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“Man knows at last that he is alone in the universe’s unfeeling 

immensity, out of which he emerged only by chance. His destiny is 

nowhere spelled out, nor his duty. The kingdom above or the darkness 

below: it is for him to choose.” 

Jacques Monod 

 

 

 

 

 

 

 

 

 

 



   

vi 

 

 

 

 

 

 

 

 

 

 

 

"Intentionally left blank" 

 

 

 

 

 

 

 

 

 

 

 



  
 

vii 

 

 

 

 

 

 

 

 

 

 

 

To my family and Nasia 

 

 

 

 

 

 

 

 

 

 

 



   

viii 

 

 

 

 

 

 

 

 

 

 

 

"Intentionally left blank" 

 

 

 

 

 

 

 

 

 

 

 



  
 

ix 

 

ABSTRACT 
 

In this study, the application and evaluation of a high-0rder spatial and time discretization 

method for the numerical solution of 2-dimensional Euler equations is reported. An alternative 

high-order approach [Yan14] enhances the in-house academic solver, named EU2, employing the 

dimensionless Euler equations, discretized with a node-centered finite volume method on 

triangular unstructured girds, to simulate inviscid compressible flows. Most methodologies that 

have been developed during the past years, e.g. the discontinuous Galerkin and K-exact scheme, 

necessitate a non-trivial increase of the DoFs (Degrees of Freedom) and consequently a 

considerable increase of computational resources. Moreover, major modifications to existing CFD 

codes are required for their implementation. The adopted high-order scheme is based on the 

incorporation of additional high order terms to the reconstructed nodal values, used for the 

computation of the inviscid fluxes. The required higher-order derivatives are computed with the 

corresponding lower-order ones on the existing DoFs via a successive differentiation technique. 

As a result, the connectivity requirements are restricted to the first neighbouring points, 

overcoming the inherent constraint of the unstructured solvers to retrieve information from a 

wider computational stencil. The aforementioned technique was incorporated with a variable 

extrapolation numerical scheme, named U-MUSCL, which closely resembles the traditional 

MUSCL one, and was coupled with a high-order time discretization that employs a Strong 

Stability Preserving Runge-Kutta method (SSPRK). To assess the effectiveness of the 

aforementioned numerical scheme, the EU2 solver is used against a benchmark problem having 

analytic solution. A satisfactory agreement is obtained, demonstrating the proposed scheme’s 

potential to increase the solution’s accuracy for a given grid density. Furthermore, a 

corresponding high-order formulation is extended to a 3-dimensional numerical fluid model. An 

elaborate construction method of 3-d computational meshes for various grid types is presented in 

detail for future exploitation on the numerical evaluation of equivalent 3-d high order schemes. 
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NOMENCLATURE 

𝐴 Jacobian matrices EP area of 2-d control volume of a  
node P 

𝑎̃𝑃 sound speed of node P  VP 
volume of 3-d control volume of a 
node P 

cp constant pressure specific heat 𝑛̂ unit normal vector 

cv constant volume specific heat 𝑊⃗⃗⃗  conservative variables' vector 

CFL Courant-Friedrichs-Lewy number x, y, z Cartesian coordinates 

e energy per unit mass γ ideal gas constant (γ=1.4) 

E total energy per unit mass  μ laminar viscosity 

𝐹 ,  𝐺⃗⃗  ⃗,  𝐽⃗⃗  Euler PDE's vectors ρ density 

ht specific total enthalpy τij stress tensor 

I unit matrix Superscripts 

M Mach number inv inviscid 

p pressure vis viscous 

Pr laminar Prandtl number (Pr=0.72) ~ normalized variable 

qi thermal tensor Subscripts 

Rg gas constant (Rg=287.04 m2sec-2K-1) in inlet 

𝑆  source term out outgoing 

t time PQ edge connecting P and Q nodes 

T temperature P, p present control volume 

u, v, w components of the velocity Q, q adjacent control volume 

𝑈̃ 
averaged Roe value of a primitive 
variable 

ref reference 
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INTRODUCTION 

Computational Fluid Dynamics (CFD) is an ever advancing multidisciplinary scientific field, 

emerging from the combination of physics, numerical analysis and computer science, and 

providing sufficient numerical results for various types of fluid models. It originated in the early 

1970s and it has developed into a very powerful technique that has been routinely applied in a 

wide range of industrial and non-industrial application areas ever since [Bla01, Spa16]. 

Notwithstanding the considerable ongoing evolution, CFD still faces several challenges that need 

to be addressed. Therefore, although various academic and commercial compressible flow solvers 

have been developed in the past years, many issues concerning the methods of grid generation, 

discretization, flux computation, turbulence modeling, etc., are still subjects of continuous 

research [Tor97, Bla01]. 

A primary concern that engages research activity in the CFD community, while also being the 

subject of this study, is the efficiency of the numerical flow solvers in producing accurate 

numerical solutions over more complex configurations. It is well known that the majority of the 

commercial unstructured CFD codes do not provide much more than a second-order accuracy. 

During the last decades significant efforts have been exerted for the development of higher-order 

spatial discretization methods, as they allow for improved accuracy in a given grid density. 

Nevertheless, most popular methodologies, e.g. the k-exact scheme [Bar93], necessitate for extra 

information beyond the first neighbouring cells to compute high-order reconstructed values. 

Unlike structured solvers, where node connectivity between neighbouring grid points is implied, 

the calculation of the higher derivatives poses limitations for the unstructured ones, due to the 

lack of explicit connectivity beyond the first neighbors. On the other hand, in the Discontinuous 

Galerkin method [Per12] - a formulation different from the classical finite volume approach - this 

constraint is managed by introducing extra DoFs (Degrees of Freedom) in each cell to fit a high-

order polynomial solution. As a result, extra memory requirements are needed, leading 

unavoidably to a significant increase of computational resources. The implementation of such 

methodologies into existing CFD codes requires substantial modifications, especially in 

parallelization strategies, where the interventions on the code structure might prove to be rather 

laborious. Furthermore, the increased turnaround time of the numerical solution, associated with 

most high-order schemes, is a limiting factor for a more wide spread use as, in many practical 

scenarios, the computational cost is prohibiting. 

The high-order scheme applied in this work relies on the incorporation of the high-order 

correction terms to the reconstructed nodal values, used for the computation of the inviscid 

fluxes. The required higher-order derivatives are computed with the corresponding lower-order 

ones on the existing DoFs, via a successive differentiation technique and, consequently, the 

connectivity requirements are restricted to the first neighbouring points [Yan14, Yan15, Yan16]. 

This is made feasible by exploiting the fundamental properties of the Green-Gauss theorem, 

overcoming the inability of unstructured flow solvers to retrieve information on a wider 

computational stencil. In this way, not only an improvement of the solution accuracy is achieved 

but the computational effort and memory requirements are retained on a reasonable level. This 

approach, thus, seems to be particularly appealing for incorporation to an existing CFD code, with 

only minor adjustments compared to other methodologies. 
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In the present study, a 3rd order interpolation module is applied for the numerical solution of 2-

dimensional Euler Equations. This module was integrated into an in-house compressible flow 

solver, named EU2. The discrete form of the governing equations is solved with a Node-Centered 

Finite-Volume scheme, while for the computation of the inviscid fluxes an upwind method, 

applying Roe's approximate Riemann solver is employed. High-order spatial accuracy is based on 

U-MUSCL scheme, which closely resembles the traditional MUSCLE one [Bur05]. The time 

advancement of the aforementioned equations is achieved with an explicit scheme, using a Strong 

Stability Preserving (SSR), five stage, and fourth order Runge-Kutta method (SSPRK (5, 4)). 

To demonstrate the effectiveness of the developed methodology, the EU2 solver is used against a 

benchmark test case with a well-known analytical solution. This problem concerns the transport 

of an isentropic vortex in inviscid compressible flow. An extensive evaluation of the numerical 

solution was conducted, using a controlled environment through a successive grid refinement 

procedure for different types of triangular grids. Satisfactory results were obtained, demonstrating 

the scheme’s potential to increase the solution’s accuracy for a given grid density.  

Finally, the aforementioned high-order numerical scheme is extended to 3-dimensional problems. 

In the context of the finite volume approach for unstructured grids, the mathematical and 

numerical modeling of the 3-D Euler equations is offered, where the formulation of the 

corresponding high-order module is reserved for future work. Moreover, a detailed 

demonstration of the construction method for specific types of 3-D unstructured computational 

meshes is presented in detail. An extensive description of the data structures of the algorithms is 

carried out, providing essential information of the grid features for future exploitation. 

The rest of this dissertation is organized as follows. In chapter 1, a thorough representation of the 

2-dimensional fluid model is undertaken, including the mathematical and numerical modeling of 

the 2-dimensional Euler equations. Chapter 2 is devoted to the description of the adopted high-

order scheme, where the methodology for the calculation of the high-order terms, the variable-

extrapolation U-MUSCL-scheme and the application of Strong Stability Preserving Runge-Kutta 

Method (SSPRK) are demonstrated. Chapter 3 contains the numerical results of the convergence 

studies against the benchmark problem of travelling vortex, including quantitative and qualitative 

comparisons with the analytical solution. In Chapter 4, a 3-dimensional fluid model is 

introduced, containing the mathematical and numerical formulation, and incorporating the 

proposed high-order scheme. Finally, Chapter 5 provides an analytical description of the 

developed algorithms that produce 3-D computational meshes. 
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CHAPTER 1   

MATHEMATICAL AND NUMERICAL MODELING OF 2-D EULER EQUATIONS 

1.1 Mathematical Modeling in 2-D 

1.1.1 Principles of the Governing Equations 

Fluid dynamics is concerned with the study of fluids’ behavior. This is exemplified in the 

investigation of the interactive motion of large individual particles, i.e. molecules or atoms, 

partitioning the fluid. Taking under account the continuum assumption, the density of the fluid is 

considered high enough to be approached as a continuum. In this sense, instead of examining the 

fluid molecules per se, the focus is on minuscule fluid elements containing a sufficient number of 

particles to be regarded as a continuum. For each element, mean velocity and mean kinetic 

energy can be determined. This implies that velocity, temperature, density, along with other fluid 

quantities, are defined for each segment of the fluid. 

Three conservation laws are respected for the derivation of the principal equations describing the 

physical properties of the fluid [Bla01]: 

● Conservation of mass 

● Conservation of momentum 

● Conservation of energy 

Conservation requires that for the three fundamental quantities – mass, momentum, and energy –

their total variation inside the volume of an element is defined, primarily, as the effect of the 

amount of the quantity being transported across the boundary, which is called flux, as the effect 

of any internal forces and sources, and, finally, of the external forces acting on the volume. Two 

are the different terms to which flux is decomposed, the convective and the diffusive. The former 

owes to the convective transport, while the latter to the molecular motion present in the fluid at 

rest [Bla01].  

In what follows, a thorough presentation of the governing 2-D Navier-Stokes equations for a 

compressible viscous Newtonian fluid is implemented [Lyg15], while the corresponding Euler 

equations are then derived. 

1.1.2 Navier-Stokes 2-D Equations 

A compressible viscous flow is described by the Navier-Stokes equations. Arranged into 

convective (inviscid), diffusive (viscous), and source terms, the differential form of the equation is 

written as follows: 

𝜕𝑊⃗⃗⃗ 

𝜕𝑡
+

𝜕𝐹 𝑖𝑛𝑣

𝜕𝑥
+

𝜕𝐺 𝑖𝑛𝑣

𝜕𝑦
−

𝜕𝐹 𝑣𝑖𝑠

𝜕𝑥
−

𝜕𝐺 𝑣𝑖𝑠

𝜕𝑦
= 𝑆  (1.1) 

The conservative variables’ vector  𝑊⃗⃗⃗ = (𝜌, 𝜌𝑢, 𝜌𝑣, 𝜌𝐸)𝑇, the inviscid flux vectors  𝐹 𝑖𝑛𝑣 , 𝐺 𝑖𝑛𝑣  , the 

viscous flux vectors 𝐹 𝑣𝑖𝑠 , 𝐺 𝑣𝑖𝑠 and the vector of the source term 𝑆  are expressed in terms of the 
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primitive variables (𝜌, 𝑢, 𝑣, 𝑝). Considering the source term as equal to zero for 2-D problems, the 

inviscid and viscous vectors are determined as shown in the following equations [Koo00, Lyg14b]. 

𝐹 𝑖𝑛𝑣 =

(

 
 

𝜌𝑢

𝜌𝑢2 + 𝑝

𝜌𝑢𝑣

(𝜌𝛦 + 𝑝)𝑢)

 
 

, 𝐺 𝑖𝑛𝑣 =

(

 
 

𝜌𝑣

𝜌𝑣𝑢

𝜌𝑣2 + 𝑝

(𝜌𝛦 + 𝑝)𝑣)

 
 

  (1.2) 

  

𝐹 𝑣𝑖𝑠 =

(

 
 

0

𝜏𝑥𝑥

𝜏𝑥𝑦

𝑢𝜏𝑥𝑥 + 𝑣𝜏𝑥𝑦 + 𝑞𝑥)

 
 

 , 𝐺 𝑣𝑖𝑠 =

(

 
 

0

𝜏𝑦𝑥

𝜏𝑦𝑦

𝑢𝜏𝑦𝑥 + 𝑣𝜏𝑦𝑦 + 𝑞𝑦)

 
 

   (1.3) 

  

The viscous stresses originate from the friction between the fluid and the surface of an element 

and depend on the dynamical properties of the medium. For the Newtonian fluid (including 

compressible viscous fluids), the shear stresses are proportional to local strain rate, the rate of 

change of its deformation over time. The diffusive flux vectors  𝐹 𝑣𝑖𝑠, 𝐺 𝑣𝑖𝑠 are defined from the 

stress tensor and calculated according to the Equation 1.4 [Hir90] 

𝜏𝑖𝑗 = 𝜇 [(
𝜕𝑢𝑖

𝜕𝑥𝑗
+

𝜕𝑢𝑗

𝜕𝑥𝑖
) −

2

3
(∇ ∙ 𝑉⃗ )𝛿𝑖𝑗] (1.4) 

where μ is the dynamic viscosity coefficient; for a perfect gas, μ heavily relies on the temperature 

and to a smaller extend to the pressure [Bla01]. The dynamic viscosity can be computed based on 

the local temperature of the fluid (in K) via the Sutherland formula as in 1.5 [Luo05] 

𝜇 =
𝑐1𝑇

3
2⁄

𝑇 + 𝑐2
 (1.5) 

where the coefficients c1 and c2 are equal to 1.458E-6 kg m-1 s-1 K-1/2 and 110.4 K respectively, e.g., 

the obtained dynamic viscosity for air at 300 K equals to 1.846E-5 kg m-1 s-1. Based on the 

reference dynamic viscosity 𝜇𝑟𝑒𝑓 and the reference temperature 𝑇𝑟𝑒𝑓, whose values are usually 

used in the far field, a different formulation is applied to express dynamic viscosity, as shown in 

1.6 [Luo05].  

𝜇 = 𝜇𝑟𝑒𝑓 (
𝑇

𝑇𝑟𝑒𝑓
)

3
2⁄ 𝑇𝑟𝑒𝑓 + 𝑐2

𝑇 + 𝑐2
 

 

(1.6) 

The four conservative variables  (𝜌, 𝜌𝑢, 𝜌𝑣, 𝜌𝐸) are expressed by the two-dimensional Navier-

Stokes equations with a set of four equations containing, though, six unknown flow field 

variables (𝜌, 𝑢, 𝑣, 𝐸, 𝑝, 𝑇).  

Two more equations are, therefore, required to complete the full set of the equation system. 

Assuming that in pure aerodynamics the fluid works as a perfect gas, the state equation is 

represented in 1.7 [Lan98] 

𝑝 = 𝜌𝑅𝑔𝑇 (1.7) 
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where the gas constant Rg equals to 287.04 m2s-2K-1 and it is associated with the constant pressure 

and volume specific heat coefficients with the following equations 

𝑅𝑔 = 𝑐𝑝 − 𝑐𝑣     ,    𝛾 = 𝑐𝑝/𝑐𝑣   (1.8) 

while these coefficients are defined as follows 

ℎ = 𝑐𝑝𝑇     ,    𝑒 = 𝑐𝑣𝑇 (1.9) 

where ℎ and 𝑒 are the enthalpy and internal energy of the gas per unit mass. The particular heat 

coefficients are regarded as constants. However, different types of gases receive different values; 

for air, the constant pressure specific heat coefficient 𝑐𝑝 equals to 1004.64 m2s-2K-1, the constant 

volume specific heat coefficient 𝑐𝑣 equals to 717.6 m2s-2K-1 and the dimensionless coefficient γ 

equals to 1.4 [Lan98]. 

In order to complete the equation set, pressure 𝑝 is associated with the total energy per unit 

volume 𝜌𝛦 as in 1.10 [Bla01] 

𝜌𝛦 = 𝜌𝑒 +
1

2
𝜌(𝑢2 + 𝑣2) = 𝜌𝑇𝑐𝑣 +

1

2
𝜌(𝑢2 + 𝑣2) = 

(1.10) 

𝑝

𝑅𝑔
𝑐𝑣 +

1

2
𝜌(𝑢2 + 𝑣2) =

𝑝

(𝛾 − 1)
+

1

2
𝜌(𝑢2 + 𝑣2) 

where 𝜌𝑒 is the internal energy per unit volume. The corresponding specific total enthalpy ℎ𝑡  is 

then associated with the pressure 𝑝 and the total energy per unit volume 𝜌𝛦 as shown in 1.11. 

ℎ𝑡 =
𝜌𝐸 + 𝑝

𝜌
=

𝛾𝑝

𝜌(𝛾 − 1)
+

1

2
(𝑢2 + 𝑣2) (1.11) 

The heat flux vector (𝑞𝑥 , 𝑞𝑦) in the energy equation is defined accordingly to the stress tensor as 

illustrated below, where the conductivity coefficient χ depends on the dimensionless Prandtl 

number Pr [Bla01]. 

𝑞𝑖 = 𝜒∇𝛵     ,     𝜒 =
𝜇𝑐𝑝

𝑃𝑟
 (1.12) 

1.1.3 Euler 2-D Equations 

While Navier-Stokes equations describe the behavior of viscous fluids, for the cases of inviscid 

flows, like for example for high Reynolds-number flows where the boundary layer is very thin 

compared to the dimensions of the body, only the corresponding flux vectors 𝐹 𝑖𝑛𝑣 , 𝐺 𝑖𝑛𝑣 are 

considered. This leads in the so-called Euler equations depicted in 1.13 and 1.14, while the 

remaining terms are given in 1.7-1.11 [Bla01]. 

𝜕𝑊⃗⃗⃗ 

𝜕𝑡
+

𝜕𝐹 𝑖𝑛𝑣

𝜕𝑥
+

𝜕𝐺 𝑖𝑛𝑣

𝜕𝑦
= 𝑆  (1.13) 
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𝐹 𝑖𝑛𝑣 =

(

 
 

𝜌𝑢

𝜌𝑢2 + 𝑝

𝜌𝑢𝑣

(𝜌𝛦 + 𝑝)𝑢)

 
 

, 𝐺 𝑖𝑛𝑣 =

(

 
 

𝜌𝑣

𝜌𝑣𝑢

𝜌𝑣2 + 𝑝

(𝜌𝛦 + 𝑝)𝑣)

 
 

 (1.14) 

Henceforth, for the purposes of this study merely Euler equations will be taken into account. 

1.1.4 Non-Dimensionalization Procedure 

The differential equations representing the conservation laws are rarely solved using dimensional 

variables. The common practice is to write these equations in a non-dimensional form, using 

dimensionless quantities, obtained through a proper characteristic scale. This allows for the 

number reduction of the appropriate parameters contributing thus to the revelation of the 

relative magnitude of the various terms in the conservation equation and, consequently, of those 

that can be neglected [Mou16]. 

A dimensional variable is transformed into a non-dimensional one by dividing the variable by a 

quantity that has the same dimension as the original variable. Therefore, the normalization of the 

variables is performed utilizing a characteristic length Lref, the free-stream velocity Vref, the free-

stream density ρref, the free-stream dynamic viscosity μref, and the constant volume specific heat 

coefficient 𝑐𝑣 as shown in 1.15. 

𝑥𝑖̃ =
𝑥𝑖

𝐿𝑟𝑒𝑓
 ,  𝑢̃𝑖 =

𝑢𝑖

𝑉𝑟𝑒𝑓
  ,  𝜌̃ =

𝜌

𝜌𝑟𝑒𝑓
 , 𝜇̃ =

𝜇

𝜇𝑟𝑒𝑓
 , 𝑅̃𝑔 =

𝑅𝑔

𝑐𝑣
= 𝛾 − 1    (1.15) 

Considering the previous normalizations, the rest of the variables included in Equations (1.13)-

(1.14) are expressed as follows [Mun98]: 

𝑝̃ =
𝑝

𝜌𝑟𝑒𝑓𝑉𝑟𝑒𝑓
2  , 𝜌𝛦̃ =

𝜌𝛦

𝜌𝑟𝑒𝑓𝑉𝑟𝑒𝑓
2   , ℎ̃𝑡 =

ℎ𝑡

𝑉𝑟𝑒𝑓
2   , 𝑇̃ =

𝑇

𝑉𝑟𝑒𝑓
2 𝑐𝑣⁄

  , 𝑡̃ =
𝑡

𝐿𝑟𝑒𝑓
𝑉𝑟𝑒𝑓

⁄
  (1.16) 

Moreover, the constant pressure and the constant volume specific heat coefficients are 
normalized (𝑐̃𝑝 = 𝛾 and 𝑐̃𝑣 = 1), while the perfect gas equation is transformed as: 

𝑝 = 𝜌𝑅𝑔𝑇
 
⇒ 𝑝̃ 𝜌𝑟𝑒𝑓𝑉𝑟𝑒𝑓

2 = 𝜌̃𝜌𝑟𝑒𝑓𝑅̃𝑔𝑐𝑣𝑇̃ (
𝑉𝑟𝑒𝑓

2

𝑐𝑣
)

 
⇒𝑝̃ = 𝜌̃𝑅̃𝑔𝑇̃

 
⇒𝑝̃ = 𝜌̃(𝛾 − 1)𝑇̃ (1.17) 

Lastly, two additional expressions are used, concerning the computation of the local speed of 

sound at a node 𝑃 [Lan98] 

𝑎̃𝑃 = √𝛾𝑅̃𝑔𝛵̃𝑃 = √𝛾(𝛾 − 1)𝛵̃𝑃 = √
𝛾𝑝̃𝑃

𝜌̃𝑃
 (1.18) 

and the computation of corresponding Mach number [Mun98]: 

𝑀𝑃 =
√𝑢̃𝑃+

2 𝑣̃𝑃
2

𝑐̃𝑃
 (1.19) 
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For simplification reasons, the superscript "~" denoting the normalized variables will be neglected 

in the following sections. 

1.2 Numerical Modeling of 2-D Equations 

1.2.1 Spatial Discretization 

A Node-Centered Finite-Volume (NCFV) scheme is employed for the discretization of the 

governing equations and, consequently, for the computation of the numerical fluxes. In this 

approach, the computational domain is divided into a finite number of cells, from which control 

volumes are formed surrounding each vertex in the mesh.  

 

 

Figure 1.1: Median control volume surrounding a node in a 2-D grid 

Consequently, these non-overlapping control volumes cover through a median dual partition the 

entire computational domain, which is dual to the primal mesh. The flow variables are stored at 

each mesh vertex. In a two-dimensional triangular mesh the median dual control volume for a 

node 𝑃 is formed by connecting the barycenter of each neighboring triangular cell (sharing this 

node) to the midpoint of the corresponding cell edges, as illustrated in Figure 1.1 [Kal96, Kal05, 

Lyg12, Sar14]. Given this definition, the nodes of each element, which compose a control volume, 

divide the volume of this element to equal parts. 

Taking into account the above described discretization scheme, Euler Equation 1.13 is integrated 

over the control volume 𝐶𝐸𝑃 of each node 𝑃 as: 

∬
𝜕𝑊⃗⃗⃗ 

𝜕𝑡

 

𝐶𝐸𝑃

𝑑𝑥𝑑𝑦 + ∬
𝜕𝐹 𝑖𝑛𝑣

𝜕𝑥

 

𝐶𝐸𝑃

+
𝜕𝐺 𝑖𝑛𝑣

𝜕𝑦
𝑑𝑥𝑑𝑦 = ∬𝑆 𝑑𝑥𝑑𝑦

 

𝐶𝐸𝑃

 (1.20) 

After the employment of the Green-Gauss divergence theorem the equation is transformed as 

follows 
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∬
𝜕𝑊⃗⃗⃗ 

𝜕𝑡

 

𝐶𝐸𝑃

𝑑𝑥𝑑𝑦 + ∫ 𝛨⃗⃗̂ 𝑖𝑛𝑣

 

𝜕𝐶𝐸𝑃

𝑑𝑙 = ∬𝑆 𝑑𝑥𝑑𝑦

 

𝐶𝐸𝑃

 (1.21) 

where 𝜕𝐶𝐸𝑃 denotes the boundaries of the control volume of node 𝑃 defined by the facets 

constructed around the edges connecting node 𝑃 with each neighboring node 𝑄. If 𝜕𝐶𝐸𝑃𝑄 is the 

interfacing part of 𝜕𝐶𝐸𝑃 and 𝜕𝐶𝐸𝑄, 𝐾𝑁 (𝑃) is the set of neighboring nodes to 𝑃, and 𝛤 is the 

domain's external boundary, then 𝜕𝐶𝐸𝑃 is defined as 

𝜕𝐶𝐸𝑃 = ⋃ 𝜕𝐶𝐸𝑃𝑄 + (𝜕𝐶𝐸𝑃 ∩ 𝛤)

𝑄∈𝐾𝑁(𝑃)

 (1.22) 

where  𝛨⃗⃗̂ 𝑖𝑛𝑣 is the vector of the inviscid numerical fluxes and is evaluated at the midpoint of an 

edge that is connected to node 𝑃. This midpoint coincides with the interface between the 

adjacent control volumes of nodes 𝑃 and 𝑄 connected with this edge. Utilizing the outward unit 

normal vector 𝑛⃗̂ 𝑃𝑄 of the corresponding 𝜕𝐶𝐸𝑃𝑄 
face of the control volume, the aforementioned 

vectors are described as [Koo00, Kou03] 

𝛨⃗⃗̂ 𝑖𝑛𝑣 = 𝑛̂𝑃𝑄,𝑥𝐹 
𝑖𝑛𝑣 + 𝑛̂𝑃𝑄,𝑦𝐺 𝑖𝑛𝑣

     (1.23) 

𝑛⃗̂ 𝑃𝑄 =
𝑛⃗ 𝑃𝑄

|𝑛⃗ 𝑃𝑄|
= (𝑛̂𝑃𝑄,𝑥 , 𝑛̂𝑃𝑄,𝑦) (1.24) 

where 𝑛⃗ 𝑃𝑄 is defined as the vector sum of the outward normal vectors of the two facets 

forming  𝜕𝐶𝐸𝑃𝑄. Figure 1.2 presents the two normal vectors 𝑛⃗ 𝑃𝑄,1 and 𝑛⃗ 𝑃𝑄,2 that define the 

outward normal vector of a facet. 

