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Abstract. During the past decade the 3D unstructured grids have become an important tool
for radiative heat transfer simulations, extending their applications to even more complex en-
closures. Nevertheless, the corresponding solvers appear to be inferior in terms of efficiency,
compared to those for structured meshes. One remedy to this shortcoming appears to be the
agglomeration multigrid method, based on the solution of the numerical problem on succes-
sively coarser spatial and angular resolutions, derived from the initial finest ones through the
fusion of their neighbouring control volumes and control angles respectively. Considering
this state, the enhancement of an in-house academic solver with different spatial/angular ag-
glomeration multigrid schemes to accelerate the finite-volume method for the prediction of
radiative heat transfer, is reported in this study. The incorporated multigrid methods are
based on the relaxation of radiative transfer equation with the FAS approach, considering
though different types of sequentially coarser spatial and angular resolutions, as well as dif-
ferent V-cycle types. More specifically, a nested, a uniform and an alternate scheme were de-
veloped, while they were examined in conjunction with the V(1,0), V(1,1), V(2,0) and V(2,1)
V-cycles types. To further accelerate the numerical solution, a combined FMG-FAS strategy
was included, according to which the whole procedure begins from the coarsest discretization
(spatial and angular) and as the number of iterations is increased the FAS extends to the finer
resolutions, up to the initial finest one. The proposed numerical schemes were validated
against a benchmark test case, considering radiative heat transfer through a strongly scatter-
ing medium in a cubic enclosure with highly reflecting surfaces. The obtained results reveal
the superiority of the nested scheme along with the V(2,0)-cycle type strategy, while they
highlight the significant contribution of the angular extension of the multigrid technique.
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1 INTRODUCTION

During the last decade the three-dimensional unstructured grids have become an important
tool for radiative heat transfer computations, extending their applications to more complex
geometries, like combustion chambers. Although unstructured meshes offer the largest possi-
ble flexibility in the treatment of complicated enclosures, along with the minimum user inter-
action for their generation/adaptation, the corresponding solvers appear to be inferior in terms
of efficiency, compared to those for structured grids [1]. One remedy to this shortcoming is
the multigrid method, originally developed by Brandt [2] to increase the convergence rate of
the numerical solution of elliptic problems, e.g. of incompressible fluid flow problems in CFD
(Computational Fluid Dynamics). Since then it has been applied though to various types of
computational simulations, e.g., compressible fluid flow [3-5], radiative heat transfer [6-8],
etc. Its main concept depends on the construction of coarser resolutions, in order the low-
frequency errors at the finest discretization to become high-frequency ones at the coarser ones,
and as such to be damped in a more efficient way [1, 3, 6]. Besides multigrid method’s signif-
icant contribution in test cases with unstructured grids, it was additionally revealed to be a
valuable tool for simulations involving higher-order accurate spatial schemes [6, 7, 9-11] or
higher-order governing equations [12]. Various types of the multigrid methodology have been
developed during the past years, whose differences are identified mainly on the way the
coarser discretizations are generated, as well as on the relation associating the successive grid
resolutions [1, 6].

The agglomeration multigrid method, originally proposed by Lallemand [13], appears to be
one of the most widely implemented schemes. It considers a sequence of coarser spatial reso-
lutions with polyhedral elements, derived through the fusion of neighboring control volumes
of their finer levels in an arbitrary way (isotropic agglomeration) [6]. Nevertheless, the afore-
mentioned agglomeration strategy has been identified to lead to reduced performance in test
cases involving hybrid grids with highly stretched elements on boundary surfaces [14]. A
semi-coarsening or directional coarsening agglomeration method was proposed by Mavriplis
[14] to mitigate this drawback. According to this technique the nodes of prismatic and hexa-
hedral elements are treated separately, i.e., their control cells are merged only if they are
aligned with the normal to the boundary direction [1]; for the rest nodes the aforementioned
isotropic strategy is applied. As a result, the grid anisotropy, caused by the utilization of pris-
matic or hexahedral elements, is moderated [15]. Another popular approach is the full-
coarsening directional agglomeration [1, 4, 16, 17], according to which the boundary control
cells are fused initially, while a line-agglomeration step is then performed, for merging the
prismatic or hexahedral control volumes along implicit lines, directly above the corresponding
already agglomerated boundary ones. As a result, a deeper reduction of DoFs (Degrees of
Freedom) is succeeded and consequently further acceleration is gained, without though the
produced discretizations to differentiate significantly from the initial topology. Specifically
for radiative heat transfer simulations, which consider the solution of RTE (Radiative Transfer
Equation), for each control cell and each control angle, an angular extension of the aforemen-
tioned agglomeration strategy has been proposed by the authors, either coupled with the spa-
tial one or not [6, 7]. According to this methodology, angularly coarser resolutions are also
generated (besides the spatially coarser ones), resulting in further improvement of the compu-
tational performance of the iterative methodology, via a nested spatial/angular agglomeration
multigrid scheme [6, 7].

