

TECHNICAL UNIVERSITY OF CRETE

SCHOOL OF PRODUCTION ENGINEERING & MANAGEMENT

Validation of a High-Order Numerical Discretization
Scheme for the Solution of the 3-D Euler Equations

By

Dimitrios P. Angelopoulos

A dissertation submitted in partial fulfilment

of the requirements for the degree of

Master of science (MSc)

Supervisor: Prof. Dr. Ioannis K. Nikolos

Chania, May 2019

"Intentionally left blank"

TECHNICAL UNIVERSITY OF CRETE

SCHOOL OF PRODUCTION ENGINEERING & MANAGEMENT

Validation of a High-Order Numerical Discretization
Scheme for the Solution of the 3-D Euler Equations

By

Dimitrios P. Angelopoulos

Approved by:

Dr. Ioannis K. Nikolos
Professor
Technical University of Crete
School of Production
Engineering & Management

Dr. Anargiros I. Delis
Associate Professor
Technical University of Crete
School of Production
Engineering & Management

Dr. Georgios Arampatzis
Assistant Professor
Technical University of Crete
School of Production
Engineering & Management

"Intentionally left blank"

v

“Man knows at last that he is alone in the universe’s unfeeling

immensity, out of which he emerged only by chance. His destiny is

nowhere spelled out, nor his duty. The kingdom above or the darkness

below: it is for him to choose.”

Jacques Monod

vi

"Intentionally left blank"

vii

To my family and Nasia

viii

"Intentionally left blank"

ix

ABSTRACT

In this study, the application and evaluation of a high-0rder spatial and time discretization

method for the numerical solution of 2-dimensional Euler equations is reported. An alternative

high-order approach [Yan14] enhances the in-house academic solver, named EU2, employing the

dimensionless Euler equations, discretized with a node-centered finite volume method on

triangular unstructured girds, to simulate inviscid compressible flows. Most methodologies that

have been developed during the past years, e.g. the discontinuous Galerkin and K-exact scheme,

necessitate a non-trivial increase of the DoFs (Degrees of Freedom) and consequently a

considerable increase of computational resources. Moreover, major modifications to existing CFD

codes are required for their implementation. The adopted high-order scheme is based on the

incorporation of additional high order terms to the reconstructed nodal values, used for the

computation of the inviscid fluxes. The required higher-order derivatives are computed with the

corresponding lower-order ones on the existing DoFs via a successive differentiation technique.

As a result, the connectivity requirements are restricted to the first neighbouring points,

overcoming the inherent constraint of the unstructured solvers to retrieve information from a

wider computational stencil. The aforementioned technique was incorporated with a variable

extrapolation numerical scheme, named U-MUSCL, which closely resembles the traditional

MUSCL one, and was coupled with a high-order time discretization that employs a Strong

Stability Preserving Runge-Kutta method (SSPRK). To assess the effectiveness of the

aforementioned numerical scheme, the EU2 solver is used against a benchmark problem having

analytic solution. A satisfactory agreement is obtained, demonstrating the proposed scheme’s

potential to increase the solution’s accuracy for a given grid density. Furthermore, a

corresponding high-order formulation is extended to a 3-dimensional numerical fluid model. An

elaborate construction method of 3-d computational meshes for various grid types is presented in

detail for future exploitation on the numerical evaluation of equivalent 3-d high order schemes.

x

"Intentionally left blank"

xi

ACKNOWLEDGEMENTS

With the completion of this study I would like to express my gratitude to those who have

supported me and have contributed to this work.

First and foremost, I would like to express my deepest appreciation to my advisor Professor

Ioannis K. Nikolos, for giving me the opportunity to complete this thesis and for introducing me

to the fascinating ‘world’ of Computational Fluid Dynamics. Beyond his solid and deep scientific

skills, he is also an exceptional person and character. I am very thankful for all the psychological,

educational and ethical support that he provided to me, throughout all my work.

I would also like to thank my thesis committee, Associate Professor Anargiros I. Delis and

Assistant Professor Georgios Arampatzis for all their useful suggestions. They have both honored

me by participating to this study.

My sincere thanks also go to Dr. Georgios Lygidakis and Stavros Leloudas, my fellow lab mates

that were always eager to provide their help when needed, as well as to Ioannis Thomadakis for

his assistance and useful advice on the editing of this thesis.

Last but not least, nobody has been more important to me in the pursuit of this thesis than the

members of my family. I would like to thank my parents and my sister, whose love and guidance

are with me in whatever I pursue. But most importantly, I wish to thank my companion Nasia for

all her endless love and support. This thesis is dedicated to them.

xii

"Intentionally left blank"

xiii

CONTENTS

ABSTRACT ………. ix

ACKNOWLEDGEMENTS …………………………………………………………………………………………….. xi

CONTENTS ………. xiii

NOMENCLATURE …… xv

INTRODUCTION ……………………………………………………………………….……............................ 1

CHAPTER 1 - MATHEMATICAL AND NUMERICAL MODELING OF 2-D

EULER EQUATIONS …………………………………………………………………………….. 3

 1.1 Mathematical Modeling in 2-D ………………………………………………………………………….….. 3

 1.1.1 Principles of the Governing Equations ………………………………………………………… 3

 1.1.2 Navier-Stokes 2-D Equations ………………………………………………………………………. 3

 1.1.3 Euler 2-D Equations …………………………………………………………………………………….. 5

 1.1.4 Non-Dimensionalization Procedure …………………………………………………………… 6

 1.2 Numerical Modeling of 2-D Equations ……………………………………………………………….. 7

 1.2.1 Spatial Discretization ………………………………………………………………………………… 7

 1.2.2 Numerical Fluxes ……………………………………………………………………………………….. 9

 1.2.3 Boundary Conditions ………………………………………………………………………………… 11

 1.2.4 Time Integration ……………………………………………………………………………………….. 12

CHAPTER 2 - HIGH-ORDER NUMERICAL SCHEME …………………………………………………. 15

 2.1 Introduction to High-Order Formulation …………………………………………………………..... 15

 2.2 Derivation of High-Order Accuracy for 2-D Problems ………………………………………….. 20

 2.3 U-MUSCL Scheme ………………………………………………………………………………………………. 21

 2.4 High-Order Time Integration ………………………………………………………………………………… 23

CHAPTER 3 - NUMERICAL TEST AND RESULTS ………………………………………………………… 25

 3.1 Test Case ……….. 25

 3.2 Computational Meshes ……………………………………………………………………………………….. 25

 3.3 Numerical Results ………………………………………………………………………………………………. 28

CHAPTER 4 - INTRODUCTION OF HIGH-ORDER TO 3-D PROBLEMS …………………. 35

 4.1 Introduction ………………………………………………………………………………………………..………… 35

 4.2 Mathematical Modeling in 3-D ………………………………………………………….................... 35

 4.2.1 Navier-Stokes Equations ……………………………………………………………………………… 35

xiv

 4.2.2 Euler Equations ……………………………………………………………………………………………. 37

 4.3 Numerical Modeling of 3-D Equations ……………………………………………………………….. 38

 4.3.1 Spatial Discretization ………………………………………………………………………………… 38

 4.3.2 Numerical Fluxes ……………………………………………………………………………………….. 41

 4.3.3 Boundary Conditions ………………………………………………………………………………… 42

 4.3.4 Time Integration ……………………………………………………………………………………….. 43

 4.4 Derivation of the High Order-Scheme ……………………………………………………………….. 44

 4.4.1 Calculation of the High-Order Terms ………………………………………………………… 44

 4.4.2 U-MUSCL Scheme ……………………………………………………………………………………….. 46

CHAPTER 5 - DEVELOPMENT OF 3-D GRID GENERATORS …………………………………. 47

 5.1 Presentation of 3-D Grids …………………………………………………………………………………….. 47

 5.2 Introduction to the Algorithms ……………………………………………………………………………… 56

 5.3 Regular Grids ……………………………………………………………………………………………………… 60

 5.3.1 Prismatic Grid of Type I ……………………………………………………………………………… 60

 5.3.2 Prismatic Grid of Type II ……………………………………………………………………………… 66

 5.3.3 Prismatic Grid of Type III ……………………... 69

 5.3.4 Pyramidal Gird ……………………………………………………………………………………………. 75

 5.3.5 Tetrahedral Grid …………………………………………………………………………………………. 78

 5.4 Irregular Grids ……………………………………………………………………………………………………….. 86

CONCLUSIONS AND FUTURE WORK ………………………………………………………………………… 91

REFERENCES ……….. 93

APPENDIX A: Jacobian Matrix Decomposition ………………………………………………………… 97

APPENDIX B: Convergence Results ………………………………………………………………………….. 99

xv

NOMENCLATURE

𝐴 Jacobian matrices EP area of 2-d control volume of a
node P

𝑎̃𝑃 sound speed of node P VP
volume of 3-d control volume of a
node P

cp constant pressure specific heat 𝑛̂ unit normal vector

cv constant volume specific heat 𝑊⃗⃗⃗ conservative variables' vector

CFL Courant-Friedrichs-Lewy number x, y, z Cartesian coordinates

e energy per unit mass γ ideal gas constant (γ=1.4)

E total energy per unit mass μ laminar viscosity

𝐹 , 𝐺⃗⃗ ⃗, 𝐽⃗⃗ Euler PDE's vectors ρ density

ht specific total enthalpy τij stress tensor

I unit matrix Superscripts

M Mach number inv inviscid

p pressure vis viscous

Pr laminar Prandtl number (Pr=0.72) ~ normalized variable

qi thermal tensor Subscripts

Rg gas constant (Rg=287.04 m2sec-2K-1) in inlet

𝑆 source term out outgoing

t time PQ edge connecting P and Q nodes

T temperature P, p present control volume

u, v, w components of the velocity Q, q adjacent control volume

𝑈̃
averaged Roe value of a primitive
variable

ref reference

xvi

"Intentionally left blank"

 2019 Introduction

1

INTRODUCTION

Computational Fluid Dynamics (CFD) is an ever advancing multidisciplinary scientific field,

emerging from the combination of physics, numerical analysis and computer science, and

providing sufficient numerical results for various types of fluid models. It originated in the early

1970s and it has developed into a very powerful technique that has been routinely applied in a

wide range of industrial and non-industrial application areas ever since [Bla01, Spa16].

Notwithstanding the considerable ongoing evolution, CFD still faces several challenges that need

to be addressed. Therefore, although various academic and commercial compressible flow solvers

have been developed in the past years, many issues concerning the methods of grid generation,

discretization, flux computation, turbulence modeling, etc., are still subjects of continuous

research [Tor97, Bla01].

A primary concern that engages research activity in the CFD community, while also being the

subject of this study, is the efficiency of the numerical flow solvers in producing accurate

numerical solutions over more complex configurations. It is well known that the majority of the

commercial unstructured CFD codes do not provide much more than a second-order accuracy.

During the last decades significant efforts have been exerted for the development of higher-order

spatial discretization methods, as they allow for improved accuracy in a given grid density.

Nevertheless, most popular methodologies, e.g. the k-exact scheme [Bar93], necessitate for extra

information beyond the first neighbouring cells to compute high-order reconstructed values.

Unlike structured solvers, where node connectivity between neighbouring grid points is implied,

the calculation of the higher derivatives poses limitations for the unstructured ones, due to the

lack of explicit connectivity beyond the first neighbors. On the other hand, in the Discontinuous

Galerkin method [Per12] - a formulation different from the classical finite volume approach - this

constraint is managed by introducing extra DoFs (Degrees of Freedom) in each cell to fit a high-

order polynomial solution. As a result, extra memory requirements are needed, leading

unavoidably to a significant increase of computational resources. The implementation of such

methodologies into existing CFD codes requires substantial modifications, especially in

parallelization strategies, where the interventions on the code structure might prove to be rather

laborious. Furthermore, the increased turnaround time of the numerical solution, associated with

most high-order schemes, is a limiting factor for a more wide spread use as, in many practical

scenarios, the computational cost is prohibiting.

The high-order scheme applied in this work relies on the incorporation of the high-order

correction terms to the reconstructed nodal values, used for the computation of the inviscid

fluxes. The required higher-order derivatives are computed with the corresponding lower-order

ones on the existing DoFs, via a successive differentiation technique and, consequently, the

connectivity requirements are restricted to the first neighbouring points [Yan14, Yan15, Yan16].

This is made feasible by exploiting the fundamental properties of the Green-Gauss theorem,

overcoming the inability of unstructured flow solvers to retrieve information on a wider

computational stencil. In this way, not only an improvement of the solution accuracy is achieved

but the computational effort and memory requirements are retained on a reasonable level. This

approach, thus, seems to be particularly appealing for incorporation to an existing CFD code, with

only minor adjustments compared to other methodologies.

Introduction 2019

2

In the present study, a 3rd order interpolation module is applied for the numerical solution of 2-

dimensional Euler Equations. This module was integrated into an in-house compressible flow

solver, named EU2. The discrete form of the governing equations is solved with a Node-Centered

Finite-Volume scheme, while for the computation of the inviscid fluxes an upwind method,

applying Roe's approximate Riemann solver is employed. High-order spatial accuracy is based on

U-MUSCL scheme, which closely resembles the traditional MUSCLE one [Bur05]. The time

advancement of the aforementioned equations is achieved with an explicit scheme, using a Strong

Stability Preserving (SSR), five stage, and fourth order Runge-Kutta method (SSPRK (5, 4)).

To demonstrate the effectiveness of the developed methodology, the EU2 solver is used against a

benchmark test case with a well-known analytical solution. This problem concerns the transport

of an isentropic vortex in inviscid compressible flow. An extensive evaluation of the numerical

solution was conducted, using a controlled environment through a successive grid refinement

procedure for different types of triangular grids. Satisfactory results were obtained, demonstrating

the scheme’s potential to increase the solution’s accuracy for a given grid density.

Finally, the aforementioned high-order numerical scheme is extended to 3-dimensional problems.

In the context of the finite volume approach for unstructured grids, the mathematical and

numerical modeling of the 3-D Euler equations is offered, where the formulation of the

corresponding high-order module is reserved for future work. Moreover, a detailed

demonstration of the construction method for specific types of 3-D unstructured computational

meshes is presented in detail. An extensive description of the data structures of the algorithms is

carried out, providing essential information of the grid features for future exploitation.

The rest of this dissertation is organized as follows. In chapter 1, a thorough representation of the

2-dimensional fluid model is undertaken, including the mathematical and numerical modeling of

the 2-dimensional Euler equations. Chapter 2 is devoted to the description of the adopted high-

order scheme, where the methodology for the calculation of the high-order terms, the variable-

extrapolation U-MUSCL-scheme and the application of Strong Stability Preserving Runge-Kutta

Method (SSPRK) are demonstrated. Chapter 3 contains the numerical results of the convergence

studies against the benchmark problem of travelling vortex, including quantitative and qualitative

comparisons with the analytical solution. In Chapter 4, a 3-dimensional fluid model is

introduced, containing the mathematical and numerical formulation, and incorporating the

proposed high-order scheme. Finally, Chapter 5 provides an analytical description of the

developed algorithms that produce 3-D computational meshes.

 2019 Chapter 1: Mathematical and Numerical Modeling of 2-D Euler Equations

3

CHAPTER 1

MATHEMATICAL AND NUMERICAL MODELING OF 2-D EULER EQUATIONS

1.1 Mathematical Modeling in 2-D

1.1.1 Principles of the Governing Equations

Fluid dynamics is concerned with the study of fluids’ behavior. This is exemplified in the

investigation of the interactive motion of large individual particles, i.e. molecules or atoms,

partitioning the fluid. Taking under account the continuum assumption, the density of the fluid is

considered high enough to be approached as a continuum. In this sense, instead of examining the

fluid molecules per se, the focus is on minuscule fluid elements containing a sufficient number of

particles to be regarded as a continuum. For each element, mean velocity and mean kinetic

energy can be determined. This implies that velocity, temperature, density, along with other fluid

quantities, are defined for each segment of the fluid.

Three conservation laws are respected for the derivation of the principal equations describing the

physical properties of the fluid [Bla01]:

● Conservation of mass

● Conservation of momentum

● Conservation of energy

Conservation requires that for the three fundamental quantities – mass, momentum, and energy –

their total variation inside the volume of an element is defined, primarily, as the effect of the

amount of the quantity being transported across the boundary, which is called flux, as the effect

of any internal forces and sources, and, finally, of the external forces acting on the volume. Two

are the different terms to which flux is decomposed, the convective and the diffusive. The former

owes to the convective transport, while the latter to the molecular motion present in the fluid at

rest [Bla01].

In what follows, a thorough presentation of the governing 2-D Navier-Stokes equations for a

compressible viscous Newtonian fluid is implemented [Lyg15], while the corresponding Euler

equations are then derived.

1.1.2 Navier-Stokes 2-D Equations

A compressible viscous flow is described by the Navier-Stokes equations. Arranged into

convective (inviscid), diffusive (viscous), and source terms, the differential form of the equation is

written as follows:

𝜕𝑊⃗⃗⃗

𝜕𝑡
+

𝜕𝐹 𝑖𝑛𝑣

𝜕𝑥
+

𝜕𝐺 𝑖𝑛𝑣

𝜕𝑦
−

𝜕𝐹 𝑣𝑖𝑠

𝜕𝑥
−

𝜕𝐺 𝑣𝑖𝑠

𝜕𝑦
= 𝑆 (1.1)

The conservative variables’ vector 𝑊⃗⃗⃗ = (𝜌, 𝜌𝑢, 𝜌𝑣, 𝜌𝐸)𝑇, the inviscid flux vectors 𝐹 𝑖𝑛𝑣 , 𝐺 𝑖𝑛𝑣 , the

viscous flux vectors 𝐹 𝑣𝑖𝑠 , 𝐺 𝑣𝑖𝑠 and the vector of the source term 𝑆 are expressed in terms of the

Chapter 1: Mathematical and Numerical Modeling of 2-D Euler Equations 2019

4

primitive variables (𝜌, 𝑢, 𝑣, 𝑝). Considering the source term as equal to zero for 2-D problems, the

inviscid and viscous vectors are determined as shown in the following equations [Koo00, Lyg14b].

𝐹 𝑖𝑛𝑣 =

(

𝜌𝑢

𝜌𝑢2 + 𝑝

𝜌𝑢𝑣

(𝜌𝛦 + 𝑝)𝑢)

, 𝐺 𝑖𝑛𝑣 =

(

𝜌𝑣

𝜌𝑣𝑢

𝜌𝑣2 + 𝑝

(𝜌𝛦 + 𝑝)𝑣)

 (1.2)

𝐹 𝑣𝑖𝑠 =

(

0

𝜏𝑥𝑥

𝜏𝑥𝑦

𝑢𝜏𝑥𝑥 + 𝑣𝜏𝑥𝑦 + 𝑞𝑥)

 , 𝐺 𝑣𝑖𝑠 =

(

0

𝜏𝑦𝑥

𝜏𝑦𝑦

𝑢𝜏𝑦𝑥 + 𝑣𝜏𝑦𝑦 + 𝑞𝑦)

 (1.3)

The viscous stresses originate from the friction between the fluid and the surface of an element

and depend on the dynamical properties of the medium. For the Newtonian fluid (including

compressible viscous fluids), the shear stresses are proportional to local strain rate, the rate of

change of its deformation over time. The diffusive flux vectors 𝐹 𝑣𝑖𝑠, 𝐺 𝑣𝑖𝑠 are defined from the

stress tensor and calculated according to the Equation 1.4 [Hir90]

𝜏𝑖𝑗 = 𝜇 [(
𝜕𝑢𝑖

𝜕𝑥𝑗
+

𝜕𝑢𝑗

𝜕𝑥𝑖
) −

2

3
(∇ ∙ 𝑉⃗)𝛿𝑖𝑗] (1.4)

where μ is the dynamic viscosity coefficient; for a perfect gas, μ heavily relies on the temperature

and to a smaller extend to the pressure [Bla01]. The dynamic viscosity can be computed based on

the local temperature of the fluid (in K) via the Sutherland formula as in 1.5 [Luo05]

𝜇 =
𝑐1𝑇

3
2⁄

𝑇 + 𝑐2
 (1.5)

where the coefficients c1 and c2 are equal to 1.458E-6 kg m-1 s-1 K-1/2 and 110.4 K respectively, e.g.,

the obtained dynamic viscosity for air at 300 K equals to 1.846E-5 kg m-1 s-1. Based on the

reference dynamic viscosity 𝜇𝑟𝑒𝑓 and the reference temperature 𝑇𝑟𝑒𝑓, whose values are usually

used in the far field, a different formulation is applied to express dynamic viscosity, as shown in

1.6 [Luo05].

𝜇 = 𝜇𝑟𝑒𝑓 (
𝑇

𝑇𝑟𝑒𝑓
)

3
2⁄ 𝑇𝑟𝑒𝑓 + 𝑐2

𝑇 + 𝑐2

(1.6)

The four conservative variables (𝜌, 𝜌𝑢, 𝜌𝑣, 𝜌𝐸) are expressed by the two-dimensional Navier-

Stokes equations with a set of four equations containing, though, six unknown flow field

variables (𝜌, 𝑢, 𝑣, 𝐸, 𝑝, 𝑇).

Two more equations are, therefore, required to complete the full set of the equation system.

Assuming that in pure aerodynamics the fluid works as a perfect gas, the state equation is

represented in 1.7 [Lan98]

𝑝 = 𝜌𝑅𝑔𝑇 (1.7)

 2019 Chapter 1: Mathematical and Numerical Modeling of 2-D Euler Equations

5

where the gas constant Rg equals to 287.04 m2s-2K-1 and it is associated with the constant pressure

and volume specific heat coefficients with the following equations

𝑅𝑔 = 𝑐𝑝 − 𝑐𝑣 , 𝛾 = 𝑐𝑝/𝑐𝑣 (1.8)

while these coefficients are defined as follows

ℎ = 𝑐𝑝𝑇 , 𝑒 = 𝑐𝑣𝑇 (1.9)

where ℎ and 𝑒 are the enthalpy and internal energy of the gas per unit mass. The particular heat

coefficients are regarded as constants. However, different types of gases receive different values;

for air, the constant pressure specific heat coefficient 𝑐𝑝 equals to 1004.64 m2s-2K-1, the constant

volume specific heat coefficient 𝑐𝑣 equals to 717.6 m2s-2K-1 and the dimensionless coefficient γ

equals to 1.4 [Lan98].

In order to complete the equation set, pressure 𝑝 is associated with the total energy per unit

volume 𝜌𝛦 as in 1.10 [Bla01]

𝜌𝛦 = 𝜌𝑒 +
1

2
𝜌(𝑢2 + 𝑣2) = 𝜌𝑇𝑐𝑣 +

1

2
𝜌(𝑢2 + 𝑣2) =

(1.10)

𝑝

𝑅𝑔
𝑐𝑣 +

1

2
𝜌(𝑢2 + 𝑣2) =

𝑝

(𝛾 − 1)
+

1

2
𝜌(𝑢2 + 𝑣2)

where 𝜌𝑒 is the internal energy per unit volume. The corresponding specific total enthalpy ℎ𝑡 is

then associated with the pressure 𝑝 and the total energy per unit volume 𝜌𝛦 as shown in 1.11.

ℎ𝑡 =
𝜌𝐸 + 𝑝

𝜌
=

𝛾𝑝

𝜌(𝛾 − 1)
+

1

2
(𝑢2 + 𝑣2) (1.11)

The heat flux vector (𝑞𝑥 , 𝑞𝑦) in the energy equation is defined accordingly to the stress tensor as

illustrated below, where the conductivity coefficient χ depends on the dimensionless Prandtl

number Pr [Bla01].

𝑞𝑖 = 𝜒∇𝛵 , 𝜒 =
𝜇𝑐𝑝

𝑃𝑟
 (1.12)

1.1.3 Euler 2-D Equations

While Navier-Stokes equations describe the behavior of viscous fluids, for the cases of inviscid

flows, like for example for high Reynolds-number flows where the boundary layer is very thin

compared to the dimensions of the body, only the corresponding flux vectors 𝐹 𝑖𝑛𝑣 , 𝐺 𝑖𝑛𝑣 are

considered. This leads in the so-called Euler equations depicted in 1.13 and 1.14, while the

remaining terms are given in 1.7-1.11 [Bla01].

𝜕𝑊⃗⃗⃗

𝜕𝑡
+

𝜕𝐹 𝑖𝑛𝑣

𝜕𝑥
+

𝜕𝐺 𝑖𝑛𝑣

𝜕𝑦
= 𝑆 (1.13)

Chapter 1: Mathematical and Numerical Modeling of 2-D Euler Equations 2019

6

𝐹 𝑖𝑛𝑣 =

(

𝜌𝑢

𝜌𝑢2 + 𝑝

𝜌𝑢𝑣

(𝜌𝛦 + 𝑝)𝑢)

, 𝐺 𝑖𝑛𝑣 =

(

𝜌𝑣

𝜌𝑣𝑢

𝜌𝑣2 + 𝑝

(𝜌𝛦 + 𝑝)𝑣)

 (1.14)

Henceforth, for the purposes of this study merely Euler equations will be taken into account.

1.1.4 Non-Dimensionalization Procedure

The differential equations representing the conservation laws are rarely solved using dimensional

variables. The common practice is to write these equations in a non-dimensional form, using

dimensionless quantities, obtained through a proper characteristic scale. This allows for the

number reduction of the appropriate parameters contributing thus to the revelation of the

relative magnitude of the various terms in the conservation equation and, consequently, of those

that can be neglected [Mou16].

A dimensional variable is transformed into a non-dimensional one by dividing the variable by a

quantity that has the same dimension as the original variable. Therefore, the normalization of the

variables is performed utilizing a characteristic length Lref, the free-stream velocity Vref, the free-

stream density ρref, the free-stream dynamic viscosity μref, and the constant volume specific heat

coefficient 𝑐𝑣 as shown in 1.15.

𝑥𝑖̃ =
𝑥𝑖

𝐿𝑟𝑒𝑓
 , 𝑢̃𝑖 =

𝑢𝑖

𝑉𝑟𝑒𝑓
 , 𝜌̃ =

𝜌

𝜌𝑟𝑒𝑓
 , 𝜇̃ =

𝜇

𝜇𝑟𝑒𝑓
 , 𝑅̃𝑔 =

𝑅𝑔

𝑐𝑣
= 𝛾 − 1 (1.15)

Considering the previous normalizations, the rest of the variables included in Equations (1.13)-

(1.14) are expressed as follows [Mun98]:

𝑝̃ =
𝑝

𝜌𝑟𝑒𝑓𝑉𝑟𝑒𝑓
2 , 𝜌𝛦̃ =

𝜌𝛦

𝜌𝑟𝑒𝑓𝑉𝑟𝑒𝑓
2 , ℎ̃𝑡 =

ℎ𝑡

𝑉𝑟𝑒𝑓
2 , 𝑇̃ =

𝑇

𝑉𝑟𝑒𝑓
2 𝑐𝑣⁄

 , 𝑡̃ =
𝑡

𝐿𝑟𝑒𝑓
𝑉𝑟𝑒𝑓

⁄
 (1.16)

Moreover, the constant pressure and the constant volume specific heat coefficients are
normalized (𝑐̃𝑝 = 𝛾 and 𝑐̃𝑣 = 1), while the perfect gas equation is transformed as:

𝑝 = 𝜌𝑅𝑔𝑇

⇒ 𝑝̃ 𝜌𝑟𝑒𝑓𝑉𝑟𝑒𝑓

2 = 𝜌̃𝜌𝑟𝑒𝑓𝑅̃𝑔𝑐𝑣𝑇̃ (
𝑉𝑟𝑒𝑓

2

𝑐𝑣
)

⇒𝑝̃ = 𝜌̃𝑅̃𝑔𝑇̃

⇒𝑝̃ = 𝜌̃(𝛾 − 1)𝑇̃ (1.17)

Lastly, two additional expressions are used, concerning the computation of the local speed of

sound at a node 𝑃 [Lan98]

𝑎̃𝑃 = √𝛾𝑅̃𝑔𝛵̃𝑃 = √𝛾(𝛾 − 1)𝛵̃𝑃 = √
𝛾𝑝̃𝑃

𝜌̃𝑃
 (1.18)

and the computation of corresponding Mach number [Mun98]:

𝑀𝑃 =
√𝑢̃𝑃+

2 𝑣̃𝑃
2

𝑐̃𝑃
 (1.19)

 2019 Chapter 1: Mathematical and Numerical Modeling of 2-D Euler Equations

7

For simplification reasons, the superscript "~" denoting the normalized variables will be neglected

in the following sections.

