TECHNICAL UNIVERSITY
OF CRETE

Technical University of Crete
School of Electrical and Computer Engineering
Intelligent Systems Laboratory

Design and Implementation
of an Autonomous Robotic Vehicle for Mapping

Diploma Thesis by

Sotirios S. Dimitras

Submitted in partial fulfillment of the requirements for the Diploma of
Electrical and Computer Engineer at the Technical University of Crete

February 2019

To be defended publicly
against the thesis committee consisting of

Associate Professor Michail G. Lagoudakis
School of Electrical and Computer Engineering

Associate Professor Georgios Chalkiadakis
School of Electrical and Computer Engineering

Professor Apostolos Dollas
School of Electrical and Computer Engineering

zxedlaon katl YAonoinon Avtovopou Popmotikob Oxnuatog
ylo XapToypaenon

Acknowledgements

A few colleagues have been participated and helped in the completion of this thesis
document, and every one of them with their unique way. It feels appropriate to
dedicate this part of my thesis to them in order to express my acknowledgements and
gratitude.

* Firstly, I wouldd like to thank my supervisor Assoc. Professor Michail G.

Lagoudakis for his support, his advice and guidance to the completion of this
thesis document.

* Prof. Georgios Chalkiadakis, for being a member of the thesis committee and
accepting to evaluate my work.

e Prof. Apostolos Dollas, for the flawless cooperation, his guidance on the
hardware design and his support in every aspect of this thesis.

* Richard Pine, a leading writer and lecturer on modern Irish culture and

literature, for his support and his help in writing this thesis document in
English.

* And finally my family and friends, who supported me during this thesis and
backed up my choice.

List of Figures

2.1 Two examples of our inverse measurement model for two different

IMEASUTEIMENES TANMGES .etnutennttennttennteennteenneennteeanteaneeaaeeaeeeaneeannens 10
2.2 (@) Occupancy grid MAD .ee.eiveierniertterteeiteeeeateeaeeaieeeaeeenneennnans 11
2.2 (b) Architectural blue-print of a large open exhibit space 11
2.3 Types of AVR Microcontrollerscceeeiiiiiiiiiiieiiiieiiieiiieeeineannan 10
2.4 Ultrasonic Range Diagramcccovviiiiiiiiiiiiiiiiiiiie i eaieeennans 12
2.5 Ultrasonic sensor emitting and receiving sound wavesc.cue.n... 13
2.6 The nine Degrees of Freedom of an IMUcooiiiiiiiiiiiiiiiiiiiinn, 14
5.1 ATmega328 Pin MapPINgE ...uuuuuuunieeeeeeeeeeeeeeeeeaaaaaaanaanns 22
5.2 Arduino Uno PINOUL ...coiuiiiiiiiii e e e e eaeeas 22
5.3 MPU-6050. Inertial Measuring Unit moduleccooeiviiiiiiiinnnnn... 23
5.4 MPU-6050 Communication Levelcooiiiiiiiiiiiiiiiiiiiiiiiiiiiienn, 24
5.5 HC-SR04 Ulrasonic range SENSOTc.ueeeeueeeeanueeeenneeeemnneeeeanneeenns 24
5.6 Futaba S3003 Servo Motor and its dimensionsccoceeviiinieennnnnn, 25
5.7 28BYJ-48 StepPer MOLOT ...uuiiiiiiiiitt et tetteteeeeeeeeeeeaeaaeiiiianaes 26
5.8 ULN2003a MOtOr AIIVET ..uutiinititeeitt ettt e eee et eeieeenneenns 27
5.9 Stepper motor and motor driver Wiringccceeviiiiiiiiiiieieiiieeennnnennn 27
5.10 HC-06 Bluetooth Modulecooiiiiiiiiiiiiiiii e 28
5.11 SysStem OVEIVIEW ..ttt et ettt e et e eeaieeeeeennes 28
5.12 SenSOr LayOut ..ooviiiiiiiiiiiiiii i e 29
5.13 Ultrasonic Sensor’s Mount and Stepper motor’s Mount 30
5.14 Robot’s 3D mMOdelo..uiiiiiiiii e 31
5.15 SLAM RODOt o.etiiiii e e 32
5.16 SLAM RODOt .eeiiiii e 33

6.1 Overall Finite State Machineooiiniiiiniit e 35

6.2 Area that will remain unexplored after the First Loop state’s scan 36
6.3 Imaginary wall that robot follows in order to cover the unexplored area37

6.4 FIOWCRAIt ..o e 38
6.5 Robot and screen coordinate SYSteImMSevvuuieirriierriiiieernieeenineeanns 40
7.1 Mapping application tesStingccoviuiiiiiiiiiiiiii e 43
7.2 FirSt EXPeriMentuuuuiiiiiitiitttttteetettttteeeeeeeeeeeeeeaeiaieeaeeeeeeens 44
7.3 Second EXPerimentcciviiiiiiiiieiiiieiiiie it eaiieeeeiieeennneenns 44
7.4 Third EXPerimentcoeiuuiiiriieemiitetritteraiteeeaieeeeaieeeeaineeeanneens 45
B.1 Electric Diagramcceoiiiiiiiiii i e e 55
C.1 BloCK DIa@ram ...eceiietiiiiieeii et e e e e e e e e e e e aanaaas 56

Contents

Acknowled@ementscoouiiiiiiiiiii i e i
List Of FIGUIeSooiiiiiiiii i e e e e e rere e ii
ADSEFACE ... e 1
LT INtroducCtioncooiiiiiiiiii e e aeee e 3
2Background ... 5
2.1 Introduction to Bayesian Filtersccoooeiiiiiiiiiiiiiiiiiiiiiiii e 5)
2.1.1 Binary Bayes Filters With Static Statecoviviiiiiiiiiiennn... 6

2.2 Occupancy Grid Mappingcoeoouiiiiiiiiiiiiiiiiieii e eneieeenaeeens 7
2.3 Microcontrollerscoiiiiiiii e 11
T <) 1110) R 13
2.4.1 UIrasoniC SENSOISeuuuetnutetnttennteeanteeaeeeteeateraeerieeeaieeennnn 13

2.4.2 Inertial Measurement Unit (IMU)coiiiiiiiiiiiiiiiiii e, 14

3 Related Work ... e 16
40ur Approach ... s 20
5 System’s Design — Hardware ...t 22

5.1 Components USedcoueiiiiuiiiiiiieiiii i et eeieeeaieeneannaans 22

5.1.1 Arduino Uno Boardoooveniiiiiiiie e e 22

5.L.2MPU 6050 ..nneiniiitii et 24
5.1.3 Ultrasonic SENSOISueenutiiniteiei e eeeeeeeaees 25
5.1.4 Futaba S3003 Servo MOtOTciiuiiiiiiiiii i eee e 26

5.1.5 28byj-48 Stepper Motor and ULN2003 motor driver 27

5.1.6 HC-06 Bluetooth Modulec.oooiiiiiiiiiiiiiiiiiiiiea 28

5.2 Placement and MOUNTING oiiiiiiiiiiii i e iiee e eeaaeeans 30
5.2.1 SenSOr LayOUluuuuiiiiiiiiiii ettt e e 30

5.2.2 MOUNLS .ttt ettt et ettt e e e e e 31

5.2.3 Overall Assemblycooouiiiiii e, 31

6 System’s Design - Software ... 34
6.1 Embedded Code Developmentccociiviiiiiiiiiiiiiiiiiiniieiniiennenn. 34
6.2 External Code Developmentccooviiiiiiiiiiiiiiiiinieiiienieennann 39

7 Validation of the System ..., 42
8 Conclusions and Lessons Leanredc...coiiiiiiiiiiiiiiiiiiiiinnn... 46
8.1 CONCIUSIONS ..ttt e e e e e eee e 46
8.2 Lessons Learnedcoviiiiiiiiiiiii e 46
Bibliography ... e 49
APPENAICES ... e, 51

Abstract

Robot mapping is the process of building a representation (a map) of an unknown
environment using a mobile robot. Robot Localization is the process of estimating
the pose of a robot within a map. In real-world robot applications, these two tasks
are typically performed in parallel. In this thesis, we present a low-cost and open-
source mobile autonomous robot to perform Simultaneous Localization and
Mapping (SLAM).Our robot has to have the ability to navigate freely in a room,
with no outside guidance while avoiding obstacles and covering as much floor space
as possible. The robot is being controlled using an Arduino micro-controller. It uses
two ultrasonic sensors for distance measuring and one MPU (Motion Processing
Unit) for sensing changes in the robot’s position and orientation. The data collected
by the sensors are transmitted wirelessly to a remote PC (work station) via a
Bluetooth module. A developed software application on the PC processes the data and
builds a probabilistic map of the room, while displaying the robot’s position and
trajectory. As a result, an intelligent and fully autonomous SLAM robot was
designed with integrated systems for its control and navigation. The robot is able to
cover almost all space of an unknown room without colliding with any object or wall,
producing the desired map of the room at the same time.