As far as the relation associating each two successive resolutions is concerned the FAS
(Full Approximation Scheme) approach is revealed to be the most widely applied one [1, 3]. It
considers the relaxation of the governing PDEs (Partial Differential Equations) only at the ini-
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tial finest level, while at the coarser ones an approximate version of the same PDEs is solved
[3], accomplishing gradually a V- or W-cycle scheme. The computed variables and flux bal-
ances are restricted (in terms of smoothing) from the finer to the coarser mesh, while the cor-
responding calculated corrections are prolonged (in terms of interpolation) from the coarser to
the finer one [1, 3, 4, 6]. In case of multigrid accelerated radiative heat transfer problems,
considering additionally angularly coarser resolutions, the approximation of the angularly
coarser PDEs is performed by employing the FAS scheme much in the same way to the spa-
tial ones [6, 7]. In order to gain additional acceleration, a combined FMG-FAS (Full Multi-
grid-Full Approximation Scheme) approach can be implemented [1, 4, 15]. According to this
method the FAS V-cycle is incorporated in the FMG process; the whole procedure begins
from the coarsest grid and, as the number of iterations is increased, the finer FAS levels are
added up to the initial finest one [1, 4, 15].

In this work the development and comparison of different spatial/angular agglomeration
multigrid schemes for the acceleration of FVM radiative heat transfer computations, is report-
ed. It is based upon a previous work of the authors [6, 7], incorporating though further en-
hancements, namely different sequences of spatial and angular coarser resolutions, different
V-cycle types, a full-coarsening directional agglomeration strategy and a combined FMG-
FAS approach. More precisely, the nested, uniform, and alternate schemes are compared. Ac-
cording to the first nested one (reported in [6, 7]) the angular V-cycle is accomplished at each
step of the spatial one. If the uniform scheme is selected each coarser resolution is constructed
by simultaneously coarsening its finer one spatially and angularly, while in case of the alter-
nate technique each coarser level is obtained from the finer one by coarsening it either in spa-
tial or angular dimension. As far as the different V-cycle types are concerned the V(1,0),
V(1,1), V(2,0) and V(2,1) are assessed; the first number in parentheses denotes the number of
relaxations performed prior to restriction, while the second one denotes the corresponding
number of relaxations after the prolongation [6]. For simulations involving hybrid grids, in
order increased accuracy to be achieved in regions with prismatic elements [18], a full-
coarsening directional agglomeration strategy is additionally developed [1, 4, 5]. It succeeds
greater reduction of DoFs and consequently greater acceleration, comparing to this obtained
with isotropic agglomeration methodology. Finally, a combined FMG-FAS approach is de-
veloped and tested against the only-FAS technique [1, 4, 15]; it considers the division of the
whole procedure in two stages, the preliminary and the main one [1, 4, 15]. It begins from the
coarsest resolution (preliminary stage) while, as the number of iterations is increased, the finer
FAS levels are added up to the initial finest one (main stage) [1, 4, 15]. The proposed numeri-
cal schemes are evaluated against a benchmark test case, considering radiative heat transfer
through a strongly scattering medium in a cubic enclosure with highly reflecting surfaces [19].
According to the produced results the nested spatial/angular scheme along with the V(2,0)-
cycle type appears to be the preferred choice for such simulations. Furthermore, they highlight
the significant contribution of the angular extension of the multigrid technique.

2 RADIATIVE HEAT TRANSFER COMPUTATION

The radiative intensity /, of a node p at position » and time ¢ along a path s through an ab-
sorbing, emitting and scattering gray medium is obtained by the time-dependent RTE as fol-
lows [10, 11, 20, 21]

1dl,(7,3) . dl,(7,5)
c dt ds

=—(k,+0,)1,(7,8)+k,1,(F)+

j;ilp'(f,@ ND(5,5 ) do (1)
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where c is the propagation speed of radiation, while k. and o5 are the absorption and scattering
coefficient respectively [10, 11]. The LHS terms express the radiative intensity change rate
per ray direction and time, while the RHS expresses its attenuation by absorption and scatter-
ing processes (first term), and its augmentation by blackbody energy (second term) and scat-
tering phenomenon (third term) [6, 10]. Despite the presence of the temporal term, the
aforementioned expression can be employed for both steady-state and transient problems [6,
10, 11, 20].

