TECHNICAL
UNIVERSITY
OF CRETE

DEPARTMENT OF ELECTRICAL AND
COMPUTER ENGINEERING

Diploma Thesis

An ontology for describing OpenAPI
version 3 services in the cloud

Aikaterini Karavasileiou

Comitee
Supervisor : Prof. Euripides G.M. Petrakis
Assoc. Prof. Deligiannakis Antonios
Assoc. Prof. Samoladas Vasileios

Chania, 2019

Abstract

Cloud services are mainly offered by means of Web
services based on the REST architecture style and need to
be formally described in a way that is both understand-
able by humans and machines. In this work, we adopt the
OpenAPI Specification (OAS), a simple and yet power-
ful specification for the description of REST APIs, as the
description language of Cloud services. OAS descriptions
are mainly understandable by humans. However, OAS
descriptions must be also understandable by machines so
that, the services can be searched, discovered and used by
other services. In order for a machine to understand the
meaning of OAS, service descriptions need to be formally
defined and their content be semantically enriched in a
way that eliminates ambiguities. Taking advantage of the
extension features foreseen in OAS 3.0, our approach sug-
gests that in order to eliminate ambiguities in OAS descrip-
tions, OAS properties must be semantically annotated.
Building-upon the latest version of OAS, this work ana-
lyses the reasons that cause ambiguities in service descrip-
tions and proposes Semantic OAS (SOAS 3.0). Building-
upon SOAS descriptions, we designed and implemented a
mechanism to transform SOAS (and therefore OAS) de-
scriptions to ontologies. As a result, the ontology will en-
able application of querying languages (e.g. SPARQL) for
service discovery and of reasoning tools for detecting incon-
sistencies and inferred relationships in SOAS descriptions.

Acknowledgements

I would really like to express my sincere appreciation to
my Supervisor, Professor Euripides G.M. Petrakis for the
help and support from the beginning till the end of this
thesis.

Moreover, I am grateful to Nikos Mainas for his great
suggestions and thoughtful discussions we had together.

[would also like to thank Professor Antonios Deligi-
annakis and Professor Vasileios Samoladas who agreed to
participate in the presentation and evaluation of my thesis.

Last but not least, I would like to thank my family for
their enormous help and unconditional support.

Contents

1 Introduction 1
1.1 Motivation 1
1.2 Problem Definition 2
1.3 Problem Solution 2
1.4 Contributions of the Work 3
1.5 Thesis Structure 4
2 Background 5
21 SOAP 5
22 WSDL and UDDI 6
23 REST 7
2.4 Differences between SOAP and REST . . 9
25 WADL 10
2.6 OpenAPI Specification 11
27 OASv2-OASv3 13
2.8 Semantic Web 15
2.9 Ontologies and OWL 16
2.10 Hydra Core Vocabulary 17
2.11 Apache Jena 22
2.12 Semantic Reasoners - Pellet | 23

3 The Semantic OpenAPI Specification 3.0 25
3.1 Why OpenAPI Specification 25

3.2 Swagger Petstore 26
3.3 Description of the OAS 27

3.4 Enriching the OpenAPI Specification . . . 39

3.5 OpenAPIv3 Ontology 43
Instantiating OpenAPI Services to the OpenAPI
Ontology 52
4.1 Mapping of OpenAPI Object to Document

Class 53
4.2 Mapping of Info Object to Info Class . . . 56

4.3 Mapping of Contact Object to Contact Class 57
4.4 Mapping of Licence Object to Licence Class 57
4.5 Mapping of a Server Object to Server Class 58
4.6 Mapping of Operation Object to Operation

Class 59
4.7 Mapping of External Doc Object to Ex-
ternal Doc Class 62
4.8 Mapping of Parameter Object to Path, Query;,
Cookie, Header Class 63
4.9 Mapping of Request Body Object to Re-
quest Body Class 65
4.10 Mapping of Media Type Object to Media
TypeClass 67
4.11 Mapping of Encoding Object to Encoding
Class 67
4.12 Mapping of Response Object to Response
Class 68
4.13 Mapping of Tag Object to Tag Class . . . 70
4.14 Mapping of Schema Object to Shape Class 71
4.15 Mapping of XML Object to XML Class . . 73

4.16 Mapping of Security Scheme Object to Se-
curity Class 74

4.17 Mapping of Security Requirement Object to
Security Requirement Class 76

5 Implementation 77

5.1 ParseOperationObject Method 80
5.2 CombineParameters Method 84
5.3 ParsePathObject Method 85
5.4 ParselnfoObject Method 85
5.5 ParseServerObject Method 86
5.6 ParseExternalDocObject Method 87
5.7 ParseXMLObject Method 88
5.8 GetMethodIndividual Method 88
5.9 GetStyleIndividual Method 89
5.10 ParseMediaTypeObject Method 90
5.11 ParseEncodingObject Method 90

5.12 ParseHeaderObject, ParseCookieObject, ParseQuery-
Object, ParsePathParameterObject Meth-

ods 91
5.13 GetDatatype Method 94
5.14 ParseResponseObject Method 95
5.15 ParseRequestObject Method 96
5.16 ParseTagObject Method 96
5.17 ParseSchemaObject Method 97
5.18 CreateNodeShape Method 98
5.19 CreatePropertyShape Method 100
5.20 CreateCollectionNodeShape

Method 103
5.21 ParseSecuritySchemeObject

Method 104
5.22 ParseSequrityReqObject Method 105
5.23 ParseOAuthFlowsIndividual

Method 106

5.24 AuthorizationCode, ClientCredentials, Pass-
word, Implicit, Scope parsing Methods . . 106

6 Examples Mapping and Results 109

6.1 Swagger Petstore Mapping 109
6.2 UpsTo Example 114
6.3 Queries and Results 117
7 Conclusion and Future Work 124
7.1 Conclusions. 124
7.2 Future Work 125
List of Figures 126

Bibliography 128

Chapter 1

Introduction

1.1 Motivation

We live in a world where the World Wide Web (WWW)
is everywhere. The Web is realized as a composition of
Web services. A web service is a unit of managed code
that can be remotely invoked using HI'TP. That is, it can
be activated using HT'TP requests. Web services enable
the exposure of the functionality of an existing code over
the network. Once it is exposed on the network, other
applications can invoke it over HT'TP.

With Web Services, each application must adhere to
a set of standardized protocols for sharing and accessing
data. This way, two programs can talk to each other,
regardless of operating system, database or programming
language. Instead, everyone agrees on a set of rules by
which these interactions will take place.

For applications to communicate with each other their
services must be formally described in a way that is under-
standable by machines. The last requirement would not
only improve the accuracy of service descriptions but also,
would allow services to be discovered by other services. A
web service description is a document by which the service
provider communicates the specification of the web service

1

to the service requester.

Web Service descriptions are available in plain text,
which users have to browse and read in order to determine
whether a service meets their needs. In the last years,
more and more services tend to be written using OpenAPI
Specification (OAS). However, OAS service descriptions
are mainly intended to be readable by humans and not by
machines, while in some cases are inaccurate or vague.

1.2 Problem Definition

OpenAPI Specification (OAS) is a description format for
REST APIs. OAS descriptions are mainly understand-
able by humans. However, OAS descriptions must be also
understandable by machines so that, the services can be
searched, discovered and used by other services. In order
for a machine to understand the meaning of OAS, service
descriptions need to be formally defined and its content be
semantically enriched in way that eliminates ambiguities.
The focus of this work is on improving the description of
Web Services in order to provide descriptions which are
both uniquely defined and discoverable.

1.3 Problem Solution

OpenAPI Specification (OAS) provides both human-readable
and machine-readable descriptions. Given an OpenAPI
service description, a consumer client is able to understand
and discover the functionality of a service, as well as to in-
teract with it with a minimum implementation logic.

In order for a machine to understand the meaning
of an OpenAPI service description, a service description

2

need to be formally defined and its content be semantic-
ally enriched. In this work we propose that OAS service
description can be semantically annotated using extension
properties. As a result we propose an extension of OAS
referred to in the following as Semantic OpenAPI Specific-
ation (SOAS 3.0). Taking a step forward we then create a
mechanism that achieves the association of OAS entities to
entities of an Ontology (e.g. domain ontology). The new
approach eliminates any ambiguities in the original OAS
descriptions and produces service descriptions that are un-
derstandable by both humans and machines. Moreover,
this work suggests that is plausible to transform SOAS
descriptions to ontologies as this enables application of
querying languages (e.g. SPARQL) for service discovery
and of reasoning tools (e.g. Pellet) for detecting inconsist-
encies and inferred relationships in SOAS descriptions.

1.4 Contributions of the Work

The following summarizes the contributions of this work :

e Building-upon the work by N.Mainas ! we propose
SOAS as an extension to the OpenAPI Specification
(OAS) that semantically enriches service descriptions
in order to eliminate ambiguities and offer descrip-
tions readable by both humans and machines.

e Creates a mechanism for transforming SOAS service
descriptions to ontologies so as to benefit from se-
mantic web tools such as reasoners and query lan-
guages for service discovery and for enabling service
orchestration.

Thttps://dias.library.tuc.gr/view /68268

e Demonstrates how SOAS can be applied using two
examples of web services described in chapter 6 of
this thesis and also presents the results and bene-
fits that are derived by using our mechanism for the
transformation of a SOAS (and thus OAS) service
description to an Ontology.

1.5 Thesis Structure

In chapter 2 we present the background and we briefly de-
scribe technologies that were used in this thesis. Chapter 3
provides information about our decision to choose OpenAPI
Specification, its features and our proposed solution for
the description of web services, the Semantic OpenAPI
Specification 3.0. In Chapter 4 we present in an abstract
level the algorithm that was created during this thesis and
transforms SOAS services to Ontology. Chapter 5 presents
the full algorithm behind the procedure of instantiating
Services to Ontology. Chapter 6 contains the results that
were derived by applying our mechanism to two Web ser-
vices examples. Finally, chapter 7 presents our conclusions
and our plans for future work.

Chapter 2

Background

2.1 SOAP

SOAP is an XML-based service invocation protocol and
was originally developed for distributed applications that
communicate over HT'TP. It was meant to access services,
objects and servers in a platform-independent manner.

This protocol was created as a response to the fact
that HT'TP was mainly used just for communication from
a client to a server by passing files. However, intercom-
munication is very important and one-way communication
was not enough in order to create competitive web services.
Hence, an extension of the HI'TP was needed. SOAP in-
deed added a set of HI'TP headers and an XML payload
and as a result it enabled complex two-way communication
between applications.

The communication between a server and a client is
implemented through an “envelope” which contains a man-
datory “body” part that contains all the call and response
info and a non obligatory “header” part that provides all
the header information. Inside the body it is possible to
exist a “fault” part that contains all the information about
errors that could have occurred while processing the mes-

sage.

(" SOAP-ENV: Envelope)

-~ ~,
SOAP-ENY: Header
_ y,

-
SOAP-ENV: Body

_ A

o J
Figure 2.1: SOAP envelope

2.2 WSDL and UDDI

WSDL stands for Web Services Description Language, it
was written in XML and was created in order to describe
SOAP web services.

An WSDL document specifies the location and the
methods of the service. It comprised mainly of the ele-
ments <types>, <message>, <portType>and <binding>.
The first one specifies the datatypes that a web service
uses. The <message>part contains the messages that are
required in order to interact with a service operation, while
the <portType>element defines all the operations that a
service may perform. An operation element represents
a function of the service and describes the input, output
and fault messages produced upon successful or unsuc-
cessful invocation of the service. Last but not least the
<binding>element provides the protocol and data format
for each <portType>.

UDDI was also introduced as a registry for storing in-
formation about web services. UDDI stands for Universal
Description Discovery and Integration. The services were

6

described via WSDL, while the communication between a
service provider and a consumer used to happen via SOAP.
In fact, a service provider had to describe its service us-
ing WSDL before it was published in a service registry,
like UDDI.Then the service consumer had to issue a query
to the registry to locate a service. The WSDL descrip-
tion of the service was passed to the service consumer,
informing him how to communicate with the service. The
service consumer used WSDL to send a request to the ser-
vice provider and received the expected response by the
service provider.

2.3 REST

REST (REpresentational State Transfer) is an architec-
tural style for developing Web services. It was introduced
in Ray Fielding’s dissertation on 2000' and by then it ob-
tained massive adoption. REST defines a set of constraints
that need to be used while creating web services in order
for the services to be called “RESTful”.

The following key-terms are associated with REST.
The client is the person or the software that uses the APIL.
A client can be a developer that uses Twitter API, as
well as a Web browser that uses Twitter API and then
renders the returned data as information on the screen.
The second key-term is a resource which is actually any
object that the API can provide information about (e.g.
an article or a photograph on a Website). Each resource
has a unique identifier, known as URL. Resources can be
static like a chapter on a book or dynamic like the news.

During the communication between a client and a

Thttps://www.ics.uci.edu/ fielding/pubs/dissertation/fielding_dissertation.pdf

7

server it is obligatory for the first to provide the latter with
an identifier for the resource it is interested in. Moreover
the client has to inform the service provider about the
operation that the server needs to perform on that spe-
cific resource. REST was originally designed based on the
HTTP protocol. The operations that a client may ask
a server to perform are usually in the form of an HT'TP
method (e.g. GET,PUT POST, DELETE).

The key-point of REST are the constraints that a ser-
vice should follow in order to become “RESTful”. The
first one is the Client Server constraint. This is respons-
ible for a separation between the client and the server.
The separation allows the components to evolve independ-
ently. In fact only the client is able to begin an interaction
with the server. The server is responsible for responding
to the request. Next, we have the Stateless constraint.
This requires the client to provide all the information that
the server needs in order to understand the request. The
third is the Cache constraint that requires that the data
sent from the client to the server are labeled explicitly
as “cacheable” or “non-cacheable”. If we have the label
“cacheable”, then it’s permitted to the client to store the
response in order to reuse it later in an equivalent request.
This fact obviously increases the system performance as it
reduces the requests that the server has to manage. Follow-
ing Cache constraint we have the Layered System. Indeed,
an architecture can be composed of hierarchical layers in
the form of servers between the service consumer and the
service provider. Each component cannot “see” beyond
the immediate layer with which they are interacting and
obviously the layers do not affect neither the request nor
the response. The Code-On-Demand is optional and en-

8

ables the client to download and execute the code from the
server.

The final constraint is Uniform Interface. This is
the central feature that distinguishes REST from other
network-based styles. In REST architecture there are four
interface constraints. The identification of resources,
meaning that every request about a resource has to in-
clude a URI. Next there is the manipulation of resources
through representations, which means that a client can
modify the resource given that the server has given the per-
mission. In addition the self-descriptive messages impose
that every message to and from the server must contain all
the information needed in order to be efficiently processed.
The final interface constraint is Hypermedia. Although it
is usually violated HATEOAS is an important constraint
and it means that the server should allow the client to
discover all the available actions and resources it needs by
using hyperlinks.

2.4 Differences between SOAP and REST

SOAP is a protocol, while REST is an architectural style.
SOAP is characterized by strict rules and it also provides
good security features. Specifically, SOAP supports WS-
Security for enterprise-level protection.? For instance, when
an application deals with crucial private information like
bank account numbers, it makes more sense to use SOAP.
However, SOAP’s extra security is not necessary in an ap-
plication that sends the day’s forecast. In addition, SOAP
requires more resources and bandwidth, while the response
data cannot be stored in a cache. Last but not least, SOAP

https://www.soapui.org/soapui-projects/ws-security.html

9

is limited to the use of XML and requires additional pars-
ing for messages.

REST was actually created to cope with the prob-
lems that were derived from SOAP, such as bigger com-
plexity and inflexible architecture. REST allows different
messaging formats, such as JSON, HTML, XML or even
plain text and it’s also characterized by better perform-
ance. Moreover, it provides caching and scale-ability. In
order to achieve the above features REST architectural
style lacks in security. As a result even though both SOAP
and REST can be used in any application, SOAP is usu-
ally preferred in enterprise applications, while REST is
rather handled by the web where high-flexibility is a more
important feature.

2.5 WADL

As soon as REST appeared, WADL was proposed as an
XML - based description language for HI'TP - based web
services. WADL provides a machine readable XML de-
scription in order to model the resources provided by a
service as well as the relationships between them. In fact,
WADL is the REST equivalent of SOAP’s WSDL and thus
it was created in order to describe RESTful services.
However, WADL is not popular. The main reason
is that WADL, similarly to WSDL, provides only a syn-
tactic description of the service, with limited support for
describing the meaning of service’s resources. In addition,
WADL does not support semantic annotation hence it is
not possible to enrich the meaning of a service description.

10

Uber API

Paths

Jproducts

GET /products

Summary
Product Types
Description

Tho Products endpoint retuma information about the Uber products offerod a1 a given location. The rosporse includos the
dapisy e GRS S30U1 83CH DrOGUEY, 70 ESES Ui IOGUCTS I 118 DIOper Oy Cros.

Para

Locatedin Description Required Schema
query Latitude component of location. Yes = nusber {double)

longitude query Longitude component of location. Yes = nusber (double)

Responses
Code Bescription

200 An array of products

default Unexpected error

Figure 2.2: Swagger Editor example

2.6 OpenAPI Specification

As WADL was not adopted massively, another specific-
ation was created and became very fast the most com-
mon approach for the description of RESTful services.
OpenAPI Specification (OAS)? was initially called Swag-
ger Specification and it is an open - source, language -
agnostic specification. When properly defined, the con-
sumer is able to understand and interact with the service
with minimal amount of implementation logic.

The descriptions of the services can be written in either
JSON* or YAML®. The implementation of the APIs may
follow a top - down or a bottom - up approach. When
the top - down approach is used, the service is implemen-
ted after the service’s description has been written, while
in the bottom - up approach the implementation comes
first and the description is later generated by the service’s
implementation.