Thus, Equation 1.21 is transformed as follows: 

∬
𝜕𝑊⃗⃗⃗ 

𝜕𝑡

 

𝐶𝐸𝑃

𝑑𝑥𝑑𝑦 + ∑ ∫ 𝛨⃗⃗̂ 𝑖𝑛𝑣

 

𝜕𝐶𝐸𝑃𝑄

𝑑𝑙 + ∫ 𝛨⃗⃗̂ 𝑖𝑛𝑣

 

𝜕𝐶𝐸𝑃∩𝛤

𝑑𝑙

𝑄∈𝐾𝑁(𝑃)

= ∬𝑆 𝑑𝑥𝑑𝑦

 

𝐶𝐸𝑃

 (1.25) 

Assuming that the conservative variables at node 𝑃 are equal to their mean values over 𝐶𝐸𝑃, the 

first term of 1.25 becomes: 

∬
𝜕𝑊⃗⃗⃗ 

𝜕𝑡

 

𝐶𝐸𝑃

𝑑𝑥𝑑𝑦 = (
𝑑𝑊⃗⃗⃗ 

𝑑𝑡
)

𝑃

∬ 

 

𝐶𝐸𝑃

𝑑𝑥𝑑𝑦 = (
𝑑𝑊⃗⃗⃗ 

𝑑𝑡
)

𝑃

𝐸𝑃  (1.26) 

Expressing the integrals of the numerical fluxes as summations of fluxes through the faces 

composing the control volume of node 𝑃, Equation 1.25 is transformed as 

(
𝑑𝑊⃗⃗⃗ 

𝑑𝑡
)

𝑃

𝐸𝑃 + ∑ 𝛷⃗⃗ 𝑃𝑄
𝑖𝑛𝑣

𝑄∈𝐾𝑁(𝑃)

+ ∑ 𝛷⃗⃗ 𝑃,𝑜𝑢𝑡
𝑖𝑛𝑣

(𝐾𝑜𝑢𝑡∈𝜕𝐶𝐸𝑃∩𝛤)

= ∬𝑆 𝑑𝑥𝑑𝑦

 

𝐶𝐸𝑃

 (1.27) 
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𝛷⃗⃗ 𝑃𝑄
𝑖𝑛𝑣 = ∫ 𝛨⃗⃗̂ 𝑖𝑛𝑣

 

𝜕𝐶𝐸𝑃𝑄

𝑑𝑙 = 𝑓 (𝑊⃗⃗⃗ 
𝑃𝑄
𝐿 , 𝑊⃗⃗⃗ 

𝑃𝑄
𝑅 , 𝑛⃗ 𝑃𝑄) 

(1.28) 

𝛷⃗⃗ 𝑃,𝑜𝑢𝑡
𝑖𝑛𝑣 = ∫ 𝛨⃗⃗̂ 𝑖𝑛𝑣

 

𝜕𝐶𝐸𝑃∩𝛤

𝑑𝑙 = 𝑓 (𝑊⃗⃗⃗ 
𝑃
 , 𝑊⃗⃗⃗ 

𝑜𝑢𝑡
 , 𝑛⃗ 𝑜𝑢𝑡) 

  

where 𝑊⃗⃗⃗ 
𝑃𝑄
𝐿  and 𝑊⃗⃗⃗ 

𝑃𝑄
𝑅  are the vectors of the conservative variables on the left and right side of the 

edge 𝑃𝑄 respectively, while 𝑊⃗⃗⃗ 
𝑜𝑢𝑡
  is the corresponding vector on the boundary of the flow domain. 

 

Figure 1.2: Outward normal vectors at an interface among nodes 𝑃 and 𝑄 

1.2.2 Numerical Fluxes 

First Order Accurate Scheme 

The convective numerical fluxes of the flow equations are computed by employing an upwind 

scheme, which distinguishes between upstream and downstream influences, i.e. the wave 

propagation directions, considering the physical properties of the Euler equations. A one-

dimensional Riemann problem, which is based on the solution of the locally one-dimensional 

Euler equations for discontinuous (left and right) states at an interface is utilized and applied in 

the direction of the normal vector for each face of the control volume of a node 𝑃. Since the 

computational effort of the exact solution of the Riemann problem would require excessive 

numerical effort [Lan98], Roe’s approximate Riemann solver [Roe81] is employed for the 

evaluation of the inviscid fluxes at the midpoint of edge 𝑃𝑄 as in 1.29 

𝛷⃗⃗ 𝑃𝑄
𝑖𝑛𝑣 =

1

2
(𝐻⃗⃗ 𝑖𝑛𝑣(𝑊⃗⃗⃗ 

𝑃𝑄
𝐿 , 𝑛⃗ 𝑃𝑄) + 𝐻⃗⃗ 𝑖𝑛𝑣(𝑊⃗⃗⃗ 

𝑃𝑄
𝑅 , 𝑛⃗ 𝑃𝑄)) −

1

2
|𝐴̃𝑃𝑄|(𝑊⃗⃗⃗ 

𝑃𝑄
𝑅 − 𝑊⃗⃗⃗ 

𝑃𝑄
𝐿 ) (1.29) 
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where 𝛢̃ is the Jacobian matrix1 of the convective flux vector 𝐻⃗⃗ 𝑖𝑛𝑣, which  is evaluated at the 

midpoint of the corresponding edge 𝑃𝑄 by utilizing Roe's averaged values of the primitive 

variables (denoted with tilde ~) [Roe81, Ven95, Lan98, Koo00, Kou03] and is defined as in 1.30 

𝑈⃗⃗̃ 𝑃𝑄 =
√𝜌𝐿 𝑈⃗⃗ 𝐿 + √𝜌𝑅 𝑈⃗⃗ 𝑅

√𝜌𝐿 + √𝜌𝑅

 (1.30) 

where 𝑈⃗⃗ 𝐿 and 𝑈⃗⃗ 𝑅 in first order accurate schemes are the values of primitive variables at the left 

and right side of edge 𝑃𝑄 respectively. 

Based on the following formula (1.31), Equation 1.29 is transformed in its equivalent in 1.32 

[Roe81, Lan98]: 

𝐻⃗⃗ 𝑖𝑛𝑣(𝑊⃗⃗⃗ 
𝑃𝑄
𝑅 ) − 𝐻⃗⃗ 𝑖𝑛𝑣(𝑊⃗⃗⃗ 

𝑃𝑄
𝐿 ) = 𝐴̃𝑃𝑄

− (𝑊⃗⃗⃗ 
𝑃𝑄
𝑅 − 𝑊⃗⃗⃗ 

𝑃𝑄
𝐿 ) (1.31) 

𝛷⃗⃗ 𝑃𝑄
𝑖𝑛𝑣 = 𝐻⃗⃗ 𝑖𝑛𝑣(𝑊⃗⃗⃗ 

𝑃𝑄
𝐿 , 𝑛⃗ 𝑃𝑄) + 𝐴̃𝑃𝑄

− (𝑊⃗⃗⃗ 
𝑃𝑄
𝑅 − 𝑊⃗⃗⃗ 

𝑃𝑄
𝐿 ) (1.32) 

On account of computational effort and memory requirements on unstructured grids, edge-wise 

data structure of the algorithm is used, as a more sophisticated data structure. Within this 

approach the solver receives information from the examined mesh as sets of nodes connected by 

an edge. Along these lines, the evaluation of the convective fluxes for all the mesh nodes is 

achieved with a single edge-loop, since no information is needed about the cell topology [Lyg14a, 

Lyg15].  

Second-Order Accurate Scheme 

 In a second-order accurate scheme, left and right states of an edge 𝑃𝑄 are reconstructed with the 

Taylor series expansions which consider the corresponding values of more neighboring mesh 

nodes during the computation of the numerical fluxes. The incorporated second-order accurate 

scheme is based on the MUSCL (Monotonic Upstream Scheme for Conservation Laws) 

reconstruction of the primitives or conservative variables. In order to alleviate the generation of 

oscillations and spurious solutions in regions of high-order gradients such as shocks, slope 

limiters are utilized to achieve a monotonicity preserving scheme (Van Albada -Van Leer 

[VanA82], Min-mod [Swe84]). Thus, the left and right states for a primitive or a conservative 

variable 𝑈 at the midpoint of an edge 𝑃𝑄 are approximated as [Bar92, And94, Bla01, ANSYS06, 

Sar14]: 

𝑈𝑃𝑄
𝐿 = 𝑈𝑃 +

1

2
∙ (∇𝑈)𝐿 ∙ 𝑟 𝑃𝑄 

(1.33) 

𝑈𝑃𝑄
𝑅 = 𝑈𝑄 −

1

2
∙ (∇𝑈)𝑅 ∙ 𝑟 𝑃𝑄 

The first R/H side terms are the left and right nodes’ values of variable 𝑈 and 𝑟 𝑃𝑄 is the vector 

connecting these nodes. The extrapolation gradients (∇𝑈)𝐿 and (∇𝑈)𝑅  are computed using the 

                                                      

1 Information on the computation of the Jacobian matrix is given in Appendix A. 
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gradients (∇𝑈)𝑃 and (∇𝑈)𝑄 at the nodes 𝑃 and 𝑄 respectively. The evaluation of these derivatives 

employs the element-by-element approach [Bar92]. In this case, the gradient for a node 𝑃 (where 

𝑃 is the common vertex of the neighboring triangles 𝑇), is described as [Bar92] 

(∇𝑈)𝑃 = 
1

𝐸𝑃
∑

𝐸𝑇

3
𝑇∈𝐾𝑇(𝑃)

(∇𝑈)𝑇  (1.34) 

where 𝐸𝑃 and 𝐸𝑇 are the areas of the control volume of node 𝑃 and adjacent element  𝑇. However, 

because of utilizing the edge-based data structure of the algorithm [Bar92, Bla01], derived by the 

Green-Gauss linear representation method, an equivalent expression as in 1.35 is more 

appropriate: 

(∇𝑈)𝑃 = 
1

𝐸𝑃
∑

1

2
(𝑈𝑃 + 𝑈𝑄) ∙

𝑄∈𝐾𝑁(𝑃)

𝑛⃗ 𝑃𝑄  (1.35) 

In case of a boundary node (Figure 1.3) the previous equation is modified to include also the 

boundary interfaces as follows [Lyg13]: 

(∇𝑈)𝑃 = 
1

𝐸𝑃
( ∑

1

2
(𝑈𝑃 + 𝑈𝑄) ∙ 𝑛⃗ 𝑃𝑄 +

𝑄∈𝐾𝑁(𝑃)

∑ 𝑈𝑃 ∙ 𝑛⃗ 𝑜𝑢𝑡

(𝐾𝑜𝑢𝑡∈𝜕𝐶𝐸𝑃∩𝛤)

) (1.36) 

1.2.3 Boundary Conditions 

Numerical flow simulations are always restricted to a specific part of the real physical domain. 

Thus, artificial boundaries are formed with the truncation of the computational domain and, 

correspondingly, physical quantity values have to be specified. Types of boundary conditions that 

encountered in the numerical solution are wall, inlet, outlet and symmetry boundaries. 

Consequently, the contribution of the boundary surfaces is also taken into account in the flux 

balance of the corresponding nodes.  

With respect to the wall boundary nodes, a free-slip boundary condition is employed for the 

solution of the Euler equations, regarding inviscid flows. The free-slip condition is implemented 

implicitly, by adding a flux with zero normal to the boundary face velocity 𝑉𝑛 described as 

[Mav94] 

𝑉𝑛 = 𝑉⃗ ∙ 𝑛⃗̂ 𝑜𝑢𝑡 = 0 (1.37) 

where 𝑛⃗̂ 𝑜𝑢𝑡 = (𝑛̂𝑜𝑢𝑡,𝑥 , 𝑛̂𝑜𝑢𝑡,𝑦 ) is the normal to the boundary face unitary vector (outward-

positive). An example of such vectors is presented in Figure 1.3 for a boundary node.  

Finally, the added free-slip convective flux is calculated as in the following equation: 

𝐻⃗⃗ 𝑓𝑟𝑒𝑒𝑠𝑙𝑖𝑝 =

(

  
 

𝜌𝑉𝑛

𝜌𝑢𝑉𝑛 + 𝑝𝑛̂𝑜𝑢𝑡,𝑥

𝜌𝑣𝑉𝑛 + 𝑝𝑛̂𝑜𝑢𝑡,𝑦

(𝜌𝐸 + 𝑝)𝑉𝑛 )

  
 

=

(

 
 

0

𝑝𝑛̂𝑜𝑢𝑡,𝑥

𝑝𝑛̂𝑜𝑢𝑡,𝑦

0 )

 
 

 (1.38) 
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Figure 1.3: Normal outward vectors for a boundary node. 

 

Regarding inlet boundary faces, a one one-dimensional Riemann problem is considered between 

the face’s midpoint and the far-field to compute the convective fluxes and then to distribute them 

to the corresponding boundary nodes. Employing the Steger-Warming scheme [Ste81, Lan98], 

Equation 1.39 is obtained 

𝐻⃗⃗ 𝐾,𝑜𝑢𝑡
𝑖𝑛𝑣 = 𝐴̃𝐾

+𝑊⃗⃗⃗ 
𝐾 + 𝐴̃𝐾

−𝑊⃗⃗⃗ 
𝑜𝑢𝑡 (1.39) 

where subscript 𝐾 denotes the midpoint of the boundary face, while subscript 𝑜𝑢𝑡 denotes the far 

field; the values of the variables of vector  𝑊⃗⃗⃗⃗  ⃗𝑜𝑢𝑡  are obtained either from the far field or the 

boundary midpoint depending on the type of the flow [Hir90, Bla01].  

With reference to outlet boundary faces, the computation of the convective fluxes is performed 

on the inlet ones in a similar manner; depending on the type of the flow, the values of the 

variables of vector 𝑊⃗⃗⃗ 
𝑜𝑢𝑡 are obtained by implementing a one-dimensional Riemann problem 

between the midpoint face and the far-filed. In the case of a symmetry surface, free-slip boundary 

conditions are imposed to the flow equations similarly to these for solid free-slip wall boundaries. 

1.2.4 Time Integration 

The governing equations require a separate discretization in space and time. For time integration 

an explicit scheme is incorporated for solving the Euler equations. A widely used method is the 

multistage time-stepping Runge-Kutta scheme, where the solution advances in several stages and 

the residual is evaluated at intermediate states [Kal96, Bla01, Lyg14a].  

Applying time discretization leads to the transformation of Equation 1.27 into the following one 

−𝐸𝑃 (
𝑑𝑊⃗⃗⃗ 

𝑑𝑡
)

𝑃

= −𝐸𝑃

𝛥𝑊⃗⃗⃗ 
𝑃
𝑛+1

𝛥𝑡𝑃
= 

(1.40) 

∑ 𝛷⃗⃗ 𝑃𝑄
𝑖𝑛𝑣

𝑄∈𝐾𝑁(𝑃)

+ ∑ 𝛷⃗⃗ 𝑃,𝑜𝑢𝑡
𝑖𝑛𝑣

(𝐾𝑜𝑢𝑡∈𝜕𝐶𝐸𝑃∩𝛤)

− 𝑆 𝑃𝐸𝑃 = 𝑅⃗ 𝑃
𝑛 
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where 𝛥𝑡𝑃 is the local time step at node 𝑃 and is computed as [Kim03, Lyg11] 

𝛥𝑡𝑃
 = 𝐶𝐹𝐿 ∙

0.5𝛼𝑚𝑖𝑛 𝑙 𝑒𝑑𝑔𝑒,𝑃

|𝑈⃗⃗ 𝑃| + 𝑎𝑃

 (1.41) 

where |𝑈⃗⃗ 𝑃| is the value of velocity at node 𝑃, 𝑎𝑃 is the speed of sound evaluated on the same node 

and 𝛼𝑚𝑖𝑛 𝑙 𝑒𝑑𝑔𝑒,𝑃 is the length of the shortest edge connected to 𝑃.  

The local time stepping constitutes a typical time convergence acceleration methodology to the 

steady state solution, which amounts to advancing the solution in each control volume with the 

maximum allowable time step [Bla01]; in case a global time step is required, it is defined as the 

smallest of the local time steps of all the nodes in the mesh. 

When a second-order scheme is implemented a four Runge-Kutta (RK (4)) method is employed to 

solve Equation 1.40. It occurs iteratively as follows [Bla01, Lyg15, Lal88 and Sor03] 

𝑊⃗⃗⃗ 
𝑃
𝑛+1,0 = 𝑊⃗⃗⃗ 

𝑃
𝑛 

(1.42) 𝑊⃗⃗⃗ 
𝑃
𝑛+1,𝑘 = 𝑊⃗⃗⃗ 

𝑃
𝑛 − 𝛼𝑘

𝛥𝑡𝑃
𝐸𝑃

𝑅⃗ (𝑊⃗⃗⃗ 
𝑃
 𝑛+1,𝑘−1), 𝑘 = 1,… , 4 

𝑊⃗⃗⃗ 
𝑃
𝑛+1 = 𝑊⃗⃗⃗ 

𝑃
𝑛+1,4 

where k is the number of current internal stage of the scheme. Constants α1, α2, α3 and α4 of the 

method with values 0.11, 0.26, 0.5 and 1.0 respectively, are used attributing second-order temporal 

accuracy to the procedure [Bla01]. 

Given the relatively low convergence rate of explicit methods, an acceleration method aiming at 

increasing the maximum possible time step is required. This occurs by introducing a certain 

amount of implicitness in the explicit scheme allowing for the utilization of larger CFL numbers. 

This technique, termed implicit residual smoothing, modifies the residual for a node 𝑃 and is 

defined as 

𝑅𝑃
𝑚+1 =

𝑅𝑃
0 +  𝜀 ∑ 𝑅𝑄𝑗

𝑚𝑙
𝑗=1

1 + 𝜀 ∑ 1𝑙
𝑗=1

  (1.43) 

where 𝑄𝑗 are the neighboring nodes of node 𝑃 and 𝜀 is a coefficient with typical values 0.5-0.8, 

defining the blending degree [Bla01]. 
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CHAPTER 2 

HIGH-ORDER NUMERICAL SCHEME 

2.1 Introduction to High-Order Formulation 

In recent years, the focus of interest has been shifted to high-order scheme development, owing 

to the fact that such approaches offer greater accuracy at a permissible computational cost 

[Yan14, Yan15]. However, despite the rapid reduction of the truncation error in higher order 

methods compared to the lower order ones, the former scheme is utterly more cost effective. 

Another potential constraint against the spread of high order schemes relates to the substantial 

code modifications required for its implementation, especially with respect to the unstructured 

grid procedures [Yan15, Yan16]. 

Within the higher order scheme development, emphasis has been placed on variants of the 

Discontinuous Galerkin method (DG). According to this method additional degrees of freedom 

(DOFs) are introduced within a given cell to fit a high order polynomial to the solution. In this 

framework, structured connectivity is recovered within each cell, as shown in Figures 2.1 and 2.2 

[Per12, Yan14]. 

 

Figure 2.1: Stencil for the DG method in a quadrilateral cell 

 

 
Figure 2.2: Stencil for the DG method in a triangular cell  

A fundamental difference between the DG methods and the traditional finite volume one lies on 

the fact that, due to the tight linking of DOFs within a cell, the mass matrix is a full matrix rather 

than a diagonal one, and needs to be stored and inverted implicitly [Per12]. This means that the 
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application of DG methods into currently existing CFD codes would demand in depth code 

transformations. Additionally, for such a high-order scheme to advance and to be incorporated 

into new production codes, it would be at the expense of considerable verification and validation 

efforts. 

In this chapter, a modular high-order scheme with low-dissipation flux difference-splitting is 

applied [Yan16]. According to this approach, no increase in DOFs within each cell occurs, unlike 

the k-exact finite volume method [Bar93], which leads into the need for great amounts of extra 

storage. The core idea is the achievement of high-order accuracy by adding high-order correction 

terms to the governing equations and by not introducing extra variables. The main advantage of 

this approach is its smooth application to any existing code, since only minor modifications are 

required.  

As already mentioned in the Introduction, the development of the presented high-order scheme 

was founded on the academic EU2 CFD code, which is an in-house unstructured-grid, Node-

Centered Finite-Volume flow solver. The code then integrates a generic third-order interpolation 

module, which, despite the fact that it is not formally third-order accurate on arbitrary meshes, 

offers a significant improvement on the accuracy over the existing second-order scheme. 

The presentation of this high-order method begins with the introduction of a scalar advection 

equation problem in 1-D, where it is demonstrated how the high-order accuracy is achieved by 

calculating the high-order terms. In what follows, the presentation gradually escalates into a 2-D 

formulation in order to be implemented into a variable-extrapolation formulation named U-

MUSCL. Finally, a higher-order time discretization scheme is introduced with the employment of 

an explicitly Strong Stability-Preserving Runge-Kutta method (SSPRK).  

To begin with, the one-dimensional scalar advection equation considered is the following 

𝜕𝑢

𝜕𝑡
+

𝜕(𝑐𝑢)

𝜕𝑥
= 0 (2.1) 

where u is a scalar quantity and c represents the velocity. Figure 2.3 below depicts part of the 

computational domain for a node-centered scheme where the numerical figures 1-5 sign the data 

points where the values of the scalar are located, while A-F stand for the faces (grid points) 

among the control volumes. 

 

 

Figure 2.3:  Problem of 1-D scalar equation 

After integrating Equation 2.1 over a control volume (for instance, the marked control volume 3 

in Figure 2.3) and applying Gauss theorem the result is shown in 2.2. 
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∫
𝜕𝑢

𝜕𝑡
𝑑𝑉

 

𝑉

+ ∫
𝜕(𝑐𝑢)

𝜕𝑥
𝑑𝑉

 

𝑉

= 0 
 
→ ∫

𝜕𝑢

𝜕𝑡
𝑑𝑉 + ∮ (𝑐𝑢) 𝑛̂𝑑𝑆

 

𝜕𝑉

 

𝑉

 = 0 (2.2) 

Assuming the flow of the quantity follows a certain direction, the resulting equation is 

𝜕𝑢

𝜕𝑡
𝑉 + (𝑐𝑢)𝐷𝑆𝐷 − (𝑐𝑢)𝐶𝑆𝐶 = 0 (2.3) 

In order to compute the fluxes at faces 𝐶 and 𝐷, the values of the scalar quantity at the 

aforementioned faces need to be calculated. Given the values at the data points, it is possible to 

manage this by applying the Taylor series expansions. The implementation of this procedure to 

the face 𝐶 leads to Equations 2.4: 

𝑢𝐶
𝐿 = 𝑢2 +

𝑑𝑢2

𝑑𝑥
(𝑥𝐶 − 𝑥2) +

1

2!

𝑑2𝑢2

𝑑𝑥2
(𝑥𝐶 − 𝑥2)

2 +
1

3!

𝑑3𝑢2

𝑑𝑥3
(𝑥𝐶 − 𝑥2)

3 + 𝑂((𝑥𝐶 − 𝑥2)
4) 

(2.4) 

𝑢𝐶
𝑅 = 𝑢3 +

𝑑𝑢3

𝑑𝑥
(𝑥𝐶 − 𝑥3) +

1

2!

𝑑2𝑢3

𝑑𝑥2
(𝑥𝐶 − 𝑥3)

2 +
1

3!

𝑑3𝑢3

𝑑𝑥3
(𝑥𝐶 − 𝑥3)

3 + 𝑂((𝑥𝐶 − 𝑥3)
4) 

The superscript “R” denotes the right state, while “L” denotes the left. What is more, for face D the 

result is shown below. 

𝑢𝐷
𝐿 = 𝑢3 +

𝑑𝑢3

𝑑𝑥
(𝑥𝐷 − 𝑥3) +

1

2!

𝑑2𝑢3

𝑑𝑥2
(𝑥𝐷 − 𝑥3)

2 +
1

3!

𝑑3𝑢3

𝑑𝑥3
(𝑥𝐷 − 𝑥3)

3 + 𝑂((𝑥𝐷 − 𝑥3)
4) 

(2.5) 

𝑢𝐷
𝑅 = 𝑢4 +

𝑑𝑢4

𝑑𝑥
(𝑥𝐷 − 𝑥4) +

1

2!

𝑑2𝑢4

𝑑𝑥2
(𝑥𝐷 − 𝑥4)

2 +
1

3!

𝑑3𝑢4

𝑑𝑥3
(𝑥𝐷 − 𝑥4)

3 + 𝑂((𝑥𝐷 − 𝑥4)
4) 

Considering a uniform mesh for reasons of simplicity where ℎ = (𝑥𝐶 − 𝑥2) = −(𝑥𝐶 − 𝑥3), 

Equations 2.4 (for example for face 𝐶) are transformed as below. 

𝑢𝐶
𝐿 = 𝑢2 +

𝑑𝑢2

𝑑𝑥
ℎ +

1

2!

𝑑2𝑢2

𝑑𝑥2
ℎ2 +

1

3!

𝑑3𝑢2

𝑑𝑥3
ℎ3 + 𝑂(ℎ4) 

(2.6) 

𝑢𝐶
𝑅 = 𝑢3 −

𝑑𝑢3

𝑑𝑥
ℎ +

1

2!

𝑑2𝑢3

𝑑𝑥2
ℎ2 −

1

3!