1.2 Numerical Modeling of 2-D Equations

1.2.1 Spatial Discretization

A Node-Centered Finite-Volume (NCFV) scheme is employed for the discretization of the

governing equations and, consequently, for the computation of the numerical fluxes. In this

approach, the computational domain is divided into a finite number of cells, from which control

volumes are formed surrounding each vertex in the mesh.

Figure 1.1: Median control volume surrounding a node in a 2-D grid

Consequently, these non-overlapping control volumes cover through a median dual partition the

entire computational domain, which is dual to the primal mesh. The flow variables are stored at

each mesh vertex. In a two-dimensional triangular mesh the median dual control volume for a

node 𝑃 is formed by connecting the barycenter of each neighboring triangular cell (sharing this

node) to the midpoint of the corresponding cell edges, as illustrated in Figure 1.1 [Kal96, Kal05,

Lyg12, Sar14]. Given this definition, the nodes of each element, which compose a control volume,

divide the volume of this element to equal parts.

Taking into account the above described discretization scheme, Euler Equation 1.13 is integrated

over the control volume 𝐶𝐸𝑃 of each node 𝑃 as:

∬
𝜕𝑊⃗⃗⃗

𝜕𝑡

𝐶𝐸𝑃

𝑑𝑥𝑑𝑦 + ∬
𝜕𝐹 𝑖𝑛𝑣

𝜕𝑥

𝐶𝐸𝑃

+
𝜕𝐺 𝑖𝑛𝑣

𝜕𝑦
𝑑𝑥𝑑𝑦 = ∬𝑆 𝑑𝑥𝑑𝑦

𝐶𝐸𝑃

 (1.20)

After the employment of the Green-Gauss divergence theorem the equation is transformed as

follows

Chapter 1: Mathematical and Numerical Modeling of 2-D Euler Equations 2019

8

∬
𝜕𝑊⃗⃗⃗

𝜕𝑡

𝐶𝐸𝑃

𝑑𝑥𝑑𝑦 + ∫ 𝛨⃗⃗̂ 𝑖𝑛𝑣

𝜕𝐶𝐸𝑃

𝑑𝑙 = ∬𝑆 𝑑𝑥𝑑𝑦

𝐶𝐸𝑃

 (1.21)

where 𝜕𝐶𝐸𝑃 denotes the boundaries of the control volume of node 𝑃 defined by the facets

constructed around the edges connecting node 𝑃 with each neighboring node 𝑄. If 𝜕𝐶𝐸𝑃𝑄 is the

interfacing part of 𝜕𝐶𝐸𝑃 and 𝜕𝐶𝐸𝑄, 𝐾𝑁 (𝑃) is the set of neighboring nodes to 𝑃, and 𝛤 is the

domain's external boundary, then 𝜕𝐶𝐸𝑃 is defined as

𝜕𝐶𝐸𝑃 = ⋃ 𝜕𝐶𝐸𝑃𝑄 + (𝜕𝐶𝐸𝑃 ∩ 𝛤)

𝑄∈𝐾𝑁(𝑃)

 (1.22)

where 𝛨⃗⃗̂ 𝑖𝑛𝑣 is the vector of the inviscid numerical fluxes and is evaluated at the midpoint of an

edge that is connected to node 𝑃. This midpoint coincides with the interface between the

adjacent control volumes of nodes 𝑃 and 𝑄 connected with this edge. Utilizing the outward unit

normal vector 𝑛⃗̂ 𝑃𝑄 of the corresponding 𝜕𝐶𝐸𝑃𝑄
face of the control volume, the aforementioned

vectors are described as [Koo00, Kou03]

𝛨⃗⃗̂ 𝑖𝑛𝑣 = 𝑛̂𝑃𝑄,𝑥𝐹
𝑖𝑛𝑣 + 𝑛̂𝑃𝑄,𝑦𝐺 𝑖𝑛𝑣

 (1.23)

𝑛⃗̂ 𝑃𝑄 =
𝑛⃗ 𝑃𝑄

|𝑛⃗ 𝑃𝑄|
= (𝑛̂𝑃𝑄,𝑥 , 𝑛̂𝑃𝑄,𝑦) (1.24)

where 𝑛⃗ 𝑃𝑄 is defined as the vector sum of the outward normal vectors of the two facets

forming 𝜕𝐶𝐸𝑃𝑄. Figure 1.2 presents the two normal vectors 𝑛⃗ 𝑃𝑄,1 and 𝑛⃗ 𝑃𝑄,2 that define the

outward normal vector of a facet.

Thus, Equation 1.21 is transformed as follows:

∬
𝜕𝑊⃗⃗⃗

𝜕𝑡

𝐶𝐸𝑃

𝑑𝑥𝑑𝑦 + ∑ ∫ 𝛨⃗⃗̂ 𝑖𝑛𝑣

𝜕𝐶𝐸𝑃𝑄

𝑑𝑙 + ∫ 𝛨⃗⃗̂ 𝑖𝑛𝑣

𝜕𝐶𝐸𝑃∩𝛤

𝑑𝑙

𝑄∈𝐾𝑁(𝑃)

= ∬𝑆 𝑑𝑥𝑑𝑦

𝐶𝐸𝑃

 (1.25)

Assuming that the conservative variables at node 𝑃 are equal to their mean values over 𝐶𝐸𝑃, the

first term of 1.25 becomes:

∬
𝜕𝑊⃗⃗⃗

𝜕𝑡

𝐶𝐸𝑃

𝑑𝑥𝑑𝑦 = (
𝑑𝑊⃗⃗⃗

𝑑𝑡
)

𝑃

∬

𝐶𝐸𝑃

𝑑𝑥𝑑𝑦 = (
𝑑𝑊⃗⃗⃗

𝑑𝑡
)

𝑃

𝐸𝑃 (1.26)

Expressing the integrals of the numerical fluxes as summations of fluxes through the faces

composing the control volume of node 𝑃, Equation 1.25 is transformed as

(
𝑑𝑊⃗⃗⃗

𝑑𝑡
)

𝑃

𝐸𝑃 + ∑ 𝛷⃗⃗ 𝑃𝑄
𝑖𝑛𝑣

𝑄∈𝐾𝑁(𝑃)

+ ∑ 𝛷⃗⃗ 𝑃,𝑜𝑢𝑡
𝑖𝑛𝑣

(𝐾𝑜𝑢𝑡∈𝜕𝐶𝐸𝑃∩𝛤)

= ∬𝑆 𝑑𝑥𝑑𝑦

𝐶𝐸𝑃

 (1.27)

 2019 Chapter 1: Mathematical and Numerical Modeling of 2-D Euler Equations

9

𝛷⃗⃗ 𝑃𝑄
𝑖𝑛𝑣 = ∫ 𝛨⃗⃗̂ 𝑖𝑛𝑣

𝜕𝐶𝐸𝑃𝑄

𝑑𝑙 = 𝑓 (𝑊⃗⃗⃗
𝑃𝑄
𝐿 , 𝑊⃗⃗⃗

𝑃𝑄
𝑅 , 𝑛⃗ 𝑃𝑄)

(1.28)

𝛷⃗⃗ 𝑃,𝑜𝑢𝑡
𝑖𝑛𝑣 = ∫ 𝛨⃗⃗̂ 𝑖𝑛𝑣

𝜕𝐶𝐸𝑃∩𝛤

𝑑𝑙 = 𝑓 (𝑊⃗⃗⃗
𝑃
 , 𝑊⃗⃗⃗

𝑜𝑢𝑡
 , 𝑛⃗ 𝑜𝑢𝑡)

where 𝑊⃗⃗⃗
𝑃𝑄
𝐿 and 𝑊⃗⃗⃗

𝑃𝑄
𝑅 are the vectors of the conservative variables on the left and right side of the

edge 𝑃𝑄 respectively, while 𝑊⃗⃗⃗
𝑜𝑢𝑡
 is the corresponding vector on the boundary of the flow domain.

Figure 1.2: Outward normal vectors at an interface among nodes 𝑃 and 𝑄

1.2.2 Numerical Fluxes

First Order Accurate Scheme

The convective numerical fluxes of the flow equations are computed by employing an upwind

scheme, which distinguishes between upstream and downstream influences, i.e. the wave

propagation directions, considering the physical properties of the Euler equations. A one-

dimensional Riemann problem, which is based on the solution of the locally one-dimensional

Euler equations for discontinuous (left and right) states at an interface is utilized and applied in

the direction of the normal vector for each face of the control volume of a node 𝑃. Since the

computational effort of the exact solution of the Riemann problem would require excessive

numerical effort [Lan98], Roe’s approximate Riemann solver [Roe81] is employed for the

evaluation of the inviscid fluxes at the midpoint of edge 𝑃𝑄 as in 1.29

𝛷⃗⃗ 𝑃𝑄
𝑖𝑛𝑣 =

1

2
(𝐻⃗⃗ 𝑖𝑛𝑣(𝑊⃗⃗⃗

𝑃𝑄
𝐿 , 𝑛⃗ 𝑃𝑄) + 𝐻⃗⃗ 𝑖𝑛𝑣(𝑊⃗⃗⃗

𝑃𝑄
𝑅 , 𝑛⃗ 𝑃𝑄)) −

1

2
|𝐴̃𝑃𝑄|(𝑊⃗⃗⃗

𝑃𝑄
𝑅 − 𝑊⃗⃗⃗

𝑃𝑄
𝐿) (1.29)

Chapter 1: Mathematical and Numerical Modeling of 2-D Euler Equations 2019

10

where 𝛢̃ is the Jacobian matrix1 of the convective flux vector 𝐻⃗⃗ 𝑖𝑛𝑣, which is evaluated at the

midpoint of the corresponding edge 𝑃𝑄 by utilizing Roe's averaged values of the primitive

variables (denoted with tilde ~) [Roe81, Ven95, Lan98, Koo00, Kou03] and is defined as in 1.30

𝑈⃗⃗̃ 𝑃𝑄 =
√𝜌𝐿 𝑈⃗⃗ 𝐿 + √𝜌𝑅 𝑈⃗⃗ 𝑅

√𝜌𝐿 + √𝜌𝑅

 (1.30)

where 𝑈⃗⃗ 𝐿 and 𝑈⃗⃗ 𝑅 in first order accurate schemes are the values of primitive variables at the left

and right side of edge 𝑃𝑄 respectively.

Based on the following formula (1.31), Equation 1.29 is transformed in its equivalent in 1.32

[Roe81, Lan98]:

𝐻⃗⃗ 𝑖𝑛𝑣(𝑊⃗⃗⃗
𝑃𝑄
𝑅) − 𝐻⃗⃗ 𝑖𝑛𝑣(𝑊⃗⃗⃗

𝑃𝑄
𝐿) = 𝐴̃𝑃𝑄

− (𝑊⃗⃗⃗
𝑃𝑄
𝑅 − 𝑊⃗⃗⃗

𝑃𝑄
𝐿) (1.31)

𝛷⃗⃗ 𝑃𝑄
𝑖𝑛𝑣 = 𝐻⃗⃗ 𝑖𝑛𝑣(𝑊⃗⃗⃗

𝑃𝑄
𝐿 , 𝑛⃗ 𝑃𝑄) + 𝐴̃𝑃𝑄

− (𝑊⃗⃗⃗
𝑃𝑄
𝑅 − 𝑊⃗⃗⃗

𝑃𝑄
𝐿) (1.32)

On account of computational effort and memory requirements on unstructured grids, edge-wise

data structure of the algorithm is used, as a more sophisticated data structure. Within this

approach the solver receives information from the examined mesh as sets of nodes connected by

an edge. Along these lines, the evaluation of the convective fluxes for all the mesh nodes is

achieved with a single edge-loop, since no information is needed about the cell topology [Lyg14a,

Lyg15].

Second-Order Accurate Scheme

 In a second-order accurate scheme, left and right states of an edge 𝑃𝑄 are reconstructed with the

Taylor series expansions which consider the corresponding values of more neighboring mesh

nodes during the computation of the numerical fluxes. The incorporated second-order accurate

scheme is based on the MUSCL (Monotonic Upstream Scheme for Conservation Laws)

reconstruction of the primitives or conservative variables. In order to alleviate the generation of

oscillations and spurious solutions in regions of high-order gradients such as shocks, slope

limiters are utilized to achieve a monotonicity preserving scheme (Van Albada -Van Leer

[VanA82], Min-mod [Swe84]). Thus, the left and right states for a primitive or a conservative

variable 𝑈 at the midpoint of an edge 𝑃𝑄 are approximated as [Bar92, And94, Bla01, ANSYS06,

Sar14]:

𝑈𝑃𝑄
𝐿 = 𝑈𝑃 +

1

2
∙ (∇𝑈)𝐿 ∙ 𝑟 𝑃𝑄

(1.33)

𝑈𝑃𝑄
𝑅 = 𝑈𝑄 −

1

2
∙ (∇𝑈)𝑅 ∙ 𝑟 𝑃𝑄

The first R/H side terms are the left and right nodes’ values of variable 𝑈 and 𝑟 𝑃𝑄 is the vector

connecting these nodes. The extrapolation gradients (∇𝑈)𝐿 and (∇𝑈)𝑅 are computed using the

1 Information on the computation of the Jacobian matrix is given in Appendix A.

 2019 Chapter 1: Mathematical and Numerical Modeling of 2-D Euler Equations

11

gradients (∇𝑈)𝑃 and (∇𝑈)𝑄 at the nodes 𝑃 and 𝑄 respectively. The evaluation of these derivatives

employs the element-by-element approach [Bar92]. In this case, the gradient for a node 𝑃 (where

𝑃 is the common vertex of the neighboring triangles 𝑇), is described as [Bar92]

(∇𝑈)𝑃 =
1

𝐸𝑃
∑

𝐸𝑇

3
𝑇∈𝐾𝑇(𝑃)

(∇𝑈)𝑇 (1.34)

where 𝐸𝑃 and 𝐸𝑇 are the areas of the control volume of node 𝑃 and adjacent element 𝑇. However,

because of utilizing the edge-based data structure of the algorithm [Bar92, Bla01], derived by the

Green-Gauss linear representation method, an equivalent expression as in 1.35 is more

appropriate:

(∇𝑈)𝑃 =
1

𝐸𝑃
∑

1

2
(𝑈𝑃 + 𝑈𝑄) ∙

𝑄∈𝐾𝑁(𝑃)

𝑛⃗ 𝑃𝑄 (1.35)

In case of a boundary node (Figure 1.3) the previous equation is modified to include also the

boundary interfaces as follows [Lyg13]:

(∇𝑈)𝑃 =
1

𝐸𝑃
(∑

1

2
(𝑈𝑃 + 𝑈𝑄) ∙ 𝑛⃗ 𝑃𝑄 +

𝑄∈𝐾𝑁(𝑃)

∑ 𝑈𝑃 ∙ 𝑛⃗ 𝑜𝑢𝑡

(𝐾𝑜𝑢𝑡∈𝜕𝐶𝐸𝑃∩𝛤)

) (1.36)

1.2.3 Boundary Conditions

Numerical flow simulations are always restricted to a specific part of the real physical domain.

Thus, artificial boundaries are formed with the truncation of the computational domain and,

correspondingly, physical quantity values have to be specified. Types of boundary conditions that

encountered in the numerical solution are wall, inlet, outlet and symmetry boundaries.

Consequently, the contribution of the boundary surfaces is also taken into account in the flux

balance of the corresponding nodes.

With respect to the wall boundary nodes, a free-slip boundary condition is employed for the

solution of the Euler equations, regarding inviscid flows. The free-slip condition is implemented

implicitly, by adding a flux with zero normal to the boundary face velocity 𝑉𝑛 described as

[Mav94]

𝑉𝑛 = 𝑉⃗ ∙ 𝑛⃗̂ 𝑜𝑢𝑡 = 0 (1.37)

where 𝑛⃗̂ 𝑜𝑢𝑡 = (𝑛̂𝑜𝑢𝑡,𝑥 , 𝑛̂𝑜𝑢𝑡,𝑦) is the normal to the boundary face unitary vector (outward-

positive). An example of such vectors is presented in Figure 1.3 for a boundary node.

Finally, the added free-slip convective flux is calculated as in the following equation:

𝐻⃗⃗ 𝑓𝑟𝑒𝑒𝑠𝑙𝑖𝑝 =

(

𝜌𝑉𝑛

𝜌𝑢𝑉𝑛 + 𝑝𝑛̂𝑜𝑢𝑡,𝑥

𝜌𝑣𝑉𝑛 + 𝑝𝑛̂𝑜𝑢𝑡,𝑦

(𝜌𝐸 + 𝑝)𝑉𝑛)

=

(

0

𝑝𝑛̂𝑜𝑢𝑡,𝑥

𝑝𝑛̂𝑜𝑢𝑡,𝑦

0)

 (1.38)

Chapter 1: Mathematical and Numerical Modeling of 2-D Euler Equations 2019

12

Figure 1.3: Normal outward vectors for a boundary node.

Regarding inlet boundary faces, a one one-dimensional Riemann problem is considered between

the face’s midpoint and the far-field to compute the convective fluxes and then to distribute them

to the corresponding boundary nodes. Employing the Steger-Warming scheme [Ste81, Lan98],

Equation 1.39 is obtained

𝐻⃗⃗ 𝐾,𝑜𝑢𝑡
𝑖𝑛𝑣 = 𝐴̃𝐾

+𝑊⃗⃗⃗
𝐾 + 𝐴̃𝐾

−𝑊⃗⃗⃗
𝑜𝑢𝑡 (1.39)

where subscript 𝐾 denotes the midpoint of the boundary face, while subscript 𝑜𝑢𝑡 denotes the far

field; the values of the variables of vector 𝑊⃗⃗⃗⃗ ⃗𝑜𝑢𝑡 are obtained either from the far field or the

boundary midpoint depending on the type of the flow [Hir90, Bla01].

With reference to outlet boundary faces, the computation of the convective fluxes is performed

on the inlet ones in a similar manner; depending on the type of the flow, the values of the

variables of vector 𝑊⃗⃗⃗
𝑜𝑢𝑡 are obtained by implementing a one-dimensional Riemann problem

between the midpoint face and the far-filed. In the case of a symmetry surface, free-slip boundary

conditions are imposed to the flow equations similarly to these for solid free-slip wall boundaries.

1.2.4 Time Integration

The governing equations require a separate discretization in space and time. For time integration

an explicit scheme is incorporated for solving the Euler equations. A widely used method is the

multistage time-stepping Runge-Kutta scheme, where the solution advances in several stages and

the residual is evaluated at intermediate states [Kal96, Bla01, Lyg14a].

Applying time discretization leads to the transformation of Equation 1.27 into the following one

−𝐸𝑃 (
𝑑𝑊⃗⃗⃗

𝑑𝑡
)

𝑃

= −𝐸𝑃

𝛥𝑊⃗⃗⃗
𝑃
𝑛+1

𝛥𝑡𝑃
=

(1.40)

∑ 𝛷⃗⃗ 𝑃𝑄
𝑖𝑛𝑣

𝑄∈𝐾𝑁(𝑃)

+ ∑ 𝛷⃗⃗ 𝑃,𝑜𝑢𝑡
𝑖𝑛𝑣

(𝐾𝑜𝑢𝑡∈𝜕𝐶𝐸𝑃∩𝛤)

− 𝑆 𝑃𝐸𝑃 = 𝑅⃗ 𝑃
𝑛

 2019 Chapter 1: Mathematical and Numerical Modeling of 2-D Euler Equations

13

where 𝛥𝑡𝑃 is the local time step at node 𝑃 and is computed as [Kim03, Lyg11]

𝛥𝑡𝑃
 = 𝐶𝐹𝐿 ∙

0.5𝛼𝑚𝑖𝑛 𝑙 𝑒𝑑𝑔𝑒,𝑃

|𝑈⃗⃗ 𝑃| + 𝑎𝑃

 (1.41)

where |𝑈⃗⃗ 𝑃| is the value of velocity at node 𝑃, 𝑎𝑃 is the speed of sound evaluated on the same node

and 𝛼𝑚𝑖𝑛 𝑙 𝑒𝑑𝑔𝑒,𝑃 is the length of the shortest edge connected to 𝑃.

The local time stepping constitutes a typical time convergence acceleration methodology to the

steady state solution, which amounts to advancing the solution in each control volume with the

maximum allowable time step [Bla01]; in case a global time step is required, it is defined as the

smallest of the local time steps of all the nodes in the mesh.

When a second-order scheme is implemented a four Runge-Kutta (RK (4)) method is employed to

solve Equation 1.40. It occurs iteratively as follows [Bla01, Lyg15, Lal88 and Sor03]

𝑊⃗⃗⃗
𝑃
𝑛+1,0 = 𝑊⃗⃗⃗

𝑃
𝑛

(1.42) 𝑊⃗⃗⃗
𝑃
𝑛+1,𝑘 = 𝑊⃗⃗⃗

𝑃
𝑛 − 𝛼𝑘

𝛥𝑡𝑃
𝐸𝑃

𝑅⃗ (𝑊⃗⃗⃗
𝑃
 𝑛+1,𝑘−1), 𝑘 = 1,… , 4

𝑊⃗⃗⃗
𝑃
𝑛+1 = 𝑊⃗⃗⃗

𝑃
𝑛+1,4

where k is the number of current internal stage of the scheme. Constants α1, α2, α3 and α4 of the

method with values 0.11, 0.26, 0.5 and 1.0 respectively, are used attributing second-order temporal

accuracy to the procedure [Bla01].

Given the relatively low convergence rate of explicit methods, an acceleration method aiming at

increasing the maximum possible time step is required. This occurs by introducing a certain

amount of implicitness in the explicit scheme allowing for the utilization of larger CFL numbers.

This technique, termed implicit residual smoothing, modifies the residual for a node 𝑃 and is

defined as

𝑅𝑃
𝑚+1 =

𝑅𝑃
0 + 𝜀 ∑ 𝑅𝑄𝑗

𝑚𝑙
𝑗=1

1 + 𝜀 ∑ 1𝑙
𝑗=1

 (1.43)

where 𝑄𝑗 are the neighboring nodes of node 𝑃 and 𝜀 is a coefficient with typical values 0.5-0.8,

defining the blending degree [Bla01].

Chapter 1: Mathematical and Numerical Modeling of 2-D Euler Equations 2019

14

"Intentionally left blank"

 2019 Chapter 2: High-Order Numerical Scheme

15

CHAPTER 2

HIGH-ORDER NUMERICAL SCHEME

2.1 Introduction to High-Order Formulation

In recent years, the focus of interest has been shifted to high-order scheme development, owing

to the fact that such approaches offer greater accuracy at a permissible computational cost

[Yan14, Yan15]. However, despite the rapid reduction of the truncation error in higher order

methods compared to the lower order ones, the former scheme is utterly more cost effective.

Another potential constraint against the spread of high order schemes relates to the substantial

code modifications required for its implementation, especially with respect to the unstructured

grid procedures [Yan15, Yan16].

Within the higher order scheme development, emphasis has been placed on variants of the

Discontinuous Galerkin method (DG). According to this method additional degrees of freedom

(DOFs) are introduced within a given cell to fit a high order polynomial to the solution. In this

framework, structured connectivity is recovered within each cell, as shown in Figures 2.1 and 2.2

[Per12, Yan14].

Figure 2.1: Stencil for the DG method in a quadrilateral cell

Figure 2.2: Stencil for the DG method in a triangular cell

A fundamental difference between the DG methods and the traditional finite volume one lies on

the fact that, due to the tight linking of DOFs within a cell, the mass matrix is a full matrix rather

than a diagonal one, and needs to be stored and inverted implicitly [Per12]. This means that the

Chapter 2: High-Order Numerical Scheme 2019

16

application of DG methods into currently existing CFD codes would demand in depth code

transformations. Additionally, for such a high-order scheme to advance and to be incorporated

into new production codes, it would be at the expense of considerable verification and validation

efforts.

In this chapter, a modular high-order scheme with low-dissipation flux difference-splitting is

applied [Yan16]. According to this approach, no increase in DOFs within each cell occurs, unlike

the k-exact finite volume method [Bar93], which leads into the need for great amounts of extra

storage. The core idea is the achievement of high-order accuracy by adding high-order correction

terms to the governing equations and by not introducing extra variables. The main advantage of

this approach is its smooth application to any existing code, since only minor modifications are

required.

As already mentioned in the Introduction, the development of the presented high-order scheme

was founded on the academic EU2 CFD code, which is an in-house unstructured-grid, Node-

Centered Finite-Volume flow solver. The code then integrates a generic third-order interpolation

module, which, despite the fact that it is not formally third-order accurate on arbitrary meshes,

offers a significant improvement on the accuracy over the existing second-order scheme.

The presentation of this high-order method begins with the introduction of a scalar advection

equation problem in 1-D, where it is demonstrated how the high-order accuracy is achieved by

calculating the high-order terms. In what follows, the presentation gradually escalates into a 2-D

formulation in order to be implemented into a variable-extrapolation formulation named U-

MUSCL. Finally, a higher-order time discretization scheme is introduced with the employment of

an explicitly Strong Stability-Preserving Runge-Kutta method (SSPRK).

To begin with, the one-dimensional scalar advection equation considered is the following

𝜕𝑢

𝜕𝑡
+

𝜕(𝑐𝑢)

𝜕𝑥
= 0 (2.1)

where u is a scalar quantity and c represents the velocity. Figure 2.3 below depicts part of the

computational domain for a node-centered scheme where the numerical figures 1-5 sign the data

points where the values of the scalar are located, while A-F stand for the faces (grid points)

among the control volumes.

Figure 2.3: Problem of 1-D scalar equation

After integrating Equation 2.1 over a control volume (for instance, the marked control volume 3

in Figure 2.3) and applying Gauss theorem the result is shown in 2.2.

 2019 Chapter 2: High-Order Numerical Scheme

17

∫
𝜕𝑢

𝜕𝑡
𝑑𝑉

𝑉

+ ∫
𝜕(𝑐𝑢)

𝜕𝑥
𝑑𝑉

𝑉

= 0

→ ∫

𝜕𝑢

𝜕𝑡
𝑑𝑉 + ∮ (𝑐𝑢) 𝑛̂𝑑𝑆

𝜕𝑉

𝑉

 = 0 (2.2)

Assuming the flow of the quantity follows a certain direction, the resulting equation is

𝜕𝑢

𝜕𝑡
𝑉 + (𝑐𝑢)𝐷𝑆𝐷 − (𝑐𝑢)𝐶𝑆𝐶 = 0 (2.3)

In order to compute the fluxes at faces 𝐶 and 𝐷, the values of the scalar quantity at the

aforementioned faces need to be calculated. Given the values at the data points, it is possible to

manage this by applying the Taylor series expansions. The implementation of this procedure to

the face 𝐶 leads to Equations 2.4:

𝑢𝐶
𝐿 = 𝑢2 +

𝑑𝑢2

𝑑𝑥
(𝑥𝐶 − 𝑥2) +

1

2!

𝑑2𝑢2

𝑑𝑥2
(𝑥𝐶 − 𝑥2)

2 +
1

3!

𝑑3𝑢2

𝑑𝑥3
(𝑥𝐶 − 𝑥2)

3 + 𝑂((𝑥𝐶 − 𝑥2)
4)

(2.4)

𝑢𝐶
𝑅 = 𝑢3 +

𝑑𝑢3

𝑑𝑥
(𝑥𝐶 − 𝑥3) +

1

2!

𝑑2𝑢3

𝑑𝑥2
(𝑥𝐶 − 𝑥3)

2 +
1

3!

𝑑3𝑢3

𝑑𝑥3
(𝑥𝐶 − 𝑥3)

3 + 𝑂((𝑥𝐶 − 𝑥3)
4)

The superscript “R” denotes the right state, while “L” denotes the left. What is more, for face D the

result is shown below.

𝑢𝐷
𝐿 = 𝑢3 +

𝑑𝑢3

𝑑𝑥
(𝑥𝐷 − 𝑥3) +

1

2!

𝑑2𝑢3

𝑑𝑥2
(𝑥𝐷 − 𝑥3)

2 +
1

3!