[TepiAnym

H popmotikn xaptoypaenon eival n Stadikaoia Snpiovpyiag HI0G avOmapaoTaong
(x&ptn) €vog AyvwoToumePPAAAOVTIOG XPNOIHOTOIOVTNG €V Kivnto popnot. O
POUTIOTIKOG EVIOMIONOG eivan 1 Stadikaoia ektipnongmng 8éong evog pounot péoa o
Evav XApTrn. XTI POUTIOTIKEG E€QPAPHOYEG TOL TPAYHATIKOU KOGHOUL, OQUTEG 01800
gpyaoieg ektedodvton ovvnBwg mapaAAnAa. tnv mapodoa SIMAWHOTIKT epycoiq,
TOAPOLOTIALOVHE EVOKIVIITO OUTOVOHO POUTIOT XOHNAOD KOOTOUG KOl OiVOIKTOD KOOIKX
YIX TNV €KTEAEOT] TOUTOXPOVOL EVIOMOHOVKOL Yaptoypdonong (Simultaneous
Localization and Mapping — SLAM). To popnmot pog €xel T OuvototnTo
vamepuyeitoar eAevBepa péoa oe €va SwHATIO, Ywplg eéwtepikn KabBodnynon,
QTMOPEVYOVTOG TA EUTIOSIX KOAIKAAUTITOVTIOG OC0 TO SUVATOV TEPLGOOTEPO XWPO
damédov. To poOUTOT EAEYXETOL XPNOIHOTOLOVTAGUIKpoeAeyKT] Arduino.
Xpnoigomotel SVO OOONTPEG LIEPTXOV Y& TN HETPNON OMOOTACEMV KOl €VX
MPU(Motion Processing Unit) ywx tnv avixvevon ariayov otn 0éon kot Ttov
TPOCAVATOAIOPG TOL popmot. Tadedopéva moOv CLAAEyovTOL omO TOLG cloBNnTAPEG
petadibovial aoVPUATA O AMOUOKPULOHEVO ULTMOAOYIOTH(OTAOHO €pyaoing) HECK
povadag Bluetooth. M avoamtuypévn €@appoyrn] AOYIOHIKOD OTOV
vroAoylomenegepyaletal ta dedopéva Ko Smpiovpyel €vav mOBavoTIKO XAPTN TOL
XWPOL, €V ep@aviCel TN B€on Kal TNVIPOXIX TOL POUTIOT. QG OMOTEAECHQ,
oXESIAOTNKE KO VAOTIOWBNKE EVO EDPVEC KA TIAN|PWG XVTOVORO poprtoTyloe SLAM pe
EVOOUATOUEVA CLOTNHATA EAEYXOL Kal TAonynong. To poumot pmopel va KoaAOYel
oXeS0OV OAOTO XWPO €VOG AYVOOTOL XOPOU, XWPIG VX CLUYKPOLOTEL e OMO06TIOTE
QVTIKELHEVO 1] TOLX0, TAPAYOVTAGTAHUTOXPOVA TOV €MBLUNTO XAPTN TOL XWPOU.

Chapter 1

Introduction

In robotic mapping and navigation, simultaneous localization and mapping
(SLAM) is the computational process of acquiring a map of an unknown environment
with a moving robot, whilst simultaneously keeping track of the robot’s location
relative to this map. A SLAM problem was first introduced by R.C. Smith and P.
Cheeseman on the representation and estimation of spatial uncertainty in the 1980s.
Since then, this problem has received very considerable attention from the scientific
community, and a flurry of new algorithms and techniques have emerged.

The SLAM problem was initially compared to a chicken and egg problem, as a
good map is needed for localization while an accurate pose estimation is needed to
build a map. Those two problems can not be solved independently of each other.
Before a robot can tell what the environment looks like given a set of observations, it
is crucial to know from which locations these observations have been made.
Meanwhile it is hard to estimate the current position of the vehicle without the
environment’s map. Hence SLAM robots have to deal with situations where they lack
global positioning.

In order to face the difficulties of their location unawareness, robots have to rely
on sensors in order to estimate their position, relatively to the environment, (e.g.
odometry, landmarks, inertial navigation). Such sensors accumulate error over time,
making the problem of constructing a map a challenging one.

This thesis details the system design process and the final design of one such fully
autonomous robot. This approach will allow the educational process of autonomous
agents to become accessible and inexpensive, providing students with a hands-on
experience on a low cost platform.

The system was extensively tested on various mazes and has been proven reliable.
The results were somewhat surprising, as a simple implementation of motion
succeeds in driving the robot, covering the mapping area astonishing well. At this

point, it is crucial to mention that this project was not aiming to provide any novelty
or new findings in the SLAM domain, rather than gaining a hands on experience in
robotics and autonomous agents.

The rest of this thesis is organized as follows. In the second chapter, the concept of
Occupancy Grid Mapping is explained in detail and basic background theory about
the components used is presented. In the third chapter, related techniques in the
concept of robotic mapping are listed and briefly explained. The fourth chapter
briefly describes our approach. The fifth chapter specifies the system’s design in
means of the hardware. The sixth chapter describes the system’s design concerning
the software development. The seventh chapter refers to the experiments conducted
for the proper functionality of the platform. The final chapter concludes the present
thesis and proposes future improvements.

Chapter 2

Background

Bayesian theory is a branch of mathematical probability theory and statistics that
describes the uncertainty of an event by incorporating prior knowledge of conditions,
that might be related to the event, and observational evidence. One of the many
applications of Bayes’ theorem is the Bayesian inference, a practical approach to
statistical inference.

In Bayesian inference, all of the uncertainties (including parameters and states) are
treated as random variables. The objective of Bayesian inference is to infer the
conditional probability, using prior knowledge of a given set of finite observations.

Bayesian filtering aims to apply Bayesian statistics and Bayes’ rule to probabilistic
inference problems. In our approach, we use this type of filtering to estimate our
robot’s state'.

2.1 Introduction to Bayesian Filtering

In robotics, the Bayes filter algorithm is generally used for estimating the
probabilities of multiple beliefs®. This algorithm calculates the belief distribution
from observations and control data, in a manner to allow a robot to infer its position
and orientation. The Bayes filter is a recursive algorithm, that is because the robot’s
belief at time t is being calculated from the belief the robot had at time t-1.
Essentially, Bayes filter allows robots to continuously update their beliefs by
recursively calculating them.

The Bayes filter algorithm consists of two essential steps. The first step refers to
the algorithm’s update step using control data (u). This update step is also called
control update or prediction. The second step of the Bayes filter is called the

1. State estimation addresses the problem of inferring knowledge about quantities from sensor data that are indirectly
observable, but can be inferred.
2. The belief is the robot's estimation of its current state, a probability density function distributed over the state space.

5

measurement update, or innovation. In this step, the algorithm multiplies the current
belief by the probability that the measurement (z) may have been observed.

2.1.1 Binary Bayes Filters with Static State

The Binary Bayes filter constitutes a very special case of the optimal Bayesian
filter. The state X to be estimated is static, and state space® is discrete and binary.
This type of filter is suitable for occupancy grid mapping algorithms where each
grid’s cell can be either occupied or free. Since the state X is static, the belief is a
function of the measurements:

bel[(X) = p(X|tht’u1:t) = p(X|Zl:t) (2.1)

Under the Markov assumption and by applying the Bayes theorem twice in
equation 2.1, we obtain

_ P(Zr|X,Z1:t71>P<X|ler71) _ P(Zz| X) p(X|let71) _
p(X|ZM_1)— p(zt|zlzt—1) - p(ztlzl:t—l) (2.2)
_p(X|z)p(z)p(X|zy,)

B p(X)p<Zt|Z1:t*1)
Similarly, for the negate event we get

p(=X|z)p(z)p(~X|zy.i)
2.3
pX)plzlz,) (23
Generally, the belief estimation problem is represented as a log-odds ratio. That

bel (~X) = p(~Xl|z,,)=

is to avoid truncation problems which arise from probabilities close to 0 or 1. The
log-odds ratio of state X is defined as the logarithm of the probability of the event
divided by the probability of its negate.

L(X) = logp(X|let)—log p(X|zi:t) (2.3)

p(_|X|let)_ 1_p(X|Z1:t)
By using the equations 2.2 and 2.3 in 2.4, we get
p(Xlzt) p(Xlzlzt—1> p<_'X))
p(~Xlz) p(~X|z,,_,) p(X)
= log(p(Xlz) p(X|zi.) 1_P(X))
1-p(X|z,) 1-p(X|z;,_,) p(X)

L(X) = log(

X X|z,. _ (2.5)
1—p<X|Zt) 1_p<X|Z1:t—1) p(X)
Inverse Sensor Model Prior
p(X|z,) p(X)
= log————Y—+]_,(X)—log
T p(xlz) T

3. The state space of a dynamical system is the set of all possible states of the system. Each coordinate is a state
variable, and the values of all the state variables in total describes the state of the system.

6

1: Algorithm binary_Bayes_{filter(l..., z):

p(Xl|z) p(x)

2: [=1_+ lo lo
T8I (X)) B1plx)

3: return I,

Table 2.1 The binary Bayes filter in log-odds form with an inverse measurement model. Here I, is the log odds of
the posterior belief over a binary state variable that does not change over time (source: Probabilistic Robotics)

As we observe the final form of the log-odds ratio representation in equation 2.5,
we reach the conclusion that the update algorithm is additive. Moreover, this
particular binary Bayes filter uses an inverse sensor model p(X|z,) instead of the
most commonly used forward model p(z|X). Note that the inverse sensor model
will be discussed in the following subsection. Table 2.1 provides a basic example of
the update algorithm. In order for the updating algorithm to start the recursion, the
constant 1, is needed, which is specified with the help of the prior probability
according to

(X) = log ;2 (2.6)

If there is no available knowledge concerning the prior state, complete ignorance
can be expressed by setting the prior p(X)=0.5.