𝑑3𝑢3

𝑑𝑥3
ℎ3 + 𝑂(ℎ4) 

What can be noted from the formulation above is that a high-order accuracy of the solution is 

feasible provided that the derivatives at each cell center  
𝑑𝑢

𝑑𝑥
,  

𝑑2𝑢

𝑑𝑥2 ,
𝑑3𝑢

𝑑𝑥3 can be computed. 

Nevertheless, for an unstructured grid only the first neighboring points are available, raising 

considerable difficulties in computing the higher-order derivatives. To achieve this, the method 

under discussion exploits the Green-Gauss theorem as demonstrated in what follows. The 

theorem states that 

∫∇𝑢 𝑑𝑉

 

𝑉

= ∮ 𝑢 𝑛̂ 𝑑𝑆
 

𝜕𝑉

  

∇𝑢 =
1

𝑉
∑ 𝑢 𝑛̂ 𝑑𝑆

 

𝑓𝑎𝑐𝑒𝑠

  

(2.7) 
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where 𝛥𝑆 is the surface area of each face and 𝑛̂
 
is the corresponding surface unitary normal vector 

(outward-positive). After calculating the first derivatives, as it is performed in a standard second- 

order scheme, the above expression regarding to the gradient of the 3rd grid point, leads to the 

following expression. 

𝑑𝑢3

𝑑𝑥
=

1

2ℎ
(𝑢𝐷 − 𝑢𝐶) =

1

2ℎ
[
1

2
(𝑢4 + 𝑢3) −

1

2
(𝑢3 + 𝑢2)] =

1

4ℎ
(𝑢4 − 𝑢2) (2.8) 

The above formulation computes only the first derivatives on unstructured grids. Proceeding with 

the computation of the higher derivatives, the method heavily relies on the definition of the 

Green-Gauss theorem [Yang14]. According to it, the computed gradient is considered a volume-

averaged value, rather than a local value. Given this, the same procedure is iterated to calculate 

the second derivatives, resulting to the following expression. 

𝑑2𝑢3

𝑑𝑥2
=

𝑑

𝑑𝑥
(
𝑑𝑢3

𝑑𝑥
) =

1

2ℎ
(
𝑑𝑢𝐷

𝑑𝑥
−

𝑑𝑢𝐶

𝑑𝑥
) =

1

2ℎ
[
1

2
(
𝑑𝑢4

𝑑𝑥
+

𝑑𝑢3

𝑑𝑥
) −

1

2
(
𝑑𝑢3

𝑑𝑥
+

𝑑𝑢2

𝑑𝑥
)] 

=
1

4ℎ
(
𝑑𝑢4

𝑑𝑥
−

𝑑𝑢2

𝑑𝑥
) 

(2.9) 

Once the first derivative field is built, the computation of the second derivatives field is possible. 

Hence, given the derivatives of 2nd and 4th data point 

𝑑𝑢2

𝑑𝑥
=

1

4ℎ
(𝑢3 − 𝑢1)    ,    

𝑑𝑢4

𝑑𝑥
=

1

4ℎ
(𝑢5 − 𝑢3) (2.10) 

the final outcome of Equation 2.9 is formulated as follows: 

𝑑2𝑢3

𝑑𝑥2
=

1

4ℎ
(

1

4ℎ
(𝑢5 − 𝑢3) −

1

4ℎ
(𝑢3 − 𝑢1)) =

1

16ℎ2
(𝑢5 − 2𝑢3 + 𝑢1) (2.11) 

Relying on the second derivatives values, the same process is repeated in order for the third 

derivatives to be calculated. The result is: 

𝑑3𝑢3

𝑑𝑥3
=

𝑑

𝑑𝑥
(
𝑑2𝑢3

𝑑𝑥2 ) =
1

2ℎ
(
𝑑2𝑢𝐷

𝑑𝑥2
−

𝑑2𝑢𝐶

𝑑𝑥2 ) =
1

2ℎ
[
1

2
(
𝑑2𝑢4

𝑑𝑥2
+

𝑑2𝑢3

𝑑𝑥2 ) −
1

2
(
𝑑2𝑢3

𝑑𝑥2
+

𝑑2𝑢2

𝑑𝑥2 )] 

=
1

4ℎ
(
𝑑2𝑢4

𝑑𝑥2
−

𝑑2𝑢2

𝑑𝑥2 ) 

(2.12) 

 As soon as the second derivative field is built, it is feasible again to calculate the third set of 

derivatives. Given the following second derivatives 

𝑑2𝑢2

𝑑𝑥2
=

1

16ℎ2
(𝑢4 − 2𝑢2 + 𝑢0)    ,

𝑑2𝑢4

𝑑𝑥2
=

1

16ℎ2
(𝑢6 − 2𝑢4 + 𝑢2)      (2.13) 

the combinatory process leads to Equation 2.14: 

𝑑3𝑢3

𝑑𝑥3
=

1

4ℎ
(

1

16ℎ2
(𝑢6 − 2𝑢4 + 𝑢2) −

1

16ℎ2
(𝑢4 − 2𝑢2 + 𝑢0)) =

1

64ℎ3
(𝑢6 − 3𝑢4 + 3𝑢2 − 𝑢0) (2.14) 
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All in all, within an upwind scheme the problem under discussion concerning the reconstructed 

values of control volume 3 receives the following representation for 3rd order accuracy. 

𝑢𝐶
𝐿 = 𝑢2 +

𝑑𝑢2

𝑑𝑥
ℎ +

1

2!

𝑑2𝑢2

𝑑𝑥2
ℎ2 = 𝑢2 +

1

4
(𝑢3 − 𝑢1) +

1

32
(𝑢4 − 2𝑢2 + 𝑢0) 

(2.15) 
𝑢𝐶

𝑅 = 𝑢3 −
𝑑𝑢3

𝑑𝑥
ℎ +

1

2!

𝑑2𝑢3

𝑑𝑥2
ℎ2 = 𝑢3 −

1

4
(𝑢4 − 𝑢2) +

1

32
(𝑢5 − 2𝑢3 + 𝑢1) 

𝑢𝐷
𝐿 = 𝑢3 +

𝑑𝑢3

𝑑𝑥
ℎ +

1

2!

𝑑2𝑢3

𝑑𝑥2
ℎ2 = 𝑢3 +

1

4
(𝑢4 − 𝑢2) +

1

32
(𝑢5 − 2𝑢3 + 𝑢1) 

𝑢𝐷
𝑅 = 𝑢4 −

𝑑𝑢4

𝑑𝑥
ℎ +

1

2!

𝑑2𝑢4

𝑑𝑥2
ℎ2 = 𝑢4 −

1

4
(𝑢5 − 𝑢3) +

1

32
(𝑢6 − 2𝑢4 + 𝑢2) 

As evident, a wider stencil of cells can be incorporated in the process of the derivatives’ 

computation. The data points of the cells involved in the computation of each derivative order is 

demonstrated in Figures 2.4 -2.7, where the colored points indicate the first, second, third, and 

fourth neighboring cells respectively. 

With the use of the method above, each higher accuracy order stems from the addition of the 

corresponding high order correction term. Αll the aforementioned derivative computations fall 

under the same recursive pattern. High-order accuracy can be obtained with the successive 

implementation of the Green-Gauss theorem. It is worth noting that a research by Diskin and 

Thomas [Dis07] shows that implementing the Green-Gauss formula results in accuracy 

deterioration by one order for every consecutive application of the formula. Therefore, the 

introduced procedure may not give high-order accuracy on general unstructured grids; 

nonetheless, it is easier to apply onto a standing CFD code than the DG method, so that the 

accuracy of the base second-order scheme is improved. 

 

 

 

 
 

Figure 2.4: Stencil for the first derivative Figure 2.5: Stencil for the second derivative 
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Figure 2.6: Stencil for the third derivative Figure 2.7: Stencil for the fourth derivative 

 

2.2 Derivation of High-Order Accuracy for 2-D Problems 

As a starting point the traditional second-order scheme with the functional form, as in 1.33, is 

presented below: 

𝑈2 = 𝑈(𝑥0, 𝑦0) +
𝜕𝑈

𝜕𝑥
(𝑥𝑖 − 𝑥0) +

𝜕𝑈

𝜕𝑦
(𝑦𝑖 − 𝑦0) (2.16) 

Based on the description outlined in the section 2.1 a Taylor series expansion is applied to achieve 

a higher order of accuracy. Therefore, for a third-order scheme the functional form is: 

𝑈ℎ = 𝑈(𝑥0, 𝑦0) +
𝜕𝑈

𝜕𝑥
(𝑥𝑖 − 𝑥0) +

𝜕𝑈

𝜕𝑦
(𝑦𝑖 − 𝑦0) +

1

! 2
[
𝜕2𝑈

𝜕𝑥2
(𝑥𝑖 − 𝑥0)

2 

+
𝜕2𝑈

𝜕𝑦2
(𝑦𝑖 − 𝑦0)

2 + 2
𝜕2𝑈

𝜕𝑥𝜕𝑦
(𝑥𝑖 − 𝑥0)(𝑦𝑖 − 𝑦0)] 

(2.17) 

It is noticeable that the first three terms on the right-hand side are the 𝑈 value of the 2nd order 

scheme, as exemplified in Equation 2.18, where the high-order correction term is presented 

[Yang15]: 

𝛥𝑈ℎ−2 = 𝑈ℎ − 𝑈2 =
1

2
[
𝜕2𝑈

𝜕𝑥2
(𝑥𝑖 − 𝑥0)

2 +
𝜕2𝑈

𝜕𝑦2
(𝑦𝑖 − 𝑦0)

2 + 2
𝜕2𝑈

𝜕𝑥𝜕𝑦
(𝑥𝑖 − 𝑥0)(𝑦𝑖 − 𝑦0)] (2.18) 

The Green-Gauss theorem for a function 𝑓 states: 

𝜕𝑓

𝜕𝑥
=

1

𝐸
∮ 𝑓 𝑛̂𝑥𝑑𝑙

 

𝜕𝐸

    ,    
𝜕𝑓

𝜕𝑦
=

1

𝐸
∮ 𝑓 𝑛̂𝑦𝑑𝑙

 

𝜕𝐸

    (2.19) 
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Having computed the first derivatives, a successive application of the Green-Gauss theorem is 

performed, so as to calculate the terms in 2.18 as depicted in 2.20: 

𝜕2𝑈

𝜕𝑥2
=

1

𝐸
∮

𝜕𝑈

𝜕𝑥
 𝑛̂𝑥𝑑𝑙

 

𝜕𝐸

,
𝜕2𝑈

𝜕𝑦2
=

1

𝐸
∮

𝜕𝑈

𝜕𝑦
 𝑛̂𝑦𝑑𝑙

 

𝜕𝐸

,
𝜕2𝑈

𝜕𝑥𝜕𝑦
=

1

𝐸
∮

𝜕𝑈

𝜕𝑦
 𝑛̂𝑥𝑑𝑙

 

𝜕𝐸

 (2.20) 

Consequently, based on the values of the first derivatives, the calculation of the second 

derivatives is possible with the use of the same procure, as indicated in 2.21: 

𝜕2𝑈

𝜕𝑥2
=

𝜕

𝜕𝑥
(
𝜕𝑈

𝜕𝑥
)    ,    

𝜕2𝑈

𝜕𝑦2
=

𝜕

𝜕𝑦
(
𝜕𝑈

𝜕𝑦
)    ,    

𝜕2𝑈

𝜕𝑥𝜕𝑦
=

𝜕

𝜕𝑥
(
𝜕𝑈

𝜕𝑦
) (2.21) 

In case a higher level of accuracy is desirable, the higher order correction terms are applied to the 

third-order formulation, providing a fourth-order scheme. The correction term is presented in 

2.22. 

𝛥𝑈ℎ−3 =
1

6
[
𝜕3𝑈

𝜕𝑥3
(𝑥𝑖 − 𝑥0)

3 +
𝜕3𝑈

𝜕𝑦3
(𝑦𝑖 − 𝑦0)

3 + 3
𝜕3𝑈

𝜕𝑥2𝜕𝑦
(𝑥𝑖 − 𝑥0)

2(𝑦𝑖 − 𝑦0) 

(2.22) 

+3
𝜕3𝑈

𝜕𝑦2𝜕𝑥
(𝑦𝑖 − 𝑦0)

2(𝑥𝑖 − 𝑥0)] 

Finally, the application of the same procedure is iterated to compute the terms of 2.22 as shown 

in 2.23: 

𝜕3𝑈

𝜕𝑥3
=

1

𝐸
∮

𝜕2𝑈

𝜕𝑥2
 𝑛̂𝑥𝑑𝑙

 

𝜕𝐸

    ,   
𝜕3𝑈

𝜕𝑦3
=

1

𝐸
∮

𝜕2𝑈

𝜕𝑦2
 𝑛̂𝑦𝑑𝑙

 

𝜕𝐸

 

(2.23) 
𝜕3𝑈

𝜕𝑥2𝜕𝑦
=

1

𝐸
∮

𝜕2𝑈

𝜕𝑥𝜕𝑦
 𝑛̂𝑥𝑑𝑙

 

𝜕𝐸

  ,   
𝜕3𝑈

𝜕𝑦2𝜕𝑥
=

1

𝐸
∮

𝜕2𝑈

𝜕𝑦𝜕𝑥
 𝑛̂𝑦𝑑𝑙

 

𝜕𝐸

 

In the present work a numerical scheme up to 3rd order of accuracy was applied.  

2.3 U-MUSCL Scheme 

The derivation of the presented high order formulation was combined with the implementation 

of a variable-extrapolation named U-MUSCL-scheme. This formulation, developed as in [Bur05], 

is based on information currently available to the unstructured flow solvers, namely the variable 

and gradient information. U-MUSCLE closely resembles the traditional MUSCLE scheme and it is 

trivial to implement within most finite flow solvers. According to it, the interpolation function in 

Equation 1.33 is replaced by the following formulation 

𝑈𝑃𝑄
𝐿 (𝜅) = 𝑈𝑃 +

𝜅

2
(𝑈𝑄 − 𝑈𝑃) +

1

2
∙ (1 − 𝜅)∇𝑈𝑃 ∙ 𝑟 𝑃𝑄 

(2.24) 

𝑈𝑃𝑄
𝑅 (𝜅) = 𝑈𝑄 +

𝜅

2
(𝑈𝑃 − 𝑈𝑄) −

1

2
∙ (1 − 𝜅)∇𝑈𝑄 ∙ 𝑟 𝑃𝑄 

where 𝜅 is the U-MUSCL parameter, 𝑈𝑃 and 𝑈𝑄 are the left and right nodes’ values of variable 𝑈 

and 𝑟 𝑃𝑄 is the vector connecting these nodes from point 𝑃 to 𝑄. 
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A one-parameter family of equations is represented in this new variable extrapolation 

formulation, which, in specific conditions, totally equals the MUSCL-scheme, a one parameter 

family as well [Bur05]. In the case of setting 𝜅 to 0, the original unstructured formulation for 2nd-

order variable extrapolation is obtained. In the case of setting 𝜅 το -1, the 2nd-order fully upwind 

MUSCL-type variable extrapolation is obtained. In the case of setting 𝜅 το 1/2, a 3rd-order 

variable extrapolation to the cell face is made possible, whereas when 𝜅 is set to 1/3, a 3rd-order 

approximation to the derivative at the node is obtained. If 𝜅 is set to 1, a central difference 

scheme is achieved. Provided that 𝜅 <  1, this formula is an upwind one, becoming stable for 

hyperbolic systems of equations not containing shocks, and for high-quality grids. Τhe following 

table summarizes what described above. 

Table 2.1:  U-MUSCL with different values of κ parameter  

PARAMETER (κ) DESCRIPTION 

−1 Second-order MUSCL-type scheme 

0 Second-order unstructured upwind scheme 

1/3 Third-order MUSCL-type scheme 

1/2 Third-order extrapolation to face 

1 Central-difference formula 

 

In a similar fashion Equation 2.24 can be written as in Equation 2.25, where a 3rd order scheme is 

achieved [Yan15]. In the present work the parameters κ and κ3 are defined as -1/6 and -4/3 

respectively. 

𝑈𝑃𝑄
𝐿 (𝜅) = 𝑈𝑃 +

𝜅

2
(𝑈𝑄 − 𝑈𝑃) +

1

2
∙ (1 − 𝜅)∇𝑈𝑃 ∙ 𝑟 𝑃𝑄 

 

+
1

2
[
𝜅3

4
(∇𝑈𝑄 ∙ 𝑟 𝑃𝑄 − ∇𝑈𝑃 ∙ 𝑟 𝑃𝑄) +

1

4
(1 − 𝜅3)∇(∇𝑈𝑃 ∙ 𝑟 𝑃𝑄) ∙ 𝑟 𝑃𝑄] 

 

= 𝑈𝑃 +
𝜅

2
(𝑈𝑄 − 𝑈𝑃) +

1

2
∙ (1 − 𝜅)∇𝑈𝑃 ∙ 𝑟 𝑃𝑄                                                         (2.25) 

 

+
1

2
[
𝜅3𝛥𝑥𝑃𝑄

4
((

𝜕𝑈

𝜕𝑥
)
𝑄

− (
𝜕𝑈

𝜕𝑥
)
𝑃
) +

1

4
∙ (1 − 𝜅3) 𝛥𝑥𝑃𝑄  ∇ ((

𝜕𝑈

𝜕𝑥
)
𝑃
) ∙ 𝑟 𝑃𝑄] 

 

 
 
 

+
1

2
[
𝜅3𝛥𝑦𝑃𝑄

4
((

𝜕𝑈

𝜕𝑦
)
𝑄

− (
𝜕𝑈

𝜕𝑦
)
𝑃

) +
1

4
∙ (1 − 𝜅3) 𝛥𝑦𝑃𝑄  ∇ ((

𝜕𝑈

𝜕𝑦
)
𝑃

) ∙ 𝑟 𝑃𝑄] 

 

According to the above formulation, what can be shown is that that an existing code structure for 

a second-order scheme is capable to compute the higher derivatives simply by calling the same 

routine used for the calculation of the first derivatives.  
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2.4 High-Order Time Integration 

In the current methodology of the high-order accuracy, time integration was performed by 

utilizing a high order Strong Stability Runge-Kutta method (SSPK) [Ruu05, Got05]. The 

development of Strong Stability Preserving (SSP) time discretization arose from the need to 

manage nonlinear stability properties in time and spatial discretization of hyperbolic PDEs. The 

core idea lies in the assumption that, with a suitably restricted time step  𝛥𝑡, the first order 

forward Euler time discretization of the method of lines ODE is strongly stable under a certain 

norm. In view of this, a higher order time discretization (Runge–Kutta or multi step) maintaining 

strong stability for the same norm emerges, possibly under a different time step restriction. 

A general 𝑚 stage Runge-Kutta method is written in the form [Ruu05] 

𝑈𝑃
(0)

= 𝑈𝑃
𝑛 

(2.26) 𝑈𝑃
(𝑖)

= ∑ (𝛼𝜄,𝑘𝑈𝑃
(𝑘)

) + 𝛥𝑡𝑃𝛽𝜄,𝑘
𝑅 (𝑈𝑃

(𝑘)
)

𝑖−1

𝑘=0

, 𝑎𝑖,𝑘 ≥ 0,   𝑖 = 1,… ,𝑚 

𝑈𝑃
𝑛+1 = 𝑈𝑃

(𝑚)
 

where  𝛥𝑡𝑃 is the local time step at node 𝑃. In the current work, the five stage fourth order Runge-

Kutta SSPRK (5, 4) developed by Ruuth [Ruu05] has been employed. An analytic expression, 

along with the appropriate coefficients of the optimal SSPRK (5, 4), is presented as follows 

[Got05] 

𝑈𝑃
(1)

= 𝑈𝑃
𝑛 + 0.391752226571890 ∙ 𝛥𝑡𝑃𝑅(𝑈𝑃

𝑛) 

(2.27) 

𝑈𝑃
(2)

= 0.444370493651235 ∙ 𝑈𝑃
𝑛 + 0.555629506348765 ∙ 𝑈𝑃

(1)
 

+0.368410593050371 ∙ 𝛥𝑡𝑃𝑅 (𝑈𝑃
(1)

) 

𝑈𝑃
(3)

= 0.620101851488403 ∙ 𝑈𝑃
𝑛 + 0.379898148511597 ∙ 𝑈𝑃

(2)
 

+0.251891774271694 ∙ 𝛥𝑡𝑃𝑅 (𝑈𝑃
(2)

) 

𝑈𝑃
(4)

= 0.178079954393132 ∙ 𝑈𝑃
𝑛 + 0.821920045606868 ∙ 𝑈𝑃

(3)
 

+0.544974750228521 ∙ 𝛥𝑡𝑃𝑅 (𝑈𝑃
(3)

) 

𝑈𝑃
𝑛+1 = 0.517231671970585 ∙ 𝑈𝑃

(2)
 

+0.096059710526147 ∙ 𝑈𝑃
(3)

+ 0.063692468666290 ∙ 𝛥𝑡𝑃𝑅 (𝑈𝑃
(3)

) 

+0.386708617503269 ∙ 𝑈𝑃
(4)

+ 0.226007483236906 ∙ 𝛥𝑡𝑃𝑅 (𝑈𝑃
(4)

) 

which is SSP with 𝐶𝐹𝐿 coefficient 𝐶𝐹𝐿 = 1.508, and effective 𝐶𝐹𝐿𝑒𝑓𝑓 = 0.377. In the numerical 

simulations of the convergence study that follows, 𝐶𝐹𝐿 was set to 1.5. Table 2.2 depicts the 

optimal coefficients from the above equation in compact form. 
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Table 2.2: Coefficients of optimal SSPRK (5, 4) scheme [Ruu05]  

STAGES 1 2 3 4 5 

 
 
 

ai,k 

1     

0.444370493651235 0.555629506348765    

0.620101851488403 0 0.379898148511597   

0.178079954393132 0 0 0.821920045606868  

0 0 0.517231671970585 0.096059710526147 0.386708617503269 

 

 

 

βi,k 

0.391752226571890     

0 0.368410593050371    

0 0 0.251891774271694   

0 0 0 0.544974750228521  

0 0 0 0.063692468666290 0.226007483236906 

CFL   1.50818004918983   
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CHAPTER 3  

NUMERICAL TEST AND RESULTS 

3.1 Test Case 

An extensive evaluation of the proposed high-order scheme was performed through a benchmark 

problem where a well-known analytical solution exists. As a verification test for the high-order 

scheme the transport of an isotropic vortex problem is examined. The ability to conserve the 

vortex shape and strength is important to many practical scenarios, in which a shed vortex 

interacts well downstream of the vortex origin. The particular problem is characterized by its 

smoothness with the absence of contact discontinuities [Yan15, Yan16]. 

On a computational domain Ω = [−10,10] 𝑋 [−10,10]  a vortex with center (𝑥𝑐 , 𝑦𝑐) = (0,0) is 

simulated and moving from left to wright in a diagonal direction. The initial solution is given by 

the following equations [Yan15] 

𝑢 = 𝑢∞ − 𝛽𝑢∞

𝑦 − 𝑦𝑐

𝑅
𝑒𝑥𝑝(

1 − 𝑟2

2
) 

 

 

 

 

(3.1) 

𝑣 = 𝑣∞ + 𝛽𝑢∞

𝑥 − 𝑥𝑐

𝑅
𝑒𝑥𝑝(

1 − 𝑟2

2
) 

𝜌 = 𝜌∞ [1 −
𝛾 − 1

2𝛾
(𝛽𝑢∞)2𝑒𝑥𝑝(1 − 𝑟2)]

1
𝛾−1

 

𝑝 = 𝑝∞ [1 −
𝛾 − 1

2𝛾
(𝛽𝑢∞)2𝑒𝑥𝑝(1 − 𝑟2)]

1
𝛾−1

 

𝑟 = √(𝑥 − 𝑥𝑐)
2 + (𝑦 − 𝑦𝑐)

2 /𝑅,     𝛽 = 1/2𝜋 

where 𝑟 denotes the distance from the vortex core, 𝑅 refers to the vortex radius and the subscript 

‘∞’ express the uniform mean flow. In this study, the non-dimensionalized variables are set as 

u∞=1, v∞=1, ρ∞=1, p∞=1 and periodic boundary conditions are imposed in the x- and y-direction. 

As the analytical solution is obtainable at any given time, the numerical error of the simulations is 

feasible to be determined. The computational model is shown in Figure 3.1 along with the initial 

pressure field. 

3.2 Computational Meshes 

As introduced in the first chapter, the Finite Volume approach requires partitioning the 

computational domain 𝛺 ⊂ 𝑅3 into a set of non-overlapping control volumes and the numerical 

implementation over each control volume.  In the Node Centered Finite Volume scheme (NCFV) 

used in this work, solution values are defined at the mesh nodes while their locations are called 

data points. An initial decomposition of the computational domain into grid elements, the primal 

mesh, is used by the median dual partition to generate non-overlapping control volumes for the 
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node-discretization. These control volumes cover the entire computational domain and compose 

a mesh that is dual to the primal mesh.    

 
Figure 3.1: Initial pressure field of the vortex 

The grids used in the present study can be categorized as either Regular or Irregular. Regular 

grids are derived by a smooth mapping from grids with periodic node connectivity, periodic cell 

distribution including, but not necessarily being limited to, grids derived from Cartesian ones 

[Del11, Dell13]. Four types of grids are considered in the present work: 

1. Equilateral Triangular Grid (Type I) 

2. Orthogonal Grid (Type II) 

3. Orthogonal Grid (Type III) 

4. Distorted Grid (Type IV) 

The gird of Type I is composed of triangular elements with equal sides. Orthogonal gird of Type II 

refers to a regular triangular grid derived from a regular quadrilateral grid where squared cells are 

decomposed in four triangular cells by a diagonal splitting, while Orthogonal of Type II is derived, 

in a similar fashion, where two triangular cells are produced. As far as the Distorted Grid of Type 

IV is concerned, grid irregularities are introduced by perturbing the grid nodes of a Type-I 

Equilateral Triangular Grid from their original positions. The distortion of the nodes occurs with 

random shifts in each dimension and the perturbation is defined as 0.4rΔx, where r∈ [-1/2, 1/2] is 

a random number and Δx is the local mesh size along the given dimension. These representative 

grid types are depicted in Figures 3.2-3.5. 

