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Abstract

In this study we describe the wind wave fields. The general aims of the work are
the estimation of statistical wave parameters and the assessment of interannual
and seasonal wave parameter variability. Wave parameters will be calculated by
means of the SWAN wave model on a relatively fine rectangular grid. Initial
conditions (wind speed and direction) for a historical period will be derived from
the reanalysis NCEP/NCAR..



Περίληψη

Στην παρούσα διπλωματική εργασία θα γίνει προσομοίωση, πρόβλεψη και ανάλυση
των ανεμογενών κυματισμών. Στόχος αυτής της διπλωματικ·ης εργασίας είναι η
εκτίμηση των κυματικών παραμέτρων(ύψος,περίοδος κυματισμών) και της εποξικής
και ετήσιας μεταβλητότητας τους. Οι κυματικές παράμετροι θα υπολογισθούν με τη
βοήθεια του κυματικού μοντέλου SWAN σε ένα σξετικά ορθογώνιο πυκνό πλέγμα.
Οι αρχικές συνθήκες (ταχύτητα και διέθυνση ανέμου) για μια παρελθοντική περίοδο
θα προκύψουν από τα δεδομένα reanalysis NCEP/NCAR..



Chapter 1

Introduction

In the scientific community of coastal engineering,wind-waves are the most impor-
tant phenomenon to be considered among the environmental conditions affecting
maritime structures and other marine and coastal activities. Nevertheless, wind
waves have very complex natures. Looking out at the sea, one never sees a constant
progression of identical waves. On second thought, the sea surface is composed
of waves of varying heights and periods moving in different directions. Moreover,
wind waves are highly irregular with respect to their direction, amplitude and
frequency and generally they have random nature.

Nowadays, a crucial topic of our society is that disasters and their impact on
human populations have been increased rapidly. A fundamental reason of this
vital situation is the Climate change. This is a modification in the distribution
of climate patterns making risks increasingly challenging to predict and chang-
ing the ways in which hazards interact with each other. Actions of humans have
been identified as vital causes of recent global warming. The factors causing cli-
mate change are natural, external and anthropogenic, and the impacts are felted
in land, water and atmosphere.Coastal zones are important for humans because
they have special characteristics like warm weather, productive soils and more job
opportunities that provide a better life quality.

In the sense of macroscopic application, the biggest motivation for developing
wind driven wave models is to predict the behavior of the ocean surface through-
out different weather events over time.Thus, the behavior of the ocean surface is
substantial for many reasons, some relevant from an engineering standpoint and
others relevant from a personal standpoint. A singular person might want to know
future ocean wave behavior for safety purposes related to surfing or boating,whilst
the engineer seeks to model the behavior of the water body in an effort to relate
it to weather safety, shore infrastructure or other fluid related design.

For this reason, wave models are commonly used by government organizations
such as NOAA (National Oceanic and Atmospheric Administration) and FEMA
(Federal Emergency Management Agency). These organizations often utilize wave
models as a component of comprehensive ocean and lake modeling to simulate past
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or future events with extreme weather circumstances in order to better understand
issues such as structural damage, flooding, pollution transport, or erosion. In-
stances of these situations are disasters such as hurricanes, tsunamis, or oil spills;
all of which benefit from both forecast and hind cast simulations to increase scien-
tific knowledge about the event. In order to accurately simulate these events, wave
models are coupled with other models that add additional detail to the simulation.

SHYFEM (Shallow water Hydrodynamic Finite Element Model), [3], has been
developed at ISMAR-CNR (Institute of Marine Sciences - National Research
Council; Umgiesser, 2004) and been already and successfully applied to several
coastal environments. This forecasting model can be used to resolve the hydro-
dynamic equations in lagoons, coastal seas, estuaries and lakes. It consists of
a 3D shallow water hydrodynamic model, coupled with a wind wave model and
with both an Eulerian and a Lagrangian module, for simulating active tracers
transport and diffusion.The model resolves the shallow water equations in their
formulations with water levels and transports. The finite element method permits
to reproduce complex morphologies and bathymetries. This program accounts
for both barotropic and baroclinc pressure gradients, wind drag forcing, bottom
friction dissipation, Coriolis forcing and wind wave forcing.

Some limitations that are inherited from the SWE assumptions are: a) that
it is possible to use these equations only in the case where the horizontal wave
length is much greater than the vertical length scale and b) that since the SWE
have only one vertical level, they cannot account for any factor varying in the
water depth.

MIKE 21 was developed by DHI (Danish Hydraulic Institute) Water Environ-
ment Health and it is used to simulate physical, chemical and biological processes
in coastal and marine waters (DHI webpage, 2011). MIKE 21 is designed for 2D
free surface modelling of flow and waves; sediment transport and environmental
processes for estuaries and coastal applications.

MIKE is composed of two different modules:

• A Spectral Waves Module (SWM), which is a fully spectral formulation
based on the work of Komen and Young in [17] and [24] respectively. The
solution is achieved by an unstructured cell-centered finite volume method
in two dimensions with triangles or quadrilaterals and the time integration
is performed by an explicit fractional step method. The governing equation
is the wave action balance equation in cartesian coordinates,

• A Hydrodynamic Module (HDM) solving the NavierStokes equations under
the Boussinesq and hydrostatic pressure assumptions on a structured or
unstructured cell-centered finite volume grid in 2D

The limitations of this model are that according to experienced users special
care needs to be taken for the drying grid cells on the open boundaries and dif-
ferent approaches have been developed to overcome some inherent weaknesses of
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the model. Another rather common issue refers to the artificial backwater effects
from the boundaries. However, that can be easily minimized by allowing enough
distance from the boundaries to the region of interest in the computational domain.

Delft3D is a software suite developed by Deltares, formerly known as Delft
Hydraulics, for 3D computations in coastal, river and estuarine areas. It covers
numerical modelling of flows, sediment transport, waves, water quality, morpho-
logical developments and ecology. Delft3D is composed of several modules which
can be executed independently or can be coupled together and interact with one
another, by exchanging information automatically via the communication file.
Delft3D-FLOW, [1], is one of these modules, which is a program used for 2D
(depth-averaged) or 3D hydrodynamic and transport simulations. It can calcu-
late non-steady flow and transport phenomena caused by tidal and meteorological
forcing on a rectilinear or curvilinear boundary fitted grid.

As a numerical model, Delft3D-FLOW follows all the restrictions embedded in
a model. That means that the solution produced is only an approximation of the
exact solution and the accuracy is subject to the numerical schemes used, to the
discretization of the bottom topography and the assumptions made on the phys-
ical processes. Moreover, the time integration influences the wave propagation.
The limitation here is that free surface waves can be propagated correctly only
when a small time step is selected. In this case, the computational cost increases
significantly.

In the present study, the characteristics of the waves, current velocities,depth
averaged velocity, horizontal velocity and water level of sea surface are simulated
for forecast and hindcast in Thracian Sea ,using a modeling procedure within the
Delft3D model.

Furthermore, the results are compared with other measurements in this area.
The main objectives are to:

• Fine tune the coupling of the particular models included in Delft3D, regard-
ing the appropriate selection of the artificial boundaries and its conditions,
the hierarchy of nested grids and appropriate modeling of the outer wave
problem.

• Estimate the hydrodynamic conditions of the event.

• Estimate the accuracy of the numerical modeling in relation with the real
data.

For the simulation, the numerical model of the open source code of Delft3D
was used. With Delft3d, the calculation of the wave field in relation with the
hydrodynamics is the product of the coupling of two models, that of the Delft3d-
WAVE model, [2], and that of the Delft3d-FLOW model, [1],respectively.

This study is presented in the subsequent chapters as follows: In chapter 2, a
brief description of the Delft3D model is given. In chapter 3, the data analysis
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through copernicus cmems system and R programming language are described.In
chapter 4,the case study and the model setup are presented with the results of
the computations and comparisons with the measurements obtained. Finally, the
conclusions are discussed.
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Chapter 2

Description of the Delft3D model

The Delft3D model is developed for a multi-disciplinary approach to nearshore
waves and morphodynamic modeling by Deltares 1, in close cooperation with Delft
University of Technology. Delft3D consists of several models that can interact
with each other. The Delft3D-FLOW simulates the hydrodynamic phenomena,
the sediment transport processes and the bottom changes and the Delft3D-WAVE
simulates the wave generation and propagation in nearshore areas.
Delft3D-FLOW is the hydrodynamic module of Delft3D, which is Delft Hydraulics’
fully integrated program for the modelling of water flows, waves, water quality,
particle tracking, ecology, sediment and chemical transports and morphology. In
Figure 1 a system overview of Delft3D is given.

Figure 2.1: System overview of Delft3D

We note that in previous versions of Delft3D also contained a MOR(phology)
module.However, the morphology functionality is now part of the FLOW module
and a separate MOR module does not exist anymore.
The primary purpose of the computational model Delft3D-FLOW is to solve vari-
ous one-, two and three-dimensional, time-dependent, non-linear differential equa-
tions related to hydrostatic and non-hydrostatic free-surface flow problems on a
structured orthogonal grid to cover problems with complicated geometry. The
equations are formulated in orthogonal curvilinear co-ordinates on a plane or in
spherical co-ordinates on the globe. In Delft3D-FLOW models with a rectangular

1Deltares is an independent institute for applied research in the field of water,subsurface and
infrastructure.
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or spherical grid (Cartesian frame of reference) are considered as a special form of
a curvilinear grid, see [Kernkamp et al., 2005] and [Willemse et al., 1986].
The equations solved are mathematical descriptions of physical conservation laws
for:

• water volume (continuity equation),

• linear momentum (Reynolds-averaged Navier-Stokes (RANS) equations),
and

• tracer mass (transport equation) , e. g. for salt, heat (temperature) and
suspended sediments or passive pollutants.

Furthermore, bed level changes are computed, which depend on the quantity of
bottom sediments.

The following physical quantities can be obtained in dependence on three-
dimensional space(x,y,z) and time t:

• water surface elevation ζ(x,y,z,t) with regard to a reference surface (e. g.
mean sea level),

• current velocity u(x,y,z,t), v(x,y,z,t), w(x,y,z,t),

• non-hydrostatic pressure component q(x,y,z,t),

• tracer concentration C(x,y,z,t), e. g. temperature, salinity, concentration of
suspended sediments or passive pollutants; and

• bed level d(x,y,t),representing changes in bathymetry.

Delft3D-FLOW can be used in either hydrostatic or non-hydrostatic mode. In case
of hydrostatic modelling the so-called shallow water equations are solved, whereas
in nonhydrostatic mode the Navier-Stokes equations are taken into account by
adding nonhydrostatic terms to the shallow water equations. A fine horizontal
grid is needed to resolve non-hydostatic flow phenomena. When the computa-
tional model Delft3D-FLOW is used in one- or two-dimensional mode (with one
z-layer in vertical direction) the results for u, v and C will be the respective depth
averaged values for current velocity and tracer concentration.
For the vertical grid system two options are available in Delft3D-FLOW, namely
so-called or z-coordinates.

Vertical grid
3D numerical modelling of the hydrodynamics and water quality in these areas
requires accurate treatment of the vertical exchange processes. The existence of
vertical stratification influences the turbulent exchange of momentum, heat, salin-
ity and passive contaminants. The accuracy of the discretisation of the vertical
exchange processes is determined by the vertical grid system. The vertical grid
should:
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• resolve the boundary layer near the bottom and surface to allow an accurate
evaluation of the bed stress and surface stresses, respectively;

• be fine around pycnoclines;

• avoid large truncation errors in the approximation of strictly horizontal gra-
dients.