3https://swagger.io/specification/
4https://www.json.org/
Shttps://yaml.org/

11

E IpetfindByStatus

E pethndByTags Finds Pets by tags
@ Ipeti{petid) Delstes a pet
E Ipeti{petid} Find pet by IC
m Ipet{petid}

m pet{petid)/uploadimage

store : A

Figure 2.3: Swagger Ul

More specifically, OAS provides an editor called Swag-
ger Editor®, an example of which appears in figure 2.2.
Swagger Editor runs locally or online. It also provides
instant visualization which means that the client may in-
teract with the specification while still defining it (e.g. the
client may see the changes in the code appear instantly
on the interface). Thus, a consumer may use the Swag-
ger Editor in order to fully document RESTful services.
Moreover, OAS provides an open - source code generator -
Swagger Codegen’- which makes it possible to build server
code directly from an OpenAPI service description in al-
most any programming language and framework (PHP,
Java etc). Last but not least, OpenAPI Specification gives
the client the chance to visually render documentation for
an OpenAPI service description, using the Swagger UI®, an
open - source HTML5 - based user interface. An example
of a Swagger Ul appears in figure 2.3.

Shttps://editor.swagger.io/
"https://swagger.io/tools/swagger-codegen/
8https://swagger.io/tools/swagger-ui/

12

It is important to mention that the OpenAPI Specific-
ation is part of the OpenAPI Initiative (OAI)?, which is
supported by widely known companies such as Google, Mi-
crosoft and IBM. The OAS structure is going to be further
described in the following chapters.

2.7 OAS v2 - OAS v3

The current version of OpenAPI Specification is OAS 3.0
and was released in 2017. It was the first major update
of the specification since 2015. OAS 3.0 features a more
elaborate (yet simple) structure and format than its prede-
cessor OAS 2.0. The requirement for a single host server
is relaxed (allowing a service to be installed on multiple
servers). The request body is more flexible and allows con-
sumption of different media types, such as JSON, XML,
HTML, plain text and others. The descriptions for para-
meters have changed: FormData parameter was removed
and, the cookie parameter type was introduced for docu-
menting APIs that use cookies. The definition of Schema
objects is enhanced with additional properties (e.g. anyOf,
oneOf, not) allowing a creation of more complex schemas
of various data types. Regarding security definitions, OAS
v3.0 is enhanced with support for OpenlID Connect Dis-
covery'?. OAS 3.0 now features a Components field where
various reusable objects can be defined (i.e. responses,
parameters, headers, links, callbacks, schemas and secur-
ity schemes).

In the new update two new features were added - re-

ferred to as LINKS and CALLBACKS. LINKS are defined

9https://www.openapis.org/
Ohttps:/ /swagger.io/docs/specification /authentication /openid-connect-discovery/

13

OpenAPl 2.0 OpenAPl 3.0
info info
security
securi
securityDefinitions i 9
produces consumes -
paths paths
tags externalDocs
tags externalDocs

definitions

pameter components

responses

Figure 2.4: Differences between the two versions of OAS

in the service response section to allow values returned by
a service call to be used as input for a next call. This is an
attempt of OAS 3.0 to incorporate HATEOAS function-
ality in the specification. Finally, CALLBACKS is a fea-
ture for defining asynchronous APIs or Webhooks. CALL-
BACKS define the requests that the described service will
send to another service in response to certain events. An
application of this feature would be for describing publish-
subscribe mechanisms which allow services to publish in-
formation and other services subscribing to them to get
notified when this information becomes available.

The differences between the two versions of OAS ap-
pear in figure 2.4, As we may see, the structure in
OAS 3.0 has become more simplified. As identified by
the color in the figure definitions, parameters, responses
and securityDefinitions appear now under the compon-
ents item. New objects have been added within this item.
[tem definitions in OAS 2.0 has been renamed as schemas
in OAS 3.0, while securityDefinitions item has been re-

https:/ /swagger.io/blog/news/whats-new-in-openapi-3-0/

14

named as securitySchemes, placed under components item.
The items produces and consumes have disappeared and
absorbed by the paths item. The same happened with
the sub-items host, basePath, schemes that have been
replaced by the servers item.

2.8 Semantic Web

The Semantic Web is an extension of the World Wide Web
through standards by the World Wide Web Consortium
(W3C). It promotes common data formats and exchange
protocols on the Web, most importantly Resource Descrip-
tion Framework (RDF). Moreover, Semantic Web provides
software programs with metadata that make the process
of finding Web pages a lot more accurate. The main goal
is to allow data to be “machine readable” and “machine
understandable”.

In addition, there are technologies in the context of
Semantic Web that enable people to create data stores on
the Web, build vocabularies, and write rules for handling
data. In fact Semantic Web is about linked data which
are empowered by technologies such as RDF, SPARQL,
OWL. This is very useful as the above technologies enable
the use of reasoners, the process of writing queries for the
data etc.

In a few words, semantic web is the idea of linking
data in the whole World Wide Web and making the in-
tegration of connected information found in different web
sites possible.

15

2.9 Ontologies and OWL

An ontology is a formal description of knowledge as a set
of concepts within a domain and the relationships that
hold between them. In ontologies we meet terms such as
individuals (instances of objects), classes, attributes and
relations as well as restrictions, rules and axioms.

As already mentioned, the main use of ontologies is
to represent knowledge. However, there are other ways of
doing that - some of which are vocabularies and logical
models. The advantage of ontologies though is that they
make the process of expressing relationships and linking
data to specific concepts very easy and precise. In a Se-
mantic World, the ontologies are one of the component -
keys by providing the necessary structure in order for in-
formation to be connected with other similar to it on the
Web of Linked Data.

In order for ontologies to be expressed the W3C Web
Ontology Language (OWL) has been created. OWL is
a Semantic Web language designed to represent rich and
complex knowledge about things, groups of things, and the
relations between them. In fact, OWL gives the user the
opportunity to create classes, property of classes and the
relationships that exist between them.

However, probably the most valuable feature that OWL
provides us with is the ability of using a reasoner on the cre-
ated ontology. The use of the reasoner comes with all the
advantages that the latter has, which means consistency
checking (find any logical inconsistencies) and satisfiability
checking (whether a class can have instances or not). By
the use of reasoners, the user may also discover “hidden”
relationships, such as the follow :

16

A—B
B—C
So, it holds that A — C.

In order to conclude, ontologies offer a lot of bene-
fits. Except reasoning, which has already been analyzed,
we could say that ontologies “understand” concepts and
relationships in ways that are close to the way humans
perceive interlinked concepts. In addition, they provide a
more coherent and easy navigation as users move from one
concept to another in the ontology structure. Last but not
least, ontologies are easy to extend as relationships may be
added without much implementation effort to existing on-
tologies. As a result, this model evolves with the growth of
data without impacting dependent processes and systems
if something goes wrong or needs to be changed.

2.10 Hydra Core Vocabulary

Hydra!? is a lightweight vocabulary for creating hypermedia-
driven Web APIs. More specifically, Hydra defines a num-
ber of concepts in RDF Schema that allow machines to
understand how to interact with an API. The main idea is
to provide a vocabulary through which the messages from
the server contain enough information that a client can use
in order to discover all the available actions and resources
it needs, and thus construct new HTTP requests to achieve
a specific goal. Since all the information about the valid
state transitions is exchanged in a machine-processable
way at runtime instead of being hardcoded into the client
at design time, clients can be decoupled from the server

2https://www.hydra-cg.com /spec/latest /core/

17

and adapt to changes more easily.

iD tati
i = ApiDocumentation
title
rdfs:Class description StatusCodeDescription
supportedClass
\ / statusCodes :::ta:tus(:ode
rdfs:Resource e
sl il description
Class J
supportedProperty \—7 Resource T
supportedOperation
operation
Error
SupportedProperty t ‘) title
=% | “Giperakion description
Property method
required et
readonly F'E’({:II'HE
l anttecnly statusCodes Collection
A member
rdf-Property freetextQuery T A Qx CreateResourceOperation stiliiains
rdf-type search
A
ReplaceR 0 il
T t Link / eplaceResourceOperation /
supportedOperation DeleteResourceOperation
PagedCollection
TemplatedLink
member
supportedOperation totalltems
first
IiTemplate next
previous
InTemplateMapping 4_ template last
mapping search
variable
property
required

| > rdfsisubClassOf — rdfsirange |

Figure 2.5: Hydra Core Vocabulary

As we can see in figure 2.5, the centre of the vocabu-
lary is actually the ApiDocumentation class, which builds
the foundation for the description of a Web API. Hydra
describes an API by giving it a title, a short description,
and documenting its main entry point. Furthermore, the
classes known to be supported by the Web API and ad-
ditional information about status codes that might be re-
turned can be documented.

Generally, a client decides whether to follow a link or

18

not based on the link relation (or property in the case
of Linked Data) which defines its semantics. There are
however also clients such as Web crawlers which simply
follow every link intended to be dereferenced. In HTML
this usually means that all links in anchor elements (the
<a>tag) are followed but most references in link elements
(the <link>tag), are ignored. Since in RDF serializations
no such distinction exists, the best a client can do is to
blindly try to dereference all URIs. It would thus be bene-
ficial to describe in a machine-readable manner if a prop-
erty represents a link intended to be dereferenced or solely
an identifier. In Hydra Vocabulary this is represented by
the Link class. It can be used to define properties that
represent dereferenceable links.

Moreover, in the Hydra Vocabulary there is the Ir-
1Template class, which is connected with the IriTem-
plateMapping class. Sometimes, the interaction with the
service requires links that cannot be created by a server.
For example, in order to query a service a link may con-
tain parameters that a client must fill at runtime. In Hy-
dra, such cases are described by the IriTemplate class. An
IriTemplate consists of a template that describes an IRI
template and a number of mappings. An IriTemplateM-
appging maps a variable in the IRI template to a property
and may optionally specify whether that variable is re-
quired or not. An example for better understanding is
presented in figure 2.6. The variable “lastname” maps to
the property “givenName” from Schema.org vocabulary.
With this information, a client may understand the mean-
ing of variables and generate a complete IRI.

Another important Hydra class is the Operation class,
which in fact contains the necessary information in order

19

"@context™: "http://www.w3.org/ns/hydra/context.jsonld”,
"type”: "IriTemplate”,

"template”: "http://api.example.com/issues{?’q}",
"wvariableRepresentation”: "BasicRepresentation”,
"mapping”: [

{

"@type”: "IriTemplateMapping”,
"wvariable”: "q",

“property”: "hydra:freetextQuery”,
"required”: true

Figure 2.6: Description of an IRI Template

for an HTTP request from a client to a server to be valid.
Operation class has a list of properties, each of which is
used for a specific reason. The property method describes
the HT'TP method that is used and it is the only required
property. Optionally, the expects property identifies the
information which is expected from the web API, while the
returns property specifies the information returned by the
Web API on success. Finally, the statusCodes provides
information about the statuses that might be returned.
Hydra Vocabulary has also an interesting feature which
is presented via the Supported Property class. Since Hy-
dra uses classes to describe the information expected or
returned by an operation, it also defines a concept to de-
scribe the properties known to be supported by a class.
More specifically, it is possible to define whether a specific
property is required or whether it is read-only or write-
only depending on the class it is associated with. An

20

example is presented in figure 2.7. As we may see, we can
specify whether a property which is supported by a class
is required - which means obligatory for the validity of a
request, readable - whether the client is able to retrieve
the property’s value and writeable - whether the client is
able to change the property’s value. In the exact same

{
"@context™: "http:// www.w3.org/ns/hydra/context.jsonld”,

"@id": "http://api.example.com/doc/#Comment”,
"ftype"”: "Class",

"title":

"description”:

"supportedProperty”: [

{
"@type”: "SupportedProperty”,
"property”: "#property”,
"required”: true,
"readable”: false,
"writeable”: true

Figure 2.7: Hydra Supported Property Class

way, Hydra introduces the Supported Operation property
which defines the operations supported by all instances of
a class.

The Hydra core vocabulary is used along with JSON-
LD, in order to enable the creation of hypermedia-driven
APIs. JSON-LD® is a lightweight format for the repres-
entation of Linked Data in JSON. Its design allows exist-
ing JSON to be interpreted as Linked Data with minimal
changes.

Hydra tried to combine the REST architectural style

Bhttps://json-1d.org/

21

and the Linked Data principles. This combination is able
to create opportunities to advance the Web of machines
in a similar way that hypertext did for the human Web.
However, Hydra did not become very popular, even though
the idea behind it has a lot of benefits. In case we need
to make an assumption on why Hydra has not gained the
popularity it deserved we could say it is because some-
times ontologies are treated with suspicion due to their
complexity. We however were inspired by this idea and
tried to create a simple mechanism that would solve the
above problems. Our work will be presented in the follow-
ing chapter.

2.11 Apache Jena

Apache Jena (or Jena in short) is a free and open source
Java framework for building semantic web and Linked
Data applications. The framework is composed of differ-
ent APIs interacting together to process RDF data. The
interaction between the different APIs appear in the figure
2.8.

The most important feature of Apache Jena for our
work is its ability to read and handle ontologies using
a Java framework. In Jena each of the ontology lan-
guages has a profile, which lists the permitted constructs,
the names of the classes and properties. The profile is
bound to an ontology model, which is an extended ver-
sion of Jena’s Model class. The base Model allows access
to the statements in a collection of RDF data, which is
in fact a collection of triples (resource, property, value).
OntModel extends this by adding support for the kinds
of constructs expected to be in an ontology: classes (in a

22

application code

HTTP
direct Java
Invocation
SuNaN parsers Ontology API | SPARQL API
fure and RDF API
writers

N-triples
Inference API >
options

RDFa
e " xternal

none i i i
| feasoner =~ [reasoner

Store API

- in-memory sSDB i TDB - custom |
SHEE
saL

database tuple

Figure 2.8: Apache Jena Framework

class hierarchy), properties (in a property hierarchy) and
individuals.

Jena provides its users also with the opportunity to
conduct queries on ontologies by using the SPARQL query
language via the ARQ - A SPARQL Processor for Jena.
SPARQL can be used to express queries across diverse
data sources, whether the data is stored natively as RDF
or viewed as RDF via middleware. The results of SPARQL

queries can be result sets or RDF' graphs.

2.12 Semantic Reasoners - Pellet

Pellet is a semantic reasoner, which is in fact a piece of
software able to infer logical consequences from a set of
asserted facts or axioms.

A semantic reasoner provides a standard set of De-

23

scription Logic inference services. First of all, there is
the consistency checking, which ensures that an onto-
logy does not contain any contradictory facts. Secondly, a
semantic reasoner checks for concept satisfiability, which
checks if it is possible for a class to have any instances. If
class is unsatisfiable, then defining an instance of the class
will cause the whole ontology to be inconsistent. Then,
there is the classification, which computes the subclass
relations between every named class to create the com-
plete class hierarchy. The class hierarchy can be used to
answer queries such as getting all or only the direct sub-
classes of a class. Finally, there is the realization, which
finds the most specific classes that an individual belongs
to. Pellet reduces all of the above services to consistency
checking.

24

Chapter 3

The Semantic
OpenAPI
Specification 3.0

In this chapter, we present the Semantic OpenAPI Spe-
cification (SOAS) version 3.0, an extension of the OpenAPI
Specification, for the effective and efficient description of
Cloud services. We analyze the reasons that led us to the
adoption of OAS, and we demonstrate how OpenAPI ser-
vice descriptions can be semantically enriched in order to
resolve ambiguities in OAS descriptions. To show proof
of concept we discuss OAS giving emphasis to ambiguities
inherent in OAS properties using the Swagger Petstore!*
example as a service use case.

3.1 Why OpenAPI Specification

When we were called to choose a description language for
services we had to consider many factors such as the pro-
tocol or architecture style upon which the description lan-
guage was built, the range of adoption from the computer
science society, the documentation and the tools that were

Mhttps:/ /petstore.swagger.io/

25

provided.

Regarding the protocol or architecture style, it is reas-
onable that we wanted a description language for REST-
ful services, given that the majority of Cloud services are
offered by means of Web services based on the REST ar-
chitecture style. Hence, WSDL except being characterized
as complex and not widely adopted is also not suitable for
describing RESTful services. Similarly, WADL despite the
fact that it was created for services based on REST archi-
tecture, it has the same disadvantages with WSDL.

Our other option was Hydra which is a very promising
technology based entirely on Semantic Web. However, as
already mentioned in the chapter 1, section 1.10 Hydra
has not gained massive adoption probably because of its
complexity.

For all the above reasons and because it covers all
the factors that were mentioned in the first paragraph,
we chose to adopt the OpenAPI Specification (OAS) as a
description language for web services.

3.2 Swagger Petstore

Swagger Petstore is the most common example of an OpenAPI
service. It is a virtual petstore, where we are able to see
information about the pets (name, photoUrl, status etc),
information about the client (id, username, firstname etc)

as well as information about an order. We may also see
the parameters that are required or not, in order to send a
query to the service in the form of GET, PUT, POST and
DELETE. By using Swagger Petstore it is also possible to

be informed about the various responses returned (200 -
successful operation or 404 - pet not found).

26

3.3 Description of the OAS

In this section we further describe the OpenAPI Specific-
ation. In the figure below is represented the structure of
an OAS version 3 service description.

In OpenAPI Specification there are many objects, each

OpenAPl 3.0
Info
Servers Security
Paths
Tags ExternalDocs
Components
Responses FParameters Examples
RequestBodies Headers Links

Callbacks Schemas SecuritySchemes|

Figure 3.1: OAS v3 document Structure

one of which has a list of properties. The majority of
the objects contain themselves other objects as properties.
Therefore objects are linked to each other.

First of all, there is the Info Object. What it does is to
provide metadata about the API. It is required to contain
the service name as well as the version of the service API.
In addition, it may provide information regarding the ser-
vice’s license, the terms of service, and contact information
of the service provider. Listing 3.1 illustrates an example
of an Info Object. We may see the title of the applica-
tion, its description, termsOfService, contact information,

27

license and version.

title: Sample Pet Store App
description: This is a sample server for a pet store.
termsOfService: http://example.com/terms/
contact:

name: API Support

url: http://www.example.com/support

email: support@example.com
license:

name: Apache 2.0

url: https://www.apache.org/licenses /LICENSE—2.0.html
version: 1.0.1

Listing 3.1: Example of an Info Object

Next, there is the Servers Object which is in fact an
object representing a server. It is required to contain the
url to the target host. Specifically in Servers Object we
specify the basepath (the part of the URL that appears
before the endpoint) used in the API requests. Here, we
may also find a description of the host designated by the
URL, as well as variables that can be populated at runtime
by the server (such as username). Additionally, if differ-
ent paths (endpoints) require different server URLs, the
Servers Object may be added as a property in the Path
Object’s Operation Object. The locally declared servers
(i.e. the servers that are declared in Servers Object) URL
will override the global servers (i.e. the servers that are

declared in OpenAPI Object) URL.

servers :
— url: https://{username}.gigantic—server.com:{port}/{basePath}
description: The production API server
variables:
username :
note! no enum here means it is an open value
default: demo
description: this value is assigned by the service provider,
in this example ‘gigantic—server.com?*
port :
enum :
— ’8443°
— 7443’

28

default: 8443’
basePath :

open meaning there is the opportunity to use special base
paths as assigned by the provider, default is ‘v2°¢

default: v2

Listing 3.2: Example of a Servers Object

As we can see in listing 3.2 the “variables” property of
Server Object contains itself some properties as it is in fact
an object itself, called Server Variable Object. The most
important property of the Server Variable Object is the
“enum” one. By using this property we are able to derive
multiple server URL from one server declaration. In the
listing we may see that we there are two servers with part
ids 8443 and 443 with the former being the default (443 is
used when explicitly mentioned in the request).

