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Abstract

Portfolio Optimization saw a huge flood of interest in recent
years, because of the rapidly growing ability of modern com-
puters. The financial community continually seeks outstanding
techniques from other fields to enhance financial market mod-
elling. In this thesis, we propose a machine learning approach
to the portfolio optimization problem, which calls for optimiz-
ing the allocation of capital across various financial assets, such
as bonds, stocks, or funds, to maximize a preferred performance
metric, such as expected returns or risk-adjusted return. We use
the reinforcement learning framework, which offers innovative
methods of learning good decision making policies that maxi-
mize an autonomous agent’s performance in an unknown and
uncertain environment. Using state-of-the-art technology based
on policy gradient and deep neural networks, we developed and
implemented a portfolio trading system with reinforcement learn-
ing. Subsequently, we assessed the success of our portfolio mana-
gement approach and evaluated its performance using real data
from the Standard & Poor’s 500 repositories of the American
stock market. The results we obtained achieve about 2% more
wealth in the best scenario compared to the baseline models. We
believe that the proposed approach outlines several metrics as
evaluation indices and could expand in the future for adaptive
solutions to specific cases of portfolio management, delivering bet-
ter performance.



Περίληψη

Τα τελευταία χρόνια παρατηρείται τεράστια αύξηση ενδιαφέροντος για
βελτιστοποίηση χαρτοφυλακίου (portfolio optimization), λόγω της ραγδαία
αναπτυσσόμενης ικανότητας των σύγχρονων υπολογιστών. Η οικονομική
κοινότητα επιδιώκει συνεχώς τις καινοτόμες τεχνικές από άλλους τομείς
για τη βελτίωση της μοντελοποίησης της χρηματοπιστωτικής αγοράς. Στην
παρούσα διπλωματική εργασία προτείνουμε μια προσέγγιση μηχανικής μά-
θησης στο πρόβλημα βελτιστοποίησης χαρτοφυλακίου, το οποίο καλεί για
βελτιστοποίηση της κατανομής κεφαλαίων σε διάφορα χρηματοοικονομικά
περιουσιακά στοιχεία, όπως ομόλογα, μετοχές ή κεφάλαια, με στόχο τη
μεγιστοποίηση μιας προτιμώμενης μετρικής επιδόσεων, όπως αναμενόμενη
απόδοση ή προσαρμοσμένη απόδοση βάσει ρίσκου. Χρησιμοποιούμε το πλαί-
σιο ενισχυτικής μάθησης (reinforcement learning),το οποίο προσφέρει καινο-
τόμες μεθόδους εκμάθησης ορθών πολιτικών λήψης αποφάσεων που μεγιστο-
ποιούν τις επιδόσεις ενός αυτόνομου πράκτορα σε ένα άγνωστο και αβέβαιο
περιβάλλον. Χρησιμοποιώντας τεχνολογία αιχμής που βασίζεται σε τεχνικές
policy gradient και deep neural networks, αναπτύξαμε και υλοποιήσαμε ένα
σύστημα διαχείρισης χαρτοφυλακίων με ενισχυτική μάθηση. Στη συνέχεια,
αξιολογήσαμε την επιτυχία της προτεινόμενης προσέγγισης και αξιολογήσαμε
την απόδοσή της χρησιμοποιώντας πραγματικά δεδομένα από τους καταλό-
γους Standard & Poor’s 500 της αμερικανικής χρηματιστηριακής αγοράς. Τα
αποτελέσματα που λάβαμε καταγράφουν περίπου 2% περισσότερο πλούτο
σε σύγκριση με τα βασικά μοντέλα. Πιστεύουμε ότι η προτεινόμενη προσέγ-
γιση σκιαγραφεί διάφορες μετρικές ως δείκτες αξιολόγησης και θα μπορούσε
να επεκταθεί στο μέλλον για προσαρμοστικές λύσεις σε συγκεκριμένες πε-
ριπτώσεις διαχείρισης χαρτοφυλακίου, παρέχοντας καλύτερες επιδόσεις.
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Chapter 1

Introduction

The Portfolio Management Problem is to optimize the allocation of capital across various

financial assets such as bonds, stocks or funds to maximize a preferred performance

metric, like expected returns or risk-adjusted returns [1]. It was a matter of interest for

the financial society to seek the outstanding techniques from others areas to improve the

modelling of the financial markets, as econometrics and machine learning were very close

and related concepts (Corea, Francesco, [2017]). In this thesis we study and evaluate the

use in the portfolio optimization domain of reinforcement learning techniques.

1.1 Thesis Contribution

This thesis depicts an approach developed for portfolio optimization with reinforcement

learning. The purpose of this report is to improve the efficiency of asset allocation training

agents. An internal representation (model) of the markets is developed for a finite universe

of financial instruments, asset, such as stocks, which enables it to determine optimally

how finite budget funds should be allocated to those assets. The agent is trained on

real information about the market (historical inventory prices). The performance is then

compared on a 10 stock data set of Standard & Poor’s 500 companies with a standard

portfolio management benchmark.

1.2 Thesis Overview

Finally, we give a brief overview of the content of our thesis:

Antonios Vogiatzis 1 February 2019



1. INTRODUCTION

• In Chapter 2 we present all the background information needed for this thesis.

We give an overview of the terms and concepts of Stock Market and Portfolio

Management, and the concepts we will utilize for Reinforcement learning .

• In Chapter 3 we state our Portfolio optimization problem and discuss the related

work. We will also present the appropriate material for the policy gradient.

• In Chapter 4 we describe our optimization methods which are based on Deep De-

terministic Policy Gradient (DDPG).

• In Chapter 5 performance is evaluated and compared with some baseline methods

of the proposed approach.

• Finally, Chapter 6 acts as an epilogue for this theory and presents our findings and

future improvements.
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Chapter 2

Background

2.1 Financial market

2.1.1 Asset

An asset represents an economic resource for a company. Examples of assets are stocks,

money on hands or deposit, bank loans, corporate bonds, mutual funds, etc. We concen-

trate mainly on stocks and money, but the principles cover all kinds of assets.

2.1.2 Portfolio

A portfolio is a asset grouping with certain attributes:

• Component: M assets that comprise

• Portfolio vector, wt: the i − th index illustrates the proportion of the entire

investment to the i− th asset:

wt =
[
w1,t, w2,t, ..., wM,t

]T ∈ RM and

M∑
i=1

wi,t = 1 and wi,t ≥ 0 (2.1)

In order to reduce risk, portfolios are preferable to single assets [2].

Antonios Vogiatzis 3 February 2019



2. BACKGROUND

(a) prices series 1

(b) prices series 2

Figure 2.1: Time Series

2.2 Financial Time-Series

The changing nature of the economy is causing prices to develop over time as a result

of the changeable balance of supply and demand. That utilize technological approaches

and tools for analysis and modelling to treat market dynamics as a time series.

2.2.1 Prices

Let pt be the price of an asset at discrete time index t, then the sequence p1, p2, ...,

pT−1, pT , is a time series. Examples of asset prices series are shown in Figure 2.1:

The price vector pt is defined, as follows:

pt =
[
p1,t, p2,t, ..., pM,t

]
∈ RM (2.2)

Antonios Vogiatzis 4 February 2019



2.2 Financial Time-Series

It can be more intuitive to work with such time series, as people are used to thinking

regarding prices. Price time series, however, have some disadvantages. Prices are gener-

ally only positive, making it harder to use models and approaches requiring or generating

negative figures. Moreover, price timesets are generally non-stationary, which means that

their statistical characteristics are less stable over time.

An alternative way is to adopt time series that do not correspond to actual value but

change the asset’s currency value. These time series assume negative values, and their

statistical characteristics are usually more stable than the price series characteristics.

2.2.2 Returns

Because of the uncertainty of the financial markets [3], future asset prices are often treated

as random variables. Correspondingly, useful information can be obtained by examining

the statistical properties of them. Measuring all variables in a commensurate metric is

the goal of this paragraph. The most frequently used forms of returns are presented

below.

• Simple Return : rrelative of an asset defined as

rrelative(t) =
p(t)− p(t− 1)

p(t− 1)
=

p(t)

p(t− 1)
− 1 (2.3)

• Log return: rlog−return of an asset defined as

r(t) = log

(
p(t)

p(t− 1)

)
(2.4)

where p(t) is at t the value of the asset .

For example, if p(t) = 101 and p(t− 1) = 100 then rrelative(t) = 101−100
100

= 1%.

There are various reasons for using log-returns in the industry and certain are linked

to long-term assumptions about the behavior of asset returns and are outside of our

scope. However, two very interesting properties are worth highlighting. Log returns are

additive and make it easier for our time series to be processed, whereas relative returns

Antonios Vogiatzis 5 February 2019



2. BACKGROUND

do not. In the following equation we can see the additiveness of the log results. Which

is simply the log-return from t1 to t2.

r(t1) + r(t2) = log

(
p(t1)

p(t0)

)
+ log

(
p(t2)

p(t1)

)
= log

(
p(t2)

p(t0)

)
(2.5)

Secondly, log returns are roughly the same as relative values of p(t)
p(t−1) adequately close

to 1. By expanding Taylor’s 1st-order log p(t)
p(t−1) around 1, we get:

log
p(t)

p(t− 1)
' log(1) +

p(t)

p(t− 1)
− 1 = rrelative(t) (2.6)

• Portfolio Return: Let the returns vector R be =
[
R

(1)
t , R

(2)
t , ..., R

(M)
t

]T
∈ RM ,

Where RM is the simple return of the t time index of ith asset. Then the simple

return portfolio is set as the weighted sum of the component returns

R
(p)
t =

p
(p)
t p

(p)
t−1

p
(p)
t−1

= w1 ×R
(1)
t + w2 ×R

(2)
t + ...+ wM ×R

(M)
t

=
M∑
i=1

wi ×R(i)
t = wTRt

(2.7)

Then the portfolio returns time series R(p) ∈ RT−1, is the dot product of R

and w

R(p) =


R

(p)
1

R
(p)
2
...

R
(p)
T−1

 = R× w =


R

(1)
1 R

(2)
1 ... R

(M)
1

R
(1)
2 R

(2)
2 ... R

(M)
2

...
...

. . .
...