The two commonly used vertical grid systems in 3D shallow-water models are the
z coordinate system (Z-model) and the so-called σ-coordinate system (σ-model).
Neither meets all the requirements. The Z-model has horizontal coordinate lines
which are (nearly) parallel with isopycnals, but the bottom is usually not a co-
ordinate line and is represented instead as a staircase (zig-zag boundary). This
leads to inaccuracies in the approximation of the bed stress and the horizontal
advection near the bed. The sigma-model has quasi-horizontal coordinate lines.
The first and last grid line follow the free surface (σ = 0) and the sea bed bound-
ary (σ = -1), respectively, with a user defined σ-distribution in between. The grid
lines follow the bottom topography and the surface but generally not the isopy-
cnals.Inaccuracies associated with these numerical artefacts have been addressed
in Delft3D,which has led to acceptable solutions for practical applications.
In Delft3D-FLOW both the options of fixed horizontal layers (Z-model) and the
sigma grid (σ-model) are operational. The two grid concepts are illustrated in
Figure 2.

Figure 2.2: σ-model and z-coordinate model

In practice, this means that depending on the application the user can choose
the best option for the representation of the processes in the vertical. In case of
stratified flow problems in coastal seas, estuaries and lakes where steep topography
is a dominant feature, this is an important issue. For lakes a Z-model is preferred,
because the vertical exchange process should not be dominated by truncation
errors.

In this study, the wave-driven longshore currents are modeled by the interaction
between Delft3D-FLOW and Delft3D-WAVE . The coupling of those models allow
a two way exchange of information between them, so as the effect of waves on
currents and the effect of ow on waves to be accounted for. More specifically, the
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wave-current interaction is implemented by running the wave module every N flow
timesteps, where updated bottom, water level and velocity information are passed
to the wave model and wave-induced forces, wave heights, periods and directions
are passed back to the flow module (Lesser et. al., 2004).

2.1 Physical processes
The numerical hydrodynamic modelling system Delft3D-FLOW solves the un-
steady shallow water equations in two (depth-averaged) or in three dimensions.
The system of equations consists of the horizontal equations of motion, the con-
tinuity equation, and the transport equations for conservative constituents. The
equations are formulated in orthogonal curvilinear co-ordinates or in spherical
co-ordinates on the globe. In Delft3D-FLOW models with a rectangular grid
(Cartesian frame of reference) are considered as a simplified form of a curvilinear
grid. In curvilinear co-ordinates, the free surface level and bathymetry are related
to a flat horizontal plane of reference, whereas in spherical co-ordinates the refer-
ence plane follows the Earths curvature.

The flow is forced by tide at the open boundaries, wind stress at the free
surface, pressure gradients due to free surface gradients (barotropic) or density
gradients (baroclinic). Source and sink terms are included in the equations to
model the discharge and withdrawal of water.

2.2 The Delft3D - FLOW model
The Delft3D-FLOW model solves the unsteady shallow-water equations for an
incompressible fluid. They are derived from the Navier - Stokes equations under
the Boussinesq and the shallow water assumptions.

According to the Boussinesq approximation (Rodi, 1993), if density variations
are small the density is assumed constant in all terms except the gravitational
term. Under this approximation, the continuity equation and Navier - Stokes
equations are written in the form:

∂u

∂x
+

∂v

∂y
+

∂w

∂z
= 0 (2.1)

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
+ w

∂u

∂z
= − 1

ρ0

∂p

∂x
+ ν∆u− fx

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
+ w

∂v

∂z
= − 1

ρ0

∂p

∂y
+ ν∆v − fy (2.2)

∂w

∂t
+ u

∂w

∂x
+ v

∂w

∂y
+ w

∂w

∂z
= − 1

ρ0

∂p

∂z
+ ν∆w − fz −

ρ

ρ0
g

where u,v,w are the velocity components in x,y,z direction respectively,p is the
pressure ,ρ is the density , ρ0 is the reference density, ν =

µ

ρ
the kinematic viscosity
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with µ the dynamic or absolute viscosity and fx, fy, fz denote the components of
Coriolis forces per unit mass,which are defined by :

(fx, fy, fz)
T = −2Ω⃗× (u, v, w)T

where Ω⃗ is the vector of earth’s rotation.

By hand of a time-averaging of the Navier-Stokes equations and the continuity
equation for incompressible fluids, the basic equations for the averaged turbulent
flow will be derived in the sequel. The flow field can then be described only
with help of the mean values. In order to be able to take a time-average, the
momentary value is decomposed into the parts mean value and fluctuating value.
This is shown graphically in Figure 3.

Figure 2.3: Turbulent velocity fluctuation in pipe flow as a function of time, taken
from [Fredsøe, 1990].

The momentary velocity components is u, the time-averaged value is named
ū and the fluctuating velocity has the letter u′. With help of this definition the
decomposition can mathematically be written as:

u = ū+ u′, v = v̄ + v′, w = w̄ + w′, p = p̄+ p′, f = f̄ + f ′ (2.3)

The chosen averaging method takes the mean values at a fix place in space and av-
eraged over a time span that is large enough for the mean values to be independent
of it.

u =
1

∆t

∫ t0+t1

t0

udt

The time-averaged values of the fluctuating values are defined to be zero:

ū′ = 0, v̄′ = 0, w̄′ = 0, p̄′ = 0

From eq.(2.3) and the continuity equation eq.(2.1) we get :

∂ū

∂x
+

∂u′

∂x
+

∂v̄

∂y
+

∂v′

∂y
+

∂w̄

∂z
+

∂w′

∂z
= 0 (2.4)
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The time-average of the last equation is written as:

∂ū

∂x
+

∂u′

∂x
+

∂v̄

∂y
+

∂v′

∂y
+

∂w̄

∂z
+

∂w′

∂z
= 0 (2.5)

Furthermore, we introduce some rules for time-averaging :

∂ū

∂x
=

1

∆t

∫ t0+t1

t0

∂u

∂x
dt =

∂

∂x

1

∆t

∫ t0+t1

t0

udt =
ū

∂x

∂u′

∂x
=

1

∆t

∫ t0+t1

t0

∂u′

∂x
dt =

∂

∂x

1

∆t

∫ t0+t1

t0

udt =
u′

∂x
= 0

¯̄f = f, f + g = f̄ + ḡ, f̄ · g = f̄ · ḡ,
∫

fds =

∫
f̄ds

But f · g ̸= f̄ · ḡ

According to these rules, the averaged derivatives of the fluctuations are also
zero. Thus, the time-averaged continuity equation is:

∂ū

∂x
+

∂v̄

∂y
+

∂w̄

∂z
= 0 (2.6)

We introduce a small transformation of the advection term from eq. (2.2),and
Navier-Stokes equations will be time-averaged:

u
∂u

∂x
+ v

∂u

∂y
+ w

∂u

∂z
=

∂(u2)

∂x
+

∂(uv)

∂y
+

∂(uw)

∂z
− u (

∂u

∂x
+

∂v

∂y
+

∂w

∂z
)︸ ︷︷ ︸

=0

=
∂(u2)

∂x
+

∂(uv)

∂y
+

∂(uw)

∂z

After averaging eq.(2.2) and the above transformation, the Reynolds-averaged
Navier-Stokes equations or simply the Reynolds equations for turbulent flows are
obtained. They read :

∂ū

∂t
+ ū

∂ū

∂x
+ v̄

∂ū

∂y
+ w̄

∂ū

∂z
+

∂u′u′

∂x
+

∂u′v′

∂y
+

∂u′w′

∂z
= − 1

ρ0

∂p̄

∂x
− fx (2.7)

∂v̄

∂t
+ ū

∂v̄

∂x
+ v̄

∂v̄

∂y
+ w̄

∂v̄

∂z
+

∂v′u′

∂x
+

∂v′v′

∂y
+

∂v′w′

∂z
= − 1

ρ0

∂p̄

∂y
− fy (2.8)

∂w̄

∂t
+ ū

∂w̄

∂x
+ v̄

∂w̄

∂y
+ w̄

∂w̄

∂z
+

∂w′u′

∂x
+

∂w′v′

∂y
+

∂w′w′

∂z
= − 1

ρ0

∂p̄

∂z
− fz −

ρ

ρ0
g (2.9)
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The products of the fluctuating velocity components (u′u′, u′v′ etc.) are called
Reynolds stresses and they are responsible for a loss of momentum in the mean
flow direction. These stresses are much larger than the viscous stresses which have
been neglected for this reason.

Furthermore, according to the Boussinesq hypothesis (eddy viscosity concept),
Reynolds stresses, like viscous stresses, depend on the deformation of the mean
flow. Thus, the Reynolds stresses can be modeled as

u′u′ = −νt(
∂ū

∂x
+

∂ū

∂x
) (2.10)

u′v′ = −νt(
∂v̄

∂x
+

∂ū

∂y
) (2.11)

u′w′ = −νt(
∂ū

∂z
+

∂w̄

∂x
) (2.12)

where νt is the eddy viscosity and is determined with a suitable closure problem
for the turbulence modeling.

The shallow water assumption implies that the flow satisfies certain character-
istic relations (Jin, 1993). These relations are the following :

1. The characteristic horizontal length scale is much larger than the character-
istic vertical length scale.

2. The characteristic vertical velocity is small in comparison with the charac-
teristic horizontal velocity

Under this assumption, the difference between the horizontal and the vertical
length scale justifies a distinction between a horizontal (νH

t ) and a vertical (νV
t )

eddy viscosity. Also, all the terms except the pressure derivative and the gravity
term are small, so they can be neglected. The momentum equation in the vertical
direction reduces to the hydrostatic pressure distribution:

∂p̄

∂z
= −ρg (2.13)

i.e. by integrating

p(x, y, z, t) = g

∫ ζ

z

ρdz′ + pα (2.14)

where ζ = ζ(x, y, z, t) is the free surface level against the reference plane z = 0
and pα is the atmospheric pressure. Substituting this result in the pressure term
of equation (2.7) and using Leibniz integral rule 2 , yields

2The Leibniz integral rule:

∂

∂x

∫ b(x)

α(x)

ϕ(x, y)dy =

∫ b(x)

α(x)

∂

∂x
ϕ(x, y)dy + ϕ(x, b)

∂b

∂x
− ϕ(x, α)

∂α

∂x
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− 1

ρ0

∂p̄

∂x
= −ρg

ρ0

∂ζ

∂x
− g

ρ0

∫ ζ

z

∂p

∂x
dz′ − 1

ρ0

∂pα
∂x

(2.15)

The horizontal pressure gradient is described by differences of the water level ζ
through the barotropic term (gradient of the free surface level) and by the density
differences in horizontal direction through the baroclinic term (second term). The
last term describes the contribution of the atmospheric pressure.

If we consider ρ = ρ0 (constant), then (2.14) reads as p̄ (x, y, z, t) = ρg(ζ(x, y, z, t)+
pα and for the pressure terms of (2.7) and (2.8) we have

− 1

ρ0

∂p̄

∂x
= g

∂ζ

∂x
+

1

ρ0

∂pα
∂x

(2.16)

and
− 1

ρ0

∂p̄

∂y
= g

∂ζ

∂y
+

1

ρ0

∂pα
∂y

(2.17)

respectively.
In large bodies of water (eg coastal waters,estuaries), universal forces must be

included in addition to the force of gravity and the Coriolis force that expresses
the effect of the earth′s rotation. Considering the x,y axes of the Cartesian coor-
dinate system horizontally and the z vertical axis upwards, the components of the
universal forces fx, fy, fz are given by the following relationships:

fx = fv, fy = −fu, fz = −g

where f = 2Ω sinϕ is the Coriolis force with Ω to represent the angular velocity
of the earth and ϕ the latitude.

Considering the above assumptions, the density and the atmospheric pressure
to be constant and dropping the overbar, equations (2.7) and (2.8) are, respec-
tively, transformed into:

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
+ w

∂u

∂z
=

− g
∂ζ

∂x
+ fv + 2

∂

(
νH
t

∂u

∂x

)
∂x

+

∂

(
νH
t

(
∂u

∂y
+

∂v

∂x

))
∂y

+

∂

(
νV
t

∂u

∂z

)
∂z

(2.18)

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
+ w

∂v

∂z
=

− g
∂ζ

∂y
− fu+

∂

(
νH
t

(
∂u

∂y
+

∂v

∂x

))
∂x

+ 2

∂

(
νH
t

∂v

∂y

)
∂y

++

∂

(
νV
t

∂v

∂z

)
∂z

(2.19)
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The above equations together with the incompressible continuity equation

∂u

∂x
+

∂v

∂y
+

∂w

∂z
= 0 (2.20)

are the so-called Shallow Water Equations.