𝑑3𝑢3

𝑑𝑥3
(𝑥𝐷 − 𝑥3)

3 + 𝑂((𝑥𝐷 − 𝑥3)
4)

(2.5)

𝑢𝐷
𝑅 = 𝑢4 +

𝑑𝑢4

𝑑𝑥
(𝑥𝐷 − 𝑥4) +

1

2!

𝑑2𝑢4

𝑑𝑥2
(𝑥𝐷 − 𝑥4)

2 +
1

3!

𝑑3𝑢4

𝑑𝑥3
(𝑥𝐷 − 𝑥4)

3 + 𝑂((𝑥𝐷 − 𝑥4)
4)

Considering a uniform mesh for reasons of simplicity where ℎ = (𝑥𝐶 − 𝑥2) = −(𝑥𝐶 − 𝑥3),

Equations 2.4 (for example for face 𝐶) are transformed as below.

𝑢𝐶
𝐿 = 𝑢2 +

𝑑𝑢2

𝑑𝑥
ℎ +

1

2!

𝑑2𝑢2

𝑑𝑥2
ℎ2 +

1

3!

𝑑3𝑢2

𝑑𝑥3
ℎ3 + 𝑂(ℎ4)

(2.6)

𝑢𝐶
𝑅 = 𝑢3 −

𝑑𝑢3

𝑑𝑥
ℎ +

1

2!

𝑑2𝑢3

𝑑𝑥2
ℎ2 −

1

3!

𝑑3𝑢3

𝑑𝑥3
ℎ3 + 𝑂(ℎ4)

What can be noted from the formulation above is that a high-order accuracy of the solution is

feasible provided that the derivatives at each cell center
𝑑𝑢

𝑑𝑥
,

𝑑2𝑢

𝑑𝑥2 ,
𝑑3𝑢

𝑑𝑥3 can be computed.

Nevertheless, for an unstructured grid only the first neighboring points are available, raising

considerable difficulties in computing the higher-order derivatives. To achieve this, the method

under discussion exploits the Green-Gauss theorem as demonstrated in what follows. The

theorem states that

∫∇𝑢 𝑑𝑉

𝑉

= ∮ 𝑢 𝑛̂ 𝑑𝑆

𝜕𝑉

∇𝑢 =
1

𝑉
∑ 𝑢 𝑛̂ 𝑑𝑆

𝑓𝑎𝑐𝑒𝑠

(2.7)

Chapter 2: High-Order Numerical Scheme 2019

18

where 𝛥𝑆 is the surface area of each face and 𝑛̂

is the corresponding surface unitary normal vector

(outward-positive). After calculating the first derivatives, as it is performed in a standard second-

order scheme, the above expression regarding to the gradient of the 3rd grid point, leads to the

following expression.

𝑑𝑢3

𝑑𝑥
=

1

2ℎ
(𝑢𝐷 − 𝑢𝐶) =

1

2ℎ
[
1

2
(𝑢4 + 𝑢3) −

1

2
(𝑢3 + 𝑢2)] =

1

4ℎ
(𝑢4 − 𝑢2) (2.8)

The above formulation computes only the first derivatives on unstructured grids. Proceeding with

the computation of the higher derivatives, the method heavily relies on the definition of the

Green-Gauss theorem [Yang14]. According to it, the computed gradient is considered a volume-

averaged value, rather than a local value. Given this, the same procedure is iterated to calculate

the second derivatives, resulting to the following expression.

𝑑2𝑢3

𝑑𝑥2
=

𝑑

𝑑𝑥
(
𝑑𝑢3

𝑑𝑥
) =

1

2ℎ
(
𝑑𝑢𝐷

𝑑𝑥
−

𝑑𝑢𝐶

𝑑𝑥
) =

1

2ℎ
[
1

2
(
𝑑𝑢4

𝑑𝑥
+

𝑑𝑢3

𝑑𝑥
) −

1

2
(
𝑑𝑢3

𝑑𝑥
+

𝑑𝑢2

𝑑𝑥
)]

=
1

4ℎ
(
𝑑𝑢4

𝑑𝑥
−

𝑑𝑢2

𝑑𝑥
)

(2.9)

Once the first derivative field is built, the computation of the second derivatives field is possible.

Hence, given the derivatives of 2nd and 4th data point

𝑑𝑢2

𝑑𝑥
=

1

4ℎ
(𝑢3 − 𝑢1) ,

𝑑𝑢4

𝑑𝑥
=

1

4ℎ
(𝑢5 − 𝑢3) (2.10)

the final outcome of Equation 2.9 is formulated as follows:

𝑑2𝑢3

𝑑𝑥2
=

1

4ℎ
(

1

4ℎ
(𝑢5 − 𝑢3) −

1

4ℎ
(𝑢3 − 𝑢1)) =

1

16ℎ2
(𝑢5 − 2𝑢3 + 𝑢1) (2.11)

Relying on the second derivatives values, the same process is repeated in order for the third

derivatives to be calculated. The result is:

𝑑3𝑢3

𝑑𝑥3
=

𝑑

𝑑𝑥
(
𝑑2𝑢3

𝑑𝑥2) =
1

2ℎ
(
𝑑2𝑢𝐷

𝑑𝑥2
−

𝑑2𝑢𝐶

𝑑𝑥2) =
1

2ℎ
[
1

2
(
𝑑2𝑢4

𝑑𝑥2
+

𝑑2𝑢3

𝑑𝑥2) −
1

2
(
𝑑2𝑢3

𝑑𝑥2
+

𝑑2𝑢2

𝑑𝑥2)]

=
1

4ℎ
(
𝑑2𝑢4

𝑑𝑥2
−

𝑑2𝑢2

𝑑𝑥2)

(2.12)

 As soon as the second derivative field is built, it is feasible again to calculate the third set of

derivatives. Given the following second derivatives

𝑑2𝑢2

𝑑𝑥2
=

1

16ℎ2
(𝑢4 − 2𝑢2 + 𝑢0) ,

𝑑2𝑢4

𝑑𝑥2
=

1

16ℎ2
(𝑢6 − 2𝑢4 + 𝑢2) (2.13)

the combinatory process leads to Equation 2.14:

𝑑3𝑢3

𝑑𝑥3
=

1

4ℎ
(

1

16ℎ2
(𝑢6 − 2𝑢4 + 𝑢2) −

1

16ℎ2
(𝑢4 − 2𝑢2 + 𝑢0)) =

1

64ℎ3
(𝑢6 − 3𝑢4 + 3𝑢2 − 𝑢0) (2.14)

 2019 Chapter 2: High-Order Numerical Scheme

19

All in all, within an upwind scheme the problem under discussion concerning the reconstructed

values of control volume 3 receives the following representation for 3rd order accuracy.

𝑢𝐶
𝐿 = 𝑢2 +

𝑑𝑢2

𝑑𝑥
ℎ +

1

2!

𝑑2𝑢2

𝑑𝑥2
ℎ2 = 𝑢2 +

1

4
(𝑢3 − 𝑢1) +

1

32
(𝑢4 − 2𝑢2 + 𝑢0)

(2.15)
𝑢𝐶

𝑅 = 𝑢3 −
𝑑𝑢3

𝑑𝑥
ℎ +

1

2!

𝑑2𝑢3

𝑑𝑥2
ℎ2 = 𝑢3 −

1

4
(𝑢4 − 𝑢2) +

1

32
(𝑢5 − 2𝑢3 + 𝑢1)

𝑢𝐷
𝐿 = 𝑢3 +

𝑑𝑢3

𝑑𝑥
ℎ +

1

2!

𝑑2𝑢3

𝑑𝑥2
ℎ2 = 𝑢3 +

1

4
(𝑢4 − 𝑢2) +

1

32
(𝑢5 − 2𝑢3 + 𝑢1)

𝑢𝐷
𝑅 = 𝑢4 −

𝑑𝑢4

𝑑𝑥
ℎ +

1

2!

𝑑2𝑢4

𝑑𝑥2
ℎ2 = 𝑢4 −

1

4
(𝑢5 − 𝑢3) +

1

32
(𝑢6 − 2𝑢4 + 𝑢2)

As evident, a wider stencil of cells can be incorporated in the process of the derivatives’

computation. The data points of the cells involved in the computation of each derivative order is

demonstrated in Figures 2.4 -2.7, where the colored points indicate the first, second, third, and

fourth neighboring cells respectively.

With the use of the method above, each higher accuracy order stems from the addition of the

corresponding high order correction term. Αll the aforementioned derivative computations fall

under the same recursive pattern. High-order accuracy can be obtained with the successive

implementation of the Green-Gauss theorem. It is worth noting that a research by Diskin and

Thomas [Dis07] shows that implementing the Green-Gauss formula results in accuracy

deterioration by one order for every consecutive application of the formula. Therefore, the

introduced procedure may not give high-order accuracy on general unstructured grids;

nonetheless, it is easier to apply onto a standing CFD code than the DG method, so that the

accuracy of the base second-order scheme is improved.

Figure 2.4: Stencil for the first derivative Figure 2.5: Stencil for the second derivative

Chapter 2: High-Order Numerical Scheme 2019

20

Figure 2.6: Stencil for the third derivative Figure 2.7: Stencil for the fourth derivative

2.2 Derivation of High-Order Accuracy for 2-D Problems

As a starting point the traditional second-order scheme with the functional form, as in 1.33, is

presented below:

𝑈2 = 𝑈(𝑥0, 𝑦0) +
𝜕𝑈

𝜕𝑥
(𝑥𝑖 − 𝑥0) +

𝜕𝑈

𝜕𝑦
(𝑦𝑖 − 𝑦0) (2.16)

Based on the description outlined in the section 2.1 a Taylor series expansion is applied to achieve

a higher order of accuracy. Therefore, for a third-order scheme the functional form is:

𝑈ℎ = 𝑈(𝑥0, 𝑦0) +
𝜕𝑈

𝜕𝑥
(𝑥𝑖 − 𝑥0) +

𝜕𝑈

𝜕𝑦
(𝑦𝑖 − 𝑦0) +

1

! 2
[
𝜕2𝑈

𝜕𝑥2
(𝑥𝑖 − 𝑥0)

2

+
𝜕2𝑈

𝜕𝑦2
(𝑦𝑖 − 𝑦0)

2 + 2
𝜕2𝑈

𝜕𝑥𝜕𝑦
(𝑥𝑖 − 𝑥0)(𝑦𝑖 − 𝑦0)]

(2.17)

It is noticeable that the first three terms on the right-hand side are the 𝑈 value of the 2nd order

scheme, as exemplified in Equation 2.18, where the high-order correction term is presented

[Yang15]:

𝛥𝑈ℎ−2 = 𝑈ℎ − 𝑈2 =
1

2
[
𝜕2𝑈

𝜕𝑥2
(𝑥𝑖 − 𝑥0)

2 +
𝜕2𝑈

𝜕𝑦2
(𝑦𝑖 − 𝑦0)

2 + 2
𝜕2𝑈

𝜕𝑥𝜕𝑦
(𝑥𝑖 − 𝑥0)(𝑦𝑖 − 𝑦0)] (2.18)

The Green-Gauss theorem for a function 𝑓 states:

𝜕𝑓

𝜕𝑥
=

1

𝐸
∮ 𝑓 𝑛̂𝑥𝑑𝑙

𝜕𝐸

 ,
𝜕𝑓

𝜕𝑦
=

1

𝐸
∮ 𝑓 𝑛̂𝑦𝑑𝑙

𝜕𝐸

 (2.19)

 2019 Chapter 2: High-Order Numerical Scheme

21

Having computed the first derivatives, a successive application of the Green-Gauss theorem is

performed, so as to calculate the terms in 2.18 as depicted in 2.20:

𝜕2𝑈

𝜕𝑥2
=

1

𝐸
∮

𝜕𝑈

𝜕𝑥
 𝑛̂𝑥𝑑𝑙

𝜕𝐸

,
𝜕2𝑈

𝜕𝑦2
=

1

𝐸
∮

𝜕𝑈

𝜕𝑦
 𝑛̂𝑦𝑑𝑙

𝜕𝐸

,
𝜕2𝑈

𝜕𝑥𝜕𝑦
=

1

𝐸
∮

𝜕𝑈

𝜕𝑦
 𝑛̂𝑥𝑑𝑙

𝜕𝐸

 (2.20)

Consequently, based on the values of the first derivatives, the calculation of the second

derivatives is possible with the use of the same procure, as indicated in 2.21:

𝜕2𝑈

𝜕𝑥2
=

𝜕

𝜕𝑥
(
𝜕𝑈

𝜕𝑥
) ,

𝜕2𝑈

𝜕𝑦2
=

𝜕

𝜕𝑦
(
𝜕𝑈

𝜕𝑦
) ,

𝜕2𝑈

𝜕𝑥𝜕𝑦
=

𝜕

𝜕𝑥
(
𝜕𝑈

𝜕𝑦
) (2.21)

In case a higher level of accuracy is desirable, the higher order correction terms are applied to the

third-order formulation, providing a fourth-order scheme. The correction term is presented in

2.22.

𝛥𝑈ℎ−3 =
1

6
[
𝜕3𝑈

𝜕𝑥3
(𝑥𝑖 − 𝑥0)

3 +
𝜕3𝑈

𝜕𝑦3
(𝑦𝑖 − 𝑦0)

3 + 3
𝜕3𝑈

𝜕𝑥2𝜕𝑦
(𝑥𝑖 − 𝑥0)

2(𝑦𝑖 − 𝑦0)

(2.22)

+3
𝜕3𝑈

𝜕𝑦2𝜕𝑥
(𝑦𝑖 − 𝑦0)

2(𝑥𝑖 − 𝑥0)]

Finally, the application of the same procedure is iterated to compute the terms of 2.22 as shown

in 2.23:

𝜕3𝑈

𝜕𝑥3
=

1

𝐸
∮

𝜕2𝑈

𝜕𝑥2
 𝑛̂𝑥𝑑𝑙

𝜕𝐸

 ,
𝜕3𝑈

𝜕𝑦3
=

1

𝐸
∮

𝜕2𝑈

𝜕𝑦2
 𝑛̂𝑦𝑑𝑙

𝜕𝐸

(2.23)
𝜕3𝑈

𝜕𝑥2𝜕𝑦
=

1

𝐸
∮

𝜕2𝑈

𝜕𝑥𝜕𝑦
 𝑛̂𝑥𝑑𝑙

𝜕𝐸

 ,
𝜕3𝑈

𝜕𝑦2𝜕𝑥
=

1

𝐸
∮

𝜕2𝑈

𝜕𝑦𝜕𝑥
 𝑛̂𝑦𝑑𝑙

𝜕𝐸

In the present work a numerical scheme up to 3rd order of accuracy was applied.

2.3 U-MUSCL Scheme

The derivation of the presented high order formulation was combined with the implementation

of a variable-extrapolation named U-MUSCL-scheme. This formulation, developed as in [Bur05],

is based on information currently available to the unstructured flow solvers, namely the variable

and gradient information. U-MUSCLE closely resembles the traditional MUSCLE scheme and it is

trivial to implement within most finite flow solvers. According to it, the interpolation function in

Equation 1.33 is replaced by the following formulation

𝑈𝑃𝑄
𝐿 (𝜅) = 𝑈𝑃 +

𝜅

2
(𝑈𝑄 − 𝑈𝑃) +

1

2
∙ (1 − 𝜅)∇𝑈𝑃 ∙ 𝑟 𝑃𝑄

(2.24)

𝑈𝑃𝑄
𝑅 (𝜅) = 𝑈𝑄 +

𝜅

2
(𝑈𝑃 − 𝑈𝑄) −

1

2
∙ (1 − 𝜅)∇𝑈𝑄 ∙ 𝑟 𝑃𝑄

where 𝜅 is the U-MUSCL parameter, 𝑈𝑃 and 𝑈𝑄 are the left and right nodes’ values of variable 𝑈

and 𝑟 𝑃𝑄 is the vector connecting these nodes from point 𝑃 to 𝑄.

Chapter 2: High-Order Numerical Scheme 2019

22

A one-parameter family of equations is represented in this new variable extrapolation

formulation, which, in specific conditions, totally equals the MUSCL-scheme, a one parameter

family as well [Bur05]. In the case of setting 𝜅 to 0, the original unstructured formulation for 2nd-

order variable extrapolation is obtained. In the case of setting 𝜅 το -1, the 2nd-order fully upwind

MUSCL-type variable extrapolation is obtained. In the case of setting 𝜅 το 1/2, a 3rd-order

variable extrapolation to the cell face is made possible, whereas when 𝜅 is set to 1/3, a 3rd-order

approximation to the derivative at the node is obtained. If 𝜅 is set to 1, a central difference

scheme is achieved. Provided that 𝜅 < 1, this formula is an upwind one, becoming stable for

hyperbolic systems of equations not containing shocks, and for high-quality grids. Τhe following

table summarizes what described above.

Table 2.1: U-MUSCL with different values of κ parameter

PARAMETER (κ) DESCRIPTION

−1 Second-order MUSCL-type scheme

0 Second-order unstructured upwind scheme

1/3 Third-order MUSCL-type scheme

1/2 Third-order extrapolation to face

1 Central-difference formula

In a similar fashion Equation 2.24 can be written as in Equation 2.25, where a 3rd order scheme is

achieved [Yan15]. In the present work the parameters κ and κ3 are defined as -1/6 and -4/3

respectively.

𝑈𝑃𝑄
𝐿 (𝜅) = 𝑈𝑃 +

𝜅

2
(𝑈𝑄 − 𝑈𝑃) +

1

2
∙ (1 − 𝜅)∇𝑈𝑃 ∙ 𝑟 𝑃𝑄

+
1

2
[
𝜅3

4
(∇𝑈𝑄 ∙ 𝑟 𝑃𝑄 − ∇𝑈𝑃 ∙ 𝑟 𝑃𝑄) +

1

4
(1 − 𝜅3)∇(∇𝑈𝑃 ∙ 𝑟 𝑃𝑄) ∙ 𝑟 𝑃𝑄]

= 𝑈𝑃 +
𝜅

2
(𝑈𝑄 − 𝑈𝑃) +

1

2
∙ (1 − 𝜅)∇𝑈𝑃 ∙ 𝑟 𝑃𝑄 (2.25)

+
1

2
[
𝜅3𝛥𝑥𝑃𝑄

4
((

𝜕𝑈

𝜕𝑥
)
𝑄

− (
𝜕𝑈

𝜕𝑥
)
𝑃
) +

1

4
∙ (1 − 𝜅3) 𝛥𝑥𝑃𝑄 ∇ ((

𝜕𝑈

𝜕𝑥
)
𝑃
) ∙ 𝑟 𝑃𝑄]

+
1

2
[
𝜅3𝛥𝑦𝑃𝑄

4
((

𝜕𝑈

𝜕𝑦
)
𝑄

− (
𝜕𝑈

𝜕𝑦
)
𝑃

) +
1

4
∙ (1 − 𝜅3) 𝛥𝑦𝑃𝑄 ∇ ((

𝜕𝑈

𝜕𝑦
)
𝑃

) ∙ 𝑟 𝑃𝑄]

According to the above formulation, what can be shown is that that an existing code structure for

a second-order scheme is capable to compute the higher derivatives simply by calling the same

routine used for the calculation of the first derivatives.

 2019 Chapter 2: High-Order Numerical Scheme

23

2.4 High-Order Time Integration

In the current methodology of the high-order accuracy, time integration was performed by

utilizing a high order Strong Stability Runge-Kutta method (SSPK) [Ruu05, Got05]. The

development of Strong Stability Preserving (SSP) time discretization arose from the need to

manage nonlinear stability properties in time and spatial discretization of hyperbolic PDEs. The

core idea lies in the assumption that, with a suitably restricted time step 𝛥𝑡, the first order

forward Euler time discretization of the method of lines ODE is strongly stable under a certain

norm. In view of this, a higher order time discretization (Runge–Kutta or multi step) maintaining

strong stability for the same norm emerges, possibly under a different time step restriction.

A general 𝑚 stage Runge-Kutta method is written in the form [Ruu05]

𝑈𝑃
(0)

= 𝑈𝑃
𝑛

(2.26) 𝑈𝑃
(𝑖)

= ∑ (𝛼𝜄,𝑘𝑈𝑃
(𝑘)

) + 𝛥𝑡𝑃𝛽𝜄,𝑘
𝑅 (𝑈𝑃

(𝑘)
)

𝑖−1

𝑘=0

, 𝑎𝑖,𝑘 ≥ 0, 𝑖 = 1,… ,𝑚

𝑈𝑃
𝑛+1 = 𝑈𝑃

(𝑚)

where 𝛥𝑡𝑃 is the local time step at node 𝑃. In the current work, the five stage fourth order Runge-

Kutta SSPRK (5, 4) developed by Ruuth [Ruu05] has been employed. An analytic expression,

along with the appropriate coefficients of the optimal SSPRK (5, 4), is presented as follows

[Got05]

𝑈𝑃
(1)

= 𝑈𝑃
𝑛 + 0.391752226571890 ∙ 𝛥𝑡𝑃𝑅(𝑈𝑃

𝑛)

(2.27)

𝑈𝑃
(2)

= 0.444370493651235 ∙ 𝑈𝑃
𝑛 + 0.555629506348765 ∙ 𝑈𝑃

(1)

+0.368410593050371 ∙ 𝛥𝑡𝑃𝑅 (𝑈𝑃
(1)

)

𝑈𝑃
(3)

= 0.620101851488403 ∙ 𝑈𝑃
𝑛 + 0.379898148511597 ∙ 𝑈𝑃

(2)

+0.251891774271694 ∙ 𝛥𝑡𝑃𝑅 (𝑈𝑃
(2)

)

𝑈𝑃
(4)

= 0.178079954393132 ∙ 𝑈𝑃
𝑛 + 0.821920045606868 ∙ 𝑈𝑃

(3)

+0.544974750228521 ∙ 𝛥𝑡𝑃𝑅 (𝑈𝑃
(3)

)

𝑈𝑃
𝑛+1 = 0.517231671970585 ∙ 𝑈𝑃

(2)

+0.096059710526147 ∙ 𝑈𝑃
(3)

+ 0.063692468666290 ∙ 𝛥𝑡𝑃𝑅 (𝑈𝑃
(3)

)

+0.386708617503269 ∙ 𝑈𝑃
(4)

+ 0.226007483236906 ∙ 𝛥𝑡𝑃𝑅 (𝑈𝑃
(4)

)

which is SSP with 𝐶𝐹𝐿 coefficient 𝐶𝐹𝐿 = 1.508, and effective 𝐶𝐹𝐿𝑒𝑓𝑓 = 0.377. In the numerical

simulations of the convergence study that follows, 𝐶𝐹𝐿 was set to 1.5. Table 2.2 depicts the

optimal coefficients from the above equation in compact form.

Chapter 2: High-Order Numerical Scheme 2019

24

Table 2.2: Coefficients of optimal SSPRK (5, 4) scheme [Ruu05]

STAGES 1 2 3 4 5

ai,k

1

0.444370493651235 0.555629506348765

0.620101851488403 0 0.379898148511597

0.178079954393132 0 0 0.821920045606868

0 0 0.517231671970585 0.096059710526147 0.386708617503269

βi,k

0.391752226571890

0 0.368410593050371

0 0 0.251891774271694

0 0 0 0.544974750228521

0 0 0 0.063692468666290 0.226007483236906

CFL 1.50818004918983

 2019 Chapter 3: Numerical Test and Results

25

CHAPTER 3

NUMERICAL TEST AND RESULTS

3.1 Test Case

An extensive evaluation of the proposed high-order scheme was performed through a benchmark

problem where a well-known analytical solution exists. As a verification test for the high-order

scheme the transport of an isotropic vortex problem is examined. The ability to conserve the

vortex shape and strength is important to many practical scenarios, in which a shed vortex

interacts well downstream of the vortex origin. The particular problem is characterized by its

smoothness with the absence of contact discontinuities [Yan15, Yan16].

On a computational domain Ω = [−10,10] 𝑋 [−10,10] a vortex with center (𝑥𝑐 , 𝑦𝑐) = (0,0) is

simulated and moving from left to wright in a diagonal direction. The initial solution is given by

the following equations [Yan15]

𝑢 = 𝑢∞ − 𝛽𝑢∞

𝑦 − 𝑦𝑐

𝑅
𝑒𝑥𝑝(

1 − 𝑟2

2
)

(3.1)

𝑣 = 𝑣∞ + 𝛽𝑢∞

𝑥 − 𝑥𝑐

𝑅
𝑒𝑥𝑝(

1 − 𝑟2

2
)

𝜌 = 𝜌∞ [1 −
𝛾 − 1

2𝛾
(𝛽𝑢∞)2𝑒𝑥𝑝(1 − 𝑟2)]

1
𝛾−1

𝑝 = 𝑝∞ [1 −
𝛾 − 1

2𝛾
(𝛽𝑢∞)2𝑒𝑥𝑝(1 − 𝑟2)]

1
𝛾−1

𝑟 = √(𝑥 − 𝑥𝑐)
2 + (𝑦 − 𝑦𝑐)

2 /𝑅, 𝛽 = 1/2𝜋

where 𝑟 denotes the distance from the vortex core, 𝑅 refers to the vortex radius and the subscript

‘∞’ express the uniform mean flow. In this study, the non-dimensionalized variables are set as

u∞=1, v∞=1, ρ∞=1, p∞=1 and periodic boundary conditions are imposed in the x- and y-direction.

As the analytical solution is obtainable at any given time, the numerical error of the simulations is

feasible to be determined. The computational model is shown in Figure 3.1 along with the initial

pressure field.

3.2 Computational Meshes

As introduced in the first chapter, the Finite Volume approach requires partitioning the

computational domain 𝛺 ⊂ 𝑅3 into a set of non-overlapping control volumes and the numerical

implementation over each control volume. In the Node Centered Finite Volume scheme (NCFV)

used in this work, solution values are defined at the mesh nodes while their locations are called

data points. An initial decomposition of the computational domain into grid elements, the primal

mesh, is used by the median dual partition to generate non-overlapping control volumes for the

Chapter 3: Numerical Test and Results 2019

26

node-discretization. These control volumes cover the entire computational domain and compose

a mesh that is dual to the primal mesh.

Figure 3.1: Initial pressure field of the vortex

The grids used in the present study can be categorized as either Regular or Irregular. Regular

grids are derived by a smooth mapping from grids with periodic node connectivity, periodic cell

distribution including, but not necessarily being limited to, grids derived from Cartesian ones

[Del11, Dell13]. Four types of grids are considered in the present work:

1. Equilateral Triangular Grid (Type I)

2. Orthogonal Grid (Type II)

3. Orthogonal Grid (Type III)

4. Distorted Grid (Type IV)

The gird of Type I is composed of triangular elements with equal sides. Orthogonal gird of Type II

refers to a regular triangular grid derived from a regular quadrilateral grid where squared cells are

decomposed in four triangular cells by a diagonal splitting, while Orthogonal of Type II is derived,

in a similar fashion, where two triangular cells are produced. As far as the Distorted Grid of Type

IV is concerned, grid irregularities are introduced by perturbing the grid nodes of a Type-I

Equilateral Triangular Grid from their original positions. The distortion of the nodes occurs with

random shifts in each dimension and the perturbation is defined as 0.4rΔx, where r∈ [-1/2, 1/2] is

a random number and Δx is the local mesh size along the given dimension. These representative

grid types are depicted in Figures 3.2-3.5.

As the main focus lies in the numerical accuracy and the performance of the proposed numerical

scheme, a major prerequisite in order to perform convergence studies with a sequence of refined

grids is the Consistency Refinement Property [Dis10, Dis11, Tho08]. This property requires the

maximum distance across the grid cells to decrease consistently with increase of the total number

of grid data points.

 2019 Chapter 3: Numerical Test and Results

27

For a given computational domain with dimensions 𝐿𝑥 𝑥 𝐿𝑦 in the x- and y- dimension

respectively, a subdivision of 𝐿𝑥
by 𝑁𝑥 line segments is defined, specifically 𝛥𝑥 = 𝐿𝑥/𝑁𝑥.

Depending on the grid type, the subdivision 𝛥𝑦 = 𝐿𝑦/𝑁𝑦 can easily be determined. Accordingly, a

characteristic length (effective mesh) is defined for each grid type as ℎ𝑁 = √(𝐿𝑥 𝑥 𝐿𝑦)/𝑁. A

consistent grid refinement is performed when a reduction 𝛥𝑥/2, results ℎ𝑁
′ ≃ ℎ𝑁/2

and 𝑁′ ≃ 4𝑁.

