
Technical University of Crete

School of Electrical and Computer Engineering

Evaluating the Intel HARP (tightly-coupled
CPU-FPGA) platform with an ARM

many-core accelerator

Georgios Pekridis

Thesis Committee
Professor Dionisios N. Pnevmatikatos (Supervisor)(ECE TUC)

Professor Apostolos Dollas (ECE TUC)
Associate Professor Eftichios Koutroulis (ECE TUC)

Chania, August 2019

Abstract

The purpose of this thesis was to evaluate Intel’s platform with scalable Xeon CPU and

an integrated Arria 10 FPGA. The communication between CPU and FPGA is done with

three physical channels, one QPI (Quick Path Interconnect) coherent channel and two PCIe

non-coherent channels. There is also a shared memory between the two sides. The read and

write bandwidth of the FPGA to the shared memory is approximately 19 GB/s respectively.

The FPGA side consists of a static and a reconfigurable part. The static part implements all

the necessary components to establish the communication with the CPU. The reconfigurable

part is connected with the static part through the Core Cache Interface protocol (CCI-P) that

provides a level of abstraction to the developer for starting developing accelerators. The system

consists of software and hardware implementations. The evaluation was done with an ARM

many core accelerator. The ARM core has a 3-stage pipeline, it uses a 32-bit architecture

and is implements the ARMv4 instruction set. Also it implements a few basic floating point

instructions. The RTL for the ARM core was written in Bluespec System Verilog (BSV). The

hardware architecture has 16 ARM cores. Each core has a direct-map cache with a variable

size. Instruction and data memories of every core can be initialized from software in order to

the processors can execute the programs that are defined by the developer. The code and the

data for the internal memories of each core are read form binary files. Each core is assigned with

buffers with a certain amount of memory space to read and write data from/to it. The hardware

can have access to them with the use of physical addresses. For the purpose of measuring the

bandwidth of the design STREAM benchmark was used. Plus a matrix multiplication test was

made as a way to check how the architecture handles real life applications.

i

ii

Acknowledgements

First of all I would like to thank my supervisor Prof. Dionisios Pnevmatikatos for his guidance

and support throughout this work and for giving me the opportunity to get involved with this

very interesting topic. I would also like to express my gratitude to Prof. Apostolos Dollas

and Prof. Eftichios Koutroulis of being members of the committee and for evaluating my

thesis.In addition I would like to thank Konstantinos Kyriakidis and Vasilis Amourgianos, my

studying partners, for their support at the beginning of this project. I am also immensely

grateful to Pancretan Endowment Fund for the scholarship that they provided me for my

academic endorsements. The tools for this thesis were provided by Intel Academic Compute

Environment and I would like to express my gratitude to Intel’s stuff for allowing me to use the

needed resources. Of course none of this could be possible without the support of my family

all the years of my studies in Chania. Lastly I would like to thank one of the most important

people in my life, my significant other, Melina for standing by me and supporting me the last

six years.

iii

iv

Contents

Abstract i

Acknowledgements iii

1 Introduction 1

2 Intel© Xeon© Scalable Platform with Integrated FPGA 4

2.1 FPGA Interface Manager (FIM) . 5

2.2 FPGA Interface Unit (FIU) . 6

2.3 Memory and Cache Hierarchy . 7

2.4 CCI-P Interface . 8

2.4.1 Read Requests . 9

2.4.2 Write Requests . 9

2.4.3 MMIO Reads . 9

2.4.4 MMIO Writes . 9

2.5 OPAE C API . 10

2.6 OPAE AFU Simulation Environment (ASE) . 11

3 ARM Core Implementation 14

3.1 Overview of the ARM Core . 15

3.2 Floating point Instruction Set . 16

3.2.1 Data-processing instructions . 16

3.2.2 Load and Store instructions . 18

3.2.3 Single register transfer instructions . 19

v

3.2.4 Custom instruction . 20

3.3 Implementation of data-processing instructions 21

3.4 Implementation of Load and Store instructions 24

3.5 Implementation of single register transfer instructions 24

3.6 Implementation of custom instructions . 24

4 Hardware and Software Implementation 26

4.1 Hardware Implementation . 28

4.1.1 FSM for loading instruction and data memory 28

4.1.2 FSM for controlling the cache and the read/write requests to the plat-

forms memory . 30

4.2 Software implementation . 33

5 Testing and Results 37

5.1 Read/Write Bandwidth of the platform . 39

5.2 Stream benchmark results . 43

5.2.1 Integer results . 43

5.2.2 Floating point results . 50

5.3 Matrix Multiplication . 53

5.3.1 Integer results . 53

5.3.2 Floating Point results . 58

6 Conclusions and Future work 63

6.1 Conclusions of Thesis . 63

6.2 Future Work . 63

Bibliography 64

vi

List of Tables

3.1 Data-processing instructions . 17

3.2 Extension instructions . 18

3.3 Data processing instructions execution cycles and rounding 22

5.1 Different designs with different cache size and resource usage with MLAB RAMs 38

5.2 Different designs with different cache size and resource usage with M20K 38

5.3 Read bandwidth for the three channels . 40

5.4 Write bandwidth for the three channels . 41

5.5 Benchmark C = A with MLAB RAM . 44

5.6 Benchmark C = A with M20K RAM . 44

5.7 Benchmark B = Scalar*C with MLAB RAM . 45

5.8 Benchmark B = Scalar*C with M20K RAM . 45

5.9 Benchmark B=A+C with MLAB RAM . 46

5.10 Benchmark B=A+C with M20K RAM . 46

5.11 Benchmark A=B+scalar*C with MLAB RAM 47

5.12 Benchmark A =B +scalar*C with M20K RAM 47

5.13 Floating point benchmark C = A with M20K RAM 50

5.14 Floating point benchmark B = Scalar*C with M20K RAM 50

5.15 Floating point benchmark B=A+C with M20K RAM 51

5.16 Floating point benchmark A =B +scalar*C with M20K RAM 51

5.17 Benchmark matrix multiplication C = A x B - cache size = 1KB MLAB RAM . 53

5.18 Benchmark matrix multiplication C = A x B - cache size = 16KB MLAB RAM 53

5.19 Benchmark matrix multiplication C = A x B - cache size = 1KB 54

vii

5.20 Benchmark Matrix MULL C = A x B - cache size = 16KB 54

5.21 Benchmark matrix multiplication C = A x B - cache size = 32KB 54

5.22 Benchmark matrix multiplication C = A x B - cache size = 64KB 55

5.23 Benchmark matrix multiplication C = A x B - cache size = 128KB 55

5.24 Floating point benchmark matrix multiplication C = A x B - cache size = 16KB 59

5.25 Floating point benchmark matrix multiplication C = A x B - cache size = 32KB 59

5.26 Floating point benchmark matrix multiplication C = A x B - cache size = 64KB 59

5.27 Floating point benchmark matrix multiplication C = A x B - cache size = 128KB 60

viii

List of Figures

2.1 FPGA Interface Manage . 5

2.2 FIU for Intel Integrated FPGA Platform Block Diagram 6

2.3 Integrated FPGA Platform Memory Hierarchy 7

2.4 CCI-P Signals . 8

2.5 OPAEl . 10

2.6 App Flow . 11

2.7 Portability between simulation and Place and Route of Quartus Prime tool . . . 13

3.1 ARM Datapath . 15

3.2 Data-processing instructions format . 16

3.3 Load and store instructions format . 18

3.4 Single register transfer instructions . 19

3.5 Floating Point Co-processor interface . 22

4.1 Abstract view of system’s top module . 27

4.2 Block diagram of ARM with cache control for read/write requests and control

for writing to instructions and data memory . 28

4.3 State diagram FSM for loading instruction and data memory 28

4.4 State diagram FSM for controlling the cache and issuing read/write requests for

external memory . 30

4.5 Application flow of the software application . 33

5.1 Diagram of ALM usage per cache size and RAM type 39

5.2 Diagram of the read bandwidth for different cache directives 42

ix

5.3 Diagram of the write bandwidth for different cache directives 42

5.4 Diagram of the read bandwidth for the integer benchmarks with MLAB RAM . 48

5.5 Diagram of the write bandwidth for the integer benchmarks with MLAB RAM . 48

5.6 Diagram of the read bandwidth for the integer benchmarks with M20K RAM . . 49

5.7 Diagram of the write bandwidth for the integer benchmarks with M20K RAM . 49

5.8 Diagram of the write bandwidth for the floating point benchmarks 52

5.9 Diagram of the write bandwidth for the floating point benchmarks 52

5.10 Diagram of the read bandwidth for integer matrix multiplication for different

cache size/type . 56

5.11 Diagram of the write bandwidth for integer matrix multiplication for different

cache size/type . 57

5.12 Diagram of the average execution for integer matrix multiplication time com-

pared with the cache size/type . 58

5.13 Diagram of the read bandwidth for floating point matrix multiplication for dif-

ferent cache sizes . 60

5.14 Diagram of the write bandwidth for floating point matrix multiplication for dif-

ferent cache sizes . 61

5.15 Diagram of the average execution time for floating point matrix multiplication

time and cache size . 61

x

Chapter 1

Introduction

Industry vendors are building and developing heterogeneous systems in order to achieve high

bandwidth speeds, accelerate application and limit the power consumption. One of the most

promising types among the various heterogeneous acceleration platforms is the CPU-FPGA

(Field-programmable gate arrays) systems. The reason is that FPGAs provide reconfigurability

to accelerate different applications, low power and high energy efficiency. In this platforms,

the CPU and the FPGA is tightly coupled with each other either on the same motherboard

either on the same SoC (System on Chip). Such CPU-FPGA platforms are the Alpha Data

board, the Amazon F1 ,the IBM CAPI, the Microsoft Catapult, the Convey HC-1 and the

Intel Xeon+FPGA Platform. The use of these FPGA-base systems for real life application has

already started. For example Microsoft Catapult is used into conventional computer clusters

to accelerate large-scale production workloads, such as search engines [22] and neural networks

[20]. Amazon also has servers equipped with FPGAs (F1 instance) [2]. In addition Intel

developed a platform with a scalable Xeon and an integrated Arria 10 FPGA and has predicted

that approximately 30% of servers could have FPGAs in 2020 [12]. All the prior mentioned

platforms have some differences on the way that the CPU and the FPGA communicate and

how the the memory of the system is accessed.