Next in the OAS Document Structure there is the Se-
curity Requirement Object. 1t lists the required security
schemes to execute this operation. The name used for each
property must correspond to a security scheme declared
in the Security Schemes under the Components Object
(will be explained later). If the security scheme is of type
“oauth2” or “openldConnect”, then the value is a list of
scope names required for the execution. For example, in
listing 3.3 we may see an oauth2 SecurityRequirement Ob-
ject which defines the type of object that we are able to
write or read, in this case pets.

petstore_auth :
— write: pets
— read:pets

Listing 3.3: OAuth2 Security Requirement Example

Another important object in OAS Document Struc-
ture is the Path Object. It contains the relative paths for
the service endpoints. Each Path item describes the avail-

29

able operations based on HTTP methods. The path is
appended to the expanded URL from the Server Object’s
url field in order to construct the full URL. For example,
in listing 3.4 the Path Object has value /pets. It describes
that with the get operation we get as a result a description
with all the pets registered in the system. It also describes
that when we get as a response the number ‘200" then we
have a successful query that returns a list of all the pets.

/pets:
get :
description: Returns all pets from the system that the user
has access to

responses :
200 7:
description: A list of pets.
content :
application/json:
schema :
type: array
items:

$ref: ’#/components/schemas/pet’

Listing 3.4: Path Object Example

More specifically, the get operation that appears in
listing 3.4 is in fact part of another object called Path Item
Object. This object describes all operations available on
a single path (i.e get, put, post, delete etc) as well as a
list of parameters that are applicable for all the operations
described under this path. In listing 3.5 we see an example
of a Path Item Object. It contains the results that a get
operation returns as well as the parameters which are the
name of the id of the pet, its description and whether or
not it is required.

get :
description: Returns pets based on ID
summary: Find pets by ID
operationld: getPetsByld
responses:
7200 :

30

description: pet response
content:
EYE S
schema :
type: array
items:
$ref: ’#/components/schemas/Pet’
default :
description: error payload
content:
"text /html ’:
schema :
$ref: ’#/components/schemas/ErrorModel’
parameters:
— name: id
in: path
description: ID of pet to use
required: true
schema:
type: array
style: simple
items:
type: string

Listing 3.5: Path Item Object Example

Next in the OAS Document Structure is the Tag Ob-
ject, which adds metadata to a single tag that is used by
the Operation Object. It is not mandatory to have a Tag
Object per tag defined in the Operation Object instances.
[t is required to contain the name of the tag, while it might
also contain a short description and an additional external
documentation for the tag. An example of a Tag Object
appears in listing 3.6, where we can see the name of the
tag as well as its description. Moreover, in listing 3.7 we
can see the tag pet and then the rest of the properties that
an Operation Object has, including the summary of what
that specific operation does (in this case : update a pet),
the parameters it has to contain in order to be performed,
the available responses and the scopes allowed by the se-
curity schemes.

name: pet

31

description: Pets operations

Listing 3.6: Tag Object Example

tags:
— pet
summary: Updates a pet in the store with form data
operationld: updatePetWithForm
parameters:
— name: petld
in: path
description: ID of pet that needs to be updated
required: true
schema :
type: string
requestBody :
content :
“application /x—www—form—urlencoded ’:
schema :
properties:
name:
description: Updated name of the pet
type: string
status:
description: Updated status of the pet
type: string
required :
— status
responses :
7200 7:
description: Pet updated.
content :
"application/json ’: {}
“application /xml’: {}
7405 7:
description: Method Not Allowed
content :
"application/json ': {}
"application /xml’: {}
security :
— petstore_auth:
— write: pets
— read:pets

Listing 3.7: Operation Object Example

Another object is the External Documentation Ob-

ject. What this object does it to allow referencing an ex-

ternal resource for extended documentation.

description: Find more info here
url: https://example.com

Listing 3.8: External Documentation Object Example

32

One of the most important objects of OAS Docu-
ment Structure is the Components object. It holds a set
of reusable objects which can be responses, parameters,
schemas, request bodies and more.

Schemas object allows the definition of input and out-
put data types. These types can be objects, but also
primitives and arrays. The specification introduces also
additional properties supporting polymorphism (discrim-
inator property). Schema object is an extended subset of
the JSON Schema Specification. A Schema Object may
borrow some properties directly from JSON Schema and
use them in the exact same way (i.e properties title, re-
quired). In addition, it may borrow some properties but
adjust them to the OpenAPI Specification (i.e properties
format, default). Finally, a Schema Object may also
have some properties of its own accord in order to have
further documentation (i.e properties discriminator, ex-
ternalDocs). An example of a Primitive Schema Object
appears in listing 3.9, an example of a Simple Model ap-
pears in listing 3.10 and that of a Model with Polymorph-
ism Support appears in listing 3.11. Listing 3.9 represents
an e-mail with type String, Listing 3.10 illustrates proper-
ties of an object (name with type String, address which
refers to a Schema called Address in Components Object
and age with a type of Integer. Finally, listing 3.11 illus-
trates the use of the discriminator property in Schema
Pet. In fact using this property we are able to define two
more pet Schemas - Cat and Dog.

type: string
format: email

Listing 3.9: Primitive Schema Object Example

33

type: object
required :
— name
properties:
name:
type: string
address:
$ref: '#/components/schemas/Address’
age:
type: integer
format: int32
minimum: 0

Listing 3.10: Simple Model Schema Object Example

components:
schemas:
Pet:
type: object
discriminator :
propertyName: petType
properties:
name:
type: string
petType:
type: string
required :
— name
— petType
Cat: ## 7Cat” will be used as the discriminator value
description: A representation of a cat
allOf:
— S$ref: ’#/components/schemas/Pet’
— type: object
properties:
huntingSkill:
type: string

description: The measured skill for hunting

enum :

— clueless

— lazy

— adventurous

— aggressive
required :

— huntingSkill
Dog: ## "Dog” will be used as the discriminator value
description: A representation of a dog
allOf:

— S$ref: ’#/components/schemas/Pet’
— type: object
properties:
packSize:
type: integer
format: int32

description: the size of the pack the dog is from

default: 0
minimum: 0
required :

34

— packSize
Listing 3.11: Model with Polymorphism Support Schema Object

In order to define the connection between the three
schemas defined in listing 3.11 via the discriminator value,
we present the Discriminator Object. The Discrimin-
ator is a specific object in a schema which is used to in-
form the consumer of the specification of an alternative
schema based on the value associated with it. The discrim-
inator object is legal only when using one of the composite
keywords oneOf, anyOf, allOf.

In listing 3.12, a response payload may be described
to be exactly one of the types Cat, Dog or Lizard.

MyResponseType:
oneOf:
— $ref: ’#/components/schemas/Cat’
— $ref: ’#/components/schemas/Dog’
— $ref: ’#/components/schemas/Lizard’
discriminator:
propertyName: petType

Listing 3.12: Discriminator Object Example

The expectation now is that a property with name
petType MUST be present in the response payload, and
the value will correspond to the name of a schema defined
in the OAS document. Thus the response payload will be
similar to the one appearing in listing 3.13. This would
indicate that the Cat schema can be used in conjunction
with this payload.

{
7id”: 12345, //the id of the pet

"petType”: 7 Cat”

}
Listing 3.13: Discriminator Object Example - Response Payload

35

To avoid redundancy, the discriminator may be added
to a parent schema definition, and all schemas comprising
the parent schema in an allOf construct may be used as
an alternate schema. An example appears in listing 3.14
where we may see that all the pets (Dog, Cat and Lizard)
are mapped to the parent schema aka Pet Schema.

{

components :
schemas:
Pet:
type: object
required :

— petType
properties:
petType:

type: string
discriminator :
propertyName: petType

Cat:
allOf:
— S$ref: ’#/components/schemas/Pet’
— type: object
all other properties specific to a ‘Cat°
properties:
name:
type: string
Dog:
allOf:
— S$ref: ’'#/components/schemas/Pet’
— type: object
all other properties specific to a ‘Dog¢
properties:
bark:
type: string
Lizard :
allOf:
— S$ref: ’#/components/schemas/Pet’
— type: object
all other properties specific to a ‘Lizard*
properties:
lovesRocks:
type: boolean

Listing 3.14: Discriminator Object Example - use of allOf

Next in the OAS Document under Components Ob-
ject we find the Responses Object, which contains all the
expected responses of an operation. It maps an expected

36

response to a specific HI'TP status code, describing the
message content and HT'TP Headers that an operation’s
response may contain. An example appears in listing 3.15,
which indicates that a response ‘200’ signifies success while
the default code is “unexpected error” in case where a
“put” or “post” request does not return anything.

200 7:
description: a pet to be returned
content :
application/json:
schema :
$ref: ’#/components/schemas/Pet’
default :
description: Unexpected error
content :
application/json:
schema :

$ref: ’#/components/schemas/ErrorModel’
Listing 3.15: Responses Object Example

Under the Components Object appears also the Se-
curity Scheme Object. It contains the security schemes
that the service uses for authentication. The specification
offers support for basic HI'TP authentication, APT keys,
OAuth2’s common flows'® and OpenID Connect!®.

However, there is another object connected with the
Security one, which is called OAuth Flow Object. This
object contains some mandatory properties, which are the
authorizationUrl, the tokenUrl and the available scopes
for the OAuth2 security scheme. An example for better
understanding appears in listing 3.16. Under the OAuth
Flow Object we define the scopes of an operation. Scopes
illustrate what we are enabled to do (in this case write and
read pets) The properties authorizationUrl, authorization-

https://auth0.com/docs/protocols/oauth2
https://openid.net /connect /

37

Code and tokenUrl are defined according to the OAuth
procedure.

type: oauth2
flows:
implicit:
authorizationUrl: https://example.com/api/oauth/dialog
scopes :
write: pets: modify pets in your account
read: pets: read your pets
authorizationCode:
authorizationUrl: https://example.com/api/oauth/dialog
tokenUrl: https://example.com/api/oauth/token
scopes :
write: pets: modify pets in your account
read: pets: read your pets

Listing 3.16: OAuth Flow Object Example

Another object that appears under Components is the
Parameters Object. It contains all the parameters that a
query to the server (aka an operation) may use. A unique
parameter is defined by a combination of a name and loc-
ation. In listing 3.17, we have a parameter (token) that
is mandatory (required : true) in order for an operation
to be performed. The specification categorizes parameters
into five types specified by the in field :

e Path parameters are used in cases where the para-
meter values are part of operation’s path.

e (Query parameters are appended to the url when send-
Ing a request.

e Header parameters define additional custom headers
that may be sent in a request.

e (Cookie parameters are passed in the Cookie header.

name: token
in: header
description: token to be passed as a header

38

required: true
schema :
type: array
items:
type: integer
format: int64
style: simple

Listing 3.17: A header parameter with an array of 64 bit integer
numbers

3.4 Enriching the OpenAPI Specifica-
tion

In an OAS service document, there are many elements
that share the same semantics. A human may easily infer
these semantic similarities, but a machine cannot. In or-
der for a machine to understand the meaning of OAS 3.0,
a service description needs to be be semantically enriched.
SOAS 3.0, introduces extra properties to annotate exist-
ing OAS properties which are proved (in the following) to
be ambiguous. Table I summarizes the extension proper-
ties, their scope and their meaning. We will refer to these
properties as x-properties.

First of all, we have added the z-RefersTo extension
property that specifies the association between an OAS
element and a concept in a semantic model. Listing 3.18
shows how x-refersTo is used to semantically annotate a
Pet model and its properties: it associates the model with
Pet class in schema.org vocabulary.

However, it is possible for a model to have a narrower
meaning. For example, if the Pet model describes a specific
group of pet (e.g. dogs), z-kindOf extension property is
used instead to denote that the model is a subclass of the
referred semantic concept. Both properties can be used

39

Table 3.1: OAS extension properties for semantic annotations

Property Applies to Meaning

x-refersTo Schema Object The concept in a semantic
model that describes an
OAS element.

x-kindOf Schema Object A specialization between
an OAS element and a
concept in a semantic
model.

x-mapsTo Schema Object An OAS element which is
semantically similar with
another OAS element.

x-collectionOn ~ Schema Object A model describes a col-
lection over a specific
property.

z-onResource Tag Object The specific Tag object
refers to a resource de-
scribed by a Schema ob-

ject.
z-operationType Operation Ob- Clarifies the type of oper-
ject ation.

only with elements in Schema object and accept a URI
that represents the concept in a semantic model.

parameters:
Query :
name: name
in: query
description: Pet’s name for filtering
required: true
schema:
type: string
x—mapsTo: ’#/components/schemas/Pet.name’
schemas:
Pet : # A Pet model extended with SOAS 3.0 properties
type: object
x—refersTo: http://schema.org/Pet
properties:
name:
type: string
x—refersTo: http://schema.org/petName
photoUrls:
type: string
x—refersTo: http://schema.org/petPhoto
id:

40

type: integer
x—refersTo: http://schema.org/petld
required :
— name
— photoUrls
discriminator:
propertyName: name
Dog: # A Dog model extending the Pet Model
description: A representation of a dog pet
x—kindOf: http://schema.org/Pet
allOf:
— S$ref: ’#/components/schemas/Pet’
— type: object
properties:
height :
type: integer
description: height in cms
weight :
type: integer
description: weight in kgs
required :
— height
— weight
Cat: # A Cat model extending the Pet Model
description: A representation of a cat pet
x—kindOf: http://schema.org/Pet
allOf:
— S$ref: ’'#/components/schemas/Pet’
— type: object
properties:
eyesColor:
type: string
required :
— eyesColor

Listing 3.18: OAS Model polymorphism example

Next in the series of the x-properties there is the z-
mapsTo. It is used to define Schema object elements that
share the same semantics. In Listing 3.18, x-mapsTo prop-
erty is used in Parameters Object to dictate that query
parameter name refers to Pet.Name in Schemas object.

The next x-property is z-collectionOn. It is used to
indicate that a model in Schemas object is actually a col-
lection. Typically, a collection (or a list) of resources in
OAS 3.0 is described using the array type. However, it is
very common a collection’s definition to be encapsulated
within an object type with additional properties. Then, x-
collectionOn property is used to denote the data types of

41

the objects of the collection. Listing 3.19 defines a model
as a collection of Pet objects (totalltems property denotes
population).

schemas:
PetCollection : # A Pet Collection definition
x—collectionOn: pets
type: object
properties:
pets:
type: array
items:
$ref: ’#/components/schemas/Pet’
totalltems:
type: integer

Listing 3.19: Model definition representing a collection

The x-onResource extension property is used in Tag
Objects to specify the resource that a tag refers. In OAS
3.0, tags are used to group operations either by resources
or any other qualifier. If the tag is used to group operations
by resources, a human may recognize that the referred re-
source is described by a Schema object in Schemas but a
machine cannot. The x-onResource property is used to
associate the tag with a Schema object that describes a
specific resource. In Listing 3.20 x-onResource property is
assigned on a pet tag that provides information regarding
the operations that are available for Pet model in Schemas
object.

tags:
name: pet
description: Everything about your Pets
externalDocs:
description: Find out more
url: ’http://swagger.io’
x—onResource: '#/components/schemas/Pet’

paths:
/pet/findByStatus:
get:
x—operationType: ’http://schema.org/SearchAction’
tags:

42

— pet
summary: Finds Pets by status
description: Multiple status values can be provided
operationld: findPetsByStatus

parameters:
— S$ref: ’#/components/parameters/statusQuery’
responses:
7200 7:
description: successful operation
content:
application/json:
schema :
$ref: ”#/components/schemas/Pets”
7400 7:
description: Invalid status value
security :

— petstore_auth :
— ’write: pets’
— ’read:pets’

Listing 3.20: Semantically enriched Example - Swagger Petstore
OAS service description

Finally, x-operationType extension property is used to
specify the type of an Operation object. A request is char-
acterized by the HT'TP method that it uses. However, the
semantics of the HT'TP methods are too generic and may
have a more specific meaning. For example, in Listing 3.20,
this property is used to clarify that a GET request on path
/pet/findByStatus is a search operation on pets based on
their status. The value of the property is a URL pointing
to the concept that semantically describes the operation
type. The Action type of the Schema.org vocabulary
provides a detailed hierarchy of Action sub-types that can
be used by the property.

3.5 OpenAPI v3 Ontology

OpenAPI ontology in Figure 3.2 captures all information
specified by SOAS 3.0 description. Properties of classes
are related with other other classes explaining them (i.e.

43

SOAS 3.0 properties are mapped to classes as well).

At the heart of the ontology is Hydra Core Vocabu-
lary. Schemas, Operations, Resources and Properties are
mapped to Hydra models. For models not supported by

Hydra (i.e. security, headers, constraints) new models are
introduced in SOAS 3.0 ontology.

