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“Man knows at last that he is alone in the universe’s unfeeling
immensity, out of which he emerged only by chance. His destiny is
nowhere spelled out, nor his duty. The kingdom above or the darkness
below: it is for him to choose.”

Jacques Monod
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ABSTRACT

In this study, the application and evaluation of a high-order spatial and time discretization
method for the numerical solution of 2-dimensional Euler equations is reported. An alternative
high-order approach [Yani4] enhances the in-house academic solver, named EUZ2, employing the
dimensionless Euler equations, discretized with a node-centered finite volume method on
triangular unstructured girds, to simulate inviscid compressible flows. Most methodologies that
have been developed during the past years, e.g. the discontinuous Galerkin and K-exact scheme,
necessitate a non-trivial increase of the DoFs (Degrees of Freedom) and consequently a
considerable increase of computational resources. Moreover, major modifications to existing CFD
codes are required for their implementation. The adopted high-order scheme is based on the
incorporation of additional high order terms to the reconstructed nodal values, used for the
computation of the inviscid fluxes. The required higher-order derivatives are computed with the
corresponding lower-order ones on the existing DoFs via a successive differentiation technique.
As a result, the connectivity requirements are restricted to the first neighbouring points,
overcoming the inherent constraint of the unstructured solvers to retrieve information from a
wider computational stencil. The aforementioned technique was incorporated with a variable
extrapolation numerical scheme, named U-MUSCL, which closely resembles the traditional
MUSCL one, and was coupled with a high-order time discretization that employs a Strong
Stability Preserving Runge-Kutta method (SSPRK). To assess the effectiveness of the
aforementioned numerical scheme, the EUZ solver is used against a benchmark problem having
analytic solution. A satisfactory agreement is obtained, demonstrating the proposed scheme’s
potential to increase the solution’s accuracy for a given grid density. Furthermore, a
corresponding high-order formulation is extended to a 3-dimensional numerical fluid model. An
elaborate construction method of 3-d computational meshes for various grid types is presented in
detail for future exploitation on the numerical evaluation of equivalent 3-d high order schemes.
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INTRODUCTION

Computational Fluid Dynamics (CFD) is an ever advancing multidisciplinary scientific field,
emerging from the combination of physics, numerical analysis and computer science, and
providing sufficient numerical results for various types of fluid models. It originated in the early
1970s and it has developed into a very powerful technique that has been routinely applied in a
wide range of industrial and non-industrial application areas ever since [Bla01, Spal6].
Notwithstanding the considerable ongoing evolution, CFD still faces several challenges that need
to be addressed. Therefore, although various academic and commercial compressible flow solvers
have been developed in the past years, many issues concerning the methods of grid generation,
discretization, flux computation, turbulence modeling, etc., are still subjects of continuous
research [Tor97, Bla01].

A primary concern that engages research activity in the CFD community, while also being the
subject of this study, is the efficiency of the numerical flow solvers in producing accurate
numerical solutions over more complex configurations. It is well known that the majority of the
commercial unstructured CFD codes do not provide much more than a second-order accuracy.
During the last decades significant efforts have been exerted for the development of higher-order
spatial discretization methods, as they allow for improved accuracy in a given grid density.
Nevertheless, most popular methodologies, e.g. the k-exact scheme [Bar93], necessitate for extra
information beyond the first neighbouring cells to compute high-order reconstructed values.
Unlike structured solvers, where node connectivity between neighbouring grid points is implied,
the calculation of the higher derivatives poses limitations for the unstructured ones, due to the
lack of explicit connectivity beyond the first neighbors. On the other hand, in the Discontinuous
Galerkin method [Per12] - a formulation different from the classical finite volume approach - this
constraint is managed by introducing extra DoFs (Degrees of Freedom) in each cell to fit a high-
order polynomial solution. As a result, extra memory requirements are needed, leading
unavoidably to a significant increase of computational resources. The implementation of such
methodologies into existing CFD codes requires substantial modifications, especially in
parallelization strategies, where the interventions on the code structure might prove to be rather
laborious. Furthermore, the increased turnaround time of the numerical solution, associated with
most high-order schemes, is a limiting factor for a more wide spread use as, in many practical
scenarios, the computational cost is prohibiting.

The high-order scheme applied in this work relies on the incorporation of the high-order
correction terms to the reconstructed nodal values, used for the computation of the inviscid
fluxes. The required higher-order derivatives are computed with the corresponding lower-order
ones on the existing DoFs, via a successive differentiation technique and, consequently, the
connectivity requirements are restricted to the first neighbouring points [Yan14, Yan15, Yan16].
This is made feasible by exploiting the fundamental properties of the Green-Gauss theorem,
overcoming the inability of unstructured flow solvers to retrieve information on a wider
computational stencil. In this way, not only an improvement of the solution accuracy is achieved
but the computational effort and memory requirements are retained on a reasonable level. This
approach, thus, seems to be particularly appealing for incorporation to an existing CFD code, with
only minor adjustments compared to other methodologies.
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In the present study, a 3rd order interpolation module is applied for the numerical solution of 2-
dimensional Euler Equations. This module was integrated into an in-house compressible flow
solver, named EUZ2. The discrete form of the governing equations is solved with a Node-Centered
Finite-Volume scheme, while for the computation of the inviscid fluxes an upwind method,
applying Roe's approximate Riemann solver is employed. High-order spatial accuracy is based on
U-MUSCL scheme, which closely resembles the traditional MUSCLE one [Bur05]. The time
advancement of the aforementioned equations is achieved with an explicit scheme, using a Strong
Stability Preserving (SSR), five stage, and fourth order Runge-Kutta method (SSPRK (5, 4)).

To demonstrate the effectiveness of the developed methodology, the EUZ solver is used against a
benchmark test case with a well-known analytical solution. This problem concerns the transport
of an isentropic vortex in inviscid compressible flow. An extensive evaluation of the numerical
solution was conducted, using a controlled environment through a successive grid refinement
procedure for different types of triangular grids. Satisfactory results were obtained, demonstrating
the scheme’s potential to increase the solution’s accuracy for a given grid density.

Finally, the aforementioned high-order numerical scheme is extended to 3-dimensional problems.
In the context of the finite volume approach for unstructured grids, the mathematical and
numerical modeling of the 3-D Euler equations is offered, where the formulation of the
corresponding high-order module is reserved for future work. Moreover, a detailed
demonstration of the construction method for specific types of 3-D unstructured computational
meshes is presented in detail. An extensive description of the data structures of the algorithms is
carried out, providing essential information of the grid features for future exploitation.

The rest of this dissertation is organized as follows. In chapter 1, a thorough representation of the
2-dimensional fluid model is undertaken, including the mathematical and numerical modeling of
the 2-dimensional Euler equations. Chapter 2 is devoted to the description of the adopted high-
order scheme, where the methodology for the calculation of the high-order terms, the variable-
extrapolation U-MUSCL-scheme and the application of Strong Stability Preserving Runge-Kutta
Method (SSPRK) are demonstrated. Chapter 3 contains the numerical results of the convergence
studies against the benchmark problem of travelling vortex, including quantitative and qualitative
comparisons with the analytical solution. In Chapter 4, a 3-dimensional fluid model is
introduced, containing the mathematical and numerical formulation, and incorporating the
proposed high-order scheme. Finally, Chapter 5 provides an analytical description of the
developed algorithms that produce 3-D computational meshes.
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CHAPTER 1

MATHEMATICAL AND NUMERICAL MODELING OF 2-D EULER EQUATIONS
1.1 Mathematical Modeling in 2-D

1.1.1 Principles of the Governing Equations

Fluid dynamics is concerned with the study of fluids’ behavior. This is exemplified in the
investigation of the interactive motion of large individual particles, i.e. molecules or atoms,
partitioning the fluid. Taking under account the continuum assumption, the density of the fluid is
considered high enough to be approached as a continuum. In this sense, instead of examining the
fluid molecules per se, the focus is on minuscule fluid elements containing a sufficient number of
particles to be regarded as a continuum. For each element, mean velocity and mean kinetic
energy can be determined. This implies that velocity, temperature, density, along with other fluid
quantities, are defined for each segment of the fluid.

Three conservation laws are respected for the derivation of the principal equations describing the
physical properties of the fluid [Bla01]:

e (Conservation of mass
e (Conservation of momentum
e Conservation of energy

Conservation requires that for the three fundamental quantities - mass, momentum, and energy -
their total variation inside the volume of an element is defined, primarily, as the effect of the
amount of the quantity being transported across the boundary, which is called flux, as the effect
of any internal forces and sources, and, finally, of the external forces acting on the volume. Two
are the different terms to which flux is decomposed, the convective and the diffusive. The former
owes to the convective transport, while the latter to the molecular motion present in the fluid at
rest [Bla01].

In what follows, a thorough presentation of the governing 2-D Navier-Stokes equations for a
compressible viscous Newtonian fluid is implemented [Lyg15], while the corresponding Euler
equations are then derived.

1.1.2 Navier-Stokes 2-D Equations

A compressible viscous flow is described by the Navier-Stokes equations. Arranged into
convective (inviscid), diffusive (viscous), and source terms, the differential form of the equation is
written as follows:

aW aﬁinv aé’inv aﬁm’s aé’vis .
at 0x dy 0x dy

The conservative variables’ vector W = (p, pu, pv, pE)", the inviscid flux vectors Fi*?,G"v | the

[ > . =4 .
viscous flux vectors F”S,G"* and the vector of the source term S are expressed in terms of the
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primitive variables (p,u, v, p). Considering the source term as equal to zero for 2-D problems, the
inviscid and viscous vectors are determined as shown in the following equations [Koo00, Lyg14b].

pu pv
N pu® +p N pvu
Flnv — , Glnv — (12)
puv pv2 +p
(PE + p)u (PE +p)v
(S N
> T S T
e |G| " | (13)
xy yy
\urxx + VUTyy + qx/ \uryx + UTyy + qy/

The viscous stresses originate from the friction between the fluid and the surface of an element
and depend on the dynamical properties of the medium. For the Newtonian fluid (including
compressible viscous fluids), the shear stresses are proportional to local strain rate, the rate of
change of its deformation over time. The diffusive flux vectors FVS,GVS are defined from the
stress tensor and calculated according to the Equation 1.4 [Hir90]

c=ull—=+ L) =2 (V- V)5 1.4
ek [<6xj * axi) 3 (v V)(SU] 4

where p is the dynamic viscosity coefficient; for a perfect gas, u heavily relies on the temperature
and to a smaller extend to the pressure [Bla01]. The dynamic viscosity can be computed based on
the local temperature of the fluid (in K) via the Sutherland formula as in 1.5 [Luo05]

clT3/2
" THec,

(1.5)

U

where the coefficients c¢; and c; are equal to 1.458E-6 kg m s? K-/2 and 110.4 K respectively, e.g.,
the obtained dynamic viscosity for air at 300 K equals to 1.846E-5 kg m s1. Based on the
reference dynamic viscosity p,.r and the reference temperature T;..r, whose values are usually
used in the far field, a different formulation is applied to express dynamic viscosity, as shown in
1.6 [Luo05].

3
T > ZTTef + Cy

‘u = .uT'ef< T + C2 (16)

Tre f

The four conservative variables (p,pu, pv,pE) are expressed by the two-dimensional Navier-
Stokes equations with a set of four equations containing, though, six unknown flow field
variables (p,u, v, E,p, T).

Two more equations are, therefore, required to complete the full set of the equation system.
Assuming that in pure aerodynamics the fluid works as a perfect gas, the state equation is
represented in 1.7 [Lan98]

p = pRyT (1.7)
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where the gas constant R, equals to 287.04 m?s2K- and it is associated with the constant pressure
and volume specific heat coefficients with the following equations

Ry=cp—¢cp , Y=0p/Cp (1.8)
while these coefficients are defined as follows
h=c,T , e=c,T (1.9)

where h and e are the enthalpy and internal energy of the gas per unit mass. The particular heat
coefficients are regarded as constants. However, different types of gases receive different values;
for air, the constant pressure specific heat coefficient ¢, equals to 1004.64 m?s2K!, the constant
volume specific heat coefficient ¢, equals to 717.6 m?s2K and the dimensionless coefficient y
equals to 1.4 [Lan98].

In order to complete the equation set, pressure p is associated with the total energy per unit
volume pE asin 1.10 [Bla01]

1 2 1 2.2
pE=pe+§p(u +v )=pTc1,+Ep(u +v°) =

(1.10)

1
ﬂcv +=p? +v?) =

p
Rg " 2 -1

1
+ Ep(u2 +v?)

where pe is the internal energy per unit volume. The corresponding specific total enthalpy h; is
then associated with the pressure p and the total energy per unit volume pE as shown in 1.11.

_PE+p __vp

h =
Top T pr—1

+%(u2 +v?) (1.11)

The heat flux vector (g, qy) in the energy equation is defined accordingly to the stress tensor as

illustrated below, where the conductivity coefficient y depends on the dimensionless Prandtl
number Pr [Bla01].

_H

=5 (1.12)

qi =XVT y X

1.1.3 Euler 2-D Equations

While Navier-Stokes equations describe the behavior of viscous fluids, for the cases of inviscid
flows, like for example for high Reynolds-number flows where the boundary layer is very thin
compared to the dimensions of the body, only the corresponding flux vectors F v Ginv are
considered. This leads in the so-called Euler equations depicted in 1.13 and 1.14, while the
remaining terms are given in 1.7-1.11 [Bla01].

oW aFm G

ar ¢ 1.13
6t+6x+6y S (1.13)
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pu pv
.. / pul+p \ N / pvu \
Finv — |' Ginv — | 2.
puv / pv p /
(PE +plu (PE +p)v

(1.14)

Henceforth, for the purposes of this study merely Euler equations will be taken into account.

1.1.4 Non-Dimensionalization Procedure

The differential equations representing the conservation laws are rarely solved using dimensional
variables. The common practice is to write these equations in a non-dimensional form, using
dimensionless quantities, obtained through a proper characteristic scale. This allows for the
number reduction of the appropriate parameters contributing thus to the revelation of the
relative magnitude of the various terms in the conservation equation and, consequently, of those
that can be neglected [Mou16].

A dimensional variable is transformed into a non-dimensional one by dividing the variable by a
quantity that has the same dimension as the original variable. Therefore, the normalization of the
variables is performed utilizing a characteristic length L. the free-stream velocity Vi.; the free-
stream density pr, the free-stream dynamic viscosity p.;, and the constant volume specific heat
coefficient ¢, as shown in 1.15.

~ _ X - u;

i ~ p ~
=X 5= = = R ="9=y—-1
X, Lo’ i Vrer p prer i oy’ Ra 14 (1.15)

Considering the previous normalizations, the rest of the variables included in Equations (1.13)-
(1.14) are expressed as follows [Mun98]:

t

pE ii ht ~ T
Lref/ (116)
Vref

= ’TZ—’EZ
t Vrzef/cv

, PE

)

- pTerrzef Vrzef

Moreover, the constant pressure and the constant volume specific heat coefficients are
normalized (¢, = y and ¢, = 1), while the perfect gas equation is transformed as:

Y o i
p = pRyT = ﬁprerrZef = ﬁprengCvT< ;ef) =>p=pRT=p= ply — DT (1.17)
v

Lastly, two additional expressions are used, concerning the computation of the local speed of

sound at a node P [Lan98]
ap = \/Vﬁgfp = \/V(V - DTp = ’yﬁﬁ (1.18)
P

and the computation of corresponding Mach number [Mun98]:

[=2 =2
VUpr+Vp (1.19)

Cp

Mp=
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For simplification reasons, the superscript "~" denoting the normalized variables will be neglected
in the following sections.

1.2 Numerical Modeling of 2-D Equations

1.2.1 Spatial Discretization

A Node-Centered Finite-Volume (NCFV) scheme is employed for the discretization of the
governing equations and, consequently, for the computation of the numerical fluxes. In this
approach, the computational domain is divided into a finite number of cells, from which control
volumes are formed surrounding each vertex in the mesh.

Figure 1.1: Median control volume surrounding a node in a 2-D grid

Consequently, these non-overlapping control volumes cover through a median dual partition the
entire computational domain, which is dual to the primal mesh. The flow variables are stored at
each mesh vertex. In a two-dimensional triangular mesh the median dual control volume for a
node P is formed by connecting the barycenter of each neighboring triangular cell (sharing this
node) to the midpoint of the corresponding cell edges, as illustrated in Figure 1.1 [Kal96, Kal05,
Lyg12, Sar14]. Given this definition, the nodes of each element, which compose a control volume,
divide the volume of this element to equal parts.

Taking into account the above described discretization scheme, Euler Equation 1.13 is integrated
over the control volume CEp of each node P as:

ow ) i Tei .
J-J.dedy+ ff 7% + 3y dxdy = ﬂ-dedy (1.20)

CEp CEp CEp

After the employment of the Green-Gauss divergence theorem the equation is transformed as
follows
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ff dxdy+ fﬁi’“’dl= ff§dxdy (1.21)

CEp dCEp CEp

where dCEp denotes the boundaries of the control volume of node P defined by the facets
constructed around the edges connecting node P with each neighboring node Q. If dCEjp is the
interfacing part of dCEp and dCEy, Ky (P) is the set of neighboring nodes to P, and I is the
domain's external boundary, then dCEp is defined as

0CEp = U 0CEpg + (CEp N T) (1.22)
QEKN(P)

where H™ is the vector of the inviscid numerical fluxes and is evaluated at the midpoint of an
edge that is connected to node P. This midpoint coincides with the interface between the
adjacent control volumes of nodes P and Q connected with this edge. Utilizing the outward unit

normal vector r;{PQ of the corresponding dCEp, face of the control volume, the aforementioned
vectors are described as [Koo00, Kou03]

ginv — ﬁPQ,xﬁinv + ﬁPQ,yémv (1.23)

= T_iPQ A A

Npg =15 1~ (nPQ,x; an,y) (1.24)
[7ipq]

where 7ipy is defined as the vector sum of the outward normal vectors of the two facets
forming 0CEpq. Figure 1.2 presents the two normal vectors 7ipg; and 7ipg, that define the
outward normal vector of a facet.

Thus, Equation 1.21 is transformed as follows:
jf dxdy + Z f Fimv qp + f Finv g1 = ﬂ Sdxdy (1.25)
CEp QEKN(P) 8CEpq dCEpNI’ CEp

Assuming that the conservative variables at node P are equal to their mean values over CEp, the
first term of 1.25 becomes:

ﬂ = <dW> ff dedy = <_> Ep (1.26)

Expressing the integrals of the numerical fluxes as summations of fluxes through the faces
composing the control volume of node P, Equation 1.25 is transformed as

dw N .
(©) e 3 oe 3 g [y
P Q€RN (P)

(Kout€ICEpPNI) CEp
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o = f H™ dl = f(Wgo, Wy, Tipq)

OCE
re (1.28)

—

Il;r,l(;]ut = f H™ dl = f(WP: Wout:ﬁout)

dCEpNT

where WﬁQ and WﬁQ are the vectors of the conservative variables on the left and right side of the

edge PQ respectively, while W,,,, is the corresponding vector on the boundary of the flow domain.