R
(1)
T−1 R

(2)
T−1 ... R

(M)
T−1

×


w1

w2
...

wM

 (2.8)

• The portfolio log return r
(p)
t is defined to be:

r
(p)
t = ln(p

(p)
t )− ln(p

(p)
t−1) = ln

(
p
(p)
t

p
(p)
t−1

)
= ln(1 + wT ×Rt) (2.9)
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2.3 Reinforcement Learning

2.3 Reinforcement Learning

Reinforcement (RL) is a machine learning area which focuses on how software agents

take action in an environment to maximize some sense of cumulative rewards. It was

used mainly in games (e.g. Atari), with performance that matched or even exceeded

people. Currently, the combination of neural networks has enabled the algorithm to

resolve more complicated tasks.In addition to the problems of the interest in reinforcement

learning, optimal control theory has been examined mainly in order to establish and

characterize the optimal solutions and algorithms for exact calculation and less in terms

of learning or approximation, particularly in the lack of a mathematical environment

model. Economics and game theory can use reinforcement learning to explain how balance

can arise under limited reasonableness. Machine learning usually consists of a Markov

Decision Process (MDP) environment, as many reinforcement learning algorithms use

dynamic programming techniques for this context.

Reinforce learning defers from supervised learning problems, as the agent is not ex-

plicitly provided with good and bad behaviour. This makes it much more appropriate

for mutual problems because it can often be difficult to adequately describe optimal

behaviour, which can allow the agent to understand the environment. Reinforcement

learning is a general problem which can then be solved by a number of methods and any

such problem is known as a reinforcement learning problem.

The figure 2.2 shows a typical setting in which RL works. A agent controller will

receive system’s state and a reward which associated with the last state transition.

Then it calculates an action that is returned to the system. As a response, the system

changes to a new state and repeats the cycle.

2.3.1 Important elements of Reinforcement Learning

Reinforcement Learning agents could contain one or more of the following elements:

• Policy: π, indicate the behaviour of an agent. It is an “state to action” mapping

function, such that:

π : S → A (2.10)

where S and A are state space and action space respectively. A policy function can

be Deterministic, At+1 = π(st) or Stochastic π(α|s) = P [αt = α|st = s].
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2. BACKGROUND

Figure 2.2: Reinforcement Learning Setting (Sutton and Barto, 1998)

• Return: If γ is the discount for future rewards, the return Gt (also referred ex-

pected total discounted reward) at index t is given by:

Gt = rt+1 + γrt+2 + γ2rt+3 + · · · =
∞∑
m=0

γmrt+m+1, γ ∈ [0, 1] (2.11)

2.3.2 Markov Decision Process

A Markov Decision Process (MDP) is a mathematical modelling framework in discreet

time for decision making, espesially useful when the results of a process are partly a result

of action by the agents and partly randomly. In areas like economics, control, production,

and refurbishment education, they have found extensive usage.

Markov property

The Markov property is met by A state St [4] if and only if:

P [St+1|St, St−1, . . . , S1] = P [St+1|St] (2.12)

This indicate that the prior condition, St, is enough to predict the future, which can

thus be neglected for the long-term history.
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An MDP can be described as a 5-tuple (S,A,P,R,γ), where:

• S = {s1, s2, . . . , sn} is a finite collection of state of the procedure.

• A = {α1, α2, . . . , αm} is a finite set of action of the procedure. The set of actions

are the feasible options which the agent can proceeds at a given time.

• P = is a transition model of MPD, where P = {s, α, s′} is the chance of moving

in to state s
′

when taking action a from state s, such that they satisfy the Markov

property, as in the definition (Markov property) (2.12). The Probability matrix

P of the transition of state may be represented:

Pα
ss′ = P [St+1 = s

′|St = st, At = α] (2.13)

• R = is the reward function (real number) of the process. It is Markovian as well

and can be the instant or the expected instant reward (for stochastic rewards) at

each time step. The reward function R,is defined as :

R : S × A→ B,Rα
s = E[Rt+1St = st, At = α] (2.14)

where S,A,B are the state space, the action space and the reward set, respectively.

• γ ∈ (0,1] is a discount factor. When γ=1 a reward maintain its full value inde-

pendently of the time state. As γ decreases, the effect of reward in the future is

declined exponentially by γt.

The optimization goal in an MDP is the maximization (or minimization depending

on the problem) of the expected total discounted reward.

Optimality

In addition to the expressiveness of MDPs, they can be resolved optimally and become

very alluring.

Value Function

Among all the policies optimal state-value function, V π is the maximum state-value

function:

V π(s) = max
π

V π(s), ∀s ∈ S (2.15)
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The optimal action value function, Qπ is the maximum action value function over all

policies:

Qπ(s, α) = max
π

Qπ(s, α), ∀s ∈ S,∀α ∈ A (2.16)

Policy

Defining a partial policy order [4]

π < π
′ ⇒ Vπ(s) ≤ V

′

π(s), ∀s ∈ S (2.17)

Theorem: An optimal policy π∗ exists that is better or equal among all the policies,

such that π∗ ≥ π,∀π

Bellman Equation

The agent attempts from any state in which it is located to get the highest expected

reward. To achieve this, we must try to achieve the optimum value function, in other

words the maximum sum of cumulative rewards [5].

• The Bellman equation wiil be used to break down, the value function in two

component, an immediate reward, Rt+1, and a discounted successor value γRt+1.

V(s) = E[Gt|St = s] = E[Rt+1 + γRt+2 + γ2Rt+3 + . . . |St = s]

= E[Rt+1 + γ(Rt+2 + γRt+3 + . . . |St = s]

= E[Rt+1 + γGt+1|St = s]

= E[Rt+1 + γVπ(St+1)|St = s]

(2.18)

• The Qπ action value can be decomposed to similar manner such as:

Qπ(s) = Eπ[Rt+1 + γQπ(St+1, At+1)|St = s, At = α] (2.19)

The Markov Decision Processes defined by Bellman with the Bellman Expectation

Equations as shown in Equations 2.16 and 2.17.
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2.4 Reinforcement Learning Agents

• Value-Based Agent, the agent will evaluate all the states in the state space, and

the policy will be kind of implicit, i.e. the value function tells the agent how well

each action in a given state is and the agent selects the best.

• Policy-Based Agent, instead of representing the value function inside the agent,

we explicitly represent the policy. The agent searches for the optimum action value

function, so it can act optimally.

• Actor-Critic Agent, this agent is a value-based and policy-based agent. It’s an

agent that stores both of the policy, and how much reward it is getting from each

state.

• Model-Based Agent, the agent tries to build a model of how the environment

works, and then plan to get the best possible behavior.

• Model-Free Agent, here the agent does not try to understand the environment,

i.e. it does not try to build the dynamics. Instead we go directly to the policy

and/or value function. We just see experience and try to figure out a policy of how

to behave optimally to get the best possible rewards.

RL agents usually suffer from local maximal because of exploitation. At the early

stages of their training, they keep visiting the same states that locally maximize their re-

ward, without exploring the rest of the state space. This is the exploration-exploitation

trade-off that many policies try to balance [6].

2.4.1 Policy Gradient

The objective of reinforcement learning is to determine the best behavioral strategy for

the Agent in order to obtain optimal awards. The policy gradient methods target

at modeling and optimizing the policy directly. The policy is usually modeled as a

parameterized function with respect to θ, πθ(α|s). The value of the reward (objective)

function depends on this policy and then various algorithms can be applied to optimize

θ for the best reward.
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The reward function is defined as:

J(θ) =
∑
s∈S

dπ(s)V π(s) =
∑
s∈S

dπ(s)
∑
α∈A

πθ(α|s)Qπ(s, α) (2.20)

with dπ the Markov Chain ’s stationary distribution for πθ (on-policy state distribution

under π).

It is natural that policy- based methods will be more useful in continuous space, since

the values are estimated by an innumerable number of actions and (or) states. For this

reason value-based approaches are way too expensive computationally in the continuous

space.

Policy Gradient Theorem

Computing the gradient ∇θJ(θ) is tricky because it depends on both the action selection

(directly determined by πθ) and the stationary distribution of states following the target

selection behavior (indirectly determined by πθ). Given that the environment is generally

unknown, it is difficult to estimate the effect on the state distribution by a policy update.

The policy gradient theorem is a nice way to reform the derivative of the objective

function, so that the derivative of dπ does not occur and gradient calculations ∇θJ(θ)

are simplified a lot (Equation 2.20), and the proof is seen in (Sutton,Barto, 2017; Sec.

13.2) [7]

Deep Deterministic Policy Gradient

Deep Deterministic Policy Gradient (DDPG) [8], is a model-free, off-policy, actor-

critic algorithm, combining Deep Policy Gradient (DPG) with Deep Q-Network (DQN).

DQN (Deep Q-Network) stabilizes Q-function learning by replaying experience and the

frozen target network. The original DQN functions in a discrete space and is expanded

into continuous space by actor-critic framework while learning a deterministic policy.

One detail in the paper that is particularly useful in robotics is how to normalize the

different physical units of low dimensional features. For example, a model is designed to

learn a policy with the robot’s positions and velocities as input; these physical statistics

are different by nature and even statistics of the same type may vary a lot across multiple

robots. Batch normalization is applied to fix it by normalizing every dimension across

samples in one mini-batch. Figure 2.3 summarizes the DDPG algorithm.
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Figure 2.3: The DDPG Algorithm

2.5 Artificial Neural Networks

Neural networks (NNs) are a loosely biological-brain-modeled computational approach.

Brains can be viewed as an interconnected neuron web transmitting complex patterns of

electrical signal: input signals are given to dendrites and the output signal is fired via

an axon based on those inputs. This effect is imitated by NNs using artificial neurons

that can be described mathematically as a graph. NNs receive input to the input neuron

from the outside world and proliferate forward- lookingly: the input is transmitted to

other neurons in the network and each neuron alters the signal according to its internal
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Figure 2.4: Artificial Neural Network

rules until the signal goes through the whole structure and reaches the output from its

output neurons to the outside. Such systems ”learn”, generally without having to be

programmed with task specific regulations, to perform tasks through examples.

2.5.1 The Architecture of an Artificial Neural Network

An Artificial Neural Network (ANN), as shown in Figure 2.4 is a set connected neurons

in layers:

• Input layer: Introduces the initial data for further treatment into the system

through subsequent artificial neuron layers.

• hidden layer: A layer of weighted inputs from artificial neurons to produce the

output via activation function between input layers and output layers.

• Output layer: The last neuron layer generating the outputs for the network.

