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Abstract

Robot mapping is the process of building a representation (a map) of an unknown

environment using a mobile robot. Robot Localization is the process of estimating

the pose of a robot within a map. In real-world robot applications, these two tasks

are typically performed in parallel. In this thesis, we present a low-cost and open-

source  mobile  autonomous  robot  to  perform  Simultaneous  Localization  and

Mapping (SLAM).Our robot has to have the ability to navigate freely in a room,

with no outside guidance while avoiding obstacles and covering as much floor space

as possible.  The robot is being controlled using an Arduino micro-controller. It uses

two ultrasonic  sensors  for  distance  measuring and  one MPU (Motion Processing

Unit) for sensing changes in the robot’s position and orientation. The data collected

by  the  sensors  are  transmitted  wirelessly  to  a  remote  PC  (work  station)  via  a

Bluetooth module. A developed software application on the PC processes the data and

builds a probabilistic  map of  the room, while  displaying the robot’s  position and

trajectory.  As  a  result,  an  intelligent  and  fully  autonomous  SLAM  robot  was

designed with integrated systems for its control and navigation. The robot is able to

cover almost all space of an unknown room without colliding with any object or wall,

producing the desired map of the room at the same time. 
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Περίληψη

Η ρομποτική χαρτογράφηση είναι  η διαδικασία δημιουργίας μιας αναπαράστασης
(χάρτη)  ενός  άγνωστουπεριβάλλοντος  χρησιμοποιώντας  ένα  κινητό  ρομπότ.  Ο
ρομποτικός εντοπισμός είναι η διαδικασία εκτίμησηςτης θέσης ενός ρομπότ μέσα σε
έναν  χάρτη.  Στις  ρομποτικές  εφαρμογές  του  πραγματικού  κόσμου,  αυτές  οιδύο
εργασίες  εκτελούνται  συνήθως  παράλληλα.  Στην  παρούσα  διπλωματική  εργασία,
παρουσιάζουμε ένακινητό αυτόνομο ρομπότ χαμηλού κόστους και ανοικτού κώδικα
για  την  εκτέλεση  ταυτόχρονου  εντοπισμούκαι  χαρτογράφησης  (Simultaneous
Localization  and  Mapping  –  SLAM).  Το  ρομπότ  μας  έχει  τη  δυνατότητα
ναπεριηγείται  ελεύθερα  μέσα  σε  ένα  δωμάτιο,  χωρίς  εξωτερική  καθοδήγηση,
αποφεύγοντας  τα  εμπόδια  καικαλύπτοντας  όσο  το  δυνατόν  περισσότερο  χώρο
δαπέδου.  Το  ρομπότ  ελέγχεται  χρησιμοποιώνταςμικροελεγκτή  Arduino.
Χρησιμοποιεί  δύο  αισθητήρες  υπερήχων  για  τη  μέτρηση  αποστάσεων  και  ένα
MPU(Motion  Processing  Unit)  για  την  ανίχνευση  αλλαγών  στη  θέση  και  τον
προσανατολισμό  του  ρομπότ.  Ταδεδομένα  που  συλλέγονται  από  τους  αισθητήρες
μεταδίδονται  ασύρματα  σε  απομακρυσμένο  υπολογιστή(σταθμό  εργασίας)  μέσω
μονάδας  Bluetooth.  Μια  αναπτυγμένη  εφαρμογή  λογισμικού  στον
υπολογιστήεπεξεργάζεται  τα  δεδομένα και  δημιουργεί  έναν πιθανοτικό χάρτη του
χώρου,  ενώ  εμφανίζει  τη  θέση  και  τηντροχιά  του  ρομπότ.  Ως  αποτέλεσμα,
σχεδιάστηκε και υλοποιήθηκε ένα ευφυές και πλήρως αυτόνομο ρομπότγια SLAM με
ενσωματωμένα συστήματα ελέγχου και πλοήγησης. Το ρομπότ μπορεί να καλύψει
σχεδόν όλοτο χώρο ενός άγνωστου χώρου, χωρίς να συγκρουστεί με οποιοδήποτε
αντικείμενο ή τοίχο, παράγονταςταυτόχρονα τον επιθυμητό χάρτη του χώρου.
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Chapter 1

Introduction

In  robotic  mapping  and  navigation,  simultaneous  localization  and  mapping
(SLAM) is the computational process of acquiring a map of an unknown environment
with  a  moving robot,  whilst  simultaneously  keeping track of  the  robot’s  location
relative to this map. A SLAM problem was first  introduced by R.C. Smith and P.
Cheeseman on the representation and estimation of spatial uncertainty in the 1980s.
Since then, this problem has received very considerable attention from the scientific
community, and a flurry of new algorithms and techniques have emerged.

The SLAM problem was initially compared to a chicken and egg problem, as a
good map is needed for localization while an accurate pose estimation is needed to
build a map. Those two problems can not be solved independently of each other.
Before a robot can tell what the environment looks like given a set of observations, it
is  crucial  to  know  from  which  locations  these  observations  have  been  made.
Meanwhile  it  is  hard  to  estimate  the  current  position  of  the  vehicle  without  the
environment’s map. Hence SLAM robots have to deal with situations where they lack
global positioning.

In order to face the difficulties of their location unawareness, robots have to rely
on sensors in  order to estimate their  position,  relatively to the environment,  (e.g.
odometry, landmarks, inertial navigation). Such sensors accumulate error over time,
making the problem of constructing a map a challenging one.

This thesis details the system design process and the final design of one such fully
autonomous robot. This approach will allow the educational process of autonomous
agents to become accessible and inexpensive, providing students with  a hands-on
experience on a low cost platform.

The system was extensively tested on various mazes and has been proven reliable.
The  results  were  somewhat  surprising,  as  a  simple  implementation  of  motion
succeeds in driving the robot, covering the mapping area astonishing well. At this
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point, it is crucial  to mention that this project was not aiming to provide any novelty
or new findings in the SLAM domain, rather than gaining a hands on experience in
robotics and autonomous agents.

The rest of this thesis is organized as follows. In the second chapter, the concept of
Occupancy Grid Mapping is explained in detail and basic background theory about
the  components  used  is  presented.  In  the  third  chapter,  related  techniques  in  the
concept  of  robotic  mapping  are  listed  and  briefly  explained.  The  fourth  chapter
briefly  describes  our  approach.  The fifth  chapter  specifies  the  system’s  design in
means of the hardware. The sixth chapter describes the system’s design concerning
the software development. The seventh chapter refers to the experiments conducted
for the proper functionality of the platform. The final chapter concludes the present
thesis and proposes future improvements.
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Chapter 2

Background
 

Bayesian theory is a branch of mathematical probability theory and statistics that
describes the uncertainty of an event by incorporating prior knowledge of conditions,
that  might  be  related  to  the  event,  and observational  evidence.  One of  the  many
applications  of  Bayes’ theorem is  the  Bayesian inference,  a  practical  approach to
statistical inference.

In Bayesian inference, all of the uncertainties (including parameters and states) are
treated  as  random variables.  The  objective  of  Bayesian  inference  is  to  infer  the
conditional probability, using prior knowledge of a given set of finite observations. 

Bayesian filtering aims to apply Bayesian statistics and Bayes’ rule to probabilistic
inference problems. In our approach, we use this type of filtering to estimate our
robot’s state1.

2.1 Introduction to Bayesian Filtering

In  robotics,  the  Bayes  filter  algorithm  is  generally  used  for  estimating  the
probabilities  of  multiple  beliefs2.  This  algorithm calculates  the  belief  distribution
from observations and control data, in a manner to allow a robot to infer its position
and orientation. The Bayes filter is a recursive algorithm, that is because the robot’s
belief  at  time  t  is  being  calculated  from  the  belief  the  robot  had  at  time  t-1.
Essentially,  Bayes  filter  allows  robots  to  continuously  update  their  beliefs  by
recursively calculating them.