GpenAPI:Collection L. : e— |3 ; -
Gp — UpenAPI:ExternalDoc BpenAPI:Document SpenAPI:Contact
member i
url info ﬁ name
e -] externalDoc SopenAPLInfo ||| url
h:Shape 1« supportedEntity contact email
supportedSecurity license
"“:’_%’ APIP supportedOperation title _ l
" enAPl:Parameter BpenAPI:License
= name le— termsOfService
&penAPI:Sler < name
styla : ’—m%: API:Path| | url
schema 'C?)penAPI:Operation enAPI-Pat
= . n Ll athName
N bbem?';\).‘:ﬂed\a = content onPath P _
tag H———|" openAPl:Tag
name = . . —
GbenAPI:Caokiel method > GpenAPI:Method | | name
schema
| nhame q externalDoc
style '— parameter =
%penAPI:Sewer
schema serverinio 7
= host
GpenAPl:Header] — | content cookie
variable j
name * requestHeader
= E] API:
E] ; open,
style openAPl:Body [+ requestBody ServerVariable
schema requestBodyContet response name
content L security variableDefaultValue
Y
> bpenAPI:Security variableValue
= description _
t;penAPI:Respunse <t _ GpenAFl:Scope
statusCode ﬂpanAPl:SecurityRe quirement name
" responseHeader | security Type _
content scope WpenAPI:OAuthFlow
TpenAPI:Encoding v scope
propertyName FopenAPl:RequestBodyMediaType authorizationUrl
style name tokenUrl
L header encoding Object property refreshUrl
schema

Figure 3.2: OpenAPI Version 3 Ontology

In accordance to OAS 3.0 structure, Document Class
provides general information (Info class) regarding the ser-
vice; it specifies service paths, the entities and the security
schemes that it supports. Path class represents (relat-
ive) service paths (pathName property). Operation class
provides information for sending HTTP requests to the
service as well as the HT'TP responses. Responses are fur-

44

ther described by Response class, specifying the status
code and the data returned. The entire range of HTTP
response values is represented. Operation Class refers to
a security scheme in SecurityRequirement Class. Listing
3.21 is an example representation of Info as seen in OAS
3.0 document. The example is written in turtle language
for ontologies. As we may see, we have a representation
of all properties belonging to Info Object, such as service-
Title and description.

ex: PetStoreDocument
a openapi:Document ;
openapi:info |
openapi:serviceTitle ”Sample Pet Store App”;
openapi:description ”This is a sample server for a pet store.”
openapi: termsOfService <http://example.com/terms/> ;
openapi: contact |
openapi:creator "API Support” ;
openapi: url <http://www.example.com/support> ;
openapi:email <support@example.com> .
I
openapi:license |
openapi:licenseName ”Apache 2.0”7 ;
openapi: url <http://www.apache.org/licenses /LICENSE—2.0.html
>

]
]
openapi:version ”71.0.17
\# the defined entities
openapi:supportedEntity ex:PetShape, ex:PetCollectionShape , ex:
ErrorShape ;
\# the defined operations
openapi:supportedOperation ex:opl, ex:op2, ex:op3, ex:opd .

Listing 3.21: Representation of an OAS Document in the
Ontology

In addition, Listing 3.22 illustrates how an OAS Path
item and Operation are defined in the ontology using the
example of Listing 3.20. More specifically, we may see a

45

Path Individual (path2) that describes the path of finding
a pet using its status. Moreover, we can see an Oper-
ation Individual (path2 opl) and its properties, such as
tag, parameter, response and security.

ex:path2
a openapi:Path ;
openapi:pathName ”/pets/findByStatus” ;
ex:path2_opl
a openapi: Operation, schema:SearchAction ;
openapi:onPath ex:path2
openapi: method openapi:GET ;
openapi:tag ex:tag_pet ;
openapi:parameter ex:query._status ;
openapi:response |
openapi:statusCode 200 ;
openapi:content |
openapi:mediaTypeName ”application/json” ;
openapi:schema ex:PetCollectionShape
| 5
openapi:description ”successful operation”
[
openapi:response |
openapi:statusCode 400 ;
openapi:description ”Invalid status value”
l -
openapi:security |
openapi:securityType ex:petstore_oauth ;
opneapi:scope ex:read_pets, ex:write_pets
I
openapi:name ”findPetsByStatus” ;
openapi:summary ”Finds Pets by Status” ;
openapi:description ”Multiple status values with comma
seperated strings”

Listing 3.22: Representation of Path and Operation in the
ontology

Operation Individual path2_opl refers to a Securi-
tyRequirement individual, specifying an OAuth2 security
scheme (i.e. petstore_ oauth individual) and the corres-
ponding scope (i.e. read_pets and write_pets individuals).
Individual path2_op1 is also considered to be an individual
of SearchAction type defined in Schema.org vocabulary
(i.e. as defined by the z-operationType extension prop-

46

erty).
Next, in figure 3.3 the security schemes supported by

OAS 3.0 are displayed. We may see that Security Class is
represented by ApiKey, Http, OAuth2 and OAuthldCon-
nect, which are in fact the types that a Security Scheme
Object can have. In addition, we see that OAuth2 Class in
specific is represented by OAuth Flows Object that has the
properties implicit, password, clientCredentials, authoriz-
ationCode and scope.

@Bpenapi:Security object property
.‘7
Plblihdll
'f.;pana;:ti'.;C'».pil-(.':eyr ';openapi:Http '-jpenapi:OAuthE 'C]penapi:OAuthldCannect
parameterName scheme flow requestBodyContent
in bearerFormat
f "bpenapiLScope
'C;penapi:OAuthFlow name

scope
/ authorizationUrl \

"_openapi Adimplicit tokenUrl '-f-penapi :AuthorizationCode
refreshUrl
Epenapi:Password Ypenapi:ClientCredentials

Figure 3.3: Security Class in OpenAPI v3 Ontology

Schema Objects are expressed as classes, object and
data properties using SHACL vocabulary'®. SHACL is an
RDF vocabulary that can be used to describe and valid-
ate the structure of RDF' data, similarly to XML-Schema
or JSONSchema. SHACL can be used to define classes
together with constraints on their properties. It provides
built-in types of constraints (e.g. cardinality : minCoun-

https: //www.w3.org/ TR /shacl/

47

t/maxCount) and allows expression of constraints (as well
as logical combinations of such constraints) on the type of
properties and on the values the properties can take. Table
3.2 shows the direct mapping of Schema Object properties
with the SHACL vocabulary. The OpenAPI ontology also
defines additional properties for describing the remaining
Schema Object properties. While Schema Object of OAS
3.0 is mapped in Shape Class in the ontology. Shape Class
is distinguished into in NodeShape Class and Property-
Shape Class. The Node- Shape class represents the classes
that describe the models of an OAS 3.0 description. It
represents operations related to a class (supportedOpera-
tion), which comes from x-onResource extension property.
It defines the properties of a class and specifies whether
a class may contain additional properties (additionalProp-
erties) of a specific type. Class PropertyShape represents
the properties of a class, their datatype and restrictions
(e.g. a maximum value for a numeric property) and indic-
ates whether the supported property is required, read-only
in the class definition.

Listing 3.23 shows how the Pet model of Listing 3.18
is represented in the OpenAPI ontology. The model con-
tains references to the Schema.org vocabulary using the x-
refersTo extension property. The SHACL class PetShape
is now defined according to Schema object definition of Pet
with the addition of new data properties and constraints
(e.g. each pet has exactly one name, photo and id). A
model defined using the combination of allOf property and
discriminator property, is represented in the OpenAPT on-
tology as a subclass of the model that is extended. A
subclass defined using x-kindOf become a subclass of the

48

Table 3.2:

Mapping OpenAPI Schema Object properties to

SHACL

Schema Object SHACL property

property

mazimum sh:exclusiveMaximum if openAPI

exclusiveMarimum exclusiveMaximum is true
sh:inclusiveMaximum if openAPI
exclusiveMaximum is false

minimum sh:exclusiveMinimum if openAPI

exclusiveMinimum exclusiveMinimum is true
sh:inclusiveMinimum if openAPI
exclusiveMinimum is false

mazxLength sh:maxLength

minLength sh:minLenght

pattern sh:pattern

maxltems sh:maxCount

minltems sh:minCount

enum sh:in

allOf sh:and

oneOf sh:xone

anyOf sh:or

not sh:not

default sh:defaultValue

referenced semantic concept.

ex: PetShape
a sh:NodeShape ;

sh:targetClass schema:Pet

sh:property |

I

sh:
sh:
sh:
sh:

:maxCount 1 ;

sh

path schema : petName
name ’name” ;
datatype xsd:string
minCount 1 ;

sh:property |

|

sh:
sh:
sh:

sh
sh

path schema:petPhoto ;

name ”photoUrls” ;
datatype xsd:string

:minCount 1 ;
:maxCount 1 ;

sh:property |

)
)

b

b

)

49

sh:path schema:petld ;
sh :name 7id” ;
sh:datatype xsd:integer ;
sh:minCount 1 ;

sh :maxCount 1 ;

]

Listing 3.23: Representation of an OAS model in the openAPI
ontology

Collections are represented using Collection class. List-
ing 3.24 is the representation of PetCollection class of List-
ing 3.19. Class PetCollection becomes a subclass of class
Collection. Without the x-collectionOn extension prop-
erty in Listing 3.19, the PetCollection model would be a
simple class without any reference of being a collection.

ex: PetCollection
rdfs:subClassOf openAPI: Collection .

ex: PetCollectionShape
a sh:NodeShape ;
sh:targetClass ex:PetCollection ;
sh:property |
sh:path openapi:member ;
sh:name ”pets” ;
sh:class ex:Pet ;
]
sh:property |
sh:path ex:totalltems ;
sh:name ”totalltems” ;
sh:datatype xsd:integer ;

]

Listing 3.24: Representation of collections in the openAPI
ontology

Finally, OAS parameters are represented as separate
classes for every parameter type. Class Header of Figure
3.2 contains definitions of header parameters that are used
in HTTP requests and responses. Class Cookie defines
the cookies that are sent through HT'TP requests and re-

50

sponses. Class Parameter defines parameters that are
attached to operation’s URL.

51

Chapter 4

Instantiating
OpenAPI Services to
the OpenAPI

Ontology

In this chapter, we first present the main idea of mapping
an OpenAPI service to the OpenAPI version 3 ontology
so as to benefit from semantic web tools such as reasoners
and query languages for service discovery. We do that
by providing some tables in which the OpenAPI Objects
and their properties are assigned to ontology Classes and
their properties. Then, we provide an abstract form of
the algorithm on which our mechanism is based on. The
complete algorithm is presented in chapter 5. The input
is an OAS description of a service that contains Objects.
The output is an instantiated Ontology where all services
properties are represented. For each Object we present the
table and then its algorithm.

52

OpenAPI OpenAPI
Object Document Class
Field Name Type Property Range
openapi string Not applied.
info Info Object openapi:info openapi:Info
Servers Server Object Not applied.
paths Paths Object Not applied.
components Cor(gl]i);)ergnts Not applied.
Security
security Requirement Not applied.
Object
tags Tag Object Not applied.
External
externalDocs | Documentation | openapi:externalDoc | openapi:ExternalDoc
Object
opengnggggzrted openapi:Operation
opena%lr.i?gfported sh:Shape

Table 4.1: OpenAPI Object to OpenAPI Document Class

4.1 Mapping of OpenAPI Object to
Document Class

The openapt property is not associated with a property in
the ontology. This happens because this property is only
used in order to access its components. The same thing
happens with components property.

Moreover, the servers property is not associated with
a specific property in our ontology. The property declares
Server information that is used across the API. If an altern-
ative server object is specified at the Path Item Object or
Operation level, it will be overridden by this value. There-
fore, in the OpenAPI ontology, server info is defined for
every operation.

53

The paths property is actually replaced by the
openapi:supportedOperation which, in turn, is described
by OpenAPI:Operation class. Next, we have the security
property which declares security schemes that are used
across the API. However, an operation can override this
global declaration and introduce other security schemes.
Therefore, in the OpenAPI ontology, security is defined
for every operation.

Next, property tags is not associated directly to a
property of Document Class as tags are only kept in prop-
erty tag of Operation.

Property supportedOperation has been added in or-
der to relate Operations with classes while using the x-
onResource property. We have also added property sup-
portedEntity in order to keep the Schema (Shape) when
related to a Tag via the x-onResource property. It is im-
portant to be mentioned here that Document is the main
class. This means that the additional properties men-
tioned above are used in the parts of the algorithm where
x-onResource is implemented aka Tag and Operation Ob-
ject.

Listing 4.1 illustrates the mapping between the OpenAPI
Object and the Document Class in the form of a simple
algorithm.

function parseDocumentObject (openAPI Document)

— Initialize the Ontology Model

— Create Document Individual

— Call Info Function and save Info Individual in Document
Individual

— Keep a list with all the Global Servers

— For every Server Object in OpenAPI Service :
— Call Server Function and save Server Individual in Document
Individual
— Add the Server Individual to the list

— For every Security Scheme Object in OpenAPI Service :
— Call Security Scheme Function and save Security Scheme
Individual in Document Individual

54

openAPI_document)

Initialize the Ontology
Model

4

Create Document
Individual

Call Info Function
and save Info
Individual in

Document
Individual

Keep a list with all
the Global Servers
& a list with all
Global Security
Requirements

Call Server
Function and save
Server Individual
in Document
Individual

4

Add the Server
Individual to the
list

Call Security
Scheme Function
and save Security
Scheme Individual

in Document

Individual

Call SecurityReq
Function and save
SecurityReq
Individual in
Document
Individual

Add the Security

Requirement
Individual to the
list

i

Extract all Schema

Objects from —

OpenAPI Service

parseDocumentObject(|

Keep a list with all
—* pairs of Tags and
Schemas

+

Call Tag Function,
return the <Tag,
Schema> pairs and
add them to the
list

Call ExternalDoc
Function and save
ExternalDoc
Individual in
Document
Individual

Keep a list with all
Path Servers

Call Server
Function and
return Server
Individual

v

Add the Server
Individual to the
list

'

Keep a final Server
list (Path if not
empty, else Global)

'

Extract all
Parameters from
OpenAPI Service

v

Create Path
Individual

1

Call Operation
Function

Figure 4.1: Workflow of OpenAPI Object to Document Individual

mapping

— Keep a list with all the Global Security Requirements
— For every Security Requirement Object in OpenAPI Service
— Call Security Requirement Function and save Security

Requirement Individual

in Document Individual

— Add the Security Requirement Individual to the list
— Extract all Schema Objects from OpenAPI Service
— Keep a list with all pairs of Tags and Schemas // used for x—

onResource
— Call Tag Function ,
to the

return the <Tag, Schema> pairs and add them

— Call ExternalDoc Function and save ExternalDoc Individual in
Document Individual

— For every Path Server
— Call Server Function and return Server Individual
— Add the Server Individual to the list

55

Keep a list with all Path Servers

Keep a final Server list (Path if not empty,
Extract all Parameters from OpenAPI Service

else Global)

— Create Path Individual

— For every Operation Object,

Listing 4.1: OpenAPI Object to Document Individual

call Operation Function

4.2 Mapping of Info Object to Info Class

: OpenApi
Info Object]n]]:o Clc];ss
Field Name Type Property Range
title string openapi:serviceTitle xsd:string
description string openapi:description xsd:string
termsOfService string openapi:termsOfService xsd:anyURI
contact Contact Object openapi:contact openapi:Contact
license License Object openapi:license openapi:License

Table 4.2: Info Object to Info Class

L parselnfoObject(

ocumentInd,infoObject)

!

Create Info Individual

!

Extract and Map all
Info's properties from

OpenAPI Service

Figure 4.2: Workflow of Info Object to Info Individual mapping

function parselnfoObject (documentInd,infoObject)
— Create Info Individual

— Extract and map all Info’s properties from OpenAPI Service

(title , description , termsOfService, contact, etc)

Listing 4.2: Info Object to Info Individual

56

4.3 Mapping of Contact Object to Con-

tact Class
Contact OpenAPI Contact
Object Class
Field Name | Type Property Range
name string | openapi:contactName | xsd:String
url string openapi:url xsd:anyURI
email string openapi:email xsd:anyURI

Table 4.3: Contact Object to Contact Class

function parseContactObject (contactObject)
— Create Contact Individual
— Extract and map all Contact’s properties from OpenAPI
Service
— Return Contact Individual

Listing 4.3: Contact Object to Contact Individual

4.4 Mapping of Licence Object to Li-
cence Class

License OpenAPI
Object License Class
Field Name | Type Property Range
name string | openapi:licenseName | xsd:String
url string openapi:url xsd:anyURI

Table 4.4: License Object to License Class

function parseLicenseObject (contactObject)
— Create License Individual
— Extract and map all License’s properties from OpenAPI
Service
— Return License Individual

Listing 4.4: License Object to Licence Individual

57

4.5 Mapping of a Server Object to Server
Class

Here we present the mapping of both Server Object and

Server Variable Object.

For the correspondence of the

properties we use table 4.5 and 4.6, while the parsing to

Classes appears in listing 4.5.