As the main focus lies in the numerical accuracy and the performance of the proposed numerical 

scheme, a major prerequisite in order to perform convergence studies with a sequence of refined 

grids is the Consistency Refinement Property [Dis10, Dis11, Tho08]. This property requires the 

maximum distance across the grid cells to decrease consistently with increase of the total number 

of grid data points. 
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For a given computational domain with dimensions  𝐿𝑥 𝑥 𝐿𝑦  in the x- and y- dimension 

respectively, a subdivision of 𝐿𝑥 
by 𝑁𝑥 line segments is defined, specifically 𝛥𝑥 = 𝐿𝑥/𝑁𝑥. 

Depending on the grid type, the subdivision 𝛥𝑦 = 𝐿𝑦/𝑁𝑦 can easily be determined. Accordingly, a 

characteristic length (effective mesh) is defined for each grid type as  ℎ𝑁 = √(𝐿𝑥 𝑥 𝐿𝑦)/𝑁. A 

consistent grid refinement is performed when a reduction  𝛥𝑥/2, results ℎ𝑁
′ ≃ ℎ𝑁/2

 
and 𝑁′ ≃ 4𝑁. 

Having been defined as such, a series of increasingly fine grids from 20 x 20, 40 x 40, 80 x 80, 160 

x 160 to 320 x 320 is employed for the previously stated types of grids. Table 3.1 depicts the 

results of the successive refinement procedure. 

  

Figure 3.2:  Equilateral Grid (Type I)  Figure 3.3:  Orthogonal Grid (Type II)  

 
 

 

 

 
Figure 3.4:  Orthogonal Grid (Type III)  

 
Figure 3.5:  Distorted Grid (Type IV)  
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Table 3.1 : Typical grid values for characteristic length and degrees of freedom  

GRID TYPES 

 TYPE I and IV TYPE II TYPE III 

Nx N hN N hN N hN 

𝟐𝟎 562 0.843649081 841 0.689655172 441 0.952380952 

40 1950 0.452910813 3281 0.349161926 1681 0.487804878 

80 7579 0.229733348 12961 0.175675314 6561 0.24691358 

160 29877 0.115707497 51521 0.088112566 25921 0.124223602 

321 119647 0.057820133 205441 0.044125174 103041 0.062305295 

 

3.3 Numerical Results 

In this section, the numerical results of the conducted simulations are presented. In order to 

measure the solution error, the volume weighted norm 𝐿𝐾 of the error was used, defined as 

[Del11, Del13] 

‖𝑈𝑖 − 𝑈𝑖
𝑒𝑥‖𝐿𝐾(𝛺)

= (
∑ |Ω𝜄|(𝑈𝑖 − 𝑈𝑖

𝑒𝑥)𝐾𝛮
𝜄=1

∑ |Ω𝜄|
𝛮
𝜄=1

)

1
𝛫

 

 

 
(3.2) 

where 𝑈𝑖
𝑒𝑥 is the exact solution and 𝑈𝑖 the numerical one, defined at node 𝑖 of the conserved 

variables (𝜌, 𝜌𝑢, 𝜌𝑣, 𝜌𝐸), while Ω𝑖 
is the corresponding volume and 𝛮 is the number of the 

corresponding data points. The errors were measured in three different norms (𝐾 = 1, 𝐾 = 2, 𝐾 =

∞) between the numerical variables and their analytical counterparts at t = 7 s and t = 60 s. 

Figures 3.6-3.23 present the iterative convergence histories in all norms for the conservative 

variables 𝜌, 𝜌𝑢, 𝜌𝑒 on each grid used, and in two different time periods. More specifically, Figures 

3.6-3.11 depict the corresponding convergence results in the L2 norm, Figures 3.12-3.17 the ones 

in the L1 norm and Figures 3.18-3.23 in the Lmax norm. Additionally, contour plots for the 

conservative variable ‘ρ’ are given for comparison along with the analytical numerical solution. 

The contour plots exhibit two different grid refinements, 80 and 320, and on two different time 

periods t = 7 s and t = 60 s, i.e. in Figures 3.24-3.27 the contour plots correspond to t = 7 s and 

Figures 3.28-3.31 correspond to t = 60 s. 
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Figure 3.6:  Convergence results of L2 Norm for 
the conservative variable ρ at t=7  s 

Figure 3.7:  Convergence results of L2 Norm for the 
conservative variable ρ at t=60  s  

 

 
 

 

 

Figure 3.8:  Convergence results of L2 Norm for 
the conservative variable ρu at t=7  s 

Figure 3.9:  Convergence results of L2 Norm for the 
conservative variable ρu at t=60  s 

 

 
 

 

 
 

Figure 3.10:  Convergence results of L2 Norm for 
the conservative variable ρe at t=7  s 

Figure 3.11:  Convergence results of L2 Norm for 
the conservative variable ρe at t=60  s 
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Figure 3.12:  Convergence results of L1 Norm for 
the conservative variable ρ at t=7  s 

Figure 3.13:  Convergence results of L1 Norm for 
the conservative variable ρ at t=60  s 

 

 
 

 

 

Figure 3.14:  Convergence results of L1 Norm for 
the conservative variable ρu at t=7  s 

Figure 3.15:  Convergence results of L1 Norm for 
the conservative variable ρu at t=60  s 

 

 
 

 

 

Figure 3.16:  Convergence results of L1 Norm for 
the conservative variable ρe at t=7  s 

Figure 3.17:  Convergence results of L1 Norm for 
the conservative variable ρe at t=60  s 
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Figure 3.18:  Convergence results of Lmax Norm 
for the conservative variable ρ at t=7  s  

Figure 3.19:  Convergence results of Lmax Norm 
for the conservative variable ρ at t=60  s  

 

 
 

 

 

Figure 3.20:  Convergence results of Lmax Norm 
for the conservative variable ρu at t=7  s  

Figure 3.21:  Convergence results of Lmax Norm 
for the conservative variable ρu at t=60  s  

 

 
 

 

 

Figure 3.22:  Convergence results of Lmax Norm 
for the conservative variable ρe at t=7  s  

Figure 3.23:  Convergence results of Lmax Norm 
for the conservative variable ρe at t=60  s  
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Figure 3.24:  Contour plots for ρ between the analytical (dashed line) and numerical 
solution for t=7  s. Grid refinement 80  (left) and 320  (right) for Equilateral Type I  

  
Figure 3.25:  Contour plots for ρ between the analytical (dashed line) and numerical 
solution for t=7  s. Grid refinement 80  (left) and 320  (right) for Orthogonal Type II  

  
Figure 3.26:  Contour plots for ρ between the analytical (dashed line) and numerical 
solution for t=7  s. Grid refinement 80  (left) and 320  (right) for Orthogonal Type III  
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Figure 3.27:  Contour plots for ρ between the analytical (dashed line) and numerical 
solution for t=7  s. Grid refinement 80  (left) and 320  (right) for Distorted Type IV  

  
Figure 3.28:  Contour plots for ρ between the analytical (dashed line) and numerical 
solution for t=60  s. Grid refinement 80  (left) and 320  (right) for Equilateral Type I  

  
Figure 3.29:  Contour plots for ρ between the analytical (dashed line) and numerical 
solution for t=60  s. Grid refinement 80  (left) and 320  (right) for Orthogonal Type II  
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Figure 3.30:  Contour plots for ρ between the analytical (dashed line) and numerical 
solution for t=60  s. Grid refinement 80  (left) and 320  (right) for Orthogonal Type III  

  
Figure 3.31:  Contour plots for ρ between the analytical (dashed line) and numerical 
solution for t=60  s. Grid refinement 80  (left) and 320  (right) for Distorted Type IV  
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CHAPTER 4   

INTRODUCTION OF HIGH-ORDER TO 3-D PROBLEMS 

4.1 Introduction  

The numerical tests have shown satisfactory results in the implementation of the current higher- 

order scheme, improving significantly the accuracy of the numerical solution. The proposed 

methodology could be extended to 3-dimensional problems and applied to a 3-D flow solver with 

slight alternations, as presented in the previous sections. The key aspects of the methodology 

concern, in summary, the calculations of the high-order correction terms up to the desirable 

order of accuracy, the incorporation of the U-MUSCL scheme and the employment of high-order 

time discretization with a multiple stage Runge-Kutta (SSPRK). 

An academic in-house 3-D solver named Galatea [Lyg14a, Lyg14b, Lyg15] will be utilized for the 

application of the current high-order scheme. It employs the dimensionless Navier-Stokes 

equations, discretized with a Node-Centred Finite-Volume method on three-dimensional 

tetrahedral or hybrid unstructured grids, to simulate inviscid, viscous laminar and viscous 

turbulent compressible flows. 

On the first chapter an extensive presentation of the fundamental properties of the fluid was 

undertaken and the governing equations for the 2-dimensional fluid flow were introduced in 

detail. Having set the above as a basis, the work then proceeds with the mathematical modeling 

of the governing equations in 3-dimensional space, and especially the Euler equations that are 

considered in the present thesis, followed by presenting the discretization of governing equations 

according to the numerical scheme implemented in Galatea solver and, finally, by discussing the 

high-order formulation in 3 dimensions.  

4.2 Mathematical Modeling in 3-D 

4.2.1 Navier-Stokes Equations 

The motion of the fluid in three dimensions for a compressible viscous flow is described by the 

Navier-Stokes equations. The differential form arranged into convective (inviscid), diffusive 

(viscous), and source terms is expressed by the following equation: 

𝜕𝑊⃗⃗⃗ 

𝜕𝑡
+

𝜕𝐹 𝑖𝑛𝑣

𝜕𝑥
+

𝜕𝐺 𝑖𝑛𝑣

𝜕𝑦
+

𝜕𝐽 𝑖𝑛𝑣

𝜕𝑧
−

𝜕𝐹 𝑣𝑖𝑠

𝜕𝑥
−

𝜕𝐺 𝑣𝑖𝑠

𝜕𝑦
−

𝜕𝐽 𝑣𝑖𝑠

𝜕𝑧
= 𝑆  (4.1) 

According to the above equation,  𝑊⃗⃗⃗ = (𝜌, 𝜌𝑢, 𝜌𝑣, 𝜌𝑤, 𝜌𝐸)  refers to the convective variables’ vector. 

 𝐹 𝑖𝑛𝑣 , 𝐺 𝑖𝑛𝑣 and  𝐽 𝑖𝑛𝑣 represent the inviscid flux vectors while 𝐹 𝑣𝑖𝑠, 𝐺 𝑣𝑖𝑠 , 𝐽 𝑣𝑖𝑠  refer to the viscous ones. 

The aforementioned are expressed in terms of the five primitive variables (𝜌, 𝑢, 𝑣, 𝑤, 𝑝). The 

inviscid and viscous vectors are defined as shown in Equations 4.2 and 4.3, where the source term 

is considered to be zero [Koo00, Lyg14b]. 
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𝐹 𝑖𝑛𝑣 =

(

 
 
 
 

𝜌𝑢

𝜌𝑢2 + 𝑝

𝜌𝑢𝑣

𝜌𝑢𝑤

(𝜌𝛦 + 𝑝)𝑢)

 
 
 
 

,𝐺 𝑖𝑛𝑣 =

(

 
 
 
 

𝜌𝑣

𝜌𝑣𝑢

𝜌𝑣2 + 𝑝

𝜌𝑣𝑤

(𝜌𝛦 + 𝑝)𝑣)

 
 
 
 

, 𝐽 𝑖𝑛𝑣 =

(

 
 
 
 

𝜌𝑤

𝜌𝑤𝑢

𝜌𝑤𝑣

𝜌𝑤2 + 𝑝

(𝜌𝛦 + 𝑝)𝑤)

 
 
 
 

 

 

 
 
 
(4.2) 

 

𝐹 𝑣𝑖𝑠 =

(

 
 
 
 

0

𝜏𝑥𝑥

𝜏𝑥𝑦

𝜏𝑥𝑧

𝑢𝜏𝑥𝑥 + 𝑣𝜏𝑥𝑦 + 𝑤𝜏𝑥𝑧 + 𝑞𝑥)

 
 
 
 

 𝐺 𝑣𝑖𝑠 =

(

 
 
 
 

0

𝜏𝑦𝑥

𝜏𝑦𝑦

𝜏𝑦𝑧

𝑢𝜏𝑦𝑥 + 𝑣𝜏𝑦𝑦 + 𝑤𝜏𝑦𝑧 + 𝑞𝑦)

 
 
 
 

 

 

 

𝐽 𝑣𝑖𝑠 =

(

 
 
 
 

0

𝜏𝑧𝑥

𝜏𝑧𝑦

𝜏𝑧𝑧

𝑢𝜏𝑧𝑥 + 𝑣𝜏𝑧𝑦 + 𝑤𝜏𝑧𝑧 + 𝑞𝑧)

 
 
 
 

 

(4.3) 

  

The diffusive flux vectors  𝐹 𝑖𝑛𝑣 , 𝐺 𝑖𝑛𝑣 , 𝐽 𝑖𝑛𝑣are defined from the stress tensor (𝜏𝑥𝑥, 𝜏𝑥𝑦, 𝜏𝑥𝑧, 𝜏𝑦𝑦, 𝜏𝑦𝑧, 𝜏𝑧𝑧) 

and calculated according to Equation 4.4 [Hir90]. 

𝜏𝑖𝑗 = 𝜇 [(
𝜕𝑢𝑖

𝜕𝑥𝑗
+

𝜕𝑢𝑗

𝜕𝑥𝑖
) −

2

3
(∇ ∙ 𝑉⃗ )𝛿𝑖𝑗] (4.4) 

where μ is the dynamic viscosity coefficient. In Equation 4.5 below, two alternative expressions 

are presented for the calculation of the dynamic viscosity. In the first one, it can be calculated 

based on the local temperature of the fluid (in K) i.e. the Sutherland law, whereas in the second, 

the reference dynamic viscosity μref and the reference temperature 𝑇𝑟𝑒𝑓 -values usually used in the 

far field- are utilized [Luo05]. The coefficients 𝑐1 and 𝑐2  depend on the type of the fluid. 

𝜇 =
𝑐1𝑇

3
2⁄

𝑇 + 𝑐2
    ,    𝜇 = 𝜇𝑟𝑒𝑓 (

𝑇

𝑇𝑟𝑒𝑓
)

3
2⁄ 𝑇𝑟𝑒𝑓 + 𝑐2

𝑇 + 𝑐2
 

(4.5) 

The complete set of the equation system is obtained via the expression for the thermodynamic 

relations between the state variables. This stands with the assumption that in pure aerodynamics 

the fluid can quite behave like a perfect gas. Hence, the state equation refers to the following 

mathematical expression: 

𝑝 = 𝜌𝑅𝑔𝑇 (4.6) 

The term 𝑅𝑔 refers to the gas constant equal to 287.04 m2s-2K-1 and it is related with the constant 

pressure and volume specific heat coefficients with the following equations 

𝑅𝑔 = 𝑐𝑝 − 𝑐𝑣     ,   𝛾 = 𝑐𝑝 / 𝑐𝑣    (4.7) 
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where these coefficients are determined as follows 

ℎ = 𝑐𝑝𝑇     ,    𝑒 = 𝑐𝑣𝑇 (4.8) 

and h and e are the specific enthalpy and specific internal energy of the gas (per unit mass) and 

are regarded as constants [Lan98]. With respect to the above and after certain manipulations, the 

total energy per unit volume ρΕ and the corresponding specific total enthalpy ℎ𝑡 are computed via 

Equation 4.9.  

𝜌𝛦 =
𝑝

(𝛾 − 1)
+

1

2
𝜌(𝑢2 + 𝑣2 + 𝑤2)    ,    ℎ𝑡 =

𝛾𝑝

𝜌(𝛾 − 1)
+

1

2
(𝑢2 + 𝑣2 + 𝑤2) (4.9) 

As illustrated below, the heat flux vector (𝑞𝑥, 𝑞𝑦, 𝑞𝑧) in the energy equation is determined based 

on the stress tensor. Evidently, the conductivity coefficient χ relies on the dimensionless Prandtl 

number Pr [Bla01]: 

𝑞𝑖 = 𝜒∇𝛵     ,     𝜒 =
𝜇𝑐𝑝

𝑃𝑟
 (4.10) 

4.2.2 Euler Equations 

A simplified form of the Navier-Stokes equations where viscosity and thermal conductivity are 

assumed equal to zero, i.e. inviscid flows, is given by the Euler equations. In this case, the 

corresponding flux vectors  𝐹⃗⃗  ⃗𝑣𝑖𝑠 , 𝐺 𝑣𝑖𝑠and 𝐽 𝑣𝑖𝑠 are neglected, leading to 4.11-4.12, while the 

remaining terms 4.6-4.9 complete the system of the equations [Bla01]: 

  

𝜕𝑊⃗⃗⃗ 

𝜕𝑡
+

𝜕𝐹 𝑖𝑛𝑣

𝜕𝑥
+

𝜕𝐺 𝑖𝑛𝑣

𝜕𝑦
+

𝜕𝐽 𝑖𝑛𝑣

𝜕𝑧
= 𝑆  (4.11) 

  

𝐹 𝑖𝑛𝑣 =

(

 
 
 
 

𝜌𝑢

𝜌𝑢2 + 𝑝

𝜌𝑢𝑣

𝜌𝑢𝑤

(𝜌𝛦 + 𝑝)𝑢)

 
 
 
 

,𝐺 𝑖𝑛𝑣 =

(

 
 
 
 

𝜌𝑣

𝜌𝑣𝑢

𝜌𝑣2 + 𝑝

𝜌𝑣𝑤

(𝜌𝛦 + 𝑝)𝑣)

 
 
 
 

, 𝐽 𝑖𝑛𝑣 =

(

 
 
 
 

𝜌𝑤

𝜌𝑤𝑢

𝜌𝑤𝑣

𝜌𝑤2 + 𝑝

(𝜌𝛦 + 𝑝)𝑤)

 
 
 
 

 (4.12) 

  

Following the common practice of writing the conservation equations in a non-dimensional form 

using dimensionless quantities, the normalization of the variables is performed by utilizing a 

characteristic length Lref, the free-stream velocity Vref, the free-stream density ρref, the free-stream 

dynamic viscosity μref, and the constant volume specific heat coefficient 𝑐𝑣, as presented in 4.13. 

In this sense, each variable is divided by a quantity that has the same dimension as the original 

variable. 

𝑥𝑖̃ =
𝑥𝑖

𝐿𝑟𝑒𝑓
 , 𝑢̃𝑖 =

𝑢𝑖

𝑉𝑟𝑒𝑓
 ,  𝜌̃ =

𝜌

𝜌𝑟𝑒𝑓
 , 𝜇 =

𝜇

𝜇𝑟𝑒𝑓
 , 𝑅̃𝑔 =

𝑅𝑔

𝑐𝑣
= 𝛾 − 1    (4.13) 

With respect to the rest of the variables included in Equations 4.11-4.12, taking into account the 

aforementioned normalizations, they are expressed in the following manner [Mun98] 
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𝑝 =
𝑝

𝜌𝑟𝑒𝑓𝑉𝑟𝑒𝑓
2  , 𝜌𝛦̃ =

𝜌𝛦

𝜌𝑟𝑒𝑓𝑉𝑟𝑒𝑓
2   , ℎ̃𝑡 =

ℎ𝑡

𝑉𝑟𝑒𝑓
2   , 𝑇̃ =

𝑇

𝑉𝑟𝑒𝑓
2 𝑐𝑣⁄

  , 𝑡̃ =
𝑡

𝐿𝑟𝑒𝑓
𝑉𝑟𝑒𝑓

⁄
  (4.14) 

while the perfect gas equation, according to the normalized constant pressure (𝑐̃𝑃 = 𝛾) and 

volume specific heat (𝑐̃𝑣 = 1) coefficients, is rewritten as in 4.15: 

𝑝̃ = 𝜌̃(𝛾 − 1)𝑇̃ (4.15) 

Finally, the calculation of the local speed of sound at node P (𝑎̃𝑃) and the corresponding Mach 

number (𝑀𝑃) is obtained with the last expressions below [Mun98]. 

𝑎̃𝑃 = √
𝛾 𝑝̃𝑃

𝜌̃𝑃
    ,    𝑀𝑃 =

√𝑢̃𝑃
2 + 𝑣̃𝑃

2 + 𝑤̃𝑃
2

𝑎̃𝑃
 (4.16) 

It is worth reminding at this point that for simplification reasons, the superscript "~", denoting the 

normalized variables, will be neglected in the following sections.  

4.3 Numerical Modeling of 3-D Equations 

4.3.1 Spatial Discretization 

The node-centered scheme has already been discussed in previous sections. Briefly, the main 

concept concerns a computational domain divided into a finite number of cells, from which non-

overlapping control volumes are defined. The control volumes are formed around each vertex, 

where the variables are stored, covering the entire computational domain and composing a mesh 

that is dual to the primal mesh.  

In the context of a three-dimensional space, the dual control volume of a node 𝑃 is constructed by 

connecting lines defined by edge midpoints, the barycenter of faces, and the barycenter of 

elements sharing this node [Mav94, Kal96, Mav96, Koo00, Bla01, Kim03, Kou03, Kal05, Lyg12]. 

Figure 4.1 depicts part of control volume around a node 𝑃 for a three-dimensional unstructured 

grid [Αda05]. Evidently, this part comprises the individual parts of the control volume, which 

three of the tetrahedrons contribute to, with node 𝑃 (orange color) pertaining to them. In 

addition, the middle points of the edges (black color), the barycenter of the tetrahedron faces (red 

color) and the tetrahedrons’ barycenter (green color) are also illustrated. More specifically, nodes 

𝐽, 𝐾, 𝐿,𝑀, and 𝑄 are adjacent to node 𝑃 and points 𝐺1, 𝐺2, 𝐺3 are the barycenters of tetrahedrons 

𝑃𝑄𝑀𝐽, 𝑃𝑄𝐽𝐾 and 𝑃𝑄𝐿𝐾, respectively. Furthermore, 𝑀 stands as the middle point of edge 𝑃𝑄 and 

𝐶1, 𝐶2 as the barycenters of faces 𝑃𝑄𝐽 and 𝑃𝑄𝐾, correspondingly. 

More details are given in Figure 4.2, where the contribution of different types of elements to the 

control volume of a node 𝑃 is depicted [Lyg15]. Again, 𝐺 stands for the barycenter of the element, 

𝐺1 and 𝐺2 denote the barycenters of the respective faces, while 𝑀1,𝑀2, and 𝑀3 the midpoints of 

the edges. 
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Figure 4.1: Part of control volume around node P 

 

Figure 4.2: Contribution of a prismatic, pyramidal and tetrahedral element to the control volume of a node P 

The integration of Euler equations over the control volume 𝐶𝑉𝑃, along with the employment of the 

Green-Gauss divergence theorem, leads to 

∭
𝜕𝑊⃗⃗⃗ 

𝜕𝑡
𝑑𝑥𝑑𝑦𝑑𝑧

 

𝐶𝑉𝑃

+ ∬ 𝛨⃗⃗̂ 𝑖𝑛𝑣

 

𝜕𝐶𝑉𝑃

𝑑𝑠 = ∭𝑆  𝑑𝑥𝑑𝑦𝑑𝑧

 

𝐶𝑉𝑃

 (4.17) 

where  𝜕𝐶𝑉𝑃 demarcates the boundaries of the control volume of node 𝑃 delineated by the facets 

constructed around the edges connecting node 𝑃 with each neighboring node 𝑄. Furthermore,  

𝛨⃗⃗̂ 𝑖𝑛𝑣
 is the vector of the inviscid numerical fluxes and is evaluated at the midpoint of an edge 

connected to node 𝑃. This midpoint coincides with the interface between the adjacent control 

volumes of nodes 𝑃 and 𝑄 connected with this edge. The expression of  𝛨⃗⃗̂ 𝑖𝑛𝑣 is thus 
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𝛨⃗⃗̂ 𝑖𝑛𝑣 = 𝑛̂𝑃𝑄,𝑥 𝐹 
𝑖𝑛𝑣 + 𝑛̂𝑃𝑄,𝑦 𝐺 𝑖𝑛𝑣 + 𝑛̂𝑃𝑄,𝑧 𝐽 

𝑖𝑛𝑣
   (4.18) 

𝑛⃗̂ 𝑃𝑄 =
𝑛⃗ 𝑃𝑄

|𝑛⃗ 𝑃𝑄|
= (𝑛̂𝑃𝑄,𝑥, 𝑛̂𝑃𝑄,𝑦, 𝑛̂𝑃𝑄,𝑧)   (4.19) 

where 𝑛⃗ 𝑃𝑄  is determined as the vector sum of the outward normal vectors of all the facets forming 

𝜕𝐶𝑉𝑃𝑄. What is presented in Figure 4.3 is part of such a vector 𝑛⃗ 𝑃𝑄 
contributed by a tetrahedron. 

The computation of this vector is performed with the use of the tetrahedron 𝐺 barycenter, of the 

faces 𝐺1, 𝐺2 medians and of edge 𝑀. Figure 4.5 represents the total face area and the mean unit 

normal vector associated with edge 𝑃𝑄. 

  

Figure 4.3: Part of vector 𝑛⃗⃗⃗  𝑃𝑄 contributed by  

a tetrahedron 

Figure 4.5: Total face area and mean unit normal 
vector associated with the edge PQ 

If 𝜕𝐶𝑉𝑃𝑄 
is the interfacing part of 𝜕𝐶𝑉𝑃, 𝐾𝑁(𝑃) is the set of nodes adjacent to 𝑃, and Γ is the 

domain's external boundary, Equation 4.17 is transformed into 4.20 for 𝜕𝐶𝑉𝑃 being expressed as in 

4.21. 