The Bayes filter algorithm consists of two essential steps. The first step refers to
the algorithm’s update step using control data (u).  This update step is also called
control  update or  prediction.  The  second  step  of  the  Bayes  filter  is  called  the

1. State estimation addresses the problem of inferring knowledge about quantities from sensor data that are indirectly 
observable, but can be inferred.
2. The belief is the robot's estimation of its current state, a probability density function distributed over the state space.
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measurement update, or innovation. In this step, the algorithm multiplies the current
belief by the probability that the measurement (z) may have been observed. 

2.1.1 Binary Bayes Filters with Static State

The Binary Bayes filter constitutes a very special case of the optimal Bayesian
filter. The state X to be estimated is  static,  and state space3 is discrete and binary.
This type of  filter  is  suitable for  occupancy grid mapping algorithms where each
grid’s cell can be either occupied or free. Since the state X is static, the belief is a
function of the measurements: 

belt( X ) = p (X | z1 : t , u1 :t) = p (X |z1 : t)                                  (2.1)

 Under  the  Markov  assumption  and  by  applying  the  Bayes  theorem  twice  in

equation 2.1, we obtain

p (X | z1: t−1)=
p (zt | X , z1 : t−1) p(X | z1 :t−1)

p(z t | z1: t−1)
=

p (zt | X) p(X | z1: t−1)

p(z t | z1:t−1)
=

                     =
p( X | z t) p (z t) p( X | z1 :t−1)

p( X ) p(z t | z1: t−1)

                 (2.2)

Similarly, for the negate event we get 

belt(¬X ) = p(¬X |z1 : t−1)=
p(¬X | zt) p(z t) p (¬X | z1: t−1)

p (¬X ) p (zt | z1 : t−1)
                      (2.3)

Generally, the belief estimation problem is represented as a log-odds ratio. That

is to avoid truncation problems which arise from probabilities close to  0 or 1. The

log-odds ratio of state X is defined as the logarithm of the probability of the event

divided by the probability of its negate.

lt( X) = log
p (X | z1 : t)
p(¬X | z1 : t)

=log
p(X | z1: t)

1−p (X | z1 : t)
                            (2.3)

By using the equations 2.2 and 2.3 in 2.4, we get

lt (X ) = log(
p(X | zt)

p(¬X |zt)

p( X | z1 :t−1)

p(¬X | z1 :t−1)

p(¬X )

p( X)
)

           = log(
p( X |zt)

1−p(X | z t)

p( X | z1 :t−1)

1−p(X | z1 :t−1)

1−p(X)

p( X )
)

           = log
p (X | zt)

1−p (X |z t)
+log

p( X | z1 :t−1)

1−p (X | z1: t−1)
+ log

1−p( X )

p (X )

           = log
p (X | zt)

1−p (X |z t)

⏞
Inverse Sensor Model

+lt−1(X )−log
p(X )

1−p (X )

⏞
Prior

                    (2.5)

3. The state space of a dynamical system is the set of all possible states of the system. Each coordinate is a state 
variable, and the values of all the state variables in total describes the state of the system.
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1:     Algorithm binary_Bayes_filter(lt-1 , zt):

2:         lt=lt−1+ log
p(X | zt)

1− p (X |z t)
− log

p (x)
1− p(x )

3:            return lt

Table 2.1   The binary Bayes filter  in log-odds form with an inverse measurement model. Here l t is the log odds of 

the posterior belief over a binary state variable that does not change over time (source: Probabilistic Robotics)  

As we observe the final form of the log-odds ratio representation in equation 2.5,

we  reach  the  conclusion  that  the  update  algorithm  is  additive.  Moreover,  this

particular binary Bayes filter uses an inverse sensor model p(X | zt)  instead of the

most commonly used forward model p(zt | X ). Note that the inverse sensor model

will be discussed in the following subsection. Table 2.1 provides a basic example of

the update algorithm. In order for the updating algorithm to start the recursion, the

constant  l0 is  needed,  which  is  specified  with  the  help  of  the  prior  probability

according to

l0(X ) = log
p (X )

1−p( X)
                                               (2.6)

If there is no available knowledge concerning the prior state, complete ignorance

can be expressed by setting the prior p(X )=0.5.

2.2 Occupancy Grid Mapping

“A map is a visual representation of an area - a symbolic depiction highlighting

relationships between elements of that space such as objects, regions, and themes” 4.

Mapping is the processes in which selected features of  an area are extracted,

through sensors measurements, and stored in a data structure. This data structure is

called  a  map.  Such  a  map  can  represent  the  environment  either  three-  or  two-

dimensionally.

In this Thesis we are going to use two-dimensional map representations, and a

specific category of maps, called occupancy grid maps. 

4. https://en.wikipedia.org/wiki/Map
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Occupancy grid maps address the problem of generating consistent maps from

noisy and uncertain measurement data under the assumption that the robot ’s pose is

known.  Occupancy  grid  is  a  type  of  map  that  represents  the  environment  as  a

rasterized structure where each cell corresponds to a binary random variable 5. This

value  holds  the  probability  of  an  obstacle’s  presence  at  that  location  in  the

environment. Each cell’s likelihood of occupation ranges from zero to one, as is the

case with all probabilities. The zero value corresponds to the obstacle ’s absence,

while the value one is for its presence. 

The goal of any occupancy grid mapping  algorithm is to compute approximate

the  posterior  probability  over  maps  based  on  accessible  data,  as  illustrated  in

equation  2.7.

p(m |z1 : t , x1 : t)                                                    (2.7)

The convention we use to explain the mathematical foundations is as follows.

The m stands for the map,while z1:t reflects the set of all measurements and x1:t the

set of all the robot’s poses up to time t. Due to the assumption that the robot’s pose

is known, the control data u1:t  , which are responsible for the path, play no role in

occupancy grid maps and are therefore omitted.

Occupancy grid maps represent the map as a finitely, fine-grained grid over the

continuous space of location in the environment. Let us assume m i denotes the grid

cell with index i. 

m={ mi } or m=∑
i

mi                                    (2.8)

Each mi has a binary occupational probability value  p(mi)  attached to it, which

specifies  whether  the  cell  is  occupied  or  free.  The  computational  problem with

estimating the posterior  in  equation  2.7 is  the  dimensionality  of  the  problem. A

detailed occupancy grid map may consist of several thousand of individual cells.

Assuming we need tens of thousands of cells to represent our environment space,

while taking into consideration  that  each cell  holds a binary value (0 or 1),  the

number of different maps defined in this space equals to 210.000. Thus, calculating a

posterior probability for all such maps is an infeasible approach.

The standard occupancy grid approach is to break down the problem into smaller

problems estimating the occupational probability of each individual cell.

p(mi | z1 :t , x1 :t)                                                    (2.9)

5. Random Variable is a variable whose possible values are outcomes of a random phenomenon. A random variable is 
defined as a function that maps the outcomes of unpredictable processes to numerical quantities (labels), typically real 
numbers.
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Eventually,  each  of  these  estimation  problems  is  a  binary  problem.  This

decomposition  is  convenient  as  it  gets  rid  of  the  high-dimensional  posterior.

However, it introduces a new problem. In particular, it does not enable us to model

possible dependencies between neighboring cells. Hence, the posterior over a map

is approximated as the product of probabilities of all map’ s cells.

 p(m | z1: t , x1 : t)=∏
i

p (mi | z1: t , x1: t)                                         (2.10)

Due to this factorization, the estimation of each grid cell’s occupancy becomes a

binary estimation problem with static state. Binary Bayes filter with static state is a

suitable  algorithm for  determining these  estimations.  The algorithm in Table 2.2

applies this filter to the occupancy grid mapping problem. A noteworthy property of

this algorithm is its use of log-odds representation (lt,i) of occupancy:

 lt , i = log
p(mi |z1 : t , x1 : t)

1−p (mi | z1 :t , x1 :t)
                                        (2.11)

The use  of  log-odds representation  greatly  benefits  the  algorithm because  its

numerical advantages in cases of small probabilities. Note that the probabilities can

easily be recovered from the log-odds ration

 p(mi | z1 :t , x1 :t) = 1−
1

1+elt , i
                                        (2.12)

The basic functionality of the occupancy_grid_mapping algorithm in Table 2.2 is

quite simple: it loops through every single grid cell i and determine whether this cell

belongs to  the perceptual field of the measurement z t.  Cells which falls into the

sensor  cone, have  their  occupancy  probability  value  updated  by  virtue  of  the

function  inverse_sensor_model,  while  the  value  of  the  other  cells  remain

unchanged.

