

delta_gama_P(i) = exp(0.5*(gama_P(i) - SG(i)))-1 ; 

ef_P(i)         = delta_gama_P(i) * ((2.53262 - 46.1955 / ((Tb_R(i))^0.5) -0.00127885 * 

Tb_R(i)) + (-11.4277 + (252.14 / (Tb_R(i))^0.5) + 0.00230535*Tb_R(i))*delta_gama_P(i)) ; 

Pcp(i)          = (3.83354 + 1.19629 * (a_Twu(i)^0.5) + 34.8888 * a_Twu(i) + 36.1952 * 

(a_Twu(i)^2) +104.193 * (a_Twu(i)^4))^2 ; 

delta_gama_V(i) = exp(4*(gama_P(i)^2 - SG(i)^2)) - 1 ; 

ef_V(i)         = delta_gama_V(i) * ((0.46659 / (Tb_R(i)^0.5)) + (-0.182421 + 

3.01721/(Tb_R(i)^0.5)) * delta_gama_V(i)) ; 

Vcp(i)          = (1 - (0.419869 - 0.505839 * a_Twu(i) - 1.56436 * (a_Twu(i))^3 - 9481.7 

* (a_Twu(i))^14)) ^(-8) ; 

Vcr(i)          = Vcp(i) * ((1 + 2 * ef_V(i)) / (1 - 2 * ef_V(i)))^2 ; 

Pc_heavyend(i)  = (Pcp(i) *(Tc_heavyend(i) / Tcp(i))  *(Vcp(i) / Vcr(i))*((1 + 2 * 

ef_P(i))/(1 - 2 * ef_P(i)))^2) ; 

 

% Pseudo-criticals (Kay's mixing rule) 

T_pc_Kays(i)    = z_i_1(i,[1:size(z_i_1,2)-1]) * transpose(Tc_i) + 

z_i_1(i,size(z_i_1,2))* Tc_heavyend(i) ; % Rankine 

P_pc_Kays(i)    = z_i_1(i,[1:size(z_i_1,2)-1]) * transpose(Pc_i) + 

z_i_1(i,size(z_i_1,2))* Pc_heavyend(i) ; % psia 

 

% Wichert & Aziz Correction 

epsilon(i)      = 120 * ((z_i_1(i,2) + z_i_1(i,3))^0.9-(z_i_1(i,2) + z_i_1(i,3))^1.6 + 

15*((z_i_1(i,3))*0.5-(z_i_1(i,3))^4)) ; 

T_pc_Wichert(i) = T_pc_Kays(i) - epsilon(i) ; 

P_pc_Wichert(i) = (P_pc_Kays(i) * T_pc_Wichert(i)) / (T_pc_Kays(i) + z_i_1(i,3) * (1 - 

z_i_1(i,3)) * epsilon(i)) ; 

 

% Pseudo-reduced Properties 

T_pr(i) = Tlab_R(i) ./ T_pc_Wichert(i)      ; 

 

% Brill and Beggs Correlation for z factor calculation 

ZA(i)   = -0.101 - 0.36 * T_pr(i) + 1.3868 * (T_pr(i) - 0.919)^(0.5) ; 

ZB(i)   = 0.021 + (0.04275) / (T_pr(i) - 0.65) ; 

ZC(i)   = 0.6222 - 0.224 * T_pr(i) ; 

ZD(i)   = (0.0657) / (T_pr(i) - 0.86) - 0.037 ; 

ZE(i)   = 0.32 * exp(-19.53 * (T_pr(i) -1)) ; 

ZF(i)   = 0.122 * exp(-11.3 * (T_pr(i) - 1)) ; 

 

for j = 1 : size(Plab_psia,2) 

    P_pr(i,j) = Plab_psia(i,j) / P_pc_Wichert(i) ; 

 

ZG(i,j) = P_pr(i,j) * (ZC(i) + ZD(i) * P_pr(i,j) + ZE(i) * P_pr(i,j)^4) ; 
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z_factor(i,j) = ZA(i) + ZB(i) * P_pr(i,j) + (1-ZA(i)) * exp(-ZG(i,j)) - ZF(i) * 

(P_pr(i,j) / 10)^4 ; 

end 

end 

 

% Cell 

h={'Pmin' 'step1'  'step2' 'step3' 'step4' 'step5' 'step6' 'step7' 'step8' 'step9' 

'Pmax'} ; 

% Add pressure steps labels 

z_factor_Table = [h;num2cell(z_factor)]                                                    

; 

Published with MATLAB® R2017a 

clear all 

clc 

format short e 

 

% Original Composition 

z1_100  = [0.10 2.95 0.00 72.18 4.03 4.78 1.44 2.38 1.10 0.99 1.28 2.68 2.13

 1.06 0.88 0.36 1.66] ; 

z2_100  = [0.01 3.44 0.00 66.95 4.64 5.14 1.59 2.43 1.18 1.08 1.66 2.27 2.91

 1.47 0.94 0.59 3.70] ; 

z3_100  = [0.33 2.86 0.00 66.49 9.33 5.76 0.82 3.30 1.13 1.64 1.64 2.25 1.75

 0.90 0.58 0.33 0.89] ; 