2.5.2 Multi-layer ANN

Due to their hidden layers (for example, Convolutionary Network, Recurrent Neural

Network, etc...), multilayer ANNs can solve more complicated classification and regression
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tasks.

There are many ways, neural multilayer networks can be set up. They typically have

at least one input layer, which sends weighted inputs to a number of hidden layers.

These advanced settings are also related to non-linear builds that use sigmoids and other

functions to direct artificial neurons firing or activation. Although some of these systems

are physically constructed with physical materials, most of them are designed with neural

activity software functions.

2.5.3 Activation Functions

The node activation function redefines this node’s output given the input or set of inputs

on the artificial neural networks.

Sigmoid

A sigmoid feature is a math funtion with a typical ”S” or sigmoid curve. The sigmoid

function often indicates a special case for the logistic function which generates a set of

probability outputs between 0 and 1. In binary classification, sigmoid activation is a

common feature.

Sigmoid(x) =
1

1 + e(−x)
=

ex

1 + ex
(2.21)

Tan-h

The hyperbolic tangent, or tan-h function, is an alternative to logistic sigmoid. Just

like the Sigmoid logistic function, the tan-h function is also a Sigmoid function, but it

produces values of [-1,+1] in its range. This means that strongly negative tan-h inputs

map negative outputs. Likewise, strongly positive.

tanh(x) =
2

1 + e(−2x)
− 1 = 2× Sigmoid(2x)− 1 (2.22)

Softmax

The Softmax activation function is used for multi-class classification, as opposed to the

Sigmoid activation functions. Softmax function calculates the probabilities distribution
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of the event over ”n” different events. This function calculates the probabilities of each

target class over all possible target classes as a general rule. The calculated probabilities

are then used to regulate the target class of the data.

Softmax(x) =
ei∑
i e

(i)
(2.23)

ReLU

Instead of the sigmoid function, the latest artificial neural networks utilize rectified

linear units (ReLUs). When the input is below 0, the linear unit with the rectified output

is 0 or the raw input otherwise. This is, if the input is greater than 0, the result equals

the input.

ReLU(x) = max(0, x) (2.24)

Leaky ReLU

The leaky ReLU function works in a manner that is similar to ReLU, except that in

order to avoid the “dying ReLU” problem, the latter is replaced by a small alpha amount

rather than the negative data from the inputs.

LeakyReLU(x) =

{
x, if x > 0
αx, otherwise

(2.25)

In general, non-linearity is not introduced in the network without using an activation

function. An activation function allow us to model a response variable, which varies

nonlinearly with its explanatory variables (targon variable, class label, or score). Non-

linear means that the output can not be reproduced by the linear input combination.

An other way of thinking about this: without a nonlinear activation function on the

network, artificial neural networks, regardless of how many layers they have, will behavior

exactly as a single layer Neural Network.
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Some activation functions could affect the problem of the vanishing gradient (the

problem with the disappearing gradient occurs when the gradient becomes so small in

prior layers of a deep-neural network that it does little to improve the weights of the

earlier layers).

2.5.4 Backpropagation

Backpropagation is a method used to determine the gradient needed in artificial neural

networks to calculate network weight. Back-propagation is shorthand for “the backward

propagation of error”, as an output error is calculated and distributed backward across

network layers. It’s being used for deep neural network training.

Backpropagation means that the rule of delta can be generalized into multi-layer

feedforward networks to calculate gradients for the individual layers iteratively using the

chain rule. It is strongly linked with the Gauss-Newton approach and is part of ongoing

research on the neural background.

Backpropagation is a more general case of the technique called automatic differen-

tiation. For the learning process, Backpropagation is often used to adjust the mass of

neurons with the downward gradient algorithm, in order to calculate the loss function

progression.

2.5.5 Gradient Descent Optimization algorithms

In optimization, gradient method is an algorithm to solve problems of the form:

min
x∈Rn

f(x) (2.26)

Search directions at the current point defined by the function gradient.

Gradient downward is among the most prominent neural network optimization algo-

rithms. Each up-to-date Deep Learning library also includes implementations of multiple

gradient-descent optimization algorithms (e.g. lasagne’s, caffe’s, and keras’ documenta-

tion).

Gradient descent is a way to minimize an objective function J(θ) parameterized by a

model’s parameters θ ∈ Rd by updating the parameters in the opposite direction of the
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gradient of the objective function ∇θJ(θ) w.r.t. to the parameters. The η learning rate

determines the steps to reach a (local) minimum. In other words, we walk downwards to

reach a valley in the pendulum of the surface created by the objective function.

The gradient descent comes in three variants depending on the number of data used

for determining the gradient. Depending on the amount of data, we compromise the

correctness of the updated parameter with the time it takes to update the parameter.

Batch gradient descent

Vanilla descent, known as the batch descent, calculates the cost function gradient

with respect to the full θ data set parameters:

θ = θ − η∇θJ(θ) (2.27)

The batch gradient descent is slow and inseparable to memory-free datasets, because

the gradient levels for the whole dataset need to be calculated to make just one update.

The batch descent does not allow us to upgrade our model online, i.e. with new instances

in real time.

Stochastic gradient descent

In contrast, Stochastic gradient descent (SGD) updates each training example x(i)

with a parameter, and label y(i):

θ = θ − η∇θJ(θ;x(i); y(i)) (2.28)

The batch gradient descent offers superfluous calculations of huge amounts of data

because gradients have been recalculated for similar examples before each parameter was

updated. By performing one update a time SGD eliminates this redundancy. It is there-

fore generally much faster and can also be used to learn online.

Mini-batch gradient descent

Finally, the mini-batch descent takes the best of the two worlds and makes an update

for every small batch of n training examples:

θ = θ − η∇θJ(θ;x(i:i+n); y(i:i+n)) (2.29)
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This means that a) reduces the update variance of the parameter to allow greater

stability and b) the commonly used advanced deep learning libraries for highly optimized

matrix optimizing enable the gradient to be calculated very powerful. Common mini-

batch sizes range from 50 to 256, but can differ for various applications. A Mini-batch

gradient descent is the preferred algorithm for the neural network training.

Below are some algorithms that the deep-learning community often uses to optimize

the task.

Adagrad

Adagrad [9] is a gradient optimization algorithm that simply adjusts the rate according

to parameters, with respect to the change, makes smaller updates for parameters related

to repeatedly appearing characteristics (i.e. low learning rate) and larger updates for

parameters related to rare features (i.e. high learning rates). This is why it is suitable

for inadequate data processing. This strategy often improves the performance of conver-

gence compared to the standard stochastic gradient descent when data are sparse and

descriptive. It has a base learning rate η, but this is multiplied using the Gj,j diagonal

elements of the outer matrix of the product.

G =
t∑

τ=1

gτg
T
τ (2.30)

where gτ = ∇Qi(W ) the gradient, at iteration τ . The diagonal is given by

Gj,j =
t∑

τ=1

g2τ,j (2.31)

This vector is updated after every iteration.

One of Adagrad’s main advantages is the elimination of the need to manually adjust

the learning rate. The default value for most implementations is 0.01 and it is left at

that.

The main weakness of Adagrad is the aggregation of the square denominator gradients:

since each additional period is positive, the accumulated amount continues to grow while
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training is underway. This reduces the learning rate and finally gets very small, so that

an additional knowledge can no longer be gained from the algorithm.

Adagrad customizes the general η learning rate for each step θi in its update rules, based

on past gradients calculated for θi:

θt+1,i = θt −
η√

Gt + ε
· gt (2.32)

Adadelta

Adadelta [10] is an Adagrad extension to lower its aggressive monotonous rate of learning.

Adadelta limits the winder of the accumulated past gradients to certain fixed size w

rather than all past square gradients. The sum of gradients is defined repetitively as the

decreasing mean for all gradients, which does not save the previous gradients inefficiently.

The running average E[g2]t then only rely upon the previous average and current gradient

(as the fraction γ):

E[g2]t = γE[g2]t−1 + (1− γ)g2t (2.33)

The Adagrad update parameter, which we previously derived therefore takes shape:

∆θt = − η√
Gt + ε

× gt (2.34)

RMSprop

In Lecture 6e of his Coursera Class [11], Geoff Hinton proposed RMSprop an unpublished,

adaptive learning rate method.

RMSprop and Adadelta were both independently refined while the need arises to deal

with the radically reduced learning rates of Adagrad. RMSprop is actually equal to the

first vector of Adadelta update:

E[g2]t = 0.9E[g2]t−1 + 0.1g2t (2.35)

θt+1 = θt −
η√

E[g2]t + ε
· gt (2.36)

RMSprop also divides the learning rate by an average of squares that declines expo-

nentially. Hinton recommends γ to be defined as 0.9, and a excellent learning rate default

value η is 0.001.
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Adam

Adaptive Moment Estimation (Adam) [12] is another way for each parameter to calculate

adaptive learning rates. Adam maintains a decaying average vt of the past squared paths,

as well as an exponentially decaying average mt of previous paths. The decaying averages

of past mt and past squared gradients vt have been calculated in the following manner:

mt = β1mt−1 + (1− β1)gt
vt = β2vt−1 + (1− β2)g2t

(2.37)

mt and vt are the first (average) and second (uncentered) moment of gradient, therefore

the name of the method. As mt and vt are initialized as vectors of 0’s, Adam’s creators

note that they are inclined to zero, particularly in the primaty steps and in particular

when the decadence rates are meager (i.e. β1 and β2 are close to 1).

By calculating first and second instant biases, they counteract these biases

m̂t =
mt

1− (β1)t

v̂t =
vt

1− (β2)t

(2.38)

These parameters are then used as we saw in Adadelta and RMSprop, which gives

the Adam update rule:

θ(t+1) = θt −
η√
v̂t + ε

· m̂t (2.39)

Default values of 0.9 are proposed by the authors for β1, 0.999 for β2, and 10−8 for

ε. Empirically, they show that Adam works well and compares favorably well to other

adaptive learning methods.
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Chapter 3

Problem Statement

3.1 Portofolio Optimization

A number of the benefits of this artificial intelligence field lead to the development of

Reinforcement learning (RL) on financial markets. RL, in particular, enables the “pre-

dictions” and “construction of portfolios” to be combined in a single integrated phase to

closely align machine learning problem with investor goals. In the meantime, considera-

tion can be given to major constraints, such as transaction costs, the market cash and the

risk aversion for investors. The RL community of research has made significant progress

in the field of finance [13].