∭
𝜕𝑊⃗⃗⃗ 

𝜕𝑡

 

𝐶𝑉𝑃

𝑑𝑥𝑑𝑦𝑑𝑧 + ∑ ∬ 𝛨⃗⃗̂ 𝑖𝑛𝑣

 

𝜕𝐶𝑉𝑃𝑄

𝑑𝑠 + ∬ 𝛨⃗⃗̂ 𝑖𝑛𝑣

 

𝜕𝐶𝑉𝑃∩𝛤

𝑑𝑠

𝑄∈𝐾𝑁(𝑃)

= ∭𝑆 

 

𝐶𝑉𝑃

𝑑𝑥𝑑𝑦𝑑𝑧 (4.20) 

𝜕𝐶𝑉𝑃 = ⋃ 𝜕𝐶𝑉𝑃𝑄 + (𝜕𝐶𝑉𝑃 ∩ 𝛤)

𝑄∈𝐾𝑁(𝑃)

  (4.21) 

Presuming the conservative variables at node 𝑃 are equal to their mean values over 𝐶𝑉𝑃, the first 

term in Equation 4.17 becomes: 

∭
𝜕𝑊⃗⃗⃗ 

𝜕𝑡

 

𝐶𝑉𝑃

𝑑𝑥𝑑𝑦𝑑𝑧 = (
𝑑𝑊⃗⃗⃗ 

𝑑𝑡
)

𝑃

∭ 

 

𝐶𝑉𝑃

𝑑𝑥𝑑𝑦𝑑𝑧 = (
𝑑𝑊⃗⃗⃗ 

𝑑𝑡
)

𝑃

𝑉𝑃  (4.22) 

When the integrals of the numerical fluxes are expressed as summations of fluxes through the 

faces composing the control volume of node 𝑃, Equation 4.20 is expressed as 
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(
𝑑𝑊⃗⃗⃗ 

𝑑𝑡
)

𝑃

𝑉𝑃 + ∑ 𝛷⃗⃗ 𝑃𝑄
𝑖𝑛𝑣

𝑄∈𝐾𝑁(𝑃)

+ ∑ 𝛷⃗⃗ 𝑃,𝑜𝑢𝑡
𝑖𝑛𝑣

(𝐾𝑜𝑢𝑡∈𝜕𝐶𝑉𝑃∩𝛤)

= ∭𝑆 

 

𝐶𝑉𝑃

𝑑𝑥𝑑𝑦𝑑𝑧 (4.23) 

𝛷⃗⃗ 𝑃𝑄
𝑖𝑛𝑣 = ∬ 𝛨⃗⃗̂ 𝑖𝑛𝑣𝑑𝑠 = 𝑓 (𝑊⃗⃗⃗ 

𝑃𝑄
𝐿 , 𝑊⃗⃗⃗ 

𝑃𝑄
𝑅 , 𝑛⃗ 𝑃𝑄)

 

𝜕𝐶𝑉𝑃𝑄

 

(4.24) 

𝛷⃗⃗ 𝑃,𝑜𝑢𝑡
𝑖𝑛𝑣 = ∬ 𝛨⃗⃗̂ 𝑖𝑛𝑣

 

𝜕𝐶𝑉𝑃∩𝛤

𝑑𝑠 = 𝑓 (𝑊⃗⃗⃗ 
𝑃
 , 𝑊⃗⃗⃗ 

𝑜𝑢𝑡
 , 𝑛⃗ 𝑜𝑢𝑡) 

where 𝑊⃗⃗⃗ 
𝑃𝑄
𝐿  and 𝑊⃗⃗⃗ 

𝑃𝑄
𝑅  are the vectors of the conservative variables on the left and right side of edge 

𝑃𝑄 respectively, while 𝑊⃗⃗⃗ 
𝑜𝑢𝑡
  is the corresponding vector on the boundary. 

4.3.2 Numerical Fluxes 

The computation of the numerical inviscid fluxes is achieved with the employment of a one-

dimensional Riemann problem. This is performed in the direction of each normal vector that 

corresponds to every particular face forming the control volume of a node 𝑃. Moreover, an 

upwind scheme using Roe’s approximate Riemann solver is implemented [Roe81], due to the 

expensive amount of calculations that the exact solution requires [Lan98]. Eventually, the inviscid 

fluxes are evaluated in the middle point of an edge 𝑃𝑄, as shown in 4.25. 

𝛷⃗⃗ 𝑃𝑄
𝑖𝑛𝑣 =

1

2
(𝐻⃗⃗ 𝑖𝑛𝑣(𝑊⃗⃗⃗ 

𝑃𝑄
𝐿 , 𝑛⃗ 𝑃𝑄) + 𝐻⃗⃗ 𝑖𝑛𝑣(𝑊⃗⃗⃗ 

𝑃𝑄
𝑅 , 𝑛⃗ 𝑃𝑄)) −

1

2
|𝐴̃𝑃𝑄|(𝑊⃗⃗⃗ 

𝑃𝑄
𝑅 − 𝑊⃗⃗⃗ 

𝑃𝑄
𝐿 ) (4.25) 

The Jacobian matrix 𝐴̃𝑃𝑄 of the inviscid flux vector 𝐻⃗⃗ 𝑖𝑛𝑣 is calculated according to the Roe's 

averaged values of the primitive variables as in 4.26 at the midpoint of the corresponding edge 𝑃𝑄 

[Roe81, Ven95, Lan98]. Detailed information for the matrix 𝐴̃𝑃𝑄 is provided in Appendix A. 

𝑈⃗⃗̃ 𝑃𝑄 =
√𝜌𝐿 𝑈⃗⃗ 𝐿 + √𝜌𝑅 𝑈⃗⃗ 𝑅

√𝜌𝐿 + √𝜌𝑅

 (4.26) 

where 𝑈⃗⃗ 𝐿 and 𝑈⃗⃗ 𝑅 in first order accurate schemes are the values of primitive variables at the left 

and right side of edge 𝑃𝑄 respectively. 

An equivalent expression of Equation 4.25 is the following [Roe81, Lan98] 

𝛷⃗⃗ 𝑃𝑄
𝑖𝑛𝑣 = 𝐻⃗⃗ 𝑖𝑛𝑣(𝑊⃗⃗⃗ 

𝑃𝑄
𝐿 , 𝑛⃗ 𝑃𝑄) + 𝐴̃𝑃𝑄

− (𝑊⃗⃗⃗ 
𝑃𝑄
𝑅 − 𝑊⃗⃗⃗ 

𝑃𝑄
𝐿 ) (4.27) 

Whenever a second-order scheme is required, the traditional MUSCL reconstruction of the 

primitive or conservative variables is incorporated using appropriate limiters (Van Albada -Van 

Leer [VanA82], Min-mod [Swe84] or Barth-Jespersen [Bar89]) to control the total variation. Left 

and right states of an edge 𝑃𝑄 are reconstructed using Taylor series expansion, taking into 

account the corresponding values of the neighboring nodes. Consequently, the primitive or 

conservative variables 𝑈 of each state at the midpoint of an edge 𝑃𝑄 are approximated as 

following [Bar92, And94, Bla01, ANSYS06, Lyg13, and Sar14]: 
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𝑈𝑃𝑄
𝐿 = 𝑈𝑃 +

1

2
∙ (∇𝑈)𝐿 ∙ 𝑟 𝑃𝑄  

(4.28) 

𝑈𝑃𝑄
𝑅 = 𝑈𝑄 −

1

2
∙ (∇𝑈)𝑅 ∙ 𝑟 𝑃𝑄  

The quantities marked by L and R subscripts denote the values of the variables taken at the left 

and right side of the boundary between the nodes 𝑃 and 𝑄, while 𝑟 𝑃𝑄 is the vector connecting 

these nodes and is directed from 𝑃 to 𝑄. The extrapolation gradients (∇𝑈)𝐿 and (∇𝑈)𝑅 are equal to 

the gradients (∇𝑈)𝑃 and (∇𝑈)𝑄 
at the nodes 𝑃 and 𝑄 respectively and calculated with the 

employment of the Green-Gauss linear representation method as [Bar92, Bla01]: 

(∇𝑈)𝑃 = 
1

𝑉𝑃
∑

1

2
(𝑈𝑃 + 𝑈𝑄) ∙

𝑄∈𝐾𝑁(𝑃)

𝑛⃗ 𝑃𝑄  (4.29) 

where 𝑉𝑃 is the volume of the control volume of node 𝑃. In the case of a boundary node, the 

equivalent expression is the following [Lyg13] . 

(∇𝑈)𝑃 = 
1

𝑉𝑃
( ∑

1

2
(𝑈𝑃 + 𝑈𝑄) ∙ 𝑛⃗ 𝑃𝑄 +

𝑄∈𝐾𝑁(𝑃)

∑ 𝑈𝑃 ∙ 𝑛⃗ 𝑜𝑢𝑡

(𝐾𝑜𝑢𝑡∈𝜕𝐶𝑃∩𝛤)

) (4.30) 

4.3.3 Boundary Conditions 

In order to compute the flux balance of nodes that reside in the computational boundary domain, 

additional fluxes have to be encountered with the enforcement of the appropriate boundary 

conditions depending on the type of, i.e. wall, inlet, outlet and symmetry. Such fluxes are 

computed at the barycenter of each boundary face with the use of the arithmetic averages for the 

conservative variables of their nodes. These fluxes are assigned to the nodes weighted by the area 

of the face which corresponds to them.  

In inlet boundary faces, a one-dimensional Riemann problem is employed between the face’s 

barycenter and the far-field, while the obtained fluxes are distributed to the corresponding 

surrounding nodes. When the Steger-Warming scheme [Ste81, Lan98] is applied, is formulated 

as: 

𝐻⃗⃗ 𝐾,𝑜𝑢𝑡
𝑖𝑛𝑣 = 𝐴̃𝐾

+𝑊⃗⃗⃗ 
𝐾 + 𝐴̃𝐾

−𝑊⃗⃗⃗ 
𝑜𝑢𝑡 (4.31) 

where subscript K represents the barycenter of the boundary face, while subscript out indicates 

the far field; the values of the variables of vector 𝑊⃗⃗⃗ 
𝑜𝑢𝑡 are obtained either from the far field or the 

boundary barycenter, depending on the type of the flow (internal or external) [Hir90, Bla01]. The 

outlet boundary ones are treated in a similar manner.  

As far as the wall boundary nodes are concerned, a free-slip boundary condition is implemented 

implicitly, by adding a flux with zero normal to the boundary face velocity Vn described in 

Equation 4.32 [Mav94] 
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𝑉𝑛 = 𝑉⃗ ∙ 𝑛⃗̂ 𝑜𝑢𝑡 = 0 (4.32) 

where 𝑛⃗̂ 𝑜𝑢𝑡 = (𝑛̂𝑜𝑢𝑡,𝑥 , 𝑛̂𝑜𝑢𝑡,𝑦, 𝑛̂𝑜𝑢𝑡,𝑧) is the normal to the boundary face unitary vector (outward-

positive). An example of such a vector is presented in Figure 4.4 for a tetrahedral element. In this 

figure, 𝑀 stands for the median point of the boundary face and 𝑀𝑃 ,𝑀𝑄 ,𝑀𝑅 signify the median 

points of the corresponding edges. For the computation of the normal vector, all the 

aforementioned points are utilized. Eventually, the added free-slip convective flux is calculated as 

the following equation shows: 

𝐻⃗⃗ 𝑓𝑟𝑒𝑒𝑠𝑙𝑖𝑝 =

(

 
 
 
 

𝜌𝑉𝑛

𝜌𝑢𝑉𝑛 + 𝑝 𝑛̂𝑜𝑢𝑡,𝑥

𝜌𝑣𝑉𝑛 + 𝑝 𝑛̂𝑜𝑢𝑡,𝑦

𝜌𝑤𝑉𝑛 + 𝑝 𝑛̂𝑜𝑢𝑡,𝑧

(𝜌𝐸 + 𝑝)𝑉𝑛 )

 
 
 
 

=

(

 
 
 
 

0

𝑝 𝑛̂𝑜𝑢𝑡,𝑥

𝑝 𝑛̂𝑜𝑢𝑡,𝑦

𝑝 𝑛̂𝑜𝑢𝑡,𝑧

0 )

 
 
 
 

 (4.33) 

 
Figure 4.4: Normal to the boundary face PQR vector 𝑛⃗ 𝑜𝑢𝑡. 

4.3.4 Time Integration 

In an explicit scheme, the time integration of the discretized governing equation leads to the 

following equation [Bla01] 

−𝑉𝑃 (
𝑑𝑊⃗⃗⃗ 

𝑑𝑡
)

𝑃

= −𝑉𝑃

𝛥𝑊⃗⃗⃗ 
𝑃
𝑛+1

𝛥𝑡𝑃
= 

(4.34) 

∑ 𝛷⃗⃗ 𝑃𝑄
𝑖𝑛𝑣

𝑄∈𝐾𝑁(𝑃)

+ ∑ 𝛷⃗⃗ 𝑃,𝑜𝑢𝑡
𝑖𝑛𝑣

(𝐾𝑜𝑢𝑡∈𝜕𝐶𝑉𝑃∩𝛤)

− 𝑆 𝑃𝑉𝑃 = 𝑅⃗ 𝑃
𝑛 

where 𝛥𝑡𝑃 is the local time step at node 𝑃 and is calculated as [Kim03, Lyg11] 

𝛥𝑡𝑃
𝑖𝑛𝑣 = 𝐶𝐹𝐿 ∙

0.5𝛼𝑚𝑖𝑛 𝑙 𝑒𝑑𝑔𝑒,𝑃

|𝑈⃗⃗ 𝑃| + 𝑎𝑃

  (4.35) 
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where |𝑈⃗⃗ 𝑃| is the value of velocity at node 𝑃, 𝑎𝑃 is the speed of sound evaluated on the same node 

and 𝛼𝑚𝑖𝑛 𝑙 𝑒𝑑𝑔𝑒,𝑃 is the length of the shortest edge connected to 𝑃.  

In the second-order scheme, a four-step Runge-Kutta (RK (4)) method is employed as introduced 

in section 1.2.4. Furthermore, acceleration techniques, such as implicit residual smoothing, are 

utilized to decrease the time of the numerical simulation. In the concept of the high-order 

scheme, as described in the previous sections, the implementation of the high-order Strong 

Stability Runge-Kutta method is considered [Ruu05, Got05]. 

4.4 Derivation of the High-Order Scheme 

4.4.1 Calculation of the High-order Terms 

The functional form of the existing second-order scheme is shown below 

𝑈2 = 𝑈(𝑥0, 𝑦0, 𝑧0) +
𝜕𝑈

𝜕𝑥
(𝑥𝑖 − 𝑥0) +

𝜕𝑈

𝜕𝑦
(𝑦𝑖 − 𝑦0) +

𝜕𝑈

𝜕𝑧
(𝑧𝑖 − 𝑧0) (4.36) 

where a Taylor series expansion is applied, leading to the following functional form of a third 

order scheme [Yang16]. 

𝑈ℎ = 𝑈(𝑥0, 𝑦0,𝑧0) +
𝜕𝑈

𝜕𝑥
(𝑥𝑖 − 𝑥0) +

𝜕𝑈

𝜕𝑦
(𝑦𝑖 − 𝑦0) +

𝜕𝑈

𝜕𝑧
(𝑧𝑖 − 𝑧0) +

1

2!
[
𝜕2𝑈

𝜕𝑥2
(𝑥𝑖 − 𝑥0)

2 

(4.37) +
𝜕2𝑈

𝜕𝑦2
(𝑦𝑖 − 𝑦0)

2 +
𝜕2𝑈

𝜕𝑧2
(𝑧𝑖 − 𝑧0)

2 + 2
𝜕2𝑈

𝜕𝑥𝜕𝑦
(𝑥𝑖 − 𝑥0)(𝑦𝑖 − 𝑦0) 

+2
𝜕2𝑈

𝜕𝑥𝜕𝑧
(𝑥𝑖 − 𝑥0)(𝑧𝑖 − 𝑧0) + 2

𝜕2𝑈

𝜕𝑦𝜕𝑧
(𝑦𝑖 − 𝑦0)(𝑧𝑖 − 𝑧0) 

What can be noted from the formulation above is that the first three terms in the right hand side 

are the 𝑈 value of the existing scheme, but with the correction term as expressed in 4.38. 

ΔUℎ−2 = 𝑈ℎ − 𝑈2 =
1

2
[
𝜕2𝑈

𝜕𝑥2
(𝑥𝑖 − 𝑥0)

2 +
𝜕2𝑈

𝜕𝑦2
(𝑦𝑖 − 𝑦0)

2 +
𝜕2𝑈

𝜕𝑧2
(𝑧𝑖 − 𝑧0)

2 

(4.38) 

+2
𝜕2𝑈

𝜕𝑥𝜕𝑦
(𝑥𝑖 − 𝑥0)(𝑦𝑖 − 𝑦0) + 2

𝜕2𝑈

𝜕𝑥𝜕𝑧
(𝑥𝑖 − 𝑥0)(𝑧𝑖 − 𝑧0) + 2

𝜕2𝑈

𝜕𝑦𝜕𝑧
(𝑦𝑖 − 𝑦0)(𝑧𝑖 − 𝑧0)] 

Considering the methodology introduced in previous chapters, high-order accuracy is feasible, 

provided that the derivatives of the high-order terms can be computed. This is made possible by 

the consecutive implementation of the Green-Gauss theorem, which for a function f states that 

∭ ∇𝑓 𝑑𝑉 = ∯ 𝑓 𝑛̂ 𝑑𝑆
 

𝜕𝑉

 

𝑉
 
⇒ ∇𝑓 =

1

𝑉
∯ 𝑓 𝑛̂ 𝑑𝑆

 

𝜕𝑉

 (4.39) 

where 𝑛̂ is the outward-pointing unitary normal vector to the boundary 𝜕𝑉 of 𝑉. Relying on the 

first derivatives field from the existing second-order scheme and using the Green-Gauss theorem, 

the third derivatives are determined in the following manner: 
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𝜕2𝑈

𝜕𝑥2
=

1

𝑉
∯

𝜕𝑈

𝜕𝑥
𝑛̂𝑥𝑑𝑆

 

𝜕𝑉

,   
𝜕2𝑈

𝜕𝑦2
=

1

𝑉
∯

𝜕𝑈

𝜕𝑦
𝑛̂𝑦𝑑𝑆

 

𝜕𝑉

,   
𝜕2𝑈

𝜕𝑧2
=

1

𝑉
∯

𝜕𝑈

𝜕𝑧
𝑛̂𝑧𝑑𝑆

 

𝜕𝑉

,  

(4.40) 

𝜕2𝑈

𝜕𝑥𝜕𝑦
=

1

𝑉
∯

𝜕𝑈

𝜕𝑦
𝑛̂𝑥𝑑𝑆

 

𝜕𝑉

   ,   
𝜕2𝑈

𝜕𝑥𝜕𝑧
=

1

𝑉
∯

𝜕𝑈

𝜕𝑧
𝑛̂𝑥𝑑𝑆

 

𝜕𝑉

   ,   
𝜕2𝑈

𝜕𝑦𝜕𝑧
=

1

𝑉
∯

𝜕𝑈

𝜕𝑧
𝑛̂𝑦𝑑𝑆

 

𝜕𝑉

 

The identical procedure could be used for the calculation of these derivatives based on the values 

of the first derivatives field, as shown in 4.41. 

𝜕2𝑈

𝜕𝑥2
=

𝜕

𝜕𝑥
(
𝜕𝑈

𝜕𝑥
)    ,    

𝜕2𝑈

𝜕𝑦2
=

𝜕

𝜕𝑦
(
𝜕𝑈

𝜕𝑦
)    ,    

𝜕2𝑈

𝜕𝑧2
=

𝜕

𝜕𝑧
(
𝜕𝑈

𝜕𝑧
) 

(4.41) 

𝜕2𝑈

𝜕𝑥𝜕𝑦
=

𝜕

𝜕𝑥
(
𝜕𝑈

𝜕𝑦
)    ,    

𝜕2𝑈

𝜕𝑥𝜕𝑧
=

𝜕

𝜕𝑥
(
𝜕𝑈

𝜕𝑧
)    ,    

𝜕2𝑈

𝜕𝑦𝜕𝑧
=

𝜕

𝜕𝑦
(
𝜕𝑈

𝜕𝑧
) 

Additionally, the fourth order correction terms of Equation 4.42 are introduced to the third order 

interpolation function and, potentially, even higher order accuracy can be achieved. 

𝛥𝑈ℎ−3 =
1

! 3
[
𝜕3𝑈

𝜕𝑥3
(𝑥𝑖 − 𝑥0)

3 +
𝜕3𝑈

𝜕𝑦3
(𝑦𝑖 − 𝑦0)

3 +
𝜕3𝑈

𝜕𝑧3
(𝑧𝑖 − 𝑧0)

3 

(4.42) 

+3
𝜕3𝑈

𝜕𝑥2𝜕𝑦
(𝑥𝑖 − 𝑥0)

2(𝑦𝑖 − 𝑦0) + 3
𝜕3𝑈

𝜕𝑥2𝜕𝑧
(𝑥𝑖 − 𝑥0)

2(𝑧𝑖 − 𝑧0) 

+3
𝜕3𝑈

𝜕𝑦2𝜕𝑥
(𝑦𝑖 − 𝑦0)

2(𝑥𝑖 − 𝑥0) + 3
𝜕3𝑈

𝜕𝑦2𝜕𝑧
(𝑦𝑖 − 𝑦0)

2(𝑧𝑖 − 𝑧0) 

+3
𝜕3𝑈

𝜕𝑧2𝜕𝑥
(𝑧𝑖 − 𝑧0)

2(𝑥𝑖 − 𝑥0) + 3
𝜕3𝑈

𝜕𝑧2𝜕𝑦
(𝑧𝑖 − 𝑧)2(𝑦𝑖 − 𝑦0) 

+6
𝜕3𝑈

𝜕𝑥𝜕𝑦𝜕𝑧
(𝑥𝑖 − 𝑥0)(𝑦𝑖 − 𝑦)(𝑧𝑖 − 𝑧0) 

Again, taking into account the values of the third derivatives field, the terms of 4.42 are computed 

as follows: 

𝜕3𝑈

𝜕𝑥3
=

1

𝑉
∯

𝜕2𝑈

𝜕𝑥2
𝑛̂𝑥𝑑𝑆

 

𝜕𝑉

   ,   
𝜕3𝑈

𝜕𝑦3
=

1

𝑉
∯

𝜕2𝑈

𝜕𝑦2
𝑛̂𝑦𝑑𝑆

 

𝜕𝑉

   ,    
𝜕3𝑈

𝜕𝑧3
=

1

𝑉
∯

𝜕2𝑈

𝜕𝑧2
𝑛̂𝑧𝑑𝑆

 

𝜕𝑉

 

 (4.43) 

𝜕3𝑈

𝜕𝑥2𝜕𝑦
=

1

𝑉
∯

𝜕2𝑈

𝜕𝑥𝜕𝑦
𝑛̂𝑥𝑑𝑆

 

𝜕𝑉

   ,   
𝜕3𝑈

𝜕𝑥2𝜕𝑧
=

1

𝑉
∯

𝜕2𝑈

𝜕𝑥𝜕𝑧
𝑛̂𝑥𝑑𝑆

 

𝜕𝑉

   ,    
𝜕3𝑈

𝜕𝑦2𝜕𝑥
=

1

𝑉
∯

𝜕2𝑈

𝜕𝑦𝜕𝑥
𝑛̂𝑦𝑑𝑆

 

𝜕𝑉

 

𝜕3𝑈

𝜕𝑦2𝜕𝑧
=

1

𝑉
∯

𝜕2𝑈

𝜕𝑦𝜕𝑧
𝑛̂𝑦𝑑𝑆

 

𝜕𝑉

  ,   
𝜕3𝑈

𝜕𝑧2𝜕𝑥
=

1

𝑉
∯

𝜕2𝑈

𝜕𝑧𝜕𝑥
𝑛̂𝑧𝑑𝑆

 

𝜕𝑉

   ,    
𝜕3𝑈

𝜕𝑧2𝜕𝑦
=

1

𝑉
∯

𝜕2𝑈

𝜕𝑧𝜕𝑦
𝑛̂𝑧𝑑𝑆

 

𝜕𝑉

 

𝜕3𝑈

𝜕𝑥𝜕𝑦𝜕𝑧
=

1

𝑉
∯

𝜕2𝑈

𝜕𝑦𝜕𝑧
𝑛̂𝑥𝑑𝑆

 

𝜕𝑉
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4.4.2 U-MUSCL Scheme 

The current methodology incorporates a variable extrapolation, the U-MUSCL numerical scheme, 

closely resembled to the existing MUSCL-scheme [Bur05], whose interpolation function is 

expressed in the following equation [Yan16]. 

𝑈𝑃𝑄
𝐿 (𝜅) = 𝑈𝑃 +

𝜅

2
(𝑈𝑄 − 𝑈𝑃) +

1

2
∙ (1 − 𝜅)∇𝑈𝑃 ∙ 𝑟 𝑃𝑄 

  (4.44) 

𝑈𝑃𝑄
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𝜅

2
(𝑈𝑃 − 𝑈𝑄) −

1

2
∙ (1 − 𝜅)∇𝑈𝑄 ∙ 𝑟 𝑃𝑄 

Finally, the presented high-order scheme of 3rd order of accuracy is written in a similar manner as 

[Yan16]: 
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CHAPTER 5   

DEVELOPMENT OF 3-D GRID GENERATORS 

5.1 Presentation of 3-D Grids 

The implementation of the proposed high-order module, introduced in this study, into the 

current CFD Galatea solver requires the quality assessment of the numerical results. In the 3rd 

Chapter an extensive evaluation methodology was presented for the verification test of the 2-

dimensional equations, using representative grid types. In order to employ this methodology to a 

3-dimensional problem, computational meshes of the same dimensional order need to be 

constructed. Regarding the latter, it has to be generated so that it preserves the conservation 

properties of the governing equations; thus, the following conditions need to be satisfied [Bla01]: 

 The physical domain has to be covered completely by the grid 

 There must be no free space left between elements 

 The grid cells should not overlap each other 

Strictly in mathematical terms, this is expressed by the following: considering a conforming 

decomposition of the computational domain 𝑇ℎ𝑁  of Ω with characteristic length ℎ𝑁, as a set of 

finitely element subsets  𝑇𝑝 ⊂ 𝛺, 𝑃 = 1,2,3… ,𝑁, the following conditions are satisfied [Del11, 

Del13]: 

 Ω = ⋃ 𝑇𝑝𝑝∈ {1,2,3…,𝑁}  

 every  𝑇𝑝 is closed  

 for two 𝑇𝑝, 𝑇𝑞 ∈ 𝑇ℎ𝑁  with 𝑝 ≠ 𝑞 their interiors satisfy  𝑇̇𝑝 ∩ 𝑇̇𝑞 ≠ ∅ 

 every two dimensional face of any 𝑇𝑝 ∈ 𝑇ℎ𝑁  is either a subset of  𝜕Ω  or a side of  

another 𝑇𝑞 , 𝑞 ≠ 𝑝 

Various types of grids were developed for the scope of this work. The elements composing the 

different types of grids are tetrahedrons, pyramids and prisms (Figure 5.1). 