% z4_100  = [] ; 

% z5_100  = [] ; 

% z6_100  = [] ; 

% z7_100  = [] ; 

% z8_100  = [] ; 

% z9_100  = [] ; 

% z10_100 = [] ; 

% z11_100 = [] ; 

% z12_100 = [] ; 

% z13_100 = [] ; 

% z14_100 = [] ; 

% z15_100 = [] ; 

% z16_100 = [] ; 

% z17_100 = [] ; 

z_i_100 = [z1_100 ; z2_100 ; z3_100] ; 

% Composition which sums at unity 

z_i_1   = (1/100) * z_i_100 ; 

 

% Molecular Weight 

MW = [32.72491 

    39.62491 

    31.4358] ; 

% Molecular Weight of the Heavy End 

MW_heavyend = [224.318 

    241.5318 

    215.44] ; 

http://www.mathworks.com/products/matlab
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% Density STO 

Dens_STO = [784.421 

    796 

    757.7] ; 

% Specific Gravity 

SG = (1/1000) * Dens_STO ; 

 

% Constants for the Calculation of Boiling Temperature (Tb) 

a_bp = 6.77857     ; 

b_bp = 0.401673    ; 

c_bp = -1.58262    ; 

d_bp = 0.00377409  ; 

e_bp = 2.984036    ; 

f_bp = -0.00425288 ; 

% Boiling Temperature (Tb) 

% Preallocation for Speed 

Tb_R = zeros(1,size(z_i_100,1)); 

 

for i = 1 : size(z_i_100,1) 

  Tb_R(i) = a_bp * (MW_heavyend(i)^b_bp) * (SG(i)^c_bp) * 

exp(d_bp*MW_heavyend(i)+e_bp*SG(i)+f_bp*MW_heavyend(i) * SG(i)) ; 

end 

 

% Lab Measurements 

Plab_MPa_z1 = [38.1 38.3 38.5 38.7 39.0 39.2 39.4 39.6 39.8 40.0 40.2 40.4

 40.6 40.8 41.0 41.2 41.4 41.6 41.8 42.0 42.2 42.4 42.6 42.8 43.0 43.3

 43.5 43.7 43.9 44.1 44.3 44.5 44.7 44.9 45.1 45.3 45.5 45.7 45.9 46.1

 46.3 46.5 46.7 46.9 47.1 47.3 47.5 47.8 48.0 48.2 48.4] ; 

Plab_MPa_z2 = [37.3 37.6 37.8 38.0 38.2 38.4 38.7 38.9 39.1 39.3 39.5 39.8

 40.0 40.2 40.4 40.6 40.9 41.1 41.3 41.5 41.7 42.0 42.2 42.4 42.6 42.9

 43.1 43.3 43.5 43.7 44.0 44.2 44.4 44.6 44.8 45.1 45.3 45.5 45.7 45.9

 46.2 46.4 46.6 46.8 47.0 47.3 47.5 47.7 47.9 48.1 48.4] ; 

Plab_MPa_z3 = [26.7 26.8 27.0 27.2 27.3 27.5 27.6 27.8 27.9 28.1 28.2 28.4

 28.6 28.7 28.9 29.0 29.2 29.3 29.5 29.6 29.8 30.0 30.1 30.3 30.4 30.6

 30.7 30.9 31.0 31.2 31.4 31.5 31.7 31.8 32.0 32.1 32.3 32.4 32.6 32.8

 32.9 33.1 33.2 33.4 33.5 33.7 33.9 34.0 34.2 34.3 34.5] ; 

Plab_MPa    = [Plab_MPa_z1 ; Plab_MPa_z2 ; Plab_MPa_z3] ; 

Plab_psia   = 145.038 * Plab_MPa                        ; 

Tlab_K      = [403.65 408.55 377.594]                   ; 

Tlab_R      = 1.8 * Tlab_K                              ; 

 

zlab_z1 = [1.054621355 1.05754595 1.060476444 1.063412514 1.066353843 1.069300119

 1.072251032 1.075206278 1.078165555 1.081128566 1.084095019 1.087064625 1.090037099

 1.09301216 1.095989532 1.098968943 1.101950124 1.10493281 1.107916742 1.110901663

 1.11388732 1.116873465 1.119859854 1.122846247 1.125832406 1.1288181 1.1318031

 1.134787181 1.137770122 1.140751706 1.14373172 1.146709954 1.149686203 1.152660266

 1.155631942 1.15860104 1.161567366 1.164530735 1.167490962 1.170447867 1.173401274

 1.17635101 1.179296906 1.182238795 1.185176514 1.188109905 1.19103881 1.193963079

 1.19688256 1.199797109 1.202706582] ; 

zlab_z2 = [1.15318002 1.157699905 1.162199764 1.166681794 1.171148041 1.175600406

 1.180040663 1.184470468 1.188891373 1.193304829 1.197712201 1.20211477 1.206513744

 1.210910262 1.215305398 1.219700172 1.224095545 1.228492434 1.232891705 1.237294187