Especially in portfolio management the whole investment is spread across multiple

assets and there are many combinations of portfolio vectors definitions (Equations 2.1

and 2.8). The objective of portfolio optimization is to efficiently resolve the allocation

problem, where an objective function is formulated and optimized in relation to a portfolio

vector that refers to investor preferences. We can see examples of portfolio combination

in Figure 3.1.

Different metrics are introduced in subsection 3.1.1 , which combine in order to for-

mulate objective and utility function that are then used to assemble the Markowitz

Model.
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Figure 3.1: Different portfolio weight combination

3.1.1 Modern Portfolio Theory

The theory of Modern Portfolio Theory (MPT) is how risk investors can construct portfo-

lios, in order to optimize or maximize expected returns on the basis of market risk levels,

with the concern that risk constitutes an increasing reward element. The theory reveals

that an “efficient boundary” of optimal portfolios can be built which offer the maximum

expected return in a certain risk level. This theory was invent by Harry Markowitz

[14].

The modern theory of portfolio argues that risk and income properties of an invest-

ment should not be examined separate, but that the impact of the investment on risk

and returns across the portfolio should be assessed. MPT has shown that an investor

can develop a multiple asset portfolio that maximizes returns at a fix risk level. Like-

wise, with the desired level of expected profit, a investor can build a portfolio with the

lowest potential risk. The return on individual investments is less crucial than the in-

vestment’s attitude to the unified portfolio based in statistical measures as the variance
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and correlation.

Portfolio Risk and Expected Return

MPT assumes that investors are not risky and therefore prefer a less risky portfolio to

an more risky portfolio at a certain level of return. This means that only when he or she

expects more reward will an investor take more risk.

At t+ 1 time index the expected return of a property is:

E[Rt+1|Rt, Rt−1, . . . , R0] −→ E[Rt+1] = µt+1 (3.1)

The anticipated portfolio returns is calculated as a weighted quantity of the respective

assets returns defined as:

E[R
(p)
t+1] = µ

(p)
t+1 = E[w1R

(1)
t+1 + w2R

(2)
t+1 + · · ·+ wMR

(M)
t+1 ]

= w1µ
(1)
t+1 + w2µ

(2)
t+1 + · · ·+ wMµ

(M)
t+1

= wT [µ
(1)
t+1 µ

(2)
t+1 . . . µ

(M)
t+1 ]

= wTµt+1

(3.2)

The portfolio risk is a complex function of the differences between each asset and its

correlations. To calculate the risk of a four-asset portfolio, an investor needs four asset

variances and six correlating values each because six possible combinations are available

with four assets. The total portfolio risks or standard deviations are lower than the

weighted amount calculated on the basis of the matching assets. The risk of an asset is

the variance σ2
t+1 = V ar[Rt+1] called volatility in finance.

The portfolio variance involves co-variance terms between the assets such that

V ar[R
(p)
t+1] = (σ

(p)
t+1)

2 = V ar[w1R
(1)
t+1 + w2R

(2)
t+1 + · · ·+ wMR

(M)
t+1 ]

= w2
1V ar[R

(1)
t+1] + w2

2V ar[R
(2)
t+1] + · · ·+ w2

MV ar[R
(M)
t+1 ]

+ 2w1w2Cov[R
(1)
t+1, R

(2)
t+1] + 2w1w3Cov[R

(1)
t+1, R

(3)
t+1]

+ . . .

+ 2wMwM−2Cov[R
(M)
t+1 , R

(M−2)
t+1 ]

+ 2wMwM−1Cov[R
(M)
t+1 , R

(M−1)
t+1 ]

=
M∑
i=1

M∑
j=1

wi
∑

t+1
wj

= wT
∑

t+1
w

(3.3)
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where Σt+1 ∈ RM×M is the covariance matrix of returns at the time t for the returns

of the M assets.

Co-variances are calculated with the unbiased estimator (Wilmott, 2007) [15]

Cov[R
(i)
t , R

(j)
t ] =

1

T − 1

T∑
τ=1

(R(i)
τ − R̄(i))(R(j)

τ − R̄(j)) (3.4)

Variances are also calculated with the correction formula of the Bessel [16]

V ar[Rt] =
1

T − 1

T∑
τ=1

(Rτ − R̄)2 (3.5)

Single Asset vs Portfolio

Since portfolio are equivalent to complex assets, the reason that is preferable to simple

asset is that portfolio minimize risk by allowing diversification [17]

• Full investment in one asset

Invest all the budget on a single asset, we choose asset i=1 then

– Portfolio Vector : w = [1 0 . . . 0]T ∈ RM

– Expected Portfolio Return:

E[R
(p)
t+1] = µ

(p)
t+1 = wTµt+1 = [1 0 . . . 0][µ µ . . . µ]T = µ

– Portfolio Variance:

V ar[R
(p)
t+1] = (σ

(p)
t+1)

2 = wT
∑

t+1
w

= [1 0 . . . 0]


σ2 0 . . . 0
0 σ2 . . . 0
...

...
. . .

...
0 0 . . . σ2




1
0
...
0

 = σ2
(3.6)

• Equal-weight portfolio

Share the budget uniformly to the M assets:

– Portfolio Vector : w = [ 1
M

1
M

. . . 1
M

]T ∈ RM

– Expected Portfolio Return:

E[R
(p)
t+1] = µ

(p)
t+1 = wTµt+1 = [ 1

M
1
M

. . . 1
M

][µ µ . . . µ]T = 1
M
Mµ = µ
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– Portfolio Variance:

V ar[R
(p)
t+1] = (σ

(p)
t+1)

2 = wT
∑

t+1
w

= [
1

M

1

M
. . .

1

M
]


σ2 0 . . . 0
0 σ2 . . . 0
...

...
. . .

...
0 0 . . . σ2




1
M
1
M
...
1
M


=

1

M2
Mσ2 =

σ2

M

(3.7)

The above two options have the same expected return µ
(p)
t+1, but the variance of the

second option is shrunk by a factor of M. By this we can tell why “Uniform Portfolio” is

selected by the investors. This is an example where a portfolio with the same expected

return with a single asset is less risky and less volatile than a asset.

3.1.2 Metrics Ratios

• Sharpe Ratio

The Nobel Prize winner William F. Sharpe [18] created the Sharpe ratio to help

investors compare the return of an investment with its risk:

SR =
E[Rα −Rb]√
var[Rα −Rb]

(3.8)

where Rα is the asset return, Rb is the risk free rate. E[Rα − Rb] is the expected

value of the excess of the asset return over the benchmark return, and σα is the

standard deviation of the asset excess return. One idea in this calculation is that

a portfolio invests in “zero risk”, for example buying the U.S. Treasury bills (for

which the expected return is the risk-free rate) have the Sharpe ratio of exactly

zero. In general, the higher the Sharpe ratio, the better the risk-adjusted return.

The Sharpe Ratio can be considered as the Signal-to-Noise Ratio (SNR) analog

for finance [19].

• Sortino Ratio

By dividing excess return by downside deviation, the Sortino proportion enhances
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the Sharpe rate by isolating downside volatility from total volatility. The Sortino

ratio differs from the total volatile by the asset standard difference in negative re-

turns on assets, known as the downside deviation, in that it differentiates harmful

volatility from the overall volatility. The Sortino ratio takes the return of the asset

and reduces the risk-free rate and divides it by the deviation of the asset. The ratio

was named after Frank A. Sortino [20].

Like the Sharpe ratio, a higher Sortino ratio is better. If two similar investments

were considered, the most high Sortino investor would be the rational investor,

because this means that the investment generates more profit per unit of bad risk.

The Sortino ratio formula is the following:

SortinoRatio =
E[Rα −Rb]−Rf

σd
(3.9)

where Rf is the Risk Free-Rate of Return and σd is the Standard Deviation of

Negative Asset Returns.

• Omega ratio

The Omega ratio is a relative measure of the likelihood of achieving a given return,

such as a minimum acceptable return (MAR) or a target return. It was devised

by Keating and Shadwick in 2002 and is defined as the probability weighted ratio

of gains versus losses for some threshold return target [21]. The higher the omega

value, the greater the probability that a given return will be met or exceeded.

Omega represents a ratio of the cumulative probability of an investment’s outcome

above an investor defined return level (a threshold level), to the cumulative prob-

ability of an investment’s outcome below an investor’s threshold level. The omega

concept divides expected returns into two parts, gains and losses, or returns above

the expected rate (the upside) and those below it (the downside). Therefore, in sim-

ple terms, consider omega as the ratio of upside returns (good) relative to downside

returns (bad).

The ratio is calculated as:

Ω(r) =

∫ inf

r
(1− F (x))dx∫ r
− inf

F (x)dx
(3.10)
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where F (x) is the cumulative distribution function of the returns and r is the target

return threshold which defines a value compared to a loss.

The commonly used Sharpe ratio can be contrasted to Omega by taking into account

the return-to-volatility ratio. The Sharpe ratio only takes into account the first two

times of the return, while the Omega ratio takes into account all the times by

construction.

• Maximum Drawdown (MDD)

A maximum drawdown (MDD) is the maximum loss from a peak to a trough of

a portfolio, before a new peak is attained. Maximum drawdown (MDD) [22] is a

measure of the relative risk of one inventory assessment strategy versus another,

given the focus on capital preservation, a concern of the vast majority of invest-

ments. For instance, the average output of two evaluation strategies, tracking error

and volatility, can vary greatly in their drawdown compared with the benchmark.

However, it is important to note, without considering the frequency of large losses,

that it only measures the size of the biggest loss. Because it only measures the

biggest downturn, MDD does not indicate how long an investor has taken to re-

cover from the loss or even recovered from the investment at all. It can be used as

an independent measure or as an input into other measurements such as “Calmar

Ratio” and the maximum drawdown rate. Maximum drawdown in percentages is

expressed and computed as:

MDD =
ThroughV alue− PeakV alue

PeakV alue
(3.11)

3.1.3 Markowitz Model

A portfolio allocation problem that is finding a portfolio vector w, as stated in As-

sumptions Of MPT on the portfolio vector definition 2.1 in a universe of M assets,

is formulated mathematically by (Markowitz, Kroll et al. [14]). The Markowitz model

therefore provides the optimal w∗ portfolio, which minimizes volatility for a given level

of return, in such a way:

M∑
i=1

w∗,i = 1, w∗ ∈ RM (3.12)
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Figure 3.2: Efficient Frontier

The criteria that investors satisfy (Assumptions Of MPT):

• Investors are rational and avoid risks whenever possible

• Investors aim for the maximum returns for their investment

• All investors share the aim of maximizing their expected returns

The fundamental principle of this theory is the possibility for investors to compose

an “efficient set of portfolios—Efficient Frontier” provides maximum expected returns for

a specific level of risk. An investor’s tolerance for risk determines the type of “efficient

portfolio” he opts for. An investor with the lowest tolerance opts for a portfolio that

offers him the maximum expected return given the lowest possible risk and vice versa.