2.2 Occupancy Grid Mapping

“A map is a visual representation of an area - a symbolic depiction highlighting
relationships between elements of that space such as objects, regions, and themes”*.

Mapping is the processes in which selected features of an area are extracted,
through sensors measurements, and stored in a data structure. This data structure is
called a map. Such a map can represent the environment either three- or two-
dimensionally.

In this Thesis we are going to use two-dimensional map representations, and a
specific category of maps, called occupancy grid maps.

4. https://en.wikipedia.org/wiki/Map

Occupancy grid maps address the problem of generating consistent maps from
noisy and uncertain measurement data under the assumption that the robot ’s pose is
known. Occupancy grid is a type of map that represents the environment as a
rasterized structure where each cell corresponds to a binary random variable®. This
value holds the probability of an obstacle’s presence at that location in the
environment. Each cell’s likelihood of occupation ranges from zero to one, as is the
case with all probabilities. The zero value corresponds to the obstacle ’s absence,
while the value one is for its presence.

The goal of any occupancy grid mapping algorithm is to compute approximate
the posterior probability over maps based on accessible data, as illustrated in
equation 2.7.

p(mzy.,x.) (2.7)

The convention we use to explain the mathematical foundations is as follows.
The m stands for the map,while z;. reflects the set of all measurements and x;. the
set of all the robot’s poses up to time t. Due to the assumption that the robot’s pose
is known, the control data u:., which are responsible for the path, play no role in
occupancy grid maps and are therefore omitted.

Occupancy grid maps represent the map as a finitely, fine-grained grid over the
continuous space of location in the environment. Let us assume m; denotes the grid
cell with index i.

m={m} or m=Y m, (2.8)

Each m; has a binary occupational probability value p(m;) attached to it, which
specifies whether the cell is occupied or free. The computational problem with
estimating the posterior in equation 2.7 is the dimensionality of the problem. A
detailed occupancy grid map may consist of several thousand of individual cells.
Assuming we need tens of thousands of cells to represent our environment space,
while taking into consideration that each cell holds a binary value (0 or 1), the
number of different maps defined in this space equals to 2'*°°, Thus, calculating a
posterior probability for all such maps is an infeasible approach.

The standard occupancy grid approach is to break down the problem into smaller
problems estimating the occupational probability of each individual cell.

p(mi|Z1:t’X1:t> (2.9)

5. Random Variable is a variable whose possible values are outcomes of a random phenomenon. A random variable is
defined as a function that maps the outcomes of unpredictable processes to numerical quantities (labels), typically real
numbers.

Eventually, each of these estimation problems is a binary problem. This
decomposition is convenient as it gets rid of the high-dimensional posterior.
However, it introduces a new problem. In particular, it does not enable us to model
possible dependencies between neighboring cells. Hence, the posterior over a map
is approximated as the product of probabilities of all map’ s cells.

m|21px1t Hp m|Zlnx1c (2-10)

Due to this factorization, the estimation of each grid cell’s occupancy becomes a
binary estimation problem with static state. Binary Bayes filter with static state is a
suitable algorithm for determining these estimations. The algorithm in Table 2.2
applies this filter to the occupancy grid mapping problem. A noteworthy property of
this algorithm is its use of log-odds representation (l;) of occupancy:

m;|z,.., Xy
= log - fl(j (rr|1i|121:[,1x1):t) 2.11)
The use of log-odds representation greatly benefits the algorithm because its

[

t,i

numerical advantages in cases of small probabilities. Note that the probabilities can

easily be recovered from the log-odds ration
1
1+e"

(2.12)

p(mi|Z1:t’X1:t) = 1_

The basic functionality of the occupancy_grid_mapping algorithm in Table 2.2 is
quite simple: it loops through every single grid cell i and determine whether this cell
belongs to the perceptual field of the measurement z.. Cells which falls into the
sensor cone, have their occupancy probability value updated by virtue of the
function inverse_sensor_model, while the value of the other cells remain

unchanged.
1. Algorithm occupancy_grid_mapping({l.1;}, x,2.):
2. for all cells m; do
3. if m; in perceptual field of z, then
4. lii = le1; + inverse_sensor_model(m;, 1, z,)-1o
5. else
6- lt,i = lt-l,i
7. endif
8. endfor
9. return{l;}

Table 2.2 The occupancy grid algorithm, a version of the binary Bayes filter in Table 2.1.
(source: Probabilistic Robotics).

9

The inverse_sensor_model function implements the inverse measurement model
of the form p(m,|z,x,) . It specifies a distribution over the binary state variable m;,
which relates a certain cell, as a function of the measurement z. and pose x.. This is
convenient in situations where measurement space is much more complex that the

state space. A basic function for a range finder is given in Table 2.3 and illustrated
in Figure 2.1 a & b.

1: Algorithm inverse_range sensor_model(i,z, z;):
2 Let x;, y; be the center-of-mass of m;

3 r= /@ - 27+ @i— yP

4: ¢ = atan2(y; — y,xi —x) — 0

5 k = argmin, |6 — 0 sene

6: if 7 > min(zmax, 2 + a/2) or |¢ — Ok sens| > 5/2 then
i return [y

8: if 2 < zZmay and |r — 2pmay| < /2

9: return I oo

10: ifr <zF

11: retum [free

| 7.5 endif

Table 2.3 A simple inverse measurement model for robots equipped with range finders. Here « is the thickness of
obstacles, and the width of the sensor beam. The values 1, and ls.. denote the amount of evidence a reading carries
for the two different cases. (source: Probabilistic Robotics)

(a) (b)

Figure 2.1 Two examples of our inverse measurement model for two different measurements ranges. The darkness of
each cell corresponds to the likelihood of occupancy. (source: Probabilistic Robotics)

10

(a)

(b)

Figure 2.2 (a) Occupancy grid map and (b) architectural blue-print of a large open exhibit space. Notice that the
blue-print is inaccurate in certain places. (source: Probabilistic Robotics).

Figure 2.2 shows an example of an occupancy grid map next to the architectural
blue-print of the environment space. The map was constructed using a robot’s
measurements which were acquired while the robot was performing SLAM. The
gray-scale indicates the posterior probability: Black corresponds with high
probability to an occupied cell, while White corresponds with high probability to
free cell. The gray background color represents the prior probability.

As it appears from Figure 2.2, an occupancy grid map shows all structural
elements, as well as obstacles which are observable by the sensor. These features
make occupancy grid maps an appropriate way of mapping while dealing with
SLAM problems.

2.3 Microcontrollers

A microcontroller (MCU for microcontroller Unit) is a compact integrated circuit
designed for embedded systems. MCU is similar to, but less sophisticated than, a
system on chip (SoC)°. A typical microcontroller includes one or more processor

6. A system on a chip (SoC) combines the required electronic circuits of various computer components onto a single,
integrated chip (IC). SoC is a complete electronic substrate system that may contain analog, digital, mixed-signal or
radio frequency functions. Its components usually include a graphical processing unit (GPU), a central processing unit
(CPU) that may be multi-core, and system memory (RAM).

11

cores (CPUs) along with memory and programmable input/output (I/O) peripherals
on a single chip. Microcontrollers are used in autonomous controllers products and
devices, such as automobile engine control systems, remote controls, vehicles,
office machines and medical devices among other embedded systems. The most
important advantage of a microcontroller is they can keep the cost of an integrated
system at very low levels.

A microcontroller’s processor will vary by application. Options range from the
simple 4-bit, 8-bit or 16-bit processors to more complex 32-bit or 64-bit processors.
In terms of memory, microcontrollers can use random access memory (RAM), flash
memory, EPROM or EEPROM. Note that MCUs are dedicated to one task and run
one specific program which is stored in read-only memory (ROM). Their
architecture design can be based on Harvard architecture’” or Von Neumann
architecture®, which differ on the methods of exchanging data between the processor
and the memory.

MCUs feature input and output (I/O) pins to implement peripheral functions such
as real-time clock (RTC), sychronous/asychronous receiver transmitter (USART),
analog-to-digital converters and universal serial bus (USB) connectivity. Sensors
and other modules/boards can also be attached to microcontrollers through I/O pins.

In our thesis, we use an open-sourse platform, called Arduino, to control our
robot. Further information about this board will be discussed on the chapter 4.1.

ATtiny #.TITIEQE ,ﬂ,T_}(mega

Figure 2.3 Types of AVR Microcontrollers

7. In Harvard architecture, the data bus and the instruction set are separate, allowing for simultaneous transfers.
8. In Von Neumann architecture, one bus is used for both data and instruction set.

12

2.4 Sensors

Sensors are important in Robotics for a number of reasons. To begin with,
sensors allow the robot to become more autonomous because it can perceive its own
environment and through programming it can make decisions based on what it
perceives. Sensors are also an important part of robots for remote operation. That is
because they make decisions on what operation the robot should do next.

Two main sensor categories are used in our project: the perception sensors and
the navigation sensors. In the following subsections, we will discuss some important
information about their basic working principles.

2.4.1 Ultrasonic Sensors

Ultrasonic sensors are type of sensors which are mostly used for measuring
distance and detecting an object. The sensor operates by emitting an ultrasonic wave
(high frequency audio signal), which will reflect any object in front of the sensor.
This reflected signal is detected by the sensor. Then, using the time between
emission and reception of the audio signal, we can calculate the distance of any
object.