 1.241700667 1.246111895 1.25052859 1.254951438 1.259381097 1.263818198 1.268263348
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 1.272717129 1.277180102 1.281652808 1.28613577 1.290629492 1.295134464 1.299651158

 1.304180034 1.308721538 1.313276103 1.317844152 1.322426095 1.327022335 1.331633262

 1.33625926 1.340900704 1.345557962 1.350231393 1.35492135 1.359628182 1.364352231

 1.369093831 1.373853316 1.378631011] ; 

zlab_z3 = [0.857043692 0.859472731 0.861909917 0.864355154 0.866808346 0.869269402

 0.871738229 0.874214738 0.876698841 0.879190452 0.881689486 0.88419586 0.886709493

 0.889230303 0.891758213 0.894293145 0.896835022 0.899383771 0.901939317 0.90450159

 0.907070517 0.909646029 0.912228059 0.914816538 0.917411401 0.920012583 0.922620019

 0.925233648 0.927853407 0.930479236 0.933111076 0.935748867 0.938392552 0.941042074

 0.943697378 0.946358408 0.949025111 0.951697433 0.954375323 0.957058729 0.9597476

 0.962441887 0.965141541 0.967846513 0.970556757 0.973272225 0.975992872 0.978718652

 0.981449521 0.984185436 0.986926353] ; 

zlab    = [zlab_z1 ; zlab_z2 ; zlab_z3] ; 

 

% Critical Properties: non-HCs & HCs from C1 to C11 (Katz Table) 

Tc_i    = [227.16 547.38 671.76 342.72 549.72 665.64 734.76 765.36 828.72

 845.46 923.04 984.96 1036.08 1085.04 1128.06 1166.04 ] ; 

Pc_i    = [492 1070 1297 667 708 616 529 551 492 489 483 453 419

 383 351 325 ]                                                         ; 

% Critical Properties: Heavy End 

 

% Preallocation for Speed 

Tcp            = zeros(1,size(z_i_100,1)) ; 

a_Twu          = zeros(1,size(z_i_100,1)) ; 

gama_P         = zeros(1,size(z_i_100,1)) ; 

delta_gama_T   = zeros(1,size(z_i_100,1)) ; 

ef_T           = zeros(1,size(z_i_100,1)) ; 

Tc_heavyend    = zeros(1,size(z_i_100,1)) ; 

delta_gama_P   = zeros(1,size(z_i_100,1)) ; 

ef_P           = zeros(1,size(z_i_100,1)) ; 

Pcp            = zeros(1,size(z_i_100,1)) ; 

delta_gama_V   = zeros(1,size(z_i_100,1)) ; 

ef_V           = zeros(1,size(z_i_100,1)) ; 

Vcp            = zeros(1,size(z_i_100,1)) ; 

Vcr            = zeros(1,size(z_i_100,1)) ; 

Pc_heavyend    = zeros(1,size(z_i_100,1)) ; 

J_inf          = zeros(1,size(z_i_100,1)) ; 

K_inf          = zeros(1,size(z_i_100,1)) ; 

T_pc_Elshark   = zeros(1,size(z_i_100,1)) ; 

P_pc_Elshark   = zeros(1,size(z_i_100,1)) ; 

epsilon        = zeros(1,size(z_i_100,1)) ; 

T_pc_Wichert   = zeros(1,size(z_i_100,1)) ; 

P_pc_Wichert   = zeros(1,size(z_i_100,1)) ; 

T_pr           = zeros(1,size(z_i_100,1)) ; 

P_pr           = zeros(size(Plab_MPa))    ; 

A1             = zeros(1, size(T_pr,2))   ; 

A2             = zeros(1, size(T_pr,2))   ; 

A3             = zeros(1, size(T_pr,2))   ; 

 

maxIter = 100 ; 

 

rho_r          = zeros(size(P_pr,1),size(P_pr,2),maxIter) ; 

F              = zeros(size(P_pr,1),size(P_pr,2),maxIter) ; 
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F_prime        = zeros(size(P_pr,1),size(P_pr,2),maxIter) ; 

z_factor       = zeros(size(P_pr))                        ; 

 

% Elsharkawy Parameters 

a0 = 0.036983   ; 

a1 = 1.043902   ; 

a2 = 0.894942   ; 

a3 = 0.792231   ; 

a4 = 0.882295   ; 

a5 = 0.018637   ; 

b0 = -0.7765003 ; 

b1 = 1.0695317  ; 

b2 = 0.9850308  ; 

b3 = 0.8617653  ; 

b4 = 1.0127054  ; 

b5 = 0.4014645  ; 

 

% Loop of Fluids 

for i = 1 : size(z_i_100,1) 

    % Critical Temperature of the Heavy End (Twu correlation) 

Tcp(i)          = Tb_R(i)*(0.533272 + (0.191017 * 0.001) * Tb_R(i) + (0.779681 * 

0.0000001)*(Tb_R(i)^2) -(0.284376 * 0.0000000001)*(Tb_R(i)^3) + 0.959468*100 /((0.01 * 