Having been defined as such, a series of increasingly fine grids from 20 x 20, 40 x 40, 80 x 80, 160

x 160 to 320 x 320 is employed for the previously stated types of grids. Table 3.1 depicts the

results of the successive refinement procedure.

Figure 3.2: Equilateral Grid (Type I) Figure 3.3: Orthogonal Grid (Type II)

Figure 3.4: Orthogonal Grid (Type III)

Figure 3.5: Distorted Grid (Type IV)

Chapter 3: Numerical Test and Results 2019

28

Table 3.1 : Typical grid values for characteristic length and degrees of freedom

GRID TYPES

 TYPE I and IV TYPE II TYPE III

Nx N hN N hN N hN

𝟐𝟎 562 0.843649081 841 0.689655172 441 0.952380952

40 1950 0.452910813 3281 0.349161926 1681 0.487804878

80 7579 0.229733348 12961 0.175675314 6561 0.24691358

160 29877 0.115707497 51521 0.088112566 25921 0.124223602

321 119647 0.057820133 205441 0.044125174 103041 0.062305295

3.3 Numerical Results

In this section, the numerical results of the conducted simulations are presented. In order to

measure the solution error, the volume weighted norm 𝐿𝐾 of the error was used, defined as

[Del11, Del13]

‖𝑈𝑖 − 𝑈𝑖
𝑒𝑥‖𝐿𝐾(𝛺)

= (
∑ |Ω𝜄|(𝑈𝑖 − 𝑈𝑖

𝑒𝑥)𝐾𝛮
𝜄=1

∑ |Ω𝜄|
𝛮
𝜄=1

)

1
𝛫

(3.2)

where 𝑈𝑖
𝑒𝑥 is the exact solution and 𝑈𝑖 the numerical one, defined at node 𝑖 of the conserved

variables (𝜌, 𝜌𝑢, 𝜌𝑣, 𝜌𝐸), while Ω𝑖
is the corresponding volume and 𝛮 is the number of the

corresponding data points. The errors were measured in three different norms (𝐾 = 1, 𝐾 = 2, 𝐾 =

∞) between the numerical variables and their analytical counterparts at t = 7 s and t = 60 s.

Figures 3.6-3.23 present the iterative convergence histories in all norms for the conservative

variables 𝜌, 𝜌𝑢, 𝜌𝑒 on each grid used, and in two different time periods. More specifically, Figures

3.6-3.11 depict the corresponding convergence results in the L2 norm, Figures 3.12-3.17 the ones

in the L1 norm and Figures 3.18-3.23 in the Lmax norm. Additionally, contour plots for the

conservative variable ‘ρ’ are given for comparison along with the analytical numerical solution.

The contour plots exhibit two different grid refinements, 80 and 320, and on two different time

periods t = 7 s and t = 60 s, i.e. in Figures 3.24-3.27 the contour plots correspond to t = 7 s and

Figures 3.28-3.31 correspond to t = 60 s.

 2019 Chapter 3: Numerical Test and Results

29

Figure 3.6: Convergence results of L2 Norm for
the conservative variable ρ at t=7 s

Figure 3.7: Convergence results of L2 Norm for the
conservative variable ρ at t=60 s

Figure 3.8: Convergence results of L2 Norm for
the conservative variable ρu at t=7 s

Figure 3.9: Convergence results of L2 Norm for the
conservative variable ρu at t=60 s

Figure 3.10: Convergence results of L2 Norm for
the conservative variable ρe at t=7 s

Figure 3.11: Convergence results of L2 Norm for
the conservative variable ρe at t=60 s

Chapter 3: Numerical Test and Results 2019

30

Figure 3.12: Convergence results of L1 Norm for
the conservative variable ρ at t=7 s

Figure 3.13: Convergence results of L1 Norm for
the conservative variable ρ at t=60 s

Figure 3.14: Convergence results of L1 Norm for
the conservative variable ρu at t=7 s

Figure 3.15: Convergence results of L1 Norm for
the conservative variable ρu at t=60 s

Figure 3.16: Convergence results of L1 Norm for
the conservative variable ρe at t=7 s

Figure 3.17: Convergence results of L1 Norm for
the conservative variable ρe at t=60 s

 2019 Chapter 3: Numerical Test and Results

31

Figure 3.18: Convergence results of Lmax Norm
for the conservative variable ρ at t=7 s

Figure 3.19: Convergence results of Lmax Norm
for the conservative variable ρ at t=60 s

Figure 3.20: Convergence results of Lmax Norm
for the conservative variable ρu at t=7 s

Figure 3.21: Convergence results of Lmax Norm
for the conservative variable ρu at t=60 s

Figure 3.22: Convergence results of Lmax Norm
for the conservative variable ρe at t=7 s

Figure 3.23: Convergence results of Lmax Norm
for the conservative variable ρe at t=60 s

Chapter 3: Numerical Test and Results 2019

32

Figure 3.24: Contour plots for ρ between the analytical (dashed line) and numerical
solution for t=7 s. Grid refinement 80 (left) and 320 (right) for Equilateral Type I

Figure 3.25: Contour plots for ρ between the analytical (dashed line) and numerical
solution for t=7 s. Grid refinement 80 (left) and 320 (right) for Orthogonal Type II

Figure 3.26: Contour plots for ρ between the analytical (dashed line) and numerical
solution for t=7 s. Grid refinement 80 (left) and 320 (right) for Orthogonal Type III

 2019 Chapter 3: Numerical Test and Results

33

Figure 3.27: Contour plots for ρ between the analytical (dashed line) and numerical
solution for t=7 s. Grid refinement 80 (left) and 320 (right) for Distorted Type IV

Figure 3.28: Contour plots for ρ between the analytical (dashed line) and numerical
solution for t=60 s. Grid refinement 80 (left) and 320 (right) for Equilateral Type I

Figure 3.29: Contour plots for ρ between the analytical (dashed line) and numerical
solution for t=60 s. Grid refinement 80 (left) and 320 (right) for Orthogonal Type II

Chapter 3: Numerical Test and Results 2019

34

Figure 3.30: Contour plots for ρ between the analytical (dashed line) and numerical
solution for t=60 s. Grid refinement 80 (left) and 320 (right) for Orthogonal Type III

Figure 3.31: Contour plots for ρ between the analytical (dashed line) and numerical
solution for t=60 s. Grid refinement 80 (left) and 320 (right) for Distorted Type IV

 2019 Chapter 4: Introduction of High-Order to 3-D Problems

35

CHAPTER 4

INTRODUCTION OF HIGH-ORDER TO 3-D PROBLEMS

4.1 Introduction

The numerical tests have shown satisfactory results in the implementation of the current higher-

order scheme, improving significantly the accuracy of the numerical solution. The proposed

methodology could be extended to 3-dimensional problems and applied to a 3-D flow solver with

slight alternations, as presented in the previous sections. The key aspects of the methodology

concern, in summary, the calculations of the high-order correction terms up to the desirable

order of accuracy, the incorporation of the U-MUSCL scheme and the employment of high-order

time discretization with a multiple stage Runge-Kutta (SSPRK).

An academic in-house 3-D solver named Galatea [Lyg14a, Lyg14b, Lyg15] will be utilized for the

application of the current high-order scheme. It employs the dimensionless Navier-Stokes

equations, discretized with a Node-Centred Finite-Volume method on three-dimensional

tetrahedral or hybrid unstructured grids, to simulate inviscid, viscous laminar and viscous

turbulent compressible flows.

On the first chapter an extensive presentation of the fundamental properties of the fluid was

undertaken and the governing equations for the 2-dimensional fluid flow were introduced in

detail. Having set the above as a basis, the work then proceeds with the mathematical modeling

of the governing equations in 3-dimensional space, and especially the Euler equations that are

considered in the present thesis, followed by presenting the discretization of governing equations

according to the numerical scheme implemented in Galatea solver and, finally, by discussing the

high-order formulation in 3 dimensions.

4.2 Mathematical Modeling in 3-D

4.2.1 Navier-Stokes Equations

The motion of the fluid in three dimensions for a compressible viscous flow is described by the

Navier-Stokes equations. The differential form arranged into convective (inviscid), diffusive

(viscous), and source terms is expressed by the following equation:

𝜕𝑊⃗⃗⃗

𝜕𝑡
+

𝜕𝐹 𝑖𝑛𝑣

𝜕𝑥
+

𝜕𝐺 𝑖𝑛𝑣

𝜕𝑦
+

𝜕𝐽 𝑖𝑛𝑣

𝜕𝑧
−

𝜕𝐹 𝑣𝑖𝑠

𝜕𝑥
−

𝜕𝐺 𝑣𝑖𝑠

𝜕𝑦
−

𝜕𝐽 𝑣𝑖𝑠

𝜕𝑧
= 𝑆 (4.1)

According to the above equation, 𝑊⃗⃗⃗ = (𝜌, 𝜌𝑢, 𝜌𝑣, 𝜌𝑤, 𝜌𝐸) refers to the convective variables’ vector.

 𝐹 𝑖𝑛𝑣 , 𝐺 𝑖𝑛𝑣 and 𝐽 𝑖𝑛𝑣 represent the inviscid flux vectors while 𝐹 𝑣𝑖𝑠, 𝐺 𝑣𝑖𝑠 , 𝐽 𝑣𝑖𝑠 refer to the viscous ones.

The aforementioned are expressed in terms of the five primitive variables (𝜌, 𝑢, 𝑣, 𝑤, 𝑝). The

inviscid and viscous vectors are defined as shown in Equations 4.2 and 4.3, where the source term

is considered to be zero [Koo00, Lyg14b].

Chapter 4: Introduction of High-Order to 3-D Problems 2019

36

𝐹 𝑖𝑛𝑣 =

(

𝜌𝑢

𝜌𝑢2 + 𝑝

𝜌𝑢𝑣

𝜌𝑢𝑤

(𝜌𝛦 + 𝑝)𝑢)

,𝐺 𝑖𝑛𝑣 =

(

𝜌𝑣

𝜌𝑣𝑢

𝜌𝑣2 + 𝑝

𝜌𝑣𝑤

(𝜌𝛦 + 𝑝)𝑣)

, 𝐽 𝑖𝑛𝑣 =

(

𝜌𝑤

𝜌𝑤𝑢

𝜌𝑤𝑣

𝜌𝑤2 + 𝑝

(𝜌𝛦 + 𝑝)𝑤)

(4.2)

𝐹 𝑣𝑖𝑠 =

(

0

𝜏𝑥𝑥

𝜏𝑥𝑦

𝜏𝑥𝑧

𝑢𝜏𝑥𝑥 + 𝑣𝜏𝑥𝑦 + 𝑤𝜏𝑥𝑧 + 𝑞𝑥)

 𝐺 𝑣𝑖𝑠 =

(

0

𝜏𝑦𝑥

𝜏𝑦𝑦

𝜏𝑦𝑧

𝑢𝜏𝑦𝑥 + 𝑣𝜏𝑦𝑦 + 𝑤𝜏𝑦𝑧 + 𝑞𝑦)

𝐽 𝑣𝑖𝑠 =

(

0

𝜏𝑧𝑥

𝜏𝑧𝑦

𝜏𝑧𝑧

𝑢𝜏𝑧𝑥 + 𝑣𝜏𝑧𝑦 + 𝑤𝜏𝑧𝑧 + 𝑞𝑧)

(4.3)

The diffusive flux vectors 𝐹 𝑖𝑛𝑣 , 𝐺 𝑖𝑛𝑣 , 𝐽 𝑖𝑛𝑣are defined from the stress tensor (𝜏𝑥𝑥, 𝜏𝑥𝑦, 𝜏𝑥𝑧, 𝜏𝑦𝑦, 𝜏𝑦𝑧, 𝜏𝑧𝑧)

and calculated according to Equation 4.4 [Hir90].

𝜏𝑖𝑗 = 𝜇 [(
𝜕𝑢𝑖

𝜕𝑥𝑗
+

𝜕𝑢𝑗

𝜕𝑥𝑖
) −

2

3
(∇ ∙ 𝑉⃗)𝛿𝑖𝑗] (4.4)

where μ is the dynamic viscosity coefficient. In Equation 4.5 below, two alternative expressions

are presented for the calculation of the dynamic viscosity. In the first one, it can be calculated

based on the local temperature of the fluid (in K) i.e. the Sutherland law, whereas in the second,

the reference dynamic viscosity μref and the reference temperature 𝑇𝑟𝑒𝑓 -values usually used in the

far field- are utilized [Luo05]. The coefficients 𝑐1 and 𝑐2 depend on the type of the fluid.

𝜇 =
𝑐1𝑇

3
2⁄

𝑇 + 𝑐2
 , 𝜇 = 𝜇𝑟𝑒𝑓 (

𝑇

𝑇𝑟𝑒𝑓
)

3
2⁄ 𝑇𝑟𝑒𝑓 + 𝑐2

𝑇 + 𝑐2

(4.5)

The complete set of the equation system is obtained via the expression for the thermodynamic

relations between the state variables. This stands with the assumption that in pure aerodynamics

the fluid can quite behave like a perfect gas. Hence, the state equation refers to the following

mathematical expression:

𝑝 = 𝜌𝑅𝑔𝑇 (4.6)

The term 𝑅𝑔 refers to the gas constant equal to 287.04 m2s-2K-1 and it is related with the constant

pressure and volume specific heat coefficients with the following equations

𝑅𝑔 = 𝑐𝑝 − 𝑐𝑣 , 𝛾 = 𝑐𝑝 / 𝑐𝑣 (4.7)

 2019 Chapter 4: Introduction of High-Order to 3-D Problems

37

where these coefficients are determined as follows

ℎ = 𝑐𝑝𝑇 , 𝑒 = 𝑐𝑣𝑇 (4.8)

and h and e are the specific enthalpy and specific internal energy of the gas (per unit mass) and

are regarded as constants [Lan98]. With respect to the above and after certain manipulations, the

total energy per unit volume ρΕ and the corresponding specific total enthalpy ℎ𝑡 are computed via

Equation 4.9.

𝜌𝛦 =
𝑝

(𝛾 − 1)
+

1

2
𝜌(𝑢2 + 𝑣2 + 𝑤2) , ℎ𝑡 =

𝛾𝑝

𝜌(𝛾 − 1)
+

1

2
(𝑢2 + 𝑣2 + 𝑤2) (4.9)

As illustrated below, the heat flux vector (𝑞𝑥, 𝑞𝑦, 𝑞𝑧) in the energy equation is determined based

on the stress tensor. Evidently, the conductivity coefficient χ relies on the dimensionless Prandtl

number Pr [Bla01]:

𝑞𝑖 = 𝜒∇𝛵 , 𝜒 =
𝜇𝑐𝑝

𝑃𝑟
 (4.10)

4.2.2 Euler Equations

A simplified form of the Navier-Stokes equations where viscosity and thermal conductivity are

assumed equal to zero, i.e. inviscid flows, is given by the Euler equations. In this case, the

corresponding flux vectors 𝐹⃗⃗ ⃗𝑣𝑖𝑠 , 𝐺 𝑣𝑖𝑠and 𝐽 𝑣𝑖𝑠 are neglected, leading to 4.11-4.12, while the

remaining terms 4.6-4.9 complete the system of the equations [Bla01]:

𝜕𝑊⃗⃗⃗

𝜕𝑡
+

𝜕𝐹 𝑖𝑛𝑣

𝜕𝑥
+

𝜕𝐺 𝑖𝑛𝑣

𝜕𝑦
+

𝜕𝐽 𝑖𝑛𝑣

𝜕𝑧
= 𝑆 (4.11)

𝐹 𝑖𝑛𝑣 =

(

𝜌𝑢

𝜌𝑢2 + 𝑝

𝜌𝑢𝑣

𝜌𝑢𝑤

(𝜌𝛦 + 𝑝)𝑢)

,𝐺 𝑖𝑛𝑣 =

(

𝜌𝑣

𝜌𝑣𝑢

𝜌𝑣2 + 𝑝

𝜌𝑣𝑤

(𝜌𝛦 + 𝑝)𝑣)

, 𝐽 𝑖𝑛𝑣 =

(

𝜌𝑤

𝜌𝑤𝑢

𝜌𝑤𝑣

𝜌𝑤2 + 𝑝

(𝜌𝛦 + 𝑝)𝑤)

 (4.12)

Following the common practice of writing the conservation equations in a non-dimensional form

using dimensionless quantities, the normalization of the variables is performed by utilizing a

characteristic length Lref, the free-stream velocity Vref, the free-stream density ρref, the free-stream

dynamic viscosity μref, and the constant volume specific heat coefficient 𝑐𝑣, as presented in 4.13.

In this sense, each variable is divided by a quantity that has the same dimension as the original

variable.

𝑥𝑖̃ =
𝑥𝑖

𝐿𝑟𝑒𝑓
 , 𝑢̃𝑖 =

𝑢𝑖

𝑉𝑟𝑒𝑓
 , 𝜌̃ =

𝜌

𝜌𝑟𝑒𝑓
 , 𝜇 =

𝜇

𝜇𝑟𝑒𝑓
 , 𝑅̃𝑔 =

𝑅𝑔

𝑐𝑣
= 𝛾 − 1 (4.13)

With respect to the rest of the variables included in Equations 4.11-4.12, taking into account the

aforementioned normalizations, they are expressed in the following manner [Mun98]

Chapter 4: Introduction of High-Order to 3-D Problems 2019

38

𝑝 =
𝑝

𝜌𝑟𝑒𝑓𝑉𝑟𝑒𝑓
2 , 𝜌𝛦̃ =

𝜌𝛦

𝜌𝑟𝑒𝑓𝑉𝑟𝑒𝑓
2 , ℎ̃𝑡 =

ℎ𝑡

𝑉𝑟𝑒𝑓
2 , 𝑇̃ =

𝑇

𝑉𝑟𝑒𝑓
2 𝑐𝑣⁄

 , 𝑡̃ =
𝑡

𝐿𝑟𝑒𝑓
𝑉𝑟𝑒𝑓

⁄
 (4.14)

while the perfect gas equation, according to the normalized constant pressure (𝑐̃𝑃 = 𝛾) and

volume specific heat (𝑐̃𝑣 = 1) coefficients, is rewritten as in 4.15:

𝑝̃ = 𝜌̃(𝛾 − 1)𝑇̃ (4.15)

Finally, the calculation of the local speed of sound at node P (𝑎̃𝑃) and the corresponding Mach

number (𝑀𝑃) is obtained with the last expressions below [Mun98].

𝑎̃𝑃 = √
𝛾 𝑝̃𝑃

𝜌̃𝑃
 , 𝑀𝑃 =

√𝑢̃𝑃
2 + 𝑣̃𝑃

2 + 𝑤̃𝑃
2

𝑎̃𝑃
 (4.16)

It is worth reminding at this point that for simplification reasons, the superscript "~", denoting the

normalized variables, will be neglected in the following sections.

4.3 Numerical Modeling of 3-D Equations

4.3.1 Spatial Discretization

The node-centered scheme has already been discussed in previous sections. Briefly, the main

concept concerns a computational domain divided into a finite number of cells, from which non-

overlapping control volumes are defined. The control volumes are formed around each vertex,

where the variables are stored, covering the entire computational domain and composing a mesh

that is dual to the primal mesh.

In the context of a three-dimensional space, the dual control volume of a node 𝑃 is constructed by

connecting lines defined by edge midpoints, the barycenter of faces, and the barycenter of

elements sharing this node [Mav94, Kal96, Mav96, Koo00, Bla01, Kim03, Kou03, Kal05, Lyg12].

Figure 4.1 depicts part of control volume around a node 𝑃 for a three-dimensional unstructured

grid [Αda05]. Evidently, this part comprises the individual parts of the control volume, which

three of the tetrahedrons contribute to, with node 𝑃 (orange color) pertaining to them. In

addition, the middle points of the edges (black color), the barycenter of the tetrahedron faces (red

color) and the tetrahedrons’ barycenter (green color) are also illustrated. More specifically, nodes

𝐽, 𝐾, 𝐿,𝑀, and 𝑄 are adjacent to node 𝑃 and points 𝐺1, 𝐺2, 𝐺3 are the barycenters of tetrahedrons

𝑃𝑄𝑀𝐽, 𝑃𝑄𝐽𝐾 and 𝑃𝑄𝐿𝐾, respectively. Furthermore, 𝑀 stands as the middle point of edge 𝑃𝑄 and

𝐶1, 𝐶2 as the barycenters of faces 𝑃𝑄𝐽 and 𝑃𝑄𝐾, correspondingly.

More details are given in Figure 4.2, where the contribution of different types of elements to the

control volume of a node 𝑃 is depicted [Lyg15]. Again, 𝐺 stands for the barycenter of the element,

𝐺1 and 𝐺2 denote the barycenters of the respective faces, while 𝑀1,𝑀2, and 𝑀3 the midpoints of

the edges.

 2019 Chapter 4: Introduction of High-Order to 3-D Problems

39

Figure 4.1: Part of control volume around node P

Figure 4.2: Contribution of a prismatic, pyramidal and tetrahedral element to the control volume of a node P

The integration of Euler equations over the control volume 𝐶𝑉𝑃, along with the employment of the

Green-Gauss divergence theorem, leads to

∭
𝜕𝑊⃗⃗⃗

𝜕𝑡
𝑑𝑥𝑑𝑦𝑑𝑧

𝐶𝑉𝑃

+ ∬ 𝛨⃗⃗̂ 𝑖𝑛𝑣

𝜕𝐶𝑉𝑃

𝑑𝑠 = ∭𝑆 𝑑𝑥𝑑𝑦𝑑𝑧

𝐶𝑉𝑃

 (4.17)

where 𝜕𝐶𝑉𝑃 demarcates the boundaries of the control volume of node 𝑃 delineated by the facets

constructed around the edges connecting node 𝑃 with each neighboring node 𝑄. Furthermore,

𝛨⃗⃗̂ 𝑖𝑛𝑣
 is the vector of the inviscid numerical fluxes and is evaluated at the midpoint of an edge

connected to node 𝑃. This midpoint coincides with the interface between the adjacent control

volumes of nodes 𝑃 and 𝑄 connected with this edge. The expression of 𝛨⃗⃗̂ 𝑖𝑛𝑣 is thus

Chapter 4: Introduction of High-Order to 3-D Problems 2019

40

𝛨⃗⃗̂ 𝑖𝑛𝑣 = 𝑛̂𝑃𝑄,𝑥 𝐹
𝑖𝑛𝑣 + 𝑛̂𝑃𝑄,𝑦 𝐺 𝑖𝑛𝑣 + 𝑛̂𝑃𝑄,𝑧 𝐽

𝑖𝑛𝑣
 (4.18)

𝑛⃗̂ 𝑃𝑄 =
𝑛⃗ 𝑃𝑄

|𝑛⃗ 𝑃𝑄|
= (𝑛̂𝑃𝑄,𝑥, 𝑛̂𝑃𝑄,𝑦, 𝑛̂𝑃𝑄,𝑧) (4.19)

where 𝑛⃗ 𝑃𝑄 is determined as the vector sum of the outward normal vectors of all the facets forming

𝜕𝐶𝑉𝑃𝑄. What is presented in Figure 4.3 is part of such a vector 𝑛⃗ 𝑃𝑄
contributed by a tetrahedron.

The computation of this vector is performed with the use of the tetrahedron 𝐺 barycenter, of the

faces 𝐺1, 𝐺2 medians and of edge 𝑀. Figure 4.5 represents the total face area and the mean unit

normal vector associated with edge 𝑃𝑄.

Figure 4.3: Part of vector 𝑛⃗⃗⃗ 𝑃𝑄 contributed by

a tetrahedron

Figure 4.5: Total face area and mean unit normal
vector associated with the edge PQ

If 𝜕𝐶𝑉𝑃𝑄
is the interfacing part of 𝜕𝐶𝑉𝑃, 𝐾𝑁(𝑃) is the set of nodes adjacent to 𝑃, and Γ is the

domain's external boundary, Equation 4.17 is transformed into 4.20 for 𝜕𝐶𝑉𝑃 being expressed as in

4.21.

∭
𝜕𝑊⃗⃗⃗

𝜕𝑡

𝐶𝑉𝑃

𝑑𝑥𝑑𝑦𝑑𝑧 + ∑ ∬ 𝛨⃗⃗̂ 𝑖𝑛𝑣

𝜕𝐶𝑉𝑃𝑄

𝑑𝑠 + ∬ 𝛨⃗⃗̂ 𝑖𝑛𝑣

𝜕𝐶𝑉𝑃∩𝛤

𝑑𝑠

𝑄∈𝐾𝑁(𝑃)

= ∭𝑆

𝐶𝑉𝑃

𝑑𝑥𝑑𝑦𝑑𝑧 (4.20)

𝜕𝐶𝑉𝑃 = ⋃ 𝜕𝐶𝑉𝑃𝑄 + (𝜕𝐶𝑉𝑃 ∩ 𝛤)

𝑄∈𝐾𝑁(𝑃)

 (4.21)

Presuming the conservative variables at node 𝑃 are equal to their mean values over 𝐶𝑉𝑃, the first

term in Equation 4.17 becomes:

∭
𝜕𝑊⃗⃗⃗

𝜕𝑡

𝐶𝑉𝑃

𝑑𝑥𝑑𝑦𝑑𝑧 = (
𝑑𝑊⃗⃗⃗

𝑑𝑡
)

𝑃

∭

𝐶𝑉𝑃

𝑑𝑥𝑑𝑦𝑑𝑧 = (
𝑑𝑊⃗⃗⃗

𝑑𝑡
)

𝑃

𝑉𝑃 (4.22)

When the integrals of the numerical fluxes are expressed as summations of fluxes through the

faces composing the control volume of node 𝑃, Equation 4.20 is expressed as

 2019 Chapter 4: Introduction of High-Order to 3-D Problems

41

(
𝑑𝑊⃗⃗⃗

𝑑𝑡
)

𝑃

𝑉𝑃 + ∑ 𝛷⃗⃗ 𝑃𝑄
𝑖𝑛𝑣

𝑄∈𝐾𝑁(𝑃)

+ ∑ 𝛷⃗⃗ 𝑃,𝑜𝑢𝑡
𝑖𝑛𝑣

(𝐾𝑜𝑢𝑡∈𝜕𝐶𝑉𝑃∩𝛤)

= ∭𝑆

𝐶𝑉𝑃

𝑑𝑥𝑑𝑦𝑑𝑧 (4.23)

𝛷⃗⃗ 𝑃𝑄
𝑖𝑛𝑣 = ∬ 𝛨⃗⃗̂ 𝑖𝑛𝑣𝑑𝑠 = 𝑓 (𝑊⃗⃗⃗

𝑃𝑄
𝐿 , 𝑊⃗⃗⃗

𝑃𝑄
𝑅 , 𝑛⃗ 𝑃𝑄)

𝜕𝐶𝑉𝑃𝑄

(4.24)

𝛷⃗⃗ 𝑃,𝑜𝑢𝑡
𝑖𝑛𝑣 = ∬ 𝛨⃗⃗̂ 𝑖𝑛𝑣

𝜕𝐶𝑉𝑃∩𝛤

𝑑𝑠 = 𝑓 (𝑊⃗⃗⃗
𝑃
 , 𝑊⃗⃗⃗

𝑜𝑢𝑡
 , 𝑛⃗ 𝑜𝑢𝑡)

where 𝑊⃗⃗⃗
𝑃𝑄
𝐿 and 𝑊⃗⃗⃗

𝑃𝑄
𝑅 are the vectors of the conservative variables on the left and right side of edge

𝑃𝑄 respectively, while 𝑊⃗⃗⃗
𝑜𝑢𝑡
 is the corresponding vector on the boundary.

4.3.2 Numerical Fluxes

The computation of the numerical inviscid fluxes is achieved with the employment of a one-

dimensional Riemann problem. This is performed in the direction of each normal vector that

corresponds to every particular face forming the control volume of a node 𝑃. Moreover, an

upwind scheme using Roe’s approximate Riemann solver is implemented [Roe81], due to the

expensive amount of calculations that the exact solution requires [Lan98]. Eventually, the inviscid

fluxes are evaluated in the middle point of an edge 𝑃𝑄, as shown in 4.25.