TS

Figure 1.2: Outward normal vectors at an interface among nodes P and Q

1.2.2 Numerical Fluxes

First Order Accurate Scheme

The convective numerical fluxes of the flow equations are computed by employing an upwind
scheme, which distinguishes between upstream and downstream influences, i.e. the wave
propagation directions, considering the physical properties of the Euler equations. A one-
dimensional Riemann problem, which is based on the solution of the locally one-dimensional
Euler equations for discontinuous (left and right) states at an interface is utilized and applied in
the direction of the normal vector for each face of the control volume of a node P. Since the
computational effort of the exact solution of the Riemann problem would require excessive
numerical effort [Lan98], Roe’s approximate Riemann solver [Roe81] is employed for the
evaluation of the inviscid fluxes at the midpoint of edge PQ as in 1.29

U 1,
PQ = §(Hmv(WPLQ'"PQ) + H (W Tipg)) - 5 [eo|(Wey = Weo) (1.29)
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1

where 4 is the Jacobian matrix! of the convective flux vector H"™, which is evaluated at the

midpoint of the corresponding edge PQ by utilizing Roe's averaged values of the primitive
variables (denoted with tilde ~) [Roe81, Ven95, Lan98, Koo00, Kou03] and is defined as in 1.30

7 _ /P U+ ou U (1.30)
" Yoo+ ex

where U, and Uy in first order accurate schemes are the values of primitive variables at the left

and right side of edge PQ respectively.

Based on the following formula (1.31), Equation 1.29 is transformed in its equivalent in 1.32
[Roe81, Lan98]:

ﬁinv(W}geQ) _ ﬁinv(WPLQ) _ A;Q(W;?Q _ VT/’PLQ) (1.31)
—»}%v _ ﬁmv(WPLQ,ﬁPQ) + Arg (W;Q — WPLQ) (1.32)

On account of computational effort and memory requirements on unstructured grids, edge-wise
data structure of the algorithm is used, as a more sophisticated data structure. Within this
approach the solver receives information from the examined mesh as sets of nodes connected by
an edge. Along these lines, the evaluation of the convective fluxes for all the mesh nodes is
achieved with a single edge-loop, since no information is needed about the cell topology [Lyg14a,
Lyg15].

Second-Order Accurate Scheme

In a second-order accurate scheme, left and right states of an edge PQ are reconstructed with the

Taylor series expansions which consider the corresponding values of more neighboring mesh
nodes during the computation of the numerical fluxes. The incorporated second-order accurate
scheme is based on the MUSCL (Monotonic Upstream Scheme for Conservation Laws)
reconstruction of the primitives or conservative variables. In order to alleviate the generation of
oscillations and spurious solutions in regions of high-order gradients such as shocks, slope
limiters are utilized to achieve a monotonicity preserving scheme (Van Albada -Van Leer
[VanA82], Min-mod [Swe84]). Thus, the left and right states for a primitive or a conservative
variable U at the midpoint of an edge PQ are approximated as [Bar92, And94, Bla01, ANSYSO06,
Sar14]:

L 1 L, >
UPQ=UP +E(VU) 'TPQ
(1.33)

1 S
Ufo = Ug -5 (V)R - pq

The first R/H side terms are the left and right nodes’ values of variable U and 7 is the vector
connecting these nodes. The extrapolation gradients (VU)"! and (VU)R are computed using the

! Information on the computation of the Jacobian matrix is given in Appendix A.
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gradients (VU), and (VU), at the nodes P and Q respectively. The evaluation of these derivatives
employs the element-by-element approach [Bar92]. In this case, the gradient for a node P (where
P is the common vertex of the neighboring triangles T), is described as [Bar92]

1 Ep
(VU)p = — E - VU)r (1.34)
Ep 3
TEKT(P)

where Ep and Ey are the areas of the control volume of node P and adjacent element T. However,
because of utilizing the edge-based data structure of the algorithm [Bar92, Bla01], derived by the
Green-Gauss linear representation method, an equivalent expression as in 1.35 is more
appropriate:

1 1 5
(VU)p = E, Z E(UP +Uq) “Tipg (1.35)
QeKn(P)

In case of a boundary node (Figure 1.3) the previous equation is modified to include also the
boundary interfaces as follows [Lyg13]:

1 1 . R
(VU)p = £ Z E(UP +Uq)  Tipg + Z Up " Moyt (1.36)
P\ eekn(P) (KoutCOCEPNT)

1.2.3 Boundary Conditions

Numerical flow simulations are always restricted to a specific part of the real physical domain.
Thus, artificial boundaries are formed with the truncation of the computational domain and,
correspondingly, physical quantity values have to be specified. Types of boundary conditions that
encountered in the numerical solution are wall, inlet, outlet and symmetry boundaries.
Consequently, the contribution of the boundary surfaces is also taken into account in the flux
balance of the corresponding nodes.

With respect to the wall boundary nodes, a free-slip boundary condition is employed for the
solution of the Euler equations, regarding inviscid flows. The free-slip condition is implemented
implicitly, by adding a flux with zero normal to the boundary face velocity V;, described as
[Mav94]

=0 (1.37)

Dl

=V

out

where 7y, = (ﬁout,x,ﬁout,y) is the normal to the boundary face unitary vector (outward-

positive). An example of such vectors is presented in Figure 1.3 for a boundary node.

Finally, the added free-slip convective flux is calculated as in the following equation:

PPN
| puV, + pﬁout,x [ | pﬁout,x

" | (1.38)
pvV, + Plout,y \Pﬁout,y/

(PE + p)Vy 0

N
Hfreeslip =

11
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/P

npa np>

Figure 1.3: Normal outward vectors for a boundary node.

Regarding inlet boundary faces, a one one-dimensional Riemann problem is considered between
the face’s midpoint and the far-field to compute the convective fluxes and then to distribute them
to the corresponding boundary nodes. Employing the Steger-Warming scheme [Ste81, Lan98],
Equation 1.39 is obtained

_)Iiﬁ’r,lgut = &WK + AI_(Wout (1.39)
where subscript K denotes the midpoint of the boundary face, while subscript out denotes the far

field; the values of the variables of vector W,,, are obtained either from the far field or the
boundary midpoint depending on the type of the flow [Hir90, Bla01].

With reference to outlet boundary faces, the computation of the convective fluxes is performed
on the inlet ones in a similar manner; depending on the type of the flow, the values of the
variables of vector W,,, are obtained by implementing a one-dimensional Riemann problem
between the midpoint face and the far-filed. In the case of a symmetry surface, free-slip boundary
conditions are imposed to the flow equations similarly to these for solid free-slip wall boundaries.

1.2.4 Time Integration

The governing equations require a separate discretization in space and time. For time integration
an explicit scheme is incorporated for solving the Euler equations. A widely used method is the
multistage time-stepping Runge-Kutta scheme, where the solution advances in several stages and
the residual is evaluated at intermediate states [Kal96, Bla01, Lyg14a].

Applying time discretization leads to the transformation of Equation 1.27 into the following one

. (dW) _ AW
"\dt ), P Aty

(1.40)
B+ ) B -SE =R

QKN (P) (Kout€OCEpNT)

12
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where 4tp is the local time step at node P and is computed as [Kim03, Lyg11]

0-5amin ledge,P

Atp = CFL——=
F |UP|+aP

(1.41)

where |Up| is the value of velocity at node P, ap is the speed of sound evaluated on the same node
and @pmin | eqge p 1S the length of the shortest edge connected to P.

The local time stepping constitutes a typical time convergence acceleration methodology to the
steady state solution, which amounts to advancing the solution in each control volume with the
maximum allowable time step [Bla01]; in case a global time step is required, it is defined as the
smallest of the local time steps of all the nodes in the mesh.

When a second-order scheme is implemented a four Runge-Kutta (RK (4)) method is employed to
solve Equation 1.40. It occurs iteratively as follows [Bla01, Lyg15, Lal88 and Sor03]

an+1,0 _ o7n
WrrLe = i

WPn‘I'l,k — Wén _ akE_PPR(]A/PTl‘l'l,k_l), k — 1’ ___’4 (1-4'2)

arn+1l _ gon+1,4
P =W
where k is the number of current internal stage of the scheme. Constants a, a,, o; and «; of the
method with values 0.11, 0.26, 0.5 and 1.0 respectively, are used attributing second-order temporal
accuracy to the procedure [Bla01].

Given the relatively low convergence rate of explicit methods, an acceleration method aiming at
increasing the maximum possible time step is required. This occurs by introducing a certain
amount of implicitness in the explicit scheme allowing for the utilization of larger CFL numbers.
This technique, termed implicit residual smoothing, modifies the residual for a node P and is
defined as

Rp + €Z§-=1R3}
T+eXi 1

m+1 _
RP -

(1.43)

where Q; are the neighboring nodes of node P and ¢ is a coefficient with typical values 0.5-0.8,
defining the blending degree [Bla01].

13
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CHAPTER 2

HIGH-ORDER NUMERICAL SCHEME
2.1 Introduction to High-Order Formulation

In recent years, the focus of interest has been shifted to high-order scheme development, owing
to the fact that such approaches offer greater accuracy at a permissible computational cost
[Yan14, Yan15]. However, despite the rapid reduction of the truncation error in higher order
methods compared to the lower order ones, the former scheme is utterly more cost effective.
Another potential constraint against the spread of high order schemes relates to the substantial
code modifications required for its implementation, especially with respect to the unstructured
grid procedures [Yan15, Yan16].

Within the higher order scheme development, emphasis has been placed on variants of the
Discontinuous Galerkin method (DG). According to this method additional degrees of freedom
(DOFs) are introduced within a given cell to fit a high order polynomial to the solution. In this
framework, structured connectivity is recovered within each cell, as shown in Figures 2.1 and 2.2

[Per12, Yan14].
L3 -t
n

x=0,(5.7)
«—> B¢ L4 | 2E

fs

Figure 2.1: Stencil for the DG method in a quadrilateral cell

o8

oo
T'

n

x=0,(£.n)
+—>

Figure 2.2: Stencil for the DG method in a triangular cell

A fundamental difference between the DG methods and the traditional finite volume one lies on
the fact that, due to the tight linking of DOFs within a cell, the mass matrix is a full matrix rather
than a diagonal one, and needs to be stored and inverted implicitly [Per12]. This means that the
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application of DG methods into currently existing CFD codes would demand in depth code
transformations. Additionally, for such a high-order scheme to advance and to be incorporated
into new production codes, it would be at the expense of considerable verification and validation
efforts.

In this chapter, a modular high-order scheme with low-dissipation flux difference-splitting is
applied [Yan16]. According to this approach, no increase in DOFs within each cell occurs, unlike
the k-exact finite volume method [Bar93], which leads into the need for great amounts of extra
storage. The core idea is the achievement of high-order accuracy by adding high-order correction
terms to the governing equations and by not introducing extra variables. The main advantage of
this approach is its smooth application to any existing code, since only minor modifications are
required.

As already mentioned in the Introduction, the development of the presented high-order scheme
was founded on the academic EU2 CFD code, which is an in-house unstructured-grid, Node-
Centered Finite-Volume flow solver. The code then integrates a generic third-order interpolation
module, which, despite the fact that it is not formally third-order accurate on arbitrary meshes,
offers a significant improvement on the accuracy over the existing second-order scheme.

The presentation of this high-order method begins with the introduction of a scalar advection
equation problem in 1-D, where it is demonstrated how the high-order accuracy is achieved by
calculating the high-order terms. In what follows, the presentation gradually escalates into a 2-D
formulation in order to be implemented into a variable-extrapolation formulation named U-
MUSCL. Finally, a higher-order time discretization scheme is introduced with the employment of
an explicitly Strong Stability-Preserving Runge-Kutta method (SSPRK).

To begin with, the one-dimensional scalar advection equation considered is the following

ou 0
u (cu) _ 0

ou 21
ot " ox 21)

where u is a scalar quantity and c represents the velocity. Figure 2.3 below depicts part of the
computational domain for a node-centered scheme where the numerical figures 1-5 sign the data
points where the values of the scalar are located, while A-F stand for the faces (grid points)
among the control volumes.

A B C D = F

e o1 & *2 » 3 F ° 4 + ¢S5 [

A B C D E F

Figure 2.3: Problem of 1-D scalar equation

After integrating Equation 2.1 over a control volume (for instance, the marked control volume 3
in Figure 2.3) and applying Gauss theorem the result is shown in 2.2.
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JaudV+J—a(cu) dv =0 Jaudv+ (cu) AdS = 0

—_ — - R =

at ox ot e (2.2)
|4

14

Assuming the flow of the quantity follows a certain direction, the resulting equation is

u

5t V+ (cw)pSp — (cwW)eSc =0 (2.3)

In order to compute the fluxes at faces € and D, the values of the scalar quantity at the
aforementioned faces need to be calculated. Given the values at the data points, it is possible to
manage this by applying the Taylor series expansions. The implementation of this procedure to
the face C leads to Equations 2.4:

; du, 1 d?u, ,  1d%u, s .
Uc =uUp + E(xc —xz) + iw(xc —x2)° + EW(JCC —x2)° + 0((x¢ — x2)%)
(2.4)
du3 1 d2u3 1 d3U3
ug = uz + E(xc —x3) + ﬂﬁ(xc - x3)%+ aﬁ(xc —x3)% 4+ 0((x¢c — x3)*)

The superscript “?” denotes the right state, while “/” denotes the left. What is more, for face D the
result is shown below.

du3 1 d2u3 1 d3U3
up = uz +E(XD —X3) +§ T2 (xp — x3)* + 31 de3 (xp — x3)* + 0((xp — x3)*)
(2.5)
u 1d%u 1d3u
uf =y +— (rp = x4) + 57— (0 — 18 + g (xp — 1) + 0(Gxp — 2)")
Considering a uniform mesh for reasons of simplicity where h = (x; — x,) = —(x¢ — x3),
Equations 2.4 (for example for face C) are transformed as below.
L du, 1d%u, , 1d%u, . .
uc—u2+dxh+zdx2h +§dx3h +0(h)
(2.6)
du 1d%u 1d3u
R_., _’."3 _ 3p2 313 4
e R P ST i b O

What can be noted from the formulation above is that a high-order accuracy of the solution is
. . N du d?u d?

feasible provided that the derivatives at each cell center d—z, d—;;, d—xl; can be computed.

Nevertheless, for an unstructured grid only the first neighboring points are available, raising

considerable difficulties in computing the higher-order derivatives. To achieve this, the method

under discussion exploits the Green-Gauss theorem as demonstrated in what follows. The

theorem states that

fVudV=f undS
7 av

1
Vu=vz undS

faces

(2.7)
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where AS is the surface area of each face and 7 is the corresponding surface unitary normal vector
(outward-positive). After calculating the first derivatives, as it is performed in a standard second-
order scheme, the above expression regarding to the gradient of the 3t grid point, leads to the
following expression.

du; 1

=>—(up

1
dx _ 2h an (a —12) (28)

1
—(u4+u3)——(u3+u2) ah

1
_”C):ﬁ[z

The above formulation computes only the first derivatives on unstructured grids. Proceeding with
the computation of the higher derivatives, the method heavily relies on the definition of the
Green-Gauss theorem [Yang14]. According to it, the computed gradient is considered a volume-
averaged value, rather than a local value. Given this, the same procedure is iterated to calculate
the second derivatives, resulting to the following expression.

d*u; d (du3) 1 (duD duc) 1 [1 (du4+du3)
dx?2  dx\dx/) 2h\dx dx/) 2hl2\dx = dx

1 (du4 du2>
T 4h\dx  dx

Once the first derivative field is built, the computation of the second derivatives field is possible.

1(du3 du2>
2 \dx + dx ]
(2.9)

Hence, given the derivatives of 2nd and 4th data point

duz 1 du, 1

_ . A — 2.10
dx 4h(3 u) dx 4h(u5 u3) ( )

the final outcome of Equation 2.9 is formulated as follows:

d’u; 1 (1
4h

1
dx?  4h an (s ~us) — (u3 1)> 16h2 (us — 2usz + uy) (2.11)

Relying on the second derivatives values, the same process is repeated in order for the third
derivatives to be calculated. The result is:

d*u; d (d’uz\ 1 (d*up d*uc\ 1 [1 d2u4+d2u3 1 d2u3+d2u2

dx3 dx\dx?2) 2n\dx? dx?2) 2n|2\dx? = dx? 2\ dx?2 = dx?
d?u, dzuz

T an\dx? T dx?

As soon as the second derivative field is built, it is feasible again to calculate the third set of

(2.12)

derivatives. Given the following second derivatives

du, 1 d’u, 1

W—W@q —2u2 +u0) 'W_W(L% —ZU4 +u2) (213)

the combinatory process leads to Equation 2.14:

ddu; 1/ 1 1 1
= (Us — 2uy + up) — Tonz oans (ug — 3uy +3uy, —uy)  (2.14)

dxs  4h\16h? (g = 20, +”°)>
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All in all, within an upwind scheme the problem under discussion concerning the reconstructed
values of control volume 3 receives the following representation for 3rd order accuracy.

du, 1 d%u,
dx 2! dx?

uk =u, +

1 1
h? = u, +Z(u3—u1)+§(u4—2u2+u0)

1
uf =us T TR’ h* = us Z(u4 u2)+§(u5—2u3+u1) (2.15)
L dus 1d%u; , 1 1
uD:u3+ T h+§dx2 h =u3+Z(u4—u2)+§(u5—2u3+u1)
R du, 1d%u, , 1 1
u‘D=u4_ dx h+§dx2 h =u4—1(u5—u3)+§(u6—2u4+u2)

As evident, a wider stencil of cells can be incorporated in the process of the derivatives’
computation. The data points of the cells involved in the computation of each derivative order is
demonstrated in Figures 2.4 -2.7, where the colored points indicate the first, second, third, and
fourth neighboring cells respectively.

With the use of the method above, each higher accuracy order stems from the addition of the
corresponding high order correction term. All the aforementioned derivative computations fall
under the same recursive pattern. High-order accuracy can be obtained with the successive
implementation of the Green-Gauss theorem. It is worth noting that a research by Diskin and
Thomas [Dis07] shows that implementing the Green-Gauss formula results in accuracy
deterioration by one order for every consecutive application of the formula. Therefore, the
introduced procedure may not give high-order accuracy on general unstructured grids;
nonetheless, it is easier to apply onto a standing CFD code than the DG method, so that the
accuracy of the base second-order scheme is improved.
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Figure 2.4: Stencil for the first derivative Figure 2.5: Stencil for the second derivative
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Figure 2.6: Stencil for the third derivative Figure 2.7: Stencil for the fourth derivative

2.2 Derivation of High-Order Accuracy for 2-D Problems

As a starting point the traditional second-order scheme with the functional form, as in 1.33, is
presented below:

ou aUu
U? = U(xo, yo) +a(xi — Xo) +E(yi — o) (2.16)

Based on the description outlined in the section 2.1 a Taylor series expansion is applied to achieve
a higher order of accuracy. Therefore, for a third-order scheme the functional form is:

ou ou 2
UM = U(x, y0) +a(xi — Xp) +$(3’i = ¥o) +E[W(xi — Xg)?