Server OpenAPI
Object Server Class
Field Name Type Property Range
url string openapi:host xsd:anyURI
description string openapi:description xsd:String
. Map|string, : . openapi:
variables Server VaI;i[able gOb ject] openapi:variable ServErVaII“)iable

Table 4.5: Server Object to Server Class

parseserverObject(

serverObject)

Create Server
Individual

Extract and map all
Server's properties
from OpenAPI

Return Server
Individual

A

Create Individua
Server Variable

Extract and map
all Server
Variable's

properties from

OpenAPI Service

Save Server
Variable Individual
E— in Server
Individual

Figure 4.3: Workflow of Server Object to Server Individual map-

ping

As we may see in table 4.6 the property name in our
ontology is not associated with a property in the OpenAPI

Server OpenAPI

Variable Object Server Variable Class
Field Name | Type Property Range
openapi:name xsd:String
enum string | openapi:variableValue | xsd:String
: openapi: :
default string variable%efa?ﬂt\/alue xsd:String
description | string | openapi:description | —xsd:String

Table 4.6: Server Variable Object to Server Variable Class

service. This property was added, because it is required
since the Server Object has a Map of a key-value pair
where a String is the key and a Server Variable Object is
the value. The property name is the key of the map.

function parseServerObject (serverObject)

—Create Server Individual

—Extract and map all Server’s properties from OpenAPI Service

—for (serverVariableObject in serverObject.getServerVariables)
—Create Individual Server Variable Class
—Extract and map all Server Variable’s properties from OpenAPI

Service

—Save Server Variable Individual in Server Individual

— Return Server Individual

Listing 4.5: Server Object to Server Individual

4.6 Mapping of Operation Object to
Operation Class

Since each Path contains an Operation, property onPath
is used in order to keep the Path Individual. Moreover,
property method has been added in order to define the
type of an Operation (GET, PUT, POST etc). In ad-
dition, since Parameters can have the type Path, Query,
Header or Cookie we have added the properties cookze,
query and requestHeader to our ontology. Operation is a
very important Object, since it contains many other Ob-

59

O]gegj;zetcz;n OpenAPI Operation Class
Field Name Type Property Range
openapi:onPath openapi:Path
openapi:method openapi:Method
tags string openapi:tag openapi:Tag
summary string openapi:summary xsd:String
description string openapi:description xsd:String
external External
Documentation | openapi:externalDoc | openapi:ExternalDoc
Docs .
Object
operationld string openapi:name xsd:String
parameters Parameter openapi:parameter openapi:Parameter
Object
openapi:cookie openapi:Cookie
openapi:query openapi:Query
req(l)lzg‘?flg;der openapi:Header
requestBody Reques.t Body openapi:requestBody openapi:Body
Object
responses Response Object openapi:response openapi:Response
deprecated boolean openapi:deprecated xsd:Boolean
Security :
security Requirement openapi:security openapl
. SecurityRequirement
Object
Servers Server Object openapi:serverInfo openapi:Server

Table 4.7: Operation Object to Operation Class

jects. In addition, the Algorithm that shows the parsing
of Operation Object to Operation Individual contains also
the implementation of the x-operationType property. List-
ing 4.6 illustrates the abstract algorithm.

function parseOperationObject (documentInd, pathInd,

OperationObject ,
pathServersList , globSecReqList)

— Create Operation Individual

— Extract and map all

Service

tagShapeList , pathParametersList ,

Operation’s properties from OpenAPI

— Call ExternalDoc Function and save ExternalDoc Individual to
Operation Individual

60

parseOperationObject(documentInd, pathInd,
OperationObject, tagShapelist,
pathParametersList, pathServersList,

Call Path
Function and
save Path

lobSecReqList]
g q) Individual to I
! el Call Header
+Individual " punction and save
i Header Individual
il 2 Operation
Individual
Extract and map all Function and
Dperatmm‘sp pallclul Ehe.. save Cookie
properties from property "In Individual to
OpenAPI Service Operation
e
lv Call Query
Call ExternalDoc ; Function and
Function and save Get Operation's save Query
ExternalDoc servers from Individual to
Individual to OpenAPI Service ?I:l%f.a‘;lﬂnl
Operation Individual l el]
Call RequestBody
Function and save
NO
RequestBody e there" Use global
Individual to Operation's)—»
Serversy, ones

Operation Individual

Get Operation's
Security

[—'l ves

define the Servers
| for this Operation

Requirements
by calling Server
Function
¥
NO Are there Save Operation
Use global ones«—— Operation's Individual to
Security Reg/? "supportedOperation”
property of

‘Yes Document Individual

define the
SecurityReq for
this Operation by

calling SecurityReq

Function
1

¥

Extract Parameters
from OpenAPI
Service

|

Keep in a
combined list
Parameters from
Path and from
Operation

[

Figure 4.4: Workflow of Operation Object to Operation Indi-

vidual mapping

— Call RequestBody Function and save RequestBody Individual to

Operation Individual

— Get Operation’s Security Requirements
— if there are no Operation’s SecurityReq, use global ones
— else define the SecurityReq for this Operation by calling

SecurityReq Function

operations of a path can be defined

xx Parameters shared by all
If any extra

on the path level instead of the operation level.
parameters defined at the operation level are used together

with path—level parameters. Specific path—level parameters can
be overridden on the operation level , but cannot be removed.xx

— Extract Parameters from OpenAPI Service
— Keep in a combined list Parameters from Path and from

Operation
//Parameters could be in different positions

— Depending on the value of the property ”In” the
called and the Parameter Individual

corresponding function is
returned is saved on Operation Individual (Path, Query,

Header, Cookie)
— Get Operation’s Servers from OpenAPI Service

61

— if there are no Operation’s Servers,
— else define the Servers for this
Server Function

use global ones
Operation by calling

— Save Operation Individual to ”"supportedOperation”
of Document Individual

property
xxkx—operationType implementation sk
— Get the resource where x—operationType points

— Set resource—class as second class
Individual

Listing 4.6: Operation Object to Operation Individual

of the new Operation

4.7 Mapping of External Doc Object
to External Doc Class

Ezxternal OpendPI

. Ezxternal

Documentation :

Obiect Documentation
J Class
Field Name | Type Property Range

url String openapi:url xsd:String
description | String | openapi:description | xsd:String

Table 4.8: External Doc Object to External Doc Class

parseExternalDocObject
[externalDocObject)

|

Creale ExternalDoc
Individual

|

Extract and Map
ExternalDoc’s
properties from
OpenAPL Service

Return ExternalDoc
Individual

Figure 4.5: Workflow of External Doc Object to External Doc
Individual mapping

function parseExternalDocObject (externalDocObject)
— Create ExternalDoc Individual

62

— Extract and Map ExternalDoc’s properties from OpenAPI Service
— Return ExternalDoc Individual

Listing 4.7: External Doc Object to External Doc Individual

4.8 Mapping of Parameter Object to
Path, Query, Cookie, Header Class

There are four possible parameter locations specified by
the in field. Path - where the parameter values actually
part of the operation’s URL. Query - Parameters that are
appended to the URL. Header - Custom headers that are
expected as part of the request. Cookie - Used to pass
a specific cookie value to the API. Depending from this
field, the Parameter Object is mapped to one of the above
Classes. Each of the listings 4.8-4.11 represent the map-
ping of the Parameter Class to the corresponding Class
depending of the value of the in property.

function parseCookieParameterObject(cookieObject , componentSchemas

)

— Create CookieParameter Individual

— Extract and Map CookieParameter’s properties from OpenAPI
Service

— Extract Schema Object from CookieParameter Object

— Call Schema function and return Shape Individual

— Save Shape Individual to ”schema” property of CookieParameter
Individual

— Extract MediaType Object from CookieParameter Object

— Call MediaType function and return MediaType Individual

— Add MediaType Individual to MediaType list

— Save MediaType list to ”"content” property of CookieParameter
Individual

— Return CookieParameter Individual

Listing 4.8: Parameter Object to Cookie Individual

function parseHeaderParameterObject (headerName, headerObject ,

componentSchemas)

— Create HeaderParameter Individual

— Assign ”headerName” value from OpenAPI Service to ”"headerName”
property of Header Individual

— Extract and Map HeaderParameter’s properties from OpenAPI
Service

— Extract Schema Object from HeaderParameter Object

— Call Schema function and return Shape Individual

63

OpenAPI
P Parameter (Path,
arameter
Object Quefy) Class,
Cookie, Header
Classes
Field Name Type Property Range
name String openapi:name xsd:String
in String
description String openapi:description | xsd:String
required boolean openapi:required | xsd:Boolean
deprecated boolean openapi:deprecated | xsd:Boolean
allowEmpty Value boolean allowoé)x(i’f?c?fl\./alue xsd:Boolean
style String openapi:style openapi:Style
explode boolean openapi:explode xsd:Boolean
allowReserved boolean OPeLADL: xsd:Boolean
allowReserved

schema Schema Object | openapi:schema sh:Shape

Map|[string, obenani:

content Media Type openapi:content Melz:lian ' o

Object] P

Table 4.9: Parameter Object to Parameter Class

— Save Shape Individual to ”schema” property of HeaderParameter
Individual

— Extract MediaType Object from HeaderParameter Object

— Call MediaType function and return MediaType Individual

— Add MediaType Individual to MediaType list

— Save MediaType list to ”"content” property of HeaderParameter
Individual

— Return HeaderParameter Individual

Listing 4.9: Parameter Object to Header Individual

function parseQueryParameterObject (queryObject , componentSchemas)

— Create QueryParameter Individual

— Extract and Map QueryParameter’s properties from OpenAPI
Service

— Extract Schema Object from QueryParameter Object

— Call Schema function and return Shape Individual

— Save Shape Individual to ”schema” property of QueryParameter
Individual

— Extract MediaType Object from QueryParameter Object

— Call MediaType function and return MediaType Individual

— Add MediaType Individual to MediaType list

— Save MediaType list to "content” property of QueryParameter
Individual

64

rarseQuaryParameterObject‘

(queryObject,
| componentSchemas)
Create Add MediaType
QueryParameter Individual to
Individual MediaType list

Extract and Map
QueryParameter's
properties from
OpenAPI Service

Extract Schema
Object from
QueryParameter
Object

Save MediaType list
to "content” property
of QueryParameter
Individual

v

Return
QueryParameter
Individual

|

Call schema
function and return
Shape Individual

Save Shape
Individual to
"schema" property of
QueryParameter
Individual

Extract MediaType
Object from
QueryParameter
Object

|

Call MediaType
function and return —
MediaType
Individual

Figure 4.6: Workflow of QueryParameter Object to QueryPara-

meter Individual mapping

— Return QueryParameter Individual

Listing 4.10: Parameter Object to Query Individual

function parsePathParameterObject(pathObject, componentSchemas)
— Create PathParameter Individual
— Extract and Map PathParameter’s properties from OpenAPI
Service
— Extract Schema Object from PathParameter Object
— Call Schema function and return Shape Individual
— Save Shape Individual to ”schema” property of PathParameter
Individual
— Extract MediaType Object from PathParameter Object
Call MediaType function and return MediaType Individual
Add MediaType Individual to MediaType list
— Save MediaType list to ”"content” property of PathParameter
Individual
— Return PathParameter Individual

Listing 4.11: Parameter Object to Path Individual

4.9 Mapping of Request Body Object

to Request Body Class

65

function
parseRequestBodyObject
(requestObject,
cumpunenISchemas}

Create RequestBody
Individual

!

Extract and map
RequestBody's
properties from

OpenAPlI Service

—

Call MediaType
function and return
MediaType
Individual

|

Add MediaType
Individual to
MediaType list

|

Save MediaType list
to "content” property
of RequestBody
Individual

}

return RequestBody
Individual

Figure 4.7: Workflow of RequestBody Object to RequestBody
Individual mapping

Request O}%?:;Zii]
Body Object Body Class
Field Name Type Property Range
description String openapi:description xsd:String
Map|string, openapi:
content Medlg Type | openapi:content RequestBodyMediaType
Object]
required boolean openapi:required xsd:Boolean

Table 4.10: Request Body Object to Request Body Class

function parseRequestBodyObject(requestObject , componentSchemas)
—Create RequestBody Individual
—Extract and map RequestBody’s properties from OpenAPI Service
—for every MediaType Object
— Call MediaType function and return MediaType Individual
— Add MediaType Individual to MediaType list
— Save MediaType list to ”"content” property of RequestBody
Individual
— return RequestBody Individual

Listing 4.12: Request Body Object to Request Body Individual

66

4.10 Mapping of Media Type Object
to Media Type Class

Property mediaType Name as seen in table 4.11 is used as
the key to the Map[string, Media Type Object| of table
4.10. This map as seen in table 4.10 represents the type

of the content property.

Encoding Object]

Media OpenAPI
Type Object Media Type Class
Field Name Type Property Range
openapi: s
mediaTypeName xsd:String
schema Schema Object openapi:schema sh:Shape
encoding Map]string, openapi:encoding | openapi:Encoding

Table 4.11: Media Type Object to Media Type Class

function parseMediaTypeObject (mediaName, mediatypeObject ,
componentSchemas)
— Create MediaType Individual

— Assign ”mediaName”
property of MediaType Individual

— Call Schema function and return Shape Individual

— Create a list for Encoding Individuals

— For each Encoding Object in Media Type Object :
— Call Encoding function and return Encoding Individual
— Add the Encoding Individual to the list

— Assign the list to the ”encoding”

Individual

— Return MediaType Individual
Listing 4.13: Media Type Object to Media Type Individual

value from OpenAPI Service to ”mediaName”

property of MediaType

4.11 Mapping of Encoding Object to
Encoding Class

Similarly, property propertyName has been added in table
4.12 in order to work as the key to the Map|string, Encod-
ing Object] which is the type of the property encoding

67

seen in table 4.11.

Encoding OpenAPI
Object Encoding Class
Field Name Type Property Range
openapi: e
propertyName xsd:String
. openapi: e
contentType String contentType xsd:String
Map|[string, openapi: .
headers Header Object] | encodingHeader openapi:Header
style string openapi:style openapi:Style
explode boolean openapi:explode | xsd:Boolean
allowReserved boolean openapl: xsd:Boolean
allowReserved

Table 4.12: Encoding Object to Encoding Class

function parseEncodingObject (encodName, encodingObject ,
componentSchemas)

— Create Encoding Individual
— Assign ”"encodName” value from OpenAPI Service to ”encodName”

property of Encoding Individual
— Extract and map Encoding’s properties from OpenAPI Service
— Create a list for Header Individuals
— For each Header Object in Encoding Object :

— Call Header function and return Header Individual

— Add the Header Individual to the list
— Assign the list to the ”encodingHeader” property of Encoding

Individual
— Return Encoding Individual

Listing 4.14: Encoding Object to Encoding Individual

4.12 Mapping of Response Object to
Response Class

As we may see in table 4.16 Response Class has some sub-
classes. Their main purpose is to describe responses of
grouped status codes. Property statusCode is a string
used to define the status of a response (i.e. successful/

68

unsuccessful).

Response
Object

OpenAPI
Response Class
(DefaultResponse, 1rzResponse,
2xxResponse, 3xxResponse,
4xxResponse, SrxResponse)

Field Name

Type

Property

Range

openapi:statusCode xsd:String
description string openapi:description xsd:String
Map|[string, openapi: .
headers Header Object] | responseHeader openapi:Header
Map|[string,
content Media Type openapi:content | openapi:MediaType

Object]

Table 4.13: Response Object to Response Class

|

function

arseResponseObject(statusCode,

responseObject)

:)

defaull” | createlndividual
"DefaultResponse”
Status Code.
value L
xx 200" ele |

Extract and map
Response's
properties from
OpenAPI Service

Create a Headers
list

Call Header function
and return Header
Individual

!

Add Header
Individual to the list

Add the Headers list
to the property
"responseHeader" to
Header Individual

\(slatusCude+"Respunse")‘

5 Create a"b;‘!led iaType

Call MediaType
function and return
MediaType
Individual

|

Add MediaType
Individual to the list

'

Add the MediaType
list to the property
"content” of
Response Individual

Return Response
Individual

Figure 4.8: Workflow of Response Object to Response Individual

mapping

function parseResponseObject (statusCode, responseObject ,

componentSchemas)

69

Depending on the ”statusCode”, the corresponding Individual is

created

Extract and map Response’s properties from OpenAPI Service

— Create a Headers list

— For each Header Object
— Call Header function and return Header Individual
— Add Header Individual to the list

— Add the Headers list to the property ”responseHeader’
Header Individual

— Create a MediaType list

— For each MediaType Object
— Call MediaType function and return MediaType Individual
— Add MediaType Individual to the list

— Add the MediaType list to the property ”content”
Individual

— Return Response Individual

Listing 4.15: Response Object to Response Individual

)

to

of Response

4.13 Mapping of Tag Object to Tag
Class

Listing 4.16 illustrates the mapping of a Tag Object to a
Tag Individual, while 4.17 shows the implementation of

the xz-onResource extension property.

parseTagObject(tagObject,
componentSchemas)

)

Create Tag Individual

}

Extract and Map
Tag's properties
from OpenAPI
Service

Figure 4.9: Workflow of Tag Object to Tag Individual mapping

function parseTagObject(tagObject , componentSchemas)

— Create Tag Individual
— Extract and Map Tag’s properties from OpenAPI Service

Listing 4.16: Tag Object to Tag Individual

— Is implemented in parseTagObject
— Get all the extensions with name
— If x—onResource points to a Schema

— Find that Schema in componentSchemas

— Create the Shape Individual by calling the

createNode/PropertyShape function

70

"x—onResource’ from Tag Object

Tag OpenAPI
Object Tag Class
Field Name Type Property Range
name string openapi:name openapi:String
description string openapi:description openapi:String
externalDoc EXt(e)EaelctDOC openapi:externalDoc | openapi:ExternalDoc

Table 4.14: Tag Object to Tag Class

— Save <Tag Individual,

Shape Individual> pair

Listing 4.17: x-onResource implementation

4.14 Mapping of Schema Object to Shape
Class

Schema OpenAPI
Object Shape Class
Field Name Type Property Range
multipleOf string openapi:multipleOf xsd:Integer
readOnly boolean openapi:readOnly xsd:Boolean
. : openapi:
maxProperties integer maXIP)’ropEr Hes xsd:Integer
. : : openapi:
minProperties integer mingropgr Hos xsd:Integer
writeOnly boolean openapi:writeOnly xsd:Boolean
xml Xml Object openapi:xml openapi:Xml
External :
externalDocs | Documentation openapt: openapi:ExternalDoc
: externalDoc
Object
deprecated boolean Openapl: xsd:Boolean
deprecated

Table 4.15: Schema Object to Shape Class

In the implementation of the mapping of a Schema

Object to a Shape Individual are also implementated the

x-refersTo, z-kindOf, z-mapsTo and x-collectionOn ex-

71

parseSchemaObject
(schemaName,
schemaObject,

. componentSchemas)

YES IS there a Shape
RE[;”JRI_SB:FE “ Individual with this

gchemaName ?

NO
v
object
schemaObject.

getType() Create
int, bool et PropertyShape

Individual

amay

¥
Create
CollecticnNodeShape
Individual

Keep schemaName
in property "label" of
Shape Individual

v

Return Shape
Individual

Figure 4.10: Workflow of Schema Object to Shape Individual
mapping

tension properties which can be seen in listings 4.19, 4.20,
4.21, 4.22.

function parseSchemaObject (schemaName, schemaObject ,
componentSchemas)
— If there is a Shape Individual with this schemaName, return it
— Else get the Type of Schema Object
— If(getType=—object) : Create NodeShape Individual
— Else if(getType—int ,bool etc) : Create PropertyShape
Individual
— Else if (getType=—array) : Create CollectionNodeShape
Individual
— Keep schema name in property ”label” of Shape Individual
— Return Shape Individual

Listing 4.18: Schema Object to Shape Individual

— Is part of createNodeShape (..) /createPropertyShape (..)