The Figure 3.2 gives an overview of the concept of Efficient Frontier.

As covered in Section 2, different combinations of assets produce different expected

returns. One of the most important realization after Prof. Markowitz proved an efficient
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set of portfolios was the power of diversification. By simply constructing portfolios with

different combinations of assets, investors could achieve a maximum expected return given

their risk preferences due to the fact that the returns of a portfolio are greatly affected

by nature of the relationship between assets and their weights in the portfolio.

3.1.4 Transaction Costs

Transaction costs are the key feature when selecting a real portfolio as they lower net re-

turns and reduce future investments available capital. Costs may be considered separately

in a restricted way, imposing a predefined amount not to be exceeded or deducted from

the expected portfolio return and/or capital reduction for the real investment. When

defining a complete portfolio-optimization model, some of the limitations on transaction

cost definition can be relaxed without affecting the accuracy of the model, as the opti-

mization “drive” transaction costs up to the minimum limit value [23].

To simplify the transaction cost analysis we will be charging 0.25% for every activity

(Quantopian, 2017). Thus, when a new portfolio vector (portfolio re-balancing) is deter-

mined, it is necessary to reduce from the budget the corresponding transaction costs. To

demonstrate this, assume Tom buy two shares of ABC stock from his dealer, Nikos. He

pays $200 for the shares at $100 per share. Nikos originally take the shares for a total of

$200, incurring a $0.50 transactions charged to Tom. If Tom chooses to sell both stocks,

the stock price increases at $110 then the transaction cost is $0.55.

Multi-Stage Decision Problem

The participation of transactions cost is a multistage decision problem for portfolio

management that in simple words makes two series of states with the same beginning

and end states have diverse values.

We know that w∗ portfolio vector affect w on optimum allocation. In a sequential opti-

mization of the portfolio the past wt decisions will have a candid impact on optimal future

decisions wt+1 apart from maximizing immediate rewards, the negative consequence for

future decisions should be eliminated as well. The use, even when this involves acting sub-

optimally in the near future from a traditional optimization viewpoint, of reinforcement

learning agents that aim at maximizing long-term rewards could be beneficial.
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3.2 Optimization Setup for Reinforcement Learning

3.2.1 Action Space

To solve the asset allocation problem, the trading agent must at every stage t be able to

regulate the Portfolio Vector wt, accordingly the action αt at the time t is the portfolio

vector wt+1 at the time t+ 1:

αt ≡ wt+1
( 2.1)
= [w1,t+1, w2,t+1, . . . , wM,t+1] (3.13)

The Action Space A is thus a subset of the continuous RM real M-dimensional space.

αt ∈ A ⊆ RM , ∀t ≥ 0 and
M∑
i=1

αi,t = 1 (3.14)

The action room is continuous (infinite) and therefore consider the stock market as

an infinite decision-making process for Markov (IMDP).

3.2.2 Observation Space

We can only monitor asset prices at any time step t, so that price vector pt is the ot

observation as described:

ot ≡ pt
( 2.2)
= [p1,t, p2,t, . . . , pM,t] (3.15)

The M-Dimensional positive real-space subsets RM (prices are non-negative real-world

values) are therefore the observer space O:

ot ∈ O ⊆ RM , ∀t ≥ 0 (3.16)

3.2.3 State Space

We process the ot observations, and obtain st to help the state agent training. In addition,

as a previous time step vector portfolio wt−1 affect transaction costs we are also adding
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wt to the agent state or equitably αt−1 to the agent’s state obtain the 2-tuple:

st = 〈wt, ρt−T :t〉 =

〈
w1,t

w1,t
...

w1,t

 ,

ρ1,t−T ρ1,t−T+1 . . . ρ1,t
ρ2,t−T ρ2,t−T+1 . . . ρ2,t

...
...

. . .
...

ρM,t−T ρM,t−T+1 . . . ρM,t


〉

(3.17)

with ρi,(t−τ)→t is the cumulative asset returns i for the time interval [t− τ, t].
Therefore, the S state space is a sub-set of the RK permanent K dimension of real

space, where K is hidden in the state manager of the CNN:

sαt ∈ S ⊆ RK , ∀t ≥ 0 (3.18)

General, Infinite Partially Observable Markov Decision Process (IPOMDP) should

model the financial market (portfolio optimization), since:

• The space of action is continuous (infinite), A ⊆ RM

• The ot observation is not adequate (partially observable) environmental statistics

• State space (infinite) is continuous, S ⊆ RK

3.2.4 Reward Signal

In order to compose a Reinforcement learning setup, the resolution of the reward signal

is usually the daring step. The reward is a scalar value that fully sets out the agent’s

goals, and the maximization of the intended cumulative award is the perfect solution to

this task. The field of Inverse Reinforcement Learning is the optimum reward generating

function [24] and [25].

The aim of the reinforcement learning techniques is to maximize the expected cumu-

lative reward signal by default, so the problem of optimization, which the agent solves

(parameterized by θ) is:

max
θ

T∑
t=1

E[γtrt] (3.19)
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3.3 Related Work

In the sections below we describe several developments in the optimization of machine

learning portfolio strategies to gain insight into the current work.

3.3.1 Support Vector Machines

A study conducted by Shunrong Shen, Haomiao Jiang and Tongda Zhang explored dif-

ferent algorithms of stock market forecasting, especially those that used support vector

machine (SVM) [26]. The project provides a new algorithm that predicts the future stock

trend by means of SVM, based on the temporal correlation between global stocks and

different financial products. While we will focus more on techniques of reinforcement

learning, their work demonstrates the variety of machine learning methods currently

being tested on the stock market. Their findings focused more on predictability than

profitability, while reinforcement learning methods were designed to optimize an objec-

tive value function based on some performance metrics.

3.3.2 Recurrent Reinforcement Learning

• In this approach the decision-making of investment developed by J. Moody and M.

Saffell [27] is considered as a stochastic problem and strategies are directly identi-

fied. They have an adaptive algorithm for discovering investment policies, called

Recurrent Reinforcement Learning (RRL). Dynamic programming and en-

hancement algorithms like TD-learning and Q-learning are different from direct

enforcement approaches, which try to estimate a value function for the control

problem. This facilitates the representation of the problem through the RRL Di-

rect Reinforcement Framework and prevents Bellman’s dimensionality and offers

convincing efficiency benefits. They demonstrate how direct reinforcement can be

used to optimize risk-adjusted returns on investment, taking account costs. They

use real financial information intra-daily and find that their RRL-based approach

produces better trade strategies than Q-learning systems.
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• Steve Y. Yang and Saud Almahdi [28] are also taking another approach to solving

optimal asset allocation problems and a number of trading decision schemes based

on methods of enhanced learning. They establish an optimum allocation of vari-

able weights in line with a consistent downside risk measure E(MDD). The Calmar

Ratio, specifies their method using the RRL method for both buying and selling

signals and asset allocation weights, with a consistent risk-adjusted performance

goal. The expected maximum risk downward-focused objective function is shown

through the most frequently traded exchange funds portfolio as a higher return

than previously proposed RRL functions (i.e. Sharpe or Sterling Ratio), and vari-

able weight portfolios in various scenarios of transactions cost equal portfolios .

NOTE: The Calmar ratio represents a comparison between the average annual com-

pound rate of return and the maximum risk attraction for commodity trading con-

sultants and hedge funds. The smallest the Calmar ratio, the worse the investment

was carried over the specified period on a risk-based basis, the higher the Calmar

ratio, the better it was.

• Deep learning (DL) combined with reinforcement learning in the work of Deng et

al. [29], introduced a recurrent deep neural network (NN) for real-time financial

signal representation and trading. DL automatically detects the dynamic market

conditions for informative learning, and the RL module then interacts with deep

representations and decides to accumulate ultimate income in an unknown environ-

ment. The system of learning is performed in a complex NN with a highly recurring

structure. They thus propose a time-based task-back-cutting to tackle the problem

of deep training slowdown. The strength of the neural system is confirmed on both

the stock and commodity markets under wide-ranging test conditions.

The RRL approach is clearly different from dynamic programs and strengthening

algorithms, such as TD-learning and Q-learning, which try to approximate calculate a

value function for the control problem. With the RRL framework, simple, elegant problem

representation is created, the dimensionality of Bellman is avoided and efficiency offers

compelling advantages: Compared to Q-learning when exposed to rowdy data sets, RRL

has a more stable performance. Q-learning algorithm is more sensitive to selecting the
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value (maybe) because of the recursive dynamic optimization property whereas RRL

algorithms can choose the objective function and save time.

3.3.3 Q-learning

• Reinforcement learning for trading systems and portfolios developed by Moody [30]

proposed training systems through reinforcement learning by optimizing financial

objective functions. The functions used for value are profit or wealth, the Sharpe

ratio and the proposed online learning differential Sharpe ratio. They tested Q-

learning and Real-Time Reinforcement Learning (Max Immediate Reward). Their

reinforcement trader achieves a simulated out-of-sample profit of over 4000% for

a 25 year period 1970 through 1994, compared to the return for a buy and hold

strategy of about 1300%. This superior result is achieved with substantially lower

risk. One more pros of this work is that they used softmax output layer (Multiple

Assets).

Note: The Sharp derivative ratio is economically similar to the marginal utility

in that it is eager to bear the risk for one unit of sharp increase which has been

described as being:
dS

dτ
= lim

τ→0

S[t+ τ ]− S[t]

τ

Rather than finding a symbolic solution to the derivative, the gradient would be

measured across multiple time steps.

• Optimal Asset Allocation Using Adaptive Dynamic Programming in the work of

Ralph Neuneier [31] proposed Q-learning via Neural Network for Discrete Action

Space (binary selection). He tested it in German Stock Index (DAX). The neural

networks are used as an approach to value that leads to a strategy of allocation of

assets that exceeds heuristic standards.