Ultrasonic wave or Ultrasound is sound waves with frequencies higher than the
upper audible limit of human hearing. A human has the ability to hear sounds with
frequencies varying in range from 20 Hz to 20 KHz, while the sound waves emitted
by the sensor have 40 KHz of frequency.

low bass animals & medical & diagnostic
notes chemistry destructive & NDE
20Hz 20kHz 2MHz 200MHz
<{{HE \J P
Infrasonics Acoustic Ultrasonics

Figure 2.4 Ultrasonic Range Diagram

13

Despite the fact that ultrasonics are capable sensors with great fit for many
applications, we understand that they have limitations which make them not suited
for every application. Since ultrasonics operate using audio an signal, they are
completely nonfunctional in a vacuum as there is no air for the sound to travel
through. These sensors are also not designed for underwater applications. Due to the
way they function, their sensing accuracy could be affected by soft materials and
changes in temperature of 5-10 degrees or more. Soft fabric absorbs sound waves
making it hard for the sensor to receive any reflected signal. Finally, the last
sensor’s flaw is the limited detection range.

Ultrasonic sensors are active; they only require power so to generate and
transmit the ultrasound waves for performing their tasks. This would mean that they
could also pick up signals from previous scan measurements, or even from other
ultrasonic sensors.

Reflected wave

Receiver

l4cm ! || sender

Figure 2.5 Ultrasonic sensor emitting and receiving sound waves

2.4.2 Inertial Measurement Unit (IMU)

An Inertial Measurement Unit, commonly knows as IMU, is an electronic device
that measures and reports orientation, velocity and gravitational forces, using a
combination of accelerometers, gyroscopes and magnetometers. It is a self-
contained system that measures linear and angular motion usually with a triad of
gyroscopes and triad of accelerometers. IMUs are a main component of the inertial
navigation systems used in aircraft, unmanned aerial vehicles (UAVs) and other

unmanned systems, as well as missiles and even satellites. In a navigation system,

14

Magnometer Sensing Gyroscope Sensing Accelqromqter S(;nsing
Angular Orientation Axis Orientation

-

Z

X‘_ .
S

Figure 2.6 The nine Degrees of Freedom of an IMU (Source: Sparkfun)

the data reported by the IMU are fed into a processor which calculates the
instantaneous position, velocity, orientation, and direction of movement.

IMU sensors available on the market are of various types and shapes. So, the
user can select what type, size and shape. The IMU can be selected from its degrees
of freedom (DOF) that are being developed by the manufacturer. In our project we
chose an IMU which is capable of measuring nine degrees of freedom. This
includes the measurement of linear motion over three perpendicular axes (surge,
heave, and sway), as well as rotational movement about three perpendicular axes
(roll, pitch, and yaw) and magnetic field strength over the same three axes of
rotation. This yields nine independent measurements that together define the
movement of our robot. In Figure 2.6 we can see the 9 Degrees of Freedom of the
IMU sensor we use.

15

Chapter 3

Related work

Since 1986, when Peter Cheeseman, Jim Crowley and Hugh-Durrant Whyte
talked about about the topic of simultaneous localization and mapping applying
probability, it has been a very active field in robotic research. The creation of
SLAM resulted in a huge number of works devoted to finding suitable techniques
able to deal with robots performing exploration in unknown environments. Multiple
mapping techniques have been developed since then, both for indoor and outdoor
environments. These techniques can be roughly classified according to the map
representation and the estimation technique.

There are two main map representation methods. The most popular is the
Occupancy Grid, which is also used in our approach. As we have already discussed,
grid based approaches are computationally expensive and require lots of memory.
The second map representation is the Feature based, in which the map model is
expressed by means of landmarks in the environment. This method gained its
popularity due to its compactness, which is an advantage in terms of memory
consumption and processing speed. On the other hand, such systems rely on
predefined knowledge about structures in the environment. This clearly limits the
robot’s field of action.

Since robotic mapping constitutes an ongoing research area, a number of state
estimation methods have been developed and are still developing. These algorithms
basically differ in the sensors they use to collect their observations and how they
make use of the observed information. They may also differ on the filter they are
based on (e.g. the Kalman filter or the Particle filter). Among many approaches, we
chose to present some of the major and most widespread solutions available for a
SLAM state estimation problem.

16

The Gaussian Filters constitute the earliest tractable implementations of the
Bayes Filter for continuous spaces. Despite the limitations, Gaussian Filters are a
popular family of techniques to date. The idea behind the use of the Gaussian Filters
is that the beliefs are represented by multivariate normal distributions:

p(x>=det(znz)3lexp‘71((AT Z (y=2) 3.1)

where A is the mean and X is the covariance.

Two of the most popular and best studied methods for implementing Bayes filter
are the Kalman Filter and the Extended Kalman Filter. The Kalman filter (KF), also
known as Linear Quadratic Estimation (LQE), is a recursive algorithm that tries to
estimate the state xeR" of a discrete-time controlled process that is governed by a
linear stochastic difference equation. The KF makes use of a series of measurements
observed over time, containing statistical noise and other inaccuracies, to produce
estimations for random variables by calculating a joint probability distribution over
the variables for each time-frame. In the SLAM context, the variable values to be
estimated consist of the robot’s position and landmarks’ locations. The filter is
named after its creator, Rudolf E. Kalman.

The Extended Kalman filter (EKF) is a non linear version of the Kalman Filter,
which overcomes the linearity assumption about an estimate of the current mean
and covariance. This model constitutes a generalization of the linear Gaussian
model underlying Kalman filters. However, the distribution ceases to be Gaussian
when non linear functions are used. Hence, the distribution update step does not
possess a closed form solution. Therefore, the EKF calculates an approximation of
the true distribution. Thus, the EKF inherits from Kalman filters the basic belief
representation, but it differs from it as this belief is only approximate. It is crucial to
say that EKF based algorithms are typically feature based and use maximum
likelihood algorithm for data association. The effectiveness of the EKF approaches
results from the fact that they estimate a fully correlated posterior about landmark
maps and robot poses. On the other hand, such methods pose strong assumptions
about the robot’s motion model and sensor’s noise, which make the approaches
vulnerable to misconceptions. In addition, it has to be noted that each and every
landmark has to be uniquely identifiable.

17

An optimized version of Extended Kalman Filter was proposed by Jose Guivant
and Eduardo Net. The introduces the Compressed Extended Kalman Filter
(CEKF). This approach reduces the computational complexity by dividing the
system vector into two parts: the active local state vector and the others. Thus, the
EKF fully updates only the local state vector at each step, while the necessary
information for updating the other states is compressed into some auxiliary
coefficient matrices. This increases the algorithm’s efficiency without diminishing
the accuracy that characterizes full SLAM algorithms.

Alternative to Kalman techniques, there are the Particle Filters. Particle filters
(PF) or Sequential Monte Carlo (CMS) are a set of Monte Carlo algorithms used to
solve filtering problems in Bayesian statistical inference. The Particle filter is
designed for random variables connected in a Markov Chain, where the system
consists of hidden and observable variables. The observation variables are
connected to the hidden variables (states) by some function form that is known. A
Probability Distribution Function (PDF) is used to represent tha state information.

DP-SLAM constitutes a particle filter based, on-line algorithm that generates
grid maps. Its purpose is to achieve accurate SLAM without landmarks, while
reducing the extensive use of computer resources by avoiding the successive copy
of maps per each particle generated. It works by maintaining a joint probability over
maps and robot poses. This allows the algorithm to maintain uncertainty about the
map over multiple time steps until ambiguities can be resolved, while preventing
errors in the map from accumulating over time.

The Fast SLAM is an alternative method for stochastic mapping and
localization. Fast SLAM constitutes an interesting method as it is a hybrid
algorithm; by this means it uses both Particle and Kalman filters. The basic idea of
the algorithm is to exploit the condition independence properties of the SLAM
model in order to break up the problem into many, smaller in size, localization and
mapping problems.

The previously discussed algorithms use distance sensors and odometry for their
explorations. However, due to algorithm research and SLAM ‘s problem popularity,
new techniques in combination with visual sensors have emerged. Such algorithms
are often referred to as Visual-SLAM. The EKFM-SLAM algorithm is among them.
Despite the fact that the EKFM-SLAM algorithm is totally based on EKF-SLAM, it

18

uses a camera as a single sensor instead of a distance sensor. The Random Sample
Consensus (RANSAC)® method is used to integrate the camera’s information; that is
to estimate the camera’s motion (Visual Odometry).

9. The RANSAC algorithm is a learning technique to estimate parameters of a model by random sampling of observed
data

19

Chapter 4

Our Approach

The aforementioned, and many other, approaches have all proven their abilities
and robustness in SLAM research. We can point out here that SLAM algorithms can
be rounded up into three classes: by the sensors they use, by which method they use
or by structure. Algorithms classified by sensors may use range measurement
devices such as laser sensors or ultrasonic sensors, artificial vision and odometry.
Algorithms distinguished by calculation method may make use of the Kalman Filter
or the Particle Filter. Finally, algorithms categorized by structure are either Online-
SLAM, which stores only the necessary landmarks, or fullSLAM, which stores each
landmark through exploration.

Choosing which algorithm to use is an essential step. The decision is based on
the robot’s abilities, by means of sensors. Some sensors, like LIDARS, are accurate
to bits in their measurements. They also have a larger sensing range while they are
able to cover a considerably bigger part of the environment with one scan needed.
However, such sensors are expensive; both in pricing cost and battery consumption.
On the other hand, sensors such as ultrasonics are low cost, able to perform accurate
measurements regardless their measurement range limitation.