1

2 Chapter 1. Introduction

It is also worth noting that at the same time with this diploma, at the Microprocessor

and Hardware Laboratory (MHL) of ECE school at TUC, another diploma was prepared by

Kostantinos Kyriakidis. His thesis was to develop cache and branch predictor models for use

in a full system simulator that it would be running on the Intel platform.

Motivated by the uprising field of CPU and FPGA and all the advantages that these kind

of platforms can offer, this thesis aims to make an approach to evaluate the Intel platform

with scalable Xeon and integrated Arria 10 FPGA. Xeon connects with the FPGA with three

physical channels, one QPI (Quick Path Interconnect) coherent channel and two PCIe non-

coherent channels and they share a common memory that is located on the CPU side. The total

bandwidth of the three channel is approximately 19 Gb/s for reading and writing respectively.

The evaluation was conducted with an ARM many-core accelerator. The ARM core [21] has

a 3-stage pipeline, it uses a 32-bit architecture and is implements the ARMv4 instruction set.

Also it implements some basic floating point instructions. The RTL for the ARM core was

written in Bluespec System Verilog (BSV). The hardware architecture has 16 ARM cores.

Each core has a direct-map cache with a variable size. Instruction and data memories of every

core can be initialized from software in order to the processors can execute the programs that

are defined by the developer. The code and the data for the internal memories of each core

are read form binary files. In each core is assigned buffers with a certain amount of memory

space to read and write data from/to it. The hardware can have access to them with the use

of physical addresses. For the purpose of measuring the bandwidth of the design STREAM

benchmark was used. Additionally a matrix multiplication test was made as a way to check

how the architecture handles real life applications.

This thesis is structured as follows

• Chapter 2: Analyze the platform and provide some details for the tools that were used.

• Chapter 3: Description of the ARM core and the features that were added

• Chapter 4:Description and implementation of the whole system

• Chapter 5: Experimental results

3

• Chapter 6: Conclusions and future work.

Chapter 2

Intel© Xeon© Scalable Platform with

Integrated FPGA

The Intel Xeon Scalable Platform with Integrated FPGA (HARP Platform) is a platform with

the Intel Xeon and FPGA in a single package and sharing a coherent view of memory using the

Intel Quick Path Interconnect (QPI). The processor is a Broadwell Xeon CPU of the E5-2600v4

family and the FPGA model is an Arria 10 GX1150 FPGA (10AX115U3F45E2SGE3).The

communication between the CPU and the FPGA is achieved with the Core Cache Interface

(CCI-P). It is a host inteface bus for Accelerator Functional Unit (AFU) and it is intended for

connecting the latter to an FPGA Interface Unit(FIU) within an FPGA. The AFU is hardware

accelerator which executes a computation task for an application, that came from the CPU.

A sowftware app that executes on Xeon can communicate with the FPGA with the Open

Programmable Accelerator Engine (OPAE) C API.

4

2.1. FPGA Interface Manager (FIM) 5

2.1 FPGA Interface Manager (FIM)

Figure 2.1: FPGA Interface Manage

The whole accelerator package consists of an FIM and AFU. The FIM contains the FIU,

an EMMIF for interfacing to external memory and a HSSI for external transceiver interfacing.

The FIU has the role of a bridge between AFU and the platform. Also, the FIM owns all hard

IPs on FPGA, partial reconfiguration (PR) engine, JTAG atom, IOs, and temperature sensors.

The FIM is defined as a static region and the AFU is defined as a partial reconfiguration region.

6 Chapter 2. Intel© Xeon© Scalable Platform with Integrated FPGA

2.2 FPGA Interface Unit (FIU)

Figure 2.2: FIU for Intel Integrated FPGA Platform Block Diagram

There are three links connecting the FPGA to the processor, one Intel QPI coherent link and

two PCIe Gen3x8 links. The FIU maps these links to the CCI-P interface in such a way that

the AFU sees one logical communication interface to the host processor with bandwidth equal

to the sum bandwidth of the three links. The mapping of the three physical links is done as

follows: PCIe0 to VH0, PCIe1 to VH1, QPI to VL0 and all physical links to VA. If an AFU

uses VA then it has no information of the physical links and the communication is done through

a single logical link that can utilize the total upstream bandwidth available to the FPGA. VA

implements a weighted de-multiplexer to route the requests to all of the physical links.

2.3. Memory and Cache Hierarchy 7

2.3 Memory and Cache Hierarchy

Figure 2.3: Integrated FPGA Platform Memory Hierarchy

Figure 2.3 shows the three level cache and memory hierarchy seen by an AFU. The platform

has one memory node on the processor-side: SDRAM (A.3). The QPI coherent link extends the

Xeon processor’s coherency domain to the FPGA. A QPI caching agent keeps the FPGA cache

in FIU, coherent with the rest of the CPU memory. An AFU request on the CPU memory

can be served by the FPGA Cache (A.1), the processor-side cache (A.2) or the processor

SDRAM (A.3). As expected the data latency increases from (A.1) to (A.3).In most cases

AFUs can achieve maximum memory bandwidth by selecting the VA virtual channel that

selects automatically which physical link will serve the request. The choice of the link is

made by taking account the physical link latency and efficiency characteristics, physical link

utilization and traffic distribution.

8 Chapter 2. Intel© Xeon© Scalable Platform with Integrated FPGA

2.4 CCI-P Interface

Figure 2.4: CCI-P Signals

The CCI-P implements two memory address spaces, Main Memory and Memory Mapped

I/O (MMIO). Main memory is the memory attached to the processor and exposed to the

operating system. I/O memory is implemented as CCI-P requests from the host to the AFU.

MMIO is typically used as AFU control registers. The AFU developer is responsible for the

organization and the implementation of this memory. The CCI-P interface defines a request

format to access I/O memory using memory mapped I/O (MMIO) requests. The AFU’s MMIO

address space is 256 kB in size and is used for exchange of information between software and

hardware (accelerator ID,numbers of read/write requests, errors etc). There are three channels

that are used to serve read and write requests on main memory and MMIO addres space.The

read and write requests for accessing the processors main memory are using physical addresses.

In a non-virtualized system, the AFU is expected to drive a host physical address. When in

a virtualized system, the AFU is expected to drive a guest physical address. The addressing

mode is transparent to the AFU hardware developer. The software application developer must

ensure that software provides a physical address to the AFU.

2.4. CCI-P Interface 9

2.4.1 Read Requests

For a read request the AFU sends a memory request over CCI-P Channel 0 (C0), us-

ing pck af2cp sTx.c0 and receives the response over C0, using pck cp2af sRx.c0. The re-

sponse is 512bit long(1 cacheline) The memory read request is sent through the link when

the pck af2cp sTx.c0.valid signal is set. A header field is mdata that is a user-defined request

ID that is returned unmodified with the response. This field is usefull because the AFU de-

veloper can tag the requests and their responses and re-order them since the CCI-P can not

guarantee the response order. Depending on the header field cl num the number of cachelines

that is fetched from the memory is determined. That number can be one, two or four and the

cachelines are consecutive.

2.4.2 Write Requests

The write requests are sent over CCI-P Channel 1 (C1), using pck af2cp sTx.c1 and receive

write completion acknowledgement responses over C1, using pck cp2af sRx.c1. The AFU drives

the request with the data (512 bit) when the pck af2cp sTx.c1.valid is set. In this kind of

requests again the cl num field of the header determines the number of the cachelines will be

written.

2.4.3 MMIO Reads

The MMIO read request is sent over pck cp2af sRx.c0 when the mmioRdValid is asserted.

The response is received via the pck af2cp sTx.c2. The data lengths that are supported us

4bytes and 8bytes.

2.4.4 MMIO Writes

The AFU receives an MMIO write request over pck cp2af sRx.c0. The CCI-P asserts mmioWr-

Valid. The MMIO write request is posted and no response is expected from the AFU. The data

lengths supported are 4 bytes, 8 bytes, and 64 bytes.

10 Chapter 2. Intel© Xeon© Scalable Platform with Integrated FPGA

2.5 OPAE C API

The OPAE[19] C library (libopae-c) is a lightweight user-space library that provides ab-

stractions for FPGA resources in a compute environment. The OPAE C library builds on the

driver stack that supports the FPGA device, abstracting hardware- and OS-specific details. It

provides access to the underlying FPGA resources as a set of features available to software pro-

grams running on the host. These features include the acceleration logic preconfigured on the

FPGA and functions to manage and reconfigure the FPGA. The library enables applications

to transparently and seamlessly benefit from FPGA-based acceleration.

Figure 2.5: OPAEl

The figure below shows the basic application flow from the viewpoint of a user-process.

2.6. OPAE AFU Simulation Environment (ASE) 11

Figure 2.6: App Flow

2.6 OPAE AFU Simulation Environment (ASE)

ASE [11] aims to provide a consistent transaction level hardware interface and software API

that allows users to develop production-quality Accelerator Functional Unit (AFU) RTL and

software host application that can run on the real FPGA system without modifications.

Capabilities of ASE

• ASE provides a protocol checker that helps identify protocol correctness. ASE can rule-

check if the Accelerator Functional Unit (AFU) complies to CCI-P protocol specifications,

12 Chapter 2. Intel© Xeon© Scalable Platform with Integrated FPGA

and whether OPAE API has been used correctly. It provides methods to identify potential

issues early before in-system deployment.

• ASE can help identify certain lock conditions and Configuration/Status Registers (CSR)

address mapping and pointer math mistakes.

• ASE presents a fake memory model to the AFU which keeps tabs on memory requested

as accelerator workspaces, immediately flagging illegal memory transactions to locations

outside of requested memory spaces. This is a good way to identify address violation

bugs in simulation.

• ASE does not guarantee synthesizability of the AFU design.

• ASE provides a data hazard checker which can be used to warn users of CCI-P traffic

patterns that may cause Write After Write (WAW), Read After Write (RAW), and Write

After Read (WAR) hazards. These transactions may be debugged using the waveform

viewer or by using a relevant Memory Protocol Factory (MPF) shim.

• ASE does not require administrator privileges needed to run, it is completely user-level.