The finite-volume method is applied for the discretization of the computational field and
consequently for the solution of the RTE [6, 12]; therefore, the computational domain has to
be discretized both spatially and angularly. A node-centered median dual control volume
method is employed for the spatial discretization, according to which the construction of the
control cell of a node is achieved by connecting the lines defined by the edge midpoints, the
barycenters of faces and the barycenters of elements sharing this node [3, 18]. Angular dis-
cretization is succeeded by dividing the directional domain, represented by a sphere in three
dimensions, into a discrete number of solid control angles with lines of constant longitude and
latitude [18, 21]; an equal division strategy is followed in this work, hence, the 47 steradians
derive NoxN, control angles [6, 10, 18]. Thus, equation (1) is integrated over the control vol-
ume of each node p and each solid control angle 4Q™" deriving the following formulation [10]

V AQIHI’!
TV DDA, = (k,+0,) I+ i |V, AQ™ )
c i

where V) is the volume of the examined control cell. The source term Sr™", which includes
the contribution of the blackbody energy and the scattering phenomenon from other solid con-
trol angles, is expressed as [10]

mn O-g‘ m'n’ ’ 7
Y :k"lﬁail” @ (m'n’;mn) de 3)

where @ denotes the Scattering Phase Function. If isotropic scattering is assumed, a constant
value is assigned to it [18, 22]; alternatively, medium’s anisotropic attitude has to be modelled,
e.g. using Legendre polynomials (as in this study) [18, 22]. Finally, D/ is the directional
weight, defined by the examined control angle 4Q™" and the unit normal vector of the exam-
ined control volume surface, while /7" is the corresponding radiative intensity [10, 11]. For
its definition the step scheme is adopted in this work, according to which the radiative intensi-
ty at a downstream face is set equal to that of the upstream node; this is expressed for two
neighboring nodes p and ¢ as [6, 10]
1Dy = 1" DL, + 1" DL, @
where Deciou/™ denotes the directional weight going outwards the examined control volume
(of node p), while Dc;,in"™" the corresponding weight coming into the same cell [6]. Consider-
ing this scheme, an edge-based data structure is used to reduce the computational load [3].
Furthermore, in order to alleviate the overhang problem, derived by the combination of un-
structured grids with the angular division of the computational domain, the pixelation method
is applied transforming appropriately the aforementioned weights [10, 11]. In that way the
effect of overlapped directional weights is considerably reduced and the accuracy of the final
solution is increased.
For the same accuracy reasons, a higher-order accurate spatial scheme is implemented re-
ducing the effect of false scattering, derived by the spatial discretization of the computational
field. Particularly, a second-order scheme is used in this work, based on the well-established
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in CFD MUSCL (Monotone Upstream Scheme for Conservation Laws) methodology [23].
Therefore, the values of radiative intensity at the RHS of equation (4) are reconstructed prior
to the implementation of the step scheme; the required gradients are obtained with the Green-
Gauss linear representation method [10]. Moreover, in order to control the aforementioned
reconstructed values, especially at boundary areas entailing high intensity gradients, the
scheme is coupled with the Van Albada-Van Leer [23] or the Min-mod [24] slope limiters [10,
11].

Finally, the appropriate contributions of the boundary conditions are added to the fluxes of
the corresponding nodes; they are computed in an implicit way applying the step scheme be-
tween the examined node and a ghost node outside the computational field [10, 11]. Opaque
and diffusive boundary surfaces, as well as mirroring ones are assumed in this study [10, 11].

Since the required flux balance has been obtained for each node and each solid control an-
gle, equation (2) is transformed as [10, 11]

Almn VPAQ”HI —_ Rmn (5)
PocAr 7

where R,™ is the fluxes sum, while Az is the pseudo-time step defined via a local time-
stepping technique [3, 10, 11]. For the iterative relaxation of equation (5) an explicit second-
order temporal accurate scheme, using a four-stage Runge-Kutta method (RK(4)) [25], is em-
ployed. Besides the local time-steeping technique and the edge-based data structures, further
acceleration of the solution process is obtained with parallel processing, based on the domain
decomposition approach and the MPI (Message Passing Interface) library functions [18, 26,
27].

3 THE SPATIAL/ANGULAR AGGLOMERATION MULTIGRID SCHEME

3.1 Spatial/angular agglomeration strategy

The first issue to be defined for the multigrid accelerated solution of RTE is the agglom-
eration strategy, i.e., the methodology which has to be applied for the generation of the se-
quence of the coarser resolutions. Similar procedures are followed for the construction of both
the coarser spatial and angular discretizations. They are performed on a topology-preserving
framework at each partition, in which the initial grid is divided for parallel processing [1, 6];
they are confined though by predefined limitations, ensuring consistency of the restriction and
prolongation processes [1, 6].

