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Feedback Control of Nonlinear Hyperbolic PDE
Systems Inspired by Traffic Flow Models

lasson Karafyllis, Nikolaos Bekiaris-Liberis and Markos Papageorgiou, /EEE Fellow

Abstract—The paper investigates and provides results,
including feedback control, for a nonlinear, hyperbolic, 1-D
PDE system on a bounded domain. The considered model
consists of two first-order PDEs with a dynamic boundary
condition on the one end and actuation on the other. It is
shown that, for all positive initial conditions, the system admits
a globally defined, unique, classical solution that remains
positive and bounded for all times; these properties are
important, for example for traffic flow models. Moreover, it is
shown that global stabilization can be achieved for arbitrary
equilibria by means of an explicit boundary feedback law. The
stabilizing feedback law depends only on collocated boundary
measurements. The efficiency of the proposed boundary
feedback law is demonstrated by means of a numerical
example of traffic density regulation.

Index Terms-hyperbolic traffic

feedback.

PDEs, flow, boundary

1. INTRODUCTION

he study of vehicular traffic flow by means of

hyperbolic Partial Differential Equations (PDEs) started

in the 1950s with the LWR first-order model (see [27,
32]). In order to describe more accurately the mean speed
dynamics, second-order models were later studied (see [1,
29, 39]). Many 1-D traffic flow models with no control were
developed for unbounded domains (usually the whole real
axis). Researchers working on second-order models as well
as critics of second-order models (see [12]) have agreed that
a valid traffic flow model must: (i) include the vehicle
conservation equation, (ii) admit bounded solutions which
predict positive values for both density and mean speed, (iii)
obey the so-called anisotropy principle, i.e., the fact that a
vehicle is influenced only by the traffic dynamics ahead of
it, (iv) not allow waves traveling forward with a speed
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greater than the traffic speed. Recently, researchers have
developed two phase models (see [8, 25]).

Recent advances in the boundary feedback control of
hyperbolic systems of PDEs (see for instance [2, 3, 7, 9, 10,
11,13, 14, 19, 22, 23, 30, 31, 35, 36]) as well as advances in
the control of discrete-time, finite-dimensional traffic flow
models (see [17, 18, 20, 28] and references therein) have
motivated the study of well-posedness and control of traffic
flow models on bounded domains. Both issues (well-
posedness and control) for first-order models in bounded
domains were studied in [4, 5, 33]. The stabilization of
equilibrium profiles for linearized 2" order models in
bounded domains by means of boundary feedback was also
studied in [24, 37, 38, 40].

The present work considers a specific hyperbolic,
nonlinear, second-order, 1-D PDE system on a bounded
domain, which may be viewed as partial linearization of the
ARZ model [1, 39] around an equilibrium point in a
congested road. It consists of two quasilinear first-order
PDEs with a dynamic nonlinear boundary condition that
involves the time derivative of the speed, analogously to in-
domain relaxation in typical second-order traffic flow
models [1, 39]. The presence of this dynamic boundary
condition renders the model non-standard (since standard
systems of hyperbolic PDEs involve boundary conditions
which do not contain the derivatives of the states), and thus,
the existence and uniqueness of its solutions cannot be
guaranteed by using standard results (see [2, 6, 21, 26]). The
existence and uniqueness issues are first studied in the
present work. Specifically, it is shown that for all physically
meaningful initial conditions, the model admits a globally
defined, unique, classical solution that remains positive and
bounded for all times. As a result, we can guarantee that the
proposed model has all of the four features mentioned in the
first paragraph that are important from a traffic-theoretic
point of view. The second contribution of the present work
is the study of the control problem for the proposed model.
Specifically, we design a simple, nonlinear, boundary
feedback law, adjusting the inlet flow (via, e.g., ramp or
mainline metering). The boundary feedback law employs
only measurements of the inlet speed, and consequently, the
measurement requirements for implementation of the
proposed controller are minimal. Moreover, it is shown that
the developed control design achieves global asymptotic
stabilization of arbitrary equilibria, in the sup-norm of the
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logarithmic deviation of the state from its equilibrium point.
The efficiency of the proposed feedback law is
demonstrated by means of a numerical example.

Section II is devoted to the presentation of the model and
the statement of the first main result (Theorem 2.1) which
guarantees, for all physically meaningful initial conditions,
the existence of a globally defined, unique, classical solution
that remains positive and bounded for all times. The control
design and the statement of the second main result, which
guarantees global stabilization of arbitrary equilibria of the
model (Theorem 3.1) are given in Section III. A simple
illustrative example is presented in Section IV. The proofs
of the main results as well as auxiliary results are provided
in Section V. One of the auxiliary results has interest on its
own (Proposition 5.2), because it covers a case not studied
in [2, 6, 21, 26]: namely the case of a transport PDE with a
non-negative (possibly zero at some points) transport speed.
A unique, classical solution is shown to exist, which is
differentiable and satisfies the PDE even on the boundary
(something that cannot be guaranteed by the results in [21]).
The concluding remarks are provided in Section VI. Finally,
the Appendix contains the proofs of the two auxiliary results
of Section V.

Notation.
* R, =[0,+00) . For a real number x € R, [x] denotes the

integer part of x, i.e., the greatest integer which is less or
equal to x.

* Let UcR" be a set with non-empty interior and let
QC R be aset. By C°(U;Q), we denote the class of
continuous mappings on U , which take values in Q . By
ct U;Q), where k=1, we denote the class of
continuous functions on U, which have continuous
derivatives of order & on U and take values in Q.
When Q is omitted, i.e., when we write C*(U), it is
implied that Q=R .

* Let T e€(0,40) and u:[0,7]x[0,l]] >R be given. We
use the notation u[f] to denote the profile at certain
te[0,77, ie., (u[t])(x)=u(t,x) for all x<[0,1]. For a
bounded w:[0,1]] >R the

[l = sup (o).

* W2’°°([0,1]) is the Sobolev space of C' functions on
[0,1] with Lipschitz derivative.

sup-norm is given by

* By K we denote the class of strictly increasing
continuous functions a:R, >R, with a(0)=0. By

K, we denote the class of functions ae€K with
lim a(s)=+. By KL we denote the set of all
§—>+0

functions o e C° (R, xR, ;R,) with the properties: (i)
for each 1t >0, o(-,7) is of class K ; (ii) for each 5>0,

o(s,+) is non-increasing with lim o(s,#)=0.
[—>+0

II. THE MODEL AND ITS PROPERTIES

In this section we present the nonlinear model of
conservation laws, which is inspired by traffic flow PDE
models. Moreover, we guarantee properties of the model,
which are crucial from a traffic-theoretic point of view.

1. A. Description

Second-order traffic flow models involve a system of
hyperbolic PDEs on the positive semi-axis. The state
variables are the vehicle density p(¢,x) and the vehicle

mean speed v(¢,x), where >0 is time and x is the spatial

variable. All 2™ order traffic flow models involve the
conservation equation
op
ot
and an additional PDE for the speed. In a congested road,
the wvehicle speed depends heavily on the speed of
downstream vehicles. Therefore, the following equation may
be appropriate for the evolution of the speed profile:
ov ov
—(t,x)—c—(t,x)=0,
Y (. x) ax( )
where ¢ >0 is a constant related to the drivers’ promptness
in adjusting their speed. Equation (2.2) may also arise as a
linearization of the speed PDE of the Aw-Rascle-Zhang
model (ARZ; see [1, 39]) around a “congested equilibrium”
without an in-domain relaxation term. By “congested
equilibrium”, we mean a spatially uniform equilibrium
profile p(x) = p,,, v(x)=v,, for which v, +K(peq )< 0,

(t, x)+v(t, x)a—p(t, x)+ p(t, x)ﬁ(t, x)=0 (2.1)
Ox 0x

2.2)

where x is the function involved in the speed PDE

0 0

a—:(t,x)+(v(t,x)+K(p(t,x)))a—v(t,x)=0 of the ARZ
x

model without an in-domain relaxation term. Therefore,
model (2.1), (2.2) can be seen as a partial linearization of
the Aw-Rascle-Zhang model. Here, we consider the model
(2.1), (2.2) on a bounded domain, i.e., we assume that
x €[0,1]. The full model requires the specification of two

boundary conditions. One boundary condition describes the
inlet conditions, and more particularly the effect of the inlet
demand ¢(¢) >0 and takes the form

p(t,0) = h(q(2) / v(2,0)), for £>0

where he(C? (M,) is a non-decreasing function that satisfies

2.3)

h(s)=s for s €[0, ppax —€]
2.4)
where p... >0 is a constant related to the physical upper

and /(S) = Pmax 0T S oo s

bound of density in the particular road and & € (0, o) 1S
a sufficiently small constant. Notice that (2.3) implies that
the inlet demand ¢(¢#) >0 is equal to the vehicle inflow
Pt.O(1,0), provided that g(f)< (e —&M(,0). The
boundary condition (2.3), as well as the rest of the model

(2.1), (2.2), come together with the following requirement:
p(t,x)>0 and v(t,x) >0, for all (z,x) e R, x[0,1] (2.5)
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Condition (2.5) is an essential requirement for a model of a
physical process, such as traffic flow. In what follows, we
show that the proposed model meets this requirement.