Our goal was to design a low cost, automated vehicle able to successfully
perform simultaneous localization and mapping. Understanding the needs of our
project, we decided to use low-cost, but reliable sensors and parts for the robot’s
construction, while focusing on implementing a capable application responsible for
processing the robot’s information. In particular, our agent focuses on navigating
autonomously in the environment while avoiding any obstacles. Moreover, it
collects information regarding its orientation, the distance it traveled since its
previous measuring step and distances from objects around it, if there are any.
Lastly, the robot sends the collected information wirelessly into a computer running
application for further processing. In this way, the robot doesn’t bear the

20

responsibility for the computationally expensive processes of mapping. It is only
crucial to remember the last measurements.

On the other side of our systems, we developed an application which computes
SLAM. The algorithm we make use of is the online Occupancy Grid Mapping
technique based on an inverse sensor model. The application works as follows. At
first, it makes sure that there is a wireless connection with our robot. Then, it creates
a grid map with absolute uncertainty of its structure. When done so, the application
is waiting for any message containing the robot’s data. If there is any, it starts
processing it by distinguishing the received information. After the robot’s
observations about its environment have been pinpointed, it creates a partial map,
representing its belief of the space’s structure at that time point. It is then that the
update step takes place, revising the whole map and presenting us with the robot’s
progress. It is important to point out that the robot sends messages, containing
information about its state, each time after a measurement occurs. This process
continues for as long as it takes the robot to cover the whole area.

In the following two chapters, we will describe major details concerning to
hardware’s architectural design, the robot’s Finite State Machine (FSM) and the
software’s implementation.

21

Chapter 5

Design of the System - Hardware

In this section, we describe our robot’s hardware architecture in detail. A variety
of figures accompany the report, assisting readers to a better understanding. Firstly,
we describe the various electronic and electromechanic components that were used,
and afterwards the robot’s assembly.

5.1 Components Used

A variety of electronic components and motors were necessary for building our
robotic platform. The design is based on a differential driven robotic platform,
collecting its observations from ultrasonic sensors. The belief Of the robot’s heading
comes from an Inertial Measuring Unit. In addition, stepper motors are used to
navigate into the environment ’s space. Below in this section we describe each of
the parts we use, along with their utilities in our robotic platform.

5.1.1 Arduino Uno Board

Arduino Uno R3 constitutes the “brains” of our robot. It is an open-source board
which includes a microcontroller, and this microcontroller is responsible for
executing the instructions of our program. The board is based on ATmega328 micro-
controller. This MCU comes from the AVR family; it is an 8-bit device, which
means the data-bus architecture and internal registers are designed for 8 parallel
data signals. The ATmega328 has three types of memory: a 32 KB nonvolatile
Flash memory for storing an application, a 2 KB volatile SRAM memory for storing
variables used by the application while it’s running and a 1 KB EEPROM memory.

22

reset PC6 1 PC5 analog input 5
digital pin 0 (X3 PDO 2 PC4 analog input 4
digital pin 1 PD1 3 PC3 analog input 3
digital pin 2 PD2 4 PC2 analog input 2
digital pin 3 D PD3 5 . PC1 analog input 1
digital pin 4 PD4 3 PCO analog input 0

VCC VCC 7 GND GND

GND GND [0 AREF analog reference

crystal PBG& [34 AVCC AVCC
crystal PBT 10 | PBS ? digital pin 13
digital pin 5 @D PD5 un PB4 digital pin 12
digital pin 6 G PDE 12 PE3 GEE] @D digital pin 11
digital pin 7 PDT 12 PB2 : E:gg ' @D digital pin 10
digital pin 8 PBO 14 PB1 gg’ | @ digital pin 9
y 8

Figure 5.1 ATmega328 Pin mapping

The board is equipped with sets of I/O pins to interface with electronic
components and circuits. In particular, the board has 14 digital I/O pins, of which 6
can be used as PWM'’ outputs, and 6 analog inputs. Each of the aforementioned pins
belongs to one of the three ports; PORTC, PORTHB and PORTD. Each port is
controlled by three registers allowing lower-lever and faster manipulation of the I/0
pin of the microcontroller. The board also contains a 16 MHz quartz crystal, a type
B USB connection, a power jack, ISCP header and a reset button.

DC Power Jack

- B 1 UsB Port

13 | Digital Pin13| SPI/SCK]
| Reset Input | = D!g!tzl P!nu e
11 Digital Pin11| SPIYMOSI
10 Digital Pin10| spi/ss
9 Digital Ping
8 Digital Pin8
= 7 | Digital Pin7
8 ~6 6 | Digital Pin6
Analog Pin o | A0 "!' -5 5 | Digital Pin5
Analog Pin 1| Al ~ 4 4 | Digital Pin4
Analog Pin2 | A2 g ~3 3 Digital Pi
AnalogPin3 | A3 BBt 2 D
AnalogPin4 | A4 1 Digi
Analog Pin5 | A5 0 Digital Pin0

Figure 5.2 Arduino Uno Pinout (source: www.TheEngineeringProjects.com)

10. PWM stands for Pulse-Width Modulation. It is a way of describing a digital (binary/discrete) signal that was created
through a modulation technique, which involves encoding a message into a pulsing signal.

23

For power source, Arduino offers the options of using the USB connection or a
DC jack. Note that its operating voltage is 5 Volts, while the recommended input
voltage is 7-12 Volts. Moreover, the DC current per I/O pin is 20 mA.

5.1.2 MPU 6050

An Inertial Measuring Unit (IMU) module is used for navigation. The MPU-
6050 is a 6 Degree-of-Freedom sensor, able to measure the absolute orientation,
angular velocity, angular motion and acceleration. Absolute orientation, i.e. the
current heading of the robot relative to the magnetic north, is a significant value for
our application, as it is the key value of calculating the robot’s direction and
coordinates on the environment (odometry).

The MPU-6050 is a sensor based on MEMS (micro electro mechanical systems)
technology. It is equipped with a 3-axis gyroscope and a 3-axis digital
accelerometer on a single silicon die, in tandem with an onboard Motion
Processor™ (DMP™) capable of processing complex 6-axis MotionFusion
algorithms. Any device can communicate with the sensor through an auxiliary
master I°C (Inter-integrated Circuit) allowing it to gather a full set of the sensor’s
data, as is shown in Figure 5.4.

Figure 5.3 MPU-6050. Inertial Measuring Unit module

24

MPU-6050 -
3-Axis Compass Family = Application

Gyro Accel Processor

I*C or SPI
Figure 5.4 MPU-6050 Communication Level

5.1.3 Ultrasonic Sensor HC-SR04

The HC-SRO04 sonar is an ultrasonic ranging sensor. This device provides a range
of 2 cm — 400 cm with an accuracy of 3 mm, while an effectual angle of less than 15
degrees is required for the sonar to give proper readings. Every HC-SR04 module
includes an ultrasonic transmitter, a receiver and a control circuit. Ultrasonic
sensors serve the purpose of detecting objects relative to our robot that pose an
immediate threat for collision. At the same time, we use them to measure the
distance between the robot and these objects.

The distance of the object or a wall from the robot is measured by noting the
time between the emission and reception of the sound waves to the sonar. By
multiplying time taken to travel by the sound wave, by the speed of sound we get
the total distance traveled by the wave. Due to the fact that the signal takes an equal
amount of time to send and receive, this value must be halved.

Front Back

Figure 5.5 HC-SR04 Ultrasonic range sensor

25

5.1.4 Futaba S3003 Servo Motor

The light weight of Ultrasonic sensors makes them useful for collecting
environment information from mobile robots. Many robotic platforms use ultrasonic
sensors in a circular formation in surface-moving robots. However, such an
approach is not suitable in our case mainly for two reasons. Firstly, due to the
computationally expensive method of acquiring multiple measurements without
causing errors, and secondly because of the limited I/O pins of the Arduino Uno
board. Therefore we created a movable ultrasonic range sensor by combining a
small, light weight servomotor and a single ultrasonic range sensor. This sensor is
capable of performing 180° measurements of the distance between objects and the
robot.

A servo motor is a rotary actuator or motor that allows for a precise control in
terms of angular position, accelerations and velocity, capabilities that a regular
motor does not have. The servomotor is a closed-loop servomechanism that uses
position feedback in order to control its rotational speed and position. The control
signal is the input which represents the final position command for the shaft.

The servomotor we use in our design is the Futaba S3003 Servo. It’s a small,
light weight motor, operating with 4.8-6 Volts.

B
= |
| ¥
40.3 _
55.5 '
.
| |
- E;
=2 o
o
L}
20 y - ¥

Figure 5.6 Futaba S3003 Servo Motor and its dimensions

26

5.1.5 28BYJ-48 Stepper Motor and ULN2003 Motor Driver

For our approach we chose to design and implement a robotic platform based on
a differential driven chassis. Such robots rely on their two main wheels, each of
which is attached to its own motor. Note that a third wheel is placed in the rear to
passively roll along while preventing the robot from falling over.

Among the available motors, we chose to use Stepper motors, as they are
superior to the DC motors for the purpose of control. Stepper motors are
electromechanical devices which convert electrical pulses into discrete mechanical
movements. One of the most significant advantages of a stepper motor is its ability
to be accurately controlled without any position sensor for feedback, as long as the
motor is carefully sized to the application in respect to torque and speed. They have
multiple coils that are organized in groups called “phases”. By energizing each
phase in sequence, the motor will rotate, one step at a time. The stepper motors we
use are two 28BYJ-48 steppers.