ASE may be run on a plain vanilla user Linux box with all the required tools installed

Limitations of ASE

• ASE is a transaction level simulator for a single AFU slot and single application in

platform with Intel FPGA IP. ASE does model either Intel UPI or PCIe specific packet

structures and protocol layers.

• ASE does not simulate caching activities and is not a cache simulator. It cannot reliably

simulate cache collision or capacity issues.

• ASE is designed to take an actual in-system AFU RTL and its corresponding OPAE

software application and verify them for correctness. ASE cannot simulate a FPGA

programming file.

2.6. OPAE AFU Simulation Environment (ASE) 13

• Although ASE models some latency parameters, it cannot model real-time system-specific

latency behavior. It is also not intended to be a timing simulation of the design or laten-

cy/bandwidth profile of the real system, but good for functionally correct development.

• ASE does not simulate multi-AFU or multi-socket configurations.

Figure 2.7: Portability between simulation and Place and Route of Quartus Prime tool

Chapter 3

ARM Core Implementation

The basic functionality of the ARM [3] core that was used in the current thesis is referred

on [1]. In this work there were made some changes to improve the design and extend the

functionality of the previous architecture. The core has 32-bit architecture, three stage pipeline

and implements the majority of the armv4 instruction set. Furthermore the processor supports

some basic single floating point (FP) instructions that will be analyzed in the sections below.

Except the previous mentioned instructions there were implemented some custom instructions

to help with the functionality of the whole system. The design was implemented using Bluespec

System Verilog (BSV). In order for the processor to use Intel specific RAMs for the targeted

FPGA a BSV wrapper was written that encapsulates altera syncram IP core.

14

3.1. Overview of the ARM Core 15

Figure 3.1: ARM Datapath

3.1 Overview of the ARM Core

The three stages of the pipeline are Fetch, Decode a Execute. Some instructions ,(long

multiplications, load from memory) need four cycles, so an extra pipeline stage. At the Fetch

stage, the instruction is fetched from the instructions memory and it is propagated along with

the value of the program counter (PC) to the next stage with a pipeline FIFO. The Decode

stage, decodes the instructions and determines if the instruction is a normal instruction or a

FP one. Also at this stage the values of the proper registers are read from the register file for

the normal instructions. If the instruction is normal the values of the registers and the decoded

instructions are fed on a pipeline FIFO and move on to the next stage. On the other hand

if the instructions is identified as a floating point one, the decoded instruction is moved on a

module that it could be characterized as a co-processor to start the execution. The Floating

Point Co-processor (FPC) can work in parallel with rest of the pipeline with some limitations.

The FPC has a FP register file, 32 registers wide, to store the results of the FP instructions.

This register file has four read ports and two write ports. The three read ports and the 1 write

16 Chapter 3. ARM Core Implementation

port are used from the co-prossesor and the rest of them from the main pipeline. The main core

and the co-processor are autonomous to some point. A normal and a floating point instruction

can execute in parallel. For example, if a FP instructions is executed at the co-processor the

main pipeline can execute normal instructions. Although if the co-processor is busy and the

next instruction in line is a FP one, then the core stalls until the co-processor is done with the

execution of the previous instruction. Below will be discussed only the instruction that have

been implemented and not the whole FP instructions set of the ARM processor.

3.2 Floating point Instruction Set

The FP instructions are sectioned to three major categories: Data-processing instructions,

Load and Store instructions and Single register transfer.

3.2.1 Data-processing instructions

Figure 3.2: Data-processing instructions format

cond: The cond field indicates if the instruction will be executed based on the Current Pro-

gram Status Register(CPSR) flags

p,q,r,s: These bits collectively form the instruction’s primary opcode. When all of p, q, r

and s are 1, the instruction is a two-operand extension instruction, with an extension opcode

specified by the Fn and N bits.

Fd and D: These bits specify the destination register of the instruction. Fd holds the top 4

bits of the register number and D holds the bottom bit.

Fn and N: These bits specify the destination register of the instruction. Fn holds the top 4

bits of the register number and N holds the bottom bit.

3.2. Floating point Instruction Set 17

FM and M: These bits specify the destination register of the instruction. Fm holds the top

4 bits of the register number and M holds the bottom bit.

cp num: cp num is set to 4’b1010 when the instructions is single precision FP. For double

precision the cp num 4’b1011.

Table 3.1: Data-processing instructions

p q r s Instruction name Instructions functionality

0 0 0 0 FMACS Fd = Fd + (Fn * Fm)

0 0 0 1 FNMACS Fd = Fd - (Fn * Fm)

0 0 1 0 FMSCS Fd = -Fd + (Fn * Fm)

0 0 1 1 FNMSCS Fd = -Fd - (Fn * Fm)

0 1 0 0 FMULS Fd = Fn * Fm

0 1 0 1 FNMULS Fd = -(Fn * Fm)

0 1 1 0 FADDS Fd = Fn + Fm

0 1 1 1 FSUBS Fd = Fn - Fm

1 0 0 0 FDIVS Fd = Fn / Fm

1 0 0 1 - UNDEFINED

1 0 1 0 - UNDEFINED

1 0 1 1 - UNDEFINED

1 1 0 0 - UNDEFINED

1 1 0 1 - UNDEFINED

1 1 1 0 - UNDEFINED

1 1 1 1 - Extension instructions

18 Chapter 3. ARM Core Implementation

Table 3.2: Extension instructions

FN N Instruction name Instructions functionality

0000 0 FCPYS Fd = Fm

0000 1 FABSS Fd = abs(Fm)

0001 0 FNEGS Fd = -Fm

0001 1 FSQRTS Fd = sqrt(Fm)

001x x - UNDEFINED

0100 0 FCMPS Compare Fd with Fm, no exceptions on quiet NaNs

0100 1 FCMPES Compare Fd with Fm, with exceptions on quiet NaNs

0101 0 FCMPZS Compare Fd with 0, no exceptions on quiet NaNs

0101 1 FCMPEZS Compare Fd with 0, with exceptions on quiet NaNs

011x x - UNDEFINED

1000 0 - UNDEFINED

1000 1 FSITOS Signed integer floating-point conversions

1001 x - UNDEFINED

101x x - UNDEFINED

1100 x - UNDEFINED

1101 0 FTOSIS Floating-point signed integer conversions

1101 1 FTOSIZS Floating-point signed integer conversions, RZ mode

111x x - UNDEFINED

The total of Data-Processing Instructions that were implemented are seen in Tables 3.1 and

3.2.

3.2.2 Load and Store instructions

Figure 3.3: Load and store instructions format

3.2. Floating point Instruction Set 19

The two instructions that were implemented is FSTS and FLDS. FSTS stores one single-

precision register to memory and FLDS loads one single-precision register from memory.

P,U,W: These bits specify an addressing mode of the load or store instruction. The address-

ing can be pre-index, post-index or unindexed. The offset can be added of subtracted from the

base register and the memory address can be written to the base register or remain unchanged.

Fd and D: These bits specify the destination floating-point register of a load instruction, or

the source floating-point register of a store instruction. Fd holds the top 4 bits of the register

number and D holds the bottom bit.

L bit: This bit determines whether the instruction is a load (L == 1) or a store (L == 0).

Rn: This specifies the ARM register used as the base register for the address calculation

cp num: cp num is set to 4’b1010 when the instructions is single precision FP. For double

precision the cp num 4’b1011.

offset These bits specify the word offset which is applied to the base register value to obtain

the starting memory address for the transfer.

3.2.3 Single register transfer instructions

Figure 3.4: Single register transfer instructions

The two instructions that were implemented is FMSR and FMRS. FMSR transfers a FP register

to an ARM register and FMRS transfers an ARM register to an FP register.

opcode: Is 3’b000 for FMSR and FMRS

20 Chapter 3. ARM Core Implementation

L bit: This bit determines the direction of the transfer: L==0 from and ARM register to a

FP register (FMRS). L==1 from a FP register to an ARM register (FMSR).

Fn and N: These bits specify the VFP register involved in the transfer. Fn holds the top 4

bits of the register number and N holds the bottom bit.

Rd: This specifies the ARM register involved in the transfer. If Rd is R15, the behaviour is

unpredictable

cp num: cp num is set to 4’b1010 when the instructions is single precision FP. For double

precision the cp num 4’b1011.

3.2.4 Custom instruction

There were implemented some custom instructions that have a contribution to the functionality

of the whole system.

Load or Store on address greater than 0x400 The loads and stores can be either for

ARM of FP registers. If the address of the load or store instruction is greater than 0x400

then the request does not go to the data memory of the ARM but it is served firstly from a

cache memory and secondly from the main memory of Xeon. More details for the cache will

be discussed in later chapters.

Load or Store on address 0x400 If the address of a load or store instruction is 0x400 then

the cache memory is being flashed to the main memory of the Xeon

software interrupt (SVC) When the SVC instruction is executed the processor enters a

terminal state. That state can change only with a reset to the processor.

3.3. Implementation of data-processing instructions 21

3.3 Implementation of data-processing instructions

In order to implement these FP instructions the Floating Point Hardware 2 Compo-

nent(FPH2)[18] package of Intel was used. The use of the package was necessary because of

the need of compatibility between FP instructions and the targeted FPGA. Floating Point

Hardware 2 packages all the floating point functions in a single component. This component

consists of compinational and multi-cycle FP instructions. This IP core is primarily used by

the Nios II which is a 32-bit embedded-processor specifically designed for Intel FPGAs.

In Table 3.3 are shown the cycles for the execution of every data-processing instruction and

the rounding of the results. The cycles are counted from the moment the instruction inserts

to the FPC until the result is written to FP register file The FPH2 component also supports

faithful rounding, which is not an IEEE 754-defined rounding mode. Faithful rounding rounds

results to either the upper or lower nearest single-precision numbers. Therefore, the result

produced is one of two possible values and the choice between the two is not defined. The

maximum error of faithful rounding is 1 unit in the last place (ulp). Errors may not be evenly

distributed.

In order to use the existing IP core to the processors design, a mechanism of BSV was used.

”Import BVI” is a feature of BSV that allows the developer to import an existing Verilog or

VHDL block on a BSV design. Technically this feature helps the developer to write a BSV

wrapper for the existing block and inform the compiler how to threat it.