1. Algorithm occupancy_grid_mapping({lt-1,i}, xt,zt):
2. for all cells mi do
3. if mi in perceptual field of zt then
4. lt,i = lt-1,i + inverse_sensor_model(mi,xt,zt)-l0

5. else 
6. lt,i = lt-1,i

7. endif
8. endfor
9.      return{lt,i}

Table 2.2   The occupancy grid algorithm, a version of the binary Bayes filter in Table 2.1.

(source: Probabilistic Robotics).
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The inverse_sensor_model function implements the inverse measurement model

of the form p(mi | zt , x t) . It specifies a distribution over the binary state variable m i,

which relates a certain cell, as a function of the measurement z t and pose xt. This is

convenient in situations where measurement space is much more complex that the

state space. A basic function for a range finder is given in Table 2.3 and illustrated

in Figure 2.1 a & b.

Table 2.3 A simple inverse measurement model for robots equipped with range finders. Here α is the thickness of 

obstacles, and β the width of the sensor beam. The values locc and lfree denote the amount of evidence a reading carries

for  the two different cases. (source: Probabilistic Robotics) 

 

Figure 2.1 Two examples of our inverse measurement model for two different measurements ranges. The darkness of

each cell corresponds to the likelihood of occupancy. (source: Probabilistic Robotics) 
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Figure 2.2  (a) Occupancy grid map and (b) architectural blue-print of a large open exhibit space. Notice that the 

blue-print is inaccurate in certain places. (source: Probabilistic Robotics).

Figure 2.2 shows an example of an occupancy grid map next to the architectural

blue-print  of  the  environment  space.  The  map  was  constructed  using  a  robot’s

measurements which were acquired while the robot was performing SLAM. The

gray-scale  indicates  the  posterior  probability:  Black  corresponds  with  high

probability  to an occupied cell, while White corresponds with high probability to

free cell. The gray background color represents the prior probability. 

As  it  appears  from  Figure  2.2,  an  occupancy  grid  map  shows  all  structural

elements, as well as obstacles which are observable by the sensor. These features

make  occupancy  grid  maps  an  appropriate  way  of  mapping  while  dealing  with

SLAM problems.

 2.3 Microcontrollers

 
A microcontroller (MCU for microcontroller Unit) is a compact integrated circuit

designed for embedded systems. MCU is similar to, but less sophisticated than, a

system on chip (SoC)6.  A typical microcontroller includes one or more processor

6. A system on a chip (SoC) combines the required electronic circuits of various computer components onto a single, 
integrated chip (IC). SoC is a complete electronic substrate system that may contain analog, digital, mixed-signal or 
radio frequency functions. Its components usually include a graphical processing unit (GPU), a central processing unit 
(CPU) that may be multi-core, and system memory (RAM). 
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cores (CPUs) along with memory and programmable input/output (I/O) peripherals

on a single chip. Microcontrollers are used in autonomous controllers products and

devices,  such  as  automobile  engine  control  systems,  remote  controls,  vehicles,

office  machines  and medical  devices  among other  embedded systems.  The most

important advantage of a microcontroller is they can keep the cost of an integrated

system at very low levels.

A microcontroller’s processor will vary by application. Options range from the

simple 4-bit, 8-bit or 16-bit processors to more complex 32-bit or 64-bit processors.

In terms of memory, microcontrollers can use random access memory (RAM), flash

memory, EPROM or EEPROM. Note that MCUs are dedicated to one task and run

one  specific  program  which  is  stored  in  read-only  memory  (ROM).  Their

architecture  design  can  be  based  on  Harvard  architecture7 or  Von  Neumann

architecture8, which differ on the methods of exchanging data between the processor

and the memory.

MCUs feature input and output (I/O) pins to implement peripheral functions such

as  real-time clock (RTC),  sychronous/asychronous receiver transmitter (USART),

analog-to-digital converters and universal serial bus (USB) connectivity.  Sensors

and other modules/boards can also be attached to microcontrollers through I/O pins.

In our thesis,  we use an open-sourse platform, called Arduino,  to control  our

robot. Further information about this board will be discussed on the chapter 4.1.

Figure 2.3  Types of AVR Microcontrollers

7. In Harvard architecture, the data bus and the instruction set are separate, allowing for simultaneous transfers.
8. In Von Neumann architecture, one bus is used for both data and instruction set. 
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2.4 Sensors

Sensors  are  important  in  Robotics  for  a  number  of  reasons. To  begin  with,

sensors allow the robot to become more autonomous because it can perceive its own

environment  and  through  programming  it  can  make  decisions  based  on  what  it

perceives. Sensors are also an important part of robots for remote operation. That is

because they make decisions on what operation the robot should do next. 

Two main sensor categories are used in our project: the perception sensors and

the navigation sensors. In the following subsections, we will discuss some important

information about their basic working principles.

2.4.1 Ultrasonic Sensors

Ultrasonic  sensors  are  type  of  sensors  which  are  mostly  used  for  measuring

distance and detecting an object. The sensor operates by emitting an ultrasonic wave

(high frequency audio signal), which will reflect any object in front of the sensor.

This  reflected  signal  is  detected  by  the  sensor.  Then,  using  the  time  between

emission and reception of the audio signal,  we can calculate the distance of any

object. 

Ultrasonic wave or Ultrasound is sound waves with frequencies higher than the

upper audible limit of human hearing. A human has the ability to hear sounds with

frequencies varying in range from 20 Hz to 20 KHz, while the sound waves emitted

by the sensor have 40 KHz of frequency.

    

Figure 2.4 Ultrasonic Range Diagram
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Despite  the  fact  that  ultrasonics  are  capable  sensors  with  great  fit  for  many

applications, we understand that they have limitations which make them not suited

for  every  application.  Since  ultrasonics  operate  using  audio  an  signal,  they  are

completely nonfunctional  in  a  vacuum as there is  no air  for  the sound to travel

through. These sensors are also not designed for underwater applications. Due to the

way they function, their sensing accuracy could be affected by soft materials and

changes in temperature of 5-10 degrees or more. Soft fabric absorbs sound waves

making  it  hard  for  the  sensor  to  receive  any  reflected  signal.  Finally,  the  last

sensor’s flaw is the limited detection range.

Ultrasonic  sensors  are  active;  they  only  require  power  so  to  generate  and

transmit the ultrasound waves for performing their tasks. This would mean that they

could also pick up signals from previous scan measurements, or even from other

ultrasonic sensors.

Figure 2.5 Ultrasonic sensor emitting and receiving sound waves  

2.4.2 Inertial Measurement Unit (IMU)

An Inertial Measurement Unit, commonly knows as IMU, is an electronic device

that  measures  and  reports  orientation,  velocity  and  gravitational  forces,  using  a

combination  of  accelerometers,  gyroscopes  and  magnetometers.  It  is  a  self-

contained system that measures linear and angular motion usually with a triad of

gyroscopes and triad of accelerometers. IMUs are a main component of the inertial

navigation  systems used in  aircraft,  unmanned aerial  vehicles  (UAVs)  and other

unmanned systems, as well as missiles and even satellites. In a navigation system, 
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Figure 2.6 The nine Degrees of Freedom of an IMU (Source: Sparkfun)

 

the  data  reported  by  the  IMU  are  fed  into  a  processor  which  calculates  the

instantaneous position, velocity, orientation, and direction of movement.