— Get the resource where x—refersTo points

— Save the resource as target class/property of the new Shape
individual

Listing 4.19: x-RefersTo implementation

— Implemented in createNodeShape (..) /createPropertyShape (..)

— Get the resource where x—kindOf points

— Create a new Class/property with name ”schemaName”

— Make the new class subclass/subproperty of the class—resource
where x—kindOf points

72

— Save the new class/property as target class/property of the new
Shape individual

Listing 4.20: x-kindOf implementation

— Is part of createNodeShape (..) /createPropertyShape (..)

— Get the resource where x—mapsTo points

— Find Node/PropertyShape Individual with same name as the
resource

— Copy semantics of the resource Individual

— Paste semantics in Node/PropertyShape Individual

Listing 4.21: x-mapsTo implementation

— Is implemented in createNodeShape(..)

— Get the model where x—collectionOn points

— Create new ontology class with name ”schemaName”

— Set new class subclass of ”openapi: Collection” class

— Save new class as target Class of the new NodeShape individual

Listing 4.22: x-collectionOn implementation

4.15 Mapping of XML Object to XML
Class

gbj‘\yilc;t OpenAPI XML Class
Field Name | Type Property Range
name string | openapi:xmlName | xsd:String
namespace string | openapi:namespace | xsd:String
prefix string openapi:prefix xsd:String
attribute boolean | openapi:attribute | xsd:Boolean
wrapped boolean | openapi:wrapped | xsd:Boolean

Table 4.16: XML Object to XML Class

function parseXMLObject (xmlObject)
— Create XML Individual
— Extract and map XML’s properties from OpenAPI Service
— Return XML Individual

Listing 4.23: XML Object to XML Individual

73

4.16 Mapping of Security Scheme Ob-
ject to Security Class

As seen in table 4.17 property type doesn’t have a corres-
pondence to a property in our ontology. OpenAPI 3.0 sup-
ports four Security Schemes “apiKey”, “http”, “oauth2”,
“openldConnect” which in the OpenAPI ontology are rep-
resented as subclasses of Security Class. This may be seen
in the tables 4.18, 4.19, 4.20 and 4.21.

Security OpenAPI
Scheme Object Security Class
Field Name | Type | Property Range
description | string | openapi:string | xsd:String
type string

Table 4.17: Security Scheme Object to Security Class

parseSecuritySchemeObject
(documentind,
securityName,

securltjobject]
Get "type" of
SecurityScheme
Object
l N Create HTTP
Individual
—
value of "type”

Create OAuth2
L Individual
Extract and map the
Individual's
properties from Create
OpenAPl Service —* OpenIDConnect
Individual

Save SecurityScheme
Individual to
"supportedSecurity”
property of Document
Individual

Figure 4.11: Workflow of SecurityScheme Object to Security In-
dividual mapping

function parseSecuritySchemeObject (documentInd, securityName ,
securityObject)
— Get "type” of SecurityScheme Object
— Depending on the type, create the corresponding Individual (
ApiKEY, HTTP, OAuth2, OpenIDConnect)

74

— Extract and map the Individual ’s properties from OpenAPI

Service

— Save SecurityScheme Individual to ”supportedSecurity”

of Document Individual

Listing 4.24:

property

SecurityScheme Object to SecurityScheme

Individual
Security OpenAPI
Scheme Object ApiKey Class
Field Name | Type Property Range
name string | openapi:parameterName | xsd:String
in string openapi:in xsd:String
Table 4.18: ApiKey Class
Security OpenAPI
Scheme Object Http Class
Field Name | Type Property Range
scheme string openapi:scheme xsd:String
bearerFormat | string | openapi:bearerFormat | xsd:String
Table 4.19: Http Class
Security OpenAPI
Scheme Object OpenldConnect Class
Field Name Type Property Range
openldConnectUrl | string | openapi:openldConnectUrl | xsd:String

Table 4.20: OpenldConnect Class

For the ApiKey, Http, OpenldConnect Classes all we
need to do is create an Individual as seen in listing 4.24.

Security OpenAPI
Scheme Object OAuth?2 Class
Field Name Type Property Range
flows OAuthFlowsObject | openapi:flow | openapi:OAuthFlow

Table 4.21: OAuth2 Class

75

4.17 Mapping of Security Requirement

Object to Security Requirement
Class

Finally in table 4.22 we may see the Security Requirement
Class in our ontology which defines the Security Scheme
used and the permitted Scope.

OpenAPI
SecurityRequirement Class
Property Range
openapi:security Type | openapi:Security

openapi:scope openapi:Scope

Table 4.22: Security Requirement Class

parseSecurityReqObject(
securityReqObject)

|
L

Create SecurityReq
Individual

!

Extract and map all
Security Reg's
properties from
OpenAPI Service

|
L]
Returmn
SecurityReq
Individual

Figure 4.12: Workflow of SecurityRequirement Object to Securi-
tyRequirement Individual mapping

function parseSecurityReqObject (securityReqObject)
— Create SecurityReq Individual
— Extract and map all Security Req’s properties from OpenAPI
Service
— Return SecurityReq Individual

Listing 4.25: Security Req Object to Security Req Individual

76

Chapter 5

Implementation

We have at this point described the abstract algorithm
that shows the mappings between OpenAPI Objects and
Classes in OpenAPI version 3.0 Ontology. In this chapter,
we proceed with the full implementation containing all the
technical details of our algorithm for whom is interested
n.

The Document Class is the most important one in
the Ontology. Figure 3.1 represents the OpenAPI Ob-
ject that maps to the Document Class in our ontology.
What convert2ontology method does is call all the other
methods that proceed the mapping of each Object to an
ontology Individual (Info, Server, SecuritySchemes, Secur-
ityRequirement, Tag, ExternalDocs, Operations.)

In addition, this method creates a list of all the Objects
that must be kept as global (Servers, SecurityRequirement
and Tags). More specifically, servers may be defined glob-
ally in the Document level, but may also be defined in
Path and in Operation. Moreover, in this method we cre-
ate the Document Individual.

procedure convert2ontology (openApiDoc) {
// initialize the open api ontology
Ontology ontModel = initOntologyModel () ;
// create an individual for Document Class
Individual documentInd = createlndividual (ontModel, ”openapi:

7

Document”) ;

// info object into ontology

parselnfoObject (ontModel , documentInd, openApiDoc.getInfo ());

// parse global servers and crate individuals

List<Individual> globServerIndList ;

for (ServerObject serverObject in openApiDoc.getServers()) {
Individual serverInd = parseServerObject (ontModel,
serverObject) ;
globServerIndList .add(serverInd);

}

// parse all security schemes

for (Entry<String, SecuritySchemeObject> secSchemeEntry in
openApiDoc. getComponents () . getSecuritySchemes ()) {
parseSecuritySchemeObject (ontModel , secSchemeEntry.getKey (),
securityObject . getValue ());

¥

// parse global security requirements and parse individuals

List<Individual> globSecReqIndList ;

for (SecurityRequirementObject securityReqObject in openApiDoc.
getSecurityRequirements ()) {
Individual securityReqlnd = parseSecurityReqObject (ontModel,
securityReqObject) ;
globSecReqIndList .add (securityReqlInd) ;

}

//parse Tag
Map<String , Individual> tagShapeMap;

for (TagObject tag in openApiDoc.getTags()) {
Entry<String , Individual> tagShapeEntry = parseTagObject (
ontModel ; tag, openApiDoc.getComponents () .getSchemas());
documentInd. setProperty (” openapi:supportedEntity”,
tagShapeEntry . getValue ());
tagShapeMap .add (tagShapeEntry) ;
}

//External Docs in Document level
Individual exDocInd=parseExternalDocObject (ontModel ,openApiDoc.
getExternalDoc ());
operationInd.setProperty (” openapi:externalDoc”, exDoclnd);
// parse path objects into ontology
for (Entry <String, PathItemObject> pathEntry in openApiDoc.
getPaths()) {
//get Path Servers
List<Individual> pathServerIndList ;
for (ServerObject serverObject in pathEntry.getValue().
getServers ()) {
Individual serverInd = parseServerObject (ontModel,
serverObject) ;
pathServerIndList.add(serverInd);
¥

//If there no path servers, keep global servers
List<Individual> operationServerList ;
if (pathServerIndList .isEmpty ()){

operationServerList = globServerIndList ;
}
else {

operationServerList = pathServerIndList;

}

//Get path parameters
List<Individual> pathParameterIndList;

78

for (ParameterOject parameterObject in pathEntry.getValue().
getParameter ()) {
Individual parameterInd = parsePathParameterObject (ontModel,
parameterObject , openApiDoc.getComponents () .getSchemas());
pathParameterIndList.add (parameterInd) ;

}

//Parse all operation types (Get,Post,..,Delete)
for (OperationObject operationObject in pathEntry.getValue ().
getOperations ()){

//path
Individual pathInd=parsePathObject (ontModel, pathName)

parseOperationObject (ontModel , documentInd, pathInd,
operationObject , tagShapeMap, openApiDoc.getComponents () .
getSchemas (), pathParameterIndList ,operationServerList ,
globSecReqIndList) ;

}
}

Listing 5.1: Initialization and Document Method

If there are not any servers in Operation, then we use
the ones in Path and if we don’t have any Path servers
either, then we use the global ones. The same thing may
happen with the servers defined in SecurityRequirement.
This way we are able to override the global servers, by
defining new or we may stick with the global ones. Then,
we also get all the parameters defined in Path level and
we call the method parsePathObject() which returns a
Path Individual. In addition, for every Path we get the
Operations under it and we call parseOperationObject()
which will be explained in the following section along with
what happens with globally defined Tags and those defined
in Operation.

Finally, the format is almost the same in this method
for every Object. As we can see, we get the Object from
the OpenAPI service, then we call the method that parses
the Object to an Individual of the corresponding class in
the ontology and then we add the Individual to the global
list (when there is one). The only difference is when we
have Tags. Then, we create a Map of a <String, Indi-
vidual>. The string contains the name of the Tag, while

79

the Individual is the Shape Individual that exists only in
case that a Tag has been connected with a Schema by using
the z-onResource property. Then, we put the Shape Indi-
vidual in the supportedEntity property of the Document.
Every entry is saved in the Map we said before.

5.1 ParseOperationObject Method

This method starts with initializing a new Operation Indi-
vidual, which is later going to be filled with all the appro-
priate properties of the Operation Object. The extension
property x-operationType is implemented here. What is
done is get the Operation Individual and add a superclass.
The superclass is the class where x-operationType points.
For example, if we had a /pet/findByStatus command
then the superclass would be the class SearchAction of
Schema.org.

Then, some properties of Operation Object are mapped
to the Operation Individual, having in mind the table 4.7.
When a property is datatype and not Object, the mapping
is trivial while when it is Object we call complementary
methods where the parse of the corresponding Object to
Individual is done and the Individual is returned.

method void parseOperationObject (OntModel ontModel, Individual

documentInd, Individual pathInd, OperationObject
operationObject , Map<String ,Individual > tagShapeMap, Map<String
, SchemaObject> schemas, List<ParameterObject>
parametersListFromPath , List<Individual> serverList , List<
Individual> globSecReqIndList) {

operationInd = createlndividual (ontModel, ”openapi: Operation”);

//x—operationType

String operationType = operationObject.getExtensions (”x—
operationType”);

if (operationType != null){
operationInd.addOntClass (operationType) ;

}

operationInd .setProperty (” openapi:name”, operationObject.
getOperationId());

80

operationInd.setProperty (” openapi:onPath”, pathInd);

operationInd.setProperty (” openapi:deprecated”, openapi.
getDeprecated ()) ;

operationInd .setProperty (” openapi:summary”, openapi.getSummary ()
s

operationInd.setProperty (” openapi:description”, openapi.

getDescription ());
//Type of Operation
Individual methodInd=getMethodIndividual (ontModel,
operationObject .getOperationType());
operationInd.setProperty (” openapi: method”, methodInd);
//ex
if (operationObject.getExternalDoc ()!=null){
Individual exDocInd=parseExternalDocObject (ontModel,
operationObject . getExternalDoc());
operationInd.setProperty (” openapi:externalDoc”, exDoclnd);
}

//tags
for (String tag in operationObject.getTags()) {
Individual taglnd;
Entry<String , Individual> tagShapeEntry = tagShapeMap.getEntry
(tag);
if (tagShapeEntry — null) {
tagIlnd = createlndividual (ontModel, ”openapi:Tag”);
tagInd .setProperty (” openapi:name” , tag);
}
else {
taglnd = findTagIndividual (ontModel, tag);
Individual shape = tagShapeEntry.getValue();
if (shape!=null){
shape.setProperty (" openapi:supportedOperation”,
operationInd);

}

operationInd .setProperty (” openapi:tag”, taglnd);
}
//RequestBody
if (openapi.getRequestBody ()!=null){
Individual requestInd = parseRequestBodyObject (ontModel,
operationObject . getRequestBody () ,schemas) ;
operationInd .setProperty (” openapi:requestBody”, requestInd);
}

//Response
for (Entry<String , ResponseObject> responseEntry in
operationObject . getResponses ()){
Individual responselnd=parseResponseObject (ontModel,
responseEntry.getKey (), responseEntry.getValue() ,schemas);
operationInd.setProperty (” openapi:response” ,responselnd));
¥

//Security Req
if (operationObject . getSecurityRequirements () .isEmpty ()){
for (Individual securiryReqlnd in globSecReqIndList) {
operationInd .setProperty (” openapi:security”, securiryReqlnd)

}
}
else{
for (SecurityRequirementObject securiryReqObject in

81

operationObject . getSecurityRequirements ()) {

Individual securityReqInd = parseSecurityReqObject (ontModel,
securiryReqObject) ;

operationInd .setProperty (” openapi:security”, securityReqlnd)

}
}
//parameters
List <ParameterObject> combinedParametersList= combineParameters (
parametersListFromPath , operationObject . getParameters());
for (ParameterObject parameterObject in combinedParametersList){
switch (parameterObject . getIn ())
{
case ”path”:
Individual parameterInd=parsePathParameterObject (ontModel,
parameterObject ,schemas) ;
operationInd.setProperty (” openapi: parameter” ,parameterInd)

case "query”:
Individual queryInd=parseQueryObject (ontModel,
parameterObject ,schemas) ;
operationInd.setProperty (” openapi:query” querylnd);
case ”header”:
headerName=parameterObject . getName () ;
Individual headerInd=parseHeaderObject (ontModel , headerName
,parameterObject , schemas) ;
operationInd .setProperty (” openapi:requestHeader” ,headerInd
);

case ”cookie”:
Individual cookieInd=parseCookie(ontModel,parameterObject ,
schemas) ;
operationInd .setProperty (” openapi: cookie” cookielnd);
}

}

//Servers
if (operationObject . getServers () .isEmpty ()){
for (Indinidual serverInd in finalServerList) {
operationInd .setProperty (” openapi:serverInfo”, serverInd);
}

}
else{

for (ServerObject serverObject in operationObject.getServers ()

) A

Individual serverInd = parseServerObject (ontModel,
serverObject) ;
operationInd .setProperty (” openapi:serverInfo”, serverInd);

}
}

documentInd . setProperty (” openapi:supportedOperation” ,
operationInd) ;

Listing 5.2: Operation Method

Later we have the parsing of Tags inside Operation.
What happens with Tags is the following : We have the

82

globally defined Tags but we may also have some Tags
defined in Operation level. The ones defined in Opera-
tion level are in the form of strings and not Tag Objects.
When a Tag is defined in Operation, but has not been
globally defined (this might happen) then what we do is
create a Tag Individual and assign to it the name of the
tag. On the other hand, when there is a Tag defined in
Operation that has been already predefined globally then
we find it in the global list, we get the Shape (which exists
in case we have used the x-onResource property) and make
it point to the Operation Individual by using the property
supportedOperation.

In addition, Request Body and Response are Objects
which, as mentioned above, are returned as mapped In-
dividuals after calling the right method that implements
the parsing. Moreover, what happens with Security Re-
quirement is that we check if there are not any Security
Requirement Objects in Operation level and in this case
we keep the global ones. However in case there are Security
Requirement Objects defined in Operation, then for each
one the method parseSecurityReqObject() is called. The
returned Security Requirement Individual is saved in the
property security under Operation.

In order to implement the map of the Parameter Ob-
ject we call the method combineParameters sending as
parameters the ones from Path and the ones from Op-
eration. Parameters existed on Path are always used.
When there are additional Parameters defined on Oper-
ation, then we use both the ones from Path and the ones
from Operation. There is however a case where a Para-
meter on Path may be overrided on Operation level. This
happens only when it is declared using the same name and

83

in type. In that case, the Operation Parameter is kept. An
operation according to its in type may be inside a Query,
a Header, a Cookie or a Path. For each of these cases a
different parse method is called.

The same thing happens with Server Objects. If there
are not Server Objects defined in Operation level, the
global ones are used. Otherwise for each Server Object
the method parseServerObject is called and the returned
Individuals are saved in property serverinfo of Operation.
Finally, Document Individual keeps all the Operations that
have been created in property supportedOperation.