Concerning the spatial agglomeration strategy, a similar to the advancing front technique is
implemented, as the whole procedure begins from the solid wall boundary nodes, while it ex-
tends gradually to the internal ones [1, 6]; the starting point is justified by the fact that the
proposed spatial algorithm was initially developed for CFD simulations [1, 4]. If no such
boundary nodes are present to the examined sub-grid, the process begins from the core nodes
at the overlapping regions (among the examined partition and its adjacent ones) [10, 11, 18].
As mentioned above, predefined rules limit though this procedure, e.g., a boundary node can
be merged only with another boundary node of the same surface type, an internal node can be
fused only with its neighboring also internal nodes, etc. [1, 6]. Taking into account those limi-
tations the isotropic agglomeration procedure begins with the construction of the so-called
seed list, including the solid wall boundary nodes. A loop is performed over them, examining
their eligibility for fusion with their adjacent non-agglomerated yet ones; if no constraint is
identified they are merged with their neighboring ones creating supernodes, while if a limita-
tion exists they are simply transferred to the next multigrid level as singleton supernodes (1,
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6]. A new list is then constructed including the nodes touched by the agglomeration front,
which are actually the adjacent ones to the already examined and agglomerated nodes, while
at next the previous step of examination and fusion is repeated. The procedure is assumed ac-
complished when all the core nodes have been examined. The ghost nodes are not included to
the main agglomeration process, but they are fused according to the merging path of their cor-
responding core nodes at the adjacent partitions; as a result, virtual ghost supernodes are pro-
duced [1, 6]. The procedure continues with the construction of the corresponding superedges,
connecting the derived supernodes and representing the interfaces of their control cells. In
case an even coarser grid is required, the whole process is repeated. Further details for the ap-
plied isotropic spatial agglomeration procedure can be found in [1] and [6].

As mentioned in Introduction, the isotropic agglomeration strategy appears to be less effec-
tive in test cases involving hybrid grids, with highly stretched elements (prisms or hexahedra)
at boundary surfaces [1, 4, 5, 14-17]; the latter are employed in order increased accuracy to be
obtained at those areas [18]. Thus, a full-coarsening directional agglomeration procedure was
also incorporated to the proposed algorithm, which is based on the methodology of Nishikawa
and Diskin [5]. Further modifications have been included though; the agglomeration process
isn’t limited across the sub-domains’ internal boundaries, allowing virtual ghost supernodes
to be generated, while an additional limitation prohibits the fusion process of the control cells
at prismatic layers in order the topology of the initial grid to be preserved more accurately [1].
Similarly to isotropic agglomeration, the directional one begins with the construction of the
initial seed list, containing though the boundary nodes of only the prismatic elements [1, 5].
Since they are examined and merged in supernodes, a new list is created, filled with the nodes
of the next prismatic layer; the latter are fused according to the agglomeration path of their
corresponding boundary nodes, constructing the so-called implicit lines [1, 5]. The previous
steps are repeated until all the prismatic nodes have been examined for fusion; the isotropic
method is applied then for the rest nodes (tetrahedral and pyramidical) [1].

————————————————————————————————————————————————————————————

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

Initial Grid

Isotropically Agglomerated Full-Coarsening Directionally Agglomerated

-----------------------------------------------------------------------------------------------

Figure 1: Isotropic and full-coarsening directional agglomeration of a 2D quadrilateral grid.
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Figure 1 illustrates a schematic example of the previously described directional procedure
(right), compared with this of the corresponding isotropic one (left). It is obvious that direc-
tional agglomeration preserves more accurately the topology of the initial grid; on the other
hand, the isotropic approach derived a mesh with a topology modified compared to the initial
one, due to the arbitrary polyhedral control cells it entailed. Further details for the aforemen-
tioned full-coarsening directional agglomeration procedure can be found in [1].

As far as the angular agglomeration is concerned, a similar to the spatial strategy is fol-
lowed [6]. For the construction of each coarser resolution, every two successive control angles
in both azimuthal and polar directions are fused, deriving new solid control superangles. Con-
sidering the equal separation strategy, followed for the division of the initial directional do-
main, each coarser level includes the one quarter of the number of solid control angles of its
finer one [6]. The procedure is limited though by only one predefined constraint (unlike the
spatial process), defining that only the control angles belonging to the same quadrant of the
directional sphere can be fused together [6]. In that way consistency during the restriction and
prolongation processes is ensured [6]. A more detailed description of the angular agglomera-
tion strategy can be found in [6].

3.2 The spatial/angular agglomeration multigrid FAS approach

As mentioned in Introduction, this study aims to compare different combined spa-
tial/angular agglomeration multigrid schemes for the acceleration of FVM radiative heat
transfer computations. Particularly, three such schemes have been developed, namely a uni-
form, an alternate and a nested scheme. Their differences focus on the sequence of the spatial
and angular levels, employed during the V-cycle of the FAS method. The procedures of the
generation of the successively coarser resolutions (spatial and angular) as well as of the solu-
tion strategy (implementation of the second-order spatial accurate scheme and fix-up method,
evaluation of directional weights and pixelation coefficients, etc.) are performed in the same
way for all the developed schemes [6].