IMU sensors available on the market are of various types and shapes. So, the

user can select what type, size and shape. The IMU can be selected from its degrees

of freedom (DOF) that are being developed by the manufacturer. In our project we

chose  an  IMU  which  is  capable  of  measuring  nine  degrees  of  freedom.  This

includes the measurement of linear motion over three perpendicular axes (surge,

heave,  and  sway), as well as rotational movement about three perpendicular axes

(roll,  pitch,  and  yaw)  and  magnetic  field  strength  over  the  same  three  axes  of

rotation.  This  yields  nine  independent  measurements  that  together  define  the

movement of our robot. In Figure 2.6 we can see the 9 Degrees of Freedom of the

IMU sensor we use.
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Chapter 3

Related work
 

Since  1986,  when  Peter  Cheeseman,  Jim  Crowley  and  Hugh-Durrant  Whyte

talked about  about  the  topic  of  simultaneous localization  and mapping applying

probability,  it  has  been  a  very  active  field  in  robotic  research.  The  creation  of

SLAM resulted in a huge number of works devoted to finding suitable techniques

able to deal with robots performing exploration in unknown environments. Multiple

mapping techniques have been developed since then, both for indoor and outdoor

environments.  These  techniques  can  be  roughly  classified  according  to  the  map

representation and the estimation technique.

There  are  two  main  map  representation  methods.  The  most  popular  is  the

Occupancy Grid, which is also used in our approach. As we have already discussed,

grid based approaches are computationally expensive and require lots of memory.

The second map representation is the  Feature based,  in which the map model is

expressed  by  means  of  landmarks  in  the  environment.  This  method  gained  its

popularity  due  to  its  compactness,  which  is  an  advantage  in  terms  of  memory

consumption  and  processing  speed.  On  the  other  hand,  such  systems  rely  on

predefined knowledge about structures in the environment. This clearly limits the

robot’s field of action.

Since robotic mapping constitutes an ongoing research area, a number of state

estimation methods have been developed and are still developing. These algorithms

basically differ in the sensors they use to collect their observations and how they

make use of the observed information. They may also differ on the filter they are

based on (e.g. the Kalman filter or the Particle filter). Among many approaches, we

chose to present some of the major and most widespread solutions available for a

SLAM state estimation problem.
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The  Gaussian  Filters constitute  the  earliest  tractable  implementations  of  the

Bayes Filter  for continuous spaces. Despite the limitations, Gaussian Filters are a

popular family of techniques to date. The idea behind the use of the Gaussian Filters

is that the beliefs are represented by multivariate  normal distributions:

p(x)=det (2 πΣ)
−1
2 exp

−1
2

( χ−λ)Τ Σ−1
( χ− λ)                                (3.1)

where λ is the mean and Σ is the covariance. 

Two of the most popular and best studied methods for implementing Bayes filter

are the Kalman Filter and the Extended Kalman Filter. The Kalman filter (KF), also

known as Linear Quadratic Estimation (LQE), is a recursive algorithm that tries to

estimate the state x∈ℝ
N of a discrete-time controlled process that is governed by a

linear stochastic difference equation. The KF makes use of a series of measurements

observed over time, containing statistical noise and other inaccuracies, to produce

estimations for random variables by calculating a joint probability distribution over

the variables for each time-frame. In the SLAM context, the variable values to be

estimated  consist  of  the  robot’s  position  and  landmarks’ locations.  The  filter  is

named after its creator, Rudolf E. Kalman.

The Extended Kalman filter (EKF) is a non linear version of the Kalman Filter,

which overcomes the linearity assumption about an estimate of the current mean

and  covariance.  This  model  constitutes  a  generalization  of  the  linear  Gaussian

model  underlying  Kalman filters. However, the distribution ceases to be Gaussian

when non linear functions are used. Hence, the distribution update step does not

possess a closed form solution. Therefore, the EKF calculates an approximation of

the true distribution. Thus, the EKF inherits from Kalman filters the basic belief

representation, but it differs from it as this belief is only approximate. It is crucial to

say  that  EKF  based  algorithms  are  typically  feature  based  and  use  maximum

likelihood algorithm for data association.  The effectiveness of the EKF approaches

results from the fact that they estimate a fully correlated posterior about landmark

maps and robot poses. On the other hand, such  methods pose strong assumptions

about  the  robot’s  motion model  and sensor’s  noise,  which make the  approaches

vulnerable to misconceptions. In addition, it has to be noted that each and every

landmark has to be uniquely identifiable. 
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An optimized version of Extended Kalman Filter was proposed by Jose Guivant

and  Eduardo  Net.  The  introduces  the  Compressed  Extended  Kalman  Filter

(CEKF).  This  approach  reduces  the  computational  complexity  by  dividing  the

system vector into two parts: the active local state vector and the others. Thus, the

EKF fully  updates  only  the  local  state  vector  at  each  step,  while  the  necessary

information  for  updating  the  other  states  is  compressed  into  some  auxiliary

coefficient matrices. This increases the algorithm’s efficiency without diminishing

the accuracy that characterizes full SLAM algorithms.

Alternative to Kalman techniques, there are the Particle Filters.  Particle filters

(PF) or Sequential Monte Carlo (CMS) are a set of Monte Carlo algorithms used to

solve  filtering  problems  in  Bayesian  statistical  inference.  The  Particle  filter  is

designed for  random variables  connected  in  a  Markov Chain,  where  the  system

consists  of  hidden  and  observable  variables.  The  observation  variables  are

connected to the hidden variables (states) by some function form that is known. A

Probability Distribution Function (PDF) is used to represent tha state information.

DP-SLAM  constitutes  a particle filter based, on-line algorithm that generates

grid  maps.  Its  purpose  is  to  achieve  accurate  SLAM  without  landmarks,  while

reducing the extensive use of computer resources by avoiding the successive copy

of maps per each particle generated. It works by maintaining a joint probability over

maps and robot poses. This allows the algorithm to maintain uncertainty about the

map over multiple time steps until ambiguities can be resolved, while preventing

errors in the map from accumulating over time.

The  Fast  SLAM  is  an  alternative  method  for  stochastic  mapping  and

localization.  Fast  SLAM constitutes  an  interesting  method  as  it  is  a  hybrid

algorithm; by this means it uses both Particle and Kalman filters. The basic idea of

the  algorithm is  to  exploit  the  condition  independence  properties  of  the  SLAM

model in order to break up the problem into many, smaller in size, localization and

mapping problems.  

The previously discussed algorithms use distance sensors and odometry for their

explorations. However, due to algorithm research and SLAM ‘s problem popularity,

new techniques in combination with visual sensors have emerged. Such algorithms

are often referred to as Visual-SLAM. The EKFM-SLAM algorithm is among them.

Despite the fact that the EKFM-SLAM algorithm is totally based on EKF-SLAM, it
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uses a camera as a single sensor instead of a distance sensor. The Random Sample

Consensus (RANSAC)9 method is used to integrate the camera’s information; that is

to estimate the camera’s motion (Visual Odometry). 

9. The RANSAC algorithm is a learning technique to estimate parameters of a model by random sampling of observed 
data
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Chapter 4

Our Approach
 

The aforementioned, and many other, approaches have all proven their abilities

and robustness in SLAM research. We can point out here that SLAM algorithms can

be rounded up into three classes: by the sensors they use, by which method they use

or  by  structure.  Algorithms  classified  by  sensors  may  use  range  measurement

devices such as laser sensors or ultrasonic sensors, artificial vision and odometry.

Algorithms distinguished by calculation method may make use of the Kalman Filter

or the Particle Filter. Finally, algorithms categorized by structure are  either Online-

SLAM, which stores only the necessary landmarks, or fullSLAM, which stores each

landmark through exploration.