3.3.4 Policy Gradient Algorithms

• Automated Trading Systems (ATS) effect on financial markets is increasing an-

nually and algorithms now account for the multiplicity of orders placed on the

stock exchanges, developed by Necchi [32] proposed a policy gradient agent with
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Parametric-Based Exploration into the scope of algorithmic Trading (“single as-

set”). He establish a MDP with Historic Prices as state space, Portfolio Vector as

action space with daily log returns as reward function. He run successful back-tests

on synthetic data and prove the significance of transaction costs.

• Policy Gradient combined with Neural Network is the proposed agent is the work of

Jiang et al. [33]. They enable CNN and LSTM policy Gradient Agents into the scope

of multiple assets (softmax output layer). Neural network has the jobs to investigate

an asset’s history and assess the probable growth in the near future. For each asset

the evaluation rate is reduced by its deliberate weight change and the consequent

soft-max layer is the new weight of the portfolio for the next trading period. The

RL framework’s reward function is the exact average periodic logarithmic returns.

They use a portfolio Vector memory.
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Chapter 4

Our Approach

The lack of a stable theoretical framework for financial trading is a challenge for devel-

oping a training system. Although not to the same degree, neural networks still being a

developing field, suffers from similar problems. LeCun et al. [34] stated on the subject of

backpropagation neural network:

Backpropagation is popular because it is conceptually simple, computer-friendly and

often worked. It may, though, look more like art than science if it works well and some-

times works. Many apparently erratic decisions, including numbers and types of neurons,

layering, learning rates and training and tests are necessary to design and train a network

using backpropagation.

Although the benefit of the use of neural networks in prediction is that, after their

learning is completed, the agents can learn from the examples, even if there is a significant

noise in the training set, hidden and strongly not-linear dependencies. Those decisions

can be crucial, however, because the decisions are broadly problematic and data reliant,

there are no stupid recipe to make.

A trading algorithm strategy based in Neural Network is proposed, which presents

an agent with the current market situation, enables him to analyze the situation from

his own experience and then to decide on what should be the best investment action for

them. We used computational tools that are mainly problem and data-hooked in a field
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with few theoretical foundations to guide us. That means that during the design pro-

cess we had to gain theoretical insights with empirical test. Since market data for such

tests can not be simulated or generated, we must take data from historical source, which

will then evaluate the performance of the system which can point out data cleaning issues.

4.1 Overview

To achieve this, we intend to apply the earlier defined reinforcement learning framework,

because we understand that this issue can be resolved by RL methods. We see the area

of state with the necessary market and current investment information, space of action as

an opportunity for potential investment in a given period and the role of rewarding the

profits of the agent. We will use techniques based upon Deep Policy Network learning

methods and will evaluate their success in solving our problem.

The problem is the one of automated portfolio management: given a set of stocks, how

to best allocate money through time to maximize returns at the end of a fixed number

of timesteps. This enables us to create an automatic agent that best allocates the weight

of its investment between various inventories.

We experiment to the stock market, using the framework on daily data with a daily

rebalance.The thesis is decomposed in 4 parts:

• Data Preprocessing

• Environment Set-up

• Deep policy network design

• Training and Testing of the agent

4.2 Data Treatments

The trading tests are carried out on S&P 500 data, where there are about 500 tradable

stocks. However, for the reasons given by Evans and Archer [35] portfolio sizes beyond 10

stocks do not make much sense. This section also describes a pre-process normalization

of the data arrangement the neural networks take to be their input.
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Figure 4.1: Candlestick Chart for (OHLC = Open High Low Close) prices

4.2.1 Candlesticks

A vector d ∈ R4 can be described as a candlestick that serve as the movement over time

of a financial asset. We are going to use the following representation for arranging the 4

prices in a candle; d = (close, low, high, open)T . Thus we can see our data set as a series

of vectors in R4 in Figure 4.1. The candle has a small real body (distance between open

and close) which indicates whether a stock’s closing price was higher or lower than its

opening price. If the body is red the stock closed lower, otherwise if the body is green it

closed higher.

4.2.2 Data Preprocessing

Ten large companies are chosen in random for the portfolio in the experiments of this

thesis. The portfolio size, stocks+ 1, is 11 along with the cash. This statistic is selected

from experience regarding portfolio diversification. For high volume markets, m may be

as great as the entire number of assets available, such as the foreign exchange market.

We follow the below two hypotheses:

• Hypothesis of zero slippage: All market assets are liquid enough to make every
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trading at the last price immediately possible when an order has been placed.

• Impact of zero market : The investments by the Software Trading Agent are so

small that they have no effect on the market.

Thus, we select the highest volume assets for improved liquidity and a better environment.

The entry is a raw time series of prices for each stock (High, Low, Open, Close). The

output is a matrix of 4 rows and n = (number of available data points) columns. The

columns contain the following:

•
Close(t− 1)

Open(t− 1)

•
High(t− 1)

Open(t− 1)

•
Low(t− 1)

Open(t− 1)

•
Open(t)

Open(t− 1)

Price Vector

The historical price data for the output of a portfolio vector are fed to the neural network.

At the end of the t period, the input to the neural network is Xt, rank 3, in (f, n,m)

form, when the amount of inventory that we would like to study is m, the input periods

before t are n and the number of features is f = 4. Since prices are far less relevant than

the previous ones in the past, n = 35 is used to experiments. The m asset criterion was

provided in Section 4.2. Since the portfolio performance is based solely on price changes,

all prices in the input tensor represented below.

Xt =

[
(
Close(t− n− 1)

Open(t− n− 1)
, . . . ,

Close(t− 1)

Open(t− 1)
),

(
High(t− n− 1)

Open(t− n− 1)
, . . . ,

High(t− 1)

Open(t− 1)
),

(
Low(t− n− 1)

Open(t− n− 1)
, . . . ,

Low(t− 1)

Open(t− 1)
),

(
Open(t− n)

Open(t− n− 1)
, . . . ,

Open(t)

Open(t− 1)
)

]
(4.1)
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We don’t need to normalize the data since it’s already of ratio of 2 prices closed to

one.

4.3 Proposed Reinforcement Learning Model

In order to learn an optimal policy in relation to the training data set we propose a

reinforcement learning algorithm which utilizes deep deterministic policy gradient algo-

rithms. We highlight the main ingredients of our approach that we are going to use the

reinforcement learning problem framework to identify our problem. The explicit reward

function is given below.

4.3.1 State and Action Representation

The agent is the software portfolio director, responsible to conduct trading activities

on an algorithmic portfolio management level in the financial market environment. This

environment includes all market assets available and all market participants’ expectations.

The agent can not obtain complete information on a large and complex environment

such as the stock market, so the asset prices that are given to the agent are reflected

all orders throughout the market’s history. The complete Price Vector Xt consists of

processed (OHLC) prices for every stock within the training data period.

We mentioned in Section 4.2 that the agent’s trade action will not affect future market

price states. However, the action taken at the start of the t period will have an effect

on the reward of t + 1 and will therefore have an influence on the decision. The agent

aim of redistributing the assets is resolute by the difference in portfolio weight w
′
t and wt,

which also takes part in the last period in the action. Since the last period of the wt−1

was established, the action of the agent can at that time be entirely enunciated via the

wt vector of the portfolio(see Equation 3.13).

A previous measure therefore has an impact on the decision on the current dependence,

this effect is imprinted by including wt−1 in the environment, so the t status is shown to

be Xt and wt−1 (see Equation 3.17). Because of the Zero market impact in Section 4.2
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the amount of the portfolio in comparison to the market’s overall volume of trading is

negligible, therefore pt is not included in the internal state.

So the State (at time t) is the input matrix Xt and the previous portfolio Weights

wt−1 (at time t− 1) and formulate as 2-tuple:

State = St = (Xt, wt−1) (4.2)

The Action (at time t) is the vector of investment weights which change at every step

and described as:

Action = αt = wt = (w1, . . . , wn) (4.3)

The deterministic policy may be seen as a special case of stochastic policy where there

is only one extreme non-zero value over one measure in the probability distribution. We

expect the stochastic policy to require more samples as it integrates the data over the

whole state and action space. The deterministic policy gradient theorem can be plugged

into common policy gradient frameworks.

4.3.2 Exploration and the Reward Function

At the end of the tf + 1 period, it is the agent’s responsibility to maximize the final

portfolio value pf . Because the agent has no control of p0, and the entire portfolio

management process, tf , the job is equal to maximizing the average cumulative return

R:

Adjusted Reward = Reward - Baseline Reward - α×Maximum Portfolio Weight

rt =
∑

w
′

i × yi −
1

m

∑
yi − αmax(w1, . . . , wn) (4.4)

Where α is a fix term for balancing the portfolio, preventing the choice of the greatest

stock in every step.

The reward function is defined such as it is the agent’s return minus a baseline’s

return (baseline is an equi-weighted agent - invest in all the possible stocks in the same

way) minus a term proportional to the maximum weight (this term is set-up to make the

agent avoid to invest fully in one stock).

With this reward function, the current approach express exactly both episodic and

cumulated rewards achieving to master domain knowledge and can be fully exploited by
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the agent. The same segment of market history can be used to evaluate the different

sequences in actions by using this isolation of actions and the external environment.

Equally crucial for the final reward are also all occasional rewards.

For improving exploration we implement a random action function which taking ran-

dom action with probability epsilon (greedy) during training. Empirically we choose the

initial value of random action is set to 18% and decreasing for every episode. When is

time to choose a action run a rand function and if the value is smaller than the current

probability epsilon compute the weight of action state, otherwise choose a random stock.

This logic is explained as: If rand()<epsilon then compute the αt, else choose random

stock m as action.

4.4 Policy Network

The policy functions πθ will be built with three deep neural networks. The policy function

is developed via a deep neural network that uses the input tensor (Shape m × 35 × 4)

composed of:

• the m traded stocks (m = 10 stocks)

• the 4 matrix columns (processed OHLC)

• 35 previous time steps

A first convolution is realized resulting in a smaller tensor. Then, a second convolution is

made resulting in 20 vector of shape (m× 1× 1). The previous output vector is stacked.

The last layer is a terminate convolution resulting in a unique m vector. Then, a cash

bias is added and a softmax (see Equation 2.23) applied.