As far as the uniform spatial/angular agglomeration multigrid scheme is concerned, each
coarser resolution is constructed by simultaneously coarsening its finer one spatially and an-
gularly. According to the FAS approach, the solution procedure begins with the relaxation of
equation (5) with the Runge-Kutta method at the initial finest resolution, while at next the
values of the nodal fluxes and radiative intensity are restricted to the next coarser level as fol-
lows [6]:

MN _ H.MN  1ymn _ mn
RP,restricted - (IR )h,mn Rp - ZRP
mn mn (6)
MN _ ( )H,MN mn __ Z]p Vp AQ
Prestricted — \ "1 - MN
restricte h,mn P VP ] AQ

Actually, a simple summation operator is applied for flux balances, considering both the in-
cluded control cells and solid control angles. The corresponding operator for the values of ra-
diative intensity defines a spatial-angular averaging process instead. Since the restriction
process is accomplished, a similar to equation (5) relation is relaxed for this level (H, MN); its
RHS is substituted though by the following value

Ry = RN (1) R rea = R (1) (7)

P, restricted P, restricted

MN
A[ 1
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where the first term denotes the fluxes of the agglomerated supernode P computed at this lev-
el (H,MN) similarly to the initial finest one using the previously constructed superedges [1, 6].
The forcing function 45™N includes the restricted fluxes to the supernode P and the fluxes of
the same node, computed with the restricted values of radiative intensity from the finer resolu-
tion. It is quite obvious that for the first internal iteration of the Runge-Kutta scheme, the RHS
term equals the restricted from the finer level flux balance, confirming in that way the approx-
imation character of the FAS approach [1, 3, 6]. The aforementioned procedure of relaxation
and restriction are repeated up to the coarsest generated resolution, while at next the obtained
corrections are prolonged to the next finer level applying a simple point-injection scheme as
[1,3, 6]
I+ I 1 n 1

(1) =) stz =(12) (1, o =) 4 (1 1) ®)
The prolongation procedure is repeated similarly up to initial finest level, at which point the
FAS V-cycle gets accomplished [1]. Figure 2 depicts a schematic representation of the afore-
mentioned uniform method with a V(1,0)-cycle type and two spatial-angular coarser levels.

Uniform Spatial/Angular Multigrid Cycle

h,mn
AMN |m o o e mmmim e mmmmcmmemcmmm e m e m e
{75017 1 VN N
H,mn
[ 1Y/ N S N P R
Ho2MN N N o]
H,mn
HM
N
\\
\\
2H,2M N

Figure 2: Uniform spatial/angular agglomeration multigrid cycle.

It should be highlighted that an equal number of coarser spatial and angular discretizations
has to be used for the implementation of this approach. However, in most test cases, more
spatial resolutions than angular ones can be generated [7]; to alleviate this shortcoming the
coarsest generated angular discretization can be employed for the next coarser spatial levels
too.

The alternate spatial/angular agglomeration multigrid scheme defines instead an alternation
of spatial and angular coarsening at the sequence of FAS levels; as mentioned in Introduction,
each coarser level is obtained from the finer one by coarsening it either in spatial or angular
dimension. The whole procedure begins again with the solution of equation (5) at the initial
finest level (spatially and angularly), while at next the nodal fluxes and radiative intensities
are restricted to the next spatially coarser grid; no angular coarsening has been performed to
this level. Since the solution is obtained at this discretization, the derived fluxes and radiative
intensities are restricted to the next coarser level, provided with angular coarsening only. The
aforementioned steps are repeated alternatively up to the coarsest resolution (spatially and an-
gularly), while at next the corrections are prolonged accordingly, i.e., alternatively, up to the
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initial spatially and angularly finest level. The operators, used for the aforementioned pro-
cesses, are the same applied for the only-spatial or the only-angular agglomeration multigrid
schemes [6]. Similarly to the uniform approach an equal number of coarser spatial and angu-
lar discretizations has to be used for the implementation of this scheme. Figure 3 includes a
schematic representation of the previously described alternate method with a V(1,0)-cycle
type and two spatial/angular coarser levels.

Alternate Spatial/Angular Multigrid Cycle

h,mn =
Spatial
Restriction
01 .
{3 0] ]\ P, N, DD, S

Angular
Restriction

: Ay
i Spatial N
i Prolongation .

Fimn : =
i AN .
H < AN
\ :_ LN
H,M i . N
i Angular N,
2H,2M H Prolongation N

Figure 3: Alternate spatial/angular agglomeration multigrid cycle.

Besides the aforementioned schemes, a nested spatial/angular agglomeration multigrid
scheme is assessed in this study, originally proposed in [6]. According to this approach, a
complete angular FAS V-cycle is executed in each level of the spatial FAS V-cycle; the spa-
tial and angular, restriction and prolongation, operators are applied similarly to the only-
spatial and only-angular multigrid schemes [6]. Figure 4 illustrates its schematic representa-
tion, considering a V(1,0)-cycle type and two spatial/angular coarser levels. More details for
the implementation of the nested spatial/angular agglomeration multigrid method can be
found in [6].