Tb_R(i))^13))^-1 ; 

a_Twu(i)        = 1 - (Tb_R(i) / Tcp(i)) ; 

gama_P(i)       = 0.843593 - 0.128624 * a_Twu(i) - 3.36159 * (a_Twu(i)^3) - 13749.5 * 

(a_Twu(i)^12) ; 

delta_gama_T(i) = exp(5*(gama_P(i) - SG(i))) - 1 ; 

ef_T(i)         = delta_gama_T(i) * (-0.362456 / (Tb_R(i)^0.5) + (0.0398285 - 0.948125 / 

(Tb_R(i)^0.5)) * delta_gama_T(i) ) ; 

Tc_heavyend(i)  = Tcp(i) * ((1 + 2 * ef_T(i)) / (1 - 2 * ef_T(i)))^2 ; 

    % Critical Pressure of the Heavy End (Twu correlation) 

delta_gama_P(i) = exp(0.5*(gama_P(i) - SG(i)))-1 ; 

ef_P(i)         = delta_gama_P(i) * ((2.53262 - 46.1955 / ((Tb_R(i))^0.5) -0.00127885 * 

Tb_R(i)) + (-11.4277 + (252.14 / (Tb_R(i))^0.5) + 0.00230535*Tb_R(i))*delta_gama_P(i)) ; 

Pcp(i)          = (3.83354 + 1.19629 * (a_Twu(i)^0.5) + 34.8888 * a_Twu(i) + 36.1952 * 

(a_Twu(i)^2) +104.193 * (a_Twu(i)^4))^2 ; 

delta_gama_V(i) = exp(4*(gama_P(i)^2 - SG(i)^2)) - 1 ; 

ef_V(i)         = delta_gama_V(i) * ((0.46659 / (Tb_R(i)^0.5)) + (-0.182421 + 

3.01721/(Tb_R(i)^0.5)) * delta_gama_V(i)) ; 

Vcp(i)          = (1 - (0.419869 - 0.505839 * a_Twu(i) - 1.56436 * (a_Twu(i))^3 - 9481.7 

* (a_Twu(i))^14)) ^(-8) ; 

Vcr(i)          = Vcp(i) * ((1 + 2 * ef_V(i)) / (1 - 2 * ef_V(i)))^2 ; 

Pc_heavyend(i)  = (Pcp(i) *(Tc_heavyend(i) / Tcp(i))  *(Vcp(i) / Vcr(i))*((1 + 2 * 

ef_P(i))/(1 - 2 * ef_P(i)))^2) ; 

 

% Pseudo-criticals (Elsharkawy mixing rule) 

J_inf(i) = a0 + (a1*z_i_1(i,3)*Tc_i(1,3)/Pc_i(1,3)) + 

(a2*z_i_1(i,2)*Tc_i(1,2)/Pc_i(1,2)) + (a3*z_i_1(i,1)*Tc_i(1,1)/Pc_i(1,1)) + 

(a4*z_i_1(i,[4:size(z_i_100,2)-1])*transpose(Tc_i(1,[4:size(z_i_100,2)-

1])./Pc_i(1,[4:size(z_i_100,2)-1]))) + (a5*z_i_1(i,size(z_i_100,2))*MW_heavyend(i)) ; 

 

K_inf(i) = b0 + (b1*z_i_1(i,3)*Tc_i(1,3)/Pc_i(1,3).^0.5) + 

(b2*z_i_1(i,2)*Tc_i(1,2)/Pc_i(1,2).^0.5) + (b3*z_i_1(i,1)*Tc_i(1,1)/Pc_i(1,1).^0.5) + 
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(b4*z_i_1(i,[4:size(z_i_100,2)-1])*transpose(Tc_i(1,[4:size(z_i_100,2)-

1])./Pc_i(1,[4:size(z_i_100,2)-1]).^0.5)) + (b5*z_i_1(i,size(z_i_100,2))*MW_heavyend(i)) 

; 

T_pc_Elshark(i) = K_inf(i)^2 / J_inf(i)      ; % Rankine 

P_pc_Elshark(i) = T_pc_Elshark(i) / J_inf(i) ; % psia 

% Wichert & Aziz Correction 

epsilon(i)      = 120 * ((z_i_1(i,2) + z_i_1(i,3))^0.9-(z_i_1(i,2) + z_i_1(i,3))^1.6 + 

15*((z_i_1(i,3))*0.5-(z_i_1(i,3))^4)) ; 

T_pc_Wichert(i) = T_pc_Elshark(i) - epsilon(i) ; 

P_pc_Wichert(i) = (P_pc_Elshark(i) * T_pc_Wichert(i)) / (T_pc_Elshark(i) + z_i_1(i,3) * 

(1 - z_i_1(i,3)) * epsilon(i)) ; 

% Pseudo-reduced Properties 

T_pr(i) = Tlab_R(i) ./ T_pc_Wichert(i)      ; 

 

% Dranchuk and Abou-kassem Correlation for z factor calculation 

% Parameters 

C1  = 0.3265   ; 

C2  = -1.0700  ; 