The 28BYJ-28 is a 5 Volts unipolar geared stepper motor, originally designed for
HVAC" control industry and similar low-demand equipment. It features a 5 mm
“Double-D” shaft mounting lags, and a 5-conductor 0.1" pitch connector. The
gearing isn’t the beefiest or most precise we ’ve seen, however it is adequate for
reasonable loads. The stepper motor’s gearbox is the 64:1 reduction version. This
practically means that the motor will have to make 64 steps to complete one full
rotation and every step will cover a 5.6250°.

Figure 5.7 28BYJ-48 Stepper Motor

11. HVAC stands for Heating, Ventilation and Air Conditioning

27

The simplest way of interfacing a unipolar stepper motor with an Arduino, is to
use a breakout for ULN2003 transistor array chip. The ULN2003 contains seven
Darlington transistor drivers and is somewhat like having seven TIP120 transistors
all in one package. The board can pass up to 500 mA per channel and has an internal
voltage drop of about 1 Volt when on. It also contains internal clamp diodes to
dissipate voltage spikes when driving inductive loads.

Figure 5.8 ULN2003a motor driver

ARDUING PINS

R

IMumrPi.n_1 1 IN1 auTl 16 BLU CcOIL 4
|MDmrPin_2 y 2 IN2 e ouTtallS caiL 3
[Motorpin 3™ 3lina @ ourapd coIL 2
[Motorpin_a "> 41 iNa @ auT4|l3 COIL 1
—3 S autsia.
s & RED COMMON
—61 1ng ouTépll STEPPER
—2{ 17 outzjle.
GND 8| enp com |2
+
;+5|,r
i

Figure 5.9 Stepper motor and motor driver wiring

In Figure 5.9 we present the electric circuit diagram with the connections
between the stepper motor and the ULN2003 motor driver board.

5.1.6 HC-06 Bluetooth Module

The computationally expensive process of mapping takes place in a computer,
wirelessly connected with our robot. Each time that the robot gathers a set of
observations, it is required to transmit the observed information. The HC-06

28

Bluetooth Module is responsible for this communication between the robot and the
computer mapping application.

The HC-06 Bluetooth module is a popular device and very simple to set up with
an Arduino board. The module is suitable where wireless data transmission is
needed in slave mode. The HC-06 module can reach a range up to 9 meters.

¢+ TXD 4= 33y LEVEL
BT_BOARD V20

@ STATF 4um

Back
Figure 5.10 HC-06 Bluetooth Module

All the above components and sensors have been properly positioned into the
robotic platform to serve the intended purpose in the best possible way. Wiring has
been laid out from scratch. All safety measures have been taken in order to avoid
any possible damage to the robot. In Figure 5.11 we present an overview of the
designed system.

Sensors Processing Unit ' Middleware Controls
: —_——
: Left Stepper
IMU T » Motor Controller » LeﬂMEc‘:t:)prper
i ULN2003 i
! B ; N w
© st ¢ . Right Stepper :
o A Arduino I Motor Controller : » ngfxif.;tepper
Ultrasonic » 7 i 5 s
no :
Sensor : > o BRETEIIR : .
o I > Servo Motor
Ultrasonic i
Sensor ;
i Bluetooth
i Module

Figure 5.11 System Overview

29

5.2 Placement and Mounting

5.2.1 Sensor Layout

The placement of the sensors on the robot was such that all directions which the
robot moves in are covered, so that obstacles and walls can detected and avoided
before any collision occurs. The layout can be seen in Figure 5.12 below. We use
three sensors in total; two ultrasonic sensors, of which one is movable, and an IMU.
The movable range finder (which is the combination of a servo motor and an
ultrasonic sensor) is placed at the front of the robot allowing it to make scans of the
area in front of it. The sensor is facing the front while the servo shaft is facing the
edge of 90 degrees comparing its initial point. Note that at the initial point, which is
0 degree, the sensor is facing to the right of the robot, while at the ending point, 180
degrees, the sensor is facing to the left.

The second ultrasonic sensor is positioned toward the back of the robot facing
the left, which in conjunction with the corresponding sensor attached on the servo
motor, allows the robot to align the wall on its left. Lastly, the MPU was placed on a
platform near the middle of the robot.

‘ - 4
~Front USensor y <—£

Servo

MPU-6050

SLAM Robot
"SLAMatron"

Figure 5.12 Sensor Layout

30

5.2.2 Mounts

Mounts were designed both for the stepper motors and the ultrasonic sensors to
secure them in place on the robot, as shown in Figure 5.13. The mounts were
designed in a 3D modeling platform, named SketchUp, based on each component’s
dimensions referred on its data sheet. The resulted models were 3D printed and
properly placed on the robot.

i
I

Figure 5.13 Ultrasonic Sensor’s Mount (Left), Stepper motor’s Mount (Right)

5.2.3 Overall Assembly

The robot’s chassis consists of two levels. The sensors along with the Arduino
board and the Bluetooth module are placed at the top level, leaving enough space at
the bottom level for placing the two motor driver boards and the power sources. It is
important to say that our system has three independent power sources. The first one,
a 9V rechargeable battery, is the powering supply of the Arduino board. All the
sensors and the Bluetooth module are powered by the Arduino’s 5V output power
supply pin. The second power source, a 9V alkaline battery, is responsible for
powering the Servo motor. Lastly, the third power source is a 12V rechargeable
battery responsible for powering the two stepper motors attached on the robot’s
wheels. For better understanding, we have designed a 3D model of our robot
without the wiring between components, as shown in Figure 5.14 below. We also
provide images showing the robot’s figure.

31

Front Ultrasonic Sensor

ULN2003
Motor Driver

Figure 5.14 Robot’s 3D model

Figure 5.15 SLAM Robot

32

Figure 5.16 SLAM Robot (aka SLAMatron)

33

Chapter 6

Design of the System - Software

Equally essential with the hardware design and the robot’s architecture is the
software development for the processing of the sensor’s data, the control of the
robot and the creation of the desired map. The software development procedure can
be classified in two notable classes, the embedded code development and the
external code development. The first, deals with development of a program and
functions on-board the Arduino Uno. The external code corresponds to the
development of a mapping application on a remote device.

6.1 Embedded Code Development

The embedded code refers to a program which specifies our robot’s actions. In
particular, all the main modules for robot control and sensors’ logging work under
sync under the main program. Furthermore, the embedded code consists of various
functions, where each deals with a unique task, such as the functions
send_measurements(), side_Sonar_Read() or driveStraightDistance(). For more
information about the implemented functions you may check the Appendix A.

The main program is nothing more than an implementation of the robot’s
behavior determined by a finite state machine (FSM) which consists of six states.
These states call of a number of functions and change various parameters in order to
determine the next state. It is worth mentioning that state transitions are determined
by inputs and the current state, therefore the system functions as a Mealy machine.
The overall finite state machine is shown in the figure 6.1, with the entry and exit
conditions shown for each state.

34

Initialization

Wall Alignment

End Of

Interrupt
Interrupt 88 Pt Interrupt

State=WA

N

End Of Interrupt
E&

First Loop State=FL —__
Done

Steppers
Driving

Next Loops State=NL

Loops done

Figure 6.1 Overall Finite State Machine

The starting point is the Initialization state, which will remain active until the
robot configures and enables the motors, configures and stabilizes the MPU
readings, initialize the internal timers and obtains an initial readout of the sensors.
When that happens, the current state is transitioned to Wall Alignment state, which
remains active until the robot is aligned with the wall on its left, assumingly that it
is positioned near a wall. When the robot finally aligns with the wall on its left, the
active state becomes the First Loop. When the robot’s first run is completed, namely
the exploration of the environment’s terrain, the current state is transitioned to Next
Loops state. The program will progress to the Stop state when all loops have been

completed.

35

Let us take a step back and examine the Steppers Driving state. In our approach,
we designed our stepper motors to be interrupt driven. This benefits us greatly, as
we are able to perform any move with our vehicle while executing any other task at
the same time. Therefore, the Stepper Driving state is accessible by all other states,
apart from Initialization state, when an interrupt occurs.

The major states of the designed FSM are the First Loop state and Next Loops
state. For a better understanding of these particular states, we introduce the concept
of path planning. Path Planning is an important prerequisite for autonomous mobile
robots as it helps robots to find the optimal path between two points. The chosen
path for the robot was to follow the wall on its left, which helps us to gauge the
room’s terrain. In addition with our robot’s capabilities on sensors, we are able to
observe the environment around the robot, providing all useful information for
mapping. That takes place while the First Loop state is active. However, due to the
ultrasonic sensor’s range limitations, there might be areas of the environment which
will remain unexplored in the First Loop as shown in Figure 6.2. This occasion
happens when the dimensions of the track are larger than 8 m. In that case, we need
a number of additional loops of our robot exploring the unknown area. The
equation that was to be used was:

Number of Loops Needed =| larger side of track/2 | (6.1)

Area that
will remain
unexplored

Figure 6.2 Area that will remain unexplored after the First Loop state’s scan

36

Imaginary

/Y Wall

Unexplored
Area

Figure 6.3 Imaginary wall that robot follows in order to cover the unexplored area

After calculating the number of loops needed to completely cover the track, the
robot calculates the coordinates of the new imaginary walls to follow as shown in
Figure 6.3. The current state of the FSM is then transitioned to Next Loops state. At
that time, the robot starts moving heading to the calculated coordinates of the first
imaginary wall and continues by following it and observing the unexplored area of
the environment. It is crucial to mention that the robot functions similarly in both
First Loop and Next Loops states. However, their major difference is that in the
First Loop state, the robot follows an actual wall where we acquire real information
about its alignment with the wall, while on the Next Loops state the robot follows
imaginary walls where the information about its alignment with the wall it is
calculated using the previous and current robot’s heading.