Nested Spatial/Angular Multigrid Cycle

h,mn ¥
Spatial .
Prolongation™,_

117 NN (S, N U DU, NS

h2ZMN (o o N oo o AN e m e e N e

H,mn ry * ¥
Angular H *
Restriction
[ WY1 N PSR NP . R O RS
¢ Angular
# Prolongation
H,2M §
H,mn N PN
N ; .
NN
b3 N
H.M PN
\ ."l. \\
s A
s A
2H,2M ; .

Figure 4: Nested spatial/angular agglomeration multigrid cycle.
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3.3 FAS V-cycle types

Different V-cycle types are assessed in this study as well, namely the V(1,0), V(1,1), V(2,0)
and V(2,1). The first number in parentheses denotes the number of relaxations performed pri-
or to restriction, while the second denotes the corresponding number after the prolongation [1,
3]. Depending mainly on the implemented iterative procedure, as well as on the encountered
problem’s nature, various V-cycle types have been reported in the open literature as the most
appropriate for them [1, 3, 5, 14-17]. For example, if an explicit iterative scheme is applied
for an inviscid compressible fluid flow simulation a V(1,0)-cycle is usually preferred, while in
case of a turbulent flow problem along with an implicit method, a V(2,1) appears to be the
commonly preferred choice [1, 3]. As such, the four aforementioned V-cycle types have been
incorporated in the proposed solver to study their effect on the code’s computational efficien-

cy.
3.4 The combined FMG-FAS agglomeration multigrid approach

A combined FMG-FAS agglomeration multigrid approach was also developed to further
accelerate the solution procedure of the radiative heat transfer problems [1, 3, 4, 15]. Inde-
pendently of the employed FAS scheme (only-spatial, only-angular, uniform, alternate or
nested), it considers the division of the whole procedure in two stages, the preliminary and the
main one [1, 4, 15]. As such, the solution process begins from the coarsest resolution and as
the number of iterations/cycles is increased the FAS is extended to the next finer level, using
the derived solution by the coarsest discretization as an initial guess [1]. In that way a cheaper
initial condition is obtained, compared to the usually used uniform one [3]; for the interpola-
tion of the solution the same single point-injection scheme, used for the prolongation process,
is applied. The FAS solution process is continued, including only the two coarsest resolutions,
while as the number of iterations/cycles is increased again, the previous steps are repeated
adding successively more FAS levels up to the initial finest discretization, at which point the
preliminary stage ends and the main one begins [1]. For simplicity reasons, in combined spa-
tial/angular agglomeration multigrid schemes, the spatial and angular resolutions are extended
simultaneously to their finer ones during the preliminary stage (similarly to the procedure fol-
lowed for the uniform approach). Finally, the number of multigrid cycles/iterations performed
during the preliminary stage may differ depending on the implemented multigrid scheme (on-
ly-spatial, only-angular, uniform, alternate or nested).

4 VALIDATION RESULTS

For the evaluation of the efficiency improvement, contributed by the different combina-
tions of the proposed multigrid schemes (i.e., by employing the uniform, alternate, or nested
scheme, different V-cycle types, and the combined FMG-FAS method), a benchmark test case
was encountered, considering radiative heat transfer in a cubic enclosure with edge length
equal to unity [7, 10, 19]. A schematic representation of the cubic geometry is depicted in
Figure 5. The included cold medium is assumed purely scattering (os=Im’, ka=0m"!, Tn=0K).
The wall surfaces are considered similarly cold (7w=0K), except for the bottom face at which
a constant heating energy is implemented (E=IW/m?), while for the bases normal to the y-
direction mirroring boundary conditions are imposed [7, 10, 19]. The computational domain
is represented by a hybrid grid, composed of 22,500 nodes, 65,480 tetrahedra and 19,460
prisms; for angular discretization the directional domain is divided in /6 azimuthal and & po-
lar angles. Parallel processing was performed on a workstation with an AMD FX®™-8350
eight-core processor at 4.00 GHz, while the initial mesh was divided in two sub-domains. In
order to alleviate the overhang problem the pixelation method was implemented, while false
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scattering effect was reduced with the incorporated second-order spatial accurate scheme,
coupled with the Min-mod limiter [10, 11].

____________________

Figure 5: Geometry of the cubic enclosure.

Prior of validating the efficiency improvement, the accuracy of the proposed solver was
assessed. The medium is assumed to exhibit anisotropic scattering behavior, which is mod-
elled with the F2 scattering phase function, based on the Legendre polynomials [18, 19]. Two
simulations were encountered for the evaluation of solver’s accuracy, in which different val-
ues of wall emissivity ew were assumed, namely /.0 and 0.1. In Figure 6 the extracted distri-
butions of dimensionless incident radiative heat flux along the A-A line are illustrated,
compared to the corresponding ones reported by Kim and Lee [19]. It is obvious that a very
good agreement has been achieved. The second test case (with wall emissivity equal to 0.7)
required much more computation time, compared to the first one, due to the increased radia-
tion exchange between the discretized solid control angles [7]. Therefore, it was selected in
order the efficiency evaluation simulations to be conducted with.