(2.17)
0*U 0%U
2
— (y; — 2

(i = x0)(yi — }’0)]

It is noticeable that the first three terms on the right-hand side are the U value of the 2nd order
scheme, as exemplified in Equation 2.18, where the high-order correction term is presented
[Yang15]:

20%U 0%U 0%U
B

1
h-2 _ j7h 2 _ 2 2
AURE =U"-U _E[?(xi_xo) +a—yz(yi—yo) +26x6y

(x; — x0) (Vi — ¥o) (2.18)

The Green-Gauss theorem for a function f states:

of 1 R of 1 A
a— E£Ef Tlxdl , @— EiEf ledl (219)
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Having computed the first derivatives, a successive application of the Green-Gauss theorem is
performed, so as to calculate the terms in 2.18 as depicted in 2.20:

0°U 1 [ aU _ 0°U 1 U _ 0°U 1 aUAdl (2.20)
E J5p 0x T 92 T E aanny ' 9xdy E aannx '

ax?

Consequently, based on the values of the first derivatives, the calculation of the second
derivatives is possible with the use of the same procure, as indicated in 2.21:

(2.21)

0°U 0 <6U) 0°U 0 (6U> 0°U 0 <6U)

9x* 9x\ox) ’ 9y? oy\ay) ' axdy ax\dy

In case a higher level of accuracy is desirable, the higher order correction terms are applied to the
third-order formulation, providing a fourth-order scheme. The correction term is presented in
2.22.

1[0°U 0*U 0*U
Ayt =< [ﬁ (xi = x0)% + 3y7 i o) + 39x7ay i~ %0)* (¥i = ¥0)

(2.22)
3

+3 m i — y0)*(x; — xo)]

Finally, the application of the same procedure is iterated to compute the terms of 2.22 as shown
in 2.23:

U _1pou 00U _1p 0%
0x® " E Jop 0x? T 5T E o 0Y? ™ (2.23)
2.23
U 1[ 9%U _ B3U 1[ 9 _
i, dl — flydl

ox20y E 9 0x0y ' 9yZox E 95 0y0x

In the present work a numerical scheme up to 3rd order of accuracy was applied.

2.3 U-MUSCL Scheme

The derivation of the presented high order formulation was combined with the implementation
of a variable-extrapolation named U-MUSCL-scheme. This formulation, developed as in [Bur05],
is based on information currently available to the unstructured flow solvers, namely the variable
and gradient information. U-MUSCLE closely resembles the traditional MUSCLE scheme and it is
trivial to implement within most finite flow solvers. According to it, the interpolation function in
Equation 1.33 is replaced by the following formulation

L K 1 .
Upo () = Up + E(UQ —-Up) + 3 (1 — K)VUp - Tipg
(2.24)
R K 1 5
UBy(k) = Ug + E(UP —Uy) — B (1—K)VUy * Tpg

where k is the U-MUSCL parameter, Up and U, are the left and right nodes’ values of variable U
and 7 is the vector connecting these nodes from point P to Q.
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A one-parameter family of equations is represented in this new variable extrapolation
formulation, which, in specific conditions, totally equals the MUSCL-scheme, a one parameter
family as well [Bur05]. In the case of setting k to 0, the original unstructured formulation for 2nd-
order variable extrapolation is obtained. In the case of setting k to -1, the 2nd-order fully upwind
MUSCL-type variable extrapolation is obtained. In the case of setting k¥ to 1/2, a 3rd-order
variable extrapolation to the cell face is made possible, whereas when k is set to 1/3, a 3rd-order
approximation to the derivative at the node is obtained. If k is set to 1, a central difference
scheme is achieved. Provided that k < 1, this formula is an upwind one, becoming stable for
hyperbolic systems of equations not containing shocks, and for high-quality grids. The following
table summarizes what described above.

Table 2.1: U-MUSCL with different values of k parameter

PARAMETER (k) DESCRIPTION

-1 Second-order MUSCL-type scheme

0 Second-order unstructured upwind scheme
1/3 Third-order MUSCL-type scheme

1/2 Third-order extrapolation to face

1 Central-difference formula

In a similar fashion Equation 2.24 can be written as in Equation 2.25, where a 3rd order scheme is
achieved [Yan15]. In the present work the parameters k and k3 are defined as -1/6 and -4/3
respectively.

L K 1 R
Ubo(k) = Up + E(UQ —Up) + > (1 — K)VUp - Tpg

1 K3 - - 1 - -
+§ I:Z (VUQ " TPQ - VUP " TPQ) + Z(l - K3)V(VUP " rPQ) " TPQ]

1 -
=Up +§(UQ ~Up) +5 (1 =1)VUp * Trg (2.25)

AR, ), )b () 54

(), o-momen(2) )

According to the above formulation, what can be shown is that that an existing code structure for
a second-order scheme is capable to compute the higher derivatives simply by calling the same
routine used for the calculation of the first derivatives.
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2.4 High-Order Time Integration

In the current methodology of the high-order accuracy, time integration was performed by
utilizing a high order Strong Stability Runge-Kutta method (SSPK) [Ruu05, Got05]. The
development of Strong Stability Preserving (SSP) time discretization arose from the need to
manage nonlinear stability properties in time and spatial discretization of hyperbolic PDEs. The
core idea lies in the assumption that, with a suitably restricted time step 4t, the first order
forward Euler time discretization of the method of lines ODE is strongly stable under a certain
norm. In view of this, a higher order time discretization (Runge-Kutta or multi step) maintaining
strong stability for the same norm emerges, possibly under a different time step restriction.

A general m stage Runge-Kutta method is written in the form [Ruu05]

U = up
i-1

0P = (aU®) + e, R (UP),  ax=0, i=1.m (2.26)
k=0

U11)1+ 1_ U,gm)

where Atp is the local time step at node P. In the current work, the five stage fourth order Runge-
Kutta SSPRK (5, 4) developed by Ruuth [Ruu05] has been employed. An analytic expression,
along with the appropriate coefficients of the optimal SSPRK (5, 4), is presented as follows
[Got05]
USY = UP + 0.391752226571890 - At,R(UL)
UP = 0.444370493651235 - U + 0.555629506348765 - US"
+0.368410593050371 - At,R (U")
U = 0.620101851488403 - UL + 0.379898148511597 - U
+0.251891774271694 - At,R (US>
y® _ n @ (2.27)
) = 0.178079954393132 - U + 0.821920045606868 - U
+0.544974750228521 - At,R (UL
UR*tt = 0.517231671970585 - U
+0.096059710526147 - USY + 0.063692468666290 - 4t,R (US>)

+0.386708617503269 - U™ + 0.226007483236906 - 4t,R (US")

which is SSP with CFL coefficient CFL = 1.508, and effective CFL.¢s = 0.377. In the numerical
simulations of the convergence study that follows, CFL was set to 1.5. Table 2.2 depicts the
optimal coefficients from the above equation in compact form.
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Table 2.2: Coefficients of optimal SSPRK (5, 4) scheme [Ruu05]
STAGES 1 2 3 4 5
1
0.444370493651235 0.555629506348765
ik 0.620101851488403 0 0.379898148511597
0.178079954393132 0 0 0.821920045606868
0 0 0.517231671970585 0.096059710526147 0.386708617503269
0.391752226571890
0 0.368410593050371
Bi’k 0 0 0.251891774271694
0 0 0 0.544974750228521
0 0 0 0.063692468666290 0.226007483236906
CFL 1.50818004918983
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CHAPTER 3

NUMERICAL TEST AND RESULTS
3.1 Test Case

An extensive evaluation of the proposed high-order scheme was performed through a benchmark
problem where a well-known analytical solution exists. As a verification test for the high-order
scheme the transport of an isotropic vortex problem is examined. The ability to conserve the
vortex shape and strength is important to many practical scenarios, in which a shed vortex
interacts well downstream of the vortex origin. The particular problem is characterized by its
smoothness with the absence of contact discontinuities [Yan15, Yan16].

On a computational domain Q =[-10,10] X [-10,10] a vortex with center (x.,y.) = (0,0) is
simulated and moving from left to wright in a diagonal direction. The initial solution is given by
the following equations [Yan15]

Y =Ye <1 —r2>
U=1Up — Pl exp

R 2
V= Vg +Buwx_xcexp(1 _rz)
R 2
1
P = Poo [1 - % (Bug)?exp(1 — rz)]y_1 (3.1)

-1
P = Do [1 - %(ﬂum)zexp(l - rz)]y

r=JG&—x)*+—-y)2/R B=1/2n

where r denotes the distance from the vortex core, R refers to the vortex radius and the subscript
‘oo’ express the uniform mean flow. In this study, the non-dimensionalized variables are set as
Uewo=1, Veo=1, Pwo=1, Pw=1 and periodic boundary conditions are imposed in the x- and y-direction.
As the analytical solution is obtainable at any given time, the numerical error of the simulations is
feasible to be determined. The computational model is shown in Figure 3.1 along with the initial
pressure field.

3.2 Computational Meshes

As introduced in the first chapter, the Finite Volume approach requires partitioning the
computational domain 2 C R; into a set of non-overlapping control volumes and the numerical
implementation over each control volume. In the Node Centered Finite Volume scheme (NCFV)
used in this work, solution values are defined at the mesh nodes while their locations are called
data points. An initial decomposition of the computational domain into grid elements, the primal
mesh, is used by the median dual partition to generate non-overlapping control volumes for the
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node-discretization. These control volumes cover the entire computational domain and compose
a mesh that is dual to the primal mesh.

0 05 1 15 2
X

Figure 3.1: Initial pressure field of the vortex

The grids used in the present study can be categorized as either Regular or Irregular. Regular
grids are derived by a smooth mapping from grids with periodic node connectivity, periodic cell
distribution including, but not necessarily being limited to, grids derived from Cartesian ones
[Del11, Dell13]. Four types of grids are considered in the present work:

=

Equilateral Triangular Grid (Type I)
Orthogonal Grid (Type II)
Orthogonal Grid (Type III)
Distorted Grid (Type IV)

ENSVIRY

The gird of Type I is composed of triangular elements with equal sides. Orthogonal gird of Type II
refers to a regular triangular grid derived from a regular quadrilateral grid where squared cells are
decomposed in four triangular cells by a diagonal splitting, while Orthogonal of Type II is derived,
in a similar fashion, where two triangular cells are produced. As far as the Distorted Grid of Type
IV is concerned, grid irregularities are introduced by perturbing the grid nodes of a Type-I
Equilateral Triangular Grid from their original positions. The distortion of the nodes occurs with
random shifts in each dimension and the perturbation is defined as 0.4rAx, where re [-1/2,1/2] is
a random number and Ax is the local mesh size along the given dimension. These representative
grid types are depicted in Figures 3.2-3.5.

As the main focus lies in the numerical accuracy and the performance of the proposed numerical
scheme, a major prerequisite in order to perform convergence studies with a sequence of refined
grids is the Consistency Refinement Property [Dis10, Dis11, Tho08]. This property requires the
maximum distance across the grid cells to decrease consistently with increase of the total number
of grid data points.
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For a given computational domain with dimensions L, x L, in the x- and y- dimension
respectively, a subdivision of L, by N, line segments is defined, specifically Ax = L,/N,.
Depending on the grid type, the subdivision 4y = L,,/N,, can easily be determined. Accordingly, a

characteristic length (effective mesh) is defined for each grid type as hy = [(L,xL,)/N. A

consistent grid refinement is performed when a reduction Ax/2, results hy =~ hy/2 and N’ ~ 4N.
Having been defined as such, a series of increasingly fine grids from 20 x 20, 40 x 40, 80 x 80, 160
x 160 to 320 x 320 is employed for the previously stated types of grids. Table 3.1 depicts the
results of the successive refinement procedure.

10 _ 10 b
>-oé >-of—
'191:0””-[5” ‘5)'(”';"“10 '191:0""-15“”6)‘('Hfl>'”'1o
Figure 3.2: Equilateral Grid (Type I) Figure 3.3: Orthogonal Grid (Type II)
10 [ 10
55*— 5;-
>-OE- >-0:—
-55— _5;
-10_1:0LLLK'151LLLé;(LlléLLLLm _1()_1:()‘,1._15.“‘(1))‘(.‘.é.‘l.m
Figure 3.4: Orthogonal Grid (Type III) Figure 3.5: Distorted Grid (Type IV)
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Table 3.1: Typical grid values for characteristic length and degrees of freedom

GRID TYPES
TYPEI and IV TYPE II TYPE III
Nx N hy N hy N hn
20 562 0.843649081 841 0.689655172 441 0.952380952
40 1950 0452910813 3281 0.349161926 1681 0.487804878
80 7579 0.229733348 12961 0.175675314 6561 0.24691358
160 29877 0.115707497 51521 0.088112566 25921 0.124223602
321 119647 0.057820133 205441  0.044125174 103041  0.062305295

3.3 Numerical Results

In this section, the numerical results of the conducted simulations are presented. In order to
measure the solution error, the volume weighted norm Ly of the error was used, defined as
[Del11, Del13]

1
19,1, — fo)K>K (32)
Y

”Ul - Uiex”LK(_Q) = <

where UF* is the exact solution and U; the numerical one, defined at node i of the conserved
variables (p, pu, pv, pE), while ; is the corresponding volume and N is the number of the
corresponding data points. The errors were measured in three different norms (K = 1,K = 2,K =
) between the numerical variables and their analytical counterparts at t = 7 s and t = 60 s.

Figures 3.6-3.23 present the iterative convergence histories in all norms for the conservative
variables p, pu, pe on each grid used, and in two different time periods. More specifically, Figures
3.6-3.11 depict the corresponding convergence results in the L2 norm, Figures 3.12-3.17 the ones
in the L1 norm and Figures 3.18-3.23 in the Ln.« norm. Additionally, contour plots for the
conservative variable ‘p’” are given for comparison along with the analytical numerical solution.
The contour plots exhibit two different grid refinements, 80 and 320, and on two different time
periods t = 7 s and t = 60 s, i.e. in Figures 3.24-3.27 the contour plots correspond to ¢t = 7 s and
Figures 3.28-3.31 correspond to t = 60 s.
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Figure 3.6: Convergence results of L2 Norm for
the conservative variable p at t=7 s

Figure 3.7: Convergence results of L2 Norm for the
conservative variable p at t=60 s
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Figure 3.8: Convergence results of L2 Norm for
the conservative variable pu at t=7 s

Figure 3.9: Convergence results of L2 Norm for the
conservative variable pu at t=60 s
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Figure 3.10: Convergence results of L2 Norm for
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Figure 3.11: Convergence results of Lz Norm for
the conservative variable pe at t=60 s

29



Chapter 3: Numerical Test and Results

NCFV(Unl) - Grid convergence for p
-2,0
-2,5 4
-3,0 4
? 23,5 4
E -4,0 1
g -4,5 -
S -5,0 4
'(_%f) 5.5 - == Orthogonal (IIT)
? —4—Tquilateral ()
-6,0 —=—Distorted (IV)
6.5 1 —8—Orthogonal (II)
7’0 —slope 3
-1,6 -1,1 -0,6 -0,1
log;o(hy)

2019
NCFV(Unl) - Grid convergence for p
-3,0
-3,5 A
~ 40 1
=
€ 45 -
L
\";1-: -5,0 4
%'5 -5:5 i == Orthogonal (IIT)
- -6,0 —4—Equilateral (I)
—=—Distorted (IV)
-6,5 b —8— Orthogonal (II)
= slope 3
-750 T T T
-1,6 -1,1 -0,6 -0,1
log,o(hy)

Figure 3.12: Convergence results of L1 Norm for
the conservative variable p at t=7 s

Figure 3.13: Convergence results of L1 Norm for
the conservative variable p at t=60 s
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Figure 3.14: Convergence results of L1 Norm for
the conservative variable pu at t=7 s

Figure 3.15: Convergence results of L1 Norm for
the conservative variable pu at t=60 s
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Figure 3.16: Convergence results of L1 Norm for
the conservative variable pe at t=7 s

Figure 3.17: Convergence results of L1 Norm for
the conservative variable pe at t=60 s
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Figure 3.18: Convergence results of Lmax Norm
for the conservative variable p at t=7 s

Figure 3.19: Convergence results of Lmax Norm
for the conservative variable p at t=60 s
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Figure 3.20: Convergence results of Lmax Norm
for the conservative variable pu at t=7 s

Figure 3.21: Convergence results of Lmax Norm
for the conservative variable pu at t=60 s
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Figure 3.22: Convergence results of Lmax Norm
for the conservative variable pe at t=7 s

Figure 3.23: Convergence results of Lmax Norm
for the conservative variable pe at t=60 s
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Figure 3.24: Contour plots for p between the analytical (dashed line) and numerical
solution for t=7 s. Grid refinement 80 (left) and 320 (right) for Equilateral Type I
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Figure 3.25: Contour plots for p between the analytical (dashed line) and numerical
solution for t=7 s. Grid refinement 80 (left) and 320 (right) for Orthogonal Type II
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Figure 3.26: Contour plots for p between the analytical (dashed line) and numerical
solution for t=7 s. Grid refinement 80 (left) and 320 (right) for Orthogonal Type III
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Figure 3.27: Contour plots for p between the analytical (dashed line) and numerical
solution for t=7 s. Grid refinement 80 (left) and 320 (right) for Distorted Type IV
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Figure 3.28: Contour plots for p between the analytical (dashed line) and numerical
solution for t=60 s. Grid refinement 80 (left) and 320 (right) for Equilateral Type I
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Figure 3.29: Contour plots for p between the analytical (dashed line) and numerical
solution for t=60 s. Grid refinement 80 (left) and 320 (right) for Orthogonal Type II
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Figure 3.30: Contour plots for p between the analytical (dashed line) and numerical
solution for t=60 s. Grid refinement 80 (left) and 320 (right) for Orthogonal Type III
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Figure 3.31: Contour plots for p between the analytical (dashed line) and numerical
solution for t=60 s. Grid refinement 80 (left) and 320 (right) for Distorted Type IV
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CHAPTER 4

INTRODUCTION OF HIGH-ORDER TO 3-D PROBLEMS
4.1 Introduction

The numerical tests have shown satisfactory results in the implementation of the current higher-
order scheme, improving significantly the accuracy of the numerical solution. The proposed
methodology could be extended to 3-dimensional problems and applied to a 3-D flow solver with
slight alternations, as presented in the previous sections. The key aspects of the methodology
concern, in summary, the calculations of the high-order correction terms up to the desirable
order of accuracy, the incorporation of the U-MUSCL scheme and the employment of high-order
time discretization with a multiple stage Runge-Kutta (SSPRK).