Choosing which algorithm to use is an essential step. The decision is based on

the robot’s abilities, by means of sensors. Some sensors, like LIDARS, are accurate

to bits in their measurements. They also have a larger sensing range while they are

able to cover a considerably bigger part of the environment with one scan needed.

However, such sensors are expensive; both in pricing cost and battery consumption.

On the other hand, sensors such as ultrasonics are low cost, able to perform accurate

measurements regardless their measurement range limitation.

Our  goal  was  to  design  a  low  cost,  automated  vehicle  able  to  successfully

perform  simultaneous localization and mapping.  Understanding the needs of  our

project, we decided to use low-cost, but reliable sensors and parts for the robot’s

construction, while focusing on implementing a capable application responsible for

processing the robot’s information. In particular,  our agent focuses on navigating

autonomously  in  the  environment  while  avoiding  any  obstacles.  Moreover,  it

collects  information  regarding  its  orientation,  the  distance  it  traveled  since  its

previous  measuring  step  and  distances  from objects  around  it,  if  there  are  any.

Lastly, the robot sends the collected information wirelessly into a computer running

application  for  further  processing.  In  this  way,  the  robot  doesn’t  bear  the
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responsibility for the computationally expensive processes of mapping. It  is only

crucial to remember the last measurements.

On the other side of our systems, we developed an application which computes

SLAM. The  algorithm we make  use  of  is  the  online  Occupancy  Grid  Mapping

technique based on an inverse sensor model. The application works as follows. At

first, it makes sure that there is a wireless connection with our robot. Then, it creates

a grid map with absolute uncertainty of its structure. When done so, the application

is  waiting  for  any  message  containing  the  robot’s  data.  If  there  is  any,  it  starts

processing  it  by  distinguishing  the  received  information.  After  the  robot’s

observations about its environment have been pinpointed, it creates a partial map,

representing its belief of the space’s structure at that time point. It is then that the

update step takes place, revising the whole map and presenting us with the robot’s

progress.  It  is  important  to  point  out  that  the  robot  sends  messages,  containing

information  about  its  state,  each  time  after  a  measurement  occurs.  This  process

continues for as long as it takes the robot to cover the whole area.

In  the  following  two  chapters,  we  will  describe  major  details  concerning  to

hardware’s architectural design, the robot’s  Finite State Machine (FSM)   and the

software’s implementation.
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Chapter 5

Design of the System - Hardware
 

In this section, we describe our robot’s hardware architecture in detail. A variety

of figures accompany the report, assisting readers to a better understanding. Firstly,

we describe the various electronic and electromechanic components that were used,

and afterwards the robot’s assembly.

5.1 Components Used

A variety of electronic components and motors were necessary for building our

robotic  platform.  The design is  based on a  differential  driven robotic  platform,

collecting its observations from ultrasonic sensors. The belief 0f the robot’s heading

comes from an Inertial  Measuring Unit.  In  addition,  stepper  motors  are  used to

navigate into the environment ’s space. Below in this section we describe each of

the parts we use, along with their utilities in our robotic platform.

5.1.1 Arduino Uno Board 

Arduino Uno R3 constitutes the “brains” of our robot. It is an open-source board

which  includes  a  microcontroller,  and  this  microcontroller  is  responsible  for

executing the instructions of our program. The board is based on ATmega328 micro-

controller.  This  MCU comes  from the  AVR family;  it  is  an  8-bit  device,  which

means the data-bus architecture and internal  registers are designed for  8 parallel

data  signals.  The  ATmega328  has  three  types  of  memory:  a  32  KB nonvolatile

Flash memory for storing an application, a 2 KB volatile SRAM memory for storing

variables used by the application while it’s running and a 1 KB EEPROM memory.
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Figure 5.1 ATmega328 Pin mapping 

The  board  is  equipped  with  sets  of  I/O  pins  to  interface  with  electronic

components and circuits. In particular, the board has 14 digital I/O pins, of which 6

can be used as PWM10 outputs, and 6 analog inputs. Each of the aforementioned pins

belongs  to  one of  the  three ports;  PORTC,  PORTHB  and PORTD.  Each port  is

controlled by three registers allowing lower-lever and faster manipulation of the I/O

pin of the microcontroller. The board also contains a 16 MHz quartz crystal, a type

B USB connection, a power jack, ISCP header and a reset button.

Figure 5.2 Arduino Uno Pinout (source: www.TheEngineeringProjects.com)

10. PWM stands for Pulse-Width Modulation. It is a way of describing a digital (binary/discrete) signal that was created
through a modulation technique, which involves encoding a message into a pulsing signal.
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For power source, Arduino offers the options of using the USB connection or a

DC jack. Note that its operating voltage is 5 Volts, while the recommended input

voltage is 7-12 Volts. Moreover, the DC current per I/O pin is 20 mA.

5.1.2 MPU 6050 

An  Inertial  Measuring Unit (IMU) module is used for  navigation.  The MPU-

6050 is  a 6 Degree-of-Freedom sensor,  able to measure the absolute  orientation,

angular  velocity,  angular  motion  and  acceleration.  Absolute  orientation,  i.e.  the

current heading of the robot relative to the magnetic north, is a significant value for

our  application,  as  it  is  the  key  value  of  calculating  the  robot’s  direction  and

coordinates on the environment (odometry).

The MPU-6050 is a sensor based on MEMS (micro electro mechanical systems)

technology.  It  is  equipped  with  a  3-axis  gyroscope  and  a  3-axis  digital

accelerometer  on  a  single  silicon  die,  in  tandem  with  an  onboard  Motion

ProcessorTM (DMPTM) capable  of  processing  complex  6-axis  MotionFusion

algorithms.  Any  device  can  communicate  with  the  sensor  through  an  auxiliary

master  I2C (Inter-integrated Circuit) allowing it to gather a full set of the sensor’s

data, as is shown in Figure 5.4.

Figure 5.3 MPU-6050. Inertial Measuring Unit module
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Figure 5.4 MPU-6050 Communication Level

5.1.3 Ultrasonic Sensor HC-SR04 

The HC-SR04 sonar is an ultrasonic ranging sensor. This device provides a range

of 2 cm – 400 cm with an accuracy of 3 mm, while an effectual angle of less than 15

degrees is required for the sonar to give proper readings. Every HC-SR04 module

includes  an  ultrasonic  transmitter,  a  receiver  and  a  control  circuit.  Ultrasonic

sensors serve the purpose of  detecting objects  relative to our  robot that  pose an

immediate  threat  for  collision.  At  the  same  time,  we  use  them  to  measure  the

distance between the robot and these objects.

The distance of the object or a wall from the robot is measured by noting the

time  between  the  emission  and  reception  of  the  sound  waves  to  the  sonar.  By

multiplying time taken to travel by the sound wave, by the speed of sound we get

the total distance traveled by the wave. Due to the fact that the signal takes an equal

amount of time to send and receive, this value must be halved.

 Figure 5.5 HC-SR04 Ultrasonic range sensor 
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5.1.4 Futaba S3003 Servo Motor 

The  light  weight  of  Ultrasonic  sensors  makes  them  useful  for  collecting

environment information from mobile robots. Many robotic platforms use ultrasonic

sensors  in  a  circular  formation  in  surface-moving  robots.  However,  such  an

approach is  not  suitable  in  our  case  mainly  for  two reasons.  Firstly,  due  to  the

computationally   expensive  method  of  acquiring  multiple  measurements  without

causing errors, and secondly because of the limited I/O pins of the Arduino Uno

board.  Therefore  we  created  a  movable  ultrasonic  range  sensor  by  combining a

small, light weight servomotor and a single ultrasonic range sensor.  This sensor is

capable of performing 180o measurements of the distance between objects and the

robot.

A servo motor is a rotary actuator or motor that allows for a precise control in

terms  of  angular  position,  accelerations  and  velocity,  capabilities  that  a  regular

motor does not have. The servomotor is a closed-loop servomechanism that uses

position feedback in order to control its rotational speed and position. The control

signal is the input which represents the final position command for the shaft.