22 Chapter 3. ARM Core Implementation

Table 3.3: Data processing instructions execution cycles and rounding

Instruction name Cycles Rounding
FMACS 9 Faithful
FNMACS 9 Faithful
FMSCS 9 Faithful
FNMSCS 9 Faithful
FMULS 4 Faithful
FNMULS 5 Faithful
FADDS 5 Faithful
FSUBS 5 Faithful
FDIVS 16 Nearest
FCPYS 1 None
FABSS 1 None
FNEGS 1 None
FSQRTS 8 None
FCMPS 1 None
FCMPES 1 None
FCMPZS 1 None
FCMPEZS 1 None
FSITOS 4 Not applicable
FTOSIS 2 Truncation (Round to Zero)
FTOSIZS 2 Truncation (Round to Zero)

Figure 3.5: Floating Point Co-processor interface

3.3. Implementation of data-processing instructions 23

In figure 3.5 is presented the interface of FPC.

enq(DecodeInst dinstr, Bool instrEpoch)) With this method the decoded instructions

and its epoch are inserted into the co-processor. The epoch of the instruction will be compared

with the epoch of the pipeline. If those two match then the instruction is able to be executed

from the co-processor or else it is discarded.

method Action decEpochIn(Bool decEpoch) The decEpoch is the current epoch of the

pipeline. The epoch of the pipeline is changed whenever a taken branch instruction is executed.

cpsrFlagsIn(Bit#(4) cpsrFlags This is the four most significant bits. These bits denote

and the condition flags of the instruction denotes if the instructions will be executed.

stall A signal for stalling the co-processor. A stall can occur if a FP instruction is in the co-

processor and in the main pipeline is a executed an load instruction that affects a FP register.

The load instruction needs one more cycle to write the result back to register when the execution

of a FP instruction starts two stages back on the pipeline. So there is a need to stall the co-

processor until the value that is being loaded from the memory is written to the FP register

file.

writeVRF2(VRidx idx, Data wrData) This is a write port to the FP register file that is

accessed from the main pipeline(Execute of Write Back stage)

Data readVRF4(VRidx idx) This is the output of the register file, which returns the a

32bit value.

Data rdCombRes This output has the compinational result of the FPH2.

Data rdMultiRes This output has the multi-cycle result of the FPH2.

Bool busy0 This informs the main pipeline if the co-processor is currently executing another

instruction

24 Chapter 3. ARM Core Implementation

Data rdFPSCR This output returns the value of the FPSR register

Maybe#(VRidx) sdReg The output has the id number of the destination register of the

FP instruction.

3.4 Implementation of Load and Store instructions

The FLDS and FSTS instructions for FP registers are identical to the load and store instruc-

tions for the ARM registers. The difference lies between the registers that are taking part to

the instructions. These instructions are executed not by the FPC but from the main pipeline.

The necessary read and writes to the FP register file is done by the ports of the FPC. If there

is another instruction on FPC prior to FLDS or FSTS then the instruction is stalled until the

FPC finishes.

3.5 Implementation of single register transfer instruc-

tions

The FMSR and FMRS instructions are executed also by the main pipeline and not from the

FPC. The necessary read and writes to the FP register file is done by the ports of the FPC.

If there is another instruction on FPC prior to FMSR or FMRS then the instruction is stalled

until the FPC finishes.

3.6 Implementation of custom instructions

As mentioned before SVC instruction leads the processor to a terminal state and from that

state can change only with reset. The implementation for this instruction is plain simple. When

the incoming instructions are decoded as SVC then the value of state register is changed to the

proper value. Concerning the load and store instruction to the main memory of the platform

the procedure is as follows. Firstly, the instructions are decoded and if the request is not for

the local data memory, then the processor issues a request with proper address, data and valid

3.6. Implementation of custom instructions 25

signal. Afterwards the processor enters a wait state and the pipeline is stalled until a valid

response comes from the cache or the main memory. The response may contain data if the

instruction was a load or only a valid signal for store instruction, which suggests that the data

were stored on the cache or the main memory.

Chapter 4

Hardware and Software

Implementation

In this section the structural components of the whole system, for the hardware and the

software side be analyzed. The system consists of 16 ARM processors and has a direct-map

cache memory for every core which can be of any size of power of two. The width of the data

of the cache is 512 bit (64B) as that is the size of the cacheline that the platform returns with a

single read request. The last two bits of the address that comes from the processor is always zero

because the addresses are multiple of four. The next four bits is the block offset and the rest

bits are the tag and the index which depend on the size of the cache. There is a control Finite

State Machine(FSM) that controls the the read and the writes to and from cache and also issues

requests for the Xeon memory with the proper data. Except that there are FSMs that load the

instruction and data memory of every core independently. The software(sw) side decide which

and how many of the cores will be started or be reset. In addition software can tell if the cores

memories will be loaded or cleared or stay as it is with the pre-existing data that have (from

synthesis of from a previous run). The necessary information for a run is passed from sw to

hw through MMIO requests. With these requests the AFU becomes aware of the addresses of

the buffer that will read and write. Except that AFU can know how many instructions and

data will be loaded to the internal memories of the cores. Also the cores receive orders from

the sw with such requests for example when to start/reset, load or not instructions and data

26

27

memory. Furthermore, in order to manage the multiple read and write requests from the cores

two arbiters were implemented, one that handles the read requests and one that handles the

write requests. The read and write requests are independent to each other.

Figure 4.1: Abstract view of system’s top module

28 Chapter 4. Hardware and Software Implementation

4.1 Hardware Implementation

Figure 4.2: Block diagram of ARM with cache control for read/write requests and control for
writing to instructions and data memory

4.1.1 FSM for loading instruction and data memory

Figure 4.3: State diagram FSM for loading instruction and data memory

4.1. Hardware Implementation 29

The states of the FSM in Figure 4.3 will be explained below.

NO READ : This state is the initial state of the FSM. FSM stays on this state until a start

singal comes along with signal that suggests whats is the next state.

READ INST : If a load memory signal is set then after the NO READ the state becomes

READ INST. On this state a read request to the proper buffer that keeps the instructions code

is prepared.

READ INST RSP : The FSM stays on this state until gets a valid response from the

memory. Every response data contains sixteen instructions

FEED INST : After the valid response the FSM feeds the instruction one by one every

clock cycle to the instruction memory of the processor. The feeding last sixteen cycles

CHECK STATE : Then the total number of the instructions is checked. If there are more

instructions to be loaded then the FSM goes again to READ INST to repeat the process and

fetch the next instructions.

READ DATA : When there are no more instructions to be loaded to the memory, FSM

issues a request for the buffer on Xeon’s memory that keeps the data for the data memory of

the processor.

READ DATA RSP : Again the FSM stays on this state until it gets a valid response.

Every response contains sixteen 32bit data.

FEED DATA : When FSM gets the response then feeds the data to the data memory of

the processor. That lasts sixteen cycles.

CHECK STATE2 : Afterwards the FSM checks if there are more data to be fetched from

the memory. If there are, then the FSM goes to READ DATA state else it goes to FINISH

state.

30 Chapter 4. Hardware and Software Implementation

CLEAR MEMS : If the FSM enters to this state then zeros will be written in every location.

FINISH : This is the terminal state for this FSM.

4.1.2 FSM for controlling the cache and the read/write requests to

the platforms memory

Figure 4.4: State diagram FSM for controlling the cache and issuing read/write requests for
external memory

4.1. Hardware Implementation 31

IDLE : This is the initial state of the FSM. To start this FSM the previous described FSM

must be at FINISH state.

RUN : On this state the FSM waits for a read or write requests from the processor. De-

pending on the request FSM chooses the next state.

CACHE REQ : If there is a read/write the FSM issues a read request for the cache to get

the tag and the data from it.

CACHE RESP : The response from the cache is composed from the data and the tag. The

tag is compared with the proper bits of the address from the processor and accordingly the next

state is chosen. If the request from the processor is for load and the tag is in the cache then the

next state is READ CACHE HIT, else the next state is READ REQUEST. Otherwise if the

request is for store data and the tag is in the cache then the next state is WRITE CACHE HIT

else it is READ REQUEST2.

READ CACHE HIT : Based on the index bits of the address, the proper 32bit of the

cache data are selected to return as a response to the processor.

READ REQUEST : On this state the FSM issues a read request to the main memory.

The address of the request is the top 26bits of the address that came from the processor. If the

request is handled from the arbiter then the FSM goes to READ RSP state.

READ RSP : The FSM waits for the main memory to respond with the proper data. If the

location in which the new data will be written is characterized as dirty then that data must be

written back to the main memory, so the next state will be WRITE REQUEST. If the previous

data was not dirty then the next state will be RUN.

WRITE CACHE HIT : If the tag of the cache matches the tag bits of the address then

the cacheline exists in the cache, therefore the based on the index bits the proper 32bit is altered

with the data that came from the processor

32 Chapter 4. Hardware and Software Implementation

READ REQUEST2 : In the case that the cacheline does not exist on the cache a read

request is made in order for the 64B in which the write will be made. When the read request

is served from the arbiter the state is changed to READ RSP2

READ RSP2 : FSM waits the response from the main memory. If the location of the cache

in which the new data will be written is dirty the old data must be written back to the main

memory. From the 512 new bits the proper 32bit, according to the index bits, is altered to the

data that came from the processor.

WRITE REQUEST : In this state a write request is issued for the main memory. When

the arbiter handles the request, the state changes to WRITE RSP.

WRITE RSP : FSM waits a valid signal from the main memory. This signal suggests that

the request is served.

FLASH CACHE : In this state the FSM prepares the data for the write requests that will

flash the whole cache back to main memory. From this state the next state is WRITE REQUEST

this is done as many times as the cache size.