An academic in-house 3-D solver named Galatea [Lygl4a, Lygl4b, Lyg15] will be utilized for the
application of the current high-order scheme. It employs the dimensionless Navier-Stokes
equations, discretized with a Node-Centred Finite-Volume method on three-dimensional
tetrahedral or hybrid unstructured grids, to simulate inviscid, viscous laminar and viscous
turbulent compressible flows.

On the first chapter an extensive presentation of the fundamental properties of the fluid was
undertaken and the governing equations for the 2-dimensional fluid flow were introduced in
detail. Having set the above as a basis, the work then proceeds with the mathematical modeling
of the governing equations in 3-dimensional space, and especially the Euler equations that are
considered in the present thesis, followed by presenting the discretization of governing equations
according to the numerical scheme implemented in Galatea solver and, finally, by discussing the
high-order formulation in 3 dimensions.

4.2 Mathematical Modeling in 3-D

4.2.1 Navier-Stokes Equations

The motion of the fluid in three dimensions for a compressible viscous flow is described by the
Navier-Stokes equations. The differential form arranged into convective (inviscid), diffusive
(viscous), and source terms is expressed by the following equation:

61/7 aﬁinv aG"inu | ajinv aﬁuis F) G"vis aj’m’s

ow _3 (4.1)
ot oxr Yoy Yoz T ax oy oz °

According to the above equation, W = (p, pu, pv, pw, pE) refers to the convective variables’ vector.
Finv Ginv and i represent the inviscid flux vectors while FVis, GV, j¥is refer to the viscous ones.
The aforementioned are expressed in terms of the five primitive variables (p,u,v,w,p). The
inviscid and viscous vectors are defined as shown in Equations 4.2 and 4.3, where the source term
is considered to be zero [Koo00, Lyg14b].
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pu pv pw
(5 5
Finv — puv ’51'7117 =| pr¥+p jinv - pWU (4.2)
puw pow pw?+p )
(pE + plu (pE +p)v (PE + p)w
0 0
Tox Tyx
Fvis = Txy GVis = Tyy
oo Tl
UTyy + VTyy + WTy, + Gy UTyy + VUTyy + WTy, + 4y (4.3)
0
TZJC
Pvis _

= Tzy
k " )
UTyy + VT, +WT, +q,

The diffusive flux vectors F*, G, Ji"vare defined from the stress tensor (Tyy, Tays Tz Tyys Tyz Tyz)
and calculated according to Equation 4.4 [Hir90].

Ty = M[(%JFZ_Z) —%(v-?)dﬁ] (4.4)
where p is the dynamic viscosity coefficient. In Equation 4.5 below, two alternative expressions
are presented for the calculation of the dynamic viscosity. In the first one, it can be calculated
based on the local temperature of the fluid (in K) i.e. the Sutherland law, whereas in the second,
the reference dynamic viscosity prand the reference temperature T,.f -values usually used in the
far field- are utilized [Luo05]. The coefficients c¢; and ¢, depend on the type of the fluid.

3
T2 T ) 2T, + (4.5)
‘Ll =

T+c, ’ “z“”’f<Tref T+c,

The complete set of the equation system is obtained via the expression for the thermodynamic
relations between the state variables. This stands with the assumption that in pure aerodynamics
the fluid can quite behave like a perfect gas. Hence, the state equation refers to the following
mathematical expression:

p = pR,T (4.6)

The term R, refers to the gas constant equal to 287.04 m?s2K-! and it is related with the constant
pressure and volume specific heat coefficients with the following equations

Rg=c,—¢p, , Y=0p/0C (4.7)
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where these coefficients are determined as follows
h=c,T , e=c¢,T (4.8)

and h and e are the specific enthalpy and specific internal energy of the gas (per unit mass) and
are regarded as constants [Lan98]. With respect to the above and after certain manipulations, the
total energy per unit volume pE and the corresponding specific total enthalpy h, are computed via
Equation 4.9.

__rr
ply — 1)

1 1
+=pw?+v3i+w? , h + E(u2 +v2 +w?) (4.9)

PE=6-D"2

As illustrated below, the heat flux vector (g, qy, qz) in the energy equation is determined based
on the stress tensor. Evidently, the conductivity coefficient x relies on the dimensionless Prandtl
number Pr [Bla01]:

ey

P (4.10)

qLZXVT y X =

4.2.2 Euler Equations

A simplified form of the Navier-Stokes equations where viscosity and thermal conductivity are
assumed equal to zero, i.e. inviscid flows, is given by the Euler equations. In this case, the
corresponding flux vectors FVS,G"Sand j” are neglected, leading to 4.11-4.12, while the
remaining terms 4.6-4.9 complete the system of the equations [Bla01]:

aW P ﬁinv P 5 inv a]"inv
ﬁ-l_ dx * dy * 0z

pu pv pw
Finv — puv ) Ginv =1 pvi+p ’]"inv = pwv (4.12)
K puw ) k pvw ) k pw?+p )
(pE + plu (pE + p)v (pE + p)w

Following the common practice of writing the conservation equations in a non-dimensional form

=S (4.11)

using dimensionless quantities, the normalization of the variables is performed by utilizing a
characteristic length L., the free-stream velocity V., the free-stream density pr.s, the free-stream
dynamic viscosity s, and the constant volume specific heat coefficient c,, as presented in 4.13.
In this sense, each variable is divided by a quantity that has the same dimension as the original
variable.

~ Xi o~ u;

~ p ~ u ~ R
X, =—, U = . P = » = 'Rgz_g
Lyef Vref Pref Uref Cy

=y—-1 (4.13)

With respect to the rest of the variables included in Equations 4.11-4.12, taking into account the
aforementioned normalizations, they are expressed in the following manner [Mun98]
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~ 14 — pE 24 ht ~ T ~ t
= , E = , h. = , T = —— , t =—7—
P= oz, PR T v, T, vz Jen . (4.14)

while the perfect gas equation, according to the normalized constant pressure (¢p =y) and
volume specific heat (¢, = 1) coefficients, is rewritten as in 4.15:

p=ply—DT (4.15)

Finally, the calculation of the local speed of sound at node P (dp) and the corresponding Mach
number (Mp) is obtained with the last expressions below [Mun98].

= =2 1 52 4 (52
Gy = L2y, YR TP T (416)
Pp ap

)

It is worth reminding at this point that for simplification reasons, the superscript "=, denoting the
normalized variables, will be neglected in the following sections.

4.3 Numerical Modeling of 3-D Equations

4.3.1 Spatial Discretization

The node-centered scheme has already been discussed in previous sections. Briefly, the main
concept concerns a computational domain divided into a finite number of cells, from which non-
overlapping control volumes are defined. The control volumes are formed around each vertex,
where the variables are stored, covering the entire computational domain and composing a mesh
that is dual to the primal mesh.

In the context of a three-dimensional space, the dual control volume of a node P is constructed by
connecting lines defined by edge midpoints, the barycenter of faces, and the barycenter of
elements sharing this node [Mav94, Kal96, Mav96, Koo00, Bla01, Kim03, Kou03, Kal05, Lyg12].
Figure 4.1 depicts part of control volume around a node P for a three-dimensional unstructured
grid [Ada05]. Evidently, this part comprises the individual parts of the control volume, which
three of the tetrahedrons contribute to, with node P (orange color) pertaining to them. In
addition, the middle points of the edges (black color), the barycenter of the tetrahedron faces (red
color) and the tetrahedrons’ barycenter (green color) are also illustrated. More specifically, nodes
J,K,L,M, and Q are adjacent to node P and points G;, G,, G are the barycenters of tetrahedrons
PQM],PQJK and PQLK, respectively. Furthermore, M stands as the middle point of edge PQ and
C,, C, as the barycenters of faces PQJ and PQK, correspondingly.

More details are given in Figure 4.2, where the contribution of different types of elements to the
control volume of a node P is depicted [Lyg15]. Again, G stands for the barycenter of the element,
G, and G, denote the barycenters of the respective faces, while M;, M,, and M; the midpoints of
the edges.
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Q

K

Figure 4.1: Part of control volume around node P

Figure 4.2: Contribution of a prismatic, pyramidal and tetrahedral element to the control volume of a node P

The integration of Euler equations over the control volume CV,, along with the employment of the
Green-Gauss divergence theorem, leads to

fff dxdydz+ ff AW ds = ffdexdydz (4.17)

CVp

where dCV, demarcates the boundaries of the control volume of node P delineated by the facets
constructed around the edges connecting node P with each neighboring node Q. Furthermore,

A™ is the vector of the inviscid numerical fluxes and is evaluated at the midpoint of an edge
connected to node P. This midpoint coincides with the interface between the adjacent control

volumes of nodes P and Q connected with this edge. The expression of H™ is thus
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ginv — Apox Finv 4 fpo.y Ginv 4 Apo,z j’inv (4.18)
= ﬁPQ ~ ~ ~
Npo = |e | = (e firg.y ipg.2) (4.19)
Npq

where 7ip is determined as the vector sum of the outward normal vectors of all the facets forming
dCVpo. What is presented in Figure 4.3 is part of such a vector 7ipy contributed by a tetrahedron.
The computation of this vector is performed with the use of the tetrahedron G barycenter, of the

faces G,, G, medians and of edge M. Figure 4.5 represents the total face area and the mean unit
normal vector associated with edge PQ.

Q Q

neo

W4

Figure 4.3: Part of vectorTip, contributed by Figure 4.5: Total face area and mean unit normal
a tetrahedron vector associated with the edge PQ

If 9CVp, is the interfacing part of 9CV,, Ky(P) is the set of nodes adjacent to P, and I’ is the
domain's external boundary, Equation 4.17 is transformed into 4.20 for dCV, being expressed as in

4.21.
ow
-Ufgdxdydz+ ff H™ ds + ff H”“’ ds = ﬂdexdde (4.20)

CVp QEKN(P) 8CVpqg acvpnr
QEKN(P)

Presuming the conservative variables at node P are equal to their mean values over CVp, the first
term in Equation 4.17 becomes:

'U dxdydz = (%)P fﬂ dxdydz = <g>P Vp (4.22)
CVp

When the integrals of the numerical fluxes are expressed as summations of fluxes through the
faces composing the control volume of node P, Equation 4.20 is expressed as
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aw ) N R
(G) ver > awps Y B [ Sasavas (@.23)
P Q€K (P) (Kout€OCVpNI) Ve
g = [ Fivas = (i, Wy )
9CVeo (4.24)
_);’T,lgut = f H™ ds = f(WPrWoutr ﬁout)
acvpnr

where Wk, and W§, are the vectors of the conservative variables on the left and right side of edge

PQ respectively, while W,,, is the corresponding vector on the boundary.

4.3.2 Numerical Fluxes

The computation of the numerical inviscid fluxes is achieved with the employment of a one-
dimensional Riemann problem. This is performed in the direction of each normal vector that
corresponds to every particular face forming the control volume of a node P. Moreover, an
upwind scheme using Roe’s approximate Riemann solver is implemented [Roe81], due to the
expensive amount of calculations that the exact solution requires [Lan98]. Eventually, the inviscid
fluxes are evaluated in the middle point of an edge PQ, as shown in 4.25.

ST (S 1,
PQ = E(Hmv(WPLQ'"PQ) + Hmv(ngQ'nPQ)) -3 |Apo|(WEy — Wio) (4.25)

The Jacobian matrix 4p, of the inviscid flux vector H™ is calculated according to the Roe's
averaged values of the primitive variables as in 4.26 at the midpoint of the corresponding edge PQ
[Roe81, Ven95, Lan98]. Detailed information for the matrix 4, is provided in Appendix A.

ij _ /P U+ ou U (4.26)
" o+ e

where U, and Uy in first order accurate schemes are the values of primitive variables at the left

and right side of edge PQ respectively.

An equivalent expression of Equation 4.25 is the following [Roe81, Lan98]
By = H™ Wiy, Tirg) + Apq (WFy — Wio) (4.27)

Whenever a second-order scheme is required, the traditional MUSCL reconstruction of the
primitive or conservative variables is incorporated using appropriate limiters (Van Albada -Van
Leer [VanA82], Min-mod [Swe84] or Barth-Jespersen [Bar89]) to control the total variation. Left
and right states of an edge PQ are reconstructed using Taylor series expansion, taking into
account the corresponding values of the neighboring nodes. Consequently, the primitive or
conservative variables U of each state at the midpoint of an edge PQ are approximated as
following [Bar92, And94, Bla01, ANSYS06, Lyg13, and Sar14]:
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1 S
Ubg = Up + 3 (VU)E - pq
(4.28)
1 S
UgQ = UQ _E' (VU)R * T‘pQ

The quantities marked by L and R subscripts denote the values of the variables taken at the left
and right side of the boundary between the nodes P and Q, while 7, is the vector connecting
these nodes and is directed from P to Q. The extrapolation gradients (VU)" and (VU)R are equal to
the gradients (VU), and (VU), at the nodes P and Q respectively and calculated with the
employment of the Green-Gauss linear representation method as [Bar92, Bla01]:

1 1 .
(VU)p = v, Z E(Up +Up) *Tipg (4.29)
QEKN(P)

where Vp is the volume of the control volume of node P. In the case of a boundary node, the
equivalent expression is the following [Lyg13] .

1 1 , .
VU)p = - Z E(UP +Up) - 7ipg + Z Up * Rour (4.30)
" \eekn(p) (Kout€9CpNI)

4.3.3 Boundary Conditions

In order to compute the flux balance of nodes that reside in the computational boundary domain,
additional fluxes have to be encountered with the enforcement of the appropriate boundary
conditions depending on the type of, i.e. wall, inlet, outlet and symmetry. Such fluxes are
computed at the barycenter of each boundary face with the use of the arithmetic averages for the
conservative variables of their nodes. These fluxes are assigned to the nodes weighted by the area
of the face which corresponds to them.

In inlet boundary faces, a one-dimensional Riemann problem is employed between the face’s
barycenter and the far-field, while the obtained fluxes are distributed to the corresponding
surrounding nodes. When the Steger-Warming scheme [Ste81, Lan98] is applied, is formulated
as:

ﬁli(r,lgut = AI-;V_V)K + AI_(V_V)out (4.31)
where subscript K represents the barycenter of the boundary face, while subscript out indicates
the far field; the values of the variables of vector W,,, are obtained either from the far field or the
boundary barycenter, depending on the type of the flow (internal or external) [Hir90, Bla01]. The
outlet boundary ones are treated in a similar manner.

As far as the wall boundary nodes are concerned, a free-slip boundary condition is implemented
implicitly, by adding a flux with zero normal to the boundary face velocity V, described in
Equation 4.32 [Mav94]
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=0 (4.32)

>l

Vo = & out
where A, = (Aout.x» Aout,y, Mout,z) is the normal to the boundary face unitary vector (outward-
positive). An example of such a vector is presented in Figure 4.4 for a tetrahedral element. In this
figure, M stands for the median point of the boundary face and Mp, My, My signify the median
points of the corresponding edges. For the computation of the normal vector, all the
aforementioned points are utilized. Eventually, the added free-slip convective flux is calculated as

the following equation shows:

PV, / 0 \
puly, +p ﬁout,x p ﬁout,x

ﬁfreeslip =] pvin+p ﬁout,y =\|p ﬁout,y (4.33)
\pWVn +p ﬁout,z/ 1% ﬁout,z}
(PE + )Wy 0

nOlH

Figure 4.4: Normal to the boundary face PQR vector Tl y,;.

4.3.4 Time Integration

In an explicit scheme, the time integration of the discretized governing equation leads to the

following equation [Bla01]

’ (Wv) o awpn
P\at ), Pty
(4.34)
By Y Bm—SpVe =R}
QEKn(P) (Kout€9CVpNI)
where Atp is the local time step at node P and is calculated as [Kim03, Lyg11]
At = CFL - 0-5min  eager (4.35)

|Up| + ap
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where |U,| is the value of velocity at node P, ap is the speed of sound evaluated on the same node
and i ; eqge p 1 the length of the shortest edge connected to P.

In the second-order scheme, a four-step Runge-Kutta (RK (4)) method is employed as introduced
in section 1.2.4. Furthermore, acceleration techniques, such as implicit residual smoothing, are
utilized to decrease the time of the numerical simulation. In the concept of the high-order
scheme, as described in the previous sections, the implementation of the high-order Strong
Stability Runge-Kutta method is considered [Ruu05, Got05].

4.4 Derivation of the High-Order Scheme

4.4.1 Calculation of the High-order Terms

The functional form of the existing second-order scheme is shown below

; ou ou ou
U =U(xp,¥0,20) + % (x; —x0) + 3y i —vo) + s (zi — zp) (4.36)

where a Taylor series expansion is applied, leading to the following functional form of a third
order scheme [Yang16].

n ou ou U 192U i
U" = U(x0,y070) + 35 Ki ~%0) +@(}7i = Y0) + 5~ (2 = 20) + 57 |5 (i — x0)
aZU aZU azU
+a—yZ(J’i - yo)z + ﬁ(Zi - ZO)Z +2 xay (x; —x0) Vi — ¥o) (4.37)
2y 92

+2m(xi —xo)(z; — zo) + Zm(}’i = ¥Y0)(z; — 2p)

What can be noted from the formulation above is that the first three terms in the right hand side
are the U value of the existing scheme, but with the correction term as expressed in 4.38.

1[o%U 0%U 0*U
AUM2 = yh —y? = > ﬁ(xi — X)? +a—y2(}’i — ¥0)? +@(Zi — 79)?
(4.38)
2 2 2

0°U 92U 22U
2 0x0y (i = x0)(yi = y0) + Zm(xi —x0)(2; — 2p) + Zm(}’i — ¥o)(zi — 2o)

Considering the methodology introduced in previous chapters, high-order accuracy is feasible,
provided that the derivatives of the high-order terms can be computed. This is made possible by
the consecutive implementation of the Green-Gauss theorem, which for a function fstates that

fffodV: fads=vf =~ rads (4.39)
v av V oy

where 7 is the outward-pointing unitary normal vector to the boundary dV of V. Relying on the
first derivatives field from the existing second-order scheme and using the Green-Gauss theorem,
the third derivatives are determined in the following manner:
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0°U 1 ou _ U 1 ou _ 0%U 1 ou _
Fr T aVEHXdS' a—yz=v aV@nde, 27 avEnZdS'
(4.40)
02U 1 oU _ 020 1 ou _ U 1 U _
(?xay:Vj%VEnde , MZV#WEnde , W=Vﬁw£nyd5

The identical procedure could be used for the calculation of these derivatives based on the values
of the first derivatives field, as shown in 4.41.