C3  = -0.5339  ; 

C4  = 0.01569  ; 

C5  = -0.05165 ; 

C6  = 0.5475   ; 

C7  = -0.7361  ; 

C8  = 0.1844   ; 

C9  = 0.1056   ; 

C10 = 0.6134   ; 

C11 = 0.7210   ; 

 

A1(i) = C1 + C2/T_pr(i) + C3/T_pr(i)^3 + C4/T_pr(i)^4 + C5/T_pr(i)^5 ; 

A2(i) = C6 + C7/T_pr(i) + C8/T_pr(i)^2                               ; 

A3(i) = C9 * (C7/T_pr(i) + C8/T_pr(i)^2)                             ; 

 

% Loop of Pressure-steps 

for j = 1 : size(Plab_MPa,2) 

    P_pr(i,j) = Plab_psia(i,j) / P_pc_Wichert(i) ; 

 

z0    = 1  ; 

z_est = z0 ; 

z_old = z0 ; 

 

% Loop of NR 

for k = 1 : maxIter 

 

    rho_r(i,j,k)   = (0.27 * P_pr(i,j)) / (z_est * T_pr(i)) ; 

 

    F(i,j,k)       = A1(i)*rho_r(i,j,k) + A2(i)*rho_r(i,j,k)^2 - A3(i)*rho_r(i,j,k)^5 + 

C10*(1+C11*rho_r(i,j,k)^2)*(rho_r(i,j,k)^2/T_pr(i)^3)*3*exp(-C11*rho_r(i,j,k)^2)+1-z_est 

; 

 

    F_prime(i,j,k) = (14348907*A3(i)*P_pr(i,j)^5)/(2000000000*T_pr(i)^5*z_est^6) - 

(729*A2(i)*P_pr(i,j)^2)/(5000*T_pr(i)^2*z_est^3) - 

(27*A1(i)*P_pr(i,j))/(100*T_pr(i)*z_est^2) - (2187*C10*P_pr(i,j)^2*exp(-

(729*C11*P_pr(i,j)^2)/(10000*T_pr(i)^2*z_est^2))*((729*C11*P_pr(i,j)^2)/(10000*T_pr(i)^2
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*z_est^2) + 1))/(5000*T_pr(i)^5*z_est^3) - (1594323*C10*C11*P_pr(i,j)^4*exp(-

(729*C11*P_pr(i,j)^2)/(10000*T_pr(i)^2*z_est^2)))/(50000000*T_pr(i)^7*z_est^5) + 

(1594323*C10*C11*P_pr(i,j)^4*exp(-

(729*C11*P_pr(i,j)^2)/(10000*T_pr(i)^2*z_est^2))*((729*C11*P_pr(i,j)^2)/(10000*T_pr(i)^2

*z_est^2) + 1))/(50000000*T_pr(i)^7*z_est^5) - 1 ; 

 

    z_est = z_est - F(i,j,k) / F_prime(i,j,k) ; 

    z_old = z_est                             ; 

 

end 

 

z_factor(i,j) = z_est ; 

 

end 

end 

Published with MATLAB® R2017a 

clear all 

clc 

format short e 

 

% Original Composition 

z1_100  = [0.10 2.95 0.00 72.18 4.03 4.78 1.44 2.38 1.10 0.99 1.28 2.68 2.13

 1.06 0.88 0.36 1.66] ; 

z2_100  = [0.01 3.44 0.00 66.95 4.64 5.14 1.59 2.43 1.18 1.08 1.66 2.27 2.91

 1.47 0.94 0.59 3.70] ; 

z3_100  = [0.33 2.86 0.00 66.49 9.33 5.76 0.82 3.30 1.13 1.64 1.64 2.25 1.75

 0.90 0.58 0.33 0.89] ; 

% z4_100  = [] ; 

% z5_100  = [] ; 

% z6_100  = [] ; 

% z7_100  = [] ; 

% z8_100  = [] ; 

% z9_100  = [] ; 

% z10_100 = [] ; 

% z11_100 = [] ; 

% z12_100 = [] ; 

% z13_100 = [] ; 

% z14_100 = [] ; 

% z15_100 = [] ; 

% z16_100 = [] ; 

% z17_100 = [] ; 

z_i_100 = [z1_100 ; z2_100 ; z3_100] ; 

% Composition which sums at unity 

z_i_1   = (1/100) * z_i_100 ; 

 

% Molecular Weight 

MW = [32.72491 

    39.62491 

    31.4358] ; 

http://www.mathworks.com/products/matlab
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% Molecular Weight of the Heavy End 

MW_heavyend = [224.318 

    241.5318 

    215.44] ; 

% Density STO 

Dens_STO = [784.421 

    796 

    757.7] ; 

% Specific Gravity 

SG = (1/1000) * Dens_STO ; 

 

% Constants for the Calculation of Boiling Temperature (Tb) 

a_bp = 6.77857     ; 

b_bp = 0.401673    ; 

c_bp = -1.58262    ; 

d_bp = 0.00377409  ; 

e_bp = 2.984036    ; 

f_bp = -0.00425288 ; 