5.2 CombineParameters Method

This method is the one mentioned before in Operation. A
list is declared and then we check if and which Parameters
are overridden in Operation level. In this case we keep
these Parameters in the combined list. In the case where
there is not a Parameter overridden, we keep in the list
the Parameters from Path. Finally, we make a check for
all the Parameters declared in Operation level and for the
ones that do not override a Path Parameter (since they
haven’t been added to the list yet), we put them too in
the combined list.

method List<ParameterObject> combineParameters(List<
ParameterObject> fromPath, List<ParameterObject> fromOperation)
{
List<ParameterObject> combinedList ;
//Specific path—level parameters can be overridden
for (ParameterObject paramFromPath in fromPath){
bool override=false;
for (ParameterObject paramFromOperation in fromOperation){
if (paramFromPath . getName ()=—paramFromOperation . getName ())
if (paramFromPath. getIn ()=paramFromOperation. getIn ()){
combinedList .add (paramFromOperation) ;

84

override=true;

break ;
}

if (override=false)
combinedList .add (paramFromPath) ;

}

/*Any extra parameters defined at the operation level
x are used together with path—level parametersx/
for (ParameterObject paramFromOperation in fromOperation){
if (paramFromOperation not in combinedList)
combinedList . add (paramFromOperation) ;

}

return combinedList ;

Listing 5.3: combineParameters Method

5.3 ParsePathObject Method

This is a simple method where we create an Individual of
Path Class and put in its property name the value that is
returned from the OpenAPI service.

method Individual parsePathObject (OntModel ontModel, String name)

{

Indinidual pathInd = createIlndividual (ontModel, ”openapi:Path”);
pathInd.setProperty (” openapi:pathName” , name) ;
return pathlnd;

}

Listing 5.4: Path Method

5.4 ParselnfoObject Method

In this method the mapping of an Info Object to Info In-
dividual is implemented. The datatype properties of the
OpenAPI service are corresponded to the ones in our onto-
logy by using the setProperty command. For the Contact
and License Object that are object properties of the Info
Object, a Contact and License Individual are created and

85

then passed to the corresponding property of Info Indi-
vidual.

method void parselnfoObject (OntModel ontModel, Individual

documentInd, InfoObject infoObject) {

Individual infolnd = createlndividual (ontModel, ”openapi:Info”);

infolnd .setProperty (” openapi:serviceTitle”, infoObject.getTitle
0)s

infolnd .setProperty (” openapi: description”, infoObject .
getDescription ());

infolnd .setProperty (” openapi: termsOfService”, infoObject.
getTermsOfService ()) ;

//Contact Object

if (infoObject.getContact () != null) {

Individual contactInd = createlndividual (ontModel, ”openapi:
Contact”) ;

contactInd .setProperty (” openapi:contactName” , infoObject .

getContact () .getName()) ;

contactInd .setProperty (” openapi:url”, infoObject.getContact ().
getUrl());

contactInd .setProperty (” openapi:email”, infoObject.getContact
().getEmail ());

infolnd .setProperty (” openapi:contact”, contactInd);
¥
//License object
if (infoObject.getLicense () != null) {
Individual licenselnd = createlndividual (ontModel, ”openapi:
License”);
licenselnd .setProperty (” openapi:licenseName”, infoObject .

getLicense () .getName());
licenselnd .setProperty (" openapi:url”, infoObject.getLicense ().

getUrl());
infolnd .setProperty (” openapi:license”, licenselnd);
¥
documentInd . setProperty (” openapi:info”, infolnd);
documentInd . setProperty (” openapi: version”, infoObject.getVersion

());

Listing 5.5: Info Method

5.5 ParseServerObject Method

In this method the Server Object is parsed to a Server
Individual. An individual of Server Class is created and
then it is filled with its properties in which we have added
the value that we got from the OpenAPI service. For the
property variables that returns a Server Variable Object,

86

which is a map of its name and the Object we need to
create a ServerVariable Individual. After the Server Vari-
able Individual has been created and filled with the correct
properties it is passed back to the Server Individual.

method Individual parseServerObject (OntModel ontModel,
ServerObject serverObject){
Individual serverInd = createlndividual (ontModel, ”openapi:
Server”);
serverInd .setProperty (" openapi:host”, serverObject.getUrl());
serverInd .setProperty (” openapi: description”, serverObject.
getDescription ());
//ServerVariable object
for (Entry <String, ServerVariableObject> serverVariableEntry in
serverObject . getServerVariables ()){
Individual serverVariableInd = createlndividual (ontModel,
openapi: ServerVariable”);
ServerVariableObject sv=serverVariableEntry.getValue();
serverVariableInd .setProperty (” openapi:name” |
serverVariableEntry . getKey ());
for (String enum in sv.getEnum()){
serverVariableInd .setProperty (” openapi: variableValue” jenum) ;
}
serverVariableInd .setProperty (” openapi: variableDefaultValue”
sv.getDefault ());
serverVariableInd .setProperty (” openapi: description”, sv.
getDescription ());
serverInd.setProperty (” openapi: variables” serverVariableInd);

}

return serverInd;

7

}
Listing 5.6: Server Method

5.6 ParseExternalDocObject Method

In this method the External Documentation Object is
mapped to the External Documentation Individual as seen
in table 4.8.

method Individual parseExternalDocObject (OntModel ontModel,
ExternalDocObject exdoc) {
Individual exdocInd = createlndividual (ontModel, ”openapi:
ExternalDoc”) ;
exdoc.setProperty (" openapi:url”, exdoc.getUrl());
exdoc.setProperty (" openapi: description”, exdoc.getDescription ())

Y

87

return exdoclnd;

}
Listing 5.7: External Doc Method

5.7 ParseXMLObject Method

In this method the XML Object is mapped to the XML
Individual as seen in table 4.16.

method Individual parseXmlObject (OntModel ontModel , XmlObject xml)
{

Individual xmlInd = createlndividual (ontModel, ”openapi:XML”);
xmlInd . setProperty (” openapi:name” , xml.getName());
xmlInd . setProperty (” openapi:namespace” , xml.getNameSpace());
xmlInd . setProperty (” openapi: prefix”, xml. getPrefix ());
xmlInd . setProperty (” openapi: attribute”, xml.getAttribute());
xmlInd . setProperty (” openapi: wrapped”, xml.getWrapped());
return xmlind;

”

»

(
(
(77
(
Listing 5.8: XML Method

5.8 GetMethodIndividual Method

In the OpenAPI ontology there are predefined Individuals

of Class Method. This is why we keep the URI (name) of
each one of the OpenAPI Methods (put, post, head etc)
and then we get the associating Individual from the onto-

logy.

method Individual getMethodIndividual (OntModel ontModel, String
method) {
switch (method)
{
case PUT :
method_uri= ”openapi:PUT”;
case POST:
method_uri= ”openapi:POST”;
case HEAD:
method_uri="openapi:HEAD” ;
case PATCH:
method_uri= ”openapi:PATCH”;
case OPTIONS:

88

method_uri ="openapi: OPTIONS” ;

case GET:
method_uri= ”openapi:GET”;
case DELETE:
method_uri= ”openapi:DELETE” ;
case TRACE:
method_uri= ”openapi:TRACE” ;
}
return ontModel. getIndividual (method _uri) ;

}
Listing 5.9: Method

5.9 GetStyleIndividual Method

Similarly to Method, in the OpenAPI ontology there are
predefined Individuals of Class Style. This is why we keep
the URI (name) of each one of the OpenAPI Styles (form,
matrix etc) and then we get the associating Individual
from the ontology.

method Individual getStyleIndividual (OntModel ontModel, StyleEnum
style){
switch (style)
{
case FORM :
style_uri= ”openapi:form”;
case MATRIX:
style_uri= ”openapi: matrix”;
case DEEPOBJECT:
style_uri="openapi:deepObject”;

case LABEL:
style_uri= ”"openapi:label”;
case SIMPLE:
style_uri ="openapi:simple”;
case SPACEDELIMITED:
style_uri= ”"openapi:spaceDelimited”;

case PIPEDELIMITED:
style_uri= ”"openapi:pipeDelimited”;

}

return ontModel. getIndividual (style_uri);

Listing 5.10: Style Method

89

5.10 ParseMediaTypeObject Method

In this method the Media Type Object is parsed to Media-
Type Individual and its properties. For two of the proper-
ties, encoding and schema we call the corresponding pars-
ing methods in order to return the Encoding and Schema
Individuals.

method Individual parseMediaTypeObject (OntModel ontModel, String
mediaTypeName, MediaTypeObject mediaTypeObject , Map<String ,
SchemaObject> schemas) {
Individual mediatypelnd = createlndividual (ontModel, ”openapi:
MediaType”) ;
mediatypelnd.setProperty (” openapi: mediaTypeName” , mediaTypeName)

for (Entry<String , EncodingObject> encodingEntry in
mediaTypeObject . getEncoding ()) {
Individual encodingInd = parseEncodingObject (ontModel,
encodingEntry . getKey (), encodingEntry.getValue () ,schemas);
mediatypelnd.setProperty (” openapi:encoding”, encodinglnd);
}

if (mediaTypeObject . getSchema ()!=null){
Individual schemalnd=parseSchemaObject (ontModel, null ,
mediaTypeObject . getSchema () ,schemas) ;
mediatypelnd.setProperty (” openapi:schema”, schemalnd);
}

return mediatypelnd;

Listing 5.11: Media Type Method

5.11 ParseEncodingObject Method

This method implements the parsing of an Encoding Ob-
ject to an Encoding Individual. For the property encod-
imgHeader the method parseHeaderObject is called in
order to return the Header Individual needed for this prop-
erty.

method Individual parseEncodingObject (OntModel ontModel, String
encodingName, EncodingObject encodingObject ,Map<String ,
SchemaObject> schemas) {
Individual encodinglnd = createlndividual (ontModel, ”openapi:
Encoding”) ;

90

encodingInd .setProperty (” openapi:propertyName” , encodingName) ;

encodingInd .setProperty (” openapi:contentType”, encodingObject.
getContentType());

encodingInd . setProperty (” openapi:explode”, encodingObject .
getExplode ()) ;

encodingInd .setProperty (” openapi:allowReserved”, encodingObject .
getAllowReserved ()) ;

Individual styleInd=getStyleIndividual (ontmodel, encodingObject .
getStyle ());

encodingInd . setProperty (” openapi:style”, stylelnd);

for (Entry<String ,HeaderObject> headerEntry in encodingObject.
getHeaders ()){
headerInd=parseHeaderObject (ontModel, headerEntry.getKey (),
headerEntry . getValue () ,schemas);
encodingInd . setProperty (” openapi:encodingHeader”, headerInd);

¥

return encodinglnd;

Listing 5.12: Encoding Method

5.12 ParseHeaderObject, ParseCook-
ieObject, ParseQueryObject, ParsePath-
ParameterObject Methods

Header, Cookie Query and PathParameter Objects are
part of Parameter Object. For properties schema and
content the methods parseSchemaQbject and parseMedia-
TypeObject are called to return the associating Individu-
als.

method Individual parseHeaderObject (OntModel ontModel, String

headerName, HeaderObject headerObject , Map<String , SchemaObject
> schemas) {

Individual headerInd = createlndividual (ontModel, ”openapi:
Header”) ;

headerInd.setProperty (” openapi:name”, headerName) ;

headerInd .setProperty (” openapi: description”, headerObject.
getDescription ());

headerInd . setProperty (” openapi:required”, headerObject.
getRequired ()) ;

headerInd.setProperty (” openapi:deprecated”, headerObject.
getDeprecated ()) ;

Individual styleInd=getStyleIndividual (ontmodel, headerObject .
getStyle());

headerInd.setProperty (” openapi:style”, stylelnd);

headerInd . setProperty (” openapi:explode”, headerObject.getExplode

()3
91

if (headerObject . getSchema ()!=null){
Individual schemalnd=parseSchemaObject (ontModel , null ,
headerObject . getSchema () ,schemas) ;
headerInd.setProperty (” openapi:schema”, schemalnd) ;
¥
for (Entry<String ,MediaTypeObject> mediaTypeEntry in headerObject
.getContent ()){
Individual mediatypelnd=parseMediaTypeObject (ontModel ,
mediaTypeEntry . getKey () ,mediaTypeEntry . getValue () ,schemas) ;
headerInd.setProperty (” openapi:content”, mediatypelnd);

}

return headerInd ;

Listing 5.13: Header Method

method Individual parseCookie(OntModel ontModel, ParameterObject
parameterObject , Map<String , SchemaObject> schemas) {
Individual cookielnd = createlndividual (ontModel, ”openapi:
Cookie”);
cookielnd .setProperty (" openapi:name”, parameterObject.getName/())

cookieInd .setProperty (” openapi: description”, parameterObject .
getDescription ());
cookielnd .setProperty (" openapi:required”, parameterObject .
getRequired ()) ;
cookielnd .setProperty (" openapi:deprecated”, parameterObject.
getDeprecated ()) ;
Individual styleInd=getStyleIndividual (ontmodel , parameterObject
.getStyle ());
cookielnd .setProperty (" openapi:style”, stylelnd);
cookieObject .setProperty (” openapi:explode”, parameterObject.
getExplode ());
if (cookieObject .getSchema ()!=null){
Individual schemalnd=parseSchemaObject (ontModel , null ,
cookieObject . getSchema () ,schemas) ;
cookielnd .setProperty (” openapi:schema”, schemalnd) ;
}
for (Entry<String , MediaTypeObject> mediaTypeEntry in
parameterObject . getContent ()) {
Individual mediatypelnd=parseMediaTypeObject (ontModel ,
mediaTypeEntry . getKey () ,mediaTypeObject . getValue () ,schemas) ;
cookielnd .setProperty (” openapi:content”, mediatypelnd);

}

return cookielnd ;

Listing 5.14: Cookie Method

method Individual parseQueryObjectParameter (OntModel ontModel,
ParameterObject queryObject , Map<String , SchemaObject> schemas)
{

Individual querylnd = createlndividual (ontModel, ”openapi: Query
aa);

queryInd.setProperty (” openapi:name”, queryObject.getName());

queryInd .setProperty (” openapi: description”, queryObject.
getDescription ());

querylInd .setProperty (" openapi:required”, queryObject.getRequired

()3
92

queryInd .setProperty (” openapi: deprecated”, queryObject.
getDeprecated ()) ;
Individual styleInd=getStyleIndividual (ontmodel,queryObject
getStyle());
querylnd .setProperty (" openapi:style”, stylelnd);
queryInd .setProperty (” openapi:explode”, queryObject.getExplode ()
);
querylInd .setProperty (” openapi:allowEmptyValue” , queryObject .
getAllowEmptyValue ()) ;
querylInd.setProperty (” openapi: allowReserved”, queryObject .
getAllowReserved ()) ;
if (queryObject .getSchema ()!=null){
Individual schemalnd=parseSchemaObject (ontModel , null ,
queryObject . getSchema () ,schemas) ;
querylnd . setProperty (” openapi:schema”, schemalnd);
¥

for (Entry<String , MediaTypeObject> mediaTypeEntry in queryObject.
getContent ()){
Individual mediatypelnd=parseMediaTypeObject (ontModel ,
mediaTypeEntry . getKey () ,mediaTypeEntry . getValue () ,schemas) ;
querylnd . setProperty (” openapi:content”, mediatypelnd);
}

return querylnd;

Listing 5.15: Query Method

method Individual parsePathParameterObject (ontModel,
parameterObject , Map<String , SchemaObject> schemas) {

Indinidual parameterInd = createlndividual (ontModel, ”openapi:
Parameter”, parameterObject.getName());

parameterInd.setProperty (” openapi:name” , parameterObject .getName
)

parameterInd.setProperty (” openapi: description”, parameterObject .
getDescription ());

parameterInd.setProperty (” openapi:required”, true);

parameterInd.setProperty (” openapi: deprecated”, parameterObject.

getDeprecated ()) ;
styleInd=getStyleIndividual (ontmodel ,parameterObject . getStyle ())

parameterInd . setProperty (” openapi:style”, stylelnd);
parameterInd.setProperty (” openapi:explode”, parameterObject.
getExplode ());
if (parameterObject . getSchema ()!=null){
Individual schemalnd=parseSchemaObject (ontModel , null ,
parameterObject . getSchema () ,schemas) ;
parameterInd.setProperty (” openapi:schema”, schemalnd);
¥

for (Entry<mediaTypeName , mediaTypeObject> mediaTypeEntry in
parameterObject . getContent ()) {
mediatypelnd=parseMediaTypeObject (ontModel , mediaTypeEntry .
getKey (), mediaTypeEntry.getValue (), schemas);
parameterInd.setProperty (” openapi: content”, mediatypelnd);
}

return parameterInd ;

Listing 5.16: Path Parameter Method

93

5.13 GetDatatype Method

The mapping between datatypes from OAS and datatypes

in the ontology happens according to the table 5.1.