0°U 0 (6U> 0°U 0 (aU) aZU_ ) (6U)
dz2 o0z

9xZ _ dx\ax dy? - ay \ay 9z
(4.41)

°U 0 (6U> 0°U 0 (6U> 0°U 0 <6U>
dxdy 0dx \dy dxdz 0x \0z dydz dy\dz

Additionally, the fourth order correction terms of Equation 4.42 are introduced to the third order
interpolation function and, potentially, even higher order accuracy can be achieved.

AUt = % %(xi —x0)* + 337(3](% — ¥0)? +33?(Zi —79)*
3 U
+3W(xi —x0)* (i —¥o) + 3520, % T x0)*(2; — 2o)
3 3
+363/T3x i — ¥0)? (xi — x0) + 3m i — ¥0)? (2 — 2o) (4.42)
3 a3U
+3m(zi —29)2(x; — xo) + 3%(21' - 2)2(yi — o)

3
+6W (x; = x0) i —¥)(zi — 2p)

Again, taking into account the values of the third derivatives field, the terms of 4.42 are computed
as follows:

3U 1 [ 0% " 30 1 [ 0% " 0%U 1[ 08U "
ax3 Vv JJ,, 0x2 e N oy 02 R P oy 022 "
U 1 0%U _ U 1 02U _ U 1 0%U _

ax2ay v, axay =% 0 ax2ar ~ v Y, axar <%

63U_1# 0% 63U_1# 0% 03U_1# 0%
dy20z V avayaz"y © 9z20x  V aVazax"Z '’ 9z20y V avc')zaynz

U 1 02U _ s
9xdydz  V J,,0y0z >

(4.43)
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4.4.2 U-MUSCL Scheme

The current methodology incorporates a variable extrapolation, the U-MUSCL numerical scheme,
closely resembled to the existing MUSCL-scheme [Buros], whose interpolation function is
expressed in the following equation [Yan16].

L K 1 .
Ubo(k) = Up + E(UQ —Up) + 7 (1 — K)VUp - Tpg
(4.44)

R K 1 .

Finally, the presented high-order scheme of 3rd order of accuracy is written in a similar manner as
[Yan16]:

L K 1 .
Ubo(k) = Up + E(UQ —Up) + oh (1 —K)VUp - T
1 [K3

- - 1 - -
+§ Z(VUQ ' TPQ — VUP ' TPQ) + Z(l — K3) V(VUP . rPQ) ' TPQ:l

1 -
:UP +§(UQ_UP)+E(1_K)VUPTPQ

+% :x344pr <(3_Z>Q _ (3_5)})) N % (1 = k) oV (@_g),,) _?PQ] (4.45)
- :K344m ((3_5)0 _ (g_g)) 42+ (1~ k) AypgV ((g_g)) .?PQ]

+1'K3AZPQ (au) (E)U) +1 a )4 V((@U)) R
2 | 4 0z Q 0z P 4 "3 ZPQ 0z P TPQ
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CHAPTER 5

DEVELOPMENT OF 3-D GRID GENERATORS
5.1 Presentation of 3-D Grids

The implementation of the proposed high-order module, introduced in this study, into the
current CFD Galatea solver requires the quality assessment of the numerical results. In the 3rd
Chapter an extensive evaluation methodology was presented for the verification test of the 2-
dimensional equations, using representative grid types. In order to employ this methodology to a
3-dimensional problem, computational meshes of the same dimensional order need to be
constructed. Regarding the latter, it has to be generated so that it preserves the conservation
properties of the governing equations; thus, the following conditions need to be satisfied [Bla01]:

e The physical domain has to be covered completely by the grid

e There must be no free space left between elements

e The grid cells should not overlap each other
Strictly in mathematical terms, this is expressed by the following: considering a conforming
decomposition of the computational domain TN of Q with characteristic length hy, as a set of
finitely element subsets T, € 2, P = 1,2,3 ..., N, the following conditions are satisfied [Del11,
Del13]:

e (0= Upe {1,2,3...N} Tp

e every T, isclosed

e fortwoT,, T, € TN with p # q their interiors satisfy Tp N Tq *+Q

e every two dimensional face of any T, € T'W is either a subset of dQ or a side of

another Ty, q # p

Various types of grids were developed for the scope of this work. The elements composing the
different types of grids are tetrahedrons, pyramids and prisms (Figure 5.1).

Prism Pyramid Tetrahedron

Figure 5.1: Different types of 3-D elements
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Generally, as for the 2-dimensional grids introduced in the previous sections, the produced 3-D
are Regular grids, derived by a smooth mapping from grids with periodic node connectivity,
periodic cell distribution, and include (but are not limited to) grids derived from Cartesian ones.
Additionally, a small perturbation of the initial node locations may derive Irregular grids from the
Regular ones. Overall, 6 types of grids are studied in the present work, as shown in the following
table:

Table 5.1: Regular and Irregular grid types

GRID TYPES MODE I MODE II
Prismatic Grid of Type I Regular Irregular
Prismatic Grid of Type II Regular Irregular
Prismatic Grid of Type III Regular Irregular
Pyramidal Grid Regular Irregular
Tetrahedral Grid Regular Irregular

A brief discussion of the grids precedes a comprehensive description of the construction method
at the next sections. The Prismatic Grid of Type I consists of prisms derived from a regular
Cartesian grid through the decomposition of its hexahedral elements with a diagonal splitting
(Figures 5.2-5.3). Two prismatic elements are produced by this procedure. The Prismatic Grid of
Type Il is generated in a similar way, the only difference being that the outcome of the
hexahedron elements’ division includes 4 prisms (Figures 5.4-5.5). Grids of Type III may be
regarded as an extrusion of a two-dimensional grid composed of triangular equilateral elements
to a third dimension creating thus; prismatic elements (Figures 5.6-5.7). The Pyramidal Grid is
created when the hexahedral cells of a regular Cartesian grid are decomposed. The insertion of a
node at its barycenter and its connectivity to the corresponding vertices produces 6 pyramids
(Figures 5.8 -5.9). Additionally, two of the abovementioned types of grid, the Pyramidal and the
Prismatic with equilateral triangular base, are used to derive the Tetrahedral Grids by
decomposing their elements into tetrahedrons (Figures 5.10-5.13). Finally, random shifts of the
original grid node positions cause distortions that provide the Irregular Grids (Figures 5.14-5.15).
This is possible for all grid types. These constructed grids are considered typical of those that are
usually applied for the numerical solution of the Navies-Stokes equations.
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Figure 5.2: Prismatic Grid of Type I

Figure 5.3: Prismatic Grid of Type I - details
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Figure 5.4: Prismatic Grid of Type Il

Figure 5.5: Prismatic Grid of Type II - details
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Figure 5.6: Prismatic Grid of Type 1]

Figure 5.7: Prismatic Grid of Type III - details
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Figure 5.8: Pyramidal Grid

Figure 5.9: Pyramidal Grid - details
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Figure 5.10: Tetrahedral Grid produced from the Pyramidal Grid

Figure 5.11: Tetrahedral Grid produced from the Pyramidal Grid - details
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Figure 5.12: Tetrahedral Grid produced from the Prismatic Grid of Type 111

Figure 5.13: Tetrahedral Grid produced from the Prismatic Grid of Type III - details
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Figure 5.14: Irregular mode of Prismatic Gird of Type II

Figure 5.15: Irregular mode of Tetrahedral Grid produced from the
Pyramid Grid
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5.2 Introduction to the Algorithms

In this section a thorough representation of the developed algorithms is undertaken with a
comprehensive description of the construction method for each type of grid. Representative
figures throughout the consecutive stages of the development are given for deeper understanding.
The source code of all grid generator types is developed in FORTRAN 90, which is a general-
purpose, compiled imperative programming language, especially suited to numerical computation
and scientific computing, prevailing in the Computational Fluid Dynamics field. In this
introduction the focus will be on the key aspects of the algorithms identical for all grid types, i.e.
the data structures, the boundaries of the computational domain and the output data.

As a primary step for each algorithm, an initialization procedure is executed in order to generate
the nodes of the grid, where the assignment of the elements occurs. After an input file containing
the variables for the specification of the grid is imported, the code proceeds with the calculation
of all the nodes and cells composing the grid and stores them to the integer variables NNODE and
NCELL respectively. With the determination of the nodes, the Cartesian coordinates (X, Y, Z) are
allocated onto three one-dimensional arrays named X (i), Y (i) and Z (i) where the index defines
the number of each node.

The following step includes defining the elements. This requires a set of information such as the
nodes which compose the relevant element, its faces, and the neighboring cells. A two-
dimensional array, named NC (i, j), is declared in order to assign the nodes which compose a

«s

certain element. The former index, “i”, stands for the node number of the element vertices, while
the latter, “” represents the number of the corresponding element. Depending on the element
type, hexahedron, pyramid, or prism, the amount of nodes assigned is 4, 5 and 6. The orientation
of the assignment is not arbitrary, but it is standardized by the ANSYS format and is depicted in

Figure (5.16).

node [6] node [5] node [4]
1 F node [5]
node:[4]
E node [3]
: /node [4]
i ;ﬂgde [3]
r> | y
¢ [ o!
node [1] node [2] node [1] node [2] node [1] node [2]
Prism Pyramid Tetrahedron

Figure 5.16: Node orientation for each 3D element
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As far as the definition of the element faces is concerned, a three-dimensional array NF (i, j, k) is
declared. In this matrix what is stored is the set of nodes, which determine each face of the
element. The first index declares the number of the element face; the second states the number of
each node composing the face; the third index refers to the number of the corresponding cell.
Again, the number of faces depends on the element type, while the number of face nodes depends
on the face shape.

Lastly, for each element the neighboring cells need to be determined. This requires a two-
dimensional array NE (i, j) which stores the number of the neighboring cells for each element.
The former index declares the successive neighbors and the latter the element itself. Five
neighbors are declared for the pyramidal and prismatic elements and four neighbors for the
tetrahedral.

The definition of the variables is not over unless the demarcation of the computational domain is
specified. Because of its hexahedral shape, 6 boundary planes need to be determined as
boundaries. By convention, each plane is attributed a specific name, as illustrated in Figure 5.17
and a particular index is assigned, as indicated in Table 5.3. The integer variable NBOUND refers
to the total sum of the boundaries.

To define a boundary plane, it is necessary to determine the faces it consists of with a set of
information; this includes the nodes and the cell to which the relevant face belongs. A given
number is tied with each boundary face according to a specific orientation. Four two-dimensional
arrays NOD (k) (i, j), where k=1, 2... 4 store the nodes. The first index corresponds to the number
of the boundary face and the second to the number of the boundary plane. The cell that
corresponds to each boundary face is allocated to a two-dimensional array NBCELL (i, j) where
both indexes have the same connotation as before. Moreover, a third two-dimensional array
NBFACE (i, j) states the number face of the cell that is identical to the boundary face. Finally, the
total sum of the boundary faces for each plane is declared with one-dimensional array, the NCB
(NBOUND,).

The index assignment on the faces of each boundary plane follows a specific perspective the
algorithm retains on the computational domain. Marking XZ 1 plane as default perspective
(Figure 5.17), results in the rest of the planes’ views as derivations from shifts on the axes of
Coordinate System. In particular:

Table 5.2: Perspective determination of the boundary planes

DEFAULT PERSPECTIVE SHIFT ON AXIS OUTCOME
Z by 90° YZ 2
Z by 180° XZ 2
XZ_1 Plane Z by 270° YZ 1
X by 90° XY 1
X by 270° XY 2
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XY_2 plane

XZ_2 plane
."'/
YZ_1 plane b /
...... y X
|| YZ_2 plane
]
XZ_1 plane /
XY_1 plane
Figure 5.17: Notation of boundary planes
Table 5.3: Boundary index assignment
BOUNDARY INDEX ASSIGNING PLANES
Boundary [1] XZ_1 Plane
Boundary [2] YZ_2 Plane
Boundary [3] XZ_2 Plane
Boundary [4] YZ_1 Plane
Boundary [5] XY_1 Plane
Boundary [6] XY_2 Plane
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The following table summarizes the data structures that are described in this section.

Table 5.4: Summarizing table of data structures

NOTION TYPE DESCRIPTIOIN

X,Y,Z Array Coordinates of the nodes

NCELL Integer Number of total cells

NNODE Integer Number of total nodes

NC Array Node number in each cell

NF Array Node number of each face in each cell

NE Array Cell number of each neighbor

NBOUND Integer Number of total boundary planes

NCB Array Number of cell faces on each boundary plane
NOD() Array Nodes of each boundary face

NBCELL Array Number of the corresponding boundary cell

Number of corresponding face of each

NBFACE Array boundary cell

The execution of the algorithms produces two types of output files for subsequent processing
steps. The former is a text file with the extension .PLT which is a customized format for
TECPLOT, a visualization and analysis software. The latter is in ANSYS.CFX format where the
structure of the information is standardized and includes the following data:

Table 5.5: Data output for ANSYS

DATA DESCRIPTION

Name of the Grid

Number of Nodes Definition of primary information
Number of Cells

X,Y,Z Coordinates Definition of the node coordinates

Definition of the nodes composing each

Nodes of each Element
element

Definitions of the boundary cell numbers
Boundary Cells and Faces along with the corresponding cell face
numbers

59



Chapter 5: Development of 3-D Grid Generators 2019

5.3 Regular Grids

5.3.1. Prismatic Grid of Type I

The algorithm produces a prismatic grid whose prisms have an orthogonal triangular basis
(Figures 5.2 - 5.3) through the decomposition of a regular Cartesian grid. Initially, a set of input
values is provided for the code execution. These values refer to the specifications of the generated
grid determining the dimensions of the computational domain and, implicitly, the magnitude of
the consisting elements. In the following table, the first column illustrates the input values the
user defines and the second column captures the auxiliary variables the algorithm determines in
order to store them.

Table 5.6: Input values of Grid Type I and their corresponding variables

INPUT VALUES VARIABLES
Length of the Rectangle in the X - Direction X L
Length of the Rectangle in the Y - Direction Y L
Length of the Rectangle in the Z - Direction Z L
Number of Edges in the X - Direction NX
Number of Edges in the Y - Direction NY
Number of Edges in the Z - Direction NZ

The length of the rectangle in three dimensions declares the magnitude of the hexahedral
computational domain. The number of edges determines the segmentation in each direction, so
that a regular Cartesian grid blueprint is constructed. Based on the input values, the total number
of both nodes (NNODE) and elements (NCELL) is calculated.

At this stage the node initialization process occurs. On the Euclidean space the X, Y, Z Cartesian
Coordinates of the nodes are determined along with their allocation onto the three corresponding
arrays X(i), Y(i) and Z(i), the index i signing the number of the node. The alliance of the nodes is
set up in a fashion, such that the vertices of hexahedral elements, which define a regular Cartesian
grid, are determined (Figure 5.18).

An iterative procedure consisting of three loops is implemented for the node initialization.
Considering zero point of the Cartesian coordinates as the starting point, the first loop
determines the nodes in the Y-direction, based on the input value length (Y_L). The distance
between the nodes (dy) is defined by the division of the Y-direction length (Y_L) with the number
of the edges (NY) in this direction. The same iterative process is repeated by a second loop in the
X-direction defining the successive rows of nodes. Again, the distance (dx) between the rows is
the division result of the (X_L) with the total amount of the edges (NX). Finally, a third loop
completes the node determination in the Z-direction positioning the nodes on the following
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successive levels. The indexing of the nodes follows the flow of the described iterative procedures
and is depicted in Figure 5.18.

Figure 5.18: Node orientation of the blueprint reqular Cartesian grid for Prismatic
Grid of Type I

The next step is the definition of the elements. The main concept here is the construction of two
prismatic cells with a diagonal decomposition of every hexahedral cell created by the node
initialization (Figure 5.19).

Figure 5.19: Assignment of auxiliary variables on a hexahedral element
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Each hexahedral element is scanned by an iterative procedure and dummy variables are utilized
to store temporarily the 8 node numbers of the vertices, in order to construct the prismatic cells.
Subsequently, the nodes are distributed to the NC (i, j) array with a specific orientation, as
mentioned in the previous section (Figure 5.16), defining thus two distinct elements. Figure 5.19
illustrates the location of the dummy variables, while Table 5.7 indicates the assigning of the
nodes to the two prisms.

Table 5.7: Node assignment to the two prisms

DEFINITION  NODE (1) NODE(2) NODE(3) NODE(4) NODE(5) NODE (6)

Prism [1] K1 K2 K3 K5 K6 K7

Prism [2] K1 K3 K4 K5 K7 K8

At the same stage, both the determination of the faces, which compose each cell and the
neighboring cells takes place. With respect to the faces, the index numbering of each face
depends on the nodes it consists of. The assignment of the nodes to the NF (i, j, k) occurs in
accordance to a specific orientation. The final outcome is illustrated in Table 5.8. In connection
with the neighboring cells, 5 neighbors are defined for the prismatic cells. The index number of
each neighbor is dependent on the number face it is aligned with, as shown in Table 5.9.

Table 5.8: Face indexing and node assignment on the NF array

NODE ASSIGNMENT TO NF ARRAY

FACES

1st 2nd 3rd 4th
Face [1] Node (1) Node (3) Node (6) Node (4)
Face [2] Node (1) Node (2) Node (5) Node (4)
Face [3] Node (2) Node (3) Node (6) Node (5)
Face [4] Node (1) Node (2) Node (3) _
Face [5] Node (4) Node (5) Node (6) _
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Table 5.9: Neighboring cell indexing with reference to the corresponding face

INDEXING NEIGHBORS CORRESPONING FACE
Neighbor [1] Face [3]
Neighbor [2] Face [1]
Neighbor [3] Face [2]
Neighbor [4] Face [4]
Neighbor [5] Face [5]

The abovementioned processes are executed for every hexahedral element, so that prisms are
created across the domain. The direction of the flow procedure, which the algorithm follows in
order to scan all hexahedrons, is similar to the node alliance. Ordering the hexahedral element
that lies at the zero point of Cartesian Coordinates as the initial point, an iterative procedure of
three loops is implemented. The first loop defines the elements in the Y-direction (Figure 5.20),
while the second loop proceeds to the next rows in the X-direction (Figure 5.21). Lastly, the third
loop is executed to the layers higher up in the Z-direction by determining the elements of the
whole domain (Figure 5.22). Once again, the index cell numbering follows the flow of the
iterative processes.