% Boiling Temperature (Tb) 

% Preallocation for Speed 

Tb_R = zeros(1,size(z_i_100,1)); 

 

for i = 1 : size(z_i_100,1) 

  Tb_R(i) = a_bp * (MW_heavyend(i)^b_bp) * (SG(i)^c_bp) * 

exp(d_bp*MW_heavyend(i)+e_bp*SG(i)+f_bp*MW_heavyend(i) * SG(i)) ; 

end 

 

% Lab Measurements 

Plab_MPa_z1 = [38.1 38.3 38.5 38.7 39.0 39.2 39.4 39.6 39.8 40.0 40.2 40.4

 40.6 40.8 41.0 41.2 41.4 41.6 41.8 42.0 42.2 42.4 42.6 42.8 43.0 43.3

 43.5 43.7 43.9 44.1 44.3 44.5 44.7 44.9 45.1 45.3 45.5 45.7 45.9 46.1

 46.3 46.5 46.7 46.9 47.1 47.3 47.5 47.8 48.0 48.2 48.4] ; 

Plab_MPa_z2 = [37.3 37.6 37.8 38.0 38.2 38.4 38.7 38.9 39.1 39.3 39.5 39.8

 40.0 40.2 40.4 40.6 40.9 41.1 41.3 41.5 41.7 42.0 42.2 42.4 42.6 42.9

 43.1 43.3 43.5 43.7 44.0 44.2 44.4 44.6 44.8 45.1 45.3 45.5 45.7 45.9

 46.2 46.4 46.6 46.8 47.0 47.3 47.5 47.7 47.9 48.1 48.4] ; 

Plab_MPa_z3 = [26.7 26.8 27.0 27.2 27.3 27.5 27.6 27.8 27.9 28.1 28.2 28.4

 28.6 28.7 28.9 29.0 29.2 29.3 29.5 29.6 29.8 30.0 30.1 30.3 30.4 30.6

 30.7 30.9 31.0 31.2 31.4 31.5 31.7 31.8 32.0 32.1 32.3 32.4 32.6 32.8

 32.9 33.1 33.2 33.4 33.5 33.7 33.9 34.0 34.2 34.3 34.5] ; 

Plab_MPa    = [Plab_MPa_z1 ; Plab_MPa_z2 ; Plab_MPa_z3] ; 

Plab_psia   = 145.038 * Plab_MPa                        ; 

Tlab_K      = [403.65 408.55 377.594]                   ; 

Tlab_R      = 1.8 * Tlab_K                              ; 

 

zlab_z1 = [1.054621355 1.05754595 1.060476444 1.063412514 1.066353843 1.069300119

 1.072251032 1.075206278 1.078165555 1.081128566 1.084095019 1.087064625 1.090037099

 1.09301216 1.095989532 1.098968943 1.101950124 1.10493281 1.107916742 1.110901663

 1.11388732 1.116873465 1.119859854 1.122846247 1.125832406 1.1288181 1.1318031

 1.134787181 1.137770122 1.140751706 1.14373172 1.146709954 1.149686203 1.152660266

 1.155631942 1.15860104 1.161567366 1.164530735 1.167490962 1.170447867 1.173401274

 1.17635101 1.179296906 1.182238795 1.185176514 1.188109905 1.19103881 1.193963079

 1.19688256 1.199797109 1.202706582] ; 



 

116 

zlab_z2 = [1.15318002 1.157699905 1.162199764 1.166681794 1.171148041 1.175600406

 1.180040663 1.184470468 1.188891373 1.193304829 1.197712201 1.20211477 1.206513744

 1.210910262 1.215305398 1.219700172 1.224095545 1.228492434 1.232891705 1.237294187

 1.241700667 1.246111895 1.25052859 1.254951438 1.259381097 1.263818198 1.268263348

 1.272717129 1.277180102 1.281652808 1.28613577 1.290629492 1.295134464 1.299651158

 1.304180034 1.308721538 1.313276103 1.317844152 1.322426095 1.327022335 1.331633262

 1.33625926 1.340900704 1.345557962 1.350231393 1.35492135 1.359628182 1.364352231

 1.369093831 1.373853316 1.378631011] ; 

zlab_z3 = [0.857043692 0.859472731 0.861909917 0.864355154 0.866808346 0.869269402

 0.871738229 0.874214738 0.876698841 0.879190452 0.881689486 0.88419586 0.886709493

 0.889230303 0.891758213 0.894293145 0.896835022 0.899383771 0.901939317 0.90450159

 0.907070517 0.909646029 0.912228059 0.914816538 0.917411401 0.920012583 0.922620019

 0.925233648 0.927853407 0.930479236 0.933111076 0.935748867 0.938392552 0.941042074

 0.943697378 0.946358408 0.949025111 0.951697433 0.954375323 0.957058729 0.9597476

 0.962441887 0.965141541 0.967846513 0.970556757 0.973272225 0.975992872 0.978718652

 0.981449521 0.984185436 0.986926353] ; 

zlab    = [zlab_z1 ; zlab_z2 ; zlab_z3] ; 