The neural network outcome is the action vector the agent will take. Then, the

environment can compute the new vector of weights, following the new portfolio and

finally the instant reward as seen in Figure: 4.2 .
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Figure 4.2: CNN Network Design (implemented from Jiang, Z., Xu, D., Liang, J. paper)

4.4.1 Portfolio-Vector Memory

In the network the result of portfolio weights from the previous trading period is used

to reduce the transaction cost by restricting itself to major changes between successive

portfolio vectors. The portfolio management agent is responsible for this. A dedicated

network-specified Portfolio-Vector Memory (PVM) is introduced to the idea of replaying

memory experience as shown by Mnih et al. [36] and Liu and Zou [37]. The PVM is a

chronologically ordered heap of portfolio vectors. The PVM is initialized with uniform

weights prior to any network training. A policy network loads the portfolio vector for the

past period in t−1 from the memory location and overlaps the memory with its output at

t at each stage. The values in memory also converge as the parameters of the policy grid

converge in many training epochs. The sharing of a single storage stack allows a network

to simultaneously train against data points in mini-batches, that greatly enhances the

effectiveness of training.

4.4.2 Online Stochastic Batch Learning

The establishment of the network output-memory plauses mini-patch training, although

the learning framework needs sequential inputs. In this training scheme however, the data

points must be following time ordering within a batch, in contrast to supervised learning

in which data points are unordered and mini-batches are random disjointed subsets of

the sample space. Because data sets are time series, even with a significant overlapping

interval, mini batch sets from various periods are also considered valid and distinctive.

Antonios Vogiatzis 46 February 2019



4.5 The environment

The on-going nature of financial market and the size of a training sample set grow

indefinitely, so new data is still being transferred to the agent. Fortunately, with the

time distance between them, the correlation between two market price events is thought

to decrease exponentially as shown by Winters [38] and Holt [39].

The price change during this period is added to the training set at the end of the

t−th period. The policy network will be trained against Nb random mini-batches from

this set once the agent has completed his orders during period t + 1. A batch starting

with period tb ≤ t− nb is selected with a geometrically distributed probability Pβ(tb),

Pβ(tb) = β(1− β)t−tb−nb (4.5)

where β ∈ (0, 1) is the decline in probability that determines the form and gravity of new

market events in the distribution of probabilities and nb is the size of duration in mini

batch.

4.5 The environment

The trading environment of our agent is called by giving an action at the time t. Then

gives back the new portfolio at the next step (time t+1). Below are the parameters of

the environment:

• window length: this is the number of time steps considered relevant from the

past to build the input tensor

• portfolio value: this is the initial value of the portfolio

• interest rate: this is the rate of interest (in % of the traded stocks) the agent pays

to perform the action

• transaction cost: this is the cost (in % of the traded stocks) the agent will pay

to execute the action

4.6 Evaluation Performance

We will explain in this section the different types of agents that we use and the measure-

ments that we display. There are 4 type of agents:
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• Agent equal weight: set up for an agent who only plays an equally weighted

portfolio (baseline) between all stocks.

• Agent random static: set up for an agent who only play with random initial

weights and keep them fix until the end.

• Full stock[m]: set up for agents who play only on one stock.

• The proposed Agent: this is the proposed trading agent (policy network agent).

We choose some metrics to evaluate the performance of the portfolio value in each

episode which were described in Section 3.1.2 of training period in the validation set:

• Sharpe Ratio

• Sortino Ratio

• Omega Ratio

• Maximum DrawDown

• Mean price

• Max-Min price

4.7 Implementation in Tensorflow

In this Section we will explained how we collect the data, set-up the environment and

build the algorithm we proposed with Tensorflow and Python.

4.7.1 Input tensor

We use python numpy and pandas libraries to download the S&P 500 data used to

produces the input tensors of the neural network. The data is provides by Yahoo Finance

App and store as “csv” files and transposes to create a numpy nd-array.
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4.7 Implementation in Tensorflow

Process 1 Environment Calculations
1: load the whole data

2: Initialize environment with given initial weights and given value of portfolio

3: Get the return of each stock for the day t

4: w alloc=action, pf alloc=pf previous

5: Compute transaction cost

6: Convert weight vector into value vector, v alloc = pf alloc×w alloc

7: Pay transaction costs, pf alloc - cost

8: Market prices evolution, we go to the end of the day

9: Compute new value vector and portfolio value

10: Compute weight vector

11: Compute instantaneous reward, reward = pf evol−pf previous
pf previous

12: Proceed to the next day

13: Compute new state

14: return state,reward

4.7.2 The trading environment

In each step t, the trading agent gives as input the action he wants to do. So, he gies

the new value of the weights of the portfolio. The environment compute the new value

of the portfolio at the step (t+ 1), and returns the reward associated with the action the

agent took.

The Process 1 is shown the steps which required to compute reward and state at each

step.

4.7.3 Description of the Actor

We create a class to incorporate the policy network agent. We use Tensorflow library,

specifically tf.Placeholder() and tf.variable scope() methods to define neural network as

a class.

The Process 2 is shown the steps which required to define the CNN we use. Conv1,

Conv2 and Conv3 uses Relu activation function, on the contrary Policy Output as the

last layers use a softmax activation Function.
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Process 2 Neural Network Design

1: Create Xt, wprevious, pfvalue previous, daily rt

2: Create cash bias

3: Shape of the Xt == batchsize

4: First layer on the Xt tensor (“Conv1”)

5: Feature maps (“Conv2”)

6: w from last period (“Tensor3”)

7: Feature map WITHOUT cash bias (“Conv3”)

8: Feature map WITH cash bias (“Tensor4”)

9: action = softmax(Tensor4) (“Policy Output”)

10: Compute the insta reward

11: Compute the equally reward

12: Find the max weight

13: Compute the Adjusted Reward

14: Call Adam Optimizer to maximize the Adjusted Reward

4.7.4 The Metrics for the evaluation

We keep list of portfolio value in every step of training to estimate the metrics and the

performance of the agent during validation set. The results of training period will shown

in Section 5 with the values for all metrics.

4.8 The Suggested Algorithm

We sum up our approach in this area and describe the optimization algorithm proposed.

Our optimization approach is based on a CNN with a policy gradient as an RL method.

Algorithm 3 draft our weights update from time step t = 0 to the end of the training set,

while Table 4.1 records all algorithm parameters together with our assumed values.

All experiments run for 8 episodes. In each episode we initialize the PVM with

training parameters:

PVM (m, sample bias , t o t a l s t e p s t r a i n , ba t ch s i z e , w i n i t t r a i n )

and then proceed to reset the environment for all types of agents with the weight from

PVM at the starting point for each batches. Afterwards, we compute portfolio value for
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4.8 The Suggested Algorithm

Algorithm 3 Portfolio optimization Algorithm

1: for e = 0 in range (n episodes) do

2: Initialize the PVM (m, distribution, batchsize, totalsteps)

3: for i = 1 in range (n batches) do

4: Reset all the agents environments

5: for bs = 1 in range (batch size) do

6: load the inputs from the previous loaded state

7: Get price Vector Xt,Wprevious, Pfprevious

8: Compute Action

9: given the st (equation: 3.17) and αt(equation : 3.13) go to next step

10: get the new states

11: update the PVM

12: store elements

13: if bs == batchsize− 1 then

14: online training end

15: end if

16: end for

17: train the network to maximize the reward

18: call actor.train(Xt,Wprevious, pfprevious, dailyReturn)

19: call Adam optimizer ( 2.5.5)

20: evaluates the performance of the different types of agents.

21: end for

22: end for

each batch and send the list required to the actor to train the network for maximizing

the reward.

ac to r . t r a i n ( X t , W previous , p f v a l u e p r e v i o u s , da i l yReturn t ) .

Finally for each episode call the evaluations performance function to calculate the metrics

and shown the portfolio value during validation set.
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Table 4.1: Parameter values of localization algorithm

Parameter Proposed Value Description

e 8 Episodes number

batch size 35 Size of mini-batch during training

n batches 10 Number of Batch for every episode

pf init train 10000 Initial Investment amount

ratio train 60% Percentage of training time

ratio val 20% Percentage of validation time

ratio test 20% Percentage of testing time

Initial ratio greedy 18% Percentage of random actions

ratio regul 0.12 Regulation rate for max Weight

learning 0.09 Adam optimizer learning rate

regularization 5e−9 L2 regularization coefficient applied to NN

trading cost 0.25/100 Cost per action

interest rate 0.02/250 Interest rate

sample bias 5e−5 Beta geometric distribution for PVM
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Chapter 5

Results

The results of our work are presented in this chapter. Firstly, we must make it clear that

our approach estimates a good portfolio that overcomes the benchmark. The results are

compared to some well developed strategies for portfolio decision. The main financial

criterion compared with that is portfolio value and maximum draw-down additionally to

the ratios of Sharpe, Sortino and Omega.

The efficiency of the Standard & Poor’s 500 Indices is questioned in actual financial

markets.

5.1 Standard & Poor’s 500

Publicly traded companies are typically correlated by increasing the number of their

remaining shares by the current share price in terms of their market value or market

capitalisation (market capital) (Investopedia,2018) [40], or evenly:

MarketCapasset(i) = V olumeasset(i) × SharePriceasset(i) (5.1)

The S&P 500 Standard is an American stock market index based on the market

capitalizations of 500 large companies, (Investopedia, 2018) [41]. As stated by the Effi-

cient Market Hypothesis (EMH) (Fama, 1970) [42] and the Capital Asset Pricing Model

(CAPM) (Luenberger, 1997 [43]), the market index, S&P 500, is adequate and portfolio

extract by its combining assets could not work to a higher standard. However, the CAPM

and the EMH are not exactly fulfilled and trade opportunities can be used by appropriate

strategies.
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5.1.1 Companies And Data period

We choose some random companies from (S&P 500) index which are mentioned in Ta-

ble 5.1 and Table 5.2. The data period we choose is from 2005 − January − 01 until

2016 − September − 01 2937 days in total, where 60% is the training set (1762 days),

followed by 20% validation set (588 days) and the final testing set is the remaining 20%

(588 days).

5.2 Performance of the algorithm

5.2.1 Test A: Exploration

We run experiments for the 10 companies in Table 5.2 with epsilon greedy policy and

without it. Figure 5.1 shows the portfolio value during training for 8 episodes and Ta-

ble 5.3 shows the metrics we described in Section 3.1.2 for each episode with greedy

policy.

Similarly, Figure 5.2 shows the portfolio value during training for 8 episodes and Table 5.4

the metrics we described in section 3.1.2 for each episode without e-greedy policy.