𝛷⃗⃗ 𝑃𝑄
𝑖𝑛𝑣 =

1

2
(𝐻⃗⃗ 𝑖𝑛𝑣(𝑊⃗⃗⃗

𝑃𝑄
𝐿 , 𝑛⃗ 𝑃𝑄) + 𝐻⃗⃗ 𝑖𝑛𝑣(𝑊⃗⃗⃗

𝑃𝑄
𝑅 , 𝑛⃗ 𝑃𝑄)) −

1

2
|𝐴̃𝑃𝑄|(𝑊⃗⃗⃗

𝑃𝑄
𝑅 − 𝑊⃗⃗⃗

𝑃𝑄
𝐿) (4.25)

The Jacobian matrix 𝐴̃𝑃𝑄 of the inviscid flux vector 𝐻⃗⃗ 𝑖𝑛𝑣 is calculated according to the Roe's

averaged values of the primitive variables as in 4.26 at the midpoint of the corresponding edge 𝑃𝑄

[Roe81, Ven95, Lan98]. Detailed information for the matrix 𝐴̃𝑃𝑄 is provided in Appendix A.

𝑈⃗⃗̃ 𝑃𝑄 =
√𝜌𝐿 𝑈⃗⃗ 𝐿 + √𝜌𝑅 𝑈⃗⃗ 𝑅

√𝜌𝐿 + √𝜌𝑅

 (4.26)

where 𝑈⃗⃗ 𝐿 and 𝑈⃗⃗ 𝑅 in first order accurate schemes are the values of primitive variables at the left

and right side of edge 𝑃𝑄 respectively.

An equivalent expression of Equation 4.25 is the following [Roe81, Lan98]

𝛷⃗⃗ 𝑃𝑄
𝑖𝑛𝑣 = 𝐻⃗⃗ 𝑖𝑛𝑣(𝑊⃗⃗⃗

𝑃𝑄
𝐿 , 𝑛⃗ 𝑃𝑄) + 𝐴̃𝑃𝑄

− (𝑊⃗⃗⃗
𝑃𝑄
𝑅 − 𝑊⃗⃗⃗

𝑃𝑄
𝐿) (4.27)

Whenever a second-order scheme is required, the traditional MUSCL reconstruction of the

primitive or conservative variables is incorporated using appropriate limiters (Van Albada -Van

Leer [VanA82], Min-mod [Swe84] or Barth-Jespersen [Bar89]) to control the total variation. Left

and right states of an edge 𝑃𝑄 are reconstructed using Taylor series expansion, taking into

account the corresponding values of the neighboring nodes. Consequently, the primitive or

conservative variables 𝑈 of each state at the midpoint of an edge 𝑃𝑄 are approximated as

following [Bar92, And94, Bla01, ANSYS06, Lyg13, and Sar14]:

Chapter 4: Introduction of High-Order to 3-D Problems 2019

42

𝑈𝑃𝑄
𝐿 = 𝑈𝑃 +

1

2
∙ (∇𝑈)𝐿 ∙ 𝑟 𝑃𝑄

(4.28)

𝑈𝑃𝑄
𝑅 = 𝑈𝑄 −

1

2
∙ (∇𝑈)𝑅 ∙ 𝑟 𝑃𝑄

The quantities marked by L and R subscripts denote the values of the variables taken at the left

and right side of the boundary between the nodes 𝑃 and 𝑄, while 𝑟 𝑃𝑄 is the vector connecting

these nodes and is directed from 𝑃 to 𝑄. The extrapolation gradients (∇𝑈)𝐿 and (∇𝑈)𝑅 are equal to

the gradients (∇𝑈)𝑃 and (∇𝑈)𝑄
at the nodes 𝑃 and 𝑄 respectively and calculated with the

employment of the Green-Gauss linear representation method as [Bar92, Bla01]:

(∇𝑈)𝑃 =
1

𝑉𝑃
∑

1

2
(𝑈𝑃 + 𝑈𝑄) ∙

𝑄∈𝐾𝑁(𝑃)

𝑛⃗ 𝑃𝑄 (4.29)

where 𝑉𝑃 is the volume of the control volume of node 𝑃. In the case of a boundary node, the

equivalent expression is the following [Lyg13] .

(∇𝑈)𝑃 =
1

𝑉𝑃
(∑

1

2
(𝑈𝑃 + 𝑈𝑄) ∙ 𝑛⃗ 𝑃𝑄 +

𝑄∈𝐾𝑁(𝑃)

∑ 𝑈𝑃 ∙ 𝑛⃗ 𝑜𝑢𝑡

(𝐾𝑜𝑢𝑡∈𝜕𝐶𝑃∩𝛤)

) (4.30)

4.3.3 Boundary Conditions

In order to compute the flux balance of nodes that reside in the computational boundary domain,

additional fluxes have to be encountered with the enforcement of the appropriate boundary

conditions depending on the type of, i.e. wall, inlet, outlet and symmetry. Such fluxes are

computed at the barycenter of each boundary face with the use of the arithmetic averages for the

conservative variables of their nodes. These fluxes are assigned to the nodes weighted by the area

of the face which corresponds to them.

In inlet boundary faces, a one-dimensional Riemann problem is employed between the face’s

barycenter and the far-field, while the obtained fluxes are distributed to the corresponding

surrounding nodes. When the Steger-Warming scheme [Ste81, Lan98] is applied, is formulated

as:

𝐻⃗⃗ 𝐾,𝑜𝑢𝑡
𝑖𝑛𝑣 = 𝐴̃𝐾

+𝑊⃗⃗⃗
𝐾 + 𝐴̃𝐾

−𝑊⃗⃗⃗
𝑜𝑢𝑡 (4.31)

where subscript K represents the barycenter of the boundary face, while subscript out indicates

the far field; the values of the variables of vector 𝑊⃗⃗⃗
𝑜𝑢𝑡 are obtained either from the far field or the

boundary barycenter, depending on the type of the flow (internal or external) [Hir90, Bla01]. The

outlet boundary ones are treated in a similar manner.

As far as the wall boundary nodes are concerned, a free-slip boundary condition is implemented

implicitly, by adding a flux with zero normal to the boundary face velocity Vn described in

Equation 4.32 [Mav94]

 2019 Chapter 4: Introduction of High-Order to 3-D Problems

43

𝑉𝑛 = 𝑉⃗ ∙ 𝑛⃗̂ 𝑜𝑢𝑡 = 0 (4.32)

where 𝑛⃗̂ 𝑜𝑢𝑡 = (𝑛̂𝑜𝑢𝑡,𝑥 , 𝑛̂𝑜𝑢𝑡,𝑦, 𝑛̂𝑜𝑢𝑡,𝑧) is the normal to the boundary face unitary vector (outward-

positive). An example of such a vector is presented in Figure 4.4 for a tetrahedral element. In this

figure, 𝑀 stands for the median point of the boundary face and 𝑀𝑃 ,𝑀𝑄 ,𝑀𝑅 signify the median

points of the corresponding edges. For the computation of the normal vector, all the

aforementioned points are utilized. Eventually, the added free-slip convective flux is calculated as

the following equation shows:

𝐻⃗⃗ 𝑓𝑟𝑒𝑒𝑠𝑙𝑖𝑝 =

(

𝜌𝑉𝑛

𝜌𝑢𝑉𝑛 + 𝑝 𝑛̂𝑜𝑢𝑡,𝑥

𝜌𝑣𝑉𝑛 + 𝑝 𝑛̂𝑜𝑢𝑡,𝑦

𝜌𝑤𝑉𝑛 + 𝑝 𝑛̂𝑜𝑢𝑡,𝑧

(𝜌𝐸 + 𝑝)𝑉𝑛)

=

(

0

𝑝 𝑛̂𝑜𝑢𝑡,𝑥

𝑝 𝑛̂𝑜𝑢𝑡,𝑦

𝑝 𝑛̂𝑜𝑢𝑡,𝑧

0)

 (4.33)

Figure 4.4: Normal to the boundary face PQR vector 𝑛⃗ 𝑜𝑢𝑡.

4.3.4 Time Integration

In an explicit scheme, the time integration of the discretized governing equation leads to the

following equation [Bla01]

−𝑉𝑃 (
𝑑𝑊⃗⃗⃗

𝑑𝑡
)

𝑃

= −𝑉𝑃

𝛥𝑊⃗⃗⃗
𝑃
𝑛+1

𝛥𝑡𝑃
=

(4.34)

∑ 𝛷⃗⃗ 𝑃𝑄
𝑖𝑛𝑣

𝑄∈𝐾𝑁(𝑃)

+ ∑ 𝛷⃗⃗ 𝑃,𝑜𝑢𝑡
𝑖𝑛𝑣

(𝐾𝑜𝑢𝑡∈𝜕𝐶𝑉𝑃∩𝛤)

− 𝑆 𝑃𝑉𝑃 = 𝑅⃗ 𝑃
𝑛

where 𝛥𝑡𝑃 is the local time step at node 𝑃 and is calculated as [Kim03, Lyg11]

𝛥𝑡𝑃
𝑖𝑛𝑣 = 𝐶𝐹𝐿 ∙

0.5𝛼𝑚𝑖𝑛 𝑙 𝑒𝑑𝑔𝑒,𝑃

|𝑈⃗⃗ 𝑃| + 𝑎𝑃

 (4.35)

Chapter 4: Introduction of High-Order to 3-D Problems 2019

44

where |𝑈⃗⃗ 𝑃| is the value of velocity at node 𝑃, 𝑎𝑃 is the speed of sound evaluated on the same node

and 𝛼𝑚𝑖𝑛 𝑙 𝑒𝑑𝑔𝑒,𝑃 is the length of the shortest edge connected to 𝑃.

In the second-order scheme, a four-step Runge-Kutta (RK (4)) method is employed as introduced

in section 1.2.4. Furthermore, acceleration techniques, such as implicit residual smoothing, are

utilized to decrease the time of the numerical simulation. In the concept of the high-order

scheme, as described in the previous sections, the implementation of the high-order Strong

Stability Runge-Kutta method is considered [Ruu05, Got05].

4.4 Derivation of the High-Order Scheme

4.4.1 Calculation of the High-order Terms

The functional form of the existing second-order scheme is shown below

𝑈2 = 𝑈(𝑥0, 𝑦0, 𝑧0) +
𝜕𝑈

𝜕𝑥
(𝑥𝑖 − 𝑥0) +

𝜕𝑈

𝜕𝑦
(𝑦𝑖 − 𝑦0) +

𝜕𝑈

𝜕𝑧
(𝑧𝑖 − 𝑧0) (4.36)

where a Taylor series expansion is applied, leading to the following functional form of a third

order scheme [Yang16].

𝑈ℎ = 𝑈(𝑥0, 𝑦0,𝑧0) +
𝜕𝑈

𝜕𝑥
(𝑥𝑖 − 𝑥0) +

𝜕𝑈

𝜕𝑦
(𝑦𝑖 − 𝑦0) +

𝜕𝑈

𝜕𝑧
(𝑧𝑖 − 𝑧0) +

1

2!
[
𝜕2𝑈

𝜕𝑥2
(𝑥𝑖 − 𝑥0)

2

(4.37) +
𝜕2𝑈

𝜕𝑦2
(𝑦𝑖 − 𝑦0)

2 +
𝜕2𝑈

𝜕𝑧2
(𝑧𝑖 − 𝑧0)

2 + 2
𝜕2𝑈

𝜕𝑥𝜕𝑦
(𝑥𝑖 − 𝑥0)(𝑦𝑖 − 𝑦0)

+2
𝜕2𝑈

𝜕𝑥𝜕𝑧
(𝑥𝑖 − 𝑥0)(𝑧𝑖 − 𝑧0) + 2

𝜕2𝑈

𝜕𝑦𝜕𝑧
(𝑦𝑖 − 𝑦0)(𝑧𝑖 − 𝑧0)

What can be noted from the formulation above is that the first three terms in the right hand side

are the 𝑈 value of the existing scheme, but with the correction term as expressed in 4.38.

ΔUℎ−2 = 𝑈ℎ − 𝑈2 =
1

2
[
𝜕2𝑈

𝜕𝑥2
(𝑥𝑖 − 𝑥0)

2 +
𝜕2𝑈

𝜕𝑦2
(𝑦𝑖 − 𝑦0)

2 +
𝜕2𝑈

𝜕𝑧2
(𝑧𝑖 − 𝑧0)

2

(4.38)

+2
𝜕2𝑈

𝜕𝑥𝜕𝑦
(𝑥𝑖 − 𝑥0)(𝑦𝑖 − 𝑦0) + 2

𝜕2𝑈

𝜕𝑥𝜕𝑧
(𝑥𝑖 − 𝑥0)(𝑧𝑖 − 𝑧0) + 2

𝜕2𝑈

𝜕𝑦𝜕𝑧
(𝑦𝑖 − 𝑦0)(𝑧𝑖 − 𝑧0)]

Considering the methodology introduced in previous chapters, high-order accuracy is feasible,

provided that the derivatives of the high-order terms can be computed. This is made possible by

the consecutive implementation of the Green-Gauss theorem, which for a function f states that

∭ ∇𝑓 𝑑𝑉 = ∯ 𝑓 𝑛̂ 𝑑𝑆

𝜕𝑉

𝑉

⇒ ∇𝑓 =

1

𝑉
∯ 𝑓 𝑛̂ 𝑑𝑆

𝜕𝑉

 (4.39)

where 𝑛̂ is the outward-pointing unitary normal vector to the boundary 𝜕𝑉 of 𝑉. Relying on the

first derivatives field from the existing second-order scheme and using the Green-Gauss theorem,

the third derivatives are determined in the following manner:

 2019 Chapter 4: Introduction of High-Order to 3-D Problems

45

𝜕2𝑈

𝜕𝑥2
=

1

𝑉
∯

𝜕𝑈

𝜕𝑥
𝑛̂𝑥𝑑𝑆

𝜕𝑉

,
𝜕2𝑈

𝜕𝑦2
=

1

𝑉
∯

𝜕𝑈

𝜕𝑦
𝑛̂𝑦𝑑𝑆

𝜕𝑉

,
𝜕2𝑈

𝜕𝑧2
=

1

𝑉
∯

𝜕𝑈

𝜕𝑧
𝑛̂𝑧𝑑𝑆

𝜕𝑉

,

(4.40)

𝜕2𝑈

𝜕𝑥𝜕𝑦
=

1

𝑉
∯

𝜕𝑈

𝜕𝑦
𝑛̂𝑥𝑑𝑆

𝜕𝑉

 ,
𝜕2𝑈

𝜕𝑥𝜕𝑧
=

1

𝑉
∯

𝜕𝑈

𝜕𝑧
𝑛̂𝑥𝑑𝑆

𝜕𝑉

 ,
𝜕2𝑈

𝜕𝑦𝜕𝑧
=

1

𝑉
∯

𝜕𝑈

𝜕𝑧
𝑛̂𝑦𝑑𝑆

𝜕𝑉

The identical procedure could be used for the calculation of these derivatives based on the values

of the first derivatives field, as shown in 4.41.

𝜕2𝑈

𝜕𝑥2
=

𝜕

𝜕𝑥
(
𝜕𝑈

𝜕𝑥
) ,

𝜕2𝑈

𝜕𝑦2
=

𝜕

𝜕𝑦
(
𝜕𝑈

𝜕𝑦
) ,

𝜕2𝑈

𝜕𝑧2
=

𝜕

𝜕𝑧
(
𝜕𝑈

𝜕𝑧
)

(4.41)

𝜕2𝑈

𝜕𝑥𝜕𝑦
=

𝜕

𝜕𝑥
(
𝜕𝑈

𝜕𝑦
) ,

𝜕2𝑈

𝜕𝑥𝜕𝑧
=

𝜕

𝜕𝑥
(
𝜕𝑈

𝜕𝑧
) ,

𝜕2𝑈

𝜕𝑦𝜕𝑧
=

𝜕

𝜕𝑦
(
𝜕𝑈

𝜕𝑧
)

Additionally, the fourth order correction terms of Equation 4.42 are introduced to the third order

interpolation function and, potentially, even higher order accuracy can be achieved.

𝛥𝑈ℎ−3 =
1

! 3
[
𝜕3𝑈

𝜕𝑥3
(𝑥𝑖 − 𝑥0)

3 +
𝜕3𝑈

𝜕𝑦3
(𝑦𝑖 − 𝑦0)

3 +
𝜕3𝑈

𝜕𝑧3
(𝑧𝑖 − 𝑧0)

3

(4.42)

+3
𝜕3𝑈

𝜕𝑥2𝜕𝑦
(𝑥𝑖 − 𝑥0)

2(𝑦𝑖 − 𝑦0) + 3
𝜕3𝑈

𝜕𝑥2𝜕𝑧
(𝑥𝑖 − 𝑥0)

2(𝑧𝑖 − 𝑧0)

+3
𝜕3𝑈

𝜕𝑦2𝜕𝑥
(𝑦𝑖 − 𝑦0)

2(𝑥𝑖 − 𝑥0) + 3
𝜕3𝑈

𝜕𝑦2𝜕𝑧
(𝑦𝑖 − 𝑦0)

2(𝑧𝑖 − 𝑧0)

+3
𝜕3𝑈

𝜕𝑧2𝜕𝑥
(𝑧𝑖 − 𝑧0)

2(𝑥𝑖 − 𝑥0) + 3
𝜕3𝑈

𝜕𝑧2𝜕𝑦
(𝑧𝑖 − 𝑧)2(𝑦𝑖 − 𝑦0)

+6
𝜕3𝑈

𝜕𝑥𝜕𝑦𝜕𝑧
(𝑥𝑖 − 𝑥0)(𝑦𝑖 − 𝑦)(𝑧𝑖 − 𝑧0)

Again, taking into account the values of the third derivatives field, the terms of 4.42 are computed

as follows:

𝜕3𝑈

𝜕𝑥3
=

1

𝑉
∯

𝜕2𝑈

𝜕𝑥2
𝑛̂𝑥𝑑𝑆

𝜕𝑉

 ,
𝜕3𝑈

𝜕𝑦3
=

1

𝑉
∯

𝜕2𝑈

𝜕𝑦2
𝑛̂𝑦𝑑𝑆

𝜕𝑉

 ,
𝜕3𝑈

𝜕𝑧3
=

1

𝑉
∯

𝜕2𝑈

𝜕𝑧2
𝑛̂𝑧𝑑𝑆

𝜕𝑉

 (4.43)

𝜕3𝑈

𝜕𝑥2𝜕𝑦
=

1

𝑉
∯

𝜕2𝑈

𝜕𝑥𝜕𝑦
𝑛̂𝑥𝑑𝑆

𝜕𝑉

 ,
𝜕3𝑈

𝜕𝑥2𝜕𝑧
=

1

𝑉
∯

𝜕2𝑈

𝜕𝑥𝜕𝑧
𝑛̂𝑥𝑑𝑆

𝜕𝑉

 ,
𝜕3𝑈

𝜕𝑦2𝜕𝑥
=

1

𝑉
∯

𝜕2𝑈

𝜕𝑦𝜕𝑥
𝑛̂𝑦𝑑𝑆

𝜕𝑉

𝜕3𝑈

𝜕𝑦2𝜕𝑧
=

1

𝑉
∯

𝜕2𝑈

𝜕𝑦𝜕𝑧
𝑛̂𝑦𝑑𝑆

𝜕𝑉

 ,
𝜕3𝑈

𝜕𝑧2𝜕𝑥
=

1

𝑉
∯

𝜕2𝑈

𝜕𝑧𝜕𝑥
𝑛̂𝑧𝑑𝑆

𝜕𝑉

 ,
𝜕3𝑈

𝜕𝑧2𝜕𝑦
=

1

𝑉
∯

𝜕2𝑈

𝜕𝑧𝜕𝑦
𝑛̂𝑧𝑑𝑆

𝜕𝑉

𝜕3𝑈

𝜕𝑥𝜕𝑦𝜕𝑧
=

1

𝑉
∯

𝜕2𝑈

𝜕𝑦𝜕𝑧
𝑛̂𝑥𝑑𝑆

𝜕𝑉

Chapter 4: Introduction of High-Order to 3-D Problems 2019

46

4.4.2 U-MUSCL Scheme

The current methodology incorporates a variable extrapolation, the U-MUSCL numerical scheme,

closely resembled to the existing MUSCL-scheme [Bur05], whose interpolation function is

expressed in the following equation [Yan16].

𝑈𝑃𝑄
𝐿 (𝜅) = 𝑈𝑃 +

𝜅

2
(𝑈𝑄 − 𝑈𝑃) +

1

2
∙ (1 − 𝜅)∇𝑈𝑃 ∙ 𝑟 𝑃𝑄

 (4.44)

𝑈𝑃𝑄
𝑅 (𝜅) = 𝑈𝑄 +

𝜅

2
(𝑈𝑃 − 𝑈𝑄) −

1

2
∙ (1 − 𝜅)∇𝑈𝑄 ∙ 𝑟 𝑃𝑄

Finally, the presented high-order scheme of 3rd order of accuracy is written in a similar manner as

[Yan16]:

𝑈𝑃𝑄
𝐿 (𝜅) = 𝑈𝑃 +

𝜅

2
(𝑈𝑄 − 𝑈𝑃) +

1

2
∙ (1 − 𝜅)∇𝑈𝑃 ∙ 𝑟 𝑃𝑄

+
1

2
[
𝜅3

4
(∇𝑈𝑄 ∙ 𝑟 𝑃𝑄 − ∇𝑈𝑃 ∙ 𝑟 𝑃𝑄) +

1

4
(1 − 𝜅3) ∇(∇𝑈𝑃 ∙ 𝑟 𝑃𝑄) ∙ 𝑟 𝑃𝑄]

 = 𝑈𝑃 +
𝜅

2
(𝑈𝑄 − 𝑈𝑃) +

1

2
∙ (1 − 𝜅)∇𝑈𝑃 ∙ 𝑟 𝑃𝑄

+
1

2
[
𝜅3𝛥𝑥𝑃𝑄

4
((

𝜕𝑈

𝜕𝑥
)
𝑄

− (
𝜕𝑈

𝜕𝑥
)
𝑃
) +

1

4
∙ (1 − 𝜅3)𝛥𝑥𝑃𝑄∇((

𝜕𝑈

𝜕𝑥
)
𝑃
) ∙ 𝑟 𝑃𝑄]

 (4.45)

+
1

2
[
𝜅3𝛥𝑦𝑃𝑄

4
((

𝜕𝑈

𝜕𝑦
)
𝑄

− (
𝜕𝑈

𝜕𝑦
)
𝑃

) +
1

4
∙ (1 − 𝜅3)𝛥𝑦𝑃𝑄∇((

𝜕𝑈

𝜕𝑦
)
𝑃

) ∙ 𝑟 𝑃𝑄]

+
1

2
[
𝜅3𝛥𝑧𝑃𝑄

4
((

𝜕𝑈

𝜕𝑧
)
𝑄

− (
𝜕𝑈

𝜕𝑧
)
𝑃
) +

1

4
∙ (1 − 𝜅3)𝛥𝑧𝑃𝑄∇((

𝜕𝑈

𝜕𝑧
)
𝑃
) ∙ 𝑟 𝑃𝑄]

 2019 Chapter 5: Development of 3-D Grid Generators

47

CHAPTER 5

DEVELOPMENT OF 3-D GRID GENERATORS

5.1 Presentation of 3-D Grids

The implementation of the proposed high-order module, introduced in this study, into the

current CFD Galatea solver requires the quality assessment of the numerical results. In the 3rd

Chapter an extensive evaluation methodology was presented for the verification test of the 2-

dimensional equations, using representative grid types. In order to employ this methodology to a

3-dimensional problem, computational meshes of the same dimensional order need to be

constructed. Regarding the latter, it has to be generated so that it preserves the conservation

properties of the governing equations; thus, the following conditions need to be satisfied [Bla01]:

 The physical domain has to be covered completely by the grid

 There must be no free space left between elements

 The grid cells should not overlap each other

Strictly in mathematical terms, this is expressed by the following: considering a conforming

decomposition of the computational domain 𝑇ℎ𝑁 of Ω with characteristic length ℎ𝑁, as a set of

finitely element subsets 𝑇𝑝 ⊂ 𝛺, 𝑃 = 1,2,3… ,𝑁, the following conditions are satisfied [Del11,

Del13]:

 Ω = ⋃ 𝑇𝑝𝑝∈ {1,2,3…,𝑁}

 every 𝑇𝑝 is closed

 for two 𝑇𝑝, 𝑇𝑞 ∈ 𝑇ℎ𝑁 with 𝑝 ≠ 𝑞 their interiors satisfy 𝑇̇𝑝 ∩ 𝑇̇𝑞 ≠ ∅

 every two dimensional face of any 𝑇𝑝 ∈ 𝑇ℎ𝑁 is either a subset of 𝜕Ω or a side of

another 𝑇𝑞 , 𝑞 ≠ 𝑝

Various types of grids were developed for the scope of this work. The elements composing the

different types of grids are tetrahedrons, pyramids and prisms (Figure 5.1).

Figure 5.1: Different types of 3-D elements

Chapter 5: Development of 3-D Grid Generators 2019

48

Generally, as for the 2-dimensional grids introduced in the previous sections, the produced 3-D

are Regular grids, derived by a smooth mapping from grids with periodic node connectivity,

periodic cell distribution, and include (but are not limited to) grids derived from Cartesian ones.

Additionally, a small perturbation of the initial node locations may derive Irregular grids from the

Regular ones. Overall, 6 types of grids are studied in the present work, as shown in the following

table:

Table 5.1: Regular and Irregular grid types

GRID TYPES MODE I MODE II

Prismatic Grid of Type I Regular Irregular

Prismatic Grid of Type II Regular Irregular

Prismatic Grid of Type III Regular Irregular

Pyramidal Grid Regular Irregular

Tetrahedral Grid Regular Irregular

A brief discussion of the grids precedes a comprehensive description of the construction method

at the next sections. The Prismatic Grid of Type I consists of prisms derived from a regular

Cartesian grid through the decomposition of its hexahedral elements with a diagonal splitting

(Figures 5.2-5.3). Two prismatic elements are produced by this procedure. The Prismatic Grid of

Type II is generated in a similar way, the only difference being that the outcome of the

hexahedron elements’ division includes 4 prisms (Figures 5.4–5.5). Grids of Type III may be

regarded as an extrusion of a two-dimensional grid composed of triangular equilateral elements

to a third dimension creating thus; prismatic elements (Figures 5.6-5.7). The Pyramidal Grid is

created when the hexahedral cells of a regular Cartesian grid are decomposed. The insertion of a

node at its barycenter and its connectivity to the corresponding vertices produces 6 pyramids

(Figures 5.8 –5.9). Additionally, two of the abovementioned types of grid, the Pyramidal and the

Prismatic with equilateral triangular base, are used to derive the Tetrahedral Grids by

decomposing their elements into tetrahedrons (Figures 5.10-5.13). Finally, random shifts of the

original grid node positions cause distortions that provide the Irregular Grids (Figures 5.14-5.15).

This is possible for all grid types. These constructed grids are considered typical of those that are

usually applied for the numerical solution of the Navies-Stokes equations.

 2019 Chapter 5: Development of 3-D Grid Generators

49

Figure 5.2: Prismatic Grid of Type I

Figure 5.3: Prismatic Grid of Type I - details

Chapter 5: Development of 3-D Grid Generators 2019

50

Figure 5.4: Prismatic Grid of Type II

Figure 5.5: Prismatic Grid of Type II - details

 2019 Chapter 5: Development of 3-D Grid Generators

51

Figure 5.6: Prismatic Grid of Type III

Figure 5.7: Prismatic Grid of Type III - details

Chapter 5: Development of 3-D Grid Generators 2019

52

Figure 5.8: Pyramidal Grid

Figure 5.9: Pyramidal Grid - details

 2019 Chapter 5: Development of 3-D Grid Generators

53

Figure 5.10: Tetrahedral Grid produced from the Pyramidal Grid

Figure 5.11: Tetrahedral Grid produced from the Pyramidal Grid - details

Chapter 5: Development of 3-D Grid Generators 2019

54

Figure 5.12: Tetrahedral Grid produced from the Prismatic Grid of Type III

Figure 5.13: Tetrahedral Grid produced from the Prismatic Grid of Type III - details

 2019 Chapter 5: Development of 3-D Grid Generators

55

Figure 5.14: Irregular mode of Prismatic Gird of Type II

Figure 5.15: Irregular mode of Tetrahedral Grid produced from the
Pyramid Grid

Chapter 5: Development of 3-D Grid Generators 2019

56

5.2 Introduction to the Algorithms

In this section a thorough representation of the developed algorithms is undertaken with a

comprehensive description of the construction method for each type of grid. Representative

figures throughout the consecutive stages of the development are given for deeper understanding.