1

A Kim & Lee 1988, e=1
09 &
_ WS\ —Current, =1
o5 - © Kim & Lee 1988, €=0.1
}\ Current, e=0.1
0.7
0.6 T
::?‘ 0.5 \A\\A\
0.4 i
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0.3
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O :o < 05 < O —0 0o o
0 . ‘ | |

O 01 02 03 04 05 06 07 08 09 1
Z (m)
Figure 6: Distribution of the dimensionless incident radiative heat flux along the line A-A for two different val-

ues of wall emissivity (¢,=1.0 and &,=0.1).

For the validation of the computational performance’s improvement the radiative intensity
residual has to be computed at each multigrid cycle & [7]
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where N, denotes the number of nodes, while No and N, the number of polar and azimuthal
control angles, respectively, all of them regarding the initial finest resolution (spatially and
angularly). Besides the contribution of the combined spatial/angular agglomeration multigrid
schemes, developed in this study, this of the only-spatial and only-angular approaches was
validated too. The notation SxAy, originally proposed in [7], is used in this work as well,
where x denotes the number of spatial multigrid levels, while y the number of angular ones.

Figure 7: Initial and coarser via isotropic (top) and directional (bottom) fusion surface control-volume grids.

At the first stage of the evaluation, the incorporated full-coarsening directional agglomera-
tion strategy was assessed. Thus, three successively coarser grids were generated, implement-
ing both the isotropic and the directional agglomeration methodology. Figure 7 illustrates the
initial and the first-level coarser surface control-volume grids, extracted with both approaches
(isotropic-top, directional-bottom). It is obvious that the second agglomeration type preserved
more accurately the topology of the initial grid, while it lead to a more extended reduction of
DoFs. Contrary to that, the isotropic agglomeration produced arbitrary polyhedral control
volumes even in the prismatic region, differentiating significantly the topology of the extract-
ed grid from the initial one. The effect of this differentiation is demonstrated in Figure 8, in-
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cluding the radiative intensity convergence history per number of iterations and wall-clock
time for two only-spatial S4A1 V(1,0)-cycle simulations, implementing isotropic and direc-
tional agglomeration respectively. No significant difference can be identified at the itera-
tions/cycle curve, but the situation is changing at the time curve; particularly, isotropic
strategy produced a temporal speed-up coefficient equal to ~2.35 for the final residual /.0E-
10, while directional one equal to ~2.51. Despite a reduction of three or four orders of magni-
tude is usually more than enough for such test cases, speed-up coefficients have been comput-
ed for a final residual value equal to /.0E-10, in order the contribution of the proposed
multigrid method to be more clearly demonstrated.
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Figure 8: Radiative intensity convergence history per number of iterations and wall-clock time for the only-
spatial agglomeration multigrid scheme, implementing isotropic and directional agglomeration approach.

The evaluation of the incorporated multigrid schemes was continued with the only-spatial
and only-angular ones implementing though different V-cycle types, namely, V(1,0), V(1,1),
V(2,0) and V(2,1). For the implementation of the only-angular as well as of the combined
spatial/angular schemes, angular coarsening was performed analogously; the initial finest 16-8
discretization was reduced successively to 8-4 and 4-2. Figures 9 and 10 contain the radiative
intensity convergence history per number of iterations and wall-clock time of the aforemen-
tioned simulations.
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Figure 9: Radiative intensity convergence history per number of iterations and wall-clock time for the only-
spatial agglomeration multigrid scheme employing different V-cycle types.
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Figure 10: Radiative intensity convergence history per number of iterations and wall-clock time for the only-
angular agglomeration multigrid scheme employing different V-cycle types.

The V(2,0)-cycle type seems to be the most efficient one, succeeding a time-acceleration rate
equal to ~3.00 and ~2.67 with the only-spatial and the only-angular multigrid schemes respec-
tively. The V(1,0) is revealed as the next most efficient type, achieving temporal speed-up
coefficients equal to ~2.51 and ~2.49 with the spatial and angular approach respectively. De-
spite the fact that the only-spatial scheme appears to be more effective than the only-angular
one in this test case, the speed-up coefficients (extracted with the V(1,0)-cycle type) of the
only-angular scheme highlight the significance of the proposed angular extension to the mul-
tigrid technique.