We see upward trend in every next episode in both cases. The number of episodes

stop in 8 because after that number the portfolio value barely increased. The metrics

noticed to be stagnant after some episodes which means there are not much room for

improvement. The results are averages over 10 repeats with one run to have 10× 8 = 80

episodes.

In Figure 5.3 we see the performance of different types of agents and that the proposed

optimization approach outperform the results than our benchmark method based on

equal-weight portfolio, and is very close to some random weight agent for the combina-

tions of assets. The exact percentage distance between the 2 agent is show in Figure

5.4.

Similarly in Figure 5.5 we see the performance of different types of agents without

e-greedy policy, again the proposed optimization approach in this case outperform both

the results than our benchmark method based on equal-weight portfolio, and some ran-

dom weight agent for the combinations of assets. The exact percentage distance between

the 2 agent is show in Figure 5.6.
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5.2 Performance of the algorithm

Table 5.1: Companies for testing

Name Ticket Market Cap

Sony Corporation SNE $61.77B

JPMorgan Chase & Co. JPM $345.40B

3M Company MMM $112.50B

International Business Machines IBM $122.02B

AT&T Inc. T $223.216B

Cisco Systems CSCO $205.69B

The Goldman Sachs Group GS $76.07B

The Walt Disney Company DIS $165.12B

Pfizer Inc. PFE $228.50B

Walmart Inc. WMT $281.98B

Table 5.2: Companies for testing (2)

Name Ticket Market Cap

Alphabet Inc. GOOG $775.69B

MO - Altria Group MO $92.45B

AMAZON AMZN $795.18B

APPLE Inc. AAPL $787.61B

BANK OF AMERICA Corporation BAC $274.41B

Chubb Limited CB $61.55B

Coca-Cola Company KO $207.29B

Bristol-Myers Squibb Company BMY $81.44B

Intel Corporations INTC $222.43B

Chevron Corporation. CVX $226.18B

Antonios Vogiatzis 55 February 2019



5. RESULTS

The difference between sophisticated models and the naive approach is not statistically

significant [44] and [45], they point out that really basic models perform quite well.

Finally, in Figure 5.7 we can see the course of each share from Table 5.2 if we only

invested in it the full amount of capital.

Antonios Vogiatzis 56 February 2019



5.2 Performance of the algorithm

Table 5.3: Metrics for portfolio value during training (A1)

Episode Pf-value MDD Mean Sharpe Sortino Omega

0 13592 1025 0.056 0.083 0.099 0.167

1 14025 1163 0.062 0.082 0.1 0.171

2 14100 1186 0.063 0.081 0.1 0.172

3 14168 1207 0.064 0.081 0.1 0.173

4 14191 1215 0.065 0.081 0.1 0.173

5 14251 1234 0.065 0.081 0.1 0.173

6 14276 1242 0.066 0.081 0.1 0.173

7 14290 1246 0.066 0.081 0.1 0.173

8 14292 1247 0.066 0.081 0.1 0.174

Figure 5.1: Portfolio value during training (A1) with exploration
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Table 5.4: Metrics for portfolio value during training (A2)

Episode Pf-value MDD Mean Sharpe Sortino Omega

0 13603 1025 0.056 0.083 0.099 0.167

1 13977 1147 0.062 0.082 0.1 0.171

2 14170 1208 0.064 0.081 0.1 0.173

3 14191 1215 0.065 0.081 0.1 0.173

4 14164 1206 0.064 0.081 0.1 0.173

5 14200 1218 0.065 0.081 0.1 0.173

6 14247 1232 0.065 0.081 0.1 0.173

7 14272 1240 0.066 0.081 0.1 0.173

8 14280 1243 0.064 0.081 0.1 0.173

Figure 5.2: Portfolio value during training (A2) without exploration
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Figure 5.3: Portfolio value during testing (A1)

Figure 5.4: Distance between Proposed vs Equal-weighted Agents (A1)
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Figure 5.5: Portfolio value during testing (A2)

Figure 5.6: Distance between Proposed vs Equal-weighted Agents (A2)
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Figure 5.7: Portfolio value - Full invest in one stock (A)
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5.2.2 Test B: Adam vs Adagrad Optimizer

In the second experiment, we test the 10 companies from Table 5.1 with adagrad and

adam optimization Algorithms.

Adam: In the Table 5.5 we can see the metrics for each episodes during training. In

Figure 5.8 we observe the portfolio value for each episode of training, combine with

Figure 5.9 which show the weights evolution. Especially in episode 1 seven weights vanish

for this episode but after that the percentage of each weight does not change significantly,

and state stable until the then of training. In Figure 5.10 we see the performance of

different types of agents with the Adam optimizer, again the proposed optimization

approach in this case outperform both the results than our benchmark method based

on equal-weight portfolio, and some random weight agent for the combinations of assets.

The exact percentage distance between the 2 agent is show in Figure 5.11.

The Adam algorithm demonstrated the capacity to identify high-potential stocks which

maximizes results. However, it has a little potential to change the position through the

trading process. He finds quickly the optimal portfolio value and we have not big changes

during training as shown in 5.5. The change of weights is very poor. It seems the policy

is “Training Sensitive” but not “State Sensitive”.

Table 5.5: Metrics for portfolio value during training (Adam optimizer)

Episode Pf-value MDD Mean Sharpe Sortino Omega

0 12591 1251 0.043 0.062 0.073 0.123

1 13424 1371 0.056 0.062 0.076 0.134

2 13030 1465 0.050 0.062 0.074 0.127

3 13035 1468 0.050 0.062 0.074 0.127

4 13028 1464 0.050 0.062 0.074 0.127

5 13014 1457 0.050 0.062 0.074 0.127

6 13020 1460 0.050 0.062 0.074 0.127

7 13039 1470 0.050 0.062 0.074 0.127

8 13051 1476 0.050 0.061 0.074 0.127
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Figure 5.8: Portfolio value during testing (Adam optimizer)

Figure 5.9: Weights evolution for each episode during training (Adam)
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Figure 5.10: Portfolio value during testing (Adam)

Figure 5.11: Distance between Proposed vs Equal-weighted Agents (Adam)
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Adagrad: This section describe the testing of the 10 companies from Table 5.1 with

Adagrad optimization algorithms. In the Table 5.6 we can see the metrics for each

episodes during training. In Figure 5.12 we observe the portfolio value for each episode

of training, combine with Figure 5.13 which show the weights evolution. It has more

linear progression comparatively with the Adam weights evolution in Figure 5.13, but

appear the weakness to eliminate the “money”. In Figure 5.14 we see the performance of

different types of agents with the Adagrad optimizer, in this case the proposed optimiza-

tion approach is less “‘optimal-to-equal” from benchmark method based on equal-weight

portfolio, and some random weight agent for the combinations of assets. The exact per-

centage distance between the 2 agent is show in Figure 5.15.

The Adagrad algorithm demonstrated the capacity to identify high-potential stocks which

maximizes results. However, change the position over time , but not always to better out-

come. He has inability to decrease the “money” and to find quickly the optimal portfolio

value 5.6. The change of weights is very poor. It seems the policy is “Training Sensitive”

but not “State Sensitive”.

Finally, in Figure 5.16 we can see the course of each share from Table 5.1 if we only

invested in it the full amount of capital.

Table 5.6: Metrics for portfolio value during training (Adam optimizer)

Episode Pf-value MDD Mean Sharpe Sortino Omega

0 12574 1278 0.043 0.062 0.073 0.122

1 12605 1359 0.043 0.059 0.070 0.118

2 12735 1360 0.045 0.061 0.072 0.123

3 12826 1388 0.046 0.062 0.074 0.125

4 12897 1386 0.047 0.063 0.075 0.128

5 12861 1363 0.047 0.063 0.075 0.127

6 12881 1377 0.047 0.063 0.075 0.128

7 12873 1362 0.047 0.063 0.075 0.128

8 12878 1348 0.047 0.064 0.076 0.128

Antonios Vogiatzis 65 February 2019



5. RESULTS

Figure 5.12: Portfolio value during testing (Adagrad optimizer)

Figure 5.13: Weights evolution for each episode during training (Adagrad)
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Figure 5.14: Portfolio value during testing (Adagrad)

Figure 5.15: Distance between Proposed vs Equal-weighted Agents (Adagrad)
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Figure 5.16: Portfolio value - Full invest in one stock (B)
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Chapter 6

Conclusion

6.1 Conclusion

A deep deterministic reinforcement approach to portfolio optimization is described in this

thesis, which has been implemented and incorporated using Tensorflow and Python. The

optimization algorithm takes as input historical prices from 10 stocks from S&P index

and estimates a good portfolio with combination of weights that are updated in every

step. We make use of a Convolution Neural Network for policy function with Policy

gradient as the RL method. The proposed approach to optimization gives more lucrative

results than our equivalent portfolio benchmark method [44] and [45]. We conclude

our research by assessing our results with the objectives set out in the introduction and

discussing their impact on both reinforcement learning and the optimization of portfolios.

We also suggest some possible ideas for extension of our approach in the form of future

work.

6.2 Future Work

The lack of interpretability as shown by Rico-Martinez etc. [46] and the lack of thorough

testing of depths (i.e. deep networks) of the architecture used discourages practitioners

from using these solutions even though the strategies developed improve on performing.

As a result, the learned strategies should be explored and interpreted through the opening

of the deep “black box”.
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6. CONCLUSION

• Since the financial signals are uncertain, such insecurity should be shaped and in-

tegrated in the process of decision-making. Bayesian inference can also be used

to train probabilistic models which are capable of capturing environmental uncer-

tainty, including Variation inference as shown by Titsias and Lawrence [47], and

Vlassis et al. [48].

• A interesting approach is to construct some indicators whose typical used in tech-

nical analysis of financial Series. Strategy performance resulting from conditional

optimization and the use of several possible signal indicators, could help in guiding

towards better decisions [49] or technical indicators with Multi-Objective Evolu-

tionary Algorithms [50].

• Most extensions of Markowitz extensions not only perform poorly against the naive

1/N rule (that invests equally across N assets) in simulations, but also in many real

data sets they lose money on a risk-adjusted basis [51]. An optimal combination

of 1/N naive rule and one of the four advanced strategies such that the Markowitz

rule, the Jorion rule [52], the MacKinlay and Pastor rule [53] and the Kan and

Zhou rule [54] will enhance the performance of the agent.
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