CLOSE : This is the terminal state of the FSM. The FSM enters to this state if a software

interrupt occurred on the processor

4.2. Software implementation 33

4.2 Software implementation

Figure 4.5: Application flow of the software application

As seen in Figure 4.5 at first sw is searching for an AFU to connect and if the IDs are matching

it will connect to it. The ID is read from the json file of the project for the sw side and it is

hardcoded in the AFU. Afterwards the AFU registers is mapped in the user space and memory

space for the shared buffers is allocated. This buffers have all the data for the computations, the

instructions and proper starting data for the internal memories of the processors. The buffers

34 Chapter 4. Hardware and Software Implementation

for the computation are filled with random numbers and the data for the instruction and data

buffers are read from binary files. Then the reset and start mask is set by the user. This

masks define which cores will be reset and then start to execute. All the necessary information

are passed from sw to the AFU with write on the MMIO address space. This MMIO write

requests contain the address for the buffers of each processor(memory, instruction and internal

data buffers), start and reset mask, the number of instructions and data that will be loaded

and and what action will the processors perform to their internal memories. The sw triggers

the accelerator to start with a write on a special register and then waits for a write on the

same register to continue. The code that the ARM processors is executing in the FPGA is

also executed on the Xeon in order to verify that the system is working properly. After the

comparison and the evaluation of the results user can restart the system by setting again the

reset and start mask and perform a MMIO write to inform the AFU. If all processes are done

the sw deallocates the shared memory releases the AFU and the program is terminated.

Below the most important functions of the OPAE library will be discussed.

fpgaGetProperties(fpga token token, fpga properties *prop) Initializes the memory

pointed at by prop to represent a properties object, and populates it with the properties of the

resource referred to by token. Individual properties can then be queried using fpgaPropertiesGet×

() accessor functions.

fpgaPropertiesSetObjectType(fpga properties prop, fpga objtype objtype) Set

the object type of a resource.

fpgaPropertiesSetGUID(fpga properties prop, fpga guid guid) Sets the GUID of an

FPGA or accelerator object. For an accelerator, the GUID uniquely identifies a specific accel-

erator context type, i.e. different accelerators will have different GUIDs. For an FPGA, the

GUID is used to identify a certain instance of an FPGA, e.g. to determine whether a given

bitstream would be compatible.

4.2. Software implementation 35

fpgaEnumerate(const fpga properties *filters, uint32 t num filters, fpga token *to-

kens, uint32 t max tokens, uint32 t *num matches) This call allows the user to query

the system for FPGA resources that match a certain set of criteria, e.g. all accelerators that

are assigned to a host interface and available, all FPGAs of a specific type, etc.

fpgaEnumerate() will create a number of fpga tokens to represent the matching resources and

populate the array tokens with these tokens. The max tokens argument can be used to limit

the number of tokens allocated/returned by fpgaEnumerate(); i.e., the number of tokens in

the returned tokens array will be either max tokens or num matches (the number of resources

matching the filter), whichever is smaller.

fpgaDestroyProperties(fpga properties *prop) Destroys an existing fpga properties ob-

ject that the caller has previously created using fpgaGetProperties()

fpgaOpen(fpga token token, fpga handle *handle, int flags) Acquires ownership of

the FPGA resource referred to by token. Most often this will be used to open an accelerator

object to directly interact with an accelerator function, or to open an FPGA object to perform

management functions.

fpgaDestroyToken(fpga token *token) This function destroys a token created by fp-

gaEnumerate() and frees the associated memory.

fpgaPrepareBuffer(fpga handle handle, uint64 t len, void **buf addr, uint64 t

*wsid, int flags) Prepares a memory buffer for shared access between an accelerator and

the calling process. This may either include allocation of physical memory, or preparation of

already allocated memory for sharing. This function will ask the driver to pin the indicated

memory (make it non-swappable), and program the IOMMU to allow access from the acceler-

ator. If the buffer was not pre-allocated the function will also allocate physical memory of the

requested size and map the memory into the callers process virtual address space. It returns

in wsid an fpga buffer object that can be used to program address registers in the accelerator

for shared access to the memory.

36 Chapter 4. Hardware and Software Implementation

fpgaGetIOAddress(fpga handle handle, uint64 t wsid, uint64 t *ioaddr) This func-

tion is used to acquire the physical base address (on some platforms called IO Virtual Address

or IOVA) for a shared buffer identified by wsid.

fpgaReset(fpga handle) handle Performs an accelerator reset.

fpgaWriteMMIO64(fpga handle handle, uint32 t mmio num, uint64 t offset, uint64 t

value) This function will write to MMIO space of the target object at a specified offset.

fpgaReadMMIO64(fpga handle handle, uint32 t mmio num, uint64 t offset, uint64 t

*value) This function will read from MMIO space of the target object at a specified offset.

fpgaReleaseBuffer(fpga handle handle, uint64 t wsid) Releases a previously prepared

shared buffer. If the buffer was allocated using fpgaPrepareBuffer , this call will deallocate/free

that memory. Otherwise, it will only be returned to its previous state (pinned/unpinned,

cached/non-cached).

The largest cache size that can be synthesized for an architecture of 16 cores is 2048. The total

cache memory will be 2048 * 64B = 128kB

Chapter 5

Testing and Results

The tools that were used for synthesis,simulations verification of the design for purposes of

this thesis were provided by Intel. The whole compute environment ACE (Intel Academic

Compute Environment) is located on vLabs of Intel.

In this chapter will be discussed the different designs that were synthesized and the results

of the various benchmarks that were acquired by evaluating the architecture.

All the synthesized designs have sixteen cores and the difference between them is only the

cache size and the RAM type that was used to implement the cache memory . The RAM

types are two: LUT RAM (MLAB for Intel FPGAs) and RAM made by dedicate blocks of

memory resources (M20K). The max synthesizable cache size for MLAB is 16KB and for M20K

is 128KB. The achieved clock is 69Mhz for all the designs. For the purpose of measuring the

execution time of the designs a simple hardware counter was implemented that starts counter

when the accelerator is triggered and stop when all the computations are finished. Because of

that variable size of the cache, the different RAM types and in order to have a global view of

the affects of the different cache sizes, there were implemented the following designs as seen on

Tables 5.1 5.2.

37

38 Chapter 5. Testing and Results

Table 5.1: Different designs with different cache size and resource usage with MLAB RAMs

Cache Size Total resources

1KB 16KB -

used % used # used % used

ALMs 314,784 74% 366,986 86% 427,200

Registers 278549 - 308869 - -

Block mem bits 2,265,488 4% 2,387,728 4% 55,562,240

RAM Blocks 409 17% 449 17% 2,713

DSP Blocks 208 14% 208 14% 1,518

Table 5.2: Different designs with different cache size and resource usage with M20K

Cache Size
Total

resources

1KB 16KB 32KB 64KB 128KB -

used % used # used % used # used % used # used % used # used % used

ALMs 252,074 59% 261,757 61% 276,734 65% 296,306 69% 338,417 79% 427,200

Registers 181463 - 185496 - 189641 - 197881 - 214282 - -

Block mem bits 2,524,944 5% 4,590,864 8% 6,794,512 12% 11,201,808 20% 20,016,912 36% 55,562,240

RAM Blocks 657 24% 657 24% 657 24% 865 32% 1,313 48% 2,713

DSP Blocks 208 14% 208 14% 208 14% 208 14% 208 14% 1,518

As seen on Table 5.2 there after increasing the cache size in all designs there is a 2-4%

increase on the ALMS except the transition from the 64KB cache to 128KB cache in which

the rate increase is 10%. These numbers are including the static and the PR region of the

FPGA. According to the documentation the available ALMs for the Accelerator Functional

Unit (AFU) is 391,213 (92% of device total). However, a simpler design as the Hello world

example, that Intel provides,uses around 70,000 ALMs. The Hello world design just sends a

bit sequence from the hardware to the software side.

5.1. Read/Write Bandwidth of the platform 39

Figure 5.1: Diagram of ALM usage per cache size and RAM type

In Figure 5.1 becomes clear that the MLAB RAMs are more expensive in resources than

MK20K. For example the design with the 128kB cache and M20K RAMs uses less ALMS than

the design with 16 KB cache and MLAB RAMs

5.1 Read/Write Bandwidth of the platform

In this section will be presented the read and write bandwidth of the platform. This band-

width was measured without the ARM accelerator. Additionally there were used some cache

directives in order to check the impact that they have on performance of the system. As referred

earlier developer can choose which channel to use for read and write requests independently

. VA channel use and the three physical channels and redirects the requests on QPI, PCIe0

or PCIe1 base on the traffic of the channels. The sum of the bandwidth of the three physical

channels is the total bandwidth of channel VA. Correspondingly VL0 channel uses QPI, VH0

uses PCIe0 and VH1 uses PCIe1. Therefore the max bandwidth of each virtual channel depends

on the bandwidth of the corresponding physical channel.

40 Chapter 5. Testing and Results

Read Channel cache directives

• rdline-I: Read Line Invalid. Memory Read Request, with FPGA cache hint set to invalid.

The line is not cached in the FPGA, but may cause FPGA cache pollution.

• rdLine-S: Read Line Shared. Memory read request with FPGA cache hint set to shared.

An attempt is made to keep it in the FPGA cache in a shared state.

Write Channel cache directives

• wrLine-I: Write Line Invalid. Memory Write Request, with FPGA cache hint set to

Invalid. The FIU writes the data with no intention of keeping the data in FPGA cache.

• wrLine-M: Write Line Modified. Memory Write Request, with the FPGA cache hint set

to Modified. The FIU writes the data and leaves it in the FPGA cache in a modified

state.

• wrpush-I: Write Push Invalid. Memory Write Request, with the FPGA cache hint set to

Invalid. The FIU writes the data into the processors Last Level Cache (LLC) with no

intention of keeping the data in the FPGA cache. The LLC it writes to is always the

LLC associated with the processor where the DRAM address is homed.

Table 5.3: Read bandwidth for the three channels

Read Bandwidth GB/s
Channel VA VL0 VH0 VH1
rdline-I 1CL 17.304 5.963 5.122 5.062
rdline-I 2CL 17.304 5.563 6.015 6.128
rdline-I 4CL 19.806 5.543 6.367 6.362
rdline-S 1CL 16.624 7.474 5.113 5.138
rdline-S 2CL 19.343 7.487 6.159 6.152
rdline-S 4CL 19.927 7.482 6.343 6.352

5.1. Read/Write Bandwidth of the platform 41

As seen on Table 5.3 the sum of the bandwidth of the channels VL0, VH0 and VH1 is

the maximum bandwidth of the platform can achieve using the VA channel. Cache directive

rdline-S leads to significant increase of the bandwidth compare to rdline-I. This cache directives

affects only VL0 channel and not VH0 and VH1. With the use of rdline-S the VL0 has more

bandwidth than the VHs channels. In addition the more cachelines (CL) the system fetches

from memory the more the bandwidth increases.