The servomotor we use in our design is the  Futaba S3003 Servo. It’s a small,

light weight motor, operating with 4.8-6 Volts. 

Figure 5.6 Futaba S3003 Servo Motor and its dimensions 
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5.1.5 28BYJ-48 Stepper Motor and ULN2003 Motor Driver 

For our approach we chose to design and implement a robotic platform based on

a differential driven chassis.  Such robots rely on their two main wheels,  each of

which is attached to its own motor. Note that a third wheel is placed in the rear to

passively roll along while preventing the robot from falling over.

Among  the  available  motors,  we  chose  to  use  Stepper  motors, as  they  are

superior  to  the  DC  motors  for  the  purpose  of  control.  Stepper  motors  are

electromechanical devices which convert electrical pulses into discrete mechanical

movements. One of the most significant advantages of a stepper motor is its ability

to be accurately controlled without any position sensor for feedback, as long as the

motor is carefully sized to the application in respect to torque and speed. They have

multiple  coils  that  are  organized  in  groups  called  “phases”.  By  energizing  each

phase in sequence, the motor will rotate, one step at a time. The stepper motors we

use are two 28BYJ-48 steppers.

The 28BYJ-28 is a 5 Volts unipolar geared stepper motor, originally designed for

HVAC11 control  industry and similar  low-demand equipment.  It  features a  5 mm

“Double-D”  shaft  mounting  lags,  and  a  5-conductor  0.1" pitch  connector.  The

gearing isn’t the beefiest or most precise we ’ve seen, however it is adequate for

reasonable loads. The stepper motor’s gearbox is the 64:1 reduction version. This

practically means that the motor will have to make 64 steps to complete one full

rotation and every step will cover a 5.6250º.

Figure 5.7 28BYJ-48 Stepper Motor

11. HVAC stands for Heating,Ventilation and Air Conditioning
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The simplest way of interfacing a unipolar stepper motor with an Arduino, is to

use a breakout for  ULN2003 transistor array chip.  The ULN2003 contains seven

Darlington transistor drivers and is somewhat like having seven TIP120 transistors

all in one package. The board can pass up to 500 mA per channel and has an internal

voltage drop of  about  1 Volt  when on.  It  also contains internal  clamp diodes to

dissipate voltage spikes when driving inductive loads.

Figure 5.8 ULN2003a motor driver

Figure 5.9 Stepper motor and motor driver wiring

In  Figure  5.9  we  present  the  electric  circuit  diagram  with  the  connections

between the stepper motor and the ULN2003 motor driver board.

5.1.6 HC-06 Bluetooth Module 

The computationally expensive process of mapping takes place in a computer,

wirelessly  connected  with  our  robot.  Each  time  that  the  robot  gathers  a  set  of

observations,  it  is  required  to  transmit  the  observed  information.  The  HC-06
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Bluetooth Module is responsible for this communication between the robot and the

computer mapping application.

The HC-06 Bluetooth module is a popular device and very simple to set up with

an  Arduino  board.  The  module  is  suitable  where  wireless  data  transmission  is

needed in slave mode. The HC-06 module can reach a range up to 9 meters.

Figure 5.10 HC-06 Bluetooth Module

All the above components and sensors have been properly positioned into the

robotic platform to serve the intended purpose in the best possible way. Wiring has

been laid out from scratch. All safety measures have been taken in order to avoid

any possible damage to the robot.  In Figure 5.11 we present  an overview of the

designed system.

Figure 5.11 System Overview
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5.2 Placement and Mounting

5.2.1 Sensor Layout 

The placement of the sensors on the robot was such that all directions which the

robot moves in are covered, so that obstacles and walls can detected and avoided

before any collision occurs. The layout can be seen in Figure 5.12 below. We use

three sensors in total; two ultrasonic sensors, of which one is movable, and an IMU.

The  movable  range  finder  (which  is  the  combination  of  a  servo  motor  and  an

ultrasonic sensor) is placed at the front of the robot allowing it to make scans of the

area in front of it. The sensor is facing the front while the servo shaft is facing the

edge of 90 degrees comparing its initial point. Note that at the initial point, which is

0 degree, the sensor is facing to the right of the robot, while at the ending point, 180

degrees, the sensor is facing to the left.

The second ultrasonic sensor is positioned toward the back of the robot facing

the left, which in conjunction with the corresponding sensor attached on the servo

motor, allows the robot to align the wall on its left. Lastly, the MPU was placed on a

platform near the middle of the robot.

Figure 5.12 Sensor Layout
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5.2.2 Mounts 

Mounts were designed both for the stepper motors and the ultrasonic sensors to

secure  them in  place  on  the  robot,  as  shown  in  Figure  5.13.  The  mounts  were

designed in a 3D modeling platform, named SketchUp, based on each component’s

dimensions referred on its  data  sheet.  The resulted models  were 3D printed and

properly placed on the robot.

Figure 5.13 Ultrasonic Sensor’s Mount (Left), Stepper motor’s Mount (Right) 

5.2.3 Overall Assembly

The robot’s chassis consists of two levels. The sensors along with the Arduino

board and the Bluetooth module are placed at the top level, leaving enough space at

the bottom level for placing the two motor driver boards and the power sources. It is

important to say that our system has three independent power sources. The first one,

a 9V rechargeable battery,  is  the powering supply of  the Arduino board.  All  the

sensors and the Bluetooth module are powered by the Arduino’s 5V output power

supply  pin.  The  second  power  source,  a  9V alkaline  battery,  is  responsible  for

powering the Servo motor. Lastly, the third power source is a 12V  rechargeable

battery  responsible for powering the two stepper motors attached on the robot’s

wheels.  For  better  understanding,  we  have  designed  a  3D  model  of  our  robot

without the wiring between components, as shown in Figure 5.14 below. We also

provide images showing the robot’s figure.
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Figure 5.14 Robot’s 3D model

Figure 5.15 SLAM Robot 
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Figure 5.16 SLAM Robot  (aka SLAMatron)
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Chapter 6

Design of the System - Software
 

Equally essential  with the hardware design and the robot’s architecture is  the

software development  for  the processing of  the sensor’s  data,  the control  of  the

robot and the creation of the desired map. The software development procedure can

be  classified  in  two  notable  classes,  the  embedded  code  development  and  the

external  code development.  The first,  deals  with development  of  a  program and

functions  on-board  the  Arduino  Uno.  The  external  code  corresponds  to  the

development of a mapping application on a remote device.

6.1 Embedded Code Development

The embedded code refers to a program which specifies our robot’s actions. In

particular, all the main modules for robot control and sensors’ logging work under

sync under the main program. Furthermore, the embedded code consists of various

functions,  where  each   deals  with  a  unique  task,  such  as  the  functions

send_measurements(),  side_Sonar_Read()  or  driveStraightDistance(). For  more

information about the implemented functions you may check the Appendix A. 

The  main  program  is  nothing  more  than  an  implementation  of  the  robot’s

behavior determined by a  finite state machine (FSM) which consists of six states.

These states call of a number of functions and change various parameters in order to

determine the next state. It is worth mentioning that state transitions are determined

by inputs and the current state, therefore the system functions as a Mealy machine.

The overall finite state machine is shown in the figure 6.1, with the entry and exit

conditions shown for each state.
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Figure 6.1 Overall Finite State Machine

The starting point is the  Initialization  state, which will remain active until the

robot  configures  and  enables  the  motors,  configures  and  stabilizes  the  MPU

readings, initialize the internal timers and obtains an initial readout of the sensors.