In order to obtain the third equation that is needed for calculating the four un-
knowns (u, v, w, ζ), the continuity equation is integrated along the vertical axis:

ω(x, y, ζ, t)− ω(z, y, d, t) = −
∫ ζ

−d

∂u

∂x
dz −

∫ ζ

−d

∂v

∂y
dz (2.21)

where d = d(x, y) is the water depth below the reference plane z = 0. For the
water level (z = ζ(x, y, t)) and for the bottom (z = −d(x, y)) respectively,

ω =
Dζ

Dt
=

ζ

∂t
+ u

ζ

∂x
+ v

ζ

∂y
(2.22)

ω = −u
∂d

∂x
− v

d

∂y
(2.23)

We apply the Leibniz integral rule:

−
∫ ζ

−d

∂u

∂x
dz = −∂u

∂x

∫ ζ

−d

udz + u
ζ

∂x
+ u

∂d

∂x

and
−
∫ ζ

−d

∂v

∂y
dz = −∂v

∂y

∫ ζ

−d

vdz + v
ζ

∂y
+ v

∂d

∂y
(2.24)

(2.21) yields:
∂ζ

∂t
= −∂u

∂x

∫ ζ

−d

udz − ∂v

∂y

∫ ζ

−d

vdz (2.25)

Defining depth-averaged velocities as ū =
1

H

∫ ζ

−d
udz and v̄ =

1

H

∫ ζ

−d
vdz respec-

tively, where H = H(x, y, t) = ζ + d is the water depth.
Finally, we can use our boundary conditions to get the rid of the boundary terms.
Thus, from the equation (2.25),the depth averaged continuity equation is

∂ζ

∂t
+

∂Hū

∂x
+

∂Hv̄

∂y
= 0 (2.26)

The hydrodynamic equations are solved on a Cartesian, rectangular grid. In 3D
simulations, a boundary fitted (σ- coordinate) approach is used for the vertical
grid direction.

The σ−coordinate system is a boundary fitted coordinate system that follows
the free surface and the bottom topography. Such a coordinate system allows for
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non - uniformly distributed grid lines on the computational domain, especially
near the bottom, where a proper forecasting of the sediment transport requires
the grid lines to be dense and therefore to increase the resolution.

In the following, the complex physical domain for the shallow water equations
2.18, 2.19, 2.20 and 2.26 is transformed to a rectangular computational domain
by introducing the σ-coordinates system

x̃ = x, ỹ = y, σ =
z − ζ

d+ ζ
=

z − ζ

H
, t̃ = t (2.27)

where:

z = the vertical coordinate in physical space

ζ = the free surface elevation above the reference plane (z=0)

d = the depth below the reference plane

H = the total water depth

Figure 2.4: Definition of water level (ζ), depth(h) and total depth (H), taken from
manual delft3D-Flow.

At the bottom σ = 1 and at the free surface σ = 0. The flow domain of a 3D
shallow water model in the horizontal plane consists of a restricted (limited) area
composed of open and closed (land) boundaries and in the vertical of a number
layers, which is the same at every location. For each layer, a system of equations
is solved.
The partial derivatives are expressed in σ- coordinates by the chain rule, intro-
ducing additional terms (Stelling et. al., 1994).

The time derivative in σ-coordinates reads:
∂

∂t
=

∂

∂t̃
+

∂σ

∂t̃

∂

∂σ

The spatial derivatives in the horizontal direction are:

∂

∂x
=

∂

∂x̃
+

∂σ

∂x̃

∂

∂σ
,

∂

∂y
=

∂

∂ỹ
+

∂σ

∂ỹ

∂

∂σ
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In the vertical direction are:
∂

∂z
=

1

H

∂

∂σ

Equation (2.13) in σ- coordinates reads:

∂p̃

∂σ
= −ρgH (2.28)

After integrating along the vertical axis we obtain the hydrostatic pressure :

p̃ = gH

∫ 0

σ

ρ(x, y, σ, t)dσ′ + pα (2.29)

The horizontal velocities u and v remain strictly horizontal after the transforma-
tion

ũ = u, ṽ = v

Considering that, the vertical velocity becomes

ω̃ := H
Dσ

Dt̃

ω̃ = H

[
∂

∂t

(
z − ζ

H

)
+ u

∂

∂x

(
z − ζ

H

)
+ v

∂

∂y

(
z − ζ

H

)]
ω̃ = ω −

(
∂ζ

∂t
+ u

∂ζ

∂x
+ v

∂ζ

∂y

)
− σ

(
∂H

∂t
+ u

∂H

∂x
+ v

∂H

∂y

)
(2.30)

From this, the (comparatively small) vertical velocity w can be expressed in the
(x,y,z) coordinates, in terms of the horizontal velocities, water depths, water levels
and vertical σ- velocities, as

ω = ω̃ + u

(
σ
∂H

∂x
+

∂ζ

∂x

)
+ v

(
σ
∂H

∂y
+

∂ζ

∂y

)
+

(
σ
∂H

∂t
+

∂ζ

∂t

)
After substituting (2.30) into the continuity equation (2.20), assuming that d is
not time dependent and noting that H and ζ are not σ-dependent, whereas u and
v are, the continuity equation in transformed coordinates is obtained:

∂ζ

∂t̃
+

∂Hũ

∂x̃
+

∂Hṽ

∂ỹ
+

∂ω

∂σ
= 0 (2.31)

The vertical velocities can be computed by integrating equation 2.31 from the
bottom to the surface (−1 ≤ σ ≤ 0) and using Leibniz′ integral rule:

∂ζ

∂t̃
+

∂Hũ

∂x̃
+

∂Hṽ

∂ỹ
= 0 (2.32)

where ū and v̄ are depth-averaged velocities defined by ū =
∫ 0

−1
ũdσ and v̄ =∫ 0

−1
ṽdσ . Note that, this equation is equal to (2.26) in the previous section, be-

cause it is integrated along the vertical axis and therefore invariant under the
σ-transformation. Also, the definitions of ū and v̄ are equivalent to the definitions
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in the previous section.

After transformation of (2.18) and (2.19) to σ−coordinates, the momentum
equations in x- and y-direction of the shallow-water equations, omitting the over-
bar, are given by:

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
+

w

H

∂u

∂z
=

− 1

ρ0

(
∂p

∂x
+

∂σ

∂x

∂p

∂σ

)
+ fv + Fx +Mx +

1

H2

∂

∂σ

(
νV
t

(
∂u

∂σ

))
(2.33)

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
+

w

H

∂v

∂z
=

− 1

ρ0

(
∂p

∂y
+

∂σ

∂y

∂p

∂σ

)
+ fu+ Fy +My +

1

H2

∂

∂σ

(
νV
t

(
∂u

∂σ

))
(2.34)

∂ζ

∂t̃
+

∂Hũ

∂x̃
+

∂Hṽ

∂ỹ
+

∂ω

∂σ
= 0 (2.35)

The terms Mx and My are introduced to represent the contributions due to
external sources or sinks of momentum (external forces by hydraulic structures,
discharge or withdrawal of water,wave stresses, etc.).

The terms Fx and Fy represent the horizontal viscosity terms and they are
given by:

Fx = νH

(
∂2u

∂x2
+

∂2u

∂y2

)
and Fy = νH

(
∂2u

∂x2
+

∂2u

∂y2

)
(2.36)

where the horizontal eddy viscosity has been assumed to be a constant (Lesser et.
al., 2004).

2.3 The Delft3D - WAVE model
The computation of waves and wave-induced effects is the domain of the wave
model (Delft3D-WAVE). Delft3D -WAVE supports currently a third generation
wave model, namely the SWAN model , [4], that explicitly represents all relevant
physics for the development of the sea state in two dimensions (Ris, 1997).

The SWAN model is developed to simulate waves in the near-shore zone. This
zone extends from the coast to several tens of kilometers into the sea. Using
available input data (wind,current, water velocity), SWAN computes random,
short - crested wind-generated waves in coastal regions and inland waters.The basic
scientific philosophy of SWAN is identical to that of WAM cycle 3, [26]. WAM cycle
3 is presented that integrates the basic transport equation describing the evolution
of a two-dimensional ocean wave spectrum without additional ad hoe assumptions
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regarding the spectral shape. The three source functions describing the wind
input, nonlinear transfer, and white-capping dissipation are prescribed explicitly.
An additional bottom dissipation source function and refraction terms are included
in the finite-depth version of the model. The model was calibrated against fetch-
limited wave growth data. Only two tuning parameters am introduced in the
white-capping dissipation source function. SWAN is also a third-generation wave
model and it uses the same formulations for the source terms.

2.3.1 Wave height and period
In the description of wind waves it is common to define the wave height H as the
vertical distance between the highest and the lowest surface elevation (crest to
trough) in a wave. The mean wave height H̄ is defined as

H̄ =
1

N

N∑
i=1

Hi (2.37)

where Hi is the sequence of waves in a record. Sometimes, a quadratic weighted
averaged value is used to define the root - mean - square wave height Hrms:

Hrms =
1

N

(
N∑
i=1

H2
i

)1

2
(2.38)

which is relevant for energy-related projects because the wave energy is propor-
tional to the square of the wave height.

These characteristic wave heights H̄ and Hrms they are not very often used
because they deviate from visual estimated wave heights. Instead, another wave
height, called the significant wave height Hs is used. It is defined as the mean of
the highest one - third of waves in a wave record:

Hs = H1/3 =
1

N/3

N/3∑
j=1

Hj (2.39)

where j is the rank number of the sorted wave heights (j=1 the highest wave, j=2
the second -highest, etc.).

The period T of a wave is defined as the time interval between two crests/troughs
or two downward/upward zero-crossings. If the wave period is defined as the zero-
crossings, it is called T0 and the mean wave period T̄ is defined as:

T̄ =
1

N

N∑
i=1

Ho,i (2.40)

Mostly, only the significant wave period is used:

Ts = T1/3 =
1

N/3

N/3∑
j=1

To,j (2.41)
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2.3.2 Spectral description of wind waves
To specify fully the sea state,velocity information should be given in addition
to the height of the sea surface everywhere. Moreover, to determine the time
evolution one must specify the external conditions, such as wind and tides. Due
to the fact that it is impossible to specify the initial state in complete detail, we
use a statistical description, in which the probability of finding a particular sea
state is considered. Generally, this involves knowledge of the joint probability
function P(η1, η2, ..., ηn) where

P (η1, η2, ..., ηn)dη1dη2 ...dηn (2.42)

is the probability that the surface displacements ηi, i = 1, ..., n (or their derivatives)
at the points (xi, ti) have values between ηi and ηi + dηi .

The probability distribution of the sea surface is nearly Gaussian, thus a good
approximate description is provided by the covariance function

< η(x1, t1)η(x2, t2) >, (2.43)

the fourier transform of which is known as the wave spectrum.

The wave spectrum also has a physical meaning, because it can be shown to be
the density function specifying the distribution of energy over wave components
with different wave number vectors and frequencies.Its integral over all wave com-
ponents is proportional to the total wave energy per unit area.

In this chapter, three-dimensional space coordinates will be denoted by (x1, x2, x3),
the velocity three-vector by (u1, u2, u3), pressure by p(x1, x2, x3, t), time by t and
density by p(x1, x2, x3, t). When it is convenient the vertical coordinate x3 and
the vertical velocity component u3 will also be denoted by z and w,respectively.