In order to have a well-posed hyperbolic system, we also
need a boundary condition at the outlet x=1. Assuming
that the flow downstream of the outlet is uncongested (free),
it is reasonable to assume that the relaxation term becomes
dominant. So, we get

% t)=—u (v(t,l) —f(p(t,l))), fort>0 (2.6)

where >0 is a constant and f e C'(R ,) 1s a positive,
bounded, non-increasing function that, in the case of traffic
flow, expresses the fundamental diagram relation between
density and speed. Condition (2.6) implies that there is no
downstream influence at the downstream boundary. For
traffic flow, this may be the case if the highway
infrastructure downstream of the considered stretch has a
higher capacity, e.g. due to an additional lane; or end of a
tunnel or bridge; or end of a curvature or uphill stretch; or
end of a speed-limited zone.

An important fact should be emphasized at this point:
when v(z,1) can be manipulated, then (2.6) can be seen as a
dynamic feedback law at the outlet. Therefore, the boundary
condition (2.6) can arise either for modeling purposes (to
guarantee the relation v= f(p) at equilibrium) or for

control purposes (as a feedback law).

1L.B. Traffic-Theoretic Features of the Model

Equations (2.1), (2.2), (2.3), (2.6) form a non-standard
system of nonlinear hyperbolic PDEs. The reason that
system (2.1), (2.2), (2.3), (2.6) cannot be studied by existing
results in hyperbolic systems (see [2, 6, 21, 26]) is the non-
standard boundary condition (2.6). However, in what
follows, we show that system (2.1), (2.2), (2.3), (2.6)
exhibits unique, positive, globally defined C' solutions for
all positive initial conditions. Moreover, we show that
density and speed are bounded from above by certain
bounds that depend only on the initial conditions and the
physical upper bounds of the density and speed, i.e., pp.«

and v, = f(0), respectively. Before we show this, it is

important to emphasize that (2.1), (2.2), (2.3), (2.6) may be

viewed as a traffic flow model that

e can be applied to bounded domains, i.e., x €[0,1], without
assuming knowledge of density/speed out of the domain,

e is completely anisotropic, i.e., the speed depends only on
the speed of downstream vehicles,

e is a hyperbolic model of conservation laws of the form

0 0
—u+A(u)—M=0, where u = » , Aw)= vor .
ot Ox % 0

The matrix A(u) has two eigenvalues v and

—C ;
consequently, information travels forward at exactly the
same speed as traffic,

e allows only equilibria which satisfy the fundamental
diagram law v = f(p), i.e., when g(¢) =g, >0 then the

equilibrium  profiles are
V() = f(Pey) >

Peg =My | [(Pey))-
All the above features are important for a traffic flow model.

given by  p(x)=p,,

where  p,, >0 is a solution of

1I.C. Characteristic Form
Let p,, e(O, pmax) be a given constant. The nonlinear

transformation of the density variable
P2 = Py e+ £ (P e+v(6 1) exput, ) (27)
yields the equation

ow ow
E(r, x)+u(t, x)a(t, x)=0 (2.8)
with the boundary conditions
B a4, q@®) ) c+v(,0)
w(t,0) = ln[peq h( V(I,O)] c +f(,0eq )J >
ov _ B c+ f(pzq )
E(tal) =—H [V(f,l) f{peq exp(w(t’l)) C+V(l,1) ]J .
(2.9)

The hyperbolic system (2.2), (2.8), (2.9) is nothing else but
the hyperbolic system (2.1), (2.2), (2.3), (2.6) in Riemann
coordinates. Provided that the initial conditions are positive,
ie, p(0,x)>0, v(0,x)>0, for xe[0,1], we are in a
position to construct a unique solution to (2.1), (2.2), (2.3),
(2.6) by constructing a unique solution to (2.2), (2.8), (2.9)
and employing the nonlinear transformation (2.7).

11.D. Well-Posedness and Positivity of the System
The solution of (2.2), (2.8), (2.9) is constructed by using
the following theorem. Its proof is provided in Section 5.

Theorem 2.1: Let a € Cz(SR+ xR,) be any given function

and let ¢>0, wu>0 be given constants. Let
geC ! (SR . ><‘.R) be a given function for which there exists
a constant v, >0 such that the following inequality

holds
0<g0O,w)<g(v,w)<vy.,forall veR, ,weR (2.10)
Let 0,¢p ¢ W ([0,1]) be given functions with ¢(x) >0 for
all x €[0,1], for which the equalities
0(0)=a(0,¢(0), ¢'()=—uc™ (p)~g(e(D,0D)).
da da , ,
a7 0,9(0))+c ™ (0,9(0)9"(0) = —p(0)8(0) ,

hold. Then the initial-boundary value problem

ow ow ov ov
— (t,x)+v(t,x) — (t,x) =— (t,x)—c —(t,x) =0,
8t(x) W X)ax(X) at(X) Cax(x)

for all (¢,x) e R, x[0.1] (2.11)
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WE.0)— alt, v(10)) = % (1) + u(v(e) - gv(e). m(e) = 0,

(2.12)
(2.13)

forall £>0
w(0, x)—6(x) =v(0,x)—p(x) =0, for x €[0,1]

admits a unique solution w,v € C! (‘RJr ><[0,1]). Moreover,

the solution w,veC I(ER 4 ><[O,1]) has Lipschitz derivatives

on every compact S < R, x[0,1] and satisfies the following

inequalities for all (¢,x) e R, x[0,1]:
e, <max( 5,.J6].,)

min( it (o). min (0, ):Inf < max{ 5, ], )

(2.14)

(2.15)
<v(t,x) < max(max((p(x)), vmax)
0<x<1
where
B, =
max{ |a(s,v)|:s €[0,1],0 < v< max(gnaxl((p(x)), Vo j }
<x<

Notice that Theorem 2.1 holds for any (arbitrary) function
aeCz(iR +xR.). It should be noted that the solution

provided by Theorem 2.1 is a classical solution of the
nonlinear system of conservation laws (2.11) with boundary
conditions given by (2.12). The fact that systems of
nonlinear conservation laws may admit classical solutions is
well-known (see [2, 6, 21, 26]). However, an
existence/uniqueness result for the case (2.11), (2.12) is not
available in the literature and Theorem 2.1 is a novel result.

Remark 2.2: Theorem 2.1 shows that the appropriate (state)
space for studying the hyperbolic system (2.1), (2.2), (2.3),
(2.6) is the space X that contains all functions
(p,v) e (Wz’OO ([0,1]))2 for which there exist numbers
a, >0, a, €R such that
min( p(x),v(x)) >0 for all x[0,1],
ov'(1) =—u(v(1) - f(p()). p(0) = h(a, ).
W0)p'(0) + p(O)V'(0) = ayh'(ay)
In order to construct a solution (p[t],v[t])eX of (2.1),
(2.2), (2.3), (2.6) with initial conditions in (p,,vy) € X , we
apply Theorem 2.1 with

-1 @ c+v .
]“[p‘”’h( v jc+f(peq>} =0

(2.16)

a(t,v) = >
—1 c+v . _
]n(pet]pmax c+f(peq)J if v=0
c+f(pey)
gv,w) = f(peq exp(w) —QJ  Vinax = £(0),
c+Vv

Po (X +vy(x)))

O(x)=In
( CH S (Peg) )Py

J, @(x) =vy(x) for x €[0,1]

and we consider ¢ € C 2( +;(0,+oo)) to be the input of the
model. The set of admissible inputs consists of all functions
qgeC 2 (ﬂi‘ 5 (0,+oo)) that satisfy the conditions

79 (0)94(0) + o (O} (0) + h{ 4(0) J §(0)
vy (0)

v (0)
o q(@j 40
‘ [VO(O) 2o "

and p,(0) = /(g(0)/ v, (0)).
The solution (p[t],vt])e X of (2.1), (2.2), (2.3), (2.6) is
found by using the solution (w{t],v[t]) of (2.11), (2.12),

(2.13) in conjunction with formula (2.7). Notice that if
Vo (x) <v,, for all xe[0,1], then estimate (2.15) implies

that O <v(t,x)<v,, for all (z,x)eR, x[0,1] and for all

admissible g e C 2(‘)% +;(O,+oo)). Similarly, by performing
more detailed calculations than those in the proof of
Theorem 2.1, we are in a position to verify that if
Po(X) < Prax (c+vmax)/c for xe[0,1], then the estimate

0< p(t,%) < P (€ + Ve )/ ¢ holds for all (z,x) e R, x[0,1]
and for all admissible ¢ € C 2( + (0,+oo)).

III. COLLOCATED BOUNDARY CONTROL DESIGN

The main result of the present section shows that
stabilization of the equilibrium profile for a given desired
equilibrium density p,, >0 can be achieved by controlling

the inlet flow. It is important to notice that the stabilizing
feedback law depends only on the inlet speed.

We next describe the basic ideas behind the construction
of the feedback law. In order to derive a globally stabilizing
boundary feedback law for the traffic flow model (2.1),
(2.2), (2.3), (2.6), we employ the characteristic form given
by (2.2), (2.3), (2.7), (2.8) and (2.9). In order to drive the
transformed state w to zero, we use the boundary condition
w(t,0) =0, which can be expressed in terms of the density

and speed by the collocated boundary feedback law:

40 = p 10N+ vt0) e+ f(py) B
The feedback law (3.1) will not necessarily drive v to its
equilibrium value f (peq). To this purpose, we need to

employ an assumption that deals with the outlet boundary
condition, namely the assumption that the following
inequality holds:

| S

c+v

forall v=0, v f(p,,) (3.2)

In this way, existence and uniqueness of classical solutions
for the closed-loop system may be guaranteed by means of
Theorem 2.1 with
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(Pey)
quj w = £(0).

a(t,v)=0, glv,w):= f{peq exp(w)

Our main result is stated next.