Z

3rd Iteration ——»

2nd Iteration ——»

1st Iteration —>

Figure 5.20: Loop for cell definition in Y-direction
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7

b

NN N

1st Iteration 2nd Iteration
1st Row 2nd Row 3rd Row

3rd Iteration

Figure 5.21: Loop for cell definition in X-direction

z
YJ:I_X

3rd Iteration —»

3rd Layer
2nd Iteration ——>

2nd Layer
1st Iteration ——»

1st Layer

Figure 5.22: Loop for cell definition in Z-direction
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The final stage of the algorithm execution contains the boundary determination of the grid
domain. In the previous section, 6 boundary planes were defined because of the hexahedral shape
of the domain. An iterative procedure is implemented for each boundary plane, in order to
declare the boundary faces by assigning the number of nodes which compose each boundary face
(NOD), the number of the corresponding cell (NBCELL), along with the corresponding element
face (NBFACE). Two loops are used to define the two-dimensional planes: For the XZ_1, XZ 2,
YZ 1 and YZ 2, which are comprised of rectangular elements, the former loop defines the
elements in the Y-direction, while the latter loop those in the X-direction. In Figures 5.23 - 5.24,
the index numbering of these boundary faces and the orientation, which the nodes are assigned,
are respectively shown. For the XY 1 and XY 2 planes, which are comprised of triangular
elements, the iterative process follows the reverse flow: firstly, in the X-direction and then in the
Y-direction, as illustrated in Figures 5.25-5.28. The difference in the orientation of the triangles
on the two planes stems from the predetermined perspective view discussed in introduction
(Figure 5.17).

@ 4 4 ®
8 NODE 4 NODE 3
[l [8] [¢] ‘ -
@ 4 4 L
[41 [51 [6] FACE
[ L L ®
& o
Ml 21 [3] NODE 1 NODE 2
@ ® & ©
Figure 5.23: Indexing of the boundary faces on Figure 5.24: Node assignment on each face on
XZ_1,X7Z_2,YZ_1, and YZ_2 planes X7 1,X7Z_2,YZ_1, and YZ_2 planes
NODE 3 [2] NODE 2 [2]
NODE 3 [1] G

. NODE 1 [2]
NODE 1 [1] NODE 2 [1]
@
Figure 5.25: Indexing of the boundary faces on Figure 5.26: Node assignment on each face on

XY_1 plane XY_1 plane
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NODE 3 [2] NODE2 2]
NODE 3 [1]
[FACE2]
FACE[1
NODE 1 [2]
NODE 1 [1] NODE 2 [1]

Figure 5.27: Indexing of the boundary faces on Figure 5.28: Node assignment on each face on
XY_2 plane XY_2 plane

5.3.2 Prismatic Grid of Type Il

The aim of this section is the development of the algorithm that produces a grid of prismatic
elements with a regular triangular base of Type II (Figures 5.4-5.5). A construction technique
similar to the grid generation of Type I is employed, the main difference being the decomposition
process of the Cartesian regular grid. More specifically, two diagonal planes divide each
hexahedral element of the regular grid into 4 prismatic cells. The focus on this section will mainly
be on those aspects that differentiate the proceeding steps of the algorithm development from the
ones described for the development of the Grid of Type I.

An import file provides the data for the definition of the features about the grid (Table 5.6), i.e.
the length of the rectangle in the three dimensions, in order to define the computational domain,
and the number of edges, which are implicitly used for the segmentation of each direction. To
begin with, the algorithm proceeds with the node initialization calculating the Cartesian
Coordinates (X,Y,Z) and stores them in the corresponding arrays (X(i),Y(i),Z(i)). A blueprint of
the nodes forming a regular Cartesian grid is created and extra nodes are set at the barycenter of
each quadrilateral face formed by the nodes on each two-dimensional plane. These nodes are
utilized for the division of the hexahedral elements.

The nodes of the regular grid are initialized with a procedure identical to the one described for
Grid Type 1. Three loops are executed in the relevant dimensions X, Y, Z and an index number is
assigned for each node as shown in Figure 5.18. In addition, the auxiliary nodes are determined in
accordance to the orientation of the nodes that define the Cartesian grid. The index numbering
further continues the last arithmetic succession. Figure 5.29 illustrates the final outcome.
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Figure 5.29: Node orientation for the Prismatic Grid of Type Il

Proceeding to the next step, the algorithm determines the prismatic elements assigning the node
set to the NC array for each element. The iterative process, which scans every hexahedral element
in order to perform its decomposition into prisms, is similar to the one depicted in Figures 5.20-
5.22. As far as the decomposition is concerned, 4 distinct prismatic elements are produced. The
auxiliary variables, which include the vertex nodes of the hexahedron along with the middle
nodes, are defined, as shown in Figure 5.30 and they are assigned to the prisms, as indicated in
the Table 5.10. Finally, the assignment of the element faces (NF) as well as the determination of
the neighboring cells (NE) occurs in the way that was described in Tables 5.8 and 5.9.

Figure 5.30: Assignment of auxiliary variables of a hexahedral element
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Table 5.10: Node assignment for the 4 prisms

DEFINITION NODE (1) NODE (2) NODE(3) NODE (4) NODE(5) NODE (6)

Prism [1] K1 K2 K5 K6 K7 K10
Prism [2] K2 K3 K5 K7 K8 K10
Prism [3] K3 K4 K5 K8 K9 K10
Prism [4] K4 K1 K5 K9 K6 K10

The determination of the grid’s boundary conditions completes the execution of the algorithm.
An iterative procedure of two loops defines the two-dimensional boundary planes i.e. the nodes of
the faces (NOD), the corresponding elements (NBCELL), and the respective element faces
(NBFACE). The planes XZ_ 1, XZ_ 2, YZ_1, and YZ_2 comprised of rectangular elements are
assigned a consecutive numbering. The flow of the iterative process begins at the first row and
proceeds on the layers above, as shown in Figures 5.31-5.32. On the other hand, with respect to
the planes XY_1 and XY_2 composed of triangular elements, the iterative procedure assigns in a
circular way a successive numbering to each triangular element found on each rectangle. This is
performed, firstly, in the Y-direction and then in the X-direction. This is presented in Figures
5.33-5.34. Note that the perspective in the two-dimensional figures echoes the discussion in the

introductory part.
@ & G £
NODE 4 NODE 3
(7] (8] [9] ® @
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[FACE]
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NODE 1 NODE 2
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Figure 5.31: Indexing of the boundary faces on Figure 5.32: Node assignment on each
X7 1,XZ_2,YZ_1, and YZ_2 planes faceon XZ_1, XZ_2, YZ_1, and YZ_2 planes
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Figure 5.33: Indexing of the boundary faces on
XY_1and XY_2 planes

5.3.3 Prismatic Grid of Type III

NODE 23]
NODE 1 [4]

NODE 1 [3]

FACE [3

NODE 3 3]

NODE 3 [1]

FACE 1

NODE 2 [4]

FACE [4 FACE [2
NODE 3 [4] NODE 3 [2]

NODE 1 [1]

NODE 2 [1]

NODE 2[2]

NODE 1 [2]

Figure 5.34: Node assignment on each face

on XY_1 and XY_2 planes

The purpose of this section is the study of the prismatic grids with an equilateral triangular base

(Figures 5.6-5.7). The resulting grid is regarded as the outcome of a two-dimensional grid

extrusion (composed from equilateral triangular elements) to the third dimension. A detailed

presentation of the construction method is introduced.

The features needed for the construction of the grid are provided through an input file. Unlike the

notions given in the previous algorithms, the content of this file lacks one value, concerning the

number of edges in the Y-dimension for reasons which are going to be discussed below.

Table 5.11: Input values of grid Type III and their corresponding variables

INPUT VALUES VARIABLES
Length of the Rectangle in the X - Direction X L
Length of the Rectangle in the Y - Direction Y L
Length of the Rectangle in the Z - Direction Z L
Number of Edges in the X - Direction NX
Number of Edges in the Z - Direction NZ
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The initialization of the nodes is the primary step of the algorithm. An iterative procedure is
implemented, where a two-dimensional grid of equilateral triangular elements is constructed in
order to be replicated in the third dimension.

The construction of equilateral triangles requires the definition of the equilateral edge length; this
is calculated as the value dx stemming from the division of X_L (the length of X-dimension), with
the NX (the number of edges in X-dimension). Employing a trigonometric relation, the algorithm
calculates the height of the equilateral triangle on the premises of the defined value dx, which
corresponds to the length of dy. Consequently, the number of edges in the Y-dimension (NY) is
inferred by the division of the defined dy with the length of Y_L. This justifies the missing notion
of NY in the input file as mentioned earlier.

All of these calculated values determine the segmentation of the two-dimensional plane for the
allocation of the nodes to take place, defining the vertices of the triangular elements which
constitute the grid blueprint. An iterative procedure is implemented in order to initialize the
coordinate nodes (X(i), Y(i), Z(i)) assigning the corresponding indexes, as depicted in Figure 5.35.
Note that the edge triangles are not of equilateral shape, because of a constraint that prohibits the
filling of quadrilateral space merely with equilateral triangles.

¥
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Figure 5.35: Node initialization for the two-dimensional plane of the Prismatic Grid Type III
Lastly, the constructed two-dimensional grid is reproduced towards the Z-dimension with an

additional loop, according to the predefined values NZ and Z_L. The final outcome is illustrated in
Figure 5.36.
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[3rd Layer]

[2nd layer]

dz

Figure 5.36: Node orientation for the Prismatic Grid of Type III

The algorithm proceeds to the definition of the prismatic elements. Prisms are derived by a direct
node connectivity of the neighboring 2-D planes in the way exemplified in Figure 5.37. An
iterative procedure is applied, scanning each triangular element on each 2-D plane and
performing the appropriate connectivity of the nodes on the layer immediately above.

Layer [i +1]

Figure 5.37: Prism derivation
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The cell definition procedure follows a specific pattern: 4 rows of elements in the X-direction are
determined by a set of 4 inner loops, each one of them represented with a different color in the

scheme below.

z

.,

1st Loop — Red
2stLoop - Blue
3st Loop - Green

4st Loop - Orange

Figure 5.38: Loops for cell definition in the X-direction

An additional loop iterates the same pattern in the Y-direction determining all the prismatic
elements of the first layer (Figure 5.39). The iterative procedure is executed as many times as
dictated by the division of the NY/2. In case the NY equals with odd number, at the end of the
iterative procedure under discussion an extra loop is performed, in order to determine the

remaining two rows of elements.
Z
e,

2nd Iteration 4 Loops

1st Iteration 4 Loops

Figure 5.39: Loop for cell definition in the Y-direction

To complete the cell definition procedure, a loop in the Z-direction is implemented, which
defines the elements on the succeeding layers above (Figure 5.40). The index cell numbering

follows the flow of the entire iterative process.
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"

3rd Iteration —»

3rd Layer
2nd Iteration —»

2nd Layer
1st Iteration —»

1st Layer

Figure 5.40: Loop for cell definition in the Z-direction

There are two distinct orientations which a prism might get in the grid. Figure 5.41 illustrates the
auxiliary variables assignment of the two cases and Table 5.12 the node assignment to the prisms.

Prism [1] Prism [2]

Figure 5.41: Assignment of auxiliary variables based on the two alternative
orientations on the grid

Table 5.12: Node assignment on the prisms of Prismatic Grid Type II]

DEFINITION NODE (1) NODE (2) NODE (3) NODE (4) NODE(5) NODE (6)

Prism [1] K1 K2 K3 K4 K5 K6

Prism [2] K1 K2 K3 K4 K5 K6

With reference to the determination of the faces and the neighboring cells for each prismatic
element and the assignment to the NF and NE arrays respectively, they are both described in
Tables 5.8 and 5.9.
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The algorithm terminates with the definition of the 6 boundary planes (NOD, NBFACE, and
NBCELL). An iterative procedure of two loops at the two dimensions define the YZ_1, YZ_2,
XZ_1, XZ_2 planes having quadrilateral elements, starting from the first column and proceeding
to the consecutive ones, as illustrated in Figures 5.42 - 5.43, while the triangular elements of the
XY 1 and the XY 2 planes are determined by an iteration beginning from the first row and
proceeding to the consecutive ones (Figures 5.44-5.45).
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Figure 5.42: Indexing of the boundary faces on Figure 5.43: Node assignment on each face
X7 1,XZ 2,YZ 1, and YZ_2 planes onXZ_1,X7Z 2,YZ_1, and YZ_2 planes
[NODE 32]|
INODE 3[1]

[NODE 112]|
NODE 1[1] NODE 2[1]]
Figure 5.44: Indexing of the boundary faces on Figure 5.45: Node assignment on each
XY_1 and XY_2 planes face on XY_1 and XY_2 planes
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5.3.4 Pyramidal Grid

In this section the development of the grid composed by pyramidal elements is presented (Figures
5.8-5.9). This type is derived from a regular Cartesian one, whose elements are divided into
pyramids with the insertion of a middle node at its barycenter. The connectivity of this node with
the 8 vertices decomposes the hexahedral element into 6 pyramids.

The initialization of the nodes, which constitute the blueprint of a Cartesian gird, has been
already introduced in the previous subsections, where it was noted that the assignment of the
node coordinates (X (:), Y (:), Z (:)) array) occurs according to the import file (Figure 5.18, Table
5.6). A second iterative procedure determines the middle nodes at the barycenter of each
hexahedral element, in an orientation identical with the one applied for the initialization of the
rectangular nodes. The numbering of the middle nodes follows the arithmetic consecution of the
nodes forming the regular grid. Figure 5.46 illustrates the final result for the nodes and the
assigned indexes.
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Figure 5.46: Node orientation for the Pyramidal Grid

Regarding the cell definition, an iterative procedure is implemented in order to decompose each
hexahedral into pyramidal elements. The procedure is executed by a set of three loops, whose
flow reflects the description in section 5.3.1, Figures 5.20-5.22.

The decomposition of the hexahedral elements requires that during the iterative process auxiliary
variables be assigned to the 8 vertices of each hexahedron and to the additional middle node at
the barycenter (Figure 5.47). Consequently, the nodes to be distributed to the NC (i, j) arrays form
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6 distinct pyramidal elements. Table 5.13 shows the node distribution to the constructed
pyramids.

Figure 5.47: Assignment of auxiliary variables on a hexahedral element

Table 5.13: Node assignment for the 6 pyramids

CELL DEFITION NODE (1) NODE(2) NODE(3) NODE(4) NODE (5)

Pyramid [1] K1 K2 K3 K4 K9
Pyramid [2] K5 Ke6 K7 K8 K9
Pyramid [3] K1 K2 K6 K5 K9
Pyramid [4] K2 K3 K7 K6 K9
Pyramid [5] K3 K4 K8 K7 K9
Pyramid [6] K4 K1 K5 K8 K9

Concerning the indexing of the faces stored in the NF array, it is directly determined by the node
numbers it consists of (Table 5.14). Finally, 5 neighboring cells for each element need to be
declared in an ascending numerical order and in relation to the number face adjacent to it, as
indicated in Table 5.15.
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Table 5.14: Face indexing and node assignment on the NF array

NODE ASSIGNMENT TO NF ARRAY

FACES

1st 2nd 3rd 4t
Face [1] Node (4) Node (1) Node (5) _
Face [2] Node (2) Node (3) Node (5) _
Face [3] Node (1) Node (2) Node (5) _
Face [4] Node (3) Node (4) Node (5) _
Face [5] Node (1) Node (2) Node (3) Node (4)

Table 5.15: Neighboring cell indexing with reference to the corresponding face

INDEXING NEIGHBORS CORRESPONING FACE
Neighbor [1] Face [5]
Neighbor [2] Face [3]
Neighbor [3] Face [2]
Neighbor [4] Face [4]
Neighbor [5] Face [1]

In order to determine the boundary conditions for the grid domain, two loops are required, so
that the boundary faces on the 6 surfaces are defined, in other words the NOD, NBCELL, and
NBFACE arrays. The orientation of the face indexing and the node assignment for the planes
X7 1, X7 _2, YZ_1, and YZ_2 on the one hand and for the planes XY_1 and XY_2 on the other are
presented in Figures 5.48-5.49 and Figures 5.50-5.51 respectively.
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Figure 5.48: Indexing of the boundary faces
on XZ 1,X7 2,YZ 1, and YZ_2 planes
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Figure 5.50: Indexing of the boundary
faces on XY_1 and XY_2 planes

5.3.5. Tetrahedral Grid

NODE 4 NODE 3
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Figure 5.49: Node assignment on each face
on XZ 1,X7 2,YZ 1, and YZ_2 planes
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Figure 5.51: Node assignment of each face
on XY_1 and XY_2 planes

Two algorithms have been developed for the generation of tetrahedral elements (Figures 5.10-
5.13). The former relies on the pyramidal grid algorithm, which further decomposes the
generated elements into tetrahedrons. The latter is based on the algorithm generating equilateral
prismatic grids; in this case, as well, the produced prisms are fragmented into tetrahedrons.
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Type

As it was mentioned above, the process heavily depends on the approach of the Pyramidal Grid;
the node initialization is defined based on the input values (Table 5.6) creating the footprint of a
regular Cartesian grid along with the middle nodes at the barycenter of the hexahedrons (Figure
5.46). The algorithm proceeds in scanning and decomposing the hexahedral elements with the
same iterative procedure, which has already been discussed in section 5.3.1 (Figures 5.20-5.22).

Given the notion that tetrahedral elements are derived from the pyramidal ones with a diagonal
splitting, which creates two tetrahedral cells for each pyramid (Figure 5.52), a further
decomposition takes place at the cell definition procedure. In this case, the 6 pyramids of each
hexahedron are decomposed into 12 tetrahedrons. The dummy variables (K1, K2, K3... K9) are
assigned at the vertices of each hexahedral elements and their barycenter (Figure 5.53) and
allocated to the corresponding NC array (Table 5.16).

Figure 5.53: Assignment of auxiliary variables on a hexahedral element
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Table 5.16: Node assignment for the 12 tetrahedrons

DEFINITION NODE [1] NODE [2] NODE [3] NODE [4]
Tetrahedron [1] K1 K2 K3 K9
Tetrahedron [2] K1 K3 K4 K9
Tetrahedron [3] K5 Ke K7 K9
Tetrahedron [4] K5 K7 K8 K9
Tetrahedron [5] K1 K2 K6 K9
Tetrahedron [6] K1 K6 K5 K9
Tetrahedron [7] K3 Ke6 K2 K9
Tetrahedron [8] K3 K7 K6 K9
Tetrahedron [9] K4 K7 K3 K9
Tetrahedron [10] K4 K8 K7 K9
Tetrahedron [11] K4 K1 K5 K9
Tetrahedron [12] K4 K5 K8 K9

Concerning the 4 faces of the tetrahedral element, they need to be stored in NF array; the index
numbering of each face corresponds to the nodes indicated in Table 5.17. Moreover, the
neighboring cells are defined accordingly, with each face corresponding to the indexing of its
neighbor (Table 5.18).