 

% Critical Properties: non-HCs & HCs from C1 to C11 (Katz Table) 

Tc_i    = [227.16 547.38 671.76 342.72 549.72 665.64 734.76 765.36 828.72

 845.46 923.04 984.96 1036.08 1085.04 1128.06 1166.04 ] ; 

Pc_i    = [492 1070 1297 667 708 616 529 551 492 489 483 453 419

 383 351 325 ]                                                         ; 

% Critical Properties: Heavy End 

% Preallocation for Speed 

Tcp            = zeros(1,size(z_i_100,1)) ; 

a_Twu          = zeros(1,size(z_i_100,1)) ; 

gama_P         = zeros(1,size(z_i_100,1)) ; 

delta_gama_T   = zeros(1,size(z_i_100,1)) ; 

ef_T           = zeros(1,size(z_i_100,1)) ; 

Tc_heavyend    = zeros(1,size(z_i_100,1)) ; 

delta_gama_P   = zeros(1,size(z_i_100,1)) ; 

ef_P           = zeros(1,size(z_i_100,1)) ; 

Pcp            = zeros(1,size(z_i_100,1)) ; 

delta_gama_V   = zeros(1,size(z_i_100,1)) ; 

ef_V           = zeros(1,size(z_i_100,1)) ; 

Vcp            = zeros(1,size(z_i_100,1)) ; 

Vcr            = zeros(1,size(z_i_100,1)) ; 

Pc_heavyend    = zeros(1,size(z_i_100,1)) ; 

T_pc_Kays      = zeros(1,size(z_i_100,1)) ; 

P_pc_Kays      = zeros(1,size(z_i_100,1)) ; 

epsilon        = zeros(1,size(z_i_100,1)) ; 

T_pc_Wichert   = zeros(1,size(z_i_100,1)) ; 

P_pc_Wichert   = zeros(1,size(z_i_100,1)) ; 

 

T_pr           = zeros(1,size(z_i_100,1)) ; 

P_pr           = zeros(size(Plab_MPa))    ; 

 

A1             = zeros(1, size(T_pr,2))   ; 

A2             = zeros(1, size(T_pr,2))   ; 

A3             = zeros(1, size(T_pr,2))   ; 

 

maxIter = 100 ; 
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rho_r          = zeros(size(P_pr,1),size(P_pr,2),maxIter) ; 

F              = zeros(size(P_pr,1),size(P_pr,2),maxIter) ; 

F_prime        = zeros(size(P_pr,1),size(P_pr,2),maxIter) ; 

z_factor       = zeros(size(P_pr))                        ; 

 

% Loop of Fluids 

for i = 1 : size(z_i_100,1) 

    % Critical Temperature of the Heavy End (Twu correlation) 

Tcp(i)          = Tb_R(i)*(0.533272 + (0.191017 * 0.001) * Tb_R(i) + (0.779681 * 

0.0000001)*(Tb_R(i)^2) -(0.284376 * 0.0000000001)*(Tb_R(i)^3) + 0.959468*100 /((0.01 * 

Tb_R(i))^13))^-1 ; 

a_Twu(i)        = 1 - (Tb_R(i) / Tcp(i)) ; 

gama_P(i)       = 0.843593 - 0.128624 * a_Twu(i) - 3.36159 * (a_Twu(i)^3) - 13749.5 * 

(a_Twu(i)^12) ; 

delta_gama_T(i) = exp(5*(gama_P(i) - SG(i))) - 1 ; 

ef_T(i)         = delta_gama_T(i) * (-0.362456 / (Tb_R(i)^0.5) + (0.0398285 - 0.948125 / 

(Tb_R(i)^0.5)) * delta_gama_T(i) ) ; 

Tc_heavyend(i)  = Tcp(i) * ((1 + 2 * ef_T(i)) / (1 - 2 * ef_T(i)))^2 ; 

    % Critical Pressure of the Heavy End (Twu correlation) 

delta_gama_P(i) = exp(0.5*(gama_P(i) - SG(i)))-1 ; 

ef_P(i)         = delta_gama_P(i) * ((2.53262 - 46.1955 / ((Tb_R(i))^0.5) -0.00127885 * 

Tb_R(i)) + (-11.4277 + (252.14 / (Tb_R(i))^0.5) + 0.00230535*Tb_R(i))*delta_gama_P(i)) ; 

Pcp(i)          = (3.83354 + 1.19629 * (a_Twu(i)^0.5) + 34.8888 * a_Twu(i) + 36.1952 * 

(a_Twu(i)^2) +104.193 * (a_Twu(i)^4))^2 ; 

delta_gama_V(i) = exp(4*(gama_P(i)^2 - SG(i)^2)) - 1 ; 

ef_V(i)         = delta_gama_V(i) * ((0.46659 / (Tb_R(i)^0.5)) + (-0.182421 + 

3.01721/(Tb_R(i)^0.5)) * delta_gama_V(i)) ; 

Vcp(i)          = (1 - (0.419869 - 0.505839 * a_Twu(i) - 1.56436 * (a_Twu(i))^3 - 9481.7 