The source code of all grid generator types is developed in FORTRAN 90, which is a general-

purpose, compiled imperative programming language, especially suited to numerical computation

and scientific computing, prevailing in the Computational Fluid Dynamics field. In this

introduction the focus will be on the key aspects of the algorithms identical for all grid types, i.e.

the data structures, the boundaries of the computational domain and the output data.

As a primary step for each algorithm, an initialization procedure is executed in order to generate

the nodes of the grid, where the assignment of the elements occurs. After an input file containing

the variables for the specification of the grid is imported, the code proceeds with the calculation

of all the nodes and cells composing the grid and stores them to the integer variables NNODE and

NCELL respectively. With the determination of the nodes, the Cartesian coordinates (X, Y, Z) are

allocated onto three one-dimensional arrays named X (i), Y (i) and Z (i) where the index defines

the number of each node.

The following step includes defining the elements. This requires a set of information such as the

nodes which compose the relevant element, its faces, and the neighboring cells. A two-

dimensional array, named NC (i, j), is declared in order to assign the nodes which compose a

certain element. The former index, “i”, stands for the node number of the element vertices, while

the latter, “j” represents the number of the corresponding element. Depending on the element

type, hexahedron, pyramid, or prism, the amount of nodes assigned is 4, 5 and 6. The orientation

of the assignment is not arbitrary, but it is standardized by the ANSYS format and is depicted in

Figure (5.16).

Figure 5.16: Node orientation for each 3D element

 2019 Chapter 5: Development of 3-D Grid Generators

57

As far as the definition of the element faces is concerned, a three-dimensional array NF (i, j, k) is

declared. In this matrix what is stored is the set of nodes, which determine each face of the

element. The first index declares the number of the element face; the second states the number of

each node composing the face; the third index refers to the number of the corresponding cell.

Again, the number of faces depends on the element type, while the number of face nodes depends

on the face shape.

Lastly, for each element the neighboring cells need to be determined. This requires a two-

dimensional array NE (i, j) which stores the number of the neighboring cells for each element.

The former index declares the successive neighbors and the latter the element itself. Five

neighbors are declared for the pyramidal and prismatic elements and four neighbors for the

tetrahedral.

The definition of the variables is not over unless the demarcation of the computational domain is

specified. Because of its hexahedral shape, 6 boundary planes need to be determined as

boundaries. By convention, each plane is attributed a specific name, as illustrated in Figure 5.17

and a particular index is assigned, as indicated in Table 5.3. The integer variable NBOUND refers

to the total sum of the boundaries.

To define a boundary plane, it is necessary to determine the faces it consists of with a set of

information; this includes the nodes and the cell to which the relevant face belongs. A given

number is tied with each boundary face according to a specific orientation. Four two-dimensional

arrays NOD (k) (i, j), where k=1, 2... 4 store the nodes. The first index corresponds to the number

of the boundary face and the second to the number of the boundary plane. The cell that

corresponds to each boundary face is allocated to a two-dimensional array NBCELL (i, j) where

both indexes have the same connotation as before. Moreover, a third two-dimensional array

NBFACE (i, j) states the number face of the cell that is identical to the boundary face. Finally, the

total sum of the boundary faces for each plane is declared with one-dimensional array, the NCB

(NBOUND).

The index assignment on the faces of each boundary plane follows a specific perspective the

algorithm retains on the computational domain. Marking XZ_1 plane as default perspective

(Figure 5.17), results in the rest of the planes’ views as derivations from shifts on the axes of

Coordinate System. In particular:

Table 5.2: Perspective determination of the boundary planes

DEFAULT PERSPECTIVE SHIFT ON AXIS OUTCOME

XZ_1 Plane

Z by 90o YZ_2

Z by 180o XZ_2

Z by 270o YZ_1

X by 90o XY_1

X by 270o XY_2

Chapter 5: Development of 3-D Grid Generators 2019

58

Figure 5.17: Notation of boundary planes

Table 5.3: Boundary index assignment

BOUNDARY INDEX ASSIGNING PLANES

Boundary [1] XZ_1 Plane

Boundary [2] YZ_2 Plane

Boundary [3] XZ_2 Plane

Boundary [4] YZ_1 Plane

Boundary [5] XY_1 Plane

Boundary [6] XY_2 Plane

 2019 Chapter 5: Development of 3-D Grid Generators

59

The following table summarizes the data structures that are described in this section.

Table 5.4: Summarizing table of data structures

NOTION TYPE DESCRIPTIOIN

X, Y, Z Array Coordinates of the nodes

NCELL Integer Number of total cells

NNODE Integer Number of total nodes

NC Array Node number in each cell

NF Array Node number of each face in each cell

NE Array Cell number of each neighbor

NBOUND Integer Number of total boundary planes

NCB Array Number of cell faces on each boundary plane

NOD(i) Array Nodes of each boundary face

NBCELL Array Number of the corresponding boundary cell

NBFACE Array
Number of corresponding face of each
boundary cell

The execution of the algorithms produces two types of output files for subsequent processing

steps. The former is a text file with the extension .PLT which is a customized format for

TECPLOT, a visualization and analysis software. The latter is in ANSYS.CFX format where the

structure of the information is standardized and includes the following data:

Table 5.5: Data output for ANSYS

DATA DESCRIPTION

Name of the Grid
Number of Nodes
Number of Cells

Definition of primary information

X,Y,Z Coordinates Definition of the node coordinates

Nodes of each Element
Definition of the nodes composing each
element

Boundary Cells and Faces
Definitions of the boundary cell numbers
along with the corresponding cell face
numbers

Chapter 5: Development of 3-D Grid Generators 2019

60

5.3 Regular Grids

5.3.1. Prismatic Grid of Type I

The algorithm produces a prismatic grid whose prisms have an orthogonal triangular basis

(Figures 5.2 – 5.3) through the decomposition of a regular Cartesian grid. Initially, a set of input

values is provided for the code execution. These values refer to the specifications of the generated

grid determining the dimensions of the computational domain and, implicitly, the magnitude of

the consisting elements. In the following table, the first column illustrates the input values the

user defines and the second column captures the auxiliary variables the algorithm determines in

order to store them.

Table 5.6: Input values of Grid Type I and their corresponding variables

INPUT VALUES VARIABLES

Length of the Rectangle in the X – Direction X_L

Length of the Rectangle in the Y – Direction Y_L

Length of the Rectangle in the Z - Direction Z_L

Number of Edges in the X – Direction NX

Number of Edges in the Y – Direction NY

Number of Edges in the Z – Direction NZ

The length of the rectangle in three dimensions declares the magnitude of the hexahedral

computational domain. The number of edges determines the segmentation in each direction, so

that a regular Cartesian grid blueprint is constructed. Based on the input values, the total number

of both nodes (NNODE) and elements (NCELL) is calculated.

At this stage the node initialization process occurs. On the Euclidean space the X, Y, Z Cartesian

Coordinates of the nodes are determined along with their allocation onto the three corresponding

arrays X(i), Y(i) and Z(i), the index i signing the number of the node. The alliance of the nodes is

set up in a fashion, such that the vertices of hexahedral elements, which define a regular Cartesian

grid, are determined (Figure 5.18).

An iterative procedure consisting of three loops is implemented for the node initialization.

Considering zero point of the Cartesian coordinates as the starting point, the first loop

determines the nodes in the Y-direction, based on the input value length (Y_L). The distance

between the nodes (𝑑𝑦) is defined by the division of the Y-direction length (Y_L) with the number

of the edges (NY) in this direction. The same iterative process is repeated by a second loop in the

X-direction defining the successive rows of nodes. Again, the distance (𝑑𝑥) between the rows is

the division result of the (X_L) with the total amount of the edges (NX). Finally, a third loop

completes the node determination in the Z-direction positioning the nodes on the following

 2019 Chapter 5: Development of 3-D Grid Generators

61

successive levels. The indexing of the nodes follows the flow of the described iterative procedures

and is depicted in Figure 5.18.

Figure 5.18: Node orientation of the blueprint regular Cartesian grid for Prismatic
Grid of Type I

The next step is the definition of the elements. The main concept here is the construction of two

prismatic cells with a diagonal decomposition of every hexahedral cell created by the node

initialization (Figure 5.19).

Figure 5.19: Assignment of auxiliary variables on a hexahedral element

Chapter 5: Development of 3-D Grid Generators 2019

62

Each hexahedral element is scanned by an iterative procedure and dummy variables are utilized

to store temporarily the 8 node numbers of the vertices, in order to construct the prismatic cells.

Subsequently, the nodes are distributed to the NC (i, j) array with a specific orientation, as

mentioned in the previous section (Figure 5.16), defining thus two distinct elements. Figure 5.19

illustrates the location of the dummy variables, while Table 5.7 indicates the assigning of the

nodes to the two prisms.

Table 5.7: Node assignment to the two prisms

DEFINITION NODE (1) NODE (2) NODE (3) NODE (4) NODE (5) NODE (6)

Prism [1] K1 K2 K3 K5 K6 K7

Prism [2] K1 K3 K4 K5 K7 K8

At the same stage, both the determination of the faces, which compose each cell and the

neighboring cells takes place. With respect to the faces, the index numbering of each face

depends on the nodes it consists of. The assignment of the nodes to the NF (i, j, k) occurs in

accordance to a specific orientation. The final outcome is illustrated in Table 5.8. In connection

with the neighboring cells, 5 neighbors are defined for the prismatic cells. The index number of

each neighbor is dependent on the number face it is aligned with, as shown in Table 5.9.

Table 5.8: Face indexing and node assignment on the NF array

FACES
NODE ASSIGNMENT TO NF ARRAY

1st 2nd 3rd 4th

Face [1] Node (1) Node (3) Node (6) Node (4)

Face [2] Node (1) Node (2) Node (5) Node (4)

Face [3] Node (2) Node (3) Node (6) Node (5)

Face [4] Node (1) Node (2) Node (3) _

Face [5] Node (4) Node (5) Node (6) _

 2019 Chapter 5: Development of 3-D Grid Generators

63

Table 5.9: Neighboring cell indexing with reference to the corresponding face

INDEXING NEIGHBORS CORRESPONING FACE

Neighbor [1] Face [3]

Neighbor [2] Face [1]

Neighbor [3] Face [2]

Neighbor [4] Face [4]

Neighbor [5] Face [5]

The abovementioned processes are executed for every hexahedral element, so that prisms are

created across the domain. The direction of the flow procedure, which the algorithm follows in

order to scan all hexahedrons, is similar to the node alliance. Ordering the hexahedral element

that lies at the zero point of Cartesian Coordinates as the initial point, an iterative procedure of

three loops is implemented. The first loop defines the elements in the Y-direction (Figure 5.20),

while the second loop proceeds to the next rows in the X-direction (Figure 5.21). Lastly, the third

loop is executed to the layers higher up in the Z-direction by determining the elements of the

whole domain (Figure 5.22). Once again, the index cell numbering follows the flow of the

iterative processes.

Figure 5.20: Loop for cell definition in Y-direction

Chapter 5: Development of 3-D Grid Generators 2019

64

Figure 5.21: Loop for cell definition in X-direction

Figure 5.22: Loop for cell definition in Z-direction

 2019 Chapter 5: Development of 3-D Grid Generators

65

The final stage of the algorithm execution contains the boundary determination of the grid

domain. In the previous section, 6 boundary planes were defined because of the hexahedral shape

of the domain. An iterative procedure is implemented for each boundary plane, in order to

declare the boundary faces by assigning the number of nodes which compose each boundary face

(NOD), the number of the corresponding cell (NBCELL), along with the corresponding element

face (NBFACE). Two loops are used to define the two-dimensional planes: For the XZ_1, XZ_2,

YZ_1 and YZ_2, which are comprised of rectangular elements, the former loop defines the

elements in the Y-direction, while the latter loop those in the X-direction. In Figures 5.23 – 5.24,

the index numbering of these boundary faces and the orientation, which the nodes are assigned,

are respectively shown. For the XY_1 and XY_2 planes, which are comprised of triangular

elements, the iterative process follows the reverse flow: firstly, in the X-direction and then in the

Y-direction, as illustrated in Figures 5.25-5.28. The difference in the orientation of the triangles

on the two planes stems from the predetermined perspective view discussed in introduction

(Figure 5.17).

Figure 5.23: Indexing of the boundary faces on
XZ_1, XZ_2, YZ_1, and YZ_2 planes

Figure 5.24: Node assignment on each face on
XZ_1, XZ_2, YZ_1, and YZ_2 planes

Figure 5.25: Indexing of the boundary faces on
XY_1 plane

Figure 5.26: Node assignment on each face on
XY_1 plane

Chapter 5: Development of 3-D Grid Generators 2019

66

Figure 5.27: Indexing of the boundary faces on
XY_2 plane

Figure 5.28: Node assignment on each face on
XY_2 plane

5.3.2 Prismatic Grid of Type II

The aim of this section is the development of the algorithm that produces a grid of prismatic

elements with a regular triangular base of Type II (Figures 5.4-5.5). A construction technique

similar to the grid generation of Type I is employed, the main difference being the decomposition

process of the Cartesian regular grid. More specifically, two diagonal planes divide each

hexahedral element of the regular grid into 4 prismatic cells. The focus on this section will mainly

be on those aspects that differentiate the proceeding steps of the algorithm development from the

ones described for the development of the Grid of Type I.

An import file provides the data for the definition of the features about the grid (Table 5.6), i.e.

the length of the rectangle in the three dimensions, in order to define the computational domain,

and the number of edges, which are implicitly used for the segmentation of each direction. To

begin with, the algorithm proceeds with the node initialization calculating the Cartesian

Coordinates (X,Y,Z) and stores them in the corresponding arrays (X(i),Y(i),Z(i)). A blueprint of

the nodes forming a regular Cartesian grid is created and extra nodes are set at the barycenter of

each quadrilateral face formed by the nodes on each two-dimensional plane. These nodes are

utilized for the division of the hexahedral elements.

The nodes of the regular grid are initialized with a procedure identical to the one described for

Grid Type I. Three loops are executed in the relevant dimensions X, Y, Z and an index number is

assigned for each node as shown in Figure 5.18. In addition, the auxiliary nodes are determined in

accordance to the orientation of the nodes that define the Cartesian grid. The index numbering

further continues the last arithmetic succession. Figure 5.29 illustrates the final outcome.

 2019 Chapter 5: Development of 3-D Grid Generators

67

Figure 5.29: Node orientation for the Prismatic Grid of Type II

Proceeding to the next step, the algorithm determines the prismatic elements assigning the node

set to the NC array for each element. The iterative process, which scans every hexahedral element

in order to perform its decomposition into prisms, is similar to the one depicted in Figures 5.20-

5.22. As far as the decomposition is concerned, 4 distinct prismatic elements are produced. The

auxiliary variables, which include the vertex nodes of the hexahedron along with the middle

nodes, are defined, as shown in Figure 5.30 and they are assigned to the prisms, as indicated in

the Table 5.10. Finally, the assignment of the element faces (NF) as well as the determination of

the neighboring cells (NE) occurs in the way that was described in Tables 5.8 and 5.9.

Figure 5.30: Assignment of auxiliary variables of a hexahedral element

Chapter 5: Development of 3-D Grid Generators 2019

68

Table 5.10: Node assignment for the 4 prisms

DEFINITION NODE (1) NODE (2) NODE (3) NODE (4) NODE (5) NODE (6)

Prism [1] K1 K2 K5 K6 K7 K10

Prism [2] K2 K3 K5 K7 K8 K10

Prism [3] K3 K4 K5 K8 K9 K10

Prism [4] K4 K1 K5 K9 K6 K10

The determination of the grid’s boundary conditions completes the execution of the algorithm.

An iterative procedure of two loops defines the two-dimensional boundary planes i.e. the nodes of

the faces (NOD), the corresponding elements (NBCELL), and the respective element faces

(NBFACE). The planes XZ_1, XZ_2, YZ_1, and YZ_2 comprised of rectangular elements are

assigned a consecutive numbering. The flow of the iterative process begins at the first row and

proceeds on the layers above, as shown in Figures 5.31-5.32. On the other hand, with respect to

the planes XY_1 and XY_2 composed of triangular elements, the iterative procedure assigns in a

circular way a successive numbering to each triangular element found on each rectangle. This is

performed, firstly, in the Y-direction and then in the X-direction. This is presented in Figures

5.33-5.34. Note that the perspective in the two-dimensional figures echoes the discussion in the

introductory part.

Figure 5.31: Indexing of the boundary faces on
XZ_1, XZ_2, YZ_1, and YZ_2 planes

Figure 5.32: Node assignment on each
face on XZ_1, XZ_2, YZ_1, and YZ_2 planes

 2019 Chapter 5: Development of 3-D Grid Generators

69

Figure 5.33: Indexing of the boundary faces on
XY_1 and XY_2 planes

Figure 5.34: Node assignment on each face
on XY_1 and XY_2 planes

5.3.3 Prismatic Grid of Type III

The purpose of this section is the study of the prismatic grids with an equilateral triangular base

(Figures 5.6–5.7). The resulting grid is regarded as the outcome of a two-dimensional grid

extrusion (composed from equilateral triangular elements) to the third dimension. A detailed

presentation of the construction method is introduced.

The features needed for the construction of the grid are provided through an input file. Unlike the

notions given in the previous algorithms, the content of this file lacks one value, concerning the

number of edges in the Y-dimension for reasons which are going to be discussed below.

Table 5.11: Input values of grid Type III and their corresponding variables

INPUT VALUES VARIABLES

Length of the Rectangle in the X – Direction X_L

Length of the Rectangle in the Y – Direction Y_L

Length of the Rectangle in the Z - Direction Z_L

Number of Edges in the X – Direction NX

Number of Edges in the Z – Direction NZ

Chapter 5: Development of 3-D Grid Generators 2019

70

The initialization of the nodes is the primary step of the algorithm. An iterative procedure is

implemented, where a two-dimensional grid of equilateral triangular elements is constructed in

order to be replicated in the third dimension.

The construction of equilateral triangles requires the definition of the equilateral edge length; this

is calculated as the value 𝑑𝑥 stemming from the division of X_L (the length of X-dimension), with

the NX (the number of edges in X-dimension). Employing a trigonometric relation, the algorithm

calculates the height of the equilateral triangle on the premises of the defined value 𝑑𝑥, which

corresponds to the length of 𝑑𝑦. Consequently, the number of edges in the Y-dimension (NY) is

inferred by the division of the defined 𝑑𝑦 with the length of Y_L. This justifies the missing notion

of NY in the input file as mentioned earlier.

All of these calculated values determine the segmentation of the two-dimensional plane for the

allocation of the nodes to take place, defining the vertices of the triangular elements which

constitute the grid blueprint. An iterative procedure is implemented in order to initialize the

coordinate nodes (X(i), Y(i), Z(i)) assigning the corresponding indexes, as depicted in Figure 5.35.

Note that the edge triangles are not of equilateral shape, because of a constraint that prohibits the

filling of quadrilateral space merely with equilateral triangles.

Figure 5.35: Node initialization for the two-dimensional plane of the Prismatic Grid Type III

Lastly, the constructed two-dimensional grid is reproduced towards the Z-dimension with an

additional loop, according to the predefined values NZ and Z_L. The final outcome is illustrated in

Figure 5.36.

 2019 Chapter 5: Development of 3-D Grid Generators

71

Figure 5.36: Node orientation for the Prismatic Grid of Type III

The algorithm proceeds to the definition of the prismatic elements. Prisms are derived by a direct

node connectivity of the neighboring 2-D planes in the way exemplified in Figure 5.37. An

iterative procedure is applied, scanning each triangular element on each 2-D plane and

performing the appropriate connectivity of the nodes on the layer immediately above.

Figure 5.37: Prism derivation

Chapter 5: Development of 3-D Grid Generators 2019

72

The cell definition procedure follows a specific pattern: 4 rows of elements in the X-direction are

determined by a set of 4 inner loops, each one of them represented with a different color in the

scheme below.

Figure 5.38: Loops for cell definition in the X-direction

An additional loop iterates the same pattern in the Y-direction determining all the prismatic

elements of the first layer (Figure 5.39). The iterative procedure is executed as many times as

dictated by the division of the NY/2. In case the NY equals with odd number, at the end of the

iterative procedure under discussion an extra loop is performed, in order to determine the

remaining two rows of elements.

Figure 5.39: Loop for cell definition in the Υ-direction

To complete the cell definition procedure, a loop in the Z-direction is implemented, which

defines the elements on the succeeding layers above (Figure 5.40). The index cell numbering

follows the flow of the entire iterative process.

 2019 Chapter 5: Development of 3-D Grid Generators

73

Figure 5.40: Loop for cell definition in the Z-direction

There are two distinct orientations which a prism might get in the grid. Figure 5.41 illustrates the

auxiliary variables assignment of the two cases and Table 5.12 the node assignment to the prisms.

 Prism [1]

 Prism [2]

Figure 5.41: Assignment of auxiliary variables based on the two alternative
orientations on the grid

Table 5.12: Node assignment on the prisms of Prismatic Grid Type III

DEFINITION NODE (1) NODE (2) NODE (3) NODE (4) NODE (5) NODE (6)

Prism [1] K1 K2 K3 K4 K5 K6

Prism [2] K1 K2 K3 K4 K5 K6

With reference to the determination of the faces and the neighboring cells for each prismatic

element and the assignment to the NF and NE arrays respectively, they are both described in

Tables 5.8 and 5.9.

Chapter 5: Development of 3-D Grid Generators 2019

74

The algorithm terminates with the definition of the 6 boundary planes (NOD, NBFACE, and

NBCELL). An iterative procedure of two loops at the two dimensions define the YZ_1, YZ_2,

XZ_1, XZ_2 planes having quadrilateral elements, starting from the first column and proceeding

to the consecutive ones, as illustrated in Figures 5.42 – 5.43, while the triangular elements of the

XY_1 and the XY_2 planes are determined by an iteration beginning from the first row and

proceeding to the consecutive ones (Figures 5.44-5.45).

Figure 5.42: Indexing of the boundary faces on
XZ_1, XZ_2, YZ_1, and YZ_2 planes

Figure 5.43: Node assignment on each face
on XZ_1, XZ_2, YZ_1, and YZ_2 planes

Figure 5.44: Indexing of the boundary faces on
XY_1 and XY_2 planes

Figure 5.45: Node assignment on each
face on XY_1 and XY_2 planes

 2019 Chapter 5: Development of 3-D Grid Generators

75

5.3.4 Pyramidal Grid

In this section the development of the grid composed by pyramidal elements is presented (Figures

5.8-5.9). This type is derived from a regular Cartesian one, whose elements are divided into

pyramids with the insertion of a middle node at its barycenter. The connectivity of this node with

the 8 vertices decomposes the hexahedral element into 6 pyramids.

The initialization of the nodes, which constitute the blueprint of a Cartesian gird, has been

already introduced in the previous subsections, where it was noted that the assignment of the

node coordinates (X (:), Y (:), Z (:)) array) occurs according to the import file (Figure 5.18, Table

5.6). A second iterative procedure determines the middle nodes at the barycenter of each

hexahedral element, in an orientation identical with the one applied for the initialization of the

rectangular nodes. The numbering of the middle nodes follows the arithmetic consecution of the

nodes forming the regular grid. Figure 5.46 illustrates the final result for the nodes and the

assigned indexes.

Figure 5.46: Node orientation for the Pyramidal Grid

Regarding the cell definition, an iterative procedure is implemented in order to decompose each

hexahedral into pyramidal elements. The procedure is executed by a set of three loops, whose

flow reflects the description in section 5.3.1, Figures 5.20-5.22.

The decomposition of the hexahedral elements requires that during the iterative process auxiliary

variables be assigned to the 8 vertices of each hexahedron and to the additional middle node at

the barycenter (Figure 5.47). Consequently, the nodes to be distributed to the NC (i, j) arrays form

Chapter 5: Development of 3-D Grid Generators 2019

76

6 distinct pyramidal elements. Table 5.13 shows the node distribution to the constructed

pyramids.

Figure 5.47: Assignment of auxiliary variables on a hexahedral element

Table 5.13: Node assignment for the 6 pyramids

CELL DEFITION NODE (1) NODE (2) NODE (3) NODE (4) NODE (5)

Pyramid [1] K1 K2 K3 K4 K9

Pyramid [2] K5 K6 K7 K8 K9

Pyramid [3] K1 K2 K6 K5 K9

Pyramid [4] K2 K3 K7 K6 K9

Pyramid [5] K3 K4 K8 K7 K9

Pyramid [6] K4 K1 K5 K8 K9

Concerning the indexing of the faces stored in the NF array, it is directly determined by the node

numbers it consists of (Table 5.14). Finally, 5 neighboring cells for each element need to be

declared in an ascending numerical order and in relation to the number face adjacent to it, as

indicated in Table 5.15.

 2019 Chapter 5: Development of 3-D Grid Generators

77

Table 5.14: Face indexing and node assignment on the NF array

FACES
NODE ASSIGNMENT TO NF ARRAY

1st 2nd 3rd 4th

Face [1] Node (4) Node (1) Node (5) _

Face [2] Node (2) Node (3) Node (5) _

Face [3] Node (1) Node (2) Node (5) _

Face [4] Node (3) Node (4) Node (5) _

Face [5] Node (1) Node (2) Node (3) Node (4)

Table 5.15: Neighboring cell indexing with reference to the corresponding face

INDEXING NEIGHBORS CORRESPONING FACE

Neighbor [1] Face [5]

Neighbor [2] Face [3]

Neighbor [3] Face [2]

Neighbor [4] Face [4]

Neighbor [5] Face [1]

In order to determine the boundary conditions for the grid domain, two loops are required, so

that the boundary faces on the 6 surfaces are defined, in other words the NOD, NBCELL, and

NBFACE arrays. The orientation of the face indexing and the node assignment for the planes

XZ_1, XZ_2, YZ_1, and YZ_2 on the one hand and for the planes XY_1 and XY_2 on the other are

presented in Figures 5.48-5.49 and Figures 5.50-5.51 respectively.

Chapter 5: Development of 3-D Grid Generators 2019

78

Figure 5.48: Indexing of the boundary faces
on XZ_1, XZ_2, YZ_1, and YZ_2 planes

Figure 5.49: Node assignment on each face
on XZ_1, XZ_2, YZ_1, and YZ_2 planes

Figure 5.50: Indexing of the boundary
faces on XY_1 and XY_2 planes

Figure 5.51: Node assignment of each face
on XY_1 and XY_2 planes

5.3.5. Tetrahedral Grid

Two algorithms have been developed for the generation of tetrahedral elements (Figures 5.10-

5.13). The former relies on the pyramidal grid algorithm, which further decomposes the

generated elements into tetrahedrons. The latter is based on the algorithm generating equilateral

prismatic grids; in this case, as well, the produced prisms are fragmented into tetrahedrons.

 2019 Chapter 5: Development of 3-D Grid Generators

79

Type I

As it was mentioned above, the process heavily depends on the approach of the Pyramidal Grid;

the node initialization is defined based on the input values (Table 5.6) creating the footprint of a

regular Cartesian grid along with the middle nodes at the barycenter of the hexahedrons (Figure

5.46). The algorithm proceeds in scanning and decomposing the hexahedral elements with the

same iterative procedure, which has already been discussed in section 5.3.1 (Figures 5.20-5.22).

Given the notion that tetrahedral elements are derived from the pyramidal ones with a diagonal

splitting, which creates two tetrahedral cells for each pyramid (Figure 5.52), a further

decomposition takes place at the cell definition procedure. In this case, the 6 pyramids of each

hexahedron are decomposed into 12 tetrahedrons. The dummy variables (K1, K2, K3… K9) are

assigned at the vertices of each hexahedral elements and their barycenter (Figure 5.53) and

allocated to the corresponding NC array (Table 5.16).