Table 5.4: Write bandwidth for the three channels

Write Bandwidth GB/s
Channel VA VL0 VH0 VH1

wrline-M 1CL 15.643 5.064 5.227 5.226
wrline-M 2CL 17.755 5.075 6.276 6.276
wrline-M 4CL 19.108 5.071 6.971 6.971
wrline-I 1CL 14.416 4.016 5.227 5.226
wrline-I 2CL 16.511 4.016 6.275 6.276
wrline-I 4CL 17.88 3.946 6.971 6.97
wrpush-I 1CL 14.396 4.017 5.226 5.226
wrpush-I 2CL 16.507 4.02 6.275 6.275
wrpush-I 4CL 17.838 4.018 6.971 6.971

By looking Table 5.4 again the conclusions are almost the same as before. Firstly the cache

directives affects only the VLO channel and not the VH channels. The cache directive with

the most achieved bandwidth is wrline-M. With the other two directives the results are almost

identical. Moreover the more cachelines are being written in the memory the more the band-

width is increased. Lastly a more general notice is that the read bandwidth is bigger than the

write bandwidth of the platform

42 Chapter 5. Testing and Results

Figure 5.2: Diagram of the read bandwidth for different cache directives

Figure 5.3: Diagram of the write bandwidth for different cache directives

5.2. Stream benchmark results 43

5.2 Stream benchmark results

In order to measure the application bandwidth of the design the STREAM [23] (Sustainable

Memory Bandwidth in High Performance Computers) benchmarks were used. Because the

STREAM source code could not be used as is, it was examined and then were produced four

simpler C codes that each contains one benchmark. The benchmarks are: C = A, B = scalar*C,

B = A + C and B = A + scalar*C, where A,B and C are tables. These four C codes, with

the use of ARM GNU compiler, were converted to ARM assembly. Afterwards these assembly

codes were optimized by hand in order to minimize the loads and stores to the stack of the

processor and achieve the maximum possible application bandwidth. For the floating point

benchmarks the ARM instructions that are processing integers they were changed to floating

point instructions. At the end of each program there were placed two standard instructions

str r0, [r3, #1024] and svc #0. The str instructions tells the processor to flash its cache

back to the main memory and svc informs the core that the program has finished and stops

operating.

5.2.1 Integer results

The read requests on benchmarks C=A and B=Scalar*C are two times more than the write

requests because to make a write on a certain cacheline first the old data must be read in order

to save them back unaltered. On the other two benchmarks the read requests are three times

more than the write requests because the benchmarks involve three tables.

44 Chapter 5. Testing and Results

Table 5.5: Benchmark C = A with MLAB RAM

1 core 2 cores 4 cores 8 cores 16 cores

Cycles 67497273 67496447 67347419 67556708 67776859

Execution Time(s) 0.98 0.98 0.98 0.98 0.98

of elements in Table/core 262144 262144 262144 262144 262144

Read Requests 327674 655348 1310696 2621392 5242784

Write Requests 163840 327680 655360 1310720 2621440

Read bdwth MB/s 20.44 40.89 81.96 163.42 325.77

Write bdwth MB/s 10.22 20.45 40.98 81.71 162.89

Table 5.6: Benchmark C = A with M20K RAM

1 core 2 cores 4 cores 8 cores 16 cores

Cycles 80983627 81000182 81006195 81066037 81021838

Execution Time(s) 1.17 1.17 1.17 1.17 1.17

of elements in Table/core 262144 262144 262144 262144 262144

Read Requests 327674 655348 1310696 2621392 5242784

Write Requests 163840 327680 655360 1310720 2621440

Read bandwidth MB/s 17.04 34.07 68.14 136.18 272.51

Write bandwidth MB/s 8.52 17.04 34.07 68.09 136.26

On Tables 5.5 and 5.6 are seen the results of the Benchmark C=A . The benchmark copies

a memory region to another.

5.2. Stream benchmark results 45

Table 5.7: Benchmark B = Scalar*C with MLAB RAM

1 core 2 cores 4 cores 8 cores 16 cores

Cycles 69833878 69923342 69840406 70035879 70581877

Execution Time(s) 1.01 1.01 1.01 1.02 1.02

of elements in Table/core 262144 262144 262144 262144 262144

Read Requests 327674 655348 1310696 2621392 5242784

Write Requests 163840 327680 655360 1310720 2621440

Read bdwth MB/s 19.76 39.47 79.04 157.63 312.82

Write bdwth MB/s 9.88 19.74 39.52 78.82 156.41

Table 5.8: Benchmark B = Scalar*C with M20K RAM

1 core 2 cores 4 cores 8 cores 16 cores

Cycles 83332400 83641376 83648912 83595523 83675686

Execution Time(s) 1.21 1.21 1.21 1.21 1.21

of elements in Table/core 262144 262144 262144 262144 262144

Read Requests 327674 655348 1310696 2621392 5242784

Write Requests 163840 327680 655360 1310720 2621440

Read bandwidth MB/s 16.56 33.00 65.99 132.06 263.87

Write bandwidth MB/s 8.28 16.50 33.00 66.03 131.94

The benchmark B = Scalar*C (Tables 5.7, 5.8) is moving a part of the memory to another

region and simultaneously alters it by a multiplication with a constant number.

46 Chapter 5. Testing and Results

Table 5.9: Benchmark B=A+C with MLAB RAM

1 core 2 cores 4 cores 8 cores 16 cores

Cycles 60582345 60623515 60711476 60851192 61504998

Execution Time(s) 0.88 0.88 0.88 0.88 0.89

of elements in Table/core 174752 174752 174752 174752 174752

Read Requests 327674 655348 1310696 2621392 5242784

Write Requests 109220 218440 436880 873760 1747520

Read bdwth MB/s 22.78 45.52 90.91 181.41 358.97

Write bdwth MB/s 7.59 15.17 30.31 60.47 119.66

Table 5.10: Benchmark B=A+C with M20K RAM

1 core 2 cores 4 cores 8 cores 16 cores

Cycles 73632703 73658017 73656416 73671021 73696264

Execution Time(s) 1.07 1.07 1.07 1.07 1.07

of elements in Table/core 174752 174752 174752 174752 174752

Read Requests 327674 655348 1310696 2621392 5242784

Write Requests 109220 218440 436880 873760 1747520

Read bandwidth MB/s 18.74 37.47 74.94 149.84 299.58

Write bandwidth MB/s 6.25 12.49 24.98 49.95 99.86

Benchmarks on Tables 5.9 and 5.10 adds to tables and moves the result to a third one.

5.2. Stream benchmark results 47

Table 5.11: Benchmark A=B+scalar*C with MLAB RAM

1 core 2 cores 4 cores 8 cores 16 cores

Cycles 62392900 62412403 62494948 62365775 63175507

Execution Time(s) 0.90 0.90 0.91 0.90 0.92

of elements in Table/core 174.752 174.752 174.752 174.752 174.752

Read Requests 327674 655348 1310696 2621392 5242784

Write Requests 109220 218440 436880 873760 1747520

Read bdwth MB/s 22.12 44.22 88.32 177.01 349.47

Write bdwth MB/s 7.37 14.74 29.44 59.00 116.49

Table 5.12: Benchmark A =B +scalar*C with M20K RAM

1 core 2 cores 4 cores 8 cores 16 cores

Cycles 75579391 75386692 75367797 75395413 75452664

Execution Time(s) 1.10 1.09 1.09 1.09 1.09

of elements in Table/core 174752 174752 174752 174752 174752

Read Requests 327674 655348 1310696 2621392 5242784

Write Requests 109220 218440 436880 873760 1747520

Read bandwidth MB/s 18.26 36.61 73.24 146.42 292.61

Write bandwidth MB/s 6.09 12.20 24.41 48.81 97.54

The last STREAM benchmark multiplies elements of C table with a constant number and

adds the elements of B and stores the result to table A.

The observation that occurs from the above Tables is that the bandwidth is analogous to

the number of the cores and the difference between the read and write bandwidth depends on

the number of tables are being read and written. In addition designs implemented with MLAB

RAMs are executed faster than M20K designs because MLAB RAMs allow asynchronous read

requests while M20K has one cycle delay. Furthermore MLAB benchmarks has more application

bandwidth because for the same amount of requests the execution time is shorter.

48 Chapter 5. Testing and Results

In the figures below there are presented the read and write bandwidth for each benchmark

for the different RAM implementations for better visualization.

Figure 5.4: Diagram of the read bandwidth for the integer benchmarks with MLAB RAM

Figure 5.5: Diagram of the write bandwidth for the integer benchmarks with MLAB RAM

5.2. Stream benchmark results 49

Figure 5.6: Diagram of the read bandwidth for the integer benchmarks with M20K RAM

Figure 5.7: Diagram of the write bandwidth for the integer benchmarks with M20K RAM

50 Chapter 5. Testing and Results

5.2.2 Floating point results

In the following tables are presented the STREAM benchmarks that use floating point numbers.

The above observations apply to the following floating point results. One more note is that the

floating point benchmarks requires more time to execute because floating point instructions

need more cycles to produce results. s a consequence the read and write bandwidth decreases

because for the same read and write request the execution time has been increased.