An approximation to simplify the equations of air motion is to take the velocity
in water as irrotational, so that the motion can be described by potential flow. In
this case one introduces the velocity potential ϕ(x1, x2, z, t) with the property :

ui = ϕxi
, i = 1, 2, 3 (2.44)

where we use the short hand notation for differentiation. The full nonlinear equa-
tions then read

ϕx1x1 + ϕx2x2 + ϕx3x3 = 0, z < η(x1, x2, t)

ηt + ϕx1ηx1
+ ϕx2ηx2

= ϕz,

ϕt +
1

2
[ϕ2

x1
+ ϕ2

x2
+ ϕ2

z] + gη = 0

}
z = η(x1, x2, t) (2.45)

The energy of the fluid in motion is as usual the sum of potential energy and
kinetic energy.
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For E the energy density [J\m2] one obtains in the potential flow description

E =
1

2
gρη2 +

∫ η

−∞

1

2
ρ[ϕ2

x1
+ ϕ2

x2
+ ϕ2

z]dz (2.46)

where ρ = ρw, the density of water,g the acceleration due to gravity and η the
interface between air and water. The total energy is given by:

Etot =

∫ ∫
Edx1dx2 (2.47)

The x-integrals extend over the total basin considered.

In any case,we can also introduce Ẽ the energy per unit area, by dividing (2.47)
by the total surface. For a basin of dimension L x L

Ẽ =
1

L2

∫ ∫
Edx1dx2 (2.48)

It is often convenient to represent η by a discrete Fourier representation. One
way of obtaining such a representation is to subdivide the kx1- and kx2-axes into
equidistant intervals with the help of a bandwidth ∆k:

η(x, t) =
∑
k

ηκ + c.c. =
∑
k

α̃κe
ikx + c.c. =

∑
k

ακe
i(kx−ωt) + c.c., (2.49)

with k = (±n∆k,±m∆k), n,m = 1, ..., Nmax

and αk =

∫ k+
1

2
∆k

k−
1

2
∆k

η̂(k)dk

The general discussion of propagation in nonhomogeneous media is more easily
performed within the frame of a WKB approach 3. In this approach one considers
a superposition of WKB modes of the form :

η(x, t) =
∑
n

αn(x, t)e
i(knx−ωnt) + c.c. (2.50)

where η is the sea surface elevation, αn the random phase of the nth wave compo-
nent and ωn the radian frequency of the nth wave component.

The energy distribution and the wave spectrum
Substituting (2.49) in (2.48) and (2.47), the average energy per unit area can be
obtained. To this end one must express ϕ in terms of η, so that each term in
(2.46) can be computed separately. In doing this one finds that the potential

3Is a method for finding approximate solutions to linear differential equations with spatially
varying coefficients, in quantum mechanics
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energy density and the kinetic energy density are not,in general, equal at a given
time. This disparity occurs because there may be standing waves, for which there
is a periodic exchange of energy between both terms of (2.46). With and without
standing waves, the following result is obtained for the desired energy density :

Ẽ = ρg
∑
k

Fk (2.51)

where
Fk = 2 | αk |2 (2.52)

which apart from the factor ρg, is the mean energy per Fourier mode.

We can re-express the (2.51) eq. as:

Ẽ = ρg

∫
F (k)dk (2.53)

The quantity F(k) as well as its discrete counterpart Fk is known as the wave
(energy) spectrum. It is of crucial and central importance in the description of
ocean waves. It should be noted how much simpler equation (1.93) is than the
original equation (2.46). This is because we linearized the equations and because
we expanded in normal modes. The energy as given by (1.93) does not depend
on time, simply because the αk do not. Now,we introduce a quantity Nk which,
apart from a factor ρg, is the wave action density per Fourier mode

Nk =
2 | αk |2

σk

(2.54)

with σk the relative frequency of the kth wave component. Comparing (2.52) and
(2.54) we have :

Nk =
Fk

σ
(2.55)

It is instructive to calculate the mean wave energy ¡E ¿, from the expression
given for E given in (2.46), as an ensemble average. In this case the average
potential and kinetic energy are equal, thus we have the simple relation :

< E >= ρg < η2 > (2.56)

and
< η2 >=

∑
k

Fk (2.57)

which leads to
< E >= ρg

∑
k

Fk (2.58)

Comparison with (2.51) shows that the ensemble mean energy is identical with
the spatially averaged energy, as indeed it must be.
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Due to the irregular nature of wind, wind generated waves have irregular wave
heights and periods. As a result of this irregular nature, the sea surface is continu-
ally varying, which means that a deterministic approach to describe the sea surface
is not feasible. The surface elevation of waves in the ocean, at any location and
any time, can be seen as the superposition of a large number of harmonic waves of
different frequencies, each of which has been generated by turbulent wind in differ-
ent places and times. They are therefore statistically independent in their origin.
According to linear wave theory, they remain independent during their journey
across the ocean.All these regular wave fields propagate at different speeds so that
the appearance of the sea surface is constantly changing. Under these conditions,
the sea surface elevation on a time scale of one hundred characteristic wave periods
is sufficiently well described as a stationary, Gaussian process. The sea surface
elevation in one point as a function of time can be described as

η(t) =
∑
i

αi cos(σit+ αi) (2.59)

where η the sea surface elevation, αi the amplitude of the ith wave component, σi

the relative radian or circular frequency of the ith wave component in the presence
of the ambient current (equals the absolute radian frequency ω when no ambient
current is present). This is called the random-phase model.

In case that an ambient current is present, it is assumed that it is uniform with
respect to the vertical co-ordinate and the changes in the mean flow within a wave
length are so small that they affect only negligibly the dispersion relation. The
absolute radian frequency ω then equals the sum of the relative radian frequency
σ and the multiplication of the wave number and ambient current velocity vectors:

ω = σ + k⃗ · u⃗c (2.60)

which is the usual Doppler shift with u⃗c the current velocity and k⃗ the wave
number respectively. For linear waves, the relative frequency is given by

σ2 = gk tanh(kd) (2.61)

where g is the acceleration of gravity, k is the wave number and d is the water
depth.The presence of ambient currents may change the amplitude, frequency and
direction of an incoming wave.

In the field of ocean wave theory, it is conventional to define a spectrum E(f)
as:

E(f) = 2Ẽ(f) for f ≥ 0 and E(f) = 0 for f < 0 (2.62)

where Ẽ(f) is the variance density spectrum, which is the Fourier transform of
the auto-covariance function of the sea surface elevation, (Holthuijsen, 2007):

Ẽ(f) =

∫ +∞

0

C(τ)e−2πifτdτ
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with
C(τ) =< η(t)η(t+ τ) > (2.63)

where C(τ) is auto-covariance function, <> represents mathematical expectation
of random variable and η(t), η(t+τ) represent two random processes of sea surface
elevation, τ represents the time lag. As a result Ẽ(f) can be determined from a
time series measurement in a single point.

The description of water waves through the defined variance density spectrum
E(f) is called spectral description of water waves. It has been proved that the
variance of the sea surface elevation is given by

< η2 >= C(0) =

∫ +∞

0

E(f)df (2.64)

which indicates that the spectrum distributes the variance over frequencies. E(f)
should therefore be interpreted as a variance density. The dimensions of E(f) are
m2⧸Hz if the elevation is given in m and the frequencies in Hz. The variance
< η2 > is equal to the total energy Etot of the waves per unit surface area if
multiplied with a properly chosen coefficient:

Etot =
1

2
ρwg < η2 > (2.65)

The energy density as a function of frequency and direction is denoted as E(f, θ).
This spectrum distributes the wave energy over frequencies and directions. As the
total energy density at a frequency f is distributed in the direction θ as E(f, θ),
where the angle θ = (kx1 , kx2) with kx1 = sin θ and kx2 = cos θ it follows that the
frequency of energy density spectrum without directional information :

E(f) =

∫ 2π

0

E(f, θ)dθ (2.66)

Based on the energy density spectrum, the integral wave parameters mn can be
obtained. These parameters can be expressed in terms of the so-called n -th
moment of the energy density spectrum:

mn =

∫ ∞

0

fnE(f)df (2.67)

The zeroth moment is equal to the variance :

m0 =

∫ ∞

0

E(f)df =< η2 > (2.68)

Thus, the variance of the sea surface elevation is given by m0 =< η >2.

The knowledge of the wave spectrum, for linear waves, allows the reconstruc-
tion of the full probability structure of the sea surface. Thus, the significant wave
height:

Hs = 4m
1
2
0 (2.69)
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where m
1
2
0 plays the role of characteristic length scale.

Since the spectrum can be measured, the significant wave height can be deter-
mined by integration of the observed wave spectrum.

Some wave periods:

Tm01 =
m0

m1

, Tm02 =

√
m0

m1

, Tm−10 =
m−1

m0

(2.70)

In SWAN, the energy density spectrum E(σ, θ) is generally used. On a larger
scale the spectral energy density function E(σ, θ) becomes a function of space and
time and wave dynamics should be considered to determine the evolution of the
spectrum in space and time. For brevity, the notation E(σ, θ) will still be used.

2.3.3 Propagation in an inhomogeneous medium
In the case of an inhomogeneous medium (varying depth and varying currents) it
is possible to derive a relatively simple expression for the time evolution of α:

∂tN +∇x[νDN ] = 0, (2.71)

with
N(x, t) =

2|α(x, t)|2

σ

and
νD = ∇kΩ = U + cg = ∇kσ(k(x, t)),

where the subscript k now denotes differentiation with respect to wave number.
The equation (2.71) has the general form of a conservation law,in which the local
rate of change of a density is determined by a flux of that density. It implies that
the integral over all space of N is conserved in time.

Willebrand (1975) noted that the conservation of wave action, (1.63), holds
for every wave component separately:

∂

∂t
Nn +∇x · [∇kωnNn] = 0, Nn = 2

| αn |2

σn

(2.72)

and in addition,
ωn(x, t) = Ω(kn), Ω(k) = σ(k) + k · U, (2.73)

∂

∂t
kn +∇xωn = 0. (2.74)

where wave action density defined as Nn(x, t) =
Fn(x, t)

σn

Moreover, in a continuous
form the density of k-modes is a function of time and this leads to an extra term
involving ∇xΩ in the equation for N(k, x, t) :

∂N(k, x, t)

∂t
+ (∇kΩ) · ∇xN(k, x, t)− (∇xΩ) · ∇kN(k, x, t) = 0. (2.75)
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Explicitly, in terms of the wave spectrum F, N(k, x, t) =
F (k, x, t)

σ(k)
, we have :

{
∂

∂t
+ (∇kΩ) · ∇x − (∇xΩ) · ∇k

}(
F (k, x, t)

σ

)
= 0. (2.76)

Another useful form for this equation is obtained by using the trivial identity :

∇x · (∇kΩ)−∇k · (∇xΩ) = 0. (2.77)

This leads to the ′flux form′

∂

∂t

(
F

σ

)
+∇x ·

[
(cg + U)

(
F

σ

)]
−∇k ·

[
∇xΩ

(
F

σ

)]
= 0. (2.78)

This equation has the form of a conservation law. It also holds in other coordi-
nates, for example in terms of ω, θ. In particular, it implies conservation of the
total wave action defined in (1.160).

The action balance equation is now obtained from (equations (1.173) and

(1.185)). The general result for the evolution of the wave action density F (k, x, t)

σ(k, x)
reads : {

∂

∂t
+ (cg + U) · ∂

∂x
− (∇xΩ) ·

∂

∂k

}(
F

σ

)
=
∑
ℓ

S
′

ℓ(F ;u), (2.79)

where the summation is over the different perturbations, we define S
′
=

S

σ
and

u refers to ′environmental parameters′, such as the surface wind speed and direc-
tion. The group velocity cg the group velocity, U is the surface current and Ω
,Ω(k) = σ(k) + k · U . The equation describes the evolution of the wave variance
spectrum F (k, x, t), which characterizes the statistical properties of the sea sur-
face. The left hand side describes propagation through a nonhomogeneous medium
(currents, variable depth), which conserves total wave action as an adiabatic in-
variant. The right hand side consists of source terms describing wind input (Sin),
sinks (whitecapping dissipation Sds+ bottom terms) and a nonlinear interaction
term Snl.