The assessment is continued with simulations implementing the uniform, alternate and
nested spatial/angular methodologies, along with the aforementioned V-cycle types. For the
fourth FAS level of the uniform and alternate methods (besides the third one), the coarsest
angular resolution (4-2) was used as well. Figures 11 to 13 illustrate the radiative intensity
convergence history per number of iterations and wall-clock time of the aforementioned simu-
lations. The nested scheme along with the V(2,0)-cycle type appears to derive the most effi-
cient simulation, succeeding a temporal acceleration coefficient equal to ~4.2/. The V(2,0)-
cycle alternate multigrid approach is revealed as the next most efficient type, with a corre-
sponding coefficient equal to ~3.45. As expected, the aforementioned combined spa-
tial/angular multigrid schemes achieved better temporal rates than the only-spatial or only-
angular approaches. Unlike them, the uniform scheme doesn’t seem to have a significant ef-
fect in the computational performance of the proposed algorithm; actually, it produced worse
speed-up coefficients, even compared with the only-spatial or only-angular multigrid methods.
This is attributed to the extreme coarsening, entailed by the simultaneous spatial and angular
reduction of the corresponding DoFs. Once more the V(2,0)-cycle scheme provided better ac-
celeration coefficients, comparing to the rest V-cycle types, independently of the implemented
FAS scheme (uniform, alternate or nested). Furthermore, the simulation involving the nested
scheme with the V(1,0)-cycle type failed to converge; this failure originates possibly from the
insufficient relaxation of RTE prior prolonging the radiative intensity corrections from the
angular to the spatial V-cycle. As far as the rest two V-cycle types are concerned, it seems
that the relaxation after the prolongation process does not contribute to the computational per-
formance improvement; on the other hand, it appears to add just extra computation time. The
previous state is confirmed from the fact that V(1,1)-cycle type is revealed even slower from
the V(2,1).
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Figure 11: Radiative intensity convergence history per number of iterations and wall-clock time for the uniform
spatial/angular agglomeration multigrid scheme employing different V-cycle types.
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Figure 12: Radiative intensity convergence history per number of iterations and wall-clock time for the alternate
spatial/angular agglomeration multigrid scheme employing different V-cycle types.
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Figure 13: Radiative intensity convergence history per number of iterations and wall-clock time for the nested
spatial/angular agglomeration multigrid scheme employing different V-cycle types.
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The contribution of the combined FMG-FAS approach was then evaluated for all the in-
corporated multigrid schemes (only-spatial, only-angular, uniform, alternate and nested). Fig-
ures 14 includes the radiative intensity convergence history per number of iterations and wall-
clock time of the aforementioned simulations. Different numbers of iterations/cycles were
tested for each of the implemented multigrid schemes during the preliminary stage; the most
efficient results for each approach are presented in the aforementioned figure. The nested spa-
tial/angular and only-angular methods appear to be the most efficient ones, achieving a tem-
poral speed-up coefficient equal to ~4.8/. The next more effective scheme is revealed to be
the alternate one, while the only-spatial one provided the worst results; considering the latter
observation, the significant contribution of the angular extension of the multigrid technique is
once more demonstrated.
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Figure 14: Radiative intensity convergence history per number of iterations and wall-clock time for different
combined FMG-FAS agglomeration multigrid schemes.

S CONCLUSIONS

In this work the development and comparison of different spatial/angular agglomeration
multigrid schemes for the acceleration of FVM radiative heat transfer computations, was re-
ported. It was based upon a previous study of the authors [6, 7], incorporating though further
enhancements, namely different sequences of spatial and angular coarser resolutions, different
V-cycle types, a full-coarsening directional agglomeration strategy and a combined FMG-
FAS approach. Based on the results presented in the previous Section, the following conclu-
sions can be extracted: a) Full-coarsening directional agglomeration should be the preferred
choice in test cases using hybrid unstructured grids. Unlike the isotropic method, the direc-
tional one leads to a deeper reduction of DoFs, while simultaneously it preserves more accu-
rately the topology of the initial grid; as a result a greater efficiency improvement is achieved.
b) The V(2,0)-cycle type appears to be superior, compared to the rest tested ones (V(1,0),
V(1,1) and V(2,1)), independently of the implemented FAS scheme (only-spatial, only-
angular, uniform, alternate or nested). Furthermore, the relaxation after the prolongation pro-
cess, defined by the latter two types (V(1,1) and V(2,1)), seems not to contribute at all to the
computational acceleration. ¢) The nested spatial/angular agglomeration multigrid approach is
revealed to be much more efficient than the rest ones, while the next most effective appears to
be the alternate scheme. d) Considering that the aforementioned schemes derived higher ac-
celeration compared to the only-spatial one, as well as the impressive improvement entailed
by the only-angular approach, the significant contribution of the angular extension of the mul-

7387



Georgios N. Lygidakis and Ioannis K. Nikolos

tigrid technique is confirmed. ) Independently of the implemented multigrid scheme (only-
spatial, only-angular, uniform, alternate or nested), additional acceleration can be achieved
with the implementation of the combined FMG-FAS approach.
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