Table 5.13: Floating point benchmark C = A with M20K RAM

1 core 2 cores 4 cores 8 cores 16 cores

Cycles 80972393 80998299 81006094 81015377 81028297

Execution Time(s) 1.17 1.17 1.17 1.17 1.17

of elements in Table/core 262144 262144 262144 262144 262144

Read Requests 327674 655348 1310696 2621392 5242784

Write Requests 163840 327680 655360 1310720 2621440

Read bandwidth MB/s 17.04 34.07 68.14 136.27 272.49

Write bandwidth MB/s 8.52 17.04 34.07 68.14 136.25

Table 5.14: Floating point benchmark B = Scalar*C with M20K RAM

1 core 2 cores 4 cores 8 cores 16 cores

Cycles 88638697 88704084 88727067 88713138 88778209

Execution Time(s) 1.28 1.29 1.29 1.29 1.29

of elements in Table/core 262144 262144 262144 262144 262144

Read Requests 327674 655348 1310696 2621392 5242784

Write Requests 163840 327680 655360 1310720 2621440

Read bandwidth MB/s 15.57 31.11 62.21 124.44 248.71

Write bandwidth MB/s 7.78 15.56 31.11 62.22 124.35

5.2. Stream benchmark results 51

Table 5.15: Floating point benchmark B=A+C with M20K RAM

1 core 2 cores 4 cores 8 cores 16 cores

Cycles 78791044 78789298 78799787 78820816 78821295

Execution Time(s) 1.14 1.14 1.14 1.14 1.14

of elements in Table/core 174752 174752 174752 174752 174752

Read Requests 327674 655348 1310696 2621392 5242784

Write Requests 109220 218440 436880 873760 1747520

Read bandwidth MB/s 17.51 35.03 70.05 140.05 280.11

Write bandwidth MB/s 5.84 11.68 23.35 46.69 93.37

Table 5.16: Floating point benchmark A =B +scalar*C with M20K RAM

1 core 2 cores 4 cores 8 cores 16 cores

Cycles 84065472 84069619 84045993 84079352 84259279

Execution Time(s) 1.22 1.22 1.22 1.22 1.22

of elements in Table/core 174752 174752 174752 174752 174752

Read Requests 327674 655348 1310696 2621392 5242784

Write Requests 109220 218440 436880 873760 1747520

Read bandwidth MB/s 16.41 32.83 65.67 131.29 262.03

Write bandwidth MB/s 5.47 10.94 21.89 43.77 87.34

52 Chapter 5. Testing and Results

Figure 5.8: Diagram of the write bandwidth for the floating point benchmarks

Figure 5.9: Diagram of the write bandwidth for the floating point benchmarks

5.3. Matrix Multiplication 53

5.3 Matrix Multiplication

The same process was followed to produce the assembly code for the matrix multiplication

program. At first a code for matrix multiplication was written in C. Afterwards this C code was

converted to assembly with ARM GNU compiler. The produced assembly code was optimized

by hand for the purpose of achieving the highest possible application bandwidth. For the

floating point matrix multiplication the instructions that are processing integers were altered

to floating point instructions.

5.3.1 Integer results

Table 5.17: Benchmark matrix multiplication C = A x B - cache size = 1KB MLAB RAM

1 core 2 cores 4 cores 8 cores 16 cores

Cycles 3829425172 4038496166 4037733909 4065472896 3903235027

Execution Time(s) 55.50 58.53 58.52 58.92 56.57

of elements in Table/core 173056 173056 173056 173056 173056

Read Requests 26599877 53199754 106399508 212799016 425598032

Write Requests 9089600 18179200 36358400 72716800 145433600

Read bdwth MB/s 29.25 55.48 110.98 220.44 459.20

Write bdwth MB/s 10.00 18.96 37.92 75.33 156.92

Table 5.18: Benchmark matrix multiplication C = A x B - cache size = 16KB MLAB RAM

1 core 2 cores 4 cores 8 cores 16 cores

Cycles 2784450582 2800326614 2784823752 2787313662 2800822924

Execution Time(s) 40.95 41.18 40.95 40.99 41.19

of elements in Table/core 173056 173056 173056 173056 173056

Read Requests 5521750 11043500 22087000 44174000 88348000

Write Requests 292016 584032 1168064 2336128 4672256

Read bandwidth MB/s 8.23 16.37 32.92 65.78 130.92

Write bandwidth MB/s 0.44 0.87 1.74 3.48 6.92

54 Chapter 5. Testing and Results

Table 5.19: Benchmark matrix multiplication C = A x B - cache size = 1KB

1 core 2 cores 4 cores 8 cores 16 cores

Cycles 3922716875 4659297857 4369969573 4168544614 4296298707

Execution Time(s) 56.85 67.53 63.33 60.41 62.27

of elements in Table/core 173056 173056 173056 173056 173056

Read Requests 26599877 53199754 106399508 212799016 425598032

Write Requests 9089600 18179200 36358400 72716800 145433600

Read bandwidth MB/s 28.56 48.09 102.54 214.99 417.19

Write bandwidth MB/s 9.76 16.43 35.04 73.46 142.56

Table 5.20: Benchmark Matrix MULL C = A x B - cache size = 16KB

1 core 2 cores 4 cores 8 cores 16 cores

Cycles 3361090801 3362092055 3361562960 3362696263 3377215132

Execution Time(s) 48.71 48.73 48.72 48.73 48.95

of elements in Table/core 173056 173056 173056 173056 173056

Read Requests 5521750 11043500 22087000 44174000 88348000

Write Requests 292016 584032 1168064 2336128 4672256

Read bdwth MB/s 6.92 13.83 27.67 55.32 110.17

Write bdwth MB/s 0.37 0.73 1.46 2.93 5.83

Table 5.21: Benchmark matrix multiplication C = A x B - cache size = 32KB

1 core 2 cores 4 cores 8 cores 16 cores

Cycles 3350368070 3358740516 3358362688 3358875024 3349574061

Execution Time(s) 48.56 48.68 48.67 48.68 48.54

of elements in Table/core 173056 173056 173056 173056 173056

Read Requests 5021463 10042926 20085852 40171704 80343408

Write Requests 151424 302848 605696 1211392 2422784

Read bandwidth MB/s 6.31 12.59 25.19 50.37 101.02

Write bandwidth MB/s 0.19 0.38 0.76 1.52 3.05

5.3. Matrix Multiplication 55

Table 5.22: Benchmark matrix multiplication C = A x B - cache size = 64KB

1 core 2 cores 4 cores 8 cores 16 cores

Cycles 3344425460 3346195969 3346301653 3346313763 3340995166

Execution Time(s) 48.47 48.50 48.50 48.50 48.42

of elements in Table/core 173056 173056 173056 173056 173056

Read Requests 4771032 9542064 19084128 38168256 76336512

Write Requests 81040 162080 324160 648320 1296640

Read bandwidth MB/s 6.01 12.01 24.02 48.04 96.22

Write bandwidth MB/s 0.10 0.20 0.41 0.82 1.63

Table 5.23: Benchmark matrix multiplication C = A x B - cache size = 128KB

1 core 2 cores 4 cores 8 cores 16 cores

Cycles 3338726602 3339409822 3339598779 3339691036 3334267761

Execution Time(s) 48.39 48.40 48.40 48.40 48.32

of elements in Table/core 173056 173056 173056 173056 173056

Read Requests 4645819 9291638 18583276 37166552 74333104

Write Requests 45856 91712 183424 366848 733696

Read bandwidth MB/s 5.86 11.72 23.43 46.87 93.89

Write bandwidth MB/s 0.06 0.12 0.23 0.46 0.93

56 Chapter 5. Testing and Results

Figure 5.10: Diagram of the read bandwidth for integer matrix multiplication for different cache
size/type

5.3. Matrix Multiplication 57

Figure 5.11: Diagram of the write bandwidth for integer matrix multiplication for different
cache size/type

Likewise to the STREAM benchmarks the MLAB designs are faster than the M20K designs

for the same cache size. The implementations with 1KB cache has more bandwidth because

they need to perform more requests to transfer all the data into the FPGA. Accordingly, as the

cache size gets larger,the requests towards memory, the bandwidth and runtime decrease.

58 Chapter 5. Testing and Results

Figure 5.12: Diagram of the average execution for integer matrix multiplication time compared
with the cache size/type

Looking at Figure 5.12 The increase of cache size from 1KB to 16 KB has significant impact

to performance, as the execution time is decreased by 10 seconds. From there and after the

increase of cache size only decreases the runtime by 0.1 seconds. So the best choice for cache

size is 16 KB.

5.3.2 Floating Point results

In the below Tables and Figures are presented the results of matrix multiplication with

floating point numbers for different cache sizes.

5.3. Matrix Multiplication 59

Table 5.24: Floating point benchmark matrix multiplication C = A x B - cache size = 16KB

1 core 2 cores 4 cores 8 cores 16 cores

Cycles 3793640911 3814184195 3814643568 3814267970 3801890906

Execution Time(s) 54.98 55.28 55.28 55.28 55.10

of elements in Table/core 173056 173056 173056 173056 173056

Read Requests 5521750 11043500 22087000 44174000 88348000

Write Requests 292016 584032 1168064 2336128 4672256

Read bandwidth MB/s 6.13 12.19 24.38 48.77 97.86

Write bandwidth MB/s 0.32 0.64 1.29 2.58 5.18

Table 5.25: Floating point benchmark matrix multiplication C = A x B - cache size = 32KB

1 core 2 cores 4 cores 8 cores 16 cores

Cycles 3781604333 3789728696 3791575483 3789617846 3789892861

Execution Time(s) 54.81 54.92 54.95 54.92 54.93

of elements in Table/core 173056 173056 173056 173056 173056

Read Requests 5021463 10042926 20085852 40171704 80343408

Write Requests 151424 302848 605696 1211392 2422784

Read bandwidth MB/s 5.59 11.16 22.31 44.64 89.28

Write bandwidth MB/s 0.17 0.34 0.67 1.35 5.19

Table 5.26: Floating point benchmark matrix multiplication C = A x B - cache size = 64KB

1 core 2 cores 4 cores 8 cores 16 cores

Cycles 3775620861 3777130793 3777191841 3777187956 3777323784

Execution Time(s) 54.72 54.74 54.74 54.74 54.74

of elements in Table/core 173056 173056 173056 173056 173056

Read Requests 4771032 9542064 19084128 38168256 76336512

Write Requests 81040 162080 324160 648320 1296640

Read bandwidth MB/s 5.32 10.64 21.28 42.56 85.11

Write bandwidth MB/s 0.09 0.18 0.36 0.72 1.45

60 Chapter 5. Testing and Results

Table 5.27: Floating point benchmark matrix multiplication C = A x B - cache size = 128KB

1 core 2 cores 4 cores 8 cores 16 cores

Cycles 3769917836 3773694524 3770575355 3770788846 3770725381

Execution Time(s) 54.64 54.69 54.65 54.65 54.65

of elements in Table/core 173056 173056 173056 173056 173056

Read Requests 4645819 9291638 18583276 37166552 74333104

Write Requests 45856 91712 183424 366848 733696

Read bandwidth MB/s 5.19 10.37 20.76 41.51 83.02

Write bandwidth MB/s 0.05 0.10 0.20 0.41 0.82

Figure 5.13: Diagram of the read bandwidth for floating point matrix multiplication for different
cache sizes

For the case of matrix multiplication of the floating point numbers an increase of the execution

time, compared to the integer, is observed again as in the STREAM benchmarks. The reason

again is that the floating point instructions need more cycles to execute on the ARM processor.