Equation (2.79) is also known as the radiative transfer equation, the transport
equation or the kinetic equation. The name Boltzmann equation is used when
one considers the sole effect of four wave interactions . In that case the equation
describes conservative interactions (′elastic collisions′) between wave packets and
is analogous to the equation describing the distribution of momentum over the
molecules in a gas.

In deep water, without currents, (2.79) reduces to the simpler form{
∂

∂t
+ cg ·

∂

∂x

}
F (k, x, t) =

∑
ℓ

Sℓ(F ;u) = Sin + Snl + Sds (2.80)
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or equivalently
DF

Dt
= Sin + Snl + Sds, (2.81)

where D

Dt
denotes differentiation when moving with the group velocity. In this

form the equation is also known as the energy balance equation, since F is
directly proportional to the energy spectrum.

2.3.4 Action and Energy balance equation
The main goal of the SWAN is to solve the spectral action balance equation with-
out any priori restrictions on the spectrum for the evolution of wave growth. This
equation represents the effects of spatial propagation, refraction, shoaling, gener-
ation, dissipation and nonlinear wave-wave interactions.

Action balance equation

Related wave prediction models are typically based in the energy balance equation
in terms of absolute radian frequency ω and density energy E(ω, θ). However, in
the case that ambient currents are present, the energy density E(ω, θ) is writ-
ten in terms of the relative frequency E(σ, θ). On the other hand, the SWAN
model is based on the spectral action balance equation in terms of relative radian
frequency σ because unlike these other models SWAN accounts for wave-current
interactions.The action density N is the contribution of waves in a certain direction
and with a certain frequency to the total wave action. Usually, wave models deter-
mine the evolution of action density N(x⃗, t;σ, θ) which is a function of space x⃗ and
time t (on a scale large compared with wave length and period) and of spectral

coordinates (wave frequency and direction)and is defined as N(σ, θ) =
E(σ, θ)

σ
.

In contrast to wave energy, wave action is conserved in the presence of currents
(Whitham, 1974 ;Svendsen, 2006). Wave action is said to be adiabatic invariant.
It assumed that the ambient current is uniform with respect to the vertical co-
ordinate and is denoted as U⃗ .

The evolution of the action density N at a single point in space (x⃗;σ, θ) and
time t is governed by the action balance equation, which reads as (e.g.,Mei,1983;
Komen et al., 1994):

∂N(x⃗, t;σ, θ)

∂t
+∇x⃗ · [(c⃗g + U⃗)N(x⃗, t;σ, θ)]︸ ︷︷ ︸

1

+
∂cσN(x⃗, t;σ, θ)

∂σ︸ ︷︷ ︸
2

+
∂cθN(x⃗, t;σ, θ)

∂θ︸ ︷︷ ︸
3

=
Stot

σ

(2.82)
The left-hand side is the kinematic part of this equation. The term 1 denotes

the propagation of wave energy in two-dimensional geographical x⃗−space, includ-
ing wave shoaling, with the group velocity c⃗g =

∂σ

∂k⃗
following from the dispersion
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relation σ2 = g|⃗k| tanh(|⃗k|d) where k⃗ is the wave number vector and d the water
depth. The term 2 represents the effect of shifting of the radian frequency due to
variations in depth and mean currents. The term 3 represents depth-induced and
current-induced refraction. The quantities cσ and cθ are the propagation velocities
in spectral space (σ, θ). The right-hand side contains Stot, which is the source or
sink term that represents all physical process which generate, dissipate, or redis-
tribute wave energy. They are defined for energy density E(σ, θ).

Equation(2.82) can be recasted in Cartesian or spherical co-ordinates. We use
Cartesian co-ordinates to express the spectral action balance equation for small
scale applications, as given by:

∂N(x, y, t;σ, θ)

∂t
+

∂cxN(x, y, t;σ, θ)

∂x
+

∂cyN(x, y, t;σ, θ)

∂y︸ ︷︷ ︸
1

+

∂cσN(x, y, t;σ, θ)

∂σ︸ ︷︷ ︸
2

+
∂cθN(x, y, t;σ, θ)

∂θ︸ ︷︷ ︸
3

=
Stot(x, y, t;σ, θ)

σ
(2.83)

where cx = cg,x+Ux, cy = cg,y +Uy.Moreover,the term 1 is the shoaling (depth),
the term 2 is the frequency shift(current) and the term 3 is the refraction(depth,current)
and diffraction (depth,obstacles).

When an ambient current is absent, equation(2.82) simplifies to the aforemen-
tioned energy balance equation:

∂E(x, y, t;ω, θ)

∂t
+
∂cxE(x, y, t;ω, θ)

∂x
+
∂cyE(x, y, t;ω, θ)

∂y
+
∂cθE(x, y, t;ω, θ)

∂θ
= S(x, y, t;ω, θ)

(2.84)

where cx = cg,x + Ux, cy = cg,y + Uy and ω is absolute radian frequency,
E(ω, θ) is the energy density spectrum and S(ω, θ) is the source term as described
above.

For large-scale computations such as applications with oceanic waters or at shelf
sea, SWAN offers the spectral action balance equation formulated in terms of
spherical coordinates:

∂Ñ(λ, φ;σ, θ)

∂t
+

∂cλÑ(λ, φ;σ, θ)

∂λ
+

∂cφÑ(λ, φ;σ, θ)

∂φ
+

∂cσÑ(λ, φ;σ, θ̃)

∂σ
+

∂cθÑ(λ, φ;σ, θ)

∂θ
=

Stot

σ
(2.85)
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where action density Ñ is with respect to longitude λ and latitude φ .Note
that θ is the wave direction taken counterclockwise from geographic East. The
propagation velocities are reformulated as follows.On a sphere, we have

dx = R cosφdλ (2.86)

dy = Rdφ

with R the radius of the earth. The propagation velocities in geographic space are
then given by

dλ

dt
= cλ =

1

R cosφ

[
1

2

(
1 +

2|⃗k|d
sinh(2|⃗k|d)

)
σ|⃗k| cos θ

|⃗k|2
+ uλ

]
(2.87)

dφ

dt
= cφ =

1

R

[
1

2

(
1 +

2|⃗k|d
sinh(2|⃗k|d)

)
σ|⃗k| sin θ

|⃗k|2
+ uφ

]
with uλ and uφ the ambient currents in longitude and latitude direction, respec-
tively. The propagation velocity in σ−space remain unchanged. To rewrite the
propagation velocity c̃θ in terms of spherical co-ordinates, we use the so-called
Clairaut′s equation that states that on any geodesic, the following expression holds:

R cosφ cos θ = constant (2.88)

Differentiation of Eq. (2.88) with respect to a space co-ordinate s in wave direction
gives

−R sinφ cos θ
dφ

ds
−R cosφ sin θ

dθ

ds
= 0 (2.89)

Since, dy = ds sin θ, we have dφ
ds

= sin θ
R

. Substitution into Eq. (2.89) and using
ds = (cx cos θ + cy sin θ)dt yields

dθ

dt
= −cx cos θ + cy sin θ

R
cos θ tanφ (2.90)

This term (2.90) accounts for the change of propagation direction relative to true
North when traveling along a great circle. This holds for deep water and without
currents. Hence,

c̃θ = cθ −
cx cos θ + cy sin θ

R
cos θ tanφ (2.91)

In Eq.(2.86), Ñ is related to the action density N in a local Cartesian frame (x, y)
through Ñdσdθdφdλ = Ndσdθdxdy, or Ñ = NR2 cosφ. Substitution into (2.86)
yields:

∂N

∂t
+

∂cλN

∂λ
+ cos−1 ∂cφ cosφN

∂φ
+

∂cσN

∂σ
+

∂cθN

∂θ
=

Stot

σ
(2.92)

with longitude λ and latitude φ.
Using the proper expressions for the propagation speeds cg and cθ and cσ in

the action balance equation, which are derived from the linear theory (Holthui-
jsen, 2007; Whitham, 1974;Mei,1983) the effects of wave propagation (shoaling,
refraction and frequency shifting ; diffraction is neglected here) are accounted for:
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Dx⃗

dt
= (cx, cy) = c⃗g + u⃗ =

1

2

(
1 +

2|k|d
sinh(2|k|d)

)
σk⃗

|k|2
+ u⃗ (2.93)

Dσ

dt
= cσ =

∂σ

∂d

(
∂d

∂t
+ u⃗ · ∇x⃗d

)
− cgk⃗ · ∂u⃗

∂s

Dθ

dt
= cθ = −1

k

(
∂σ

∂d

∂d

∂m
+ k⃗ · ∂u⃗

∂m

)
where cx, cy are the propagation velocities of wave energy in spatial x−,y−space,cσ
and cθ are the propagation velocities of wave energy in spectral space σ−, θ−space,
d is water depth, s is the space coordinate in the wave propagation direction of θ
and m is a co-ordinate perpendicular to s. Also, k⃗ = (kx, ky) = (|⃗k| cos θ, |⃗k| sin θ)
and the current velocity u⃗ = (ux, uy)

Furthermore, the operator D

dt
denotes the total derivative along a spatial path

of energy propagation, and is defined as

D

dt
=

∂

∂t
+ (c⃗g + u⃗) · ∇x⃗ (2.94)

with the group velocity c⃗g =
∂σ

∂k⃗
following from the dispersion relation σ2 =

g|⃗k| tanh(|⃗k|d) where k⃗ is the wave number vector and d the water depth.

The right-hand side of the equation (2.82) contains source terms, i.e. terms
which model the generation and dissipation of wave energy. In contrast with the
propagation terms most of the source terms are empirical in nature and contain
empirical ”constants”. SWAN has default values for almost all of these constants;
these values are mostly based on literature, and have been obtained by studying
laboratory experiments or field observations. Due to the empirical nature of parts
of the model a verification is needed for every new application of the model.

The total sum of source and sink terms Stot, in 3rd generation formulations are
divided into six processes :

Stot = Sin(σ, θ)+Snl4(σ, θ)+Swcap(σ, θ)+Snl3(σ, θ)+Sbr(σ, θ)+Sbot(σ, θ) (2.95)

where

Sin wave growth by the wind

Snl4 nonlinear quadruplets wave-wave interactions

Snl3 nonlinear triads wave-wave interactions

Swcap dissipation due to white-capping

Sbr dissipation due to depth-induced wave breaking

Sbot dissipation due to bottom friction
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For more details about the modeled processes and the numerical methods used
in SWAN, the reader is refered to (Komen et al., 1994) and (Wave, User manual).

For a full wave-current interaction, the currents from Delft3D-FLOW are used
in Delft3D-WAVE (current refraction). The procedure is known as the coupling
of the two models. The interaction between waves and currents is implemented
by running the wave model every N flow time steps. The wave module must run
before the flow module. A communication file is created that contains the results
of the wave simulation (rms wave height, peak period, wave direction,mass fluxes
etc). The flow module can read then the wave results and include them in the
flow simulation. The reason that the wave model is called more than once is that
the computed wave model must be updated in order to account for the changed
water depths and flow properties. At each call to the wave module, the latest bed
and water elevations and current velocities are transferred from the flow module.

2.4 Boundary conditions
To get a well-posed mathematical problem with a unique solution, a set of initial
and boundary conditions for water levels and horizontal velocities must be spec-
ified. The contour of the model domain consists of parts along land-water lines
(coast lines) which are called closed boundaries and parts across the flow field
which are called open boundaries. Closed boundaries are natural boundaries. The
velocities normal to a closed boundary are set to zero.Open boundaries are always
artificial ”water-water” boundaries (Flow, User Manual).

2.4.1 Vertical boundary conditions

Kinematic Boundary Conditions:
In the σ coordinate system, the free surface (σ=0, or z=ζ) and the bottom (σ =
−1, or z = −d) are σ-coordinate surfaces. The impermeability of the surface and
the bottom is taken into account by prescribing the following kinematic conditions:

ω|σ=−1 = 0 and ω|σ=0 = 0 (2.96)

where ω is the vertical velocity relative to the σ-plane.