* (a_Twu(i))^14)) ^(-8) ; 

Vcr(i)          = Vcp(i) * ((1 + 2 * ef_V(i)) / (1 - 2 * ef_V(i)))^2 ; 

Pc_heavyend(i)  = (Pcp(i) *(Tc_heavyend(i) / Tcp(i))  *(Vcp(i) / Vcr(i))*((1 + 2 * 

ef_P(i))/(1 - 2 * ef_P(i)))^2) ; 

 

% Pseudo-criticals (Kay's mixing rule) 

T_pc_Kays(i)    = z_i_1(i,[1:size(z_i_100,2)-1]) * transpose(Tc_i) + 

z_i_1(i,size(z_i_100,2))* Tc_heavyend(i) ; % Rankine 

P_pc_Kays(i)    = z_i_1(i,[1:size(z_i_100,2)-1]) * transpose(Pc_i) + 

z_i_1(i,size(z_i_100,2))* Pc_heavyend(i) ; % psia 

 

% Wichert & Aziz Correction 

epsilon(i)      = 120 * ((z_i_1(i,2) + z_i_1(i,3))^0.9-(z_i_1(i,2) + z_i_1(i,3))^1.6 + 

15*((z_i_1(i,3))*0.5-(z_i_1(i,3))^4)) ; 

T_pc_Wichert(i) = T_pc_Kays(i) - epsilon(i) ; 

P_pc_Wichert(i) = (P_pc_Kays(i) * T_pc_Wichert(i)) / (T_pc_Kays(i) + z_i_1(i,3) * (1 - 

z_i_1(i,3)) * epsilon(i)) ; 

 

% Pseudo-reduced Properties 

T_pr(i) = Tlab_R(i) ./ T_pc_Wichert(i)      ; 

 

% Dranchuk and Abou-kassem Correlation for z factor calculation 

% Parameters 

C1  = 0.3265   ; 
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C2  = -1.0700  ; 

C3  = -0.5339  ; 

C4  = 0.01569  ; 

C5  = -0.05165 ; 

C6  = 0.5475   ; 

C7  = -0.7361  ; 

C8  = 0.1844   ; 

C9  = 0.1056   ; 

C10 = 0.6134   ; 

C11 = 0.7210   ; 

 

A1(i) = C1 + C2/T_pr(i) + C3/T_pr(i)^3 + C4/T_pr(i)^4 + C5/T_pr(i)^5 ; 

A2(i) = C6 + C7/T_pr(i) + C8/T_pr(i)^2                               ; 

A3(i) = C9 * (C7/T_pr(i) + C8/T_pr(i)^2)                             ; 

 

% Loop of Pressure-steps 

for j = 1 : size(Plab_MPa,2) 

    P_pr(i,j) = Plab_psia(i,j) / P_pc_Wichert(i) ; 

 

z0    = 1  ; 

z_est = z0 ; 

z_old = z0 ; 

 

% Loop of NR 

for k = 1 : maxIter 

 

    rho_r(i,j,k)   = (0.27 * P_pr(i,j)) / (z_est * T_pr(i)) ; 

 

    F(i,j,k)       = A1(i)*rho_r(i,j,k) + A2(i)*rho_r(i,j,k)^2 - A3(i)*rho_r(i,j,k)^5 + 

C10*(1+C11*rho_r(i,j,k)^2)*(rho_r(i,j,k)^2/T_pr(i)^3)*3*exp(-C11*rho_r(i,j,k)^2)+1-z_est 

; 

 

    F_prime(i,j,k) = (14348907*A3(i)*P_pr(i,j)^5)/(2000000000*T_pr(i)^5*z_est^6) - 

(729*A2(i)*P_pr(i,j)^2)/(5000*T_pr(i)^2*z_est^3) - 

(27*A1(i)*P_pr(i,j))/(100*T_pr(i)*z_est^2) - (2187*C10*P_pr(i,j)^2*exp(-

(729*C11*P_pr(i,j)^2)/(10000*T_pr(i)^2*z_est^2))*((729*C11*P_pr(i,j)^2)/(10000*T_pr(i)^2

*z_est^2) + 1))/(5000*T_pr(i)^5*z_est^3) - (1594323*C10*C11*P_pr(i,j)^4*exp(-

(729*C11*P_pr(i,j)^2)/(10000*T_pr(i)^2*z_est^2)))/(50000000*T_pr(i)^7*z_est^5) + 

(1594323*C10*C11*P_pr(i,j)^4*exp(-

(729*C11*P_pr(i,j)^2)/(10000*T_pr(i)^2*z_est^2))*((729*C11*P_pr(i,j)^2)/(10000*T_pr(i)^2

*z_est^2) + 1))/(50000000*T_pr(i)^7*z_est^5) - 1 ; 

 

    z_est = z_est - F(i,j,k) / F_prime(i,j,k) ; 

    z_old = z_est                             ; 

 

end 

 

z_factor(i,j) = z_est ; 

 

end 

end 

Published with MATLAB® R2017a 

http://www.mathworks.com/products/matlab
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