Theorem 3.1: Consider the traffic flow model (2.1), (2.2),
(2.3), (2.6) and let p,, >0 be the desired equilibrium

density. Suppose that p,, Sc(c+f(peq ))71( max—e) and
that (3.2) holds. Then there exists Qe KL such that for

every  (py,vg)€X  for which the equalities
c+f(Pey) , 4,
Po(0)= Py ——= p(0) = o (e +v (0)) vy (0)
+v0(0)

hold, the initial-boundary value problem (2.1), (2.2), (2.3),
(2.6) with (3.1) and

P(0,x)— po(x) =v(0,x)—vy(x) =0, for x[0,]] (3.3)

admits a unique solution p,veCl(‘}er[O,l]), with
(p[t],v[t])eX for all t>0 satisfying the following

estimate for all t>0:
max| [In| 22X @ x) + max| |In X
0<x<l Peg 0<x<1 f(peq )
In v () t
S(Peg)

<0 max[ h{po—(x)]U + max(
peq 0<x<1

0<x<1
Remark 3.2: A sufficient condition for (3.2) is the
assumption that the function F(p):= (c+ f (p)) is

increasing the interval
ules FOF et 1o ) palive' 100).

Consequently,  (3.2)  holds  automatically = when
c+f(p)+pf'(p)>0 for all

pelpogler 10 e+ 1) Py i+ F(0y)) . For

example, when f(p)= Aexp(—b p), where A,b>0 are

constants (Underwood model), we guarantee that (3.2) holds
when the inequality cexp(bp)+ A> Abp holds for

_1 -
pE (peq (c+ A) (c+ Aexp(-bp,, )l Peg (1+c lAexp(—bpeq ))) LIt
should be noticed that in this case (3.2) holds automatically
when the speed ratio 4/c is sufficiently small no matter

what  p,, is: when cexp(2)24 the function

F(p)= p(c+ A exp(—bp)) is increasing on R, .

Remark 3.3: Estimate (3.4) is a stability estimate in the
sup-norm of the logarithmic deviation of the state from its
equilibrium values. The use of logarithmic deviation
variables is customary for systems with positive state values
(e.g., biological systems, see [19]).

Remark 3.4: Another thing that should be noted at this
point is that if the objective were local stabilization instead

of global, then we would need to assume inequality (3.2)
only in a neighborhood of f ( Peq ) .

IV. ILLUSTRATIVE EXAMPLE

We consider model (2.1), (2.2), (2.3), (2.6) with
f(p)=0.4exp(1—p) (Underwood model; see for instance

[34]), ¢=5, =10, po.=27, &=107°,
h(s) =s(1—g())+ Pmax g(s) for s >0, where
g(s)=0, for s [0, P — €],
g(s)=1,for s> p, .. and
exp\-(s+&— max)’1
g(s)= o )

exp(— (S +g—pmax)_] )+ exp(_ (pmax _S)_l )

for s e (pmax _g’pmax) .
The objective is to stabilize the equilibrium point that
maximizes the vehicle flow p(x)=p, =1,

V(X) = f(pe,)=2/5. It should be noticed that the open-
loop system (2.1), (2.2), (2.3), (2.6) with g(¢) =4y =2/5

has two equilibria: one is the desired equilibrium, and the
other one is the fully congested equilibrium
PX) =P =27, V(x) = f(Prae) = 0.4exp(=1.7).
Numerical experiments show that the fully congested
equilibrium attracts the solution of the open-loop system
(2.1), (2.2), (2.3), (2.6) with ¢(t)=gq,, =2/5 for many

initial conditions. We chose the initial conditions
pPo(x)=1 for x€[0,9/20], py(x)=2,for x[1l/2,]],
expl-(x—9/20)")
expl(x=9/20)" J+expl(x-1/2))’
for x €(0.45,0.5), and
vo (%) = f(py(x)), for x €[0,1].
For this particular initial condition (but also for many

others) the solution of the open-loop system (2.1), (2.2),
(2.3), (2.6) with q(t)=q,, =2/5 converges to the fully

Po(x)=1+

congested equilibrium P(X)=Pax =2.7,
V(X) = f(Pmae ) =0.4exp(—1.7). The deviation of the

solution from the desired equilibrium is shown in Fig. 1,
where the evolution of the sup-norm of the logarithmic
deviation from the desired equilibrium

X(t)= maxQ () 4, ])+ maxQ (v, )/ £ (4, )]) is
shown for system (2.1), (2.2), (2.3), (2.6) with g(¢)=0.4.
In this case we can apply Theorem 3.1,

condition Pey < C(C + f(peq ))71( max

condition (3.2) hold (recall Remark 3.2). Fig. 2 shows the
evolution of the sup-norm of the logarithmic deviation from
the desired equilibrium

X(t) = maXIan(p(t,x)/ peq1)+(r)r§1§1§lan(v(t,x)/ f(pq )]) for  the
closed-loop system (2.1), (2.2), (2.3), (2.6) with (3.1). It

since the

8) as well as
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should be noted that at time ¢=6.58, the solution has
become identical to the desired equilibrium. Fig. 3 shows
the time evolution of the control input ¢(¢). The control

input tries to keep the inlet density close to 1, while the
heavy congestion belt is “washed out” slowly. Finally, the
evolution of the density profile is shown in Fig. 4.

V. PROOFS

In this section we provide the proofs of all main results.

V.A. Technical Results

The proof of Theorem 2.1 requires two technical results.
The first technical result is stated next and due to its
simplicity, its proof is omitted.

Lemma 5.1: Suppose that there exist constants a,b,p >0,

c¢>0 such that the sequence {x(k)ZO}f:O satisfies the

following inequality for all k=0,1,....m—1:
x(k+1) <max((1+a (k) +b,(1-c)x(k) +p ).
Then the following estimate holds:

5.1

x(k) < exp(ka)(x(O) R A bk]  forall k=0,1,....m (5.2)
a+c

The following auxiliary result has interest on its own,
because it covers a case not studied in [2, 6, 21, 26]: the
case of a transport PDE with a non-negative (possibly zero
at some points) transport speed. A unique, classical solution
is shown to exist, which is differentiable and satisfies the
PDE even on the boundary (something that cannot be
guaranteed by the results in [21]): this is important for the
proof of Theorem 2.1, because Lipschitz continuity of the
derivatives of the solution is used in an instrumental way.
The proof of Proposition 5.2 is given in the Appendix.

Proposition 5.2: Consider the problem

O oyt ) 2 (6 x) =0, for £20, xe[0] (5.3)
ot ox

w(0, x) = p(x), for x €[0,1] 5.4

w(t,0) = a(t) , for >0 (5.5)

where @eW>*([0,1]), aeW*>*([0,T]) for every T>0
a(0) = ¢(0), a(0) +v(0,0)p'(0)=0

veCl(iRer[O,l]) is a non-negative function which has

with and

Lipschitz derivatives on [0,T|x[0,1] for every T >0. Assume
that v(t,0)>0 for all t>0. Then (5.3), (5.4), (5.5) has a

unique solution we(! (5R+ ><[0,1]), which has Lipschitz
derivatives on [0,T]x[0,1] for every T >0 and satisfies

||w[t]||o0 < max( (r)rgl?é(]a(s) ),
Moreover, if there exists a constant v, >0 such that
v(t,x) 2V, for all t=0, xe[0]1] and if a=0 then
w(t,x) =0 forall xe[0,1] and t>v_}

min -

(p||w) ,forall 1>0. (5.6)

V.B. Proof of Main Results
Proof of Theorem 2.1: Let arbitrary 7' >0 be given. We
will apply the method of finite differences (used in [15]).