Once more the bandwidth and the execution time is decreased while the cache size increases.

5.3. Matrix Multiplication 61

Figure 5.14: Diagram of the write bandwidth for floating point matrix multiplication for dif-
ferent cache sizes

Figure 5.15: Diagram of the average execution time for floating point matrix multiplication
time and cache size

62 Chapter 5. Testing and Results

Observing the Figure 5.15 the average execution time of the implementation with 1KB cache

size is more than 10 seconds shorter than the 16KB design. After that point the decrease of

the execution time is almost zero. In conclude the best choice for the cache size is 16 KB as in

the integer matrix multiplication example.

Chapter 6

Conclusions and Future work

6.1 Conclusions of Thesis

This master thesis was an attempt to evaluate the Intel scalable Xeon with integrated FPGA

and investigate what kind of applications can be accelerated in this platform. Depending on the

measurements of the read and write bandwidth of the system and the results of the benchmarks

with the ARM accelerator the conclusion that comes is that streaming applications would be

preferable for this platform. The accelerator that have been implemented for this thesis with

the 16 ARM cores utilizes only the 2% of the platform’s theoretical bandwidth, that means

that there have to be some improvements in order to achieve higher bandwidth. In general this

platform is very user friendly because Intel provides all the necessary tools and guides in order

to the developer can start right away to design accelerators.

6.2 Future Work

• Optimize the code of the 3-stage pipeline processor and see if this has as a result to get

higher clock frequency and fewer ALMs on the FPGA.

• Design a processor with 5-stage pipeline and data forwarding.

• Expand the instruction set to another version(ARMv4T, ARMv5T etc).

• Include instruction and data caches.

63

64 Chapter 6. Conclusions and Future work

• Implement a branch prediction unit

• Study the tool to find an optimal way to design processors in Bluespec

• Implement some peripherals for the processor(e.g Debug and Support Unit)

• Implement a multicore design with L2 L3 cache

• Resource management of the design in order to fit 32 cores

• Improve architecture to achieve higher bandwidths

• Power management of the design

Bibliography

[1] Accelerator Functional Unit (AFU) Developer’s Guide for Intel FPGA Programmable

Acceleration Card (Intel FPGA PAC). url: https://www.intel.com/content/www/

us/en/programmable/documentation/bfr1522087299048.html.

[2] Amazon EC2 F1 Instance. 2017. url: https://aws.amazon.com/ec2/instance-

types/f1/.

[3] ARM ArchitectureReference Manual. url: https://www.scss.tcd.ie/~waldroj/3d1/

arm_arm.pdf.

[4] ARM7TDMI-S Data Sheet. url: http://infocenter.arm.com/help/topic/com.arm.

doc.ddi0234b/DDI0234.pdf.

[5] Bluespec System Verilog Wiki. url: http://wiki.bluespec.com/.

[6] Bluespec TM SystemVerilog Reference Guide. url: http://csg.csail.mit.edu/6.

S078/6_S078_2012_www/resources/reference-guide.pdf.

[7] Young-Kyu Choi et al. “In-Depth Analysis on Microarchitectures of Modern Heteroge-

neous CPU-FPGA Platforms”. In: ACM Transactions on Reconfigurable Technology and

Systems (TRETS) 12.1 (2019), p. 4.

[8] Nirav Hemant Dave et al. “Designing a processor in Bluespec”. PhD thesis. Massachusetts

Institute of Technology, 2005.

[9] Joel S Emer and Murali Vijayaraghavan. “Computer Architecture: A Constructive Ap-

proach”. In: ().

[10] Infocenter ARM. url: http://infocenter.arm.com.

65

https://www.intel.com/content/www/us/en/programmable/documentation/bfr1522087299048.html
https://www.intel.com/content/www/us/en/programmable/documentation/bfr1522087299048.html
https://aws.amazon.com/ec2/instance-types/f1/
https://aws.amazon.com/ec2/instance-types/f1/
https://www.scss.tcd.ie/~waldroj/3d1/arm_arm.pdf
https://www.scss.tcd.ie/~waldroj/3d1/arm_arm.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.ddi0234b/DDI0234.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.ddi0234b/DDI0234.pdf
http://wiki.bluespec.com/
http://csg.csail.mit.edu/6.S078/6_S078_2012_www/resources/reference-guide.pdf
http://csg.csail.mit.edu/6.S078/6_S078_2012_www/resources/reference-guide.pdf
http://infocenter.arm.com

66 BIBLIOGRAPHY

[11] Intel Accelerator Functional Unit (AFU) Simulation Environment (ASE) User Guide.

url: https://opae.github.io/1.1.2/docs/ase_userguide/ase_userguide.html.

[12] Intel to Start Shipping Xeons With FPGAs in Early 2016. 2016. url: http://www.

eweek.com/servers/%20intel-to-start-shipping-xeons-with-fpgas-in-early-

2016.html.

[13] Intel Wiki for FPGA accelerators. url: https://wiki.intel-research.net/FPGA.

html.

[14] Kyriakidis Konstantinos. “Full system architectural simulation on the HARP integrated

CPU-FPGA platform”. School of Electrical and Computer Engineering, Technical Uni-

versity of Crete, 2019. url: https://dias.library.tuc.gr/view/82851.

[15] Daniel Mattsson and Marcus Christensson. Evaluation of synthesizable CPU cores. Chalmers

tekniska högskola, 2004.

[16] Rishiyur S Nikhil and Kathy R Czeck. “BSV by Example”. In: CreateSpace, Dec (2010).

[17] Rishiyur S Nikhil, Daniel L Rosenband, Nirav Dave, et al. “High-level synthesis: an essen-

tial ingredient for designing complex ASICs”. In: IEEE/ACM International Conference

on Computer Aided Design, 2004. ICCAD-2004. IEEE. 2004, pp. 775–782.

[18] Nios II Custom Instruction UserGuide. url: https://www.intel.com/content/dam/

www/programmable/us/en/pdfs/literature/ug/ug_nios2_custom_instruction.

pdf.

[19] OPAE C API Programming Guide. url: https://opae.github.io/1.1.2/docs/fpga_

api/prog_guide/readme.html.

[20] K. Ovtcharov et al. “Toward accelerating deep learning at scale using specialized hardware

in the datacenter”. In: 2015 IEEE Hot Chips 27 Symposium (HCS). Aug. 2015, pp. 1–38.

doi: 10.1109/HOTCHIPS.2015.7477459.

[21] Georgios Pekridis. “Implementation of ARM processor by using Bluespec language”.

School of Electrical and Computer Engineering, Technical University of Crete, 2018. url:

https://dias.library.tuc.gr/view/71171.

https://opae.github.io/1.1.2/docs/ase_userguide/ase_userguide.html
http://www.eweek.com/servers/%20intel-to-start-shipping-xeons-with-fpgas-in-early-2016.html
http://www.eweek.com/servers/%20intel-to-start-shipping-xeons-with-fpgas-in-early-2016.html
http://www.eweek.com/servers/%20intel-to-start-shipping-xeons-with-fpgas-in-early-2016.html
https://wiki.intel-research.net/FPGA.html
https://wiki.intel-research.net/FPGA.html
https://dias.library.tuc.gr/view/82851
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/ug/ug_nios2_custom_instruction.pdf
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/ug/ug_nios2_custom_instruction.pdf
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/ug/ug_nios2_custom_instruction.pdf
https://opae.github.io/1.1.2/docs/fpga_api/prog_guide/readme.html
https://opae.github.io/1.1.2/docs/fpga_api/prog_guide/readme.html
https://doi.org/10.1109/HOTCHIPS.2015.7477459
https://dias.library.tuc.gr/view/71171

BIBLIOGRAPHY 67

[22] Andrew Putnam et al. “A Reconfigurable Fabric for Accelerating Large-scale Datacenter

Services”. In: SIGARCH Comput. Archit. News 42.3 (June 2014), pp. 13–24. issn: 0163-

5964. doi: 10.1145/2678373.2665678. url: http://doi.acm.org/10.1145/2678373.

2665678.

[23] STREAM: Sustainable Memory Bandwidth in High Performance Computers. url: https:

//www.cs.virginia.edu/stream/.

https://doi.org/10.1145/2678373.2665678
http://doi.acm.org/10.1145/2678373.2665678
http://doi.acm.org/10.1145/2678373.2665678
https://www.cs.virginia.edu/stream/
https://www.cs.virginia.edu/stream/

	Abstract
	Acknowledgements
	Introduction
	Intel© Xeon© Scalable Platform with Integrated FPGA
	FPGA Interface Manager (FIM)
	FPGA Interface Unit (FIU)
	Memory and Cache Hierarchy
	CCI-P Interface
	Read Requests
	Write Requests
	MMIO Reads
	MMIO Writes

	OPAE C API
	OPAE AFU Simulation Environment (ASE)

	ARM Core Implementation
	Overview of the ARM Core
	Floating point Instruction Set
	Data-processing instructions
	Load and Store instructions
	Single register transfer instructions
	Custom instruction

	Implementation of data-processing instructions
	Implementation of Load and Store instructions
	Implementation of single register transfer instructions
	Implementation of custom instructions

	Hardware and Software Implementation
	Hardware Implementation
	FSM for loading instruction and data memory
	FSM for controlling the cache and the read/write requests to the platforms memory

	Software implementation

	Testing and Results
	Read/Write Bandwidth of the platform
	Stream benchmark results
	Integer results
	Floating point results

	Matrix Multiplication
	Integer results
	Floating Point results

	Conclusions and Future work
	Conclusions of Thesis
	Future Work

	Bibliography