Table 5.17: Face indexing and node assignment in NF array

NODE ASSIGNMENT TO NF ARRAY

FACES

1st 2nd 3rd
Face [1] Node (1) Node (2) Node (3)
Face [2] Node (1) Node (2) Node (4)
Face [3] Node (2) Node (3) Node (4)
Face [4] Node (1) Node (3) Node (4)
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Table 5.18: Neighboring cell indexing with reference to the corresponding face

INDEXING NEIGHBORS CORRESPONING FACE
Neighbor [1] Face [1]
Neighbor [2] Face [2]
Neighbor [3] Face [3]
Neighbor [4] Face [4]

All the boundary planes are composed from triangular elements and according to the perspective
view taken to each plane. Figures 5.54-5.61 demonstrate the face indexing and the node
orientation of each boundary face.

NODE 3 [2] NODE 2 [2]

NODE 2 [1]

NODE 1 [2]
NODE 1 [1] NODE 3 [1]
I8
@
Figure 5.54: Indexing of the boundary faces on Figure 5.55: Node assignment on each face
XZ_1and YZ_1 planes on XZ_1and YZ_1 planes

NODE2 [2] NODE 3 [2]
NODE 2 [1] ]

[FACET1]]
® NODE1 2]
NODE 3 [1] NODE 1 [1]
@
Figure 5.56: Indexing of the boundary faces Figure 5.57: Node assignment of each face on
on XZ_2, YZ_2 planes XZ 2, YZ_2 planes
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1]

Figure 5.58: Indexing of the boundary faces
on XY_1 plane

Figure 5.60: Indexing of the boundary faces
on XY_2 plane

Type II

NODE 2 [2] NODE 3 [2]
NODE 2 [1] L
& NODE1 [2]
NODE 3 [1] NODE 1 [1]

Figure 5.59: Node assignment of each face on
XY_1 plane

NODE 3 [2] NODE 2 [2]
NODE 2 [1]
FACE [2]
FACE [1]
NODE 1 [2]
NODE 1 [1] NODE 3 [1]

Figure 5.61: Node assignment of each face
on XY_2 plane

With respect to the generation of tetrahedrons of type I, the algorithmic processing of the
prismatic elements of Type III is extended on the basis of the prisms’ decomposition into

tetrahedrons. This is performed with a node insertion at the barycenter of each prism. Its

connectivity with the vertices of the prism gives rise to two tetrahedrons and 4 pyramids. A

further decomposition of the pyramids with a diagonal splitting completes the creation of 8

tetrahedral elements (Figure 5.62).

Figure 5.62: Decomposition of a prism into 8 tetrahedrons
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Again, an input file defines the features of the grid (Table 5.11) and the node initialization occurs
(Figure 5.36). At this point an additional loop defines the middle nodes for each prism. In what
follows, the same iterative procedure defines the elements in the manner discussed in section
5.3.3, Figures 5.38-5.40. The dummy variables assignment for the two different orientations the
grid might receive is shown in Figure 5.63. For each prism 8 distinct tetrahedrons are created
through the allocation to the corresponding NC arrays. Tables 5.19 and 5.20 indicate these
definitions. NF and NE arrays, referring to the faces and the neighboring cells, are determined
according to Tables 5.17 and 5.18 respectively.

Prism [1]

Figure 5.63: Assignment of auxiliary variables, based on the two alternative orientations of
the grid

Table 5.19: Node assignment on the 8 tetrahedrons of each prism [1]

DEFINITION NODE [1] NODE [2] NODE [3] NODE [4]
Tetrahedron [1] K7 K1 K2 K5
Tetrahedron [2] K7 K1 K5 K4
Tetrahedron [3] K7 K2 K3 Ke
Tetrahedron [4] K7 K2 Ké6 K5
Tetrahedron [5] K7 K3 K1 K4
Tetrahedron [6] K7 K3 K4 Ke
Tetrahedron [7] K7 K1 K2 K3
Tetrahedron [8] K7 K4 K5 Ke
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Table 5.20: Node assignment on the 8 tetrahedrons of each prism [2]

DEFINITION NODE [1] NODE [2] NODE [3] NODE [4]
Tetrahedron [1] K7 K1 K2 K4
Tetrahedron [2] K7 K2 K5 K4
Tetrahedron [3] K7 K2 K3 K5
Tetrahedron [4] K7 K3 Ke6 K5
Tetrahedron [5] K7 K3 K1 Ke6
Tetrahedron [6] K7 K1 K4 Ke6
Tetrahedron [7] K7 Ki K2 K3
Tetrahedron [8] K7 K4 K5 Ke

Taking under consideration the different perspective views on the boundary faces, XZ_1, XZ 2,
YZ 1 and YZ_2 planes are composed of triangular elements, as depicted in Figures 5.64-5.65, 5.66-
5.67 and 5.68-5.69, respectively, while for the planes XY_1 and XY_2 the equilateral triangles, of
which they consist, have the same orientation as illustrated in Figures 5.70-5.71.

NODE 3 [2] NODE 2 [2]
NODE 2 [1]
[FACE 2]
[FACE]]
NODE 1 [2]

NODE 1 [1] NODE 3 [1]
Figure 5.64: Indexing of the boundary faces on Figure 5.65: Node assignment of each face on
the XZ_1 plane the XZ_1 plane
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Figure 5.66: Indexing of the boundary faces on

XZ_2 plane

Figure 5.68: Indexing of the boundary faces on

YZ_1 and YZ_2 planes

Figure 5.70: Indexing of the boundary faces
on XY_1 and XY_2 planes

NODE 2 [2]

NODE 2 [1]

NODE 3 [2]
@

FACE[1])

NODE 1 [2]

NODE 3 [1]

NODE 1 [1]

Figure 5.67: Node assignment of each face on

XZ_2 plane
NODE 2 [2] NODE 3[2]
NODE 2 [1]
NODE 1 [2]
NODE 3 [1] NODE 1 [1]
NODE 3 [2) NODE 2 [2]
NODE 2 [1]
[FACE [2]
FACE[1
NODE 1 [2]

NODE 1 [1]

NODE 3 [1]

Figure 5.69: Node assignment of each face on

YZ_1 and YZ_2 planes

NODE 1[2]

Figure 5.71: Node assignment of each face on

XY_1 and XY_2 planes
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5.4 Irregular Grids

Grid irregularities are introduced by perturbing the grid nodes from their original positions with
random shifts. All the aforementioned grid types are developed so as to produce Irregular Girds
with the addition of a simple subroutine where the distortion of the grid nodes occurs.

An iterative procedure assigns indexes on the nodes, differentiating the boundary nodes from the
internal ones. This happens in order for the boundary nodes to remain intact. As a result, the
computational domain retains its form. Subsequently, a recursive process disturbs the original
coordinates of the internal nodes. This perturbation takes place randomly in each dimension and
is defined as 0.4rAx, where r € [-1/2, 1/2] is a random number and Ax is the local mesh size along
the given dimension.

The subroutine is outlined in the pseudo-code below.

Subroutine Distortion
//For the boundary nodes//
Doi=1, NNODE
IF (node is a boundary) THEN
Set index to the node
END
ENDDO
//Node perturbation//
Doi=1, NNODE
IF (node is not a boundary) THEN
Distort the node
END

ENDDO

For each of the regular grid types, its corresponding irregular version is shown in the following
Figures (5.72-5.77).
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Figure 5.72: Distorted Prismatic Grid of Type I

Figure 5.73: Distorted Prismatic Grid of Type Il
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Figure 5.74: Distorted Prismatic Grid of Type 111

Figure 5.75: Distorted Pyramidal Grid
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Figure 5.76: Distorted Tetrahedral Grid of Type I

Figure 5.77: Distorted Tetrahedral Grid of Type II
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"Intentionally left blank”
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CONCLUSIONS AND FUTURE WORK

In the current study, a high-order numerical scheme was integrated into an existing academic
solver (EU2) for the numerical solution of 2-dimensional Euler equations. The discretized
governing equations are solved with a Finite Volume Node-centered scheme on unstructured
triangular grids, while an upwind method is implemented for the computation of the inviscid
fluxes, employing the Roe’s approximate Riemann. A successive differentiation technique is
utilized to achieve up to third order spatial accuracy incorporating the high-order correction
terms to the reconstructed nodal values. The aforementioned formulation is based on a variable-
extrapolation, the U-MUSCL type reconstruction, which closely resembles the traditional MUSCL
one. Additionally, a Strong Stability Preserving (SSP) fourth order - five stage Runge-Kutta
method is used for time discretization.

The benchmark problem of an isentropic travelling vortex with a well-known analytical solution
is utilized for the evaluation of the numerical accuracy. It was chosen to examine the behavior of
the numerical scheme under certain conditions and determine its effectiveness to the numerical
solution. Emphasis has been placed on grid convergence study, to define the order of the
numerical accuracy of the scheme. Using a controlled environment through a successive grid
refinement procedure, numerical simulations have been carried out on different type of triangular
grids and in two different time periods. The following major conclusions can be drawn from the
present work:

-The presented high-order scheme enhances the numerical accuracy of the existing solver. In
terms of the convergence behavior, the numerical results for regular grids obtain a satisfactory
agreement. The convergences histories of Equilateral (Type I) and Orthogonal (Type II) grids
exhibit an identical behavior for all conservatives’ variables and for all different norms and
achieve a third order accuracy, which, in some cases, was surpassed. As expected, orthogonal grid
(Type III) and especially the distorted grid have shown an order reduction on the convergence
rates, compared to the previous ones. The employment of Green-Gauss formula may not give the
expected high-order accuracy on general unstructured grids but it certainly improves the
accuracy of a base second-order scheme.

-The experience of integrating the current numerical scheme into the existing academic solver
shows an easy implementation without excessive efforts. Through the successive differentiation
process, the computation of the high-order terms is feasible by exploiting the existing structure of
the code with only slight modifications. The same routine that computes the field of first
derivatives is utilized to obtain the field of the higher derivatives. Since there is no need to
introduce additional DoFs (Degreed of Freedom) to the reconstructed values, this advantage
seems quite preferable for parallel unstructured flow solvers where the employment of the
common high-order schemes is rather challenging.

- The memory requirements of the incorporated high-order module and the computation time of
the numerical solution are kept low. The computation of the high order terms requires only the
allocation of 3 additional arrays in the case of a 3rd order scheme, while the computational effort
for the flux calculation in each iteration has only a low overhead, associated with the calculation
of the above terms.

921



Conclusions and Future Work 2019

Following from this work, the derivation of the corresponding high-order formulation is already
introduced into a 3-dimensional numerical flow model. On-going development of high-order
accuracy to the 3-D CFD solver Galatea is being carried out. As already mentioned in Chapter 4,
Galatea is a parallelized node-centered finite volume solver for the numerical solution of
compressible fluid flows in hybrid unstructured grids. The developed 3-D computational meshes
demonstrated in chapter 5 will be used for an extensive evaluation of the numerical results similar
to the methodology that has been employed in this study.

Finally, the implementation of the high-order module was conducted without taking into account
quadrature rules in the computation of the numerical fluxes. Hence, it was restricted to the
existing midpoint rule for the calculation of the flux integrals, albeit providing a significant
improvement to the numerical solutions. A future development using additional quadrature
points could hypothetically increase the order of the numerical scheme, along, however, with the
analogous computational cost. Further research could be undertaken to explore the potential
improvements on the numerical performance of the aforementioned procedures.
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Appendix A

APPENDIX A: Jacobian Matrix Decomposition

The Jacobian matrix of the convective flux vector H™ is analyzed via the eigenvalue
decomposition as follows [Hir90, Lan98]

A=

AT

(A1)

where A is a 5x5 diagonal matrix, whose entries are the eigenvalues of the Jacobian matrix 4,

defined as [Hir90]

4 = diag{B, 17l 7, Gul7l, (%, + )[Rl (% — c)I7l}

while T is a matrix, including the eigenvectors of the Jacobian matrix A [Hir90]
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where u, v and w are the components of velocity V, A = (#,, #,,n,) is the unit normal vector and

v, = V-7 is the value of corresponding velocity. The terms C,H,X,Y,Z and B are auxiliary values

defined as:
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Depending on the eigenvalue A the Jacobian matrix for the Roe’s approximate Riemann solver is
calculated as [Hir90]

A* =T ATT™, A* = diag{2}} (A.6)
4] =T |A|T7Y, |4A] = diag{I2;]}
while the eigenvalues 4 as:
A =max(1;,0), i=1,..5 (A7)

A; =min(4;,0), i=1,..5
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Appendix B

APPENDIX B: Convergence Results (Isentropic Vortex)

Table B.1: Errors and convergence rates for Equilateral Grid (Type I) at t= 7 s

EQUILATERALI T=7
L N hN log10(hV)
1 20 0.8436 -0.0738
1 40 0.4529 -0.3440
1 80 0.2297 -0.6388
1 160 0.1157 -0.9366
1 320 0.0578 -1.2379
L2 L2 L2 L2 L2 L2 L2 L2 L2
Error(p) Error(pu) Error(pe) loglO(error(p)) loglO(error(pu)) loglO(error(pe)) (p) (pu) (pe)
1.011E-03 9.356E-03 1.307E-02 -2.995E+00 -2.029E+00 -1.884E+00 Slope Slope Slope
3.712E-04 2.976E-03 3.946E-03 -3.430E+00 -2.526E+00 -2.404E+00 1.61 1.84 193
5.929E-05 3.259E-04 4.315E-04 -4.227E+00 -3.487E+00 -3.365E+00 270 326 326
1.106E-05 2.909E-05 4.017E-05 -4.956E+00 -4.536E+00 -4.396E+00 245 352 346
2.488E-06 3.773E-06 5.025E-06 -5.604E+00 -5.423E+00 -5.299E+00 215 294 300
Average slope 223 289 291
L1 L1 L1 L1 L1 L1 L1 L1 L1
Error(p) Error(pu) Error(pe) logl0(error(p)) loglO(error(pu)) loglO(error(pe))  (p) (pu) (pe)
2.837E-04 2.754E-03 4.004E-03 -3.547E+00 -2.560E+00 -2.397E+00 Slope Slope Slope
8.484E-05 7.107E-04 1.022E-03 -4.071E+00 -3.148E+00 -2.991E+00 1.94 218 220
1.304E-05 7.250E-05 1.093E-04 -4.885E+00 -4.140E+00 -3.962E+00 276 336 329
2.241E-06 7.270E-06 1.231E-05 -5.650E+00 -5.138E+00 -4.910E+00 257 335 318
4.757E-07 9.579E-07 1.734E-06 -6.323E+00 -6.019E+00 -5.761E+00 223 292 282
Average slope 2.38 2.95 2.87
Lmax Lmax Lmax Lmax Lmax Lmax Lmax Lmax Lmax
Error(p) Error(pu) Error(pe) logl0(error(p)) loglO(error(pu)) loglO(error(pe))  (p) (pu) (pe)
1.5842E-02  9.4260E-02  1.6983E-01  -1.8002E+00 1.0257E+00 -7.6999E-01 Slope Slope Slope
7.1290E-03  4.1755E-02  5.9835E-02  -2.1470E+00 -1.3793E+00 -1.2230E+00 1.28 131 1.68
1.2758E-03  5.2295E-03  7.5776E-03  -2.8942E+00 -2.2815E+00 -2.1205E+00 253 306 304
2.4505E-04  4.8608E-04  6.9753E-04  -3.6107E+00 -3.3133E+00 -3.1564E+00 241 346 348
53963E-05 7.2616E-05  9.1160E-05 -4.2679E+00 -4.1390E+00 -4.0402E+00 218 274 293
Average slope 210 264 278
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Table B.2: Errors and convergence rates for Orthogonal Grid (Type II) at t= 7 s
ORTHOGONAL 11 T=7
L N hN log10(hN)
1 20 0.6897 -0.1614
1 40 0.3492 -0.4570
1 80 0.1757 -0.7553
1 160 0.0881 -1.0550
1 320 0.0441 -1.3553
L2 L2 L2 L2 L2 L2 L2 L2 L2
Error(p) Error(pu) Error(pe) loglO(error(p)) loglO(error(pu)) loglO(error(pe)) (p) (pu) (pe)
8.217E-04 7.206E-03 9.395E-03 -3.085E+00 -2.142E+00 -2.027E+00 Slope Slope Slope
2.018E-04 1.579E-03 1.831E-03 -3.695E+00 -2.802E+00 -2.737E+00 2.06 2.23 2.40
3.438E-05 1.435E-04 1.685E-04 -4.464E+00 -3.843E+00 -3.773E+00 2.58 3.49 347
7.052E-06 1.442E-05 1.828E-05 -5.152E+00 -4.841E+00 -4.738E+00 2.30 3.33 3.22
1.646E-06 2.345E-06 2.929E-06 5.784E+00 -5.630E+00 -5.533E+00 2.10 2.63 2.65
Average slope 226 292 2.94
L1 L1 L1 L1 L1 L1 L1 L1 L1
Error(p) Error(pu) Error(pe) loglO(error(p)) loglO(error(pu)) loglO(error(pe)) (p) (pu) (pe)
2.235E-04 1.981E-03 2.901E-03 -3.651E+00 -2.703E+00 -2.537E+00 Slope Slope Slope
4.690E-05 3.440E-04 4.618E-04 -4.329E+00 -3.463E+00 -3.336E+00 2.29 2.57 2.70
7.084E-06 2.917E-05 4.379E-05 -5.150E+00 -4.535E+00 -4.359E+00 2.75 359 343
1.345E-06 3.020E-06 5.246E-06 -5.871E+00 -5.520E+00 -5.280E+00 241 329 3.08
3.068E-07 4.570E-07 8.803E-07 -6.513E+00 -6.340E+00 -6.055E+00 214 273  2.58
Average slope 240 3.05 295
Lmax Lmax Lmax Lmax Lmax Lmax Lmax Lmax Lmax
Error(p) Error(pu) Error(pe) loglO(error(p)) loglO(error(pu)) loglO(error(pe))  (p) (pu) (pe)
1.5173E-02  83985E-02  1.3061E-01 -1.8189E+00 -1.0758E+00 -8.8401E-01 Slope Slope Slope
3.9076E-03  2.2827E-02  2.8686E-02  -2.4081E+00 -1.6415E+00 -1.5423E+00 1.99 1.91 2.23
6.9066E-04  2.3590E-03  2.5652E-03  -3.1607E+00 -2.6273E+00 -2.5909E+00 2.52 3.30 3.51
1.5020E-04  2.8361E-04 3.3301E-04 -3.8233E+00 -3.5473E+00 -3.4775E+00 2.21 3.07 2.96
3.5056E-05 4.8871E-05  6.1079E-05  -4.4552E+00 -4.3109E+00 -4.2141E+00 2.10 2.54 2.45
Average slope 221 271 279
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Table B.3: Errors and convergence rates for Orthogonal Grid (Type III) at t= 7 s