Let N>c'u be an integer and consider the
parameterized (with parameter N ) discrete-time system
wi((k+1)8) = (1= Av, (k&) w, (k) + Av,(kS)w,_ (k) i=1,...N
Vi((k+1)8) = (1= A¢ ) (kS) + Acvy, (k6) i=0,..N-1
v ((k+1)3) = (1= 8 Joy (kS) + 126 g vy (kD) wy (k)
(5.7)

where k£ =0,...,m—1 is an integer (time of the discrete-time
-1

A= (1 +[ T max[(r;;?;(]((p(x)), Vmax » CJD T,

m = N(l +[ Tmax(ggj;(l(w(x)),vmax ,c):D >

wo (k&) = a(kS, vy (k5)), for k =1,...,m
h=1/N , 6=A4h

system),

(5.8)
(5.9)
and initial condition

w; (0)—6(ih) =v;(0)—p@ih) =0 i=0,.,N (5.10)
Notice that the definition of 4 guarantees that

A max(max(ga(x)), V max ,cj <1.
0<x<1

Moreover, definitions (5.9) together with the definitions of
A and m guarantee that T = m¢d . We next prove that

0< V; (k&) < maX((I)Igl;lé(l(?)(x)); vmax) ’

forall i=0,...,N and k=0,....m . (5.12)
Indeed, by virtue of (5.10) it follows that (5.12) holds for
k=0. Using (5.7) and (5.11) we guarantee that

0<v;((k+Do)< max(max((p(x)),vmaxj , for i=0,.,N-1,
0<x<l

(5.11)

provided that (5.12) holds for certain k=0,...,m—1. The fact

that N > ¢ ' i, together with (5.11) and (5.9) implies that
MO, (5.13)
Moreover, using (2.10), (5.7) and (5.13), we can guarantee

that 0<vy((k+1)9)< max[(r)naxl(go(x)), Vinax ) , provided that
<x<
(5.12) holds for certain £ =0,...,m—1. Consequently, we get
0<v, ((k+1)8)< max((l)naxl((p(x)), vmaxj , for i=0,..,N,
<x<

provided that (5.12) holds for certain £k =0,...,m—1.
Define

B = max{ |a(t, v)|:t €[0,7],0<v< max(gneu(l((o(x)), Vmax j } .
<x<
(5.14)
We next prove that for all i =0,...,N and k=0,....,m
|w; (k6| < max(|6]_ , B; ). (5.15)

Indeed, by virtue of (5.10) it follows that (5.15) holds for
k =0. Suppose that (5.15) holds for all i=0,...,N and for
certain k =0,...,m—1. Using (5.7), (5.8), (5.11), (5.12) and
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Fig. 1: The sup-norm of the logarithmic deviation from the
desired equilibrium for the open-loop system (2.1), (2.2),
(2.3), (2.6) with ¢(t)=¢q,, =2/5.

X(t)

15

0.5

0 1 2 3 - 5 toe

Fig. 2: The sup-norm of the logarithmic deviation from the
desired equilibrium for the closed-loop system (2.1), (2.2),
(2.3), (2.6) with (3.1).

the triangle inequality we guarantee that
|w, ((k+ 1)) < max(|g] . B; ), for i=1,...,N. Using (5.7),
(5.12), (5.14) and the triangle inequality, we guarantee that
[wo ((k + 1)) < max(g]_, By ). Thus, (5.15) holds.

We next prove that
v, (k6) > mm(&lg(go(x)), min{ g(0, w):|wf < max( B, , 4] ) }j

forall i=0,...,.N and k=0,....m . (5.16)
Indeed, by virtue of (5.10) it follows that (5.16) holds for
k =0. Suppose that (5.16) holds for all i =0,..., N and for
certain k£ =0,...,m—1. Using (5.7) and (5.11) we are in a
position to guarantee that

v (k+1)5) > mm(gg(q)(x)), min{ g(0, w):uf < max( B, ¢] ) }j ,

for all i=0,...,N—1. Moreover, using (2.10), (5.7), (5.15)
and (5.13), we can guarantee that

vy ((k+1)0) > min(ggrsll((p(x)), min{g(O, w):|w| < max(BT ,||0||00)}J .
Thus, (5.16) holds.

0.45

035

0.3

q(t)

0.25

0.2

0.15
0 1 2 3 4 t 5
Fig. 3: The control input ¢(¢) for the closed-loop system
(2.1), (2.2), (2.3), (2.6) with (3.1).

2.1

19

Yg

11

0.9
0 0.2 0.4 0.6 0.8 X 1

Fig. 4: The density profile for the closed-loop system (2.1),
(2.2), (2.3), (2.6) with (3.1). The dashed line is the initial
condition, the dotted line is for # =1.23, the dotdash line is
for t=3.11 and the solid line is for t =7.04 .

We define for (¢,x)€[0,7]x[0,1] and for every integer
N>c 'y (recall that h=N""', §=Ah, mS=T):
w(k&, x; N) = (i + 1= xN)w, (k&) + (xN —i)w,,, (k&)
v(kS,x; N) = (i +1=xN v, (k&) + (xN —i}v,,, (k5)
with i =[xN], for x€[0,1), k=0,....m, (5.17)
w(kS,1; N) = wy (k&) and v(kS,1; N) = v (k5),
for k=0,....m, (5.18)
(1,0, N) = (k1= 27N o, N + (N = o+ )6, )
v(t,x;N) = (k +1-271 tN)V(k5, xN)+ (/1*1 N - k)v((k +1)8,x;N)
with k =[A7N] for x€[0,1], 1€[0,T).  (5.19)

It follows from (5.12), (5.15), (5.16) and definitions (5.17),
(5.18), (5.19) that the following inequalities hold for all

(¢,x) €[0,T]x[0,1] and for every integer N > ¢! R
min(g?igl(go(x)), min{g((), w) M < max( B, "9"00 ) }j

- (5.20)
<v(t,x;N) < max((r)nzn(l((p(x)), vmax)
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|wit, x; N)| < max(|6]_ , B; ) (5.21)
We next describe the major steps in the proof. We also use
the notation Q:=[0,7]x[0,1].
Step 1: We that there constant
L=L(T,0,p,a)>0 such that for every N>c 'y the
functions w(-;N), v(-;N) are Lipschitz on Q with
Lipschitz constant L . This step is very important because it

allows the application of Arzela-Ascoli theorem. More
specifically, it follows from (5.20), (5.21) that the sequences

ey, DCNfyoye  with
N* =[c ' u]+1, are bounded

equicontinuous. Therefore, compactness of Q and the
Arzela-Ascoli theorem implies that there exist Lipschitz

show exists a

of  functions

uniformly and

functions w,v:Q—> R and subsequences {w(~;N p )}:3:1,

{V(-;N q )}:):1 for an increasing index sequence {N q }(::1’
which converge uniformly on Q@ to w and v, respectively.
Moreover, w and v are Lipschitz on Q with Lipschitz
constant L and satisfy the same bounds with w(-; N) and

v(-;N), i.e., for (¢,x) € Q it holds that

min( min (o). min{ 0, wyof < max( ..o, )
<xs (5.22)

<v(t,x) < max((r)rslfé(l(go(x)), vmaxj

Iwit, )| < max(j6]_, B;) (5.23)
Using the fact that w, v are Lipschitz on Q, (5.8), (5.10)
and the fact that {w(-;N p )}::1 , {v(';N q )}::] converge
uniformly on Q to w and v, we conclude that (2.13) holds
and w(t,0) =a(t, v(t,O)) for t€[0,T].
Step 2: We define £:[0,77— R by means of the equations
&)= (£ ~g(E0). w(t.D))=0, for 1€[0,7] (5.24)
S(0) =) (5.25)
and we show that £(¢) =wv(z,]) for #e[0,7]. Notice that
£ (0.T)).
Step 3: We define the function v :[0,7]x[0,1] > R

- x+ct) if x+ct<l
v(t,x)= # 4 ) ¥ , (5.26)
§(t—c (l—x)) if x4ct>1
Due to the facts that &e W >*([0,T7]), @ € W>*([0,1]) and
since the compatibility conditions (5.25),

o'()=—c"' ulp(1)—g(p(1),6(1))) hold, it follows that

veCl(Q) has  Lipschitz  derivatives  satisfying

B =c @y for (txeQ, F(O.x)=g(x) for
ot o0x

x €[0,1] and V(1,1)=&(t)=w(t,]) for ¢ [0,7]. We show that
V(t,x)=v(t,x) for (t,x)eQ. Thus, it follows from (5.24),

(5.26) that the function v is of class CI(Q) with Lipschitz

derivatives and satisfies @(t’ x):c@(t, x) for (tx)eQ,
ot ox

%(t,l):—u(v(m)—g(v(t,l),w(nl))) for 1€[0,7] and

v(0,x)=g(x) for xe[0,].

Step 4: Proposition 5.2 implies that there exists a unique C'
solution w:Q — R of the problem

o o
), ) 2 (1, x0) =0, forall (4,x)eQ (5.27)
ot ox

w(t,0) = a(t,v(2,0)), for all ¢ <[0,T] (5.28)
w(0,x) =6(x), for all xe[0,1] (5.29)
Moreover, w has Lipschitz derivatives. We show that
w(t,x) =w(t,x) for (¢,x) e Q. It follows that the functions
w,v are of class C'(Q) with Lipschitz derivatives and
satisfy (2.11), (2.12), (2.13) on Q .
Step 5: Finally, we prove that the solution is unique.
Step 1: Lipschitz Regularity
Define for every i =0,...,N—1 and £ =0,...,m :
Yi(k8) = h™" (wi.y (k8) = w; (k)
Pi(k8) =™ (v, (k6) = v; (k&)
Using (5.7), (5.8), (5.9), (5.10), the fact that
f£(0) =a(0, (/)(0)), we are in a position to verify that the
following equations hold for all £ =0,...,m—1:
Vi (k418 = (1= 2v;, (kS))y; (kS)
+ AV (k) y, (k&) =8 p; (kS)y;; (k&)
fori=1,....N—1
Yo((k+1)8) = (1= v, (k8) )y (k&)
~ 187N a((k+1)8, vy (k6)) — a(kS, v, (k5)))
—h N a((k+1)5, (1= 2 ¢y (k&) + A ¢ v, (kS))- al(k +1)8, v, (k&)))
(5.32)
pi((k+1)8) =(1=A¢)p; (k&) + Ac p;y (KS)
for i=0,1,..,.N-2
Pya((k+1)8) = (1=Ae)py ; (k6)
+ 12 (g(vy (k8), wy (k6)) = vy (k&)
Using (2.10), (5.11), (5.12), (5.16) and (5.33), (5.34), we
get forall £=0,....m—1:

,-Zg??xfﬂp,‘((k+1)5)|)g

(5.30)

(5.31)

(5.33)

(5.34)

max( max (p; (k8))),(1-2¢) max (Ipi(k5)|)+,u/1\7maxj
i=0,..N-1 i=0,...N-1
(5.35)

0<x<1

from (5.35) and Lemma 5.1 the estimate for £ =0,...,m :
(ko))< (O))+ e V- (5
l_:g’r}%_lﬂpl( ) l_:g’r}%_l(lpz( N)+¢ T (536)

where V.. = max(max(go(x)),vmaxj. Therefore, we obtain
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Definition (5.30) and (5.10) imply |p,(0)| <]l
i=0,...,N—1. Consequently, we get from (5.36) that
i:g%il(lpi kS))< P=lp], +¢ ™ Ve

for k=0,...,m . Using (5.11), (5.12), (5.16), (5.31), (5.32),
(5.37), we get for all £=0,...
H(k+1)<
max((1+ 6 P)H (k),(1= A v JH (k) + A R(1+¢ P))

where v, = min( 5221((0(){))’ min{ g(0,w) M < max( B ,||€||00 ) }j ,

R :=max 0
ot

7(Z: V)
H(k)= gnax (]yl- (k5)|). Using (5.38), Lemma 5.1 and the
i=0,...N-1

l+cP j

Vmin
(5.39)

Definition (5.30) in conjunction with (5.10) implies that

i 0 < o],
from (5.36) for all £=0,..

max_ v, (k5)|)<Y—exp(PT)Q|9 I, +Rvpla (1+¢P)). (5.40)

It follows from (5.30), (5.37) and (5.40) that the following
inequalities hold for all 7, j € {0,...,N} and k=0,....m

|wl» (k&) -w, (k5)| <Hi-jlr, |vl. (k8)-v,; (k5)| <Hi-jIP (5.41)
Notice that P,Y , defined in (5.37) and (5.40), respectively,
depend only on 7,60,¢ and a.

(5.37)

,m—1:

(5.38)

<y<
max

+a—a(t,v) 0<vLy,
ov

te[O,T]} and

fact that mé =T, we get for all £=0,...,m

,-:5?,‘?‘1’@,1('” (k)|)< exp(PT ){i_gﬁxl(ly,- (0))+R

for all i=0,...,N—1. Consequently, we get

Next define for every i =0,...,N and k=0,....m—1:
£ (k8) = 87 (w; ((k +1)8) — w, (k5))
1;(k8) =57 (v, (k +1)8) = v, (k&)
It follows from (5.7) and definitions (5.9), (5.30), (5.42) that

(5.42)

the following equalities hold for £=0,...,m—1:
(ko) ==v,;(kd)y;_, (ko) i=1,..,N
n; (ko) =c p; (ko) i=0,.,N-1 (5.43)

Ny (k8) = u(g(vy (k8), wy (k8)) vy (k&)
Using (5.43), (2.10), (5.12), (5.37), we get for k=0,....,m—1:

‘r%)laxN(]I]i (ké')|)£ cP+uv,,. . (5.44)
It follows from (5.42), (5.7), (5.8), (5.10) and the fact that
f(0)= a(O, go(O)) that the following equalities hold
0 o (ko) = a((k+1)0,vy(kd))— a(kd,vy(kd))+
a((k+1)8, (1= 2 c)vy (k) + A ev (kS)) - al(k +1)8, vy (kS))
(5.45)
for k=0,..,m—1. Equalities (5.43),(5.45) in conjunction
with (5.12),(5.37),(5.40),(5.9),(5.30) imply for k =0,...m—1
max (¢ (¢, (ko))< RA+cP)+7,, (5.46)

It follows from (5.42), (5.44) and (5.46) that the
following inequalities hold for i =0,...,.N and £,/ € {0,...,m}:
|w; (k&) —w; (16)| < Sk — | (R(L+CP) + V0 Y )

|v; (k3)—v; (18)| < Sk — 1| (cP+ 11V ey )

It follows from (5.17), (5.18), (5.19),(5.41), (5.47) that there
exists L:=L(T,0,p,a) such that for every N>c 'y the

(5.47)

following inequalities hold for all x,z€[0,1], ¢,z €[0,T]:
|w(t, x; N)—w(z, z; N)| +|v(t, x; N)—v(z, z; N)| < L(Ix—z| +|t—r|).
(5.48)

Step 2: Solution of the ODE (5.24)
We define & by means of (5.24), (5.25). The fact that &

can be defined on [0,7] is a consequence of the formula

£ty = expl— ut)p()-+ 4 [ expl— 41 (1 =) (£(s). (s s -
0

which together with (2.10) and (5.23) imply the inequality

min(p(1), min{ g(0, w): f < max{ B |6 ){)< &) < max(p(1), vy )

for t€[0,7]. Pick any N > c_l,u. It follows from (2.14),
(5.24) that the following inequality holds for £ =0,..

£k +1)8) = (1 - 1 8)E(kS) — 1 8 g(E(kS), W(k51)]
< y52Q‘§“(l+G)+GL)/2

where 7 = N(1+[ Tmax((r)naxl(qo(x)), Vinax » J:D, 0=A/N,

(5.49)

-1
A= (1 +|: T max(max((o(x)), Vimax » CJ:D 7, L is the
0<x<Il

Lipschitz constant of w,

S= {(v, w) e R, xRy <max((1), Ve )s W < max(BT,"f"w)},

G= max{ a—g(v, w)[+ (v w)|: (v, w) ES} and HfH maxQ (t)‘)
ov 0<<T

Using (5.7), (5.49) and defining e, (k) = E(kS)—vy (kO)
we get for £ =0,...
le ((k +1)8)| < (1+ 45 G)ey (kS)|
+ 1S Glw(kd,1) ~ w(kd L N)| + 8> Q|§'||(1 +G)+ LG)/ 2

Inequality (5.50) in conjunction with Lemma 5.1 and the
facts that T=md, ey(0)=0 (a consequence of (5.25) and

(2.13)) implies the following estimate for k=0,...,m :
ley (ko)| <

ycTexp(ycTG{ max(lw(t D= w(t,; )+ Q|.§||(1+G)+LG)j
(5.51)

,m—1:

(5.50)

Pick any #€[0,7] and set k =[t5']
|£@) = v(@,D)| < |E(0) = v(t]) = E(kS) + v(kS )| +|E(kS) = v(kS )|
< (L + ||§||)§ + |eN(k5)| + 0mS;aleT|v(s,l) - v(s,l;N)|

. Then we get
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where L is the Since

WCiN

g=1’

Lipschitz constant of v.
{v(-;N p )}Z’=1 converge uniformly to w and
v as g —>+oo, the above inequality in conjunction with

(5.51) shows that &£(z) =v(z,]) forall £ [0,T].

Step 3: Solving the PDE for v
N > c_l,u.

Pick any Define A=1/N,
m = N[1+l: Tmax((t)naxl((p(x)),vmax ,cj}j , O0=A/N,

integer

-1
A= (l +[ T max(max((p(x)), Vinax c):D 7 and notice that
0<x<l1
: ~ . ov ov
since v satisfies “—(y,x)=c——(,x) for (,x)eQ,
ot ox

v(0,x)=p(x) for x€[0,]] and V(t,1)=£()=w(tl) for ¢€[0,T] then
we get for k=0,....m—1,i=0,...,.N—1:
V((k+1)8,ih) = (1= AW (kS, ih) + cAV(kS, (i +1)h) + cerr(k, i)
(5.52)
where

(k+1)6 oy v
err(k, i) = I [é (t,ih) - é kS, ih)Jdt

ks (5.53)
Dl ¢ o g
) jh (E (k6,2) = (k5. zh)de
Defining e, (k0) =V (kd,ih)—v(kS,ih; N) for k=0,...m
and i=0,.,N, we get from (5.7), (5.10), (5.17), (5.18),
(5.52) and the facts that v(0,x)=¢(x) for xe<[0,1] and
v(t,l) =) =w(t)) for te[0,T], k=0,...,m-1, i=0,.,N-1:

el (k+1)8)=(1-Ace) (k5,ih)

(5.54)

+cA e (kS, G+ Dh)+cerr(k,i)
e’ (0)=0, (5.55)
el (k&) =0. (5.56)

Using (5.9),(5.11),(5.53),(5.54),(5.56), we get
max qef ((k + 1)5)‘)3 max (je; (k§)‘)+ 2¢8 G(N), (5.57)
i=0,...N i=0,...N

for k=0,..,m-1, where

-2
ox

(t,x),(7,2) €Q,
ox

G(N) :=max
=z +|x—z| <A+ HN

(5.58)
Using Lemma 5.1, (5.55), (5.57) and T=md, we get

A%laxNQef (k5)US 2¢T G(N). Thus, we obtain

[5(t,x) = v(t,x)| < 2L(1+ A)N~" +2¢TG(N)

+ max (|V(T,Z; N)- V(T’Z)D
(1,2)eQ

(5.59)

for (t,x)eQ, where L is the Lipschitz constant of v and v .
Definition (5.58), the fact that v has Lipschitz derivatives

10

on Q implies that lim (G(N))=0. Moreover, since
N—+o0

{v(~;N q)}:’:l converges uniformly to v as g — +o, we get

from (5.59) that v(z, x) = v(¢,x) forall (£,x) Q2.