Bed Boundary Condition:
At the seabed, the boundary conditions for the momentum equations are:

vV
H

∂u

∂σ

∣∣∣∣σ=−1 =
τbx
ρ0

(2.97)

vV
H

∂v

∂σ

∣∣∣∣σ=−1 =
τby
ρ0

(2.98)
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where τbx and τby are the components of the bed stress in x and y direction, re-
spectively, that include the effects of wave - current interaction. Their formulation
for the combination of flow and wave will be discussed later.

The bed shear stress in 3D is related to the current just above the bed:

τ⃗b3D =
gρ0u⃗b | u⃗b |

C2
3D

(2.99)

where | u⃗b | is the magnitude of the horizontal velocity in the first layer just above
the bed and C3D is the Chezy coefficient (Delft3D - Flow, User Manual(2014)).

Surface Boundary Condition:
At the free surface the boundary conditions for the momentum equations are:

vV
H

∂u

∂σ

∣∣∣∣σ=0 =
| τ⃗s |
ρ0

cos(θ) (2.100)

vV
H

∂v

∂σ

∣∣∣∣σ=0 =
| τ⃗s |
ρ0

sin(θ) (2.101)

where θ is the angle between the wind stress vector and the local direction of
the grid line y is constant. Without wind, the stress at the surface is zero. The
magnitude of the wind shear - stress is defined as:

| τ⃗s |= ρ0u⃗∗s|u⃗∗s| (2.102)

where u∗s is the friction velocity at the free surface and it can be determined by
the following widely used quadratic expression:

| τ⃗s |= ραCdU10
2 (2.103)

where:

ρα the air density

U10 the wind speed 10 meter above the free surface

Cd the wind drag coefficient, depending on U10

2.4.2 Open boundary conditions
Open boundaries are artificial, water-water boundaries. They are situated as far
away as possible from the area of interest and they are introduced to obtain a
limited computational area and so to reduce the computational effort.

In general, the boundary conditions are specified in a limited number of bound-
ary points.Linear interpolation is used to generate the boundary conditions at the
intermediate points along the boundary. This interpolation can generate physical
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unrealistic flows in the region close to the open boundary. The boundary condi-
tions should allow these disturbances to propagate out of the area. Alternatively,
the number of points where the boundary condition is specified should be extended.

For the needs of this study, we follow (Roelvink et. al., 2004). According to
this paper, one main problem is the specification of suitable boundary conditions
at the open boundaries. This is due to a combination of processes acting on the
model domain, resulting in the development of a certain water level or velocity in
the cross - shore direction. For the boundary conditions to match this distribution
the solution has to be known beforehand, otherwise boundary disturbances will
develop.

In order to overcome this problem, (Roelvink et. al., 2004) suggest to let the
model determine the correct solution at the boundaries by imposing the along-
shore water level gradient (a so-called Neumann boundary condition) instead of
a fixed water level or velocity. In this case, it is assumed to be zero. Neumann
boundaries can only be applied on cross-shore boundaries in combination with
a water level boundary, ζ = Fζ(t), which is needed to make the solution of the
mathematical boundary value problem well- posed.

To reduce the reflections at the open boundary (Verboom and Slob, 1984; Ver-
boom and Segal,1986) derived a so-called zero and first order weakly reflecting
boundary condition based on the work of Engquist and Majda (1977, 1979). As-
suming zero flow along the boundary, the zero order boundary condition may also
be obtained using the so-called Riemann invariants for the linearised 1D equation
normal to the open boundary:

R = U ± 2
√
gH (2.104)

where U is the velocity in normal direction, g the acceleration due to gravity and
H the total water level.

The two Riemann invariants are two waves moving in opposite direction with
propagation speed R = U ±

√
gH. The sign is dependent on the direction of

propagation. At the open boundary, the incoming wave should be specified. We
restrict ourselves to the positive sign (left boundary). The linearised Riemann
invariant is given by:

U + 2
√

gH = U + 2
√

g(d+ ζ) ≈ U + 2
√

gd+ ζ

√
g

d
,

|ζ|
d

≪ 1. (2.105)

where d is the local depth, ζ is the free surface elevation and the sign is depend
on the U direction perpendicular to our boundary. The boundary condition which

should be specified by us is f(t) = U + ζ

√
g

d
, where the term 2

√
gd is computed

from the known depth-field and added in the computational part. It is assumed
that the reference plane is chosen such that the mean water level is zero.
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In the computational part, we distinguish the following type of boundary con-
ditions in this study (for simplicity only a description for the U-direction is given):

• Water level: ζ = Fζ(t) + δatm,

• Velocity (in normal direction):U = FU(t),

• Riemann invariant U ± ζ

√
g

d
= FR(t).

where δatm is the pressure and it will be prescribed bellow.

On water level boundaries, an input signal is prescribed that is consistent with
some average pressure. Usually the signal corresponds to Mean Sea Level. One
actually wants to prescribe an input signal corresponding to the local pressure
prescribed by the space varying meteo input. To this end, it is possible to specify
an average pressure (paverage) which should correspond to your input signal on the
open boundaries, which is then used to determine local pressure gradients that
need to be applied along the open boundaries to obtain an input signal that is
consistent with the local atmospheric pressure. The pressure must be specified in
N/m2.

δatm =
paverage − patm

ρg
(2.106)

where :

paverage average pressure

patm the local atmospheric pressure, given by the meteo module

ρ density of water

g acceleration due to gravity

On Riemann boundaries can be used the same correction and is calculates as :

FR(t) = FR(t)± δatm

√
g

d
(2.107)

with d the local water depth and the sign depends on the orientation of the open
boundary related to the grid.

For the velocity and Riemann type of boundary condition, the flow is assumed
to be perpendicular to the open boundary. Substitution of the Riemann boundary
condition in the 1D linearised continuity equation leads to the well-known radia-
tion boundary condition.

Stelling (1984) added the time-derivative of the Riemann invariant to the water
level and velocity boundary conditions, to make the boundaries less reflective for
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disturbances with the eigen frequency of the model area. This reduces the spin-up
time of a model from a cold start:

Water level boundary : ζ + α
∂

∂t

{
U ± 2

√
gH
}
= Fζ(t) (2.108)

Velocity boundary : U + α
∂

∂t

{
U ± 2

√
gH
}
= FU(t) (2.109)

The reflection coefficient α should be chosen sufficiently large to damp the short
waves introduced at the start of the simulation. The following values are advised:

Water level boundary : α = Td

√
H

g
, [s2] (2.110)

Velocity boundary : α = Td , [s] (2.111)
where Td is the time it takes for a free surface wave to travel from the left boundary
to the right boundary of the model area. In ocean and sea models, the period Td is
of the same order as the period of the tidal forcing. In that case α must be set to
zero, otherwise effectively the amplitude of one of the components in the boundary
condition is reduced. These values can be derived with Fourier analysis for the 1D
linear long wave equation without advection by substituting a wave with period Td.

For the velocity type of boundary condition, the flow is assumed to be per-
pendicular to the open boundary. In 3D models we can prescribe 3 profiles in the
vertical:

• a uniform profile

• a logarithmic profile

• a so-called 3D profile

A 3D profile means that the velocity at each σ-layer is specified as any of forcing
types, i.e. as astronomic or time-series components.

Astronomic boundary conditions
We can specify the boundary conditions in terms of astronomical components.The
observed tidal motion can be described in terms of a series of simple harmonic
constituent motions, each with its own characteristic frequency ω(angular veloc-
ity). The amplitudes A and phases G of the constituents vary with the positions
where the tide is observed.

The general formula for the astronomical tide is:

H(t) = A0 +
k∑

i=1

AiFicos(ωit+ (V0 + u)i −Gi) (2.112)

where:
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H(t) water level at time t

A0 mean water level over a certain period

k number of relevant constituents

i index of a constituent

Ai local tidal amplitude of a constituent

Fi nodal amplitude factor

ωi angular velocity

(V0 + u)i astronomical argument

Gi improved kappa number

Fi and (V0 + u)i are time-dependent factors which, together with ω, can easily
be calculated and are generally tabulated in the various tidal year books. V0 is
the phase correction factor which relates the local time frame of the observations
to an internationally agreed celestial time frame. V0 is frequency dependent. Fi

and ui are slowly varying amplitude and phase corrections and are also frequency
dependent. For most frequencies they have a cyclic period of 18.6 years.A0, Ai and
Gi are position-dependent: they represent the local character of the tide.

2.4.3 Closed boundary conditions
A closed boundary is situated at the transition between land and water. At a
closed boundary,two boundary conditions have to be prescribed. One boundary
condition has to do with the flow normal to the boundary and the other one with
the shear-stress along the boundary. The boundary condition considered for flow
normal to the boundary is that there is no flow through the boundary. For the
shear stress along the boundary a zero tangential shear-stress (free slip) has been
prescribed.

2.5 Numerical aspects
The numerical method of Delft3D-FLOW is based on finite differences. An al-
ternating direction implicit (ADI) method is used to solve the continuity and
horizontal momentum equations (Leendertse, 1987). Stelling (1984) extended the
ADI method of Leendertse with a special approach for the horizontal advection
terms, known as the ”cyclic method” (Stelling and Leendertse,1991). The trans-
port equation is fomulated in a conservative form (finite - volume approximation)
and is solved using the so-called ”cyclic method” of Stelling and Leedertse (1991),
including the algorithm of Stelling and Van Kester (1994)for the approximation of
the horizontal diffusion along z-planes in a σ-coordinate framework. The reader
is referred to the Delft3d-FLOW, User Manual (2014) for more details about the
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numerical methods applied in the Delft3d model.

The numerical grid transformation is implicitly known by the mapping of the co-
ordinates of the grid vertices from the physical to the computational space. The√

Gξξ and
√

Gηη geometrical quantities introduced in the transformed equations.

Figure 2.5: Mapping of physical space to computational space

Staggered grid
The primitive variables water level and velocity (u, v, w) describe the flow. To
discretise the 3D shallow water equations, the variables are arranged in a special
way on the grid, see Figure 5. The pattern is called a staggered grid. This partic-
ular arrangement of the variables is called the Arakawa C-grid. The water level
points (pressure points) are defined in the center of a (continuity) cell. The veloc-
ity components are perpendicular to the grid cell faces where they are situated.
Staggered grids have several advantages such as:

• Boundary conditions can be implemented in a rather simple way.

• It is possible to use a smaller number of discrete state variables in comparison
with discretizations on non-staggered grids, to obtain the same accuracy.

• Staggered grids for shallow water solvers prevent spatial oscillations in the
water levels;see e.g. Stelling (1984).

The staggered grid applied in Delft3D is given in Figure 6 with the following
legend:

full lines the numerical grid

grey area items with the same grid indices (m; n)

+ water level, concentration of constituents, salinity, temperature

− horizontal velocity component in u- and m- direction)

| horizontal velocity component in v- and n- direction

• depth below mean (still) water level (reference level)
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Figure 2.6: Staggered grid used in Delft3D-FLOW

An explicit time integration of the shallow water equations on a rectangular grid
is subject to a time step condition based on the Courant Friedrichs Lewy (CFL)
number for wave propagation:

CFLwave = 2∆t
√
gH

√
1

∆x2
+

1

∆y2
< 1 (2.113)

where ∆t is the time step,g is the acceleration of gravity, H is the total water
depth and are the smallest grid spaces in ξ- and η-direction of the physical space.
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Chapter 3

Data Analysis

3.1 About Copernicus
COPERNICUS, previously known as GMES (Global Monitoring for Environment
and Security), is the European Programme for the establishment of a European
capacity for Earth Observation and Monitoring.

COPERNICUS encompasses 3 components: SPACE , INSITU and SERVICES.

• The Copernicus Space Component

It includes 1. the ESAs Sentinels, which are currently being developed for
the specific needs of the Copernicus programme and 2. the Contributing
Missions, which are operated by national, European or international organ-
isations and already provide a wealth of data for Copernicus services.