For better understanding of how the robot actually functions in both First Loop
state and Next Loops state, we created a flowchart presenting all necessary steps
for our robot’s navigation.

37

No

Read IMU

Read Both Front
and Left
Ultrasonic

Transmit Data

w

Prepare for Left
90 Turn

Front Wall or
Obstacle
detected?

Side Wall
detected?

Yes

Prepare for Move
Forward 10cm

Wait

w

Prepare for Rightt

902 Turn

o)

Drive

MNo

MNo

Is the Mowve
completed?

Yes

Update Odometry

Update Heading

Realign

Is the Robot
Wall Aldigned?

Is the Loop
completed?

Figure 6.4 Flowchart

38

Yes

EMD

Figure 6.4 shows the flowchart for mobile robot navigation. When the state is
transitioned either to First Loop state or Next Loops state, the robot calculates the
value of its heading degree by fusing MPU’s data. Then, it looks for obstacles or
walls around it and measures their distance using ultrasonic sensors. At that point,
the robot transmits all necessary information for mapping to the base station. As we
discussed, in our approach the robot follows a wall to navigate through the
environment. The robot has to make a decision based on the aforementioned
measurements whether it will move forward or make a left or right turn. If there is
no obstacle or wall at the front and a left side wall is present, then the robot moves
forward. If a front wall is detected then the robot takes a right turn and when both
walls are not detected the robot takes a left turn. While in rhis turning process, the
robot uses MPU’s value to make an exact 90 degree turn.

In pursuit of the move ’s completion, the robot updates its co-ordinates and its
heading. It is worth mentioning that initial co-ordinates of the robot are assumed to
be [0,0]. At that moment, the robot checks if it is aligned with the wall on its left. In
case that is not, the robot re-aligns with the wall and continues. Note that the state
will be transitioned to Next Loops state and complete the first loop’s scans once the
robot revisits the initial co-ordinates.

6.2 External Code Development

The external code has to do with the implementation of a mapping application.
In our approach, we designed our system to function using an occupancy grid
mapping technique. Therefore, the mapping application implements an Occupancy
Grid algorithm as it was described in the subset two of the second chapter (2.2
Occupancy Grid Mapping).

The programming language of our preference was Python. Additional libraries
had to be used in order to perform all necessary tasks, two of which are of great
importance for the proper running of the program. The first crucial library is the
serial library which is responsible for the wireless communication between the
robot and the remote device. The second one is the matplotlib library from which
we make use of the pyplot package for the purpose of visualizing the robot’s belief
of the environment’s structure.

39

Xscreen

Xrobot

Yrobot

Yscreen

Figure 6.5 Robot and screen coordinate systems

Initially, the application sets the wireless connection between the robot and the
remote device. Once the connection has been established the program continues
with the initialization phase. At first it creates an array and stores the values of the
19 bearing angles' in the format of radians. It then creates a second array,
consisting of three cells in which we store the robot’s believed coordinates and
heading every time the robot sends measurements for processing. The
aforementioned data in addition to the observed distance measurements around the
robot’s position, are used for updating the instances of the map. Lastly, the grid size
is specified and the grid map is constructed with the cells having total awareness
about their states (free or occupied).

Note that all of the values obtained from the sensors were with respect to the
robots coordinate system and thus had to be transformed. This was achieved through
the recalculation of the all bearings from the robot. Figure 6.5 shows the coordinate
systems of both the robot and the screen. The map on screen was scaled so that 1
mm of the robot’s travel equals 1 mm.

Subsequently, the program waits for the robot’s messages. Once they are
received, the program decodes them and it distinguishes the observed data. Then,
the map needs to be updated. In this case our application decides which cells of the

12. The 19 bearing angles corresponds to the 19 measurements that the robot makes at a single point in order to observe
his surrounding area

40

grid map should be altered by calculating the L-norm distance to all cells from the
robot. Once the application has figured out which cells are in range of the robot’s
sensors, it has to calculate the likehood of their being occupied by an obstacle or a
wall. It is crucial to mention that the robot’s belief of the map is shown through out
the process of SLAM. By other words, our system consists of an online application.
Note that the application terminates once its receives an analogous ending message
from the robot.

41

Chapter 7

Validation of the System

Platform construction and system design for both hardware and software have
been described in detail in the previous chapters. Yet, the target of this project is not
only the construction of the platform, but also the proper performance of the system.
Therefore, thorough testing was necessary for the design and functionality of the
SLAM robot and was performed for all aspects of the system.

The first target for the platform in development was primarily for hardware
performance as it was necessary to prove proper functionality and robustness.
Therefore, the initial experiments were focused on testing the range sensors after
calibration, testing the Bluetooth for the wireless communication with the computer,
testing the IMU’s data as well as testing for any inherent differences in the stepper
motors. From these tests we drew some conclusions of great importance for the
robot’s proper behavior.

To begin with, it was discovered that the ultrasonic range sensors were only
capable of reliably reading up to 30 cm rather than the 40 cm specified on the data
sheet. Testing the IMU’s data revealed that the sensor required calibration to ensure
right performance. Moreover, testing the stepper motors revealed that they required
absolute synchronization to ensure proper steering.

Later testing of the SLAM robot was aiming to validate the functionality of the
embedded code. At first, portions of the code, such as a state of the FSM or a
function, were tested individually to ensure they performed as desired. Once the
results met the requirements and provided the proper performance, we then tested
the embedded code as an integrated part of the system. It is worth mentioning that in
order to debug the embedded code, outputs of the FSM’s current state and the
sensors’ reading were sent over Bluetooth to a computer so that a written output of
what the robot was doing could be seen. While in this stage of testing, problems
such as the insufficient voltage being sent to the Bluetooth module and the

42

20

40

60

a0

100

0 25 50 75 100

Figure 7.1 Mapping application testing.
The environment’s structure is being presented on the image at the left, while at the right image the robot’s belief
about its environment is being shown.

servo motor were discovered. The results of these tests also helped to alter and
improve the robot’s design.

Finally, the testing process aimed at evaluating the proper performance of the
external code. To do so, we initially tested our application with the sensor readings
observed by another system’s robot which was successfully tested and it performed
well. This test was carried out in order to establish how our application was
corresponding with the sensor readings that we know from the map they create. As
Figure 7.1 shows, our application met our expectations and successfully produces
the map which corresponds to the above sensor readings.

Further experiments were conducted testing our system in total. All the testing
runs were successful, providing us with an accurate representation of the
environment’s structure. While the overall software design of the robot has room for
improvement, it is evident that from the results that the robot was able to
successfully navigate the room with sufficient coverage avoiding all obstacles.
Rotation control and wall following were also executed very well. In figures below,
we present the results of several experiments in comparison with the environment’s

structure.

43

170 cm 200

200

600

400
0 200 400 600 800 1000

800

1000
0 200 400 600 800 1000

Figure 7.2 First experiment. Robot navigates in a straight path, which is 170 cm of length.
The image on the left represents the environment’s path while the image on the right is picturing our system’s result..

From the first experiment we conducted and presented on the Figure 7.2, we can
understand how the number of scans in a particular area is connected with the robot
belief for this area. By increasing the number of scans in a particular area, the robot ‘s
belief gets stronger on whether the respective grid cells are occupied or free.

600

0 200 400 600

800

1000

Figure 7.3 (b) Figure 7.3 (o)

Figure 7.3 (a)

Figure 7.3 Second Experiment. Robot navigates in a constructed environment, which is shaped similar to a square.
Note that there is no object in the middle of the structure.

(a) Photograph of the environment, (b) Environment’s structural draw, (c) System’s result

44

200

0 200 400

1000

1000
(a) (b) 400
(c)

Figure 7.4 Third Experiment. Robot navigates in a constructed environment, which is shaped similar to a square. Note
that there is an object in the middle of the structure.
(a) Photograph of the environment, (b) Environment’s structural draw, (c) System’s result

While observing the Figures 7.3 and 7.4 we come to the conclusion that our
system is not fully capable of identifying all the corners on our space. Yet, this
observation was expected due to the limitations of the ultrasonic sensors. However,
this drawback can be avoided by further processing the resulted image, meaning that
we could apply an edge detection filter (e.g. Canny edge detection). Thus, we could
produce a clear map representing the environment.

45

Chapter 8

Conclusions and Lessons L.earned

8.1 Conclusions

This thesis has described in detail the assembly, development and testing of a
low-cost, autonomous mobile platform developed for the purpose of mapping while
decreasing the platform’s cost. It has described the drawbacks and the advantages
that our system offers. It has also presented and briefly explained the related work
in the domain. Moreover, there has been an exhaustive description of every
component used in the SLAM robot, as well as the software development
procedure. Through thorough testing and experimentation, the system’s
performance proved its ability to serve its purpose.