ORTHOGONAL 111 T=7
L N hN log10(hN)
1 20 0.9524 -0.0212
1 40 0.4878 -0.3118
1 80 0.2469 -0.6075
1 160 0.1242 -0.9058
1 320 0.0623 -1.2055
L2 L2 L2 L2 L2 L2 L2 L2 L2
Error(p) Error(pu) Error(pe) loglO(error(p)) loglO(error(pu)) loglO(error(pe)) (p) (pu) (pe)
1.171E-03 1.134E-02 1.518E-02 -2.931E+00 -1.945E+00 -1.819E+00 Slope Slope Slope
6.729E-04 6.234E-03 7.421E-03 -3.172E+00 -2.205E+00 -2.130E+00 0.83 0.89 1.07
2.273E-04 2.210E-03 2.403E-03 -3.643E+00 -2.656E+00 -2.619E+00 1.59 1.52 1.66
5.795E-05 5.861E-04 6.170E-04 -4.237E+00 -3.232E+00 -3.210E+00 1.99 1.93 1.98
1.436E-05 1.471E-04 1.535E-04 -4.843E+00 -3.832E+00 -3.814E+00 2.02 2.00 2.02
Average slope 1.61 1.59 1.68
L1 L1 L1 L1 L1 L1 L1 L1 L1
Error(p) Error(pu) Error(pe) loglO(error(p)) loglO(error(pu)) loglO(error(pe)) (p) (pu) (pe)
2.980E-04 3.011E-03 4.425E-03 -3.526E+00 -2.521E+00 -2.354E+00 Slope Slope Slope
1.488E-04 1.418E-03 1.856E-03 -3.827E+00 -2.848E+00 -2.731E+00 1.04 1.13 1.30
4.220E-05 4.310E-04 5.264E-04 -4.375E+00 -3.366E+00 -3.279E+00 1.85 1.75 1.85
9.680E-06 1.089E-04 1.276E-04 -5.014E+00 -3.963E+00 -3.894E+00 2.14 2.00 2.06
2.272E-06 2.712E-05 3.127E-05 -5.644E+00 -4.567E+00 -4.505E+00 2.10 2.01 2.04
Average slope 1.78 1.72 1.81
Lmax Lmax Lmax Lmax Lmax Lmax Lmax Lmax Lmax
Error(p) Error(pu) Error(pe) loglO(error(p)) loglO(error(pu)) loglO(error(pe))  (p) (pu) (pe)
1.9962E-02 1.3211E-01 1.9078E-01 -1.69979743 -0.879064533 -0.719470948 Slope Slope Slope
1.2303E-02  8.0891E-02 1.0049E-01 -1.90998199 -1.092101564 -0.997897158 0.72 0.73 0.96
4.2449E-03  3.1025E-02  3.5464E-02  -2.37212952 -1.508294302 -1.450206172 1.56 141 1.53
1.0226E-03  8.4404E-03  8.7714E-03  -2.99029354 -2.073636013 -2.056931751 207 189 2.03
2.3584E-04 2.1077E-03  2.0631E-03  -3.62738065 -2.676184498 -2.685484332 2.13 2.01 2.10
Average slope 1.62 151 1.65
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Table B.4: Errors and convergence rates for Distorted Grid (Type IV) at t= 7 s
DISTORTED IV T=7
L N hN log10(hN)
1 20 0.8436 -0.0738
1 40 0.4529 -0.3440
1 80 0.2297 -0.6388
1 160 0.1157 -0.9366
1 320 0.0578 -1.2379
L2 L2 L2 L2 L2 L2 L2 L2 L2
Error(p) Error(pu) Error(pe) loglO(error(p)) loglO(error(pu)) loglO(error(pe)) (p) (pu) (pe)
1.182E-03 9.030E-03 1.243E-02 -2.927E+00 -2.044E+00 -1.905E+00 Slope Slope Slope
5.884E-04 2.671E-03 3.844E-03 -3.230E+00 -2.573E+00 -2.415E+00 112 1.96 1.89
2.058E-04 9.293E-04 9.607E-04 -3.687E+00 -3.032E+00 -3.017E+00 1.55 1.56 2.04
4.187E-05 1.747E-04 1.817E-04 -4.378E+00 -3.758E+00 -3.741E+00 2.32 2.44 2.43
1.207E-05 4.889E-05 5.132E-05 -4.918E+00 -4.311E+00 -4.290E+00 1.79 1.84 1.82
Average slope 1.70 1.95 2.05
L1 L1 L1 L1 L1 L1 L1 L1 L1
Error(p) Error(pu) Error(pe) loglO(error(p)) loglO(error(pu)) loglO(error(pe)) (p) (pu) (pe)
5.826E-04 2.886E-03 4.845E-03 -3.235E+00 -2.540E+00 -2.315E+00 Slope Slope Slope
2.377E-04 7.347E-04 1.372E-03 -3.624E+00 -3.134E+00 -2.862E+00 1.44 2.20 2.03
7.868E-05 2.385E-04 3.619E-04 -4.104E+00 -3.623E+00 -3.441E+00 1.63 1.66 1.96
1.449E-05 3.992E-05 6.097E-05 -4.839E+00 4.399E+00 -4.215E+00 247 2.61 2.60
4.063E-06 1.072E-05 1.628E-05 -5.391E+00 -4.970E+00 -4.788E+00 1.83 190 190
Average slope 1.84 209 212
Lmax Lmax Lmax Lmax Lmax Lmax Lmax Lmax Lmax
Error(p) Error(pu) Error(pe) loglO(error(p)) loglO(error(pu)) loglO(error(pe))  (p) (pu) (pe)
1.4981E-02 9.6456E-02  1.5181E-01 -1.8245E+00 -1.0157E+00 -8.1871E-01 Slope Slope Slope
1.0878E-02  3.2335E-02  5.5092E-02  -1.9635E+00 -1.4903E+00 -1.2589E+00 0.51 1.76 1.63
2.8372E-03  1.1804E-02  1.5020E-02  -2.5471E+00 -1.9280E+00 -1.8233E+00 1.98 1.48 1.91
1.0414E-03  2.5916E-03  3.3408E-03  -2.9824E+00 -2.5864E+00 -2.4762E+00 146 2.21 2.19
2.4678E-04 7.1541E-04  1.0691E-03  -3.6077E+00 -3.1454E+00 -2.9710E+00 2.08 1.86 1.64
Average slope 1.51 183 1.84
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Table B.5: Errors and convergence rates for Equilateral Grid (Type I) at t= 60 s

EQUILATERALI T=60
L N hN log10(hN)
1 20 0.8436 -0.0738
1 40 0.4529 -0.3440
1 80 0.2297 -0.6388
1 160 0.1157 -0.9366
1 320 0.0578 -1.2379
L2 L2 L2 L2 L2 L2 L2 L2 L2
Error(p) Error(pu) Error(pe) loglO(error(p)) loglO(error(pu)) loglO(error(pe)) (p) (pu) (pe)
1.298E-03 1.396E-02 1.971E-02 -2.887E+00 -1.855E+00 -1.705E+00 Slope Slope Slope
9.424E-04 9.899E-03 1.362E-02 -3.026E+00 -2.004E+00 -1.866E+00 0.51 0.55 0.59
2.311E-04 1.822E-03 3.034E-03 -3.636E+00 -2.739E+00 -2.518E+00 2.07 2.49 2.21
2.557E-05 1.319E-04 2.265E-04 -4.592E+00 -3.880E+00 -3.645E+00 3.21 3.83 3.78
5.014E-06 1.112E-05 1.741E-05 -5.300E+00 -4.954E+00 -4.759E+00 2.35 3.57 3.70
Average slope 2.04 261 2.57
L1 L1 L1 L1 L1 L1 L1 L1 L1
Error(p) Error(pu) Error(pe) loglO(error(p)) loglO(error(pu)) loglO(error(pe)) (p) (pu) (pe)
3.164E-04 4.170E-03 6.040E-03 -3.500E+00 -2.380E+00 -2.219E+00 Slope Slope Slope
1.870E-04 2.826E-03 3.674E-03 -3.728E+00 -2.549E+00 -2.435E+00 085 063 080
5.034E-05 4.594F-04 6.823E-04 -4.298E+00 -3.338E+00 -3.166E+00 1.93 268 248
8.127E-06 3.655E-05 5.985E-05 -5.090E+00 -4.437E+00 -4.223E+00 2.66 3.69 3.55
1.646E-06 3.709E-06 6.513E-06 -5.784E+00 -5.431E+00 -5.186E+00 230 330 3.20
Average slope 1.93 257 2.51
Lmax Lmax Lmax Lmax Lmax Lmax Lmax Lmax Lmax
Error(p) Error(pu) Error(pe) loglO(error(p)) loglO(error(pu)) loglO(error(pe))  (p) (pu) (pe)
1.8958E-02 1.5256E-01 1.9849E-01 -1.7222E+00 -8.1656E-01 -7.0227E-01 Slope Slope Slope
1.6462E-02 1.1609E-01 1.8520E-01 -1.7835E+00 -9.3519E-01 -7.3237E-01 023 0.44 011
4.5654E-03  2.5371E-02  4.9192E-02  -2.3405E+00 -1.5957E+00 -1.3081E+00 1.89 2.24 1.95
4.2968E-04  1.8246E-03  3.8222E-03  -3.3669E+00 -2.7388E+00 -2.4177E+00 3.45 3.84 3.73
7.8762E-05  1.4601E-04 2.6831E-04 -4.1037E+00 -3.8356E+00 -3.5714E+00 2.45 3.64 3.83
Average slope 2.00 254 240
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Table B.6: Errors and convergence rates for Orthogonal Grid (Type II) at t= 60 s

ORTHOGONAL Il T=60
L N hN log10(hN)
1 20 0.6897 -0.1614
1 40 0.3492 -0.4570
1 80 0.1757 -0.7553
1 160 0.0881 -1.0550
1 320 0.0441 -1.3553
L2 L2 L2 L2 L2 L2 L2 L2 L2
Error(p) Error(pu) Error(pe) loglO(error(p)) loglO(error(pu)) loglO(error(pe)) (p) (pu) (pe)
1.244E-03 1.313E-02 1.796E-02 -2.905E+00 -1.882E+00 -1.746E+00 Slope Slope Slope
7.121E-04 7.684E-03 1.058E-02 -3.147E+00 -2.114E+00 -1.976E+00 0.82 0.79 0.78
9.500E-05 7.389E-04 1.290E-03 -4.022E+00 -3.131E+00 -2.889E+00 2.93 3.41 3.06
1.413E-05 5.053E-05 8.781E-05 -4.850E+00 -4.296E+00 -4.056E+00 2.76 389 3.89
3.252E-06 5.752E-06 8.474E-06 -5.488E+00 -5.240E+00 -5.072E+00 2.12 3.14 3.38
Average slope 216 281 2.78
L1 L1 L1 L1 L1 L1 L1 L1 L1
Error(p) Error(pu) Error(pe) loglO(error(p)) loglO(error(pu)) loglO(error(pe)) (p) (pu) (pe)
2.707E-04 4.002E-03 5.836E-03 -3.568E+00 -2.398E+00 -2.234E+00 Slope Slope Slope
1.399E-04 2.056E-03 2.758E-03 -3.854E+00 -2.687E+00 -2.559E+00 097 098 110
2.220E-05 1.755E-04 2.841E-04 -4.654E+00 -3.756E+00 -3.547E+00 2.68 3.58 3.31
3.513E-06 1.207E-05 2.111E-05 -5.454E+00 -4.918E+00 -4.675E+00 2.67 3.88 3.77
7.828E-07 1.363E-06 2.227E-06 -6.106E+00 -5.865E+00 -5.652E+00 2.17 3.15 3.25
Average slope 212 2,90 2.86
Lmax Lmax Lmax Lmax Lmax Lmax Lmax Lmax Lmax
Error(p) Error(pu) Error(pe) loglO(error(p)) loglO(error(pu)) loglO(error(pe))  (p) (pu) (pe)
2.1213E-02 1.5128E-01 2.1736E-01 -1.6734E+00 -8.2022E-01 -6.6283E-01 Slope Slope Slope
1.2803E-02 9.6764E-02 1.5300E-01 -1.8927E+00 -1.0143E+00 -8.1530E-01 0.74 0.66 0.52
1.5294E-03  8.3746E-03 1.9430E-02  -2.8155E+00 -2.0770E+00 -1.7115E+00 3.09 3.56 3.00
1.9688E-04 6.7222E-04  1.2921E-03  -3.7058E+00 -3.1725E+00 -2.8887E+00 2.97 3.66 3.93
4.3373E-05  9.6684E-05  1.4189E-04 -4.3628E+00 -4.0146E+00 -3.8481E+00 2.19 2.80 3.19
Average slope 225 2.67 2.66
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Table B.7: Errors and convergence rates for Orthogonal Grid (Type III) at t= 60 s

ORTHOGONAL 111 T=60
L N hN log10(hN)
1 20 0.9524 -0.0212
1 40 0.4878 -0.3118
1 80 0.2469 -0.6075
1 160 0.1242 -0.9058
1 320 0.0623 -1.2055
L2 L2 L2 L2 L2 L2 L2 L2 L2
Error(p) Error(pu) Error(pe) loglO(error(p)) loglO(error(pu)) loglO(error(pe)) (p) (pu) (pe)
1.316E-03 1.406E-02 1.903E-02 -2.881E+00 -1.852E+00 -1.721E+00 Slope Slope Slope
1.134E-03 1.238E-02 1.550E-02 -2.946E+00 -1.907E+00 -1.810E+00 022 0.19 0.31
4.958E-04 4.742E-03 7.122E-03 -3.305E+00 -2.324E+00 -2.147E+00 1.21 141 1.14
5.387E-05 3.603E-04 6.254E-04 -4.269E+00 -3.443E+00 -3.204E+00 323 375 354
8.754E-06 2.590E-05 4.359E-05 -5.058E+00 -4.587E+00 -4.361E+00 263 382 3.86
Average slope 1.83 229 2.21
L1 L1 L1 L1 L1 L1 L1 L1 L1
Error(p) Error(pu) Error(pe) loglO(error(p)) loglO(error(pu)) loglO(error(pe)) (p) (pu) (pe)
3.639E-04 3.908E-03 6.316E-03 -3.439E+00 -2.408E+00 -2.200E+00 Slope Slope Slope
2.519E-04 3.855E-03 5.090E-03 -3.599E+00 -2.414E+00 -2.293E+00 0.55 0.02 0.32
1.077E-04 1.359E-03 1.870E-03 -3.968E+00 -2.867E+00 -2.728E+00 1.25 1.53 147
1.255E-05 9.318E-05 1.398E-04 -4.901E+00 -4.031E+00 -3.854E+00 313 390 378
2.029E-06 7.140E-06 1.079E-05 -5.693E+00 -5.146E+00 -4.967E+00 2.64 3.72 3.71
Average slope 1.89 229 232
Lmax Lmax Lmax Lmax Lmax Lmax Lmax Lmax Lmax
Error(p) Error(pu) Error(pe) loglO(error(p)) loglO(error(pu)) loglO(error(pe))  (p) (pu) (pe)
2.1699E-02 1.5410E-01 1.8479E-01 -1.66355077 -0.812183647 -0.733320225 Slope Slope Slope
1.9855E-02 1.4384E-01 1.9023E-01 -1.70213748 -0.842107197 -0.720716165 0.13 0.10 -0.04
9.1691E-03  5.8831E-02 1.0874E-01 -2.03767133 -1.230391033 -0.963603872 113 1.31 0.82
9.5535E-04  4.5257E-03  1.0471E-02  -3.01983833 -2.344317134 -1.979996544 329 373 341
1.4947E-04  2.8554E-04 7.3371E-04  -3.82545021 -3.544326865 -3.134475421 2.69 4.00 3.85
Average slope 1.81 229 2.01
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Table B.8: Errors and convergence rates for Distorted Grid (Type IV) at t= 60 s
DISTORTED IV T=60
L N hN log10(hN)
1 20 0.8436 -0.0738
1 40 0.4529 -0.3440
1 80 0.2297 -0.6388
1 160 0.1157 -0.9366
1 320 0.0578 -1.2379
L2 L2 L2 L2 L2 L2 L2 L2 L2
Error(p) Error(pu) Error(pe) loglO(error(p)) loglO(error(pu)) loglO(error(pe)) (p) (pu) (pe)
1.250E-03 1.348E-02 1.987E-02 -2.903E+00 -1.870E+00 -1.702E+00 Slope Slope Slope
1.001E-03 1.028E-02 1.248E-02 -3.000E+00 -1.988E+00 -1.904E+00 0.36 0.44 0.75
5.569E-04 6.749E-03 7.935E-03 -3.254E+00 -2.171E+00 -2.100E+00 0.86 0.62 0.67
1.097E-04 1.243E-03 1.608E-03 -3.960E+00 -2.906E+00 -2.794E+00 2.37 247 2.33
3.171E-05 3.476E-04 4.664E-04 -4.499E+00 -3.459E+00 -3.331E+00 1.79 1.84 1.78
Average slope 1.34 134 1.38
L1 L1 L1 L1 L1 L1 L1 L1 L1
Error(p) Error(pu) Error(pe) loglO(error(p)) loglO(error(pu)) loglO(error(pe)) (p) (pu) (pe)
3.740E-04 4.203E-03 6.160E-03 -3.427E+00 -2.376E+00 -2.210E+00 Slope Slope Slope
3.306E-04 3.110E-03 4.004E-03 -3.481E+00 -2.507E+00 -2.398E+00 020 048 069
1.865E-04 1.635E-03 2.115E-03 -3.729E+00 -2.787E+00 -2.675E+00 084 095 094
3.729E-05 2.765E-04 3.759E-04 -4.428E+00 -3.558E+00 -3.425E+00 2.35 2.59 2.52
1.143E-05 7.575E-05 1.059E-04 -4.942E+00 -4.121E+00 -3.975E+00 1.70 1.87 1.83
Average slope 1.27 147 149
Lmax Lmax Lmax Lmax Lmax Lmax Lmax Lmax Lmax
Error(p) Error(pu) Error(pe) loglO(error(p)) loglO(error(pu)) loglO(error(pe))  (p) (pu) (pe)
1.8823E-02  1.4147E-01 1.8707E-01 -1.7253E+00 -8.4933E-01 -7.2799E-01 Slope Slope Slope
1.6407E-02  1.0832E-01 1.4722E-01 -1.7850E+00 -9.6531E-01 -8.3204E-01 022 043 0.39
1.0575E-02 7.9710E-02 9.3162E-02  -1.9757E+00 -1.0985E+00 -1.0308E+00 0.65 0.45 0.67
1.7460E-03  1.5482E-02  2.2263E-02  -2.7579E+00 -1.8102E+00 -1.6524E+00 2.63 2.39 2.09
7.0474E-04  4.4452E-03 6.9439E-03  -3.1520E+00 -2.3521E+00 -2.1584E+00 1.31 1.80 1.68
Average slope 1.20 127 1.21
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