The European Space Agency (ESA) is responsible for the space compo-
nent of the Copernicus programme. The European Organisation for the
Exploitation of Meteorological Satellites (EUMETSAT) is fundamental to
the operational remit of Copernicus on account of their unparalleled ex-
perience and proven capability as a provider of operational meteorological
satellite data, products and services.

• The Copernicus InSitu component

Copernicus services rely on data from in situ monitoring networks (e.g.
maps, ground based weather stations, ocean buoys and air quality moni-
toring networks) to provide robust integrated information and to calibrate
and validate the data from satellites.
Surface moorings measure a wide variety of ocean sub-surface variables in-
cluding Temperature, Salinity, Currents over long periods of time . These
measures are widely used by MyOcean(Credit : Karlson/SMHI)
The in situ networks are managed by Members States and international
bodies and make data available to the services by agreement.The European
Environment Agency (EEA) is leading work for Copernicus under the FP7
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GISC project to catalogue the in situ requirements of the Copernicus ser-
vices, develop frameworks and pilot agreements to ensure access to all the
relevant data in a timely and sustainable way.

• The Copernicus Service component

Copernicus services address six main thematic areas:

1. Land Monitoring
2. Emergency Management
3. Marine Monitoring
4. Atmosphere Monitoring
5. Security
6. Climate Change

These services have reached different degrees of maturity. Some are already
operational (land monitoring and emergency management) while others are
still in a pre-operational mode (atmosphere monitoring and marine moni-
toring), or in a development phase (climate change monitoring and services
for security applications).
On November 11th, the European Commission and Mercator Ocean have
signed an Agreement to implement and manage the Copernicus Marine En-
vironment Monitoring Service. The latter is operational from early May
2015.
Today, the Copernicus Marine Service is provided on an operational mode
by Mercator Ocean to more than 5000 subscribers worldwide.

3.2 Procedure of CMEMS
Copernicus - Marine environment monitoring service, provides products and ser-
vices for all marine applications. We use this platform to take ocean products
about a specific religion domain that we study.Firstly, we choose the religion do-
main - Mediterranean Sea. Furthermore,we choose the parameters for our studying
(current velocity) and the temporal coverage which is five days ,from 16 January
of 2019 to 21 January of 2019. In addition, we select the ocean product,in our case
is the Mediterranean Sea Physics analysis and forecast.The physical component of
the Mediterranean Forecasting System (Med-currents) is a coupled hydrodynamic-
wave model implemented over the whole Mediterranean Basin. The model hor-
izontal grid resolution is 1/24 (ca. 4 km) and has 141 unevenly spaced vertical
levels.The hydrodynamics are supplied by the Nucleous for European Modelling of
the Ocean (NEMO v3.6) while the wave component is provided by Wave Watch-
III; the model solutions are corrected by a variational data assimilation scheme
(3DVAR) of temperature and salinity vertical profiles and along track satellite
Sea Level Anomaly observations. In the sequel, we choose the suitable data set,
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specify the co-ordinates of the grid and choose the time-range and the number of
layers of depth. Finally, we select the variables of the data-set that we study and
download these information in a netcdf file.

3.3 R program and connection with open bound-
ary conditions

We open our data from the netcdf file though the R programming language.We
interpolate these data and create the format of time-series flow boundary condi-
tions(.bct file).Firstly, we make a linear interpolation in depth and in longitude.
Due to the fact that the grid of copernicus has bigger resolution from our grid.

Generally, for each open boundary segment with boundary data of type time-
series the data is given in two related blocks:

1. A header block containing a number of compulsory and optional keywords
accompanied by their values.

2. A data block containing the time dependent data.

We have a model with 31 open boundary sections with time-series as boundary
conditions.

All the boundary sections concern a Riemann boundary for which the boundary
condition is given at 25 time breakpoints,from 1051200 to 1052640 minutes after
the Reference Date. The vertical profile is 3d-profile, the interpolation method
linear, the time-series is assumed to be non-equidistant and the time is given in
minutes.

3.4 Procedure of Delft Dashboard
Delft Dashboard is a Matlab based graphical user interface, which can run as a
standalone executable or within Matlab. It is designed to support modellers in
setting up new or upgrading and running existing models. A large number of cou-
pled toolboxes allow Delft Dashboard for fast and easy model input generation. It
allows an initial model to be set-up in a mater of minutes for every location in the
world, which previously used to take days or weeks. The interface is coupled to the
Delft3D modeling suite, which allows carrying out the hydrodynamics, the waves,
the morphodynamics and the water quality computations. Besides the toolboxes,
to set-up a standard Delft3D computation, additional toolboxes are implemented
to carry out advanced tidal analysis, simulate wind speed and barotropic pressure
changes generated by a tropical cyclone, and simulate the generation and propa-
gation of a tsunami. Using the Delft Dashboard toolbox, the user can easily define
the modelling area of interest. The user may perform all actions needed to run the
models, as the definition of the computational grid boundaries, the determination
of the grid cell size, the import of bathymetric data of the area, the designation of
boundaries and boundary types on the grid and finally the insertion of boundary
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conditions.

As described before, the Delft Dashboard graphical user interface is a use-
ful tool to determine the characteristics of the modelling domain in the area of
interest. In order to create the computational grid of each Observatory, a first
approach was performed using a numerical grid based on a ratio of 1:4.17 from
the Marine Copernicus Grid, resulting in a downscale to 1/100 degree (∼1,110 m
horizontal resolution). The vertical discretization of each Observatory is based on
CMEMS ”MEDITERRANEAN SEA PHYSICS ANALYSIS AND FORECAST”
discretization and it differs in each Observatory.

The methodology of creation of an initial hydrodynamic model for every single
Observatory follows the same typical steps.

1. Computational Grid Boundaries and Grid Cell Size Definition

2. Extraction and interpolation of bathymetric data

3. Extraction and interpolation of tidal boundary conditions

4. Creation of boundary conditions for the model

Initially, through the Delft Dashboard graphical user interface, the grid out-
line and the cell size of the horizontal resolution of the modelling domain of each
Observatory was defined. The toolkit automatically creates the rectangular grid
of the modelling domain within the boundaries specified in the toolkit with the
fixation of the grid cells.

Afterwards, in order to finalize the grid determination, bathymetric data are
atributed to the generated rectangular grid. As the present configuration, de-
scribed in this document is only for testing proposes, and due to lack of local
bathymetry data, the GEBCO 08 and the EMODNET bathymetry datasets were
used in each Observatory. GEBCO′s aim is to provide the most authoritative
publicly-available bathymetry of the world’s oceans. It operates under the joint
auspices of the International Hydrographic Organization (IHO) and the Intergov-
ernmental Oceanographic Commission (IOC) (of UNESCO). Moreover, EMODnet
Bathymetry aims to provide a single access point to bathymetric products, Digital
Terrain Models (DTM) and data (survey data sets and composite DTM) collected
and managed by an increasing number of organisation from government and re-
search scattered over Europe. Within Delft Dashboard, the bathymetry datasets
where initially imported to the modelling domain and afterwards a spatial in-
terpolation from the original grid to the model grid was carried out by linear
interpolation.

As soon as the computational grid was generated, the Open Boundaries of the
pilot Observatory may be defined. Delft Dashboard generates these open bound-
aries with an automated toolbox. To allow the hydrodynamic model, described in
the present document, to have common boundaries with the CMEMS operational
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hydrodynamic model and as the ratio of the numerical grid to CMEMS compu-
tational grid is ∼1:4.17, approximately 4 cells per section were used to divide the
open boundary cells to sections. Then at each section, a Riemann open boundary
condition was applied using data on astronomical forcing derived from a global
tidal model, TPXO 7.2. Delft Dashboard, through the ’Tide Database’ toolbox,
automatically creates open boundary conditions at each section of the open bound-
ary cells, by retrieving tidal information (amplitude and phases) from the TPXO
7.2 Global Tidal Solution. As Riemann boundaries are depth-dependent a min-
imum depth of the open boundary cell has to be specified. It is recommended
by Delft3D manual to set this value to at least 2 times the expected tide range.
When setting up the initial models it was chosen to set this minimum depth to 5 m.

The scenario of our study in the hydrodynamic model Delft3D-flow concerns
the Thracian Sea. The Reference date was the 16-01-2017,while the time period
of the simulation was during five days, from 16-01-2019 00:00:00 to 21-01-2019
00:00:00 , with time step 2 minutes. At first, we create a grid file through the
Dashboard platform.It includes the co-ordinates of the orthogonal curvilinear grid
at the depth points, with longitude xmin=24.2735 and latitude ymin=40.2718. In
this way, the computatioanl grid enclosure file is created at the same time which
contents the pairs of M and N indices (Mmax=313 and Nmax=73) representing
the grid co-ordinates where a line segment of the computational grid enclosure
(polygon) changes direction. This file is strongly related to the curvilinear grid
file. In addition, we construct a bathymetry file using the data set Aegean Sea-
Levantine Sea, which contents the bathymetry in the model area,represented by
depth values (in metres) for all grid points. The co-ordinate system is spherical
and this scenario contents 10 layers of depth because we have a 3D computation,in
which every layer has different thickness in the form of percentage.The total per-
centage of thickness is 100. The type of our vertical grid is Z-grid,thus the layer
thickness is fixed and the number of active layers varies with the depth. The layer
thickness at the top is however determined by the actual water level and at the
bottom by the local topography. For a Z-model the thickness of a layer is defined
as a percentage of the initial water depth and the first layer refers to the bottom
layer. Moreover, we construct a Water level open boundary file with 31 South
open boundary sections and astronomic type of data and initial water level 0 me-
tres, which contains the location and description of open boundaries. The tidal
model that we use to generate these boundaries is TPXO 7.2 Global Inverse Tide
Model. TPXO is a series of fully-global models of ocean tides, which best-fits,
in a least-squares sense, the Laplace Tidal Equations and altimetry data. Each
next model in TPXO series is based on updated bathymetry and assimilates more
data compared to previous versions. The methods used to compute the model are
described in details by Egbert, Bennett, and Foreman,1994 and further by Egbert
and Erofeeva,2002.The tides are provided as complex amplitudes of earth-relative
sea-surface elevation for eight primary (M2, S2, N2, K2, K1, O1, P1, Q1), two long
period (Mf,Mm) and 3 non-linear (M4, MS4, MN4) harmonic constituents (plus
2N2 and S1 for TPXO9). Furthermore, we create the astronomic flow boundary
conditions file, which contain the boundary conditions for open boundary sections
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of type Astronomic in terms of amplitudes and phases for the astronomic com-
ponents. All these files are generated in the platform of Delft Dashboard. Now,
we use the FLOW-GUI to create Riemann open boundary with time-series forcing
type and vertical profile per layer specified. Then, we upload the bct file that have
been created through the R program.
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Chapter 4

Test case and model setup

The Thracian Sea/North Aegean Observatory is located at the northern-most part
of the Aegean Sea. It covers an area of ∼ 12,100 sq. km and has a volume of ∼
2,416 cubic km. The area is directly affected by the Black Sea Water out flown
from Dardanelles and three major rivers (Evros, Nestos and Strimon) which are
located along the northern mainland coastline.

The modeling hydrodynamic system is based on a downscaling methodology,
from CMEMS (1/24o) to a new grid with 1/100o (∼ 1.1km) for the region of
Thracian Sea. The computational grid that was created is composed by 313 x
73 cells in the horizontal and 10 Cartesian layers (in total 135,010 cells) that
are based on CMEMS vertical discretization but follow a logarithmic increase
in layer thickness with depth. This configuration following exactly the CMEMS
discretization. The bathymetry data of the grid were retrieved through the Delft
dashboard using the Aegean and Levantine dataset, which is part of EMODNET
bathymetry data, and has a horizontal resolution of ∼ 463 m. In addition, the
retrieved grid was interpolated spatially to fit the computational grid.