Whilst the performance of the robot was satisfactory in both mapping and
coverage capabilities, the robot has room for further improvements in order to
achieve accurate results. Better sensors, such as Sharp IR sensors along with low
pass filters to reject high frequency fluctuations in readings or 180 degree LIDAR
sensor, could replace the current ultrasonic sensors. Moreover, additional sensors
could be used in order to achieve 360 degree detection instead of the current 180
degree detection. These improvements might be slightly expensive in both cost and
energy consumption, however the system could have plotted an excellent map and
kept track of the obstacles with ease.

8.2 Lessons Learned

As I am heading toward the end and reflecting on the journey thus far, I'm
thinking of all the lessons I have learnt about conducting this research and writing

46

this thesis. There were lessons that were something I had to stumble across on my
own, yet others that I got from somebody else.

The first lesson that I learnt during my thesis was the importance of wasting 2—3
hours in learning things, that would have saved days and weeks in writing thesis and
more importantly would have relieved lot of mental stress that I under went just
because I did not used efficient and smart methods. In particular, I ignored reading
the MPU sensor’s manual. This resulted in using the sensor without calibrating it.
Subsequently the robot was unable to rotate properly due to the faulty measurements
(could not properly locate the magnetic north). As a result, I spent quite a lot of time
trying to understand why the robotic vehicle did not responded as I wanted. In the
end, by having read what the manual had to tell us, I understood that this type of
sensors had to be calibrated every time that they are to operate in a different location.

The second lesson I learnt, I got it from someone else. At the very beginning of
the robotic platform’s implementation, we used DC motors for its steering. This
turned out, to be a huge mistake in the design. While trying to drive the robot forward
in a straight line, we observed that either the robot ‘s wheels were drifting or the
robot was moving diagonally. We tried to control the DC motors and synchronize
them using a plethora of approaches. At first we implemented a “master-slave” logic,
meaning that we assumed there was a “master” wheel and a “slave” wheel. The
concept was that the slave would have to follow the master, whilst the master would
not proceed ant further unless the slave had reached it. However we tried to control
both motors in such a way, we did not get the expected results. Then, we thought of
implementing a PID controller in oder to successfully control both motors. But even
in this approach, we did not have any improvement. The answer to our problem was
given by Professor Apostolos Dollas. During a meeting we had, we discussed about
the problem we were facing and he suggested changing the motors we use. Therefore,
we changed the DC motors into stepper motors, which were easier to be controlled,
achieving proper steering of the robot.

47

48

Bibliography

[1] Dhiraj Arun Patil, Sakshi Vinod Agiwal, “Design and Implementation of
Mapping Robot using Digital Magnetic Compass and Ultrasonic Sensor”,
International Journal of Engineering Research & Technology (IJERT),
ISSN: 2278-0181, Vol. 4 Issue 06, June-2015.

[2] Neelam Barak, Neha Gaba, Shipra Aggarwal, “Two Dimensional Mapping
by using Single Ultrasonic Sensor”, ISSN: 0976-5697, Volume 7, No. 3, May-
June 2016.

[3] Sebastian THRUN, Wolfram BURGARD, Dieter FOX, “PROBABILISTIC
ROBOTICS”, 1999-2000.

[4] Md. Shadnan Azwad Khan, Shoumik Sharar Chowdhury, Nafis Rafat Niloy,
Fatema Tuz Zohra Aurin, “Simultaneous localization and mapping (SLAM)
with an autonomous robot”, BRAC University.

[5] R. G. Brown, B. R. Donald, “Mobile Robot Self-Localization without
Explicit Landmarks”, Algorithmica (2000) 26: 515-559.

[6] Vassilis Varveropoulos, “Robot Localization and Map Construction Using
Sonar Data”, 1999.

[7] Jerund @vsttun Amsen, “Improving Navigation and Mapping with Arduino
robot”, Norwegian University of Science and Technology, June 2017.

[8] Weihua Chen, and Tie Zhang, “An indoor mobile robot navigation technique
using odometry and electronic compass”, International Journal of Advanced
Robotic Systems, 2017.

[9] Woo Yeon Jeong, Kyoung Mu Lee, “Visual SLAM with Line and Corner
Features”,Oct. 2006 .

[10] Josep AULINAS, Yvan PETILLOT, Joaquim SALVI, Xavier LLADO, “The
SLAM problem: a survey”.

[11] Shoudong Huang, Gamini Dissanayake, “Convergence and Consistency
Analysis for Extended Kalman Filter Based SLAM”, IEEE Transactions on
Robotics, 08 October 2007.

[12] L. Armesto, J. Torreno, “SLAM based on Kalman filter for multi-rate fusion
of laser and encoder measurements”, IEEE/RSJ International Conference on

49

Intelligent Robots and Systems (IROS) (IEEE Cat. No.04CH37566), Oct.
2004.

[13] WooYeon Jeong, Kyoung Mu Lee, “CV-SLAM: a new ceiling vision-based
SLAM technique”, IEEE/RSJ International Conference on Intelligent Robots
and Systems, Aug. 2005

[14] Michael Montemerlo, Sebastian Thrun, Daphne Koller, Ben Wegbreit,
“FastSLAM: A Factored Solution to the Simultaneous Localization and
Mapping Problem”,2002.

[15] Michael Montemerlo, Sebastian Thrun, “Simultaneous Localization and
Mapping with Unknown Data Association Using FastSLAM”.

[16] Austin Eliazar, Ronald Parr, “DP-SLAM: Fast, Robust Simultaneous
Localization and Mapping Without Predetermined Landmarks™.

[17] F. Caballero, L. Merino, A. Ollero, “A general Gaussian-mixture approach
for range-only mapping using multiple hypotheses”, IEEE International
Conference on Robotics and Automation, May 2010.

[18] SEBASTIAN THRUN, “Learning Occupancy Grid Maps with Forward
Sensor Models”, Autonomous Robots 15, 111-127, 2003.

[19] Thommas Colleens, J.J. Colleens, Conor Ryan, “Occupancy grid mapping:
An empirical evaluation”, Mediterranean Conference on Control &
Automation, June 2007.

50

Appendices

51

52

Appendix A

Embedded Code Development — Functions

In this section we are presenting the functions which we make use of for the robot’s
autonomous navigation and we are briefly explaining them. Note that these functions
are stored in the embedded program.

« void send_measurements(): Function that sends measurements of the robot's
surroundings. We send AHeading (aka Artificial Heading) and distance that
robot traveled in order to compute its coordinates on the grid. We also send all
measured distances of the objects around the robot, in order to process them
and create the corresponding map. The format that the information is being
sent, has to be as the following as it has to match while being read by the
python script

« void end(): Function helps to terminate the python script and show the final
mapping when the robot stops moving and collecting new information

« void Side_Sonar_Read(): This function is being used in order to get the
distance between the robot and the wall on its left Thus, we are able to
understand if there is a wall so we can follow it. The sensor responsible for this
task is located on the back left side of the robot. This distance information, plus
the distance information measured from the function below when the servo
pose equals to 180, will also help us to align the robot to the wall next to it.

« void Front_Sonar_Read(): This function helps us measure the distance
between the robot and the objects,if there are any. It collects 19 measurements
which are being collected from an ultrasonic sensor attached on top of a servo
motor. The 19 measurements correspond to the range [0-180](degrees) with a
step of 10 degrees. The 0 degree position is on the right side of the robot, the
90 degrees position facing at the front of the robot and the 180 degrees position
is at the left side of the robot. It is important to mention that in order to get
more accurate measurements, we repeat the procedure twice and store the
average of the two results.

53

« int CMtoSteps(float cm): Function that converts the distance the robot shall
travel from centimeters into number of steps.

« void driveStraightDistance(int steps): Function that drives the robot forward
for a specified number of steps.

« turnAbsolute(float target): Function that turns the robot in a specified angle.
We have an offset within 0.5 degrees of the desired angle

« void get_heading(float *head): This function is being called every time we
need to calculate the robot's heading. It is being used in order the robot to turn
left or right by 90 degrees with an error in +-0.5 degrees.

* void CheckIMU(int *state): Check to see if the IMU has settled down and is

giving a steady heading. If it hasn't then the robot can not start navigating.

54

Appendix B

Electric Diagram — Circuit

In this section we presenting the connections between the various electronic

components used in the SLAM robot.

et [HC-SR04
HC-SR04 ITEAD STUDIO

ITEAD STUDIO | | — & . |
FEFL

ooooooooooooooooooo

Lt Stepper Motor
ORANGE @
>

2.1mm
Barrel Jack ‘ xitses?

YyYyy
RED A

YELLOW

POS

NEG

BLUE
‘ n

3 RightStepper Motor
H (B L.
L — e ORANGE
wy === ino —
ot e <
o — 16
o S
ot
2
PINK
3ol 4
X7

j\\ﬁD ,\YIY

Al

l
T 1
g
) G 1 I L

w2
b
I|I
e v
P
“2 { = | =
Steppers' Power Supply 1 iE I KE

Servo's Power Supply

fritzing

Figure B.1 Electric Diagram

55

Appendix C

Block Diagram

In this section we present the block diagram of the components used in the

robotic platform.

MPU 6050 41
Front .| Control Unit
Ultrasonic "1 Arduino Uno
Sensor
Left ‘J,_)
Ultrasonic
Sensor
~
av
Power Supply

.| ULN2003
“| Motor Driver

I’

—_—
-
—,

. o ULN2003

> Bluetooth \

“| Motor Driver

12v

Power Supply Power Supply

Figure C.1 Block Diagram

56

	Chapter 1
	Chapter 2
	Chapter 3
	Chapter 4
	Chapter 5
	Chapter 6
	Chapter 7
	Chapter 8