When that happens, the current state is transitioned to Wall Alignment state, which

remains active until the robot is aligned with the wall on its left, assumingly that it

is positioned near a wall. When the robot finally aligns with the wall on its left, the

active state becomes the First Loop. When the robot’s first run is completed, namely

the exploration of the environment’s terrain, the current state is transitioned to Next

Loops state. The program will progress to the Stop state when all loops have been

completed.
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Let us take a step back and examine the Steppers Driving state. In our approach,

we designed our stepper motors to be interrupt driven. This benefits us greatly, as

we are able to perform any move with our vehicle while executing any other task at

the same time. Therefore, the Stepper Driving state is accessible by all other states,

apart from Initialization state, when an interrupt occurs. 

The major states of the designed FSM are the First Loop state  and Next Loops

state. For a better understanding of these particular states, we introduce the concept

of path planning. Path Planning is an important prerequisite for autonomous mobile

robots as it helps robots to find the optimal path between two points. The chosen

path for the robot was to follow the wall on its left, which helps us to gauge the

room’s terrain. In addition with our robot’s capabilities on sensors, we are able to

observe  the  environment  around  the  robot,  providing  all  useful  information  for

mapping. That takes place while the First Loop state is active. However, due to the

ultrasonic sensor’s range limitations, there might be areas of the environment which

will  remain unexplored in the  First Loop as shown in Figure 6.2. This occasion

happens when the dimensions of the track are larger than 8 m. In that case, we need

a  number  of  additional  loops  of  our  robot  exploring  the  unknown  area.  The

equation that was to be used was:

Number of LoopsNeeded=⌊ larger side of track /2⌋                      (6.1)

Figure 6.2 Area that will remain unexplored after the First Loop state’s scan 
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Figure 6.3 Imaginary wall that robot follows in order to cover the unexplored area 

After calculating the number of loops needed to completely cover the track, the

robot calculates the coordinates of the new imaginary walls to follow as shown in

Figure 6.3. The current state of the FSM  is then transitioned to Next Loops state. At

that time, the robot starts moving heading to the calculated coordinates of the first

imaginary wall and continues by following it and observing the unexplored area of

the environment. It is crucial to mention that the robot functions similarly in both

First  Loop  and  Next Loops states.  However,  their major difference is that  in the

First Loop state, the robot follows an actual wall where we acquire real information

about its alignment with the wall, while on the Next Loops state the robot follows

imaginary  walls  where  the  information  about  its  alignment  with  the  wall  it  is

calculated using the previous and current robot’s heading.

For better understanding of how the robot actually functions in both First Loop

state  and  Next Loops state, we created a flowchart presenting all necessary steps

for our robot’s navigation.
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Figure 6.4 Flowchart 
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Figure 6.4 shows the flowchart for mobile robot navigation. When the state is

transitioned  either to First Loop state or Next Loops state, the robot calculates the

value of its heading degree by fusing MPU’s data. Then, it looks for obstacles or

walls around it and measures their distance using ultrasonic sensors. At that point,

the robot transmits all necessary information for mapping to the base station. As we

discussed,  in  our  approach  the  robot  follows  a  wall  to  navigate  through  the

environment.  The  robot  has  to  make  a  decision   based  on  the  aforementioned

measurements  whether  it will move forward or make a left or right turn. If there is

no obstacle or wall at the front and a left side wall is present, then the robot moves

forward. If a front wall is detected then the robot takes a right turn and when both

walls are not detected the robot takes a left turn. While in rhis turning process, the

robot uses MPU’s value to make an exact 90 degree turn. 

In pursuit of the move ’s completion, the robot updates its co-ordinates and its

heading. It is worth mentioning that initial co-ordinates of the robot are assumed to

be [0,0]. At that moment, the robot checks if it is aligned with the wall on its left. In

case that is not, the robot re-aligns with the wall and continues. Note that the state

will be transitioned to Next Loops state and complete the first loop’s scans once the

robot revisits the initial co-ordinates.

6.2 External Code Development

The external code has to do with the implementation of a mapping application.

In  our  approach,  we  designed  our  system  to  function  using  an  occupancy  grid

mapping technique. Therefore, the mapping application implements an Occupancy

Grid algorithm as it  was described in the subset  two of the second chapter  (2.2

Occupancy Grid Mapping).

The programming language of our preference was Python. Additional libraries

had to be used in order to perform all necessary tasks, two of which are of great

importance for the proper running of the program. The first  crucial library is the

serial  library  which  is  responsible  for  the  wireless  communication  between  the

robot and the remote device.  The second one is the matplotlib library from which

we make use of the pyplot package for the purpose of visualizing the robot’s belief

of the environment’s structure.
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Figure 6.5 Robot and screen coordinate systems

Initially, the application sets the wireless connection between the robot and the

remote device.  Once the connection has been established the  program continues

with the initialization phase. At first it creates an array and stores the values of the

19  bearing  angles12 in  the  format  of  radians.  It  then  creates  a  second  array,

consisting  of  three  cells  in  which we store  the robot’s  believed coordinates  and

heading  every  time  the  robot  sends  measurements  for  processing.  The

aforementioned data in addition to the observed distance measurements around the

robot’s position, are used for updating the instances of the map. Lastly, the grid size

is specified and the grid map is constructed with the cells having total awareness

about their states (free or occupied).

Note that all of the values obtained from the sensors were with respect to the

robots coordinate system and thus had to be transformed. This was achieved through

the recalculation of the all bearings from the robot. Figure 6.5 shows the coordinate

systems of both the robot and the screen. The map on screen was scaled so that 1

mm of the robot’s travel equals 1 mm. 

Subsequently,  the  program  waits  for  the  robot’s  messages.  Once  they  are

received, the program decodes them and it distinguishes the observed data. Then,

the map needs to be updated. In this case our application decides which cells of the

12. The 19 bearing angles corresponds to the 19 measurements that the robot makes at a single point in order to observe 
his surrounding area
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grid map should be altered by calculating the L-norm distance to all cells from the

robot. Once the application has figured out which cells are in range of the robot’s

sensors, it has to calculate the likehood of their being occupied by an obstacle or a

wall. It is crucial to mention that the robot’s belief of the map is shown through out

the process of SLAM. By other words, our system consists of an online application.

Note that the application terminates once its receives an analogous ending message

from the robot.

41



Chapter 7

Validation of the System
 

Platform construction and system design for both hardware and software have

been described in detail in the previous chapters. Yet, the target of this project is not

only the construction of the platform, but also the proper performance of the system.

Therefore, thorough testing was necessary for the design and functionality of the

SLAM robot and was performed for all aspects of the system.

The  first  target  for  the  platform in  development  was  primarily  for  hardware

performance  as  it  was  necessary  to  prove  proper  functionality  and  robustness.

Therefore, the initial experiments were focused on testing the range sensors after

calibration, testing the Bluetooth for the wireless communication with the computer,

testing the IMU’s data as well as testing for any inherent differences in the stepper

motors.  From these tests  we drew some conclusions of  great  importance for  the

robot’s proper behavior.

To begin  with,  it  was  discovered that  the  ultrasonic  range sensors  were  only

capable of reliably reading up to 30 cm rather than the 40 cm specified on the data

sheet. Testing the IMU’s data revealed that the sensor required calibration to ensure

right performance. Moreover, testing the stepper motors revealed that they required

absolute synchronization to ensure proper steering.

Later testing of the SLAM robot was aiming to validate the functionality of the

embedded code.  At  first,  portions  of  the  code,  such as  a  state  of  the  FSM or  a

function, were tested individually to ensure they performed as desired.  Once the

results met the requirements and provided the proper performance, we then tested

the embedded code as an integrated part of the system. It is worth mentioning that in

order  to  debug  the  embedded  code,  outputs  of  the  FSM’s  current  state  and  the

sensors’ reading were sent over Bluetooth to a computer so that a written output of

what the robot was doing could be seen. While in this stage of testing, problems

such as the insufficient voltage being sent to the Bluetooth module and the 
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Figure 7.1 Mapping application testing.

The environment’s structure is being presented on the image at the left, while at the right image the robot’s belief

about its environment is being shown.  

servo motor  were discovered.  The results  of  these tests  also helped to  alter  and

improve the robot’s design.