 
Figure 5.1: Different types of 3-D elements 
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Generally, as for the 2-dimensional grids introduced in the previous sections, the produced 3-D  

are Regular grids, derived by a smooth mapping from grids with periodic node connectivity, 

periodic cell distribution, and include (but are not limited to) grids derived from Cartesian ones. 

Additionally, a small perturbation of the initial node locations may derive Irregular grids from the 

Regular ones. Overall, 6 types of grids are studied in the present work, as shown in the following 

table: 

Table 5.1:  Regular and Irregular grid types  

GRID TYPES MODE I MODE II 

Prismatic Grid of Type I Regular Irregular 

Prismatic Grid of Type II Regular Irregular 

Prismatic Grid of Type III Regular Irregular 

Pyramidal Grid Regular Irregular 

Tetrahedral Grid Regular Irregular 

  

A brief discussion of the grids precedes a comprehensive description of the construction method 

at the next sections. The Prismatic Grid of Type I consists of prisms derived from a regular 

Cartesian grid through the decomposition of its hexahedral elements with a diagonal splitting 

(Figures 5.2-5.3). Two prismatic elements are produced by this procedure. The Prismatic Grid of 

Type II is generated in a similar way, the only difference being that the outcome of the 

hexahedron elements’ division includes 4 prisms (Figures 5.4–5.5). Grids of Type III may be 

regarded as an extrusion of a two-dimensional grid composed of triangular equilateral elements 

to a third dimension creating thus; prismatic elements (Figures 5.6-5.7). The Pyramidal Grid is 

created when the hexahedral cells of a regular Cartesian grid are decomposed. The insertion of a 

node at its barycenter and its connectivity to the corresponding vertices produces 6 pyramids 

(Figures 5.8 –5.9). Additionally, two of the abovementioned types of grid, the Pyramidal and the 

Prismatic with equilateral triangular base, are used to derive the Tetrahedral Grids by 

decomposing their elements into tetrahedrons (Figures 5.10-5.13). Finally, random shifts of the 

original grid node positions cause distortions that provide the Irregular Grids (Figures 5.14-5.15). 

This is possible for all grid types. These constructed grids are considered typical of those that are 

usually applied for the numerical solution of the Navies-Stokes equations.  
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Figure 5.2: Prismatic Grid of Type I 

  

Figure 5.3: Prismatic Grid of Type I - details 
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Figure 5.4:  Prismatic Grid of Type II 

  

Figure 5.5:  Prismatic Grid of Type II - details 

 



 2019  Chapter 5: Development of 3-D Grid Generators 

 

51 

 

 

Figure 5.6:  Prismatic Grid of Type III 

  

Figure 5.7:  Prismatic Grid of Type III - details 
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Figure 5.8: Pyramidal Grid 

  

Figure 5.9: Pyramidal Grid - details 
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Figure 5.10: Tetrahedral Grid produced from the Pyramidal Grid 

  

Figure 5.11: Tetrahedral Grid produced from the Pyramidal Grid - details 
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Figure 5.12: Tetrahedral Grid produced from the Prismatic Grid of Type III 

 

  

Figure 5.13: Tetrahedral Grid produced from the Prismatic Grid of Type III - details 

 



 2019  Chapter 5: Development of 3-D Grid Generators 

 

55 

 

 

 
 

Figure 5.14:  Irregular mode of Prismatic Gird of Type II 
 

 

 
 

Figure 5.15:  Irregular mode of Tetrahedral Grid produced from the  
Pyramid Grid 
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5.2 Introduction to the Algorithms 

In this section a thorough representation of the developed algorithms is undertaken with a 

comprehensive description of the construction method for each type of grid. Representative 

figures throughout the consecutive stages of the development are given for deeper understanding. 

The source code of all grid generator types is developed in FORTRAN 90, which is a general-

purpose, compiled imperative programming language, especially suited to numerical computation 

and scientific computing, prevailing in the Computational Fluid Dynamics field. In this 

introduction the focus will be on the key aspects of the algorithms identical for all grid types, i.e. 

the data structures, the boundaries of the computational domain and the output data. 

As a primary step for each algorithm, an initialization procedure is executed in order to generate 

the nodes of the grid, where the assignment of the elements occurs. After an input file containing 

the variables for the specification of the grid is imported, the code proceeds with the calculation 

of all the nodes and cells composing the grid and stores them to the integer variables NNODE and 

NCELL respectively. With the determination of the nodes, the Cartesian coordinates (X, Y, Z) are 

allocated onto three one-dimensional arrays named X (i), Y (i) and Z (i) where the index defines 

the number of each node. 

The following step includes defining the elements. This requires a set of information such as the 

nodes which compose the relevant element, its faces, and the neighboring cells. A two-

dimensional array, named NC (i, j), is declared in order to assign the nodes which compose a 

certain element. The former index, “i”, stands for the node number of the element vertices, while 

the latter, “j” represents the number of the corresponding element. Depending on the element 

type, hexahedron, pyramid, or prism, the amount of nodes assigned is 4, 5 and 6. The orientation 

of the assignment is not arbitrary, but it is standardized by the ANSYS format and is depicted in 

Figure (5.16).  

 
 

Figure 5.16:  Node orientation for each 3D element 
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As far as the definition of the element faces is concerned, a three-dimensional array NF (i, j, k) is 

declared. In this matrix what is stored is the set of nodes, which determine each face of the 

element. The first index declares the number of the element face; the second states the number of 

each node composing the face; the third index refers to the number of the corresponding cell. 

Again, the number of faces depends on the element type, while the number of face nodes depends 

on the face shape. 

Lastly, for each element the neighboring cells need to be determined. This requires a two- 

dimensional array NE (i, j) which stores the number of the neighboring cells for each element. 

The former index declares the successive neighbors and the latter the element itself. Five 

neighbors are declared for the pyramidal and prismatic elements and four neighbors for the 

tetrahedral. 

The definition of the variables is not over unless the demarcation of the computational domain is 

specified. Because of its hexahedral shape, 6 boundary planes need to be determined as 

boundaries. By convention, each plane is attributed a specific name, as illustrated in Figure 5.17 

and a particular index is assigned, as indicated in Table 5.3. The integer variable NBOUND refers 

to the total sum of the boundaries. 

To define a boundary plane, it is necessary to determine the faces it consists of with a set of 

information; this includes the nodes and the cell to which the relevant face belongs. A given 

number is tied with each boundary face according to a specific orientation. Four two-dimensional 

arrays NOD (k) (i, j), where k=1, 2... 4 store the nodes. The first index corresponds to the number 

of the boundary face and the second to the number of the boundary plane. The cell that 

corresponds to each boundary face is allocated to a two-dimensional array NBCELL (i, j) where 

both indexes have the same connotation as before. Moreover, a third two-dimensional array 

NBFACE (i, j) states the number face of the cell that is identical to the boundary face. Finally, the 

total sum of the boundary faces for each plane is declared with one-dimensional array, the NCB 

(NBOUND). 

The index assignment on the faces of each boundary plane follows a specific perspective the 

algorithm retains on the computational domain. Marking XZ_1 plane as default perspective 

(Figure 5.17), results in the rest of the planes’ views as derivations from shifts on the axes of 

Coordinate System. In particular:  

Table 5.2:  Perspective determination of the boundary planes  

DEFAULT PERSPECTIVE SHIFT ON AXIS OUTCOME 

XZ_1 Plane 

Z  by 90o YZ_2 

Z  by 180o XZ_2 

Z  by 270o YZ_1 

X  by 90o XY_1 

X  by 270o XY_2 
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Figure 5.17:  Notation of boundary planes 

 

 

Table 5.3:  Boundary index assignment  

BOUNDARY INDEX ASSIGNING PLANES 

Boundary [1] XZ_1 Plane 

Boundary [2] YZ_2 Plane 

Boundary [3] XZ_2 Plane 

Boundary [4] YZ_1 Plane 

Boundary [5] XY_1 Plane 

Boundary [6] XY_2 Plane 
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The following table summarizes the data structures that are described in this section. 

Table 5.4:  Summarizing table of data structures  

NOTION TYPE                     DESCRIPTIOIN 

X, Y, Z Array Coordinates of the nodes 

NCELL Integer Number of total cells 

NNODE Integer Number of total nodes 

NC Array Node number in each cell 

NF Array Node number of each face in each cell 

NE Array Cell number of each neighbor 

NBOUND Integer Number of total boundary planes 

NCB  Array Number of cell faces on each boundary plane 

NOD(i) Array Nodes of each boundary face 

NBCELL Array Number of the corresponding boundary cell 

NBFACE Array 
Number of corresponding face of each 
boundary cell 

 

The execution of the algorithms produces two types of output files for subsequent processing 

steps. The former is a text file with the extension .PLT which is a customized format for 

TECPLOT, a visualization and analysis software. The latter is in ANSYS.CFX format where the 

structure of the information is standardized and includes the following data: 

Table 5.5: Data output for ANSYS 

DATA DESCRIPTION 

Name of the Grid 
Number of Nodes 
Number of Cells 

Definition of  primary information 

X,Y,Z Coordinates Definition of the node coordinates 

Nodes of each Element 
Definition of the nodes composing each 
element  

Boundary Cells and Faces 
Definitions of  the boundary cell numbers 
along with the corresponding cell face 
numbers 
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5.3 Regular Grids 

5.3.1. Prismatic Grid of Type I 

The algorithm produces a prismatic grid whose prisms have an orthogonal triangular basis 

(Figures 5.2 – 5.3) through the decomposition of a regular Cartesian grid. Initially, a set of input 

values is provided for the code execution. These values refer to the specifications of the generated 

grid determining the dimensions of the computational domain and, implicitly, the magnitude of 

the consisting elements. In the following table, the first column illustrates the input values the 

user defines and the second column captures the auxiliary variables the algorithm determines in 

order to store them. 

Table 5.6:  Input values of Grid Type I and their corresponding variables  

INPUT VALUES VARIABLES 

Length of the Rectangle in the X – Direction X_L 

Length of the Rectangle in the Y – Direction Y_L 

Length of the Rectangle in the Z - Direction Z_L 

Number of Edges in the X – Direction NX 

Number of Edges in the Y – Direction NY 

Number of Edges in the Z – Direction NZ 

 

The length of the rectangle in three dimensions declares the magnitude of the hexahedral 

computational domain. The number of edges determines the segmentation in each direction, so 

that a regular Cartesian grid blueprint is constructed. Based on the input values, the total number 

of both nodes (NNODE) and elements (NCELL) is calculated.  

At this stage the node initialization process occurs. On the Euclidean space the X, Y, Z Cartesian 

Coordinates of the nodes are determined along with their allocation onto the three corresponding 

arrays X(i), Y(i) and Z(i), the index i signing the number of the node. The alliance of the nodes is 

set up in a fashion, such that the vertices of hexahedral elements, which define a regular Cartesian 

grid, are determined (Figure 5.18).  

An iterative procedure consisting of three loops is implemented for the node initialization. 

Considering zero point of the Cartesian coordinates as the starting point, the first loop 

determines the nodes in the Y-direction, based on the input value length (Y_L). The distance 

between the nodes (𝑑𝑦) is defined by the division of the Y-direction length (Y_L) with the number 

of the edges (NY) in this direction. The same iterative process is repeated by a second loop in the 

X-direction defining the successive rows of nodes. Again, the distance (𝑑𝑥) between the rows is 

the division result of the (X_L) with the total amount of the edges (NX). Finally, a third loop 

completes the node determination in the Z-direction positioning the nodes on the following 
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successive levels. The indexing of the nodes follows the flow of the described iterative procedures 

and is depicted in Figure 5.18. 

 
Figure 5.18: Node orientation of the blueprint regular Cartesian grid for Prismatic 
Grid of Type I 

 

The next step is the definition of the elements. The main concept here is the construction of two 

prismatic cells with a diagonal decomposition of every hexahedral cell created by the node 

initialization (Figure 5.19).  

 
Figure 5.19: Assignment of auxiliary variables on a hexahedral element 
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Each hexahedral element is scanned by an iterative procedure and dummy variables are utilized 

to store temporarily the 8 node numbers of the vertices, in order to construct the prismatic cells. 

Subsequently, the nodes are distributed to the NC (i, j) array with a specific orientation, as 

mentioned in the previous section (Figure 5.16), defining thus two distinct elements. Figure 5.19 

illustrates the location of the dummy variables, while Table 5.7 indicates the assigning of the 

nodes to the two prisms. 

Table 5.7:  Node assignment to the two prisms  

DEFINITION NODE (1) NODE (2) NODE (3) NODE (4) NODE (5) NODE (6) 

Prism [1] K1 K2 K3 K5 K6 K7 

Prism [2] K1 K3 K4 K5 K7 K8 

 

At the same stage, both the determination of the faces, which compose each cell and the 

neighboring cells takes place. With respect to the faces, the index numbering of each face 

depends on the nodes it consists of. The assignment of the nodes to the NF (i, j, k) occurs in 

accordance to a specific orientation. The final outcome is illustrated in Table 5.8. In connection 

with the neighboring cells, 5 neighbors are defined for the prismatic cells. The index number of 

each neighbor is dependent on the number face it is aligned with, as shown in Table 5.9. 

Table 5.8:  Face indexing and node assignment on the NF array  

FACES 
NODE ASSIGNMENT TO NF ARRAY 

1st 2nd 3rd 4th 

Face [1] Node (1) Node (3) Node (6) Node (4) 

Face [2] Node (1) Node (2) Node (5) Node (4) 

Face [3] Node (2) Node (3) Node (6) Node (5) 

Face [4] Node (1) Node (2) Node (3) _ 

Face [5] Node (4) Node (5) Node (6) _ 

 

 

 

 

 

 



 2019  Chapter 5: Development of 3-D Grid Generators 

 

63 

 

Table 5.9:  Neighboring cell indexing with reference to the corresponding face  

INDEXING NEIGHBORS CORRESPONING FACE 

Neighbor [1] Face [3] 

Neighbor [2] Face [1] 

Neighbor [3] Face [2] 

Neighbor [4] Face [4] 

Neighbor [5] Face [5] 

 

The abovementioned processes are executed for every hexahedral element, so that prisms are 

created across the domain. The direction of the flow procedure, which the algorithm follows in 

order to scan all hexahedrons, is similar to the node alliance. Ordering the hexahedral element 

that lies at the zero point of Cartesian Coordinates as the initial point, an iterative procedure of 

three loops is implemented. The first loop defines the elements in the Y-direction (Figure 5.20), 

while the second loop proceeds to the next rows in the X-direction (Figure 5.21). Lastly, the third 

loop is executed to the layers higher up in the Z-direction by determining the elements of the 

whole domain (Figure 5.22). Once again, the index cell numbering follows the flow of the 

iterative processes. 

 
 

Figure 5.20: Loop for cell definition in Y-direction 
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Figure 5.21: Loop for cell definition in X-direction 

 

 

 

Figure 5.22: Loop for cell definition in Z-direction 
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The final stage of the algorithm execution contains the boundary determination of the grid 

domain. In the previous section, 6 boundary planes were defined because of the hexahedral shape 

of the domain. An iterative procedure is implemented for each boundary plane, in order to 

declare the boundary faces by assigning the number of nodes which compose each boundary face 

(NOD), the number of the corresponding cell (NBCELL), along with the corresponding element 

face (NBFACE). Two loops are used to define the two-dimensional planes: For the XZ_1, XZ_2, 

YZ_1 and YZ_2, which are comprised of rectangular elements, the former loop defines the 

elements in the Y-direction, while the latter loop those in the X-direction. In Figures 5.23 – 5.24, 

the index numbering of these boundary faces and the orientation, which the nodes are assigned, 

are respectively shown. For the XY_1 and XY_2 planes, which are comprised of triangular 

elements, the iterative process follows the reverse flow: firstly, in the X-direction and then in the 

Y-direction, as illustrated in Figures 5.25-5.28. The difference in the orientation of the triangles 

on the two planes stems from the predetermined perspective view discussed in introduction 

(Figure 5.17).   

 

 
 

 

Figure 5.23: Indexing of the boundary faces on 
XZ_1, XZ_2, YZ_1, and YZ_2 planes 

Figure 5.24: Node assignment on each face on 
XZ_1, XZ_2, YZ_1, and YZ_2 planes 

 

 

 
 

 

Figure 5.25: Indexing of the boundary faces on 
XY_1 plane 

Figure 5.26: Node assignment on each face on 
XY_1 plane 



Chapter 5: Development of 3-D Grid Generators  2019 

 

66 

 

 

 

 
 
 
 

 
 
 

 

Figure 5.27: Indexing of the boundary faces on 
XY_2 plane 

Figure 5.28: Node assignment on each face on 
XY_2 plane 

 

5.3.2 Prismatic Grid of Type II 

The aim of this section is the development of the algorithm that produces a grid of prismatic 

elements with a regular triangular base of Type II (Figures 5.4-5.5). A construction technique 

similar to the grid generation of Type I is employed, the main difference being the decomposition 

process of the Cartesian regular grid. More specifically, two diagonal planes divide each 

hexahedral element of the regular grid into 4 prismatic cells. The focus on this section will mainly 

be on those aspects that differentiate the proceeding steps of the algorithm development from the 

ones described for the development of the Grid of Type I. 

An import file provides the data for the definition of the features about the grid (Table 5.6), i.e. 

the length of the rectangle in the three dimensions, in order to define the computational domain, 

and the number of edges, which are implicitly used for the segmentation of each direction. To 

begin with, the algorithm proceeds with the node initialization calculating the Cartesian 

Coordinates (X,Y,Z) and stores them in the corresponding arrays (X(i),Y(i),Z(i)). A blueprint of 

the nodes forming a regular Cartesian grid is created and extra nodes are set at the barycenter of 

each quadrilateral face formed by the nodes on each two-dimensional plane. These nodes are 

utilized for the division of the hexahedral elements. 

The nodes of the regular grid are initialized with a procedure identical to the one described for 

Grid Type I. Three loops are executed in the relevant dimensions X, Y, Z and an index number is 

assigned for each node as shown in Figure 5.18. In addition, the auxiliary nodes are determined in 

accordance to the orientation of the nodes that define the Cartesian grid. The index numbering 

further continues the last arithmetic succession. Figure 5.29 illustrates the final outcome. 
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Figure 5.29: Node orientation for the Prismatic Grid of Type II 

Proceeding to the next step, the algorithm determines the prismatic elements assigning the node 

set to the NC array for each element. The iterative process, which scans every hexahedral element 

in order to perform its decomposition into prisms, is similar to the one depicted in Figures 5.20-

5.22. As far as the decomposition is concerned, 4 distinct prismatic elements are produced.  The 

auxiliary variables, which include the vertex nodes of the hexahedron along with the middle 

nodes, are defined, as shown in Figure 5.30 and they are assigned to the prisms, as indicated in 

the Table 5.10. Finally, the assignment of the element faces (NF) as well as the determination of 

the neighboring cells (NE) occurs in the way that was described in Tables 5.8 and 5.9. 

 
 

Figure 5.30: Assignment of auxiliary variables of a hexahedral element 
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Table 5.10:  Node assignment for the 4  prisms 

DEFINITION NODE (1) NODE (2) NODE (3) NODE (4) NODE (5) NODE (6) 

Prism [1] K1 K2 K5 K6 K7 K10 

Prism [2] K2 K3 K5 K7 K8 K10 

Prism [3] K3 K4 K5 K8 K9 K10 

Prism [4] K4 K1 K5 K9 K6 K10 

 

The determination of the grid’s boundary conditions completes the execution of the algorithm. 

An iterative procedure of two loops defines the two-dimensional boundary planes i.e. the nodes of 

the faces (NOD), the corresponding elements (NBCELL), and the respective element faces 

(NBFACE). The planes XZ_1, XZ_2, YZ_1, and YZ_2 comprised of rectangular elements are 

assigned a consecutive numbering. The flow of the iterative process begins at the first row and 

proceeds on the layers above, as shown in Figures 5.31-5.32. On the other hand, with respect to 

the planes XY_1 and XY_2 composed of triangular elements, the iterative procedure assigns in a 

circular way a successive numbering to each triangular element found on each rectangle. This is 

performed, firstly, in the Y-direction and then in the X-direction.  This is presented in Figures 

5.33-5.34. Note that the perspective in the two-dimensional figures echoes the discussion in the 

introductory part. 

 

 

 
 

 

Figure 5.31: Indexing of the boundary faces on 
XZ_1, XZ_2, YZ_1, and YZ_2 planes 

Figure 5.32: Node assignment on each 
face on XZ_1, XZ_2, YZ_1, and YZ_2 planes 
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Figure 5.33: Indexing of the boundary faces on 
XY_1 and XY_2 planes 

Figure 5.34: Node assignment on each face 
on XY_1 and XY_2 planes 

 

5.3.3 Prismatic Grid of Type III 

The purpose of this section is the study of the prismatic grids with an equilateral triangular base 

(Figures 5.6–5.7). The resulting grid is regarded as the outcome of a two-dimensional grid 

extrusion (composed from equilateral triangular elements) to the third dimension. A detailed 

presentation of the construction method is introduced. 

The features needed for the construction of the grid are provided through an input file. Unlike the 

notions given in the previous algorithms, the content of this file lacks one value, concerning the 

number of edges in the Y-dimension for reasons which are going to be discussed below. 

Table 5.11: Input values of grid Type III and their corresponding variables 

INPUT VALUES VARIABLES 

Length of the Rectangle in the X – Direction X_L 

Length of the Rectangle in the Y – Direction Y_L 

Length of the Rectangle in the Z - Direction Z_L 

Number of Edges in the X – Direction NX 

Number of Edges in the Z – Direction NZ 
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The initialization of the nodes is the primary step of the algorithm. An iterative procedure is 

implemented, where a two-dimensional grid of equilateral triangular elements is constructed in 

order to be replicated in the third dimension.  

The construction of equilateral triangles requires the definition of the equilateral edge length; this 

is calculated as the value 𝑑𝑥 stemming from the division of X_L (the length of X-dimension), with 

the NX (the number of edges in X-dimension). Employing a trigonometric relation, the algorithm 

calculates the height of the equilateral triangle on the premises of the defined value 𝑑𝑥, which 

corresponds to the length of  𝑑𝑦. Consequently, the number of edges in the Y-dimension (NY) is 

inferred by the division of the defined 𝑑𝑦 with the length of Y_L. This justifies the missing notion 

of NY in the input file as mentioned earlier. 

All of these calculated values determine the segmentation of the two-dimensional plane for the 

allocation of the nodes to take place, defining the vertices of the triangular elements which 

constitute the grid blueprint. An iterative procedure is implemented in order to initialize the 

coordinate nodes (X(i), Y(i), Z(i)) assigning the corresponding indexes, as depicted in Figure 5.35. 

Note that the edge triangles are not of equilateral shape, because of a constraint that prohibits the 

filling of quadrilateral space merely with equilateral triangles. 

 
 

Figure 5.35: Node initialization for the two-dimensional plane of the Prismatic Grid Type III 

 

Lastly, the constructed two-dimensional grid is reproduced towards the Z-dimension with an 

additional loop, according to the predefined values NZ and Z_L. The final outcome is illustrated in 

Figure 5.36. 
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Figure 5.36: Node orientation for the Prismatic Grid of Type III 

 

The algorithm proceeds to the definition of the prismatic elements. Prisms are derived by a direct 

node connectivity of the neighboring 2-D planes in the way exemplified in Figure 5.37. An 

iterative procedure is applied, scanning each triangular element on each 2-D plane and 

performing the appropriate connectivity of the nodes on the layer immediately above.  

 
 

Figure 5.37: Prism derivation  
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The cell definition procedure follows a specific pattern: 4 rows of elements in the X-direction are 

determined by a set of 4 inner loops, each one of them represented with a different color in the 

scheme below. 

 

 
 

Figure 5.38: Loops for cell definition in the X-direction 

An additional loop iterates the same pattern in the Y-direction determining all the prismatic 

elements of the first layer (Figure 5.39). The iterative procedure is executed as many times as 

dictated by the division of the NY/2. In case the NY equals with odd number, at the end of the 

iterative procedure under discussion an extra loop is performed, in order to determine the 

remaining two rows of elements. 

 
 

Figure 5.39: Loop for cell definition in the Υ-direction 

To complete the cell definition procedure, a loop in the Z-direction is implemented, which 

defines the elements on the succeeding layers above (Figure 5.40). The index cell numbering 

follows the flow of the entire iterative process. 
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Figure 5.40:  Loop for cell definition in the Z-direction 
 

There are two distinct orientations which a prism might get in the grid. Figure 5.41 illustrates the 

auxiliary variables assignment of the two cases and Table 5.12 the node assignment to the prisms. 

 
                                 Prism [1] 

 
         Prism [2] 
 

Figure 5.41: Assignment of auxiliary variables based on the two alternative 
orientations on the grid 

Table 5.12:  Node assignment on the prisms of Prismatic Grid Type III  

DEFINITION NODE (1) NODE (2) NODE (3) NODE (4) NODE (5) NODE (6) 

Prism [1] K1 K2 K3 K4 K5 K6 

Prism [2] K1 K2 K3 K4 K5 K6 

With reference to the determination of the faces and the neighboring cells for each prismatic 

element and the assignment to the NF and NE arrays respectively, they are both described in 

Tables 5.8 and 5.9. 
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The algorithm terminates with the definition of the 6 boundary planes (NOD, NBFACE, and 

NBCELL). An iterative procedure of two loops at the two dimensions define the YZ_1, YZ_2, 

XZ_1, XZ_2 planes having quadrilateral elements, starting from the first column and proceeding 

to the consecutive ones, as illustrated in Figures 5.42 – 5.43, while the triangular elements of the 

XY_1 and the XY_2 planes are determined by an iteration beginning from the first row and 

proceeding to the consecutive ones (Figures 5.44-5.45). 