Figure 5.52: Pyramid splitting into two tetrahedrons

Figure 5.53: Assignment of auxiliary variables on a hexahedral element

Chapter 5: Development of 3-D Grid Generators 2019

80

Table 5.16: Node assignment for the 12 tetrahedrons

DEFINITION NODE [1] NODE [2] NODE [3] NODE [4]

Tetrahedron [1] K1 K2 K3 K9

Tetrahedron [2] K1 K3 K4 K9

Tetrahedron [3] K5 K6 K7 K9

Tetrahedron [4] K5 K7 K8 K9

Tetrahedron [5] K1 K2 K6 K9

Tetrahedron [6] K1 K6 K5 K9

Tetrahedron [7] K3 K6 K2 K9

Tetrahedron [8] K3 K7 K6 K9

Tetrahedron [9] K4 K7 K3 K9

Tetrahedron [10] K4 K8 K7 K9

Tetrahedron [11] K4 K1 K5 K9

Tetrahedron [12] K4 K5 K8 K9

Concerning the 4 faces of the tetrahedral element, they need to be stored in NF array; the index

numbering of each face corresponds to the nodes indicated in Table 5.17. Moreover, the

neighboring cells are defined accordingly, with each face corresponding to the indexing of its

neighbor (Table 5.18).

Table 5.17: Face indexing and node assignment in NF array

FACES
NODE ASSIGNMENT TO NF ARRAY

1st 2nd 3rd

Face [1] Node (1) Node (2) Node (3)

Face [2] Node (1) Node (2) Node (4)

Face [3] Node (2) Node (3) Node (4)

Face [4] Node (1) Node (3) Node (4)

 2019 Chapter 5: Development of 3-D Grid Generators

81

Table 5.18: Neighboring cell indexing with reference to the corresponding face

INDEXING NEIGHBORS CORRESPONING FACE

Neighbor [1] Face [1]

Neighbor [2] Face [2]

Neighbor [3] Face [3]

Neighbor [4] Face [4]

All the boundary planes are composed from triangular elements and according to the perspective

view taken to each plane. Figures 5.54–5.61 demonstrate the face indexing and the node

orientation of each boundary face.

Figure 5.54: Indexing of the boundary faces on
XZ_1 and YZ_1 planes

Figure 5.55: Node assignment on each face
on XZ_1 and YZ_1 planes

Figure 5.56: Indexing of the boundary faces
on XZ_2, YZ_2 planes

Figure 5.57: Node assignment of each face on
XZ_2, YZ_2 planes

Chapter 5: Development of 3-D Grid Generators 2019

82

Figure 5.58: Indexing of the boundary faces
on XY_1 plane

Figure 5.59: Node assignment of each face on
XY_1 plane

Figure 5.60: Indexing of the boundary faces
on XY_2 plane

Figure 5.61: Node assignment of each face
on XY_2 plane

Type II

With respect to the generation of tetrahedrons of type II, the algorithmic processing of the

prismatic elements of Type III is extended on the basis of the prisms’ decomposition into

tetrahedrons. This is performed with a node insertion at the barycenter of each prism. Its

connectivity with the vertices of the prism gives rise to two tetrahedrons and 4 pyramids. A

further decomposition of the pyramids with a diagonal splitting completes the creation of 8

tetrahedral elements (Figure 5.62).

Figure 5.62: Decomposition of a prism into 8 tetrahedrons

 2019 Chapter 5: Development of 3-D Grid Generators

83

Again, an input file defines the features of the grid (Table 5.11) and the node initialization occurs

(Figure 5.36). At this point an additional loop defines the middle nodes for each prism. In what

follows, the same iterative procedure defines the elements in the manner discussed in section

5.3.3, Figures 5.38-5.40. The dummy variables assignment for the two different orientations the

grid might receive is shown in Figure 5.63. For each prism 8 distinct tetrahedrons are created

through the allocation to the corresponding NC arrays. Tables 5.19 and 5.20 indicate these

definitions. NF and NE arrays, referring to the faces and the neighboring cells, are determined

according to Tables 5.17 and 5.18 respectively.

Prism [1]

Prism [2]

Figure 5.63: Assignment of auxiliary variables, based on the two alternative orientations of
the grid

Table 5.19: Node assignment on the 8 tetrahedrons of each prism [1]

DEFINITION NODE [1] NODE [2] NODE [3] NODE [4]

Tetrahedron [1] K7 K1 K2 K5

Tetrahedron [2] K7 K1 K5 K4

Tetrahedron [3] K7 K2 K3 K6

Tetrahedron [4] K7 K2 K6 K5

Tetrahedron [5] K7 K3 K1 K4

Tetrahedron [6] K7 K3 K4 K6

Tetrahedron [7] K7 K1 K2 K3

Tetrahedron [8] K7 K4 K5 K6

Chapter 5: Development of 3-D Grid Generators 2019

84

Table 5.20: Node assignment on the 8 tetrahedrons of each prism [2]

DEFINITION NODE [1] NODE [2] NODE [3] NODE [4]

Tetrahedron [1] K7 K1 K2 K4

Tetrahedron [2] K7 K2 K5 K4

Tetrahedron [3] K7 K2 K3 K5

Tetrahedron [4] K7 K3 K6 K5

Tetrahedron [5] K7 K3 K1 K6

Tetrahedron [6] K7 K1 K4 K6

Tetrahedron [7] K7 K1 K2 K3

Tetrahedron [8] K7 K4 K5 K6

Taking under consideration the different perspective views on the boundary faces, XZ_1, XZ_2,

YZ_1 and YZ_2 planes are composed of triangular elements, as depicted in Figures 5.64-5.65, 5.66-

5.67 and 5.68-5.69, respectively, while for the planes XY_1 and XY_2 the equilateral triangles, of

which they consist, have the same orientation as illustrated in Figures 5.70-5.71.

Figure 5.64: Indexing of the boundary faces on
the XZ_1 plane

Figure 5.65: Node assignment of each face on
the XZ_1 plane

 2019 Chapter 5: Development of 3-D Grid Generators

85

Figure 5.66: Indexing of the boundary faces on
XZ_2 plane

Figure 5.67: Node assignment of each face on
XZ_2 plane

Figure 5.68: Indexing of the boundary faces on
YZ_1 and YZ_2 planes

Figure 5.69: Node assignment of each face on
YZ_1 and YZ_2 planes

Figure 5.70: Indexing of the boundary faces
on XY_1 and XY_2 planes

Figure 5.71: Node assignment of each face on
XY_1 and XY_2 planes

Chapter 5: Development of 3-D Grid Generators 2019

86

5.4 Irregular Grids

Grid irregularities are introduced by perturbing the grid nodes from their original positions with

random shifts. All the aforementioned grid types are developed so as to produce Irregular Girds

with the addition of a simple subroutine where the distortion of the grid nodes occurs.

An iterative procedure assigns indexes on the nodes, differentiating the boundary nodes from the

internal ones. This happens in order for the boundary nodes to remain intact. As a result, the

computational domain retains its form. Subsequently, a recursive process disturbs the original

coordinates of the internal nodes. This perturbation takes place randomly in each dimension and

is defined as 0.4rΔx, where r ∈ [−1/2, 1/2] is a random number and Δx is the local mesh size along

the given dimension.

The subroutine is outlined in the pseudo-code below.

Subroutine Distortion

//For the boundary nodes//

Do i =1, NNODE

 IF (node is a boundary) ΤΗΕΝ

 Set index to the node

 END

ENDDO

//Node perturbation//

Do i =1, NNODE

 IF (node is not a boundary) ΤΗΕΝ

 Distort the node

 END

ENDDO

For each of the regular grid types, its corresponding irregular version is shown in the following

Figures (5.72-5.77).

 2019 Chapter 5: Development of 3-D Grid Generators

87

Figure 5.72: Distorted Prismatic Grid of Type I

Figure 5.73: Distorted Prismatic Grid of Type II

Chapter 5: Development of 3-D Grid Generators 2019

88

Figure 5.74: Distorted Prismatic Grid of Type III

Figure 5.75: Distorted Pyramidal Grid

 2019 Chapter 5: Development of 3-D Grid Generators

89

Figure 5.76: Distorted Tetrahedral Grid of Type I

Figure 5.77: Distorted Tetrahedral Grid of Type II

Chapter 5: Development of 3-D Grid Generators 2019

90

"Intentionally left blank"

 2019 Conclusions and Future Work

91

CONCLUSIONS AND FUTURE WORK

In the current study, a high-order numerical scheme was integrated into an existing academic

solver (EU2) for the numerical solution of 2-dimensional Euler equations. The discretized

governing equations are solved with a Finite Volume Node-centered scheme on unstructured

triangular grids, while an upwind method is implemented for the computation of the inviscid

fluxes, employing the Roe’s approximate Riemann. A successive differentiation technique is

utilized to achieve up to third order spatial accuracy incorporating the high-order correction

terms to the reconstructed nodal values. The aforementioned formulation is based on a variable-

extrapolation, the U-MUSCL type reconstruction, which closely resembles the traditional MUSCL

one. Additionally, a Strong Stability Preserving (SSP) fourth order - five stage Runge-Kutta

method is used for time discretization.

The benchmark problem of an isentropic travelling vortex with a well-known analytical solution

is utilized for the evaluation of the numerical accuracy. It was chosen to examine the behavior of

the numerical scheme under certain conditions and determine its effectiveness to the numerical

solution. Emphasis has been placed on grid convergence study, to define the order of the

numerical accuracy of the scheme. Using a controlled environment through a successive grid

refinement procedure, numerical simulations have been carried out on different type of triangular

grids and in two different time periods. The following major conclusions can be drawn from the

present work:

-The presented high-order scheme enhances the numerical accuracy of the existing solver. In

terms of the convergence behavior, the numerical results for regular grids obtain a satisfactory

agreement. The convergences histories of Equilateral (Type I) and Orthogonal (Type II) grids

exhibit an identical behavior for all conservatives’ variables and for all different norms and

achieve a third order accuracy, which, in some cases, was surpassed. As expected, orthogonal grid

(Type III) and especially the distorted grid have shown an order reduction on the convergence

rates, compared to the previous ones. The employment of Green-Gauss formula may not give the

expected high-order accuracy on general unstructured grids but it certainly improves the

accuracy of a base second-order scheme.

-The experience of integrating the current numerical scheme into the existing academic solver

shows an easy implementation without excessive efforts. Through the successive differentiation

process, the computation of the high-order terms is feasible by exploiting the existing structure of

the code with only slight modifications. The same routine that computes the field of first

derivatives is utilized to obtain the field of the higher derivatives. Since there is no need to

introduce additional DoFs (Degreed of Freedom) to the reconstructed values, this advantage

seems quite preferable for parallel unstructured flow solvers where the employment of the

common high-order schemes is rather challenging.

- The memory requirements of the incorporated high-order module and the computation time of

the numerical solution are kept low. The computation of the high order terms requires only the

allocation of 3 additional arrays in the case of a 3rd order scheme, while the computational effort

for the flux calculation in each iteration has only a low overhead, associated with the calculation

of the above terms.

Conclusions and Future Work 2019

92

Following from this work, the derivation of the corresponding high-order formulation is already

introduced into a 3-dimensional numerical flow model. Οn-going development of high-order

accuracy to the 3-D CFD solver Galatea is being carried out. As already mentioned in Chapter 4,

Galatea is a parallelized node-centered finite volume solver for the numerical solution of

compressible fluid flows in hybrid unstructured grids. The developed 3-D computational meshes

demonstrated in chapter 5 will be used for an extensive evaluation of the numerical results similar

to the methodology that has been employed in this study.

Finally, the implementation of the high-order module was conducted without taking into account

quadrature rules in the computation of the numerical fluxes. Hence, it was restricted to the

existing midpoint rule for the calculation of the flux integrals, albeit providing a significant

improvement to the numerical solutions. A future development using additional quadrature

points could hypothetically increase the order of the numerical scheme, along, however, with the

analogous computational cost. Further research could be undertaken to explore the potential

improvements on the numerical performance of the aforementioned procedures.

 2019 References

93

REFERENCES

[Ada05] Λ.Δ. Αδαμούδης, Επίλυση των Εξισώσεων Euler σε Τρεις Διαστάσεις με Χρήση μη

Δομημένου Πλέγματος και Εφαρμογή της Μεθόδου των Πεπερασμένων Ογκων, Διπλωματική

Εργασία, Πολυτεχνείο Κρήτης, 2005.

[And94] W.K. Anderson and D.L. Bonhaus, An Implicit Algorithm for Computing Turbulent

Flows on Unstructured Grids, Computers & Fluids, vol. 23, pp. 1-21, 1994.

[ANSYS06] ANSYS CFX-Solver Theory Guide, ANSYS CFX Release 11.0, December 2006.

[Bar89] T.J. Barth and D.C. Jespersen, The Design and Application of Upwind Schemes on

Unstructured Meshes, Proceedings of the 27th Aerospace Sciences Meeting and Exhibit, AIAA,

Reno, NV, Jan 9-12 1989, pp. 1-12, AIAA-89-0366.

[Bar92] T.J. Barth, Aspects of Unstructured Grids and Finite-Volume Solvers for the Euler and

Navier-Stokes Equations, Proceedings of the AGARD-FDP-VKI special course at VKI, Rhode-Saint-

Genese 2-6 March 1992, AGARD-R-787, pp. 6.1-6.61.

[Bar93] T.J. Barth, Recent Developments in High Order K-Exact Reconstruction on Unstructured

Meshes, 31st AAIA Aerospace Sciences Meeting & Exhibit, January 11-14, Reno NV, AAIA 93-0068.

[Bla01] J. Blazek, Computational Fluid Dynamics: Principles and Applications, Kidlington: Elsevier

Science, 2001.

[Bur05] C.O.E. Burg, Higher Order Variable Extrapolation for Unstructured Finite Volume RANS

Flow Solvers, 17th AIAA Computational Fluid Dynamics Conference, Toronto, Ontario Canada,

AIAA 2005-4999.

[Dis07] B. Diskin, J. Thomas, Accuracy Analysis for Mixed-Element Finite-Volume Discretization

Schemes, National Institute of Aerospace, Rept. 2007-08.

[Dis10] B. Diskin, J.L. Thomas, E.J. Nielsen, H. Nishikawa and J.A. White, Comparison of Node-

Centered and Cell-Centered Unstructured Finite-Volume Discretizations: Viscous Fluxes, AIAA

Journal, vol. 48, pp. 1326-1338, 2010.

[Dis11] B. Diskin, T.J. Thomas, Comparison of Node-Centered and Cell-Centered Unstructured

Finite-Volume Discretizations: Inviscid Fluxes, American Institute of Aeronautics and

Astronautics Journal, AIAA vol. 49, pp. 836-854, 2011.

[Del11] A.I. Delis, I.K. Nikolos and M. Kazolea, Performance and Comparison of Cell-Centered

and Node-Centered Unstructured Finite Volume Discretizations for Shallow Water Free Surface

Flows, Archives of Computational Methods Engineering, vol. 58, pp. 57-118, 2011.

[Del13] A.I. Delis and I.K. Nikolos, A Novel Multidimensional Solution Reconstruction and Edge-

Based Limiting Procedure for Unstructured Cell-Centered Finite Volumes with Application to

References 2019

94

Shallow Water Dynamics, International Journal for Numerical Methods in Fluids, vol. 71, pp. 584-

633, 2013.

[Got05] S. Gottlieb, On High Order Strong Stability Preserving Runge–Kutta and Multi Step Time

Discretizations, Journal of Scientific Computing, vol. 25, pp. 105-128, 2005.

[Hir90] C. Hirsch, Numerical Computation of Internal and External Flows. Vol. 2: Computational

Methods for Inviscid and Viscous Flows, John Wiley and Sons, New York, 1990.

[Kal96] Y. Kallinderis, A 3-D Finite Volume Method for the Navier Stokes Equations with

Adaptive Hybrid Grids, Applied Numerical Mathematics, vol. 20, pp. 387-406, 1996.

[Kal05] Y. Kallinderis and H.T. Ahn, Incompressible Navier-Stokes Method with General Hybrid

Meshes, Journal of Computational Physics, vol. 210, pp. 75-108, 2005.

[Kim03] K. Kim, Three-Dimensional Hybrid Grid Generator and Unstructured Flow Solver for

Compressors and Turbines, PhD thesis, Texas A&M University, 2003.

[Koo00] B. Koobus, C. Farhat and H. Tran, Computation of Unsteady Viscous Flows around

Moving Bodies Using the k-ε Turbulence Model on Unstructured Dynamic Grids, Computer

Methods in Applied Mechanics and Engineering, vol. 190, pp. 1441-1466, 2000.

[Kou03] D.G. Koubogiannis, A.N. Athanasiadis and K.C. Giannakoglou, One- and Two-Equation

Turbulence Models for the Prediction of Complex Cascade Flows Using Unstructured Grids,

Computer and Fluids, vol. 32, pp. 403-430, 2003.

[Lal88] M.H. Lallemand, Etude de Schemas Runge-Kutta a 4 pas pour la Resolution Multigrille

des Equations d’ Euler 2D, Raport de Recherche, INRIA, 1988.

[Lan98] C.B. Laney, Computational Gasdynamics, Cambridge University Press, 1998.

[Luo05] H. Luo, J.D. Baum and R. Lohner, High-Reynolds Number Viscous Flow Computations

Using an Unstructured-Grid Method, Journal of Aircraft, vol. 42, pp. 483-492, 2005.

[Lyg11] G.N. Lygidakis and I.K. Nikolos, An Unstructured Node-Centered Finite Volume Method

for Computing 3D Viscous Compressible Flows on Hybrid Grids, Proceedings of the 7th GRACM

(Greek Association of Computational Mechanics) International Congress on Computational

Mechanics, Athens, 30 June - 2 July 2011.

[Lyg12] G.N. Lygidakis and I.K. Nikolos, Using the Finite-Volume Method and Hybrid

Unstructured Meshes to Compute Radiative Heat Transfer in 3-D Geometries, Numerical Heat

Transfer Part B: Fundamentals, vol. 62, pp. 289-314, 2012.

[Lyg13] G.N. Lygidakis and I.K. Nikolos, Using a High-Order Spatial/Temporal Scheme and Grid

Adaptation with a Finite-Volume Method for Radiative Heat Transfer, Numerical Heat Transfer

Part B: Fundamentals, vol. 64, pp. 89-117, 2013.

 2019 References

95

[Lyg14a] G.N. Lygidakis and I.K. Nikolos, Assessment of the Academic CFD Code "Galatea" Using

the NASA Common Research Model (CRM), Proceedings of the 12th Biennial Conference on

Engineering Systems Design and Analysis, ASME-ESDA2014, Copenhagen, Denmark, 25-27 June

2014, ESDA 2014-20265.

[Lyg14b] G.N. Lygidakis and I.K. Nikolos, Using the DLR-F6 Aircraft Model for the Evaluation of

the Academic CFD Code "Galatea", Proceedings of the International Mechanical Engineering

Congress and Exposition, ASME-IMECE2014, Montreal, Canada, 14-20 November 2014, IMECE

2014-39756.

[Lyg15] G.N. Lygidakis, On the Numerical Solution of Compressible Fluid Flow and Radiative

Heat Transfer Problems, Ph.D. Thesis, Technical University of Crete, 2015.

[Mav94] D.J. Mavriplis and L. Martinelli, Multigrid Solution of Compressible Turbulent Flow on

Unstructured Meshes Using a Two-Equation Model, International Journal for Numerical Methods

in Fluids, vol. 18, pp. 887-914, 1994.

[Mav96] D.J. Mavriplis and V. Venkatakrishnan, A 3D Agglomeration Multigrid Solver for the

Reynolds-Averaged Navier-Stokes Equations on Unstructured Meshes, International Journal for

Numerical Methods in Fluids, vol. 23, pp. 527-544, 1996.

[Mou16] F. Moukalled, M. Darwish and L. Mangani, The Finite Volume Method in Computational

Fluid Dynamics - An Advanced Introduction with OpenFOAM® and Matlab®, Springer

International Publishing Switzerland, 2016.

[Mun98] B.R. Munson, D.F. Young and T.I. Okiishi, Fundamentals of Fluid Mechanics, John Wiley

& Sons, Inc., New York, 1998.

[Per12] P. Persson, High-Order Navier-Stokes Simulations Using a Sparse Line-based

Discontinuous Galerkin method, 50th AIAA Aerospace Sciences Meeting including the New

Horizons Forum and Aerospace Exposition, AIAA 2012-456.

[Roe81] P. Roe, Approximate Riemann Solvers, Parameter Vectors and Difference Schemes,

Journal of Computational Physics, vol. 43, pp. 357-371, 1981.

[Ruu05] S. Ruuth, Global Optimization of Strong-Stability Preserving Runge-Kutta Methods,

Mathematics of Computation, vol. 75, pp. 183–207, 2006.

[Sar14] S.S. Sarakinos, G.N. Lygidakis and I.K. Nikolos, Evaluation of a Parallel Agglomeration

Multigrid Finite-Volume Algorithm, named Galatea-I, for the Simulation of Incompressible Flows

on 3D Hybrid Unstructured Grids, Proceedings of the International Mechanical Engineering

Congress and Exposition, ASME-IMECE2014, Montreal, Canada, 14-20 November 2014,

IMECE2014-39759.

[Spa16] P.R. Spalart and V. Venkatakrishnan, On the Role and Challenges of CFD in the

Aerospace Industry, The Aeronautical Journal, vol. 120, pp. 209-232, 2016.

https://www.researchgate.net/journal/0001-9240_Aeronautical_Journal-New_Series

References 2019

96

[Ste81] J.L. Steger and R.F. Warming, Flux Vector Splitting of the Inviscid Gasdynamic Equations

with Application to Finite Difference Methods, Journal of Computational Physics, vol. 40, pp. 263-

293, 1981.

[Sor03] K.A. Sorensen, O. Hassan, K. Morgan and N.P. Weatherill, A Multigrid Accelerated

Hybrid Unstructured Mesh Method for 3D Compressible Turbulent Flow, Computational

Mechanics, vol. 31, pp. 101-114, 2003.

[Swe84] P.K. Sweby, High Resolution Schemes Using Flux Limiters for Hyperbolic Conservation

Laws, SIAM Journal on Numerical Analysis, vol. 21, pp. 995-1011, 1984.

[Tho08] J.L. Thomas, B. Diskin, C.L. Rumsey, Towards Verification of Unstructured-Grid Solvers,

AIAA Journal, vol. 46, pp. 3070-3079, 2008.

[Tor97] E.F. Toro, Riemann Solvers and Numerical Methods for Fluid Dynamics. A Practical

Application. 2nd Edition, Springer, 1997.

[VanA82] G.D. Van Albada, B. Van Leer and W.W. Roberts, A Comparative Study of

Computational Methods in Cosmic Gas Dynamics, Astronomy and Astrophysics, vol. 108, pp.46-

84, 1982.

[Ven95] V. Venkatakrishnan, Implicit Schemes and Parallel Computing in Unstructured Grid

CFD, Proceedings of the 26th Computational Fluid Dynamics Lecture Series Program, Von Karman

Institute for Fluid Dynamics, Rhode, Saint-Genese, Belgium,13-17 March 1995.

[Yan14] H.Q. Yang, Z.J. Chen, A. Przekwas and J. Dudley, A High-Order CFD Method Using

Successive Differentiation, Journal of Computational Physics, vol. 281, pp. 690–707, 2015.

[Yan15] H. Q. Yang, R. E. Harris, Development of Vertex–Centered, High-Order Schemes and

Implementation in FUN3D, 22nd AIAA Computational Fluid Dynamics Conference, 22-26 June

Dallas TX, 2015.

[Yan16] H. Q. Yang, R. E. Harris, Development of Vertex-Centered High-Order Schemes and

Implementation in FUN3D, AIAA Journal, vol. 54, pp. 3742-3760, 2016.

 2019 Appendix A

97

APPENDIX A: Jacobian Matrix Decomposition

The Jacobian matrix of the convective flux vector 𝐻⃗⃗ 𝑖𝑛𝑣 is analyzed via the eigenvalue

decomposition as follows [Hir90, Lan98]

𝐴 = 𝑇 𝛬 𝑇−1

(A.1)

where 𝛬 is a 5x5 diagonal matrix, whose entries are the eigenvalues of the Jacobian matrix 𝐴,

defined as [Hir90]

𝛬 = 𝑑𝑖𝑎𝑔{𝑉̂𝑛|𝑛⃗ |, 𝑉̂𝑛|𝑛⃗ |, 𝑉̂𝑛|𝑛⃗ |, (𝑉̂𝑛 + 𝑐)|𝑛⃗ |, (𝑉̂𝑛 − 𝑐)|𝑛⃗ | }

(A.2)

while 𝑇 is a matrix, including the eigenvectors of the Jacobian matrix A [Hir90]

𝑇 =

[

𝑛̂𝑥 𝑛̂𝑦 𝑛̂𝑧 𝐶 𝐶

𝑛̂𝑥𝑢 𝑛̂𝑦𝑢 − 𝑛̂𝑧𝜌 𝑛̂𝑧𝑢 + 𝑛̂𝑦𝜌 𝐶(𝑢 + 𝑐𝑛̂𝑥) 𝐶(𝑢 − 𝑐𝑛̂𝑥)

𝑛̂𝑥𝑣 + 𝑛̂𝑧𝜌 𝑛̂𝑦𝑣 𝑛̂𝑧𝑣 − 𝑛̂𝑥𝜌 𝐶(𝑣 + 𝑐𝑛̂𝑦) 𝐶(𝑣 − 𝑐𝑛̂𝑦)

𝑛̂𝑥𝑤 − 𝑛̂𝑦𝜌 𝑛̂𝑦𝑤 + 𝑛̂𝑥𝜌 𝑛̂𝑧𝑤 𝐶(𝑤 + 𝑐𝑛̂𝑧) 𝐶(𝑤 − 𝑐𝑛̂𝑧)

𝑉⃗ 2

2
𝑛̂𝑥 + 𝜌𝑋

𝑉⃗ 2

2
𝑛̂𝑦 + 𝜌𝑌

𝑉⃗ 2

2
𝑛̂𝑧 + 𝜌𝑍 𝐶(𝐻 + 𝑐𝑉̂𝑛) 𝐶(𝐻 − 𝑐𝑉̂𝑛)]

(A.3)

and 𝑇−1 is its inverse matrix [Hir90]

𝑇−1 =

[

 𝐵𝑛̂𝑥 −

𝑋

𝜌

(𝛾 − 1)𝑛̂𝑥𝑢

𝑐2

(𝛾 − 1)𝑛̂𝑥𝑣

𝑐2
+

𝑛̂𝑧

𝜌

(𝛾 − 1)𝑛̂𝑥𝑤

𝑐2
−

𝑛̂𝑦

𝜌
−

(𝛾 − 1)𝑛̂𝑥

𝑐2

𝐵𝑛̂𝑦 −
𝑌

𝜌

(𝛾 − 1)𝑛̂𝑦𝑢

𝑐2
−

𝑛̂𝑧

𝜌

(𝛾 − 1)𝑛̂𝑦𝑣

𝑐2

(𝛾 − 1)𝑛̂𝑦𝑤

𝑐2
+

𝑛̂𝑥

𝜌
−

(𝛾 − 1)𝑛̂𝑦

𝑐2

𝐵𝑛̂𝑧 −
𝑍

𝜌

(𝛾 − 1)𝑛̂𝑧𝑢

𝑐2
+

𝑛̂𝑦

𝜌

(𝛾 − 1)𝑛̂𝑧𝑣

𝑐2
−

𝑛̂𝑥

𝜌

(𝛾 − 1)𝑛̂𝑧𝑤

𝑐2
−

(𝛾 − 1)𝑛̂𝑧

𝑐2

𝑐

𝜌
(
(𝛾 − 1)𝑉⃗ 2

2𝑐2
−

𝑉̂𝑛
𝑐
) (𝑛̂𝑥 −

(𝛾 − 1)𝑢

𝑐
)

1

𝜌
(𝑛̂𝑦 −

(𝛾 − 1)𝑣

𝑐
)

1

𝜌
(𝑛̂𝑧 −

(𝛾 − 1)𝑤

𝑐
)

1

𝜌

(𝛾 − 1)

𝜌𝑐

𝑐

𝜌
(
(𝛾 − 1)𝑉⃗ 2

2𝑐2
+

𝑉̂𝑛
𝑐
) (−𝑛̂𝑥 −

(𝛾 − 1)𝑢

𝑐
)

1

𝜌
(−𝑛̂𝑦 −

(𝛾 − 1)𝑣

𝑐
)

1

𝜌
(−𝑛̂𝑧 −

(𝛾 − 1)𝑤

𝑐
)

1

𝜌

(𝛾 − 1)

𝜌𝑐]