Figure 4.1: Computational grid of Thracian Sea

The grid′s lower western origin coordinates are 40.2718o N, 24.2735o E and
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has one open boundary located at the southern border line of the grid along the
40.2718o N latitude. Despite the fact that the initially designed grid was set so as
the open boundary is located along the line connecting the southern part of Athos
peninsula and the southern part of Gallipoli peninsula, this grid was moved north-
wards to avoid the direct effect of the Black Sea Water outflow from Dardanelles
in the area. The length of the final open boundary is ∼221 km and fits well with
44 cells of the CMEMS computational grid for the Mediterranean Sea. There-
fore, the open boundary cells are divided into sections, following the CMEMS grid
(4 grid cells per section) in order to use data from the CMEMS hydrodynamic
forecast run as boundary conditions. These boundary conditions are created by
interpolating CMEMS grid data to the Observatory′s computational grid for each
section. The data that are downloaded from the CMEMS server are imported and
stored into R data analysis program. As the Delft3D model will be run daily, a
long time-series of the CMEMS downloaded parameters can be retrieved through
the R program. The meteorological forcing of the hydrodynamic model is based
on the import of data originating from the NOAA Global Forecast System (GFS).
This system is a weather forecast model produced by the National Centers for
Environmental Prediction (NCEP). Dozens of atmospheric and land-soil variables
are available through this dataset, from temperatures, winds, and precipitation to
soil moisture and atmospheric ozone concentration.

In addition, the computational grid is affected by the discharge of the three
major rivers that outflow in the Thracian Sea. Discharge is the location where
water and possibly constituents dissolved in the water are released into or sub-
tracted from the model area. The discharge of these rivers was set to be constant
in time for the purposes of this experimental run. Their values were based on the
mean annual discharge data reported by research documents. The values for these
discharges were: 1) for Nestos river 30 m/s3 2) for Strymon river 80 m/s3 3) for
Evros river 234 m/s3.

Moreover, we have two observation points , which are virtual points in the
model area, where computational results, such as the current, the water level
and/or the concentration of constituents are monitored as a function of time.,
in Thracian Sea. There is already one active hydro-meteorological station in
Kavala port providing water temperature, salinity, and meteorological data and
one oceanographic buoy located close to Kariani, at the western part of the Ob-
servatory, providing data for the validation of the Delft3D hydrodynamic model.

4.1 Swan Model set-up
For the operational wave modelling of the Thracian Sea a SWAN wave model
was set up, using the Delft3D hydrodynamic model schematization as starting
point. The rectangular computational grid covers the area between 23.6935oE to
26.8335oE in latitude and 40.2719oN - 41.0119oN in longitude, which is approxi-
mately 270 km in the EW direction » 80 km in the NS direction. The resolution of
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the computational grid was set-up at 1/100o (∼1.1km). Apart from a geographical
domain, SWAN model also requires the denition of a spectral domain, covering
wave frequencies and wave directions. The full directional circle is considered,
divided in 45 directional bins of 8o each allowing the wave energy to propagate in
any direction. Wave frequencies from 0.03 up to 1.0 Hz are included (wave periods
1 s 33 s). SWAN divides this into 38 logarithmically distributed frequency bins
with higher resolution for the lower frequencies.

The bathymetry is similar to the one from the Delft3D model, so based on the
Aegean and Levantine dataset which is part of EMODNET bathymetry data.

Wind is the driving force for the waves and therefore an important input eld
for the model. The model is fed by spatial, time varying wind elds, similar to
what is used in the Delft3D computations. For these preliminary runs, this data
is produced by the NOAA GFS. The resolution of the wind elds is approximately
25 km and the time step is set at 6 hours.

Along the southern model boundary, a time and space varying wave boundary
condition was imposed retrieving data from the MEDSEA WAM model (resolu-
tion 1/24o x 1/24o) by ECMWF, available on Copernicus Marine Service (product
MEDSEA-ANALYSIS-FORECAST-WAV-006-017). These data consist of hourly
signicant wave height, peak period and wave direction time-series. JONSWAP
spectrum was chosen as the appropriate spectral shape and for the cosine power
representing the directional spreading, a value of 2 was selected corresponding to
31.5o for the one-sided directional spread of the waves. Seven boundary locations
have been specied along the southern side, between which SWAN interpolates the
wave parameters.

Figure 4.2: longitude-latitude of the Swan grid
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4.2 Results and Discussion
Using the above-described datasets provided by existing systems (GFS, TPXO,
CMEMS), a series of preliminary runs of the hydrodynamic model was imple-
mented to simulate on 5 days of hydrodynamic forecasts with a time step of 2
minutes. Model results were extracted every 60 mins.

4.2.1 Water Level
We study the water level, which is the elevation of the free water surface above
some reference level, for five days from 16th of January 2019 to 21th of January
2019.

Figure 4.3: Water level - 16 January
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Figure 4.4: Water level - 17 January
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Figure 4.5: Water level - 17 January
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Figure 4.6: Water level - 18 January
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Figure 4.7: Water level - 19 January
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Figure 4.8: Water level - 20 January

We observe that the water level of our observation area is short in the whole
period, near to 0m.
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4.2.2 Currents
The following figures illustrate the current directions at selected times during
the study period together with the associated current velocities through depth-
averaged velocities and horizontal velocities. Depth-averaged velocity is the hy-
drodynamic speed, averaged over the depth. Currents ,in case of 2D computation
are the speed and direction of the hydrodynamic depth-averaged flow. In case of
3D computation are the speed and direction of the hydrodynamic flow in a layer.

Depth averaged velocity

Figure 4.9: Depth averaged velocity -16 January
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Figure 4.10: epth averaged velocity -17 January
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Figure 4.11: epth averaged velocity -18 January
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Figure 4.12: epth averaged velocity -19 January
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Figure 4.13: epth averaged velocity -20 January

We observe that the depth averaged velocity has generally low values in the
Thracian Sea. In the East and North East Thracian Sea currents are negligible
in the whole period of observation. We can see that the velocity is stronger
South from the island Thassos and West and East of Samothraki island. More
specifically, in the 18 and 19 January these currents are stronger than 17 and
20 January. These velocities depends on the wind speed and direction and on 3
discharges that we have in this area.
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Horizontal velocity

Figure 4.14: Horizontal velocity-16 January
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Figure 4.15: Horizontal velocity-17 January
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Figure 4.16: Horizontal velocity-18 January
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Figure 4.17: Horizontal velocity-19 January
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Figure 4.18: Horizontal velocity-20 January

We observe that the horizontal velocity has generally low values in the Thracian
Sea. Especially, in the East and North East Thracian Sea currents are negligible
in the whole period of observation. We can see that the horizontal velocity is
stronger South from the island Thassos and West and East of Samothraki island.
More specifically, in the 18 and 19 January there is an increase in the horizontal
velocity and these values become smaller in the next days in 20 and 21 January.
These velocities depends on the wind speed and direction and on 3 discharges that
we have in this area.
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4.2.3 Observation Points
We use two Observation stations,the Obs2 which is in the Kavala port and the
Obs1 which is in the Kariani buoy. In fact they are monitoring points for cur-
rent, water level and/or temperature and salinity. Moreover, observation points
are defined at the centre of grid cells. Delft3D-FLOW writes the results of the
simulation in this point to a history file which is a file that contains the results of
a simulation in monitoring stations as a function of time. Thus, we study these
two observation points through two different boundary conditions about the wa-
ter level for 3 days,from 18-01-2019 to 21-01-2019 : the Water level for Riemann
astronomic boundary and Riemann time series boundary. Finally, we make a com-
parison with the measurements of the Kavala station with the observation point
Obs2 of our model in this period.

Riemann astronomic boundary for Water level

Figure 4.19: Obs1 Water level - Astronomic Boundary
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Figure 4.20: Obs2 Water level - Astronomic Boundary

We use the TXPO7.2 tidal solution to make the astronomic boundary condi-
tions , which have semi-diurnal period, that is the phenomenon that is repeated
every 12 hours. At the Obs1 observation point, the range of the water level is
from -0.3m to 0.3 m. Furthermore, At the Obs2 observation point, the range of
the water level is from -0.25 m to 0.2m .
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Comparison Obs2 with Kavala port station

Figure 4.21: Comparison Obs2 with Kavala port station

We observe that the water level of these two different boundary conditions has
the save phase of the oscillation. The measurements of the kavala port station
has both astronomic tidal and current time-series boundaries. Thus, there is that
difference between these monitoring points.
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Riemann time-series boundary for Water level

Figure 4.22: Obs1 Riemann Time-series
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Figure 4.23: Obs2 Riemann time-series

We can see, that now without tidal, we have not a periodic motif. The water
level has small values, near to 0m.
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4.2.4 Swan Wave Model
The model provides various types of output. First of all, maps of wave parameters
(signicant wave height, wave direction, wave period, directional spreading) over
the entire domain. Next, for a number of predened locations, 1D and 2D wave
spectra may be stored, as well as tables with various wave parameters. In the
initial test the output format is asci (tables of wave spectra) and matlab mat les
(maps).

The period January 16, 2019 to January 21, 2019 was selected for initial tests.
Wind and wave les were downloaded and adjusted to the proper input format for
SWAN. In Figure 30 the boundary signals for this test period are shown. The
upper panel shows the series of the signicant wave height, Hm0 [m],this value will
be prescribed on all specified wave boundaries. The second panel the peak period
,Tp [s], the peak period is defined as the wave period associated with the most
energetic waves in the total wave spectrum at a specific point. The latest panel is
the direction of the waves Dir [o] . The directional is given by the direction where
the waves come from. This period is used as initial test, since it consists of both
large and small wave heights from dierent directions.

Figure 4.24: Bondary Conditions of the modeled period. The blue line repre-
sents the most Westward boundary point (Blue dot in figure 30) and the red line
represent the most Eastward point of the boundary.

We observe that the significant wave height (Hm0) at the Westward boundary
point (blue line) reaches a maximum value of 4m, on 19th with 20th of January,
whereas the Eastward point of boundary (red line) reaches a maximum value of
2m. Generally, almost in the whole time of period the significant wave height
(Hm0) at the Westward boundary point is higher from the Eastward point of
boundary.
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In the operational environment we suggest starting each run with an initial
wave field resulting from a previous run (a so called ′hot-start′) and to apply a 48
hr forecast horizon.

Preliminary results are given in the following plots. The computational time
is in the order of 45 min for a 48 hr forecast.

Now we select the day of 18th January of 2019 to observe the significant wave
height Hm0 and the mean absolute wave period (in s), Tmm10. Moreover we select
6 points to compare their significant wave heights.

Figure 4.25: Preliminary Results of SWAN Thracian Model

We observe that the range of the significant wave height Hm0 is from 0m to 3m.
The higher height is observed at the South boundaries of Thracian Sea and the
shorter height near to the coastal zone, something that we expected. On the oth-
erwise, the mean absolute wave period (in s), Tmm10 is bigger near to kalava port
and the island Thassos, that is the Northwest of the Thracian Sea. Finally, in the
third graphic we can see that the largest significant wave height Hm0 are at the
points 1 and 2 which are near to the South boundaries. Specifically, the highest
height is on 17th with 18th January 2019 at these points with value 3m and the
lowest on the 18th with 19th January. At the point 6 that is near to the center of
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our observation area, the maximum value is 2m on the 16th with 17th January of
2019. At the points 1,2,3 which are near to the coastal zone is observed that they
have smaller significant wave heights with maximum value 1m on the 16th with
17th January of 2019.

4.2.5 Conclusion and Recommendations
The results of the simulation give very satisfactory characteristics concerning the
overall view of the study area. A Flow and SWAN model has been set up for the
Thracian Sea Observatory, based on the grid of the Delft3D hydrodynamic model.
The preliminary results make sense, but calibration and validation are recom-
mended. For a proper calibration, wave observations are necessary. Attention
must be paid to spatial resolution, boundary conditions (including its locations),
directional spreading, wind drag formulation, time step, convergence, lead time
and required output (locations, parameters and format). These can be relatively
easily changed once suitable values are known. If reliable outputs near the shore-
line have been provided, a higher spatial resolution is required to better include
the gradients in bathymetry.
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