 

 

Figure 5.42: Indexing of the boundary faces on 
XZ_1, XZ_2, YZ_1, and YZ_2 planes 

Figure 5.43: Node assignment on each face 
on XZ_1, XZ_2, YZ_1, and YZ_2 planes 

 

 

 
 
 
 
 

 
 
 

 
 
 
 

 

Figure 5.44: Indexing of the boundary faces on 
XY_1 and XY_2 planes 

Figure 5.45: Node assignment on each 
face on XY_1 and XY_2 planes 
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5.3.4 Pyramidal Grid 

In this section the development of the grid composed by pyramidal elements is presented (Figures 

5.8-5.9). This type is derived from a regular Cartesian one, whose elements are divided into 

pyramids with the insertion of a middle node at its barycenter. The connectivity of this node with 

the 8 vertices decomposes the hexahedral element into 6 pyramids.  

The initialization of the nodes, which constitute the blueprint of a Cartesian gird, has been 

already introduced in the previous subsections, where it was noted that the assignment of the 

node coordinates (X (:), Y (:), Z (:)) array) occurs according to the import file (Figure 5.18, Table 

5.6). A second iterative procedure determines the middle nodes at the barycenter of each 

hexahedral element, in an orientation identical with the one applied for the initialization of the 

rectangular nodes. The numbering of the middle nodes follows the arithmetic consecution of the 

nodes forming the regular grid. Figure 5.46 illustrates the final result for the nodes and the 

assigned indexes. 

 
 
 

Figure 5.46: Node orientation for the Pyramidal Grid 

Regarding the cell definition, an iterative procedure is implemented in order to decompose each 

hexahedral into pyramidal elements. The procedure is executed by a set of three loops, whose 

flow reflects the description in section 5.3.1, Figures 5.20-5.22.   

The decomposition of the hexahedral elements requires that during the iterative process auxiliary 

variables be assigned to the 8 vertices of each hexahedron and to the additional middle node at 

the barycenter (Figure 5.47). Consequently, the nodes to be distributed to the NC (i, j) arrays form 
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6 distinct pyramidal elements. Table 5.13 shows the node distribution to the constructed 

pyramids.  

 
 

Figure 5.47: Assignment of auxiliary variables on a hexahedral element 

 

Table 5.13:  Node assignment for the 6 pyramids  

CELL DEFITION NODE (1) NODE (2) NODE (3) NODE (4) NODE (5) 

Pyramid [1] K1 K2 K3 K4 K9 

Pyramid [2] K5 K6 K7 K8 K9 

Pyramid [3] K1 K2 K6 K5 K9 

Pyramid [4] K2 K3 K7 K6 K9 

Pyramid [5] K3 K4 K8 K7 K9 

Pyramid [6] K4 K1 K5 K8 K9 

 

Concerning the indexing of the faces stored in the NF array, it is directly determined by the node 

numbers it consists of (Table 5.14).  Finally, 5 neighboring cells for each element need to be 

declared in an ascending numerical order and in relation to the number face adjacent to it, as 

indicated in Table 5.15. 
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Table 5.14:  Face indexing and node assignment on the NF array  

FACES 
NODE ASSIGNMENT TO NF ARRAY 

1st 2nd 3rd 4th 

Face [1] Node (4) Node (1) Node (5) _ 

Face [2] Node (2) Node (3) Node (5) _ 

Face [3] Node (1) Node (2) Node (5) _ 

Face [4] Node (3) Node (4) Node (5) _ 

Face [5] Node (1) Node (2) Node (3) Node (4) 

 

Table 5.15:  Neighboring cell indexing with reference to the corresponding face  

INDEXING NEIGHBORS CORRESPONING FACE 

Neighbor [1] Face [5] 

Neighbor [2] Face [3] 

Neighbor [3] Face [2] 

Neighbor [4] Face [4] 

Neighbor [5] Face [1] 

 

In order to determine the boundary conditions for the grid domain, two loops are required, so 

that the boundary faces on the 6 surfaces are defined, in other words the NOD, NBCELL, and 

NBFACE arrays. The orientation of the face indexing and the node assignment for the planes 

XZ_1, XZ_2, YZ_1, and YZ_2 on the one hand and for the planes XY_1 and XY_2 on the other are 

presented in Figures 5.48-5.49 and Figures 5.50-5.51 respectively.  
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Figure 5.48: Indexing of the boundary faces 
on  XZ_1, XZ_2, YZ_1, and YZ_2 planes 

Figure 5.49: Node assignment on each face 
on  XZ_1, XZ_2, YZ_1, and YZ_2 planes 

 

 

 

 

Figure 5.50: Indexing of the boundary 
faces on XY_1 and XY_2 planes 

Figure 5.51: Node assignment of each face 
on XY_1 and XY_2 planes 

 

5.3.5. Tetrahedral Grid 

Two algorithms have been developed for the generation of tetrahedral elements (Figures 5.10-

5.13). The former relies on the pyramidal grid algorithm, which further decomposes the 

generated elements into tetrahedrons. The latter is based on the algorithm generating equilateral 

prismatic grids; in this case, as well, the produced prisms are fragmented into tetrahedrons. 
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Type I 

As it was mentioned above, the process heavily depends on the approach of the Pyramidal Grid; 

the node initialization is defined based on the input values (Table 5.6) creating the footprint of a 

regular Cartesian grid along with the middle nodes at the barycenter of the hexahedrons (Figure 

5.46). The algorithm proceeds in scanning and decomposing the hexahedral elements with the 

same iterative procedure, which has already been discussed in section 5.3.1 (Figures 5.20-5.22). 

Given the notion that tetrahedral elements are derived from the pyramidal ones with a diagonal 

splitting, which creates two tetrahedral cells for each pyramid (Figure 5.52), a further 

decomposition takes place at the cell definition procedure. In this case, the 6 pyramids of each 

hexahedron are decomposed into 12 tetrahedrons. The dummy variables (K1, K2, K3… K9) are 

assigned at the vertices of each hexahedral elements and their barycenter (Figure 5.53) and 

allocated to the corresponding NC array (Table 5.16). 

 
Figure 5.52: Pyramid splitting into two tetrahedrons 

 

 
Figure 5.53: Assignment of auxiliary variables on a hexahedral element 
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Table 5.16:  Node assignment for the 12  tetrahedrons 

DEFINITION NODE [1] NODE [2] NODE [3] NODE [4] 

Tetrahedron [1] K1 K2 K3 K9 

Tetrahedron [2] K1 K3 K4 K9 

Tetrahedron [3] K5 K6 K7 K9 

Tetrahedron [4] K5 K7 K8 K9 

Tetrahedron [5] K1 K2 K6 K9 

Tetrahedron [6] K1 K6 K5 K9 

Tetrahedron [7] K3 K6 K2 K9 

Tetrahedron [8] K3 K7 K6 K9 

Tetrahedron [9] K4 K7 K3 K9 

Tetrahedron [10] K4 K8 K7 K9 

Tetrahedron [11] K4 K1 K5 K9 

Tetrahedron [12] K4 K5 K8 K9 

 

Concerning the 4 faces of the tetrahedral element, they need to be stored in NF array; the index 

numbering of each face corresponds to the nodes indicated in Table 5.17. Moreover, the 

neighboring cells are defined accordingly, with each face corresponding to the indexing of its 

neighbor (Table 5.18). 

Table 5.17: Face indexing and node assignment in NF array 

FACES 
NODE ASSIGNMENT TO NF ARRAY 

1st 2nd 3rd 

Face [1] Node (1) Node (2) Node (3) 

Face [2] Node (1) Node (2) Node (4) 

Face [3] Node (2) Node (3) Node (4) 

Face [4] Node (1) Node (3) Node (4) 
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Table 5.18:  Neighboring cell indexing with reference to the corresponding face  

INDEXING NEIGHBORS CORRESPONING FACE 

Neighbor [1] Face [1] 

Neighbor [2] Face [2] 

Neighbor [3] Face [3] 

Neighbor [4] Face [4] 

 

All the boundary planes are composed from triangular elements and according to the perspective 

view taken to each plane. Figures 5.54–5.61 demonstrate the face indexing and the node 

orientation of each boundary face. 

 

 

 
 
 

 
 
 

Figure 5.54: Indexing of the boundary faces on 
XZ_1 and YZ_1 planes 

Figure 5.55: Node assignment on each face 
on XZ_1 and YZ_1 planes 

 

 

 
 

 
 

 

Figure 5.56: Indexing of the boundary faces 
on XZ_2, YZ_2 planes 

Figure 5.57: Node assignment of each face on 
XZ_2, YZ_2 planes 
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Figure 5.58: Indexing of the boundary faces 
on XY_1 plane 

Figure 5.59: Node assignment of each face on 
XY_1 plane 

 

 
 

 
 

Figure 5.60: Indexing of the boundary faces 
on XY_2 plane 

Figure 5.61: Node assignment of each face 
on XY_2 plane 

Type II 

With respect to the generation of tetrahedrons of type II, the algorithmic processing of the 

prismatic elements of Type III is extended on the basis of the prisms’ decomposition into 

tetrahedrons. This is performed with a node insertion at the barycenter of each prism. Its 

connectivity with the vertices of the prism gives rise to two tetrahedrons and 4 pyramids. A 

further decomposition of the pyramids with a diagonal splitting completes the creation of 8 

tetrahedral elements (Figure 5.62). 

 
Figure 5.62: Decomposition of a prism into 8 tetrahedrons 



 2019  Chapter 5: Development of 3-D Grid Generators 

 

83 

 

Again, an input file defines the features of the grid (Table 5.11) and the node initialization occurs 

(Figure 5.36). At this point an additional loop defines the middle nodes for each prism. In what 

follows, the same iterative procedure defines the elements in the manner discussed in section 

5.3.3, Figures 5.38-5.40. The dummy variables assignment for the two different orientations the 

grid might receive is shown in Figure 5.63. For each prism 8 distinct tetrahedrons are created 

through the allocation to the corresponding NC arrays. Tables 5.19 and 5.20 indicate these 

definitions. NF and NE arrays, referring to the faces and the neighboring cells, are determined 

according to Tables 5.17 and 5.18 respectively. 

 
Prism [1] 

 
Prism [2] 

 
 

Figure 5.63: Assignment of auxiliary variables, based on the two alternative orientations of 
the grid 
 

Table 5.19:  Node assignment on the 8 tetrahedrons of each prism [ 1]  

DEFINITION NODE [1] NODE [2] NODE [3] NODE [4] 

Tetrahedron [1] K7 K1 K2 K5 

Tetrahedron [2] K7 K1 K5 K4 

Tetrahedron [3] K7 K2 K3 K6 

Tetrahedron [4] K7 K2 K6 K5 

Tetrahedron [5] K7 K3 K1 K4 

Tetrahedron [6] K7 K3 K4 K6 

Tetrahedron [7] K7 K1 K2 K3 

Tetrahedron [8] K7 K4 K5 K6 
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Table 5.20:  Node assignment on the 8 tetrahedrons of each prism [ 2]  

DEFINITION NODE [1] NODE [2] NODE [3] NODE [4] 

Tetrahedron [1] K7 K1 K2 K4 

Tetrahedron [2] K7 K2 K5 K4 

Tetrahedron [3] K7 K2 K3 K5 

Tetrahedron [4] K7 K3 K6 K5 

Tetrahedron [5] K7 K3 K1 K6 

Tetrahedron [6] K7 K1 K4 K6 

Tetrahedron [7] K7 K1 K2 K3 

Tetrahedron [8] K7 K4 K5 K6 

 

Taking under consideration the different perspective views on the boundary faces, XZ_1, XZ_2, 

YZ_1 and YZ_2 planes are composed of triangular elements, as depicted in Figures 5.64-5.65, 5.66-

5.67 and 5.68-5.69, respectively, while for the planes XY_1 and XY_2 the equilateral triangles, of 

which they consist, have the same orientation as illustrated in Figures 5.70-5.71. 

 

 
 
 

 

Figure 5.64: Indexing of the boundary faces on 
the XZ_1 plane 

Figure 5.65: Node assignment of each face on 
the XZ_1 plane 
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Figure 5.66: Indexing of the boundary faces on 
XZ_2 plane 

Figure 5.67: Node assignment of each face on 
XZ_2 plane 

 

 

 

 

Figure 5.68: Indexing of the boundary faces on 
YZ_1 and YZ_2 planes 

Figure 5.69: Node assignment of each face on 
YZ_1 and YZ_2 planes 

 

 

 
 

 
 

 
 
 

 
 

 

 

Figure 5.70: Indexing of the boundary faces 
on XY_1 and XY_2 planes 

Figure 5.71: Node assignment of each face on 
XY_1 and XY_2 planes 
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5.4 Irregular Grids 

Grid irregularities are introduced by perturbing the grid nodes from their original positions with 

random shifts. All the aforementioned grid types are developed so as to produce Irregular Girds 

with the addition of a simple subroutine where the distortion of the grid nodes occurs. 

An iterative procedure assigns indexes on the nodes, differentiating the boundary nodes from the 

internal ones. This happens in order for the boundary nodes to remain intact. As a result, the 

computational domain retains its form. Subsequently, a recursive process disturbs the original 

coordinates of the internal nodes. This perturbation takes place randomly in each dimension and 

is defined as 0.4rΔx, where r ∈ [−1/2, 1/2] is a random number and Δx is the local mesh size along 

the given dimension.  

The subroutine is outlined in the pseudo-code below. 

Subroutine Distortion 

//For the boundary nodes// 

Do i =1, NNODE 

  IF (node is a boundary) ΤΗΕΝ 

    Set index to the node 

  END 

ENDDO 

//Node perturbation// 

Do i =1, NNODE 

  IF (node is not a boundary) ΤΗΕΝ  

    Distort the node 

  END 

ENDDO 

For each of the regular grid types, its corresponding irregular version is shown in the following 

Figures (5.72-5.77). 
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Figure 5.72: Distorted Prismatic Grid of Type I 
 
 
 

 
 

Figure 5.73: Distorted Prismatic Grid of Type II 
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Figure 5.74: Distorted Prismatic Grid of Type III 
 
 
 

 
 

Figure 5.75: Distorted Pyramidal Grid  
 



 2019  Chapter 5: Development of 3-D Grid Generators 

 

89 

 

 

 
 

Figure 5.76: Distorted Tetrahedral Grid of Type I 
 
 
 

 
 

Figure 5.77: Distorted Tetrahedral Grid of Type II 
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CONCLUSIONS AND FUTURE WORK 

In the current study, a high-order numerical scheme was integrated into an existing academic 

solver (EU2) for the numerical solution of 2-dimensional Euler equations. The discretized 

governing equations are solved with a Finite Volume Node-centered scheme on unstructured 

triangular grids, while an upwind method is implemented for the computation of the inviscid 

fluxes, employing the Roe’s approximate Riemann. A successive differentiation technique is 

utilized to achieve up to third order spatial accuracy incorporating the high-order correction 

terms to the reconstructed nodal values. The aforementioned formulation is based on a variable-

extrapolation, the U-MUSCL type reconstruction, which closely resembles the traditional MUSCL 

one. Additionally, a Strong Stability Preserving (SSP) fourth order - five stage Runge-Kutta 

method is used for time discretization. 

The benchmark problem of an isentropic travelling vortex with a well-known analytical solution 

is utilized for the evaluation of the numerical accuracy. It was chosen to examine the behavior of 

the numerical scheme under certain conditions and determine its effectiveness to the numerical 

solution. Emphasis has been placed on grid convergence study, to define the order of the 

numerical accuracy of the scheme. Using a controlled environment through a successive grid 

refinement procedure, numerical simulations have been carried out on different type of triangular 

grids and in two different time periods.  The following major conclusions can be drawn from the 

present work: 

-The presented high-order scheme enhances the numerical accuracy of the existing solver. In 

terms of the convergence behavior, the numerical results for regular grids obtain a satisfactory 

agreement. The convergences histories of Equilateral (Type I) and Orthogonal (Type II) grids 

exhibit an identical behavior for all conservatives’ variables and for all different norms and 

achieve a third order accuracy, which, in some cases, was surpassed. As expected, orthogonal grid 

(Type III) and especially the distorted grid have shown an order reduction on the convergence 

rates, compared to the previous ones. The employment of Green-Gauss formula may not give the 

expected high-order accuracy on general unstructured grids but it certainly improves the 

accuracy of a base second-order scheme. 

-The experience of integrating the current numerical scheme into the existing academic solver 

shows an easy implementation without excessive efforts. Through the successive differentiation 

process, the computation of the high-order terms is feasible by exploiting the existing structure of 

the code with only slight modifications. The same routine that computes the field of first 

derivatives is utilized to obtain the field of the higher derivatives. Since there is no need to 

introduce additional DoFs (Degreed of Freedom) to the reconstructed values, this advantage 

seems quite preferable for parallel unstructured flow solvers where the employment of the 

common high-order schemes is rather challenging. 

- The memory requirements of the incorporated high-order module and the computation time of 

the numerical solution are kept low. The computation of the high order terms requires only the 

allocation of 3 additional arrays in the case of a 3rd order scheme, while the computational effort 

for the flux calculation in each iteration has only a low overhead, associated with the calculation 

of the above terms. 
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Following from this work, the derivation of the corresponding high-order formulation is already 

introduced into a 3-dimensional numerical flow model. Οn-going development of high-order 

accuracy to the 3-D CFD solver Galatea is being carried out. As already mentioned in Chapter 4, 

Galatea is a parallelized node-centered finite volume solver for the numerical solution of 

compressible fluid flows in hybrid unstructured grids. The developed 3-D computational meshes 

demonstrated in chapter 5 will be used for an extensive evaluation of the numerical results similar 

to the methodology that has been employed in this study. 

Finally, the implementation of the high-order module was conducted without taking into account 

quadrature rules in the computation of the numerical fluxes. Hence, it was restricted to the 

existing midpoint rule for the calculation of the flux integrals, albeit providing a significant 

improvement to the numerical solutions. A future development using additional quadrature 

points could hypothetically increase the order of the numerical scheme, along, however, with the 

analogous computational cost. Further research could be undertaken to explore the potential 

improvements on the numerical performance of the aforementioned procedures. 
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APPENDIX A: Jacobian Matrix Decomposition 

The Jacobian matrix of the convective flux vector 𝐻⃗⃗ 𝑖𝑛𝑣 is analyzed via the eigenvalue 

decomposition as follows [Hir90, Lan98] 

𝐴 = 𝑇 𝛬 𝑇−1 

 
(A.1) 

where 𝛬  is a 5x5 diagonal matrix, whose entries are the eigenvalues of the Jacobian matrix 𝐴, 

defined as [Hir90] 

𝛬 = 𝑑𝑖𝑎𝑔{𝑉̂𝑛|𝑛⃗ |, 𝑉̂𝑛|𝑛⃗ |, 𝑉̂𝑛|𝑛⃗ |, (𝑉̂𝑛 + 𝑐)|𝑛⃗ |, (𝑉̂𝑛 − 𝑐)|𝑛⃗ | } 
 

(A.2) 

while 𝑇 is a matrix, including the eigenvectors of the Jacobian matrix A [Hir90] 

𝑇 =

[
 
 
 
 
 
 

𝑛̂𝑥 𝑛̂𝑦 𝑛̂𝑧 𝐶 𝐶

𝑛̂𝑥𝑢 𝑛̂𝑦𝑢 − 𝑛̂𝑧𝜌 𝑛̂𝑧𝑢 + 𝑛̂𝑦𝜌 𝐶(𝑢 + 𝑐𝑛̂𝑥) 𝐶(𝑢 − 𝑐𝑛̂𝑥)

𝑛̂𝑥𝑣 + 𝑛̂𝑧𝜌 𝑛̂𝑦𝑣 𝑛̂𝑧𝑣 − 𝑛̂𝑥𝜌 𝐶(𝑣 + 𝑐𝑛̂𝑦) 𝐶(𝑣 − 𝑐𝑛̂𝑦)

𝑛̂𝑥𝑤 − 𝑛̂𝑦𝜌 𝑛̂𝑦𝑤 + 𝑛̂𝑥𝜌 𝑛̂𝑧𝑤 𝐶(𝑤 + 𝑐𝑛̂𝑧) 𝐶(𝑤 − 𝑐𝑛̂𝑧)

𝑉⃗ 2

2
𝑛̂𝑥 + 𝜌𝑋

𝑉⃗ 2

2
𝑛̂𝑦 + 𝜌𝑌

𝑉⃗ 2

2
𝑛̂𝑧 + 𝜌𝑍 𝐶(𝐻 + 𝑐𝑉̂𝑛) 𝐶(𝐻 − 𝑐𝑉̂𝑛)]

 
 
 
 
 
 

 

 

(A.3) 

and 𝑇−1 is its inverse matrix [Hir90] 

𝑇−1 =

[
 
 
 
 
 
 
 
 
 
 
 𝐵𝑛̂𝑥 −

𝑋

𝜌

(𝛾 − 1)𝑛̂𝑥𝑢

𝑐2

(𝛾 − 1)𝑛̂𝑥𝑣

𝑐2
+

𝑛̂𝑧

𝜌

(𝛾 − 1)𝑛̂𝑥𝑤

𝑐2
−

𝑛̂𝑦

𝜌
−

(𝛾 − 1)𝑛̂𝑥

𝑐2

𝐵𝑛̂𝑦 −
𝑌

𝜌

(𝛾 − 1)𝑛̂𝑦𝑢

𝑐2
−

𝑛̂𝑧

𝜌

(𝛾 − 1)𝑛̂𝑦𝑣

𝑐2

(𝛾 − 1)𝑛̂𝑦𝑤

𝑐2
+

𝑛̂𝑥

𝜌
−

(𝛾 − 1)𝑛̂𝑦

𝑐2

𝐵𝑛̂𝑧 −
𝑍

𝜌

(𝛾 − 1)𝑛̂𝑧𝑢

𝑐2
+

𝑛̂𝑦

𝜌

(𝛾 − 1)𝑛̂𝑧𝑣

𝑐2
−

𝑛̂𝑥

𝜌

(𝛾 − 1)𝑛̂𝑧𝑤

𝑐2
−

(𝛾 − 1)𝑛̂𝑧

𝑐2

𝑐

𝜌
(
(𝛾 − 1)𝑉⃗ 2

2𝑐2
−

𝑉̂𝑛
𝑐
) (𝑛̂𝑥 −

(𝛾 − 1)𝑢

𝑐
)

1

𝜌
(𝑛̂𝑦 −

(𝛾 − 1)𝑣

𝑐
)

1

𝜌
(𝑛̂𝑧 −

(𝛾 − 1)𝑤

𝑐
)

1

𝜌

(𝛾 − 1)

𝜌𝑐

𝑐

𝜌
(
(𝛾 − 1)𝑉⃗ 2

2𝑐2
+

𝑉̂𝑛
𝑐
) (−𝑛̂𝑥 −

(𝛾 − 1)𝑢

𝑐
)

1

𝜌
(−𝑛̂𝑦 −

(𝛾 − 1)𝑣

𝑐
)

1

𝜌
(−𝑛̂𝑧 −

(𝛾 − 1)𝑤

𝑐
)

1

𝜌

(𝛾 − 1)

𝜌𝑐 ]
 
 
 
 
 
 
 
 
 
 
 

 

 

(A.4) 

where 𝑢, 𝑣 and 𝑤 are the components of velocity 𝑉⃗ , 𝑛⃗̂ = (𝑛̂𝑥, 𝑛̂𝑦, 𝑛𝑧) is the unit normal vector and  

𝑉̂𝑛 = 𝑉⃗⃗ ∙ 𝑛⃗⃗̂   is the value of corresponding velocity. The terms 𝐶,𝐻, 𝑋, 𝑌, 𝑍 and 𝐵 are auxiliary values 

defined as: 

𝐶 =
𝜌

2𝑐
 

(A.5) 

𝐻 =
𝑉⃗ 2

2
+

𝑐2

(𝛾 − 1)
 

𝑋 = 𝑛̂𝑧𝑣 − 𝑛̂𝑦𝑤 

𝑌 = 𝑛̂𝑥𝑤 − 𝑛̂𝑧𝑢 

𝑍 = 𝑛̂𝑦𝑢 − 𝑛̂𝑥𝑣 

𝐵 = 1 −
(𝛾 − 1)𝑉⃗ 2

2𝑐2
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Depending on the eigenvalue 𝜆 the Jacobian matrix for the Roe’s approximate Riemann solver is 

calculated as [Hir90] 

𝐴± = 𝑇 𝛬± 𝑇−1,   𝛬± = 𝑑𝑖𝑎𝑔{𝜆𝑖
±} (A.6) 

|𝐴|
 
= 𝑇 |𝛬 | 𝑇−1,   |𝛬|

 
= 𝑑𝑖𝑎𝑔{|𝜆𝑖

 |}  

while the eigenvalues 𝜆 as: 

𝜆𝑖
+ = 𝑚𝑎𝑥(𝜆𝑖

 , 0), 𝑖 = 1,…5 (A.7) 

𝜆𝑖
− = 𝑚𝑖𝑛(𝜆𝑖

 , 0), 𝑖 = 1,…5  
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APPENDIX B: Convergence Results (Isentropic Vortex) 

Table B.1:  Errors and convergence rates for Equilateral Grid (Type I) at t= 7  s 

EQUILATERAL I T=7  

L N hN log10(hN) 

1 20 0.8436 -0.0738 

1 40 0.4529 -0.3440 

1 80 0.2297 -0.6388 

1 160 0.1157 -0.9366 

1 320 0.0578 -1.2379 

 

L2 L2 L2 L2 L2 L2 L2 L2 L2 

Error(ρ) Error(ρu) Error(ρe) log10(error(ρ)) log10(error(ρu)) log10(error(ρe)) (ρ) (ρu) (ρe) 

1.011E-03 9.356E-03 1.307E-02 -2.995E+00 -2.029E+00 -1.884E+00 Slope Slope Slope 

3.712E-04 2.976E-03 3.946E-03 -3.430E+00 -2.526E+00 -2.404E+00 1.61 1.84 1.93 

5.929E-05 3.259E-04 4.315E-04 -4.227E+00 -3.487E+00 -3.365E+00 2.70 3.26 3.26 

1.106E-05 2.909E-05 4.017E-05 -4.956E+00 -4.536E+00 -4.396E+00 2.45 3.52 3.46 

2.488E-06 3.773E-06 5.025E-06 -5.604E+00 -5.423E+00 -5.299E+00 2.15 2.94 3.00 

     Average slope  
 

2.23 2.89 2.91 

 