Step 4: Solving the PDE for w
N > c_l,u.

Pick any Define Ah=1/N,
m = N[1+[ Tmax((gnaxl(go(x)),vmax ,CJ:D, O=A1/N,

-1
A= (1 +|: T max[grﬁl?é(l((ﬂ(x))a Vmax » CJ:D

7 and notice that
since w satisfies (5.27) for (¢,x) e Q, we get
W((k +1)8,ih) = (1= A v(k&, ih) kS, ih)
+ Av(k6,ilyw(ks, (i —1)h)+ Err(k,i)
for k=0,....m—1, i=1,....N, where
T (oW o
Err(k,i) = A v(kS, ih) I [— kS, x)— == (k&, ih)de
W ox ox

integer

(5.60)

(k+1)6 5 _ 5 _

- I [v(t,ih)—w(t,ih)—v(ké,ih)—w(kc?,ih)Jdt
. ox ox
ko
(5.61)

Defining e;" (k&) = w(ko,ih) —w(kS,ih; N) for k=0,...,m
and i=0,..,N, we get from (5.7), (5.9), (5.10), (5.17),
(5.18), (5.28), (5.29), (5.30), (5.60):

e ((k+1)8) = (1-Av(kd,ih)Je}" (kS)

=5 (v(k6, ih)—v(kS, ih; N))y,., (k6) + Av(kS, ih)e!, (k&) + Err(k, i)

for k=0,...m—1, i=1,..N (5.62)
e/ (0)=0, for i=0,...,.N (5.63)
ey (k6)=0, for k=0,...,m (5.64)

Using (2.15),(5.9),(5.11),(5.40),(5.61),(5.62), (5.64), we get
max qey ((k + 1)5)‘)3 max (]e;v (k5)‘)+ SG(N), (5.65)
i=0,...N i=0,...N

for k=0,....m—1, where

:(t,x),(1,2) €Q,

ow ow
— (6, x)——(7,
6x( x) 6X(T z)

G(N) =v,,, max
t—7|+]x-z| <1+ )N

+AN! Lmax{

a—w(t,x) (t,x)eQ }+Y max (‘v(t,x)—v(t,x;N)‘)
ox (t.x)eQ

(5.66)
and V., :max((l)naﬁ(go(x)),vmaxj. Using Lemma 5.1, (5.63),
<x<
(5.65) and the fact that T=mo, we get
ArgaxNQe;“(ké')US TG(N). Thus, the following inequality holds
|i(t, x) —w(t,x)| < 2L(1+ )N~ + TG(N)
(5.67)

+ max (|w(r,z;N)—w(r, z)|)
(7,2)eQ
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for (t,x)eQ, where L is the Lipschitz constant of w and
w. Definition (5.66), the fact that w has Lipschitz

derivatives on Q and the fact that {v(-;N p )}Z)=1 converges

uniformly to v as g —+oo imply that lLm ((N;(Nq)):o.
g—>+0

Moreover, since {w( 3N, )}

00 .
, converges uniformly to w
9=

as g — +oo, we get from (5.67) that w(¢, x) = w(¢,x) .

Step 5: Uniqueness of solutions

Consider two solutions (w,v),(w,V) e(Cl(SR+ ><[0,1]))2 of
(2.10), (2.11), (2.12). It then follows that the functions
e, =w—w, e, =v—v satisfy for (z,x) e R, x[0,1]:

de,, Oe, ﬂ
W(z‘,x)ﬂz(t, X) 7 t,x)+e,(t,x) x (t,x) o
de, de, ~ '
= Py (t,x)-c o (t,x)=0
€y (t,O) = a(ta V(f,()) +e, (t,O)) - (l(t, V([,O)) > (5 69)

10
H ot @)= g(v(t,l) +e, (@D, w(e,1) + Ew (I’l)) (5.70)

—e, (t.) - g(v(e.D), w(t.D))
e,(0,x)=e,(0,x)=0, (5.71)
Let 7>0 and let ScR, xR be a compact set that
contains both solutions on [0,77], i.e., (v(¢,x),w(t,x))e S
and (v(¢,x),w(t,x))eS for all (¢,x)eQ:=[0,T]x[0,1].

Let M >1 be a constant that satisfies Mc > Q*V,_, where

%(V’ W)+

a—g(v,w) (v,w) € S}
ow

Q= max{

+ max{

and v, = max(max((p(x)), vmaxj . Define the functional:

da
——(t,v
8v( )

it €[0,T],(v,w) e S}

0<x<1
1 M 1
V()= Ejevzv @, x)dx—i—?jevz (t.x)ds+ (1)) (5.72)
0 0
Using  (5.68), (5.69), (5.70),
Mc> 0%, , it follows that

(5.71) and the fact

1

1
V)< %(”wx |+ "vx”{j €2 (1, x)dx +M.([ e2(t, x)dxj

0

Mc o*u’ ),
+( 5 +Q+—2v . Jev(t,l)

min

for te€[0,7], where vT»X:=max{Z—w(t,x)
X

(t,x) e Q },

vi] = max{

conjunction with (5.72) shows that there exists a constant

Z—V(t,x) (t,x)eQ } The above inequality in
X
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K >0 such that V(1)< KV (f) for te[0,T]. Gronwall’s
lemma in conjunction with (5.71), (5.72) implies V' (t)=0
on [0,7]. Since T >0 is arbitrary, we conclude that
w(t,x)—w(t,x)=v(t,x)—v(t,x)=0. <

Proof of Theorem 3.1: Let arbitrary (p,,vo)€X be

ct+ f(Peg)
c+vy(0) ’

25(0) = po(0)(c+v,(0))'¥(0) hold. The solution of (2.1), (2.2),

(2.3), (2.6) with (3.1), (3.3) is constructed by applying the
transformation (2.7), using (2.4) and the condition

given, for which the equalities p,(0) = p,,

-1
Peg < (1+c"1 S (pe )) (,omax —8). More specifically, we get
the initial-boundary value problem (2.11) with

+ /(PP exp(w(al))]} 0

c+v(t))

w(t,0) = % )+ u [v(t,l) -f [ (c

forall r>0 (5.73)

w(0, x) —wy (x) =v(0,x) —vy(x) =0, for x €[0,1] (5.74)

wo(@ =tnllc+ (o))" 2 poe+ (), for vefo1] (5.75)
and p(¢,x) may be obtained by (2.7). Exploiting the fact
that f* is non-increasing and Theorem 2.1, we conclude that
(2.11), (5.73), (5.74)
w,veC! (ER + ><[0,1]), which has Lipschitz derivatives on

every compact S < R, x[0,1] and satisfies

e, <]hwoll,.
minf it (v (). /oy explpoo], i+ 10,,))

admits a unique solution

(5.76)

(5.77)
<v(t,x) < max((r)rglgg(vo (x)), f (0))
for all (¢, x) e R, x[0,1]. Define for all (¢, x) e R, x[0,1]:
b(t, ) =62/ [ (pey)), o) =g/ f(pyy)) (5.78)
Notice that (5.77) in conjunction with (5.78) gives:
o =i (o Jool- ol o 4 1o ol )

<v(t,) < max(/(p,, Jexp(lto], )./ (0)

(5.79)
Moreover, Proposition 5.2 implies that
w(t,x)=0 forall xe[0,]] and £>v_} .  (5.80)
Equations (2.11) and (5.73) imply that the following
equation holds for all (¢,x) e R, x[0,1]:
vo(x+ct) if x+ct<l1

vt x) = {g(r —e(1-))

where £: R, — R is the solution of the problem

. +
&)= —u[«:(r) —f(peq exp(w(m))ccf—if;e)")n (5.82)

$(0) =vo (D).

) (5.81)
if x+ct>1

(5.83)
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Formula (5.81) implies for every >0, t>0:

lere], < exp(=a(et 1), + o™ )SSQ[ h{—fe(g/(): )J ]
(5.84)
Using the transformation
¢ =m0/ f(pa)), (5.85)

we get from (5.82):

F0) =1 E0ECQ)

1) c+ flpy Jexp(¢ (1)

Inequality (3.2) implies that O0e®R is a globally
asymptotically stable equilibrium point for system (5.82)
with w(z,1) =0. Consequently, it follows from (5.80) and

Theorem 2.2 in [16] that there exists a function P e KL
such that the following estimate holds for all 7> v

(&7 700 < Plnlelvaty ) (o))t —vi ) (587)
Since (£(¢), M(1,1)) e R? takes values in a compact set

S(wy,vy) = R? for all >0 (recall definition (5.85),

( Pey exp(W(t,l))(C AT ))J] (5.86)

(5.76), (5.79) and (5.81)) and since
F(Eow) = —p| 1— exp(— 4’) Peg exp(w c+ f(peq)>J is a
e “( Floa) T\ e 1T, Joxnlc)

C' mapping, there exists a non-decreasing function
L%, >R, such that [0] < (2] pewo], +[oo], )-

Using Gronwall’s Lemma in conjunction with (5.76) and the
previous inequality we get