(A.4)

where 𝑢, 𝑣 and 𝑤 are the components of velocity 𝑉⃗ , 𝑛⃗̂ = (𝑛̂𝑥, 𝑛̂𝑦, 𝑛𝑧) is the unit normal vector and

𝑉̂𝑛 = 𝑉⃗⃗ ∙ 𝑛⃗⃗̂ is the value of corresponding velocity. The terms 𝐶,𝐻, 𝑋, 𝑌, 𝑍 and 𝐵 are auxiliary values

defined as:

𝐶 =
𝜌

2𝑐

(A.5)

𝐻 =
𝑉⃗ 2

2
+

𝑐2

(𝛾 − 1)

𝑋 = 𝑛̂𝑧𝑣 − 𝑛̂𝑦𝑤

𝑌 = 𝑛̂𝑥𝑤 − 𝑛̂𝑧𝑢

𝑍 = 𝑛̂𝑦𝑢 − 𝑛̂𝑥𝑣

𝐵 = 1 −
(𝛾 − 1)𝑉⃗ 2

2𝑐2

Appendix A 2019

98

Depending on the eigenvalue 𝜆 the Jacobian matrix for the Roe’s approximate Riemann solver is

calculated as [Hir90]

𝐴± = 𝑇 𝛬± 𝑇−1, 𝛬± = 𝑑𝑖𝑎𝑔{𝜆𝑖
±} (A.6)

|𝐴|

= 𝑇 |𝛬 | 𝑇−1, |𝛬|

= 𝑑𝑖𝑎𝑔{|𝜆𝑖

 |}

while the eigenvalues 𝜆 as:

𝜆𝑖
+ = 𝑚𝑎𝑥(𝜆𝑖

 , 0), 𝑖 = 1,…5 (A.7)

𝜆𝑖
− = 𝑚𝑖𝑛(𝜆𝑖

 , 0), 𝑖 = 1,…5

 2019 Appendix B

99

APPENDIX B: Convergence Results (Isentropic Vortex)

Table B.1: Errors and convergence rates for Equilateral Grid (Type I) at t= 7 s

EQUILATERAL I T=7

L N hN log10(hN)

1 20 0.8436 -0.0738

1 40 0.4529 -0.3440

1 80 0.2297 -0.6388

1 160 0.1157 -0.9366

1 320 0.0578 -1.2379

L2 L2 L2 L2 L2 L2 L2 L2 L2

Error(ρ) Error(ρu) Error(ρe) log10(error(ρ)) log10(error(ρu)) log10(error(ρe)) (ρ) (ρu) (ρe)

1.011E-03 9.356E-03 1.307E-02 -2.995E+00 -2.029E+00 -1.884E+00 Slope Slope Slope

3.712E-04 2.976E-03 3.946E-03 -3.430E+00 -2.526E+00 -2.404E+00 1.61 1.84 1.93

5.929E-05 3.259E-04 4.315E-04 -4.227E+00 -3.487E+00 -3.365E+00 2.70 3.26 3.26

1.106E-05 2.909E-05 4.017E-05 -4.956E+00 -4.536E+00 -4.396E+00 2.45 3.52 3.46

2.488E-06 3.773E-06 5.025E-06 -5.604E+00 -5.423E+00 -5.299E+00 2.15 2.94 3.00

 Average slope

2.23 2.89 2.91

L1 L1 L1 L1 L1 L1 L1 L1 L1

Error(ρ) Error(ρu) Error(ρe) log10(error(ρ)) log10(error(ρu)) log10(error(ρe)) (ρ) (ρu) (ρe)

2.837E-04 2.754E-03 4.004E-03 -3.547E+00 -2.560E+00 -2.397E+00 Slope Slope Slope

8.484E-05 7.107E-04 1.022E-03 -4.071E+00 -3.148E+00 -2.991E+00 1.94 2.18 2.20

1.304E-05 7.250E-05 1.093E-04 -4.885E+00 -4.140E+00 -3.962E+00 2.76 3.36 3.29

2.241E-06 7.270E-06 1.231E-05 -5.650E+00 -5.138E+00 -4.910E+00 2.57 3.35 3.18

4.757E-07 9.579E-07 1.734E-06 -6.323E+00 -6.019E+00 -5.761E+00 2.23 2.92 2.82

 Average slope

2.38 2.95 2.87

Lmax Lmax Lmax Lmax Lmax Lmax Lmax Lmax Lmax

Error(ρ) Error(ρu) Error(ρe) log10(error(ρ)) log10(error(ρu)) log10(error(ρe)) (ρ) (ρu) (ρe)

1.5842E-02 9.4260E-02 1.6983E-01 -1.8002E+00 1.0257E+00 -7.6999E-01 Slope Slope Slope

7.1290E-03 4.1755E-02 5.9835E-02 -2.1470E+00 -1.3793E+00 -1.2230E+00 1.28 1.31 1.68

1.2758E-03 5.2295E-03 7.5776E-03 -2.8942E+00 -2.2815E+00 -2.1205E+00 2.53 3.06 3.04

2.4505E-04 4.8608E-04 6.9753E-04 -3.6107E+00 -3.3133E+00 -3.1564E+00 2.41 3.46 3.48

5.3963E-05 7.2616E-05 9.1160E-05 -4.2679E+00 -4.1390E+00 -4.0402E+00 2.18 2.74 2.93

 Average slope

2.10 2.64 2.78

Appendix B 2019

100

Table B.2: Errors and convergence rates for Orthogonal Grid (Type II) at t= 7 s

ORTHOGONAL II T=7

L N hN log10(hN)

1 20 0.6897 -0.1614

1 40 0.3492 -0.4570

1 80 0.1757 -0.7553

1 160 0.0881 -1.0550

1 320 0.0441 -1.3553

L2 L2 L2 L2 L2 L2 L2 L2 L2

Error(ρ) Error(ρu) Error(ρe) log10(error(ρ)) log10(error(ρu)) log10(error(ρe)) (ρ) (ρu) (ρe)

8.217E-04 7.206E-03 9.395E-03 -3.085E+00 -2.142E+00 -2.027E+00 Slope Slope Slope

2.018E-04 1.579E-03 1.831E-03 -3.695E+00 -2.802E+00 -2.737E+00 2.06 2.23 2.40

3.438E-05 1.435E-04 1.685E-04 -4.464E+00 -3.843E+00 -3.773E+00 2.58 3.49 3.47

7.052E-06 1.442E-05 1.828E-05 -5.152E+00 -4.841E+00 -4.738E+00 2.30 3.33 3.22

1.646E-06 2.345E-06 2.929E-06 5.784E+00 -5.630E+00 -5.533E+00 2.10 2.63 2.65

 Average slope

2.26 2.92 2.94

L1 L1 L1 L1 L1 L1 L1 L1 L1

Error(ρ) Error(ρu) Error(ρe) log10(error(ρ)) log10(error(ρu)) log10(error(ρe)) (ρ) (ρu) (ρe)

2.235E-04 1.981E-03 2.901E-03 -3.651E+00 -2.703E+00 -2.537E+00 Slope Slope Slope

4.690E-05 3.440E-04 4.618E-04 -4.329E+00 -3.463E+00 -3.336E+00 2.29 2.57 2.70

7.084E-06 2.917E-05 4.379E-05 -5.150E+00 -4.535E+00 -4.359E+00 2.75 3.59 3.43

1.345E-06 3.020E-06 5.246E-06 -5.871E+00 -5.520E+00 -5.280E+00 2.41 3.29 3.08

3.068E-07 4.570E-07 8.803E-07 -6.513E+00 -6.340E+00 -6.055E+00 2.14 2.73 2.58

 Average slope

2.40 3.05 2.95

Lmax Lmax Lmax Lmax Lmax Lmax Lmax Lmax Lmax

Error(ρ) Error(ρu) Error(ρe) log10(error(ρ)) log10(error(ρu)) log10(error(ρe)) (ρ) (ρu) (ρe)

1.5173E-02 8.3985E-02 1.3061E-01 -1.8189E+00 -1.0758E+00 -8.8401E-01 Slope Slope Slope

3.9076E-03 2.2827E-02 2.8686E-02 -2.4081E+00 -1.6415E+00 -1.5423E+00 1.99 1.91 2.23

6.9066E-04 2.3590E-03 2.5652E-03 -3.1607E+00 -2.6273E+00 -2.5909E+00 2.52 3.30 3.51

1.5020E-04 2.8361E-04 3.3301E-04 -3.8233E+00 -3.5473E+00 -3.4775E+00 2.21 3.07 2.96

3.5056E-05 4.8871E-05 6.1079E-05 -4.4552E+00 -4.3109E+00 -4.2141E+00 2.10 2.54 2.45

 Average slope

2.21 2.71 2.79

 2019 Appendix B

101

Table B.3: Errors and convergence rates for Orthogonal Grid (Type III) at t= 7 s

ORTHOGONAL III T=7

L N hN log10(hN)

1 20 0.9524 -0.0212

1 40 0.4878 -0.3118

1 80 0.2469 -0.6075

1 160 0.1242 -0.9058

1 320 0.0623 -1.2055

L2 L2 L2 L2 L2 L2 L2 L2 L2

Error(ρ) Error(ρu) Error(ρe) log10(error(ρ)) log10(error(ρu)) log10(error(ρe)) (ρ) (ρu) (ρe)

1.171E-03 1.134E-02 1.518E-02 -2.931E+00 -1.945E+00 -1.819E+00 Slope Slope Slope

6.729E-04 6.234E-03 7.421E-03 -3.172E+00 -2.205E+00 -2.130E+00 0.83 0.89 1.07

2.273E-04 2.210E-03 2.403E-03 -3.643E+00 -2.656E+00 -2.619E+00 1.59 1.52 1.66

5.795E-05 5.861E-04 6.170E-04 -4.237E+00 -3.232E+00 -3.210E+00 1.99 1.93 1.98

1.436E-05 1.471E-04 1.535E-04 -4.843E+00 -3.832E+00 -3.814E+00 2.02 2.00 2.02

 Average slope

1.61 1.59 1.68

L1 L1 L1 L1 L1 L1 L1 L1 L1

Error(ρ) Error(ρu) Error(ρe) log10(error(ρ)) log10(error(ρu)) log10(error(ρe)) (ρ) (ρu) (ρe)

2.980E-04 3.011E-03 4.425E-03 -3.526E+00 -2.521E+00 -2.354E+00 Slope Slope Slope

1.488E-04 1.418E-03 1.856E-03 -3.827E+00 -2.848E+00 -2.731E+00 1.04 1.13 1.30

4.220E-05 4.310E-04 5.264E-04 -4.375E+00 -3.366E+00 -3.279E+00 1.85 1.75 1.85

9.680E-06 1.089E-04 1.276E-04 -5.014E+00 -3.963E+00 -3.894E+00 2.14 2.00 2.06

2.272E-06 2.712E-05 3.127E-05 -5.644E+00 -4.567E+00 -4.505E+00 2.10 2.01 2.04

 Average slope

1.78 1.72 1.81

Lmax Lmax Lmax Lmax Lmax Lmax Lmax Lmax Lmax

Error(ρ) Error(ρu) Error(ρe) log10(error(ρ)) log10(error(ρu)) log10(error(ρe)) (ρ) (ρu) (ρe)

1.9962E-02 1.3211E-01 1.9078E-01 -1.69979743 -0.879064533 -0.719470948 Slope Slope Slope

1.2303E-02 8.0891E-02 1.0049E-01 -1.90998199 -1.092101564 -0.997897158 0.72 0.73 0.96

4.2449E-03 3.1025E-02 3.5464E-02 -2.37212952 -1.508294302 -1.450206172 1.56 1.41 1.53

1.0226E-03 8.4404E-03 8.7714E-03 -2.99029354 -2.073636013 -2.056931751 2.07 1.89 2.03

2.3584E-04 2.1077E-03 2.0631E-03 -3.62738065 -2.676184498 -2.685484332 2.13 2.01 2.10

 Average slope

1.62 1.51 1.65

Appendix B 2019

102

Table B.4: Errors and convergence rates for Distorted Grid (Type IV) at t= 7 s

DISTORTED IV T=7

L N hN log10(hN)

1 20 0.8436 -0.0738

1 40 0.4529 -0.3440

1 80 0.2297 -0.6388

1 160 0.1157 -0.9366

1 320 0.0578 -1.2379

L2 L2 L2 L2 L2 L2 L2 L2 L2

Error(ρ) Error(ρu) Error(ρe) log10(error(ρ)) log10(error(ρu)) log10(error(ρe)) (ρ) (ρu) (ρe)

1.182E-03 9.030E-03 1.243E-02 -2.927E+00 -2.044E+00 -1.905E+00 Slope Slope Slope

5.884E-04 2.671E-03 3.844E-03 -3.230E+00 -2.573E+00 -2.415E+00 1.12 1.96 1.89

2.058E-04 9.293E-04 9.607E-04 -3.687E+00 -3.032E+00 -3.017E+00 1.55 1.56 2.04

4.187E-05 1.747E-04 1.817E-04 -4.378E+00 -3.758E+00 -3.741E+00 2.32 2.44 2.43

1.207E-05 4.889E-05 5.132E-05 -4.918E+00 -4.311E+00 -4.290E+00 1.79 1.84 1.82

 Average slope

1.70 1.95 2.05

L1 L1 L1 L1 L1 L1 L1 L1 L1

Error(ρ) Error(ρu) Error(ρe) log10(error(ρ)) log10(error(ρu)) log10(error(ρe)) (ρ) (ρu) (ρe)

5.826E-04 2.886E-03 4.845E-03 -3.235E+00 -2.540E+00 -2.315E+00 Slope Slope Slope

2.377E-04 7.347E-04 1.372E-03 -3.624E+00 -3.134E+00 -2.862E+00 1.44 2.20 2.03

7.868E-05 2.385E-04 3.619E-04 -4.104E+00 -3.623E+00 -3.441E+00 1.63 1.66 1.96

1.449E-05 3.992E-05 6.097E-05 -4.839E+00 4.399E+00 -4.215E+00 2.47 2.61 2.60

4.063E-06 1.072E-05 1.628E-05 -5.391E+00 -4.970E+00 -4.788E+00 1.83 1.90 1.90

 Average slope

1.84 2.09 2.12

Lmax Lmax Lmax Lmax Lmax Lmax Lmax Lmax Lmax

Error(ρ) Error(ρu) Error(ρe) log10(error(ρ)) log10(error(ρu)) log10(error(ρe)) (ρ) (ρu) (ρe)

1.4981E-02 9.6456E-02 1.5181E-01 -1.8245E+00 -1.0157E+00 -8.1871E-01 Slope Slope Slope

1.0878E-02 3.2335E-02 5.5092E-02 -1.9635E+00 -1.4903E+00 -1.2589E+00 0.51 1.76 1.63

2.8372E-03 1.1804E-02 1.5020E-02 -2.5471E+00 -1.9280E+00 -1.8233E+00 1.98 1.48 1.91

1.0414E-03 2.5916E-03 3.3408E-03 -2.9824E+00 -2.5864E+00 -2.4762E+00 1.46 2.21 2.19

2.4678E-04 7.1541E-04 1.0691E-03 -3.6077E+00 -3.1454E+00 -2.9710E+00 2.08 1.86 1.64

 Average slope

1.51 1.83 1.84

 2019 Appendix B

103

Table B.5: Errors and convergence rates for Equilateral Grid (Type I) at t= 60 s

EQUILATERAL I T=60

L N hN log10(hN)

1 20 0.8436 -0.0738

1 40 0.4529 -0.3440

1 80 0.2297 -0.6388

1 160 0.1157 -0.9366

1 320 0.0578 -1.2379

L2 L2 L2 L2 L2 L2 L2 L2 L2

Error(ρ) Error(ρu) Error(ρe) log10(error(ρ)) log10(error(ρu)) log10(error(ρe)) (ρ) (ρu) (ρe)

1.298E-03 1.396E-02 1.971E-02 -2.887E+00 -1.855E+00 -1.705E+00 Slope Slope Slope

9.424E-04 9.899E-03 1.362E-02 -3.026E+00 -2.004E+00 -1.866E+00 0.51 0.55 0.59

2.311E-04 1.822E-03 3.034E-03 -3.636E+00 -2.739E+00 -2.518E+00 2.07 2.49 2.21

2.557E-05 1.319E-04 2.265E-04 -4.592E+00 -3.880E+00 -3.645E+00 3.21 3.83 3.78

5.014E-06 1.112E-05 1.741E-05 -5.300E+00 -4.954E+00 -4.759E+00 2.35 3.57 3.70

 Average slope

2.04 2.61 2.57

L1 L1 L1 L1 L1 L1 L1 L1 L1

Error(ρ) Error(ρu) Error(ρe) log10(error(ρ)) log10(error(ρu)) log10(error(ρe)) (ρ) (ρu) (ρe)

3.164E-04 4.170E-03 6.040E-03 -3.500E+00 -2.380E+00 -2.219E+00 Slope Slope Slope

1.870E-04 2.826E-03 3.674E-03 -3.728E+00 -2.549E+00 -2.435E+00 0.85 0.63 0.80

5.034E-05 4.594E-04 6.823E-04 -4.298E+00 -3.338E+00 -3.166E+00 1.93 2.68 2.48

8.127E-06 3.655E-05 5.985E-05 -5.090E+00 -4.437E+00 -4.223E+00 2.66 3.69 3.55

1.646E-06 3.709E-06 6.513E-06 -5.784E+00 -5.431E+00 -5.186E+00 2.30 3.30 3.20

 Average slope

1.93 2.57 2.51

Lmax Lmax Lmax Lmax Lmax Lmax Lmax Lmax Lmax

Error(ρ) Error(ρu) Error(ρe) log10(error(ρ)) log10(error(ρu)) log10(error(ρe)) (ρ) (ρu) (ρe)

1.8958E-02 1.5256E-01 1.9849E-01 -1.7222E+00 -8.1656E-01 -7.0227E-01 Slope Slope Slope

1.6462E-02 1.1609E-01 1.8520E-01 -1.7835E+00 -9.3519E-01 -7.3237E-01 0.23 0.44 0.11

4.5654E-03 2.5371E-02 4.9192E-02 -2.3405E+00 -1.5957E+00 -1.3081E+00 1.89 2.24 1.95

4.2968E-04 1.8246E-03 3.8222E-03 -3.3669E+00 -2.7388E+00 -2.4177E+00 3.45 3.84 3.73

7.8762E-05 1.4601E-04 2.6831E-04 -4.1037E+00 -3.8356E+00 -3.5714E+00 2.45 3.64 3.83

 Average slope

2.00 2.54 2.40

Appendix B 2019

104

Table B.6: Errors and convergence rates for Orthogonal Grid (Type II) at t= 60 s

ORTHOGONAL II T=60

L N hN log10(hN)

1 20 0.6897 -0.1614

1 40 0.3492 -0.4570

1 80 0.1757 -0.7553

1 160 0.0881 -1.0550

1 320 0.0441 -1.3553

L2 L2 L2 L2 L2 L2 L2 L2 L2

Error(ρ) Error(ρu) Error(ρe) log10(error(ρ)) log10(error(ρu)) log10(error(ρe)) (ρ) (ρu) (ρe)

1.244E-03 1.313E-02 1.796E-02 -2.905E+00 -1.882E+00 -1.746E+00 Slope Slope Slope

7.121E-04 7.684E-03 1.058E-02 -3.147E+00 -2.114E+00 -1.976E+00 0.82 0.79 0.78

9.500E-05 7.389E-04 1.290E-03 -4.022E+00 -3.131E+00 -2.889E+00 2.93 3.41 3.06

1.413E-05 5.053E-05 8.781E-05 -4.850E+00 -4.296E+00 -4.056E+00 2.76 3.89 3.89

3.252E-06 5.752E-06 8.474E-06 -5.488E+00 -5.240E+00 -5.072E+00 2.12 3.14 3.38

 Average slope

2.16 2.81 2.78

L1 L1 L1 L1 L1 L1 L1 L1 L1

Error(ρ) Error(ρu) Error(ρe) log10(error(ρ)) log10(error(ρu)) log10(error(ρe)) (ρ) (ρu) (ρe)

2.707E-04 4.002E-03 5.836E-03 -3.568E+00 -2.398E+00 -2.234E+00 Slope Slope Slope

1.399E-04 2.056E-03 2.758E-03 -3.854E+00 -2.687E+00 -2.559E+00 0.97 0.98 1.10

2.220E-05 1.755E-04 2.841E-04 -4.654E+00 -3.756E+00 -3.547E+00 2.68 3.58 3.31

3.513E-06 1.207E-05 2.111E-05 -5.454E+00 -4.918E+00 -4.675E+00 2.67 3.88 3.77

7.828E-07 1.363E-06 2.227E-06 -6.106E+00 -5.865E+00 -5.652E+00 2.17 3.15 3.25

 Average slope

2.12 2.90 2.86

Lmax Lmax Lmax Lmax Lmax Lmax Lmax Lmax Lmax

Error(ρ) Error(ρu) Error(ρe) log10(error(ρ)) log10(error(ρu)) log10(error(ρe)) (ρ) (ρu) (ρe)

2.1213E-02 1.5128E-01 2.1736E-01 -1.6734E+00 -8.2022E-01 -6.6283E-01 Slope Slope Slope

1.2803E-02 9.6764E-02 1.5300E-01 -1.8927E+00 -1.0143E+00 -8.1530E-01 0.74 0.66 0.52

1.5294E-03 8.3746E-03 1.9430E-02 -2.8155E+00 -2.0770E+00 -1.7115E+00 3.09 3.56 3.00

1.9688E-04 6.7222E-04 1.2921E-03 -3.7058E+00 -3.1725E+00 -2.8887E+00 2.97 3.66 3.93

4.3373E-05 9.6684E-05 1.4189E-04 -4.3628E+00 -4.0146E+00 -3.8481E+00 2.19 2.80 3.19

 Average slope

2.25 2.67 2.66

 2019 Appendix B

105

Table B.7: Errors and convergence rates for Orthogonal Grid (Type III) at t= 60 s

ORTHOGONAL III T=60

L N hN log10(hN)

1 20 0.9524 -0.0212

1 40 0.4878 -0.3118

1 80 0.2469 -0.6075

1 160 0.1242 -0.9058

1 320 0.0623 -1.2055

L2 L2 L2 L2 L2 L2 L2 L2 L2

Error(ρ) Error(ρu) Error(ρe) log10(error(ρ)) log10(error(ρu)) log10(error(ρe)) (ρ) (ρu) (ρe)

1.316E-03 1.406E-02 1.903E-02 -2.881E+00 -1.852E+00 -1.721E+00 Slope Slope Slope

1.134E-03 1.238E-02 1.550E-02 -2.946E+00 -1.907E+00 -1.810E+00 0.22 0.19 0.31

4.958E-04 4.742E-03 7.122E-03 -3.305E+00 -2.324E+00 -2.147E+00 1.21 1.41 1.14

5.387E-05 3.603E-04 6.254E-04 -4.269E+00 -3.443E+00 -3.204E+00 3.23 3.75 3.54

8.754E-06 2.590E-05 4.359E-05 -5.058E+00 -4.587E+00 -4.361E+00 2.63 3.82 3.86

 Average slope

1.83 2.29 2.21

L1 L1 L1 L1 L1 L1 L1 L1 L1

Error(ρ) Error(ρu) Error(ρe) log10(error(ρ)) log10(error(ρu)) log10(error(ρe)) (ρ) (ρu) (ρe)

3.639E-04 3.908E-03 6.316E-03 -3.439E+00 -2.408E+00 -2.200E+00 Slope Slope Slope

2.519E-04 3.855E-03 5.090E-03 -3.599E+00 -2.414E+00 -2.293E+00 0.55 0.02 0.32

1.077E-04 1.359E-03 1.870E-03 -3.968E+00 -2.867E+00 -2.728E+00 1.25 1.53 1.47

1.255E-05 9.318E-05 1.398E-04 -4.901E+00 -4.031E+00 -3.854E+00 3.13 3.90 3.78

2.029E-06 7.140E-06 1.079E-05 -5.693E+00 -5.146E+00 -4.967E+00 2.64 3.72 3.71

 Average slope

1.89 2.29 2.32

Lmax Lmax Lmax Lmax Lmax Lmax Lmax Lmax Lmax

Error(ρ) Error(ρu) Error(ρe) log10(error(ρ)) log10(error(ρu)) log10(error(ρe)) (ρ) (ρu) (ρe)

2.1699E-02 1.5410E-01 1.8479E-01 -1.66355077 -0.812183647 -0.733320225 Slope Slope Slope

1.9855E-02 1.4384E-01 1.9023E-01 -1.70213748 -0.842107197 -0.720716165 0.13 0.10 -0.04

9.1691E-03 5.8831E-02 1.0874E-01 -2.03767133 -1.230391033 -0.963603872 1.13 1.31 0.82

9.5535E-04 4.5257E-03 1.0471E-02 -3.01983833 -2.344317134 -1.979996544 3.29 3.73 3.41

1.4947E-04 2.8554E-04 7.3371E-04 -3.82545021 -3.544326865 -3.134475421 2.69 4.00 3.85

 Average slope

1.81 2.29 2.01

Appendix B 2019

106

Table B.8: Errors and convergence rates for Distorted Grid (Type IV) at t= 60 s

DISTORTED IV T=60

L N hN log10(hN)

1 20 0.8436 -0.0738

1 40 0.4529 -0.3440

1 80 0.2297 -0.6388

1 160 0.1157 -0.9366

1 320 0.0578 -1.2379

L2 L2 L2 L2 L2 L2 L2 L2 L2

Error(ρ) Error(ρu) Error(ρe) log10(error(ρ)) log10(error(ρu)) log10(error(ρe)) (ρ) (ρu) (ρe)

1.250E-03 1.348E-02 1.987E-02 -2.903E+00 -1.870E+00 -1.702E+00 Slope Slope Slope

1.001E-03 1.028E-02 1.248E-02 -3.000E+00 -1.988E+00 -1.904E+00 0.36 0.44 0.75

5.569E-04 6.749E-03 7.935E-03 -3.254E+00 -2.171E+00 -2.100E+00 0.86 0.62 0.67

1.097E-04 1.243E-03 1.608E-03 -3.960E+00 -2.906E+00 -2.794E+00 2.37 2.47 2.33

3.171E-05 3.476E-04 4.664E-04 -4.499E+00 -3.459E+00 -3.331E+00 1.79 1.84 1.78

 Average slope

1.34 1.34 1.38

L1 L1 L1 L1 L1 L1 L1 L1 L1

Error(ρ) Error(ρu) Error(ρe) log10(error(ρ)) log10(error(ρu)) log10(error(ρe)) (ρ) (ρu) (ρe)

3.740E-04 4.203E-03 6.160E-03 -3.427E+00 -2.376E+00 -2.210E+00 Slope Slope Slope

3.306E-04 3.110E-03 4.004E-03 -3.481E+00 -2.507E+00 -2.398E+00 0.20 0.48 0.69

1.865E-04 1.635E-03 2.115E-03 -3.729E+00 -2.787E+00 -2.675E+00 0.84 0.95 0.94

3.729E-05 2.765E-04 3.759E-04 -4.428E+00 -3.558E+00 -3.425E+00 2.35 2.59 2.52

1.143E-05 7.575E-05 1.059E-04 -4.942E+00 -4.121E+00 -3.975E+00 1.70 1.87 1.83

 Average slope

1.27 1.47 1.49

Lmax Lmax Lmax Lmax Lmax Lmax Lmax Lmax Lmax

Error(ρ) Error(ρu) Error(ρe) log10(error(ρ)) log10(error(ρu)) log10(error(ρe)) (ρ) (ρu) (ρe)

1.8823E-02 1.4147E-01 1.8707E-01 -1.7253E+00 -8.4933E-01 -7.2799E-01 Slope Slope Slope

1.6407E-02 1.0832E-01 1.4722E-01 -1.7850E+00 -9.6531E-01 -8.3204E-01 0.22 0.43 0.39

1.0575E-02 7.9710E-02 9.3162E-02 -1.9757E+00 -1.0985E+00 -1.0308E+00 0.65 0.45 0.67

1.7460E-03 1.5482E-02 2.2263E-02 -2.7579E+00 -1.8102E+00 -1.6524E+00 2.63 2.39 2.09

7.0474E-04 4.4452E-03 6.9439E-03 -3.1520E+00 -2.3521E+00 -2.1584E+00 1.31 1.80 1.68

 Average slope

1.20 1.27 1.21