Finally, the testing process aimed at evaluating the proper performance of the

external code. To do so, we initially tested our application with the sensor readings

observed by another system’s robot which was successfully tested and it performed

well.  This  test  was  carried  out  in  order  to  establish  how  our  application  was

corresponding with the sensor readings that we know from the map they create. As

Figure 7.1 shows, our application met our expectations and successfully produces

the map which corresponds to the above sensor readings.

Further experiments were conducted testing our system in total. All the testing

runs  were  successful,  providing  us  with  an  accurate  representation  of  the

environment’s structure. While the overall software design of the robot has room for

improvement,  it  is  evident  that  from  the  results  that  the  robot  was  able  to

successfully  navigate  the  room  with  sufficient  coverage  avoiding  all  obstacles.

Rotation control and wall following were also executed very well. In figures below,

we present the results of several experiments in comparison with the environment’s

structure.
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Figure 7.2 First experiment. Robot navigates in a straight path, which is 170 cm of length.

The image on the left represents the environment’s path while the image on the right is picturing our system’s result..

From the first experiment we conducted and presented on the Figure 7.2, we can 
understand how the number of scans in a particular area is connected with the robot 
belief for this area. By increasing the number of scans in a particular area, the robot ‘s
belief gets stronger on whether the respective grid cells are occupied or free.

Figure 7.3 Second Experiment. Robot navigates in a constructed environment, which is shaped similar to a square.
Note that there is no object in the middle of the structure.

(a) Photograph of the environment, (b) Environment’s structural draw, (c) System’s result    
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Figure 7.4 Third Experiment.  Robot navigates in a constructed environment, which is shaped similar to a square. Note
that there is an object in the middle of the structure.

(a) Photograph of the environment, (b) Environment’s structural draw, (c) System’s result

While observing the Figures 7.3 and 7.4 we come to the conclusion that our 
system is not fully capable of identifying all the corners on our space. Yet, this 
observation was expected due to the limitations of the ultrasonic sensors. However,  
this drawback can be avoided by further processing the resulted image, meaning that 
we could apply an edge detection filter (e.g. Canny edge detection). Thus, we could 
produce a clear map representing the environment.
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Chapter 8

Conclusions and Lessons Learned
 

8.1 Conclusions 

This thesis has described in detail the assembly, development and testing of a
low-cost, autonomous mobile platform developed for the purpose of mapping while
decreasing the platform’s cost. It has described the drawbacks and the advantages
that our system offers. It has also presented and briefly explained the related work
in  the  domain.  Moreover,  there  has  been  an  exhaustive  description  of  every
component  used  in  the  SLAM  robot,  as  well  as  the  software  development
procedure.  Through  thorough  testing  and  experimentation,  the  system’s
performance proved its ability to serve its purpose.

Whilst  the  performance  of  the  robot  was  satisfactory  in  both  mapping  and
coverage  capabilities,  the  robot  has  room  for  further  improvements  in  order  to
achieve accurate results. Better sensors, such as Sharp IR sensors along with low
pass filters to reject high frequency fluctuations in readings or 180 degree LIDAR
sensor, could replace the current ultrasonic sensors.  Moreover, additional sensors
could be used in order to achieve 360 degree detection instead of the current  180
degree detection. These improvements might be slightly expensive in both cost and
energy consumption, however the system could have plotted an excellent map and
kept track of the obstacles with ease.

8.2 Lessons Learned

As I  am heading  toward  the  end  and  reflecting  on  the  journey  thus  far,  I'm
thinking of all the lessons I have learnt about conducting this research and writing
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this thesis.  There were lessons that were something I had to stumble across on my
own, yet others that I got from somebody else.

The first lesson that I learnt during my thesis was the importance of wasting 2–3
hours in learning things, that would have saved days and weeks in writing thesis and
more importantly  would have relieved lot  of  mental  stress  that  I  under went just
because I did not used efficient and smart methods. In particular, I ignored reading
the MPU sensor’s manual. This resulted  in using the sensor without calibrating it.
Subsequently the robot was unable to rotate properly due to the faulty measurements
(could not properly locate the magnetic north). As a result, I spent quite a lot of time
trying to understand why the robotic vehicle did not responded as I wanted. In the
end, by having read what the manual had to tell us, I understood that this type of
sensors had to be calibrated every time that they are to operate in a different location. 

The second lesson I learnt, I got it from someone else. At the very beginning of
the  robotic  platform’s  implementation,  we  used  DC motors  for  its  steering.  This
turned out, to be a huge mistake in the design. While trying to drive the robot forward
in a straight line, we observed that either the robot ‘s wheels were drifting or the
robot was moving diagonally. We tried to control the DC motors and synchronize
them using a plethora of approaches. At first we implemented a “master-slave” logic,
meaning that  we assumed there was a  “master”  wheel  and a  “slave”  wheel.  The
concept was that the slave would have to follow the master, whilst the master would
not proceed ant further unless the slave had reached it. However we tried to control
both motors in such a way, we did not get the expected results. Then, we thought of
implementing a  PID controller in oder to successfully control both motors. But even
in this approach, we did not have any improvement. The answer to our problem was
given by Professor Apostolos Dollas. During a meeting we had, we discussed about
the problem we were facing and he suggested changing the motors we use. Therefore,
we changed the DC motors into stepper motors, which were easier to be controlled,
achieving proper steering of the robot.
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Appendix Α

Embedded Code Development – Functions

In this section we are presenting the functions which we make use of for the robot’s 
autonomous navigation and we are briefly explaining them. Note that these functions 
are stored in the embedded program.

• void send_measurements(): Function that sends measurements of the robot's
surroundings.  We send AHeading (aka Artificial  Heading) and distance that
robot traveled in order to compute its coordinates on the grid. We also send all
measured distances of the objects around the robot, in order to process them
and create the corresponding map. The format that the information is being
sent,  has to be as the following as it  has to match while being read by the
python script

• void end():  Function helps to terminate the python script and show the final
mapping when the robot stops moving and collecting new information

• void  Side_Sonar_Read():  This  function  is  being  used  in  order  to  get  the
distance  between  the  robot  and  the  wall  on  its  left  Thus,  we  are  able  to
understand if there is a wall so we can follow it. The sensor responsible for this
task is located on the back left side of the robot. This distance information, plus
the distance information measured from the function below when the servo
pose equals to 180, will also help us to align the robot to the wall next to it.

• void  Front_Sonar_Read():  This  function  helps  us  measure  the  distance
between the robot and the objects,if there are any. It collects 19 measurements
which are being collected from an ultrasonic sensor attached on top of a servo
motor. The 19 measurements correspond to the range [0-180](degrees) with a
step of 10 degrees. The 0 degree position is on the right side of the robot, the
90 degrees position facing at the front of the robot and the 180 degrees position
is at the left side of the robot. It is important to mention that in order to get
more  accurate  measurements,  we  repeat  the  procedure  twice  and  store  the
average of the two results.
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• int CMtoSteps(float cm):  Function that converts the distance the robot shall
travel from centimeters into number of steps.

• void driveStraightDistance(int steps): Function that drives the robot forward
for a specified number of steps.

• turnAbsolute(float target): Function that turns the robot in a specified angle.
We have an offset within 0.5 degrees of the desired angle

• void get_heading(float *head):  This function is being called every time we
need to calculate the robot's heading. It is being used in order the robot to turn
left or right by 90 degrees with an error in +-0.5 degrees.

• void CheckIMU(int *state): Check to see if the IMU has settled down and is

giving a steady heading. If it hasn't then the robot can not start navigating.
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Appendix B

Electric Diagram – Circuit 

In this section we presenting the connections between the various electronic 

components used in the SLAM robot.

Figure B.1 Electric Diagram
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Appendix C

Block Diagram  

In this section we present the block diagram of the components used in the 

robotic platform.

Figure C.1 Block Diagram
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