€@ < exp(Lvp €O+ Lvgh bwo ). for 7 e[0.v1,1,
where L:=L(jw|_ +[bo], ). Combining (5.87) with the
previous estimate, (5.78), (5.85), (5.83), we get for 1 >0:
(&0 £ o))
< P(exp(Lv;llin X“bO"OO + Lvr;lin"w()"w ), max(0,¢ - v ) ) (5.88)
vexpl(L+ D@k~ 0ol + Lyatalwol, )
Using (5.76), (5.84), (5.88), (5.80), we get for >0, t>0:
leteil, + iz,
< P(exp(Lv;,lin mbo ||OO + Lv;llin"wo ||DO ), max(0,7—c¢™ - v;llm) )
vexplL+D@viy + ¢ =0 lbol, + Lvphawoll, )
+ exp(— o(ct— l)mbo ||O0 + exp(— o(t- vr;lin )]|wo ||OO

(5.89)
Estimate (5.89) fact that

L= Lﬂ|w0||oc +[1bo ||SO) , where L is a non-decreasing function

in conjunction with the

and definition (5.79) of v_;, implies that there exists
G € KL such that the following estimate holds for > 0:
el +[wicl], < Gllol,. +l, ). 590)
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Estimate (3.4) for certain Qe KL follows from (5.90), (2.7),
which imply the following inequalities for (t,x)e R, x[0,]]
In p(t7 x) 1—eXp(b(t, X))

Peq ¢+ f(pPey) exp(b(t, x))
< [w(t, )]+ ¢ £ (P Y explbe, )| b, )

| 2EY) 1—exp(b(z, x))
Peq ¢+ f(Pey) exp(b(t, X))

<fn(p(t, %)/ poy )+ 7 £ (P explbe, )| oz, »)
Indeed, the two above inequalities imply the existence of a
function @ € K, such that the estimates

max(in(o(t, )/ p,, )< olpie]], +[uici], ),

0<x<1

Iutel,, < of Jo],, + max (o)., )

hold for £ >0. The proofis complete. <

< W, 20|+ £ (Peg)

|w(t, x)l <

+(Pey)

VI. CONCLUDING REMARKS

The paper provides results for a hyperbolic traffic flow
model on a bounded domain. It has been shown that for all
physically meaningful initial conditions, the model admits a
unique, classical solution that remains positive and bounded
for all times. Moreover, it has been shown that global
stabilization in the sup-norm of the logarithmic deviation of
the state from its equilibrium point can be achieved by
means of a boundary feedback law. It is important to notice
that the feedback law depends only on the inlet speed.
Future work may involve the development of more
complicated models, retaining the characteristics of the
proposed model, to capture secondary features of traffic
dynamics. More complicated models can also expand the
validity of the model to uncongested roads with free flow.
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APPENDIX

Proof of Proposition 5.2: Let 7 >0 be given. We follow
the methodology of finite-differences presented in [15].
Since v(¢,0)>0 for all >0, by continuity there exists

&(T)>0 such that v(t,x) >0 for t€[0,7], x<€[0,&(T)].

Let N* >1 be an integer for which the inequalities

2 max{

ov
—(t,
at( x)

min

:(t,x) €[0, T]x[0,1] } <N*V2

and 2< N*&(T) (A1)
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=min{v(t, x):(t, x) [0, T]x[0, &(T)] }.

Let N> N" and consider the discrete-time system
w; ((k+1)0) = (1 -Av; (kﬁ))wi (k) + Av; (kOYw,_, (ko) ,

hold, where v,

fori=1,..,.N, k=0,1,....m—1 (A.2)
Wy (kO) = a(kd) , for k=0,1,...,m (A3)
w;(0)=@(ih) , for i=1,...,.N (A4)
where
h=1/N,o6=Ah (AS)

v, (k&) =v(k8,ih), for i =0,1,...N , k=0,1,...m (A.6)
A=T/([Tv 1+1) (A.7)

m= N(Tv, 1+1) (A.8)

Ve = max{v(t, x):(t,x) [0, T]x[0,1] }. (A.9)

Notice that the above definitions guarantee that

T=ms, (A.10)
Av_ . <I.

max < (A1)
Using (A.2), (A.3), (A.6), (A.9) in conjunction with (A.11),
we obtain the estimate for £ =0,1,...,m—1

fil&?(zv(lw" ((k+1)5))< max( la] [:E?quwi (k5)|)j ,(A12)

where ||a|| ‘= max (|a(s)|) . It follows from (A.3), (A.4) and
0<s<T

(A.12) that the following estimate holds
Ar(r]laxN(le» (k)< max([la],| @], ), for k=0,1,....m. (A.13)
i=0,...

We define w(z, x; N) for (z,x)€[0,7]x[0,]] and N>N":
kS, x; N) = (i + 1= xN w, (k&) + (xN —i)w;,, (k&)
with { =[xN], for x€[0,1), £ =0,...m, (A.14)
w(ko,; N)=wy (k6), for k=0,...m, (A.15)
w(t,x; N) =
(k +1- /TltN)w(ké', x; N)+ (/1*1 N — k)w((k +1)8,x;N)
with k =[A'N] for x €[0,1], 1€[0,T). (A.16)
It follows from (A.13) and definitions (A.14), (A.15),
(A.16) that the following estimate holds for every N > N*:
max(lw(t, X; N)|)S rnax("a” , ||(o||oO ), for 1 €[0,T]. (A.17)

0<x<I1
Next define for i =0,1,....N—1, k=0,,....m
y; (k&) = h™ (w,,, (k&) — w; (k) (A.18)
Yy (k) =yy_ (k) . (A.19)
Equations (A.2), (A.3) in conjunction with definitions
(A.18), (A.19) imply that the following equalities hold:
Vi ((k+1)8) = (1= A v, (k6))y, (k&) + A v, (k) y,_, (k&)
— 2 (v (k&) = v, (kS))y,_, (k6) ’
for i=1,..,.N-1, k=0,,...,m—1, (A.20)
Yok +1)8) = (1= 2w (k6))yo (kS) = 26 a((k +1)8) - a(ks)),
for k=0,1,...,m—1. (A.21)
Using the fact that |V[+1 kS)—v; (k5)| < h”vx " for all

i=0,.,N—-1, k=0l,....m, where

13

? (t,x) fact
X

HVXH = max{ :(t,x) €[0,T]x[0,1] } , the

|la((k+1)5)—a(kd)| < 5|d]| for all k=0,l,....,m—1, where
||d|| = max{|c'z(t)| 1t e[0,7] } and the fact
v (k&) 2 v, >0 for all k=0,1,..,m, where
Vinin = Min{ v(z, x):(t, x) €[0, T]x[0, &(T)] } (a

consequence of (A.l), (A.5), (A.6) which imply that
2h<g(T)), in conjunction with (A.19), (A.20), (A.21),

(A.5), (A.6), (A.9), (A.11), we get for k=0,1,...,m—1:
max ([y, ((k+1)5)])<
i=0,..N

that

max[(l +0 ||vx || )i :IgaxN(I Vi (k5)|) (1 = AViin )l_ :r(r)laxN

v ko) 2

(A.22)
Using (A.22) in conjunction with (A.10), the fact that

|y,« (0)| < ||(p’||OO for i =0,...,N (a consequence of definitions
(A.3), (A4), (A.18), (A.19) and the fact that a(0)=@(0))
and Lemma 5.1, we obtain the estimate for £ =0,1,....m:

max (ko))< ¥ = expl o] N, +vitali])- 423
Next define for i =0,1,...,.N, k=0,1,....m—1

pi(k&) =57 (w,(k+D&)-w, (k)  (A24)

pi(m3) = p,((m-1)5). (A25)

Using (A.2), (A.3), (A.5), (A.9), (A.18), (A.24), (A.25)

(which imply that p,;(kd)=-v;(kd)y,;(kS), for
i=1,..,N, k=0,,....,m—1
po (k&) =5 (a((k+1)8)—a(k5)), for k=0,,..m-1),
the fact |a((k+1)8)—a(ks)| < 5d| for k=0,1,...,m—1, and
estimate (A.23), we obtain for £ =0,1,...,m

s k0)) < (]
Definitions (A.18), (A.24) in conjunction with estimates

(A.23), (A.26) imply for i, j =0,1,....N, k,[=0,,...,m:

[wi (k)= w; (15 < hli= Y+ k1| max(vy,, Y. Ja]). (A27)
Estimate (A.27) in conjunction with (A.14), (A.15), (A.16)
imply that there exists [, = LI(T ,a,V, go) such that the following
inequality holds for N>N*, t,7€[0,T], x,z€[0,]]:

|w(t,x;N)—w(r,z;N)| <L (Ix—z|+|t—r|).
Next define for £=0,1,...,m—1:
w(k8) = h7 (67 (a(Ck +1)8) —a(kd))+v, (k8)yo (kD). (A.29)
It follows from (A.29) and (A.21) that
v, ((k+1)0)
p(lk+1)8) = =———==(1-Av (k&) y (kO)
v, (k6
+ 267 (a((k+2)8) - 2a((k +1)8) + a(kd))
—Av (k6)8 7 (a((k +1)8) - a(kd) \v, ((k +1)5) - v, (k&)

and

(A.26)

(A.28)

(A.30)
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for £=0,1,...,m—2. Inequalities (A.1) in conjunction with
(A.S), (A.6) and definition
Vinin = min{ v(t, x):(t,x) €[0,T]x[0, &(T)] } imply that

v (k+ 1)) 1= A v, (k&))/ v (k8) <1=Avyn /2. (A31)
for £=0,1,..m—1. It follows from (A.30), (A.31) in
conjunction with the fact that |a((k +1)0) - a(k5)| < 5||a|| for

k=0,L1,..m—1,

o] = max{

(A.6)), the fact that v, (ko) >v

where

ov
P t’
at( x)