L1 L1 L1 L1 L1 L1 L1 L1 L1 

Error(ρ) Error(ρu) Error(ρe) log10(error(ρ)) log10(error(ρu)) log10(error(ρe)) (ρ) (ρu) (ρe) 

2.837E-04 2.754E-03 4.004E-03 -3.547E+00 -2.560E+00 -2.397E+00 Slope Slope Slope 

8.484E-05 7.107E-04 1.022E-03 -4.071E+00 -3.148E+00 -2.991E+00 1.94 2.18 2.20 

1.304E-05 7.250E-05 1.093E-04 -4.885E+00 -4.140E+00 -3.962E+00 2.76 3.36 3.29 

2.241E-06 7.270E-06 1.231E-05 -5.650E+00 -5.138E+00 -4.910E+00 2.57 3.35 3.18 

4.757E-07 9.579E-07 1.734E-06 -6.323E+00 -6.019E+00 -5.761E+00 2.23 2.92 2.82 

     Average slope  
 

2.38 2.95 2.87 

 

Lmax Lmax Lmax Lmax Lmax Lmax Lmax Lmax Lmax 

Error(ρ) Error(ρu) Error(ρe) log10(error(ρ)) log10(error(ρu)) log10(error(ρe)) (ρ) (ρu) (ρe) 

1.5842E-02 9.4260E-02 1.6983E-01 -1.8002E+00 1.0257E+00 -7.6999E-01 Slope Slope Slope 

7.1290E-03 4.1755E-02 5.9835E-02 -2.1470E+00 -1.3793E+00 -1.2230E+00 1.28 1.31 1.68 

1.2758E-03 5.2295E-03 7.5776E-03 -2.8942E+00 -2.2815E+00 -2.1205E+00 2.53 3.06 3.04 

2.4505E-04 4.8608E-04 6.9753E-04 -3.6107E+00 -3.3133E+00 -3.1564E+00 2.41 3.46 3.48 

5.3963E-05 7.2616E-05 9.1160E-05 -4.2679E+00 -4.1390E+00 -4.0402E+00 2.18 2.74 2.93 

     Average slope  
 

2.10 2.64 2.78 
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Table B.2:  Errors and convergence rates for Orthogonal Grid (Type II) at t= 7  s 

ORTHOGONAL II T=7  

L N hN log10(hN) 

1 20 0.6897 -0.1614 

1 40 0.3492 -0.4570 

1 80 0.1757 -0.7553 

1 160 0.0881 -1.0550 

1 320 0.0441 -1.3553 

 

L2 L2 L2 L2 L2 L2 L2 L2 L2 

Error(ρ) Error(ρu) Error(ρe) log10(error(ρ)) log10(error(ρu)) log10(error(ρe)) (ρ) (ρu) (ρe) 

8.217E-04 7.206E-03 9.395E-03 -3.085E+00 -2.142E+00 -2.027E+00 Slope Slope Slope 

2.018E-04 1.579E-03 1.831E-03 -3.695E+00 -2.802E+00 -2.737E+00 2.06 2.23 2.40 

3.438E-05 1.435E-04 1.685E-04 -4.464E+00 -3.843E+00 -3.773E+00 2.58 3.49 3.47 

7.052E-06 1.442E-05 1.828E-05 -5.152E+00 -4.841E+00 -4.738E+00 2.30 3.33 3.22 

1.646E-06 2.345E-06 2.929E-06 5.784E+00 -5.630E+00 -5.533E+00 2.10 2.63 2.65 

     Average slope  
 

2.26 2.92 2.94 

 

L1 L1 L1 L1 L1 L1 L1 L1 L1 

Error(ρ) Error(ρu) Error(ρe) log10(error(ρ)) log10(error(ρu)) log10(error(ρe)) (ρ) (ρu) (ρe) 

2.235E-04 1.981E-03 2.901E-03 -3.651E+00 -2.703E+00 -2.537E+00 Slope Slope Slope 

4.690E-05 3.440E-04 4.618E-04 -4.329E+00 -3.463E+00 -3.336E+00 2.29 2.57 2.70 

7.084E-06 2.917E-05 4.379E-05 -5.150E+00 -4.535E+00 -4.359E+00 2.75 3.59 3.43 

1.345E-06 3.020E-06 5.246E-06 -5.871E+00 -5.520E+00 -5.280E+00 2.41 3.29 3.08 

3.068E-07 4.570E-07 8.803E-07 -6.513E+00 -6.340E+00 -6.055E+00 2.14 2.73 2.58 

     Average slope  
 

2.40 3.05 2.95 

 

Lmax Lmax Lmax Lmax Lmax Lmax Lmax Lmax Lmax 

Error(ρ) Error(ρu) Error(ρe) log10(error(ρ)) log10(error(ρu)) log10(error(ρe)) (ρ) (ρu) (ρe) 

1.5173E-02 8.3985E-02 1.3061E-01 -1.8189E+00 -1.0758E+00 -8.8401E-01 Slope Slope Slope 

3.9076E-03 2.2827E-02 2.8686E-02 -2.4081E+00 -1.6415E+00 -1.5423E+00 1.99 1.91 2.23 

6.9066E-04 2.3590E-03 2.5652E-03 -3.1607E+00 -2.6273E+00 -2.5909E+00 2.52 3.30 3.51 

1.5020E-04 2.8361E-04 3.3301E-04 -3.8233E+00 -3.5473E+00 -3.4775E+00 2.21 3.07 2.96 

3.5056E-05 4.8871E-05 6.1079E-05 -4.4552E+00 -4.3109E+00 -4.2141E+00 2.10 2.54 2.45 

     Average slope  
 

2.21 2.71 2.79 
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Table B.3:  Errors and convergence rates for Orthogonal Grid (Type III) at t= 7  s 

ORTHOGONAL III T=7  

L N hN log10(hN) 

1 20 0.9524 -0.0212 

1 40 0.4878 -0.3118 

1 80 0.2469 -0.6075 

1 160 0.1242 -0.9058 

1 320 0.0623 -1.2055 

 

L2 L2 L2 L2 L2 L2 L2 L2 L2 

Error(ρ) Error(ρu) Error(ρe) log10(error(ρ)) log10(error(ρu)) log10(error(ρe)) (ρ) (ρu) (ρe) 

1.171E-03 1.134E-02 1.518E-02 -2.931E+00 -1.945E+00 -1.819E+00 Slope Slope Slope 

6.729E-04 6.234E-03 7.421E-03 -3.172E+00 -2.205E+00 -2.130E+00 0.83 0.89 1.07 

2.273E-04 2.210E-03 2.403E-03 -3.643E+00 -2.656E+00 -2.619E+00 1.59 1.52 1.66 

5.795E-05 5.861E-04 6.170E-04 -4.237E+00 -3.232E+00 -3.210E+00 1.99 1.93 1.98 

1.436E-05 1.471E-04 1.535E-04 -4.843E+00 -3.832E+00 -3.814E+00 2.02 2.00 2.02 

     Average slope  
 

1.61 1.59 1.68 

 

L1 L1 L1 L1 L1 L1 L1 L1 L1 

Error(ρ) Error(ρu) Error(ρe) log10(error(ρ)) log10(error(ρu)) log10(error(ρe)) (ρ) (ρu) (ρe) 

2.980E-04 3.011E-03 4.425E-03 -3.526E+00 -2.521E+00 -2.354E+00 Slope Slope Slope 

1.488E-04 1.418E-03 1.856E-03 -3.827E+00 -2.848E+00 -2.731E+00 1.04 1.13 1.30 

4.220E-05 4.310E-04 5.264E-04 -4.375E+00 -3.366E+00 -3.279E+00 1.85 1.75 1.85 

9.680E-06 1.089E-04 1.276E-04 -5.014E+00 -3.963E+00 -3.894E+00 2.14 2.00 2.06 

2.272E-06 2.712E-05 3.127E-05 -5.644E+00 -4.567E+00 -4.505E+00 2.10 2.01 2.04 

     Average slope  
 

1.78 1.72 1.81 

 

Lmax Lmax Lmax Lmax Lmax Lmax Lmax Lmax Lmax 

Error(ρ) Error(ρu) Error(ρe) log10(error(ρ)) log10(error(ρu)) log10(error(ρe)) (ρ) (ρu) (ρe) 

1.9962E-02 1.3211E-01 1.9078E-01 -1.69979743 -0.879064533 -0.719470948 Slope Slope Slope 

1.2303E-02 8.0891E-02 1.0049E-01 -1.90998199 -1.092101564 -0.997897158 0.72 0.73 0.96 

4.2449E-03 3.1025E-02 3.5464E-02 -2.37212952 -1.508294302 -1.450206172 1.56 1.41 1.53 

1.0226E-03 8.4404E-03 8.7714E-03 -2.99029354 -2.073636013 -2.056931751 2.07 1.89 2.03 

2.3584E-04 2.1077E-03 2.0631E-03 -3.62738065 -2.676184498 -2.685484332 2.13 2.01 2.10 

     Average slope  
 

1.62 1.51 1.65 

 



Appendix B  2019 

 

102 

 

Table B.4:  Errors and convergence rates for Distorted Grid (Type IV) at t= 7  s 

DISTORTED IV T=7  

L N hN log10(hN) 

1 20 0.8436 -0.0738 

1 40 0.4529 -0.3440 

1 80 0.2297 -0.6388 

1 160 0.1157 -0.9366 

1 320 0.0578 -1.2379 

 

L2 L2 L2 L2 L2 L2 L2 L2 L2 

Error(ρ) Error(ρu) Error(ρe) log10(error(ρ)) log10(error(ρu)) log10(error(ρe)) (ρ) (ρu) (ρe) 

1.182E-03 9.030E-03 1.243E-02 -2.927E+00 -2.044E+00 -1.905E+00 Slope Slope Slope 

5.884E-04 2.671E-03 3.844E-03 -3.230E+00 -2.573E+00 -2.415E+00 1.12 1.96 1.89 

2.058E-04 9.293E-04 9.607E-04 -3.687E+00 -3.032E+00 -3.017E+00 1.55 1.56 2.04 

4.187E-05 1.747E-04 1.817E-04 -4.378E+00 -3.758E+00 -3.741E+00 2.32 2.44 2.43 

1.207E-05 4.889E-05 5.132E-05 -4.918E+00 -4.311E+00 -4.290E+00 1.79 1.84 1.82 

     Average slope  
 

1.70 1.95 2.05 

 

L1 L1 L1 L1 L1 L1 L1 L1 L1 

Error(ρ) Error(ρu) Error(ρe) log10(error(ρ)) log10(error(ρu)) log10(error(ρe)) (ρ) (ρu) (ρe) 

5.826E-04 2.886E-03 4.845E-03 -3.235E+00 -2.540E+00 -2.315E+00 Slope Slope Slope 

2.377E-04 7.347E-04 1.372E-03 -3.624E+00 -3.134E+00 -2.862E+00 1.44 2.20 2.03 

7.868E-05 2.385E-04 3.619E-04 -4.104E+00 -3.623E+00 -3.441E+00 1.63 1.66 1.96 

1.449E-05 3.992E-05 6.097E-05 -4.839E+00 4.399E+00 -4.215E+00 2.47 2.61 2.60 

4.063E-06 1.072E-05 1.628E-05 -5.391E+00 -4.970E+00 -4.788E+00 1.83 1.90 1.90 

     Average slope  
 

1.84 2.09 2.12 

 

Lmax Lmax Lmax Lmax Lmax Lmax Lmax Lmax Lmax 

Error(ρ) Error(ρu) Error(ρe) log10(error(ρ)) log10(error(ρu)) log10(error(ρe)) (ρ) (ρu) (ρe) 

1.4981E-02 9.6456E-02 1.5181E-01 -1.8245E+00 -1.0157E+00 -8.1871E-01 Slope Slope Slope 

1.0878E-02 3.2335E-02 5.5092E-02 -1.9635E+00 -1.4903E+00 -1.2589E+00 0.51 1.76 1.63 

2.8372E-03 1.1804E-02 1.5020E-02 -2.5471E+00 -1.9280E+00 -1.8233E+00 1.98 1.48 1.91 

1.0414E-03 2.5916E-03 3.3408E-03 -2.9824E+00 -2.5864E+00 -2.4762E+00 1.46 2.21 2.19 

2.4678E-04 7.1541E-04 1.0691E-03 -3.6077E+00 -3.1454E+00 -2.9710E+00 2.08 1.86 1.64 

     Average slope  
 

1.51 1.83 1.84 
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Table B.5:  Errors and convergence rates for Equilateral Grid (Type I) at t= 60  s 

EQUILATERAL I T=60  

L N hN log10(hN) 

1 20 0.8436 -0.0738 

1 40 0.4529 -0.3440 

1 80 0.2297 -0.6388 

1 160 0.1157 -0.9366 

1 320 0.0578 -1.2379 

 

L2 L2 L2 L2 L2 L2 L2 L2 L2 

Error(ρ) Error(ρu) Error(ρe) log10(error(ρ)) log10(error(ρu)) log10(error(ρe)) (ρ) (ρu) (ρe) 

1.298E-03 1.396E-02 1.971E-02 -2.887E+00 -1.855E+00 -1.705E+00 Slope Slope Slope 

9.424E-04 9.899E-03 1.362E-02 -3.026E+00 -2.004E+00 -1.866E+00 0.51 0.55 0.59 

2.311E-04 1.822E-03 3.034E-03 -3.636E+00 -2.739E+00 -2.518E+00 2.07 2.49 2.21 

2.557E-05 1.319E-04 2.265E-04 -4.592E+00 -3.880E+00 -3.645E+00 3.21 3.83 3.78 

5.014E-06 1.112E-05 1.741E-05 -5.300E+00 -4.954E+00 -4.759E+00 2.35 3.57 3.70 

     Average slope  
 

2.04 2.61 2.57 

 

L1 L1 L1 L1 L1 L1 L1 L1 L1 

Error(ρ) Error(ρu) Error(ρe) log10(error(ρ)) log10(error(ρu)) log10(error(ρe)) (ρ) (ρu) (ρe) 

3.164E-04 4.170E-03 6.040E-03 -3.500E+00 -2.380E+00 -2.219E+00 Slope Slope Slope 

1.870E-04 2.826E-03 3.674E-03 -3.728E+00 -2.549E+00 -2.435E+00 0.85 0.63 0.80 

5.034E-05 4.594E-04 6.823E-04 -4.298E+00 -3.338E+00 -3.166E+00 1.93 2.68 2.48 

8.127E-06 3.655E-05 5.985E-05 -5.090E+00 -4.437E+00 -4.223E+00 2.66 3.69 3.55 

1.646E-06 3.709E-06 6.513E-06 -5.784E+00 -5.431E+00 -5.186E+00 2.30 3.30 3.20 

     Average slope  
 

1.93 2.57 2.51 

 

Lmax Lmax Lmax Lmax Lmax Lmax Lmax Lmax Lmax 

Error(ρ) Error(ρu) Error(ρe) log10(error(ρ)) log10(error(ρu)) log10(error(ρe)) (ρ) (ρu) (ρe) 

1.8958E-02 1.5256E-01 1.9849E-01 -1.7222E+00 -8.1656E-01 -7.0227E-01 Slope Slope Slope 

1.6462E-02 1.1609E-01 1.8520E-01 -1.7835E+00 -9.3519E-01 -7.3237E-01 0.23 0.44 0.11 

4.5654E-03 2.5371E-02 4.9192E-02 -2.3405E+00 -1.5957E+00 -1.3081E+00 1.89 2.24 1.95 

4.2968E-04 1.8246E-03 3.8222E-03 -3.3669E+00 -2.7388E+00 -2.4177E+00 3.45 3.84 3.73 

7.8762E-05 1.4601E-04 2.6831E-04 -4.1037E+00 -3.8356E+00 -3.5714E+00 2.45 3.64 3.83 

     Average slope  
 

2.00 2.54 2.40 
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Table B.6:  Errors and convergence rates for Orthogonal Grid (Type II) at t= 60  s 

ORTHOGONAL II T=60  

L N hN log10(hN) 

1 20 0.6897 -0.1614 

1 40 0.3492 -0.4570 

1 80 0.1757 -0.7553 

1 160 0.0881 -1.0550 

1 320 0.0441 -1.3553 

 

L2 L2 L2 L2 L2 L2 L2 L2 L2 

Error(ρ) Error(ρu) Error(ρe) log10(error(ρ)) log10(error(ρu)) log10(error(ρe)) (ρ) (ρu) (ρe) 

1.244E-03 1.313E-02 1.796E-02 -2.905E+00 -1.882E+00 -1.746E+00 Slope Slope Slope 

7.121E-04 7.684E-03 1.058E-02 -3.147E+00 -2.114E+00 -1.976E+00 0.82 0.79 0.78 

9.500E-05 7.389E-04 1.290E-03 -4.022E+00 -3.131E+00 -2.889E+00 2.93 3.41 3.06 

1.413E-05 5.053E-05 8.781E-05 -4.850E+00 -4.296E+00 -4.056E+00 2.76 3.89 3.89 

3.252E-06 5.752E-06 8.474E-06 -5.488E+00 -5.240E+00 -5.072E+00 2.12 3.14 3.38 

     Average slope  
 

2.16 2.81 2.78 

 

L1 L1 L1 L1 L1 L1 L1 L1 L1 

Error(ρ) Error(ρu) Error(ρe) log10(error(ρ)) log10(error(ρu)) log10(error(ρe)) (ρ) (ρu) (ρe) 

2.707E-04 4.002E-03 5.836E-03 -3.568E+00 -2.398E+00 -2.234E+00 Slope Slope Slope 

1.399E-04 2.056E-03 2.758E-03 -3.854E+00 -2.687E+00 -2.559E+00 0.97 0.98 1.10 

2.220E-05 1.755E-04 2.841E-04 -4.654E+00 -3.756E+00 -3.547E+00 2.68 3.58 3.31 

3.513E-06 1.207E-05 2.111E-05 -5.454E+00 -4.918E+00 -4.675E+00 2.67 3.88 3.77 

7.828E-07 1.363E-06 2.227E-06 -6.106E+00 -5.865E+00 -5.652E+00 2.17 3.15 3.25 

     Average slope  
 

2.12 2.90 2.86 

 

Lmax Lmax Lmax Lmax Lmax Lmax Lmax Lmax Lmax 

Error(ρ) Error(ρu) Error(ρe) log10(error(ρ)) log10(error(ρu)) log10(error(ρe)) (ρ) (ρu) (ρe) 

2.1213E-02 1.5128E-01 2.1736E-01 -1.6734E+00 -8.2022E-01 -6.6283E-01 Slope Slope Slope 

1.2803E-02 9.6764E-02 1.5300E-01 -1.8927E+00 -1.0143E+00 -8.1530E-01 0.74 0.66 0.52 

1.5294E-03 8.3746E-03 1.9430E-02 -2.8155E+00 -2.0770E+00 -1.7115E+00 3.09 3.56 3.00 

1.9688E-04 6.7222E-04 1.2921E-03 -3.7058E+00 -3.1725E+00 -2.8887E+00 2.97 3.66 3.93 

4.3373E-05 9.6684E-05 1.4189E-04 -4.3628E+00 -4.0146E+00 -3.8481E+00 2.19 2.80 3.19 

     Average slope  
 

2.25 2.67 2.66 
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Table B.7:  Errors and convergence rates for Orthogonal Grid (Type III) at t= 60  s 

ORTHOGONAL III T=60  

L N hN log10(hN) 

1 20 0.9524 -0.0212 

1 40 0.4878 -0.3118 

1 80 0.2469 -0.6075 

1 160 0.1242 -0.9058 

1 320 0.0623 -1.2055 

 

L2 L2 L2 L2 L2 L2 L2 L2 L2 

Error(ρ) Error(ρu) Error(ρe) log10(error(ρ)) log10(error(ρu)) log10(error(ρe)) (ρ) (ρu) (ρe) 

1.316E-03 1.406E-02 1.903E-02 -2.881E+00 -1.852E+00 -1.721E+00 Slope Slope Slope 

1.134E-03 1.238E-02 1.550E-02 -2.946E+00 -1.907E+00 -1.810E+00 0.22 0.19 0.31 

4.958E-04 4.742E-03 7.122E-03 -3.305E+00 -2.324E+00 -2.147E+00 1.21 1.41 1.14 

5.387E-05 3.603E-04 6.254E-04 -4.269E+00 -3.443E+00 -3.204E+00 3.23 3.75 3.54 

8.754E-06 2.590E-05 4.359E-05 -5.058E+00 -4.587E+00 -4.361E+00 2.63 3.82 3.86 

     Average slope  
 

1.83 2.29 2.21 

 

L1 L1 L1 L1 L1 L1 L1 L1 L1 

Error(ρ) Error(ρu) Error(ρe) log10(error(ρ)) log10(error(ρu)) log10(error(ρe)) (ρ) (ρu) (ρe) 

3.639E-04 3.908E-03 6.316E-03 -3.439E+00 -2.408E+00 -2.200E+00 Slope Slope Slope 

2.519E-04 3.855E-03 5.090E-03 -3.599E+00 -2.414E+00 -2.293E+00 0.55 0.02 0.32 

1.077E-04 1.359E-03 1.870E-03 -3.968E+00 -2.867E+00 -2.728E+00 1.25 1.53 1.47 

1.255E-05 9.318E-05 1.398E-04 -4.901E+00 -4.031E+00 -3.854E+00 3.13 3.90 3.78 

2.029E-06 7.140E-06 1.079E-05 -5.693E+00 -5.146E+00 -4.967E+00 2.64 3.72 3.71 

     Average slope  
 

1.89 2.29 2.32 

 

Lmax Lmax Lmax Lmax Lmax Lmax Lmax Lmax Lmax 

Error(ρ) Error(ρu) Error(ρe) log10(error(ρ)) log10(error(ρu)) log10(error(ρe)) (ρ) (ρu) (ρe) 

2.1699E-02 1.5410E-01 1.8479E-01 -1.66355077 -0.812183647 -0.733320225 Slope Slope Slope 

1.9855E-02 1.4384E-01 1.9023E-01 -1.70213748 -0.842107197 -0.720716165 0.13 0.10 -0.04 

9.1691E-03 5.8831E-02 1.0874E-01 -2.03767133 -1.230391033 -0.963603872 1.13 1.31 0.82 

9.5535E-04 4.5257E-03 1.0471E-02 -3.01983833 -2.344317134 -1.979996544 3.29 3.73 3.41 

1.4947E-04 2.8554E-04 7.3371E-04 -3.82545021 -3.544326865 -3.134475421 2.69 4.00 3.85 

     Average slope  
 

1.81 2.29 2.01 
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Table B.8:  Errors and convergence rates for Distorted Grid (Type IV) at t= 60  s  

DISTORTED IV T=60  

L N hN log10(hN) 

1 20 0.8436 -0.0738 

1 40 0.4529 -0.3440 

1 80 0.2297 -0.6388 

1 160 0.1157 -0.9366 

1 320 0.0578 -1.2379 

 

L2 L2 L2 L2 L2 L2 L2 L2 L2 

Error(ρ) Error(ρu) Error(ρe) log10(error(ρ)) log10(error(ρu)) log10(error(ρe)) (ρ) (ρu) (ρe) 

1.250E-03 1.348E-02 1.987E-02 -2.903E+00 -1.870E+00 -1.702E+00 Slope Slope Slope 

1.001E-03 1.028E-02 1.248E-02 -3.000E+00 -1.988E+00 -1.904E+00 0.36 0.44 0.75 

5.569E-04 6.749E-03 7.935E-03 -3.254E+00 -2.171E+00 -2.100E+00 0.86 0.62 0.67 

1.097E-04 1.243E-03 1.608E-03 -3.960E+00 -2.906E+00 -2.794E+00 2.37 2.47 2.33 

3.171E-05 3.476E-04 4.664E-04 -4.499E+00 -3.459E+00 -3.331E+00 1.79 1.84 1.78 

     Average slope  
 

1.34 1.34 1.38 

 

L1 L1 L1 L1 L1 L1 L1 L1 L1 

Error(ρ) Error(ρu) Error(ρe) log10(error(ρ)) log10(error(ρu)) log10(error(ρe)) (ρ) (ρu) (ρe) 

3.740E-04 4.203E-03 6.160E-03 -3.427E+00 -2.376E+00 -2.210E+00 Slope Slope Slope 

3.306E-04 3.110E-03 4.004E-03 -3.481E+00 -2.507E+00 -2.398E+00 0.20 0.48 0.69 

1.865E-04 1.635E-03 2.115E-03 -3.729E+00 -2.787E+00 -2.675E+00 0.84 0.95 0.94 

3.729E-05 2.765E-04 3.759E-04 -4.428E+00 -3.558E+00 -3.425E+00 2.35 2.59 2.52 

1.143E-05 7.575E-05 1.059E-04 -4.942E+00 -4.121E+00 -3.975E+00 1.70 1.87 1.83 

     Average slope  
 

1.27 1.47 1.49 

 

Lmax Lmax Lmax Lmax Lmax Lmax Lmax Lmax Lmax 

Error(ρ) Error(ρu) Error(ρe) log10(error(ρ)) log10(error(ρu)) log10(error(ρe)) (ρ) (ρu) (ρe) 

1.8823E-02 1.4147E-01 1.8707E-01 -1.7253E+00 -8.4933E-01 -7.2799E-01 Slope Slope Slope 

1.6407E-02 1.0832E-01 1.4722E-01 -1.7850E+00 -9.6531E-01 -8.3204E-01 0.22 0.43 0.39 

1.0575E-02 7.9710E-02 9.3162E-02 -1.9757E+00 -1.0985E+00 -1.0308E+00 0.65 0.45 0.67 

1.7460E-03 1.5482E-02 2.2263E-02 -2.7579E+00 -1.8102E+00 -1.6524E+00 2.63 2.39 2.09 

7.0474E-04 4.4452E-03 6.9439E-03 -3.1520E+00 -2.3521E+00 -2.1584E+00 1.31 1.80 1.68 

     Average slope  
 

1.20 1.27 1.21 

 