(¢, x) €[0,T1x[0,1] } (recall definition

min > 0 forall k=0L...m, the
that  |a((k+2)6)—2a((k +1)0) +a(kd)| < 57|~ for
k=0,,...,m-2, where ||a|| =ess sup{|ii(t)| :1€[0,7] }, that
the following inequality holds for £ =0,1,...,m—2:

ly ((k +1)3)| < (1= Avypin / 2w (k)| + A ||| + Avimia ] 2] -

(A.32)
Consequently, we obtain (by induction) the following
estimate for k=0,1,...,m—1:

) <@+ 255l - vmalil). (A3
Definitions (A.3), (A.4), (A.6), (A.9), (A.18), (A.29) in
conjunction with @(0)+v(0,0)9'(0)=0, a(0)=¢(0), definition

qu"Hw =ess sup{ (p"(x)‘ :x€[0,]] } and (A.11) imply that:

v (0)] < ]| A2V ) +[@" O [V |+ Vinae 7], 72 . (A34)
Thus, we get from (A.33), (A.34) for k=0,1,...,m—1:
ly (k&) < M :=||a] /(2v a0 ) + |00 (O)] [V |

a0, 124 205 (v |+ v i)
We define the function y(z,x; N) for (z,x)<[0,T]x[0,1]

fact

(A.35)

and for every integer N> N":
(k6,5 N) = (i +1=xN)y,; (k&) + (xN =i}y, (k&)
with i =[xN], for x€[0,]), k=0,....m, (A.36)
Y(kSJ;N) = yy (k8), for k=0,...m,  (A37)
30,35 N) = k1= 27N ok, x5 M)+ (27 N =k (e +1)6, 3 N)
with k =[A7'tN] for xe[0,1], 1€[0,T).  (A.38)
It follows from (A.23) and (A.36), (A.37), (A.38) that the
following estimate holds for every N > N" and ¢ [0, 7] :
max((y(6, 35 V)< ¥ = explT |y, | o], +vamalil). 4.39)
We also p(t,x;N)  for
(¢,x) €[0,T]x[0,1] and for every integer N > N":
p(k&, x; N) = (i +1=xN)p,; (k&) +(xN —i)p;,, (k&)
with i =[xN], for x€[0,1), k=0,....m, (A.40)
pko,; N)=py (kd), for k=0,....m, (A41)
D65 N) = (k1= 270N Jp(ks, Ny + (27N =k Jp(k 41168, )
with k =[A7'tN] for xe[0,1], 1€[0,T). (A.42)

define the function
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It follows from (A.26) and definitions (A.40), (A.41),
(A.42) that the following estimate holds for every N > N™:
. < b
(r)rgl??](lp(t’ x; N)|)_ max( Vinax Y s ||a|| ), for 1 €[0,7]. (A.43)
Next define for i =0,1,...,N—1, k=0,1,....m
@; (k8) = h™ (v, (k8) = y; (k9)). (A44)
Definitions (A.19), (A.29), (A.44) in conjunction with
(A.20), (A.21) imply that the following equalities hold:
; ((k+1)8) = (1= v, (k6) o, (KS) + A v, (k) (KS)
=221 (k6) = v,y (k)0 (k)
= Ah7 (V42 (K8) = 21,y (KO) +v, (kD)) (KS)

fori=1,..N-2, k=01,...,m—1 (A.45)
wy_(k6)=0, for k=0,,....m. (A.46)
@ ((k+1)8) = (1= 2 v, (kS) Joy (kS)
— A7 (vy (kS) = vy (k6) )y (kS) + Ay (k&)
for k=0,l,....m—1. (A.47)

Using the facts that |v;,,(k6)—2v,,, (k&) +v; (k&) <h*[v.],
‘vm (k5)—vi+1(k§)‘ < thxH for i=0,..,.N-2, k=0]L...,m, where

ov ov
—(&x)——(¢,
ax( x) 6x( z)

v = sup (1,x%,2) €[0,T]x[0,1,x # z + and

=]

the fact that v, (ko) =v
Vinin = min{v(t, x):(t,x) €[0,T]x[0,&(T )]} (a consequence
of (A.1), (A.5), (A.6) which imply that 24 <&(T)), in
conjunction with (A.23), (A.35), (A.6), (A.9), (A.11), we
get for k=0,1,....m—1 and H(k)= gnal)sf 1(Ia)i((k5)|):

>0 for all £=0,1,...,m, where

min

H(k+1)<
max((1+26 v, | JHH ) + 8 |y [¥, (1= A v JEH () + A (v, |7 + M)
(A.48)
It follows from (A.10) and Lemma 5.1 for £ =0,L,...,m:

_max_ [ (k)

Mﬂ+T"vm ||Y
i=0,... N

A.49)
< exp(2T v { maX_lﬂwi (0)|)+ j (

min
Definitions (A.3), (A.4), (A.44), (A.18), (A.19) with
a(0)=p(0) imply |o,(0)<o’], for i=0..N-1,
||(p”||oc = ess sup{ (/)"(x)|:x €[0,1] } It follows from (A.49) that
the following estimate holds for £=0,1,....,m:

PY +M

where

o o) <0mobe o,

- T||vn||Y] .

(A.50)

min

Next define for i =0,1,...,N, k=0,1,....m—1

1, (k) =57 (v; (k + 1))~ y,(k5)).  (A51)
Equations (A.20), (A.21),(A.29),(A.44),(A.51), imply that
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17 (k8) = v,y (k) (k) =h ™ (v1y (k6) = v; (K6) ;1 (k5)
fori=1,...,.N-1, k=0,,...,m—1 (A.52)
1y (k) =—w(kd), for k=0,1,...m—1  (A.53)
which combined with (A.9), (A.19), (A.50), (A.35) and the
fact that |v[+, kS)—v; (k5)| < h”vx || for all i=0,...,N-1,
k=0,,...,m, give for k=0,1,....,m—1:
max (7, (k) < v @+ [T +M . (A54)
i=0,...N
Definitions (A.44), (A.51) with (A.50), (A.54) imply the
following estimate for i, j =0,1,...,N, k,[=0],...;m:
[y (k6) = ;US| < hli— AQ+ |k 1| (v @+ M + Y]y ]).
(A.55)
Estimate (A.55) in conjunction with (A.36), (A.37), (A.38)
imply that there exists L,=1L, (T ,a,V, (0) such that the
following inequality holds for N> N*, t,r€[0,T] and x,z€[0,]:
|y(t, x;N)—y(t,z; N)| <L, (Ix—z| +|t - Z'|) (A.56)
Following a similar procedure, it is shown that there exists
L= L3(T ,a,v,(p) such that the following inequality holds for

N>N", t,r€[0,T], x,z€[0]]:

|p(t, x; N)— p(r, z; ]\0| <L, (Ix—z| +|t—T|). (A.57)
It follows from (A.17), (A.28), (A.39), (A.56), (A.43),
(A.57) that the sequences (w(;N)fi_y-» (5N ooy
{p(-;N)};'}:N‘ are uniformly bounded and equicontinuous.
Compactness of [0,77]x[0,1] and the Arzela-Ascoli theorem
that Lipschitz
w,1, p:[0,T]x[0]] >R and subsequences {w(~;Nq)};°:1,

implies there  exist functions

{y(-; N, )};":1 , {p(.; N{,)}::1 for an increasing sequence {N P }::l,

which converge uniformly on [0,7]x[0,1] to w, y, p .

It is shown next that since {v(qu)}Z:l, {w(-;Nq)}::1

converge uniformly to y,w, as ¢—+w, it follows that

o

y(nx)%(z,x), )=S0 and () +9(6,2)3(0.0) =0,
X

for (¢,x)€[0,7]1x[0,]]. Uniqueness follows use of Gronwall’s
1
lemma for the functional V()= J- e’ (t,x)dx, where
0
e=w—w and w,w are solutions of (5.3), (5.4), (5.5).
Finally, we assume that there exists a constant v,;, >0

such that v(t,x)>v_;, forall t>0, x<[0,1] and that a=0.

min

Let T > vr;lin be given (arbitrary). Consider the functionals
1

Ve (t):jexp(—a X)w? (t,x)dx on [0,T] with parameter o >0.
0

Using (5.3), (5.5) and the fact that v(t,x) > v, , we get:
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1
V(1) = —v(t,]) exp(-o )W (1,1) + j exp(—ax)w? (¢, x) 2—V (t, x)dx
X
0
1

- UI exp(—wc)w2 (t, x)v(t, x)dx < —(ovmin - ||vx ||)V(7 (®)
0
It follows that V_(f) < exp(— (Ovmin —||v)C ||)t)VU (0), for t€[0,7].

The  previous

il < exol-oflvnin - b=l for o,

inequality  implies the  estimate

Since ahjllm(_ 0'((me —o! ||vx ||)‘ - 1»: —o  for  each
te (vr;lin,TJ, we get ||w[t]||2 =0, for te (vr;lin,TJ. Therefore,

by continuity of w and since 7 >v.! is arbitrary, we

-1
min *

conclude that w(z,x)=0 for x[0,1] and t>v <
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