OpenAPI DataTypes Op G%ZJ[T(;Z;?ZOQZ/
Type Format
integer int32 xsd:int
integer int64 xsd:long
number float xsd:float
number double xsd:double
string xsd:string
string —encol()i};tf fgaeaizgé’ten ts) xsd:base64Binary
There isn’t a binary
datatype in xsd.
string | binary (binary file contents) Therefore, we
need to introduce a new.
openAPI:binary
which is an array of xsd:Byte
boolean xsd:boolean
string date xsd:date
string date-time xsd:dateTime

Table 5.1: Datatypes

method Resourse getDatatype(String type,
if (type=="integer” && format=="int32”) return XSD.xint;

String format) {

else if (type=="integer” && format=="int64”) return XSD. xlong ;

else if (type=="number” && format=="float”) return XSD.xfloat ;

else if (type=="number” && format=="double”) return XSD.xdouble;

else if (type=="string” && format=="byte”) return XSD.
base64Binary ;

else if (type=="string” && format=="binary”) return Resourse(”
openapi: binary”);

else if (type=="string” && format=="date”) return XSD.date;

else if (type=="string” && format=="date—time”) return XSD.
dateTime ;

else if (type=="string” && format=—=null) return XSD. xstring;

else
else
else

if (type=="boolean” && format=—null) return XSD.xboolean;
if (type=="integer” && format=—=null) return XSD.xint
if (type=="number’&& format=—null) return XSD.decimal;

Listing 5.17: Datatype Method

94

5.14 ParseResponseObject Method

This method implements the mapping of a Response Ob-
ject to Response Individual. Depending on the statusCode,
an Individual of the corresponding Class (Default, 1xx, 2xx
ete) is created. In order to give value to the properties re-
sponseHeader and content methods parseHeaderObject
and parseMediaTypeObject are called.

method Individual parseResponseObject (OntModel ontModel, String
statusCode , ResponseObject responseObject , Map<String ,
SchemaObject> schemas) {
if (statusCode = ”default”)
Individual responselnd = createIlndividual (ontModel,
openapi: DefaultResponse”) ;
else if (statusCode = 71XX")
Individual responselnd = createlndividual (ontModel,
openapi:1xxResponse”);
else if (statusCode = 72XX")
Individual responselnd = createIndividual (ontModel,
openapi:2xxResponse”) ;
else if (statusCode = ”3XX")
Individual responselnd = createlndividual (ontModel,
openapi:3xxResponse”);
else if (statusCode = 74XX”)
Individual responselnd = createlndividual (ontModel,
openapi:4xxResponse”) ;
else if (statusCode = ”5XX”)
Individual responselnd = createIlndividual (ontModel,
openapi:5xxResponse”) ;
else {
Individual responselnd = createlndividual (ontModel,
openapi: Response”);
responselnd . setProperty (” openapi:statusCode”, statusCode);
}

responselnd .setProperty (” openapi: description”, responseObject.
getDescription ());

for (Entry<String , HeaderObject> headerObjectEntry in
responseObject . getHeaders ()){

Individual headerInd=parseHeaderObject (ontModel,
headerObjectEntry . getKey () ,headerObjectEntry . getValue (),
schemas) ;

responselnd . setProperty (” openapi:responseHeader”, headerInd);

}

for (Entry<String , MediaTypeObject> mediaTypeEntry in
responseObject . getContent ()) {
Individual medialnd=parseMediaTypelndividual (ontModel ,
mediaTypeEntry . getKey () ,mediaTypeEntry. getValue () ,schemas) ;
responselnd . setProperty (” openapi:content” ,medialnd) ;
¥

return responselnd;

7

”

R

b2

R

7

”

95

Listing 5.18: Response Method

5.15 ParseRequestObject Method

This method implements the mapping of a Request Object
to a Request Individual. In order to set the value of the
content property, the method parseMediaTypeObject is
called.

method Individual parseRequestBodyObject (OntModel ontModel,
RequestObject requestObject , Map<String , SchemaObject> schema) {
Individual requestInd = createlndividual (ontModel, ”openapi:
RequestBody”) ;
requestInd . setProperty (” openapi: description”, requestObject.
getDescription ());
requestInd . setProperty (” openapi:required”, requestObject .
getRequired ()) ;
for (Entry<String , mediaTypeObject> mediaTypeEntry in
requestObject . getContent ()){
medialnd=parseMediaTypeObject (ontModel ,mediaTypeEntry . getKey ()
,mediaTypeEntry. getValue () ,schemas) ;
requestInd . setProperty (” openapi:content” ,medialnd) ;

}

return requestInd;

Listing 5.19: Request Method

5.16 ParseTagObject Method

This method implements the parsing of a Tag Object to
Tag Individual. It also supports the use of the x-onResource
property which links a Tag with a Schema. The imple-
mentation of the extension property is based on the fol-
lowing procedure : First, we keep in a string the value
where the x-onResource property points. For example we
could have /components/schema/Pet. After that, we ex-
tract from this string the Schema name, aka Pet. Finally,

96

the method parseSchemaQObject is called in order to re-
turn the associating Individual which is returned from par-
seTagObject method along with the Tag name.

method Entry<String, Individual> parseTagObject (Ontmodel ontModel,
Tag tag, Map<String ,SchemaObject> schemas){

// used for findTaglIndividual (OntModel model, name_of_Tag) —>
ontModel. getIndividual (name_of_Tag)

Individual tagInd = createlndividual (ontModel, ”openapi:Tag”,
tagObject . getName ()) ;

tagInd .setProperty (" openapi:name” ,tagObject . getName ()) ;

taglnd.setProperty (” openapi: description”, tagObject.
getDescription ());

Individual exdocInd=parseExternalDocIndividual (ontModel,
tagObject . getExternalDoc ()) ;

tagInd .setProperty (" openapi:externalDoc” ,exdocInd) ;

//x—onResourse

Individual schemalnd=null;

String xOnResourseExtension= tagObject.getExtension (”x—
onResourse”) ;

if (xOnResourseExtension!=null){
// extractSchemaName(#/components/schema/Pet)—>{Pet}
schemaName= extractSchemaName (xOnResourseExtension) ;
schemalnd=parseSchemaObject (ontModel ,schemaName , schemas . get (
schemaName) ,schemas) ;

}

return new Entry<String, Individual >(tag.getName(), schemalnd);

Listing 5.20: Tag Method

5.17 ParseSchemaObject Method

This method parses a Schema Object of an OpenAPI ser-
vice to a a Shape Individual of the OpenAPI ontology. A
Shape Individual may be a NodeShape, PropertyShape or
CollectionNodeShape Individual. When the type of the
Schema, is Object then it maps to a NodeShape, when
the type is array it maps to a CollectionNodeShape, while
everything else (integer, string, boolean etc) is considered a
PropertyShape. For each case a different method is called.
Finally, the Shape Individual is returned.

97

method Individual parseSchemaObject(Ontology ontModel, String
schemaName, SchemaObject schemaObject, Map<String , SchemaObject
> schemas) {
Individual shapelnd = findShapelndividual (ontModel, schemaName) ;
if (shapelnd = null) {
if (schemaObject.getType() =—object) {
shapelnd = createNodeShape (ontModel, schemaName, schemaObject
schemas) ;

}

else if (schemaObject.getType() —array && !schemaObject .
hasExtension ()) {
shapelnd =createCollectionNodeShape (ontModel, schemaName,
schemaObject , schemas);

}

//integer , string , number ,boolean
else {

shapelnd = createPropertyShape (ontModel, schemaName,
schemaObject , schemas);

shapelnd .setProperty (" rdfs:label”, schemaName + ”Shape”);

}

return shapelnd;

}
Listing 5.21: Schema Method

5.18 CreateNodeShape Method

In this method the NodeShape Individual is created and
returned. In addition, this method supports also the x-
refersTo, x-kindOf, x-mapsTo and x-collectionOn proper-
ties. In every case the Class where the property points
is kept. In x-kindOf, a Class with the Schema name is
created and kept in the variable classUri. Then the class
where the extension property points, becomes superclass
of the created Class. For example if the x-kindOf refers to
a Schema Dog and points to a Class Pet, then we create
a Class Dog and make it subclass of the Class Pet.

method Individual createNodeShape(Ontology ontModel, String
schemaName, SchemaObject schemaObject, Map<String , SchemaObject
> schemas) {
Individual nodeShapelnd = createlndividual (ontModel, ”sh:
NodeShape”) ;
//handle semantics x—refersTo, x—kindOf, x—mapsTo

98

String classUri;
String collectionMember; // assigned when x—collectionTo is used
if (schemaObject.hasExtension (”x—refersTo”)) {
classUri = schemaObject.getExtension (”x—refersTo”);
}
else if (schemaObject.hasExtension (”x—kindOf”)) {
String uri = schemaObject.getExtension (?x—kindOf”) ;
Class class = ontModel. createClass (schemaName) ;
class.addSuperClass (uri) ;
classUri = class.getUri();

}

else if (schemaObject.hasExtension (”x—mapsTo”)) {
String mappedSchemaName = schemaObject . getExtension (” x—mapsTo
")

Entry<String , SchemaObject> mappedSchemaEntry = schemas. get (
mappedSchemaName) ;
Individual mappedShapelnd = findShapelndividual (ontModel,
schemaName) ;
if (mappedShapelnd = null) {
mappedShapelnd = createNodeShape (ontModel, mappedSchemaEntry
.getKey (), mappedSchemaEntry.getValue (), schemas);

}

classUri = mappedShapelnd. getProperty (”sh: TargetClass”);

else if (schemaObject.hasExtension (”x—collectionOn”)) {
Class class = ontModel. createClass (schemaName) ;
class.addSuperClass (” openapi: Collection”);
collectionMember = schemaObject.getExtension ("x—collectionOn”)
classUri = class.getUri();

}

nodeShapelnd.setProperty ("sh:targetClass”, classUri);

for (Entry<String, SchemaObject> propertyEntry in schemaObject.
getProperties ()) {
Individual propertyShapelnd = createPropertyShape (ontModel,
propertyEntry.getKey (), propertyEntry.getValue(), schemas);
propertyShapelnd.setProperty (” sh:name”, propertyEntry.getKey ()
) ;

if (propertyEntry.getKey () = collectionMember) {
propertyShapelnd .setProperty (”sh:path”, ”openapi:member”) ;

nodeShapelnd.setProperty (”sh: properties”, propertyShapelnd);

}

nodeShapelnd . setProperty (” openapi: description”, schemaObject.
getDescription ());
return nodeShapelnd

Listing 5.22: NodeShape Method

In x-mapsTo we search all the Schemas and we keep
the one where the extension property points. Since all
Schemas are kept in a Map of a Schema Name and Schema
Object, this is what it is returned. We then check if this

99

Schema has already been translated to a Shape in the on-
tology. If not, we create it. The x-mapsTo may point
to a Class or to a property. Since here we create Node-
Shape Individuals we are in the case of a Class. Moreover,
in x-mapsTo we want to extract semantics. This means
that if the x-mapsTo points to a Class and then this Class
uses the x-refersTo in order to point to a general Class, we
want to keep the URI of this generic Class. This is kept to
the variable classUri by getting the value of the property
targetClass of the Shape Individual.

In x-collectionOn, we create a Class with the name of
the Schema and keep its URI. Then we make the Class
Collection superclass of the one we created and put the
value where x-collectionOn points to a variable named col-
lectionMember. For example, if we have the command
x-collectionOn:pet then we create a Pet Class and make
Collection Class its superclass. The value pet is kept in
collectionMember.

In any of the above extension properties a value has
been added to the variable classUri. This value is passed
to the property targetClass of the NodeShape Individual.
Each Schema Object has a property named properties.
For each one, we create a PropertyShape Individual and
we set the value of its property name according to its
name. Finally, we set to the property properties value the
Property Shape Individual that we have created.

5.19 CreatePropertyShape Method

This method supports also the previous extension prop-
erties but in the level of property instead of Class. This

100

means that in every case we keep the propertyUri instead
of the classUri. Moreover, in x-kindOf after saving the URI
of the property where the x-property points, we create a
property with the Schema name and we make the created
property subproperty of the other.

method Individual createPropertyShape(Ontology ontModel, String
schemaName, SchemaObject schemaObject, Map<String , SchemaObject
> schemas) {
Individual propertyShapelnd = createIlndividual (ontModel, ”sh:
PropertyShape”);
//handle semantics x—refersTo, x—kindOf, x—mapsTo
String propertyUri;
if (schemaObject.hasExtension (”x—refersTo”)) {
propertyUri = schemaObject.getExtension (”x—refersTo”);
}

else if (schemaObject.hasExtension (”x—kindOf”)) {
String uri = schemaObject.getExtension (”x—kindOf”);
Property property = ontModel. createProperty (schemaName) ;
property .addSuperProperty (uri) ;
propertyUri = property.getUri();
}
else if (schemaObject.hasExtension (”x—mapsTo”)) {
String mappedSchemaProperty = schemaObject. getExtension (7 x—
mapsTo”) ;
String mappedSchema = extractSchemaName (mappedSchemaProperty) ;
Individual mappedShapelnd = findShapelndividual (ontModel,
mappedSchema) ;
if (mappedShapelnd =— null) {
Entry<String , SchemaObject> mappedSchemaEntry = schemas. get (
mappedSchema) ;
mappedShapelnd = createNodeShape (ontModel, mappedSchemaEntry
.getKey (), mappedSchemaEntry.getValue (), schemas);
}
String mappedProperty = extractPropertyName (
mappedSchemaProperty) ;
if (mappedProperty = null) {
propertyShapelnd.setProperty (”sh:path”, mappedShapelnd.
getProperty (”sh:path”));
¥
else {
Individual mappedPropertyShape = findNodeProperty (
mappedShapelnd , mappedProperty) ;
propertyShapelnd.setProperty (”sh:path”, mappedPropertyShape.
getProperty (”sh:path”));

}

}

if (schemaObject.getType() = array) {
SchemaObject itemsObject = schemaObject.getItems () ;
if (itemsObject.getType() = object) {

Individual itemsNodeShape = createNodeShape (ontModel,
schemaName, itemsObject, schemas);
propertyShapelnd .setProperty (”sh:node”, itemsNodeShape) ;

101

}
else {
propertyShapelnd .setProperty (”sh:datatype”, getDatatype(
itemsObject .getType (), itemsObject.getFormat());
}
propertyShapelnd.setProperty (”sh: minCount”, itemsObject.
getMinltems ()) ;
propertyShapelnd.setPorperty (” sh:maxCount” , itemsObject .
getMaxItems ()) ;
}
else if (schemaObject.getType() = object) {
Individual nodeShape = createNodeShape (ontModel, schemaName,
schemaObject , schemas);
propertyShapelnd.setProperty (”sh:node”, nodeShape) ;
}
else {
propertyShapelnd.setProperty (”sh:datatype”, getDatatype(
itemsObject . getType (), itemsObject.getFormat());
}
propertyShapelnd.setProperty (” openapi: multipleOf” ;schemaObject .
getMultipleOf ()) ;
propertyShapelnd.setProperty (” openapi:maximum” ,schemaObject .
getMaximum ()) ;
propertyShapelnd.setProperty (” sh:exclusiveMaximum” ;schemaObject .
getExclusiveMaximum ()) ;
propertyShapelnd.setProperty (” openapi:minimum” , schemaObject .
getMinimum ()) ;
propertyShapelnd .setProperty (” sh:exclusiveMinimum” ;schemaObject .
getExclusiveMinimum ()) ;
propertyShapelnd.setProperty (” sh: maxLength” ,schemaObject .
getMaxLength ()) ;
propertyShapelnd.setProperty (” sh: minLength” ,schemaObject .
getMinLength ());
propertyShapelnd.setProperty (”sh:pattern” ,schemaObject .
getPattern());
propertyShapelnd.addProperty (”sh: description”, schemaObject .
getDescription ());
propertyShapelnd.addProperty (” openapi:readOnly”, schemaObject.
getReadOnly ()) ;
propertyShapelnd.addProperty (” openapi: writeOnly”, schemaObject .
getWriteOnly ()) ;
propertyShapelnd.addProperty (” openapi: deprecated”, schemaObject .
getDeprecated ()) ;
propertyShapelnd .setProperty (”sh:defaultValue”, schemaODbject .
getDefault ());
Individual exDocInd = parseExternalDocObject (ontModel,
schemaObject . getExternalDoc ()) ;
nodeShapelnd.addProperty (” openapi:exDoc”, exDoclnd);
Individual xmlInd = parseXmlObject (ontModel, schemaObject.getXml
0);
propertyShapelnd.setProperty (" openapi:xml”, xmllnd);
return propertyShapelnd;

Listing 5.23: PropertyShape Method

In x-mapsTo we keep the property where the exten-

102

sion property points. Since we now have property and not
Class we might have something like pet.id. What we do
is keep only the Schema name, aka pet by using the ez-
tractSchemaName method. We check if this Schema has
already been translated to a NodeShape in the ontology
and if not we create it and we extract the semantics the
same way as in the previous section. Next, we keep only
the Schema’s property name by using the extractProper-
tyName method. After that we once again extract the
semantics which in this case are placed in the property
path.

Next we get the type of the Schema and if it is an array
then we get the property items. If the type of the item-
sObject is array or object then we create a NodeShape
Individual. Finally, we return the PropertyShape Indi-
vidual.

5.20 CreateCollectionNodeShape
Method

In this method we work similarly to the implementation of
the x-collectionOn property. More specifically, we create a
NodeShape Individual, we create a class named after the
Schema name and we make it subclass of the Collection
Class. We set the value of the property targetClass ac-
cording to the class uri. Next, we create a PropertyShape
Individual and we set its property path according to mem-
ber. Finally, we return the NodeShape Individual.

method Individual createCollectionNodeShape (Ontology ontModel,
String schemaName, SchemaObject schemaObject, Map<String ,
SchemaObject> schemas) {
Individual nodeShapelnd = createlndividual (ontModel, ”sh:
NodeShape”) ;

103

Class class = ontModel. createClass (schemaName) ;

class .addSuperClass (” openapi: Collection”);

nodeShapelnd . setProperty (”sh:targetClass”, class.getUri());

Individual memberInd = createPropertyShapelnd (ontModel, null ,
schemaObject , schemas);

memberInd. setProperty (7 sh:path”, ”openapi: member”) ;

return nodeShapelnd;

Listing 5.24: CollectionNodeShape

5.21 ParseSecuritySchemeObject
Method

SecuritySchemeObjects may have four types. For each
type we create the corresponding Individual and we set its
properties. For the OAuth2 case we call the parseOAu-
thFlowsIndividual.

method void parseSecuritySchemeObject (OntModel ontModel,
Individual documentInd, String securityName
SecuritySchemeObject securityObject){
switch (securityObject.getType())

case APIKEY :
Individual securityInd = createIndividual (ontModel, ”openapi:
APIKEY” , securityName) ;
securityInd .setProperty (
securityObject . getName ())
securityInd .setProperty (
securityInd .setProperty (
getDescription ());

”

CO ”
openapi: parameterName” ,

9
”openapi:in”, securityObject.getln());
openapi:description”, securityObject .

”

case HTTP:
Individual securityInd = createlndividual (ontModel, ”openapi:
HTTP” , securityName) ;
securityInd .setProperty (” openapi:scheme”, securityObject.
getScheme ()) ;
securityInd .setProperty (” openapi: bearerFormat”, securityObject

.getBearerFormat ()) ;

securityInd .setProperty (” openapi: description”, securityObject.
getDescription ());

case OAUTH2:

Individual securityInd = createlndividual (ontModel, ”openapi:
OAUTH2” , securityName) ;

flowsInd= parseOAuthFlowsIndividual (ontModel, securityObject .
getFlows ()));

securityInd .setProperty (” openapi: description”, securityObject.
getDescription ());

securityInd .setProperty (" openapi: flow”, flowsInd);

104

case OPENIDCONNECT':

Individual securityInd = createlndividual (ontModel, ”openapi:
OPENIDCONNECT” , securityName) ;

securityInd .setProperty (” openapi: description”, securityObject.
getDescription ());

securityInd .setProperty (” openapi:openldConnectUrl”,
securityObject.getOpenldConnectUrl ()) ;

}

documentInd . setProperty (” openapi: supportedSecurity”, secInd);

Listing 5.25: SecurityScheme

5.22 ParseSequrityReqObject Method

In this method SecurityRequirement Objects are mapped
to SecurityRequirement Individuals. For every SecurityRe-
qObject we get the SecuritySchemeObject that has the
same name as the SecurityReqObject. Finally the Indi-
vidual is returned.

method Individual parseSecurityReqObject (OntModel ontModel, Map<
String , List<String>> securityreqObject){
securityreqInd = createIndividual (ontModel, ”openapi:
SecurityRequirement”) ;
//get the security scheme with specific url (name)
for (Entry<String , List<String>> securityReqEntry in
securityreqObject) {
securitySchemeInd=ontModel. getIndividual (securityReqEntry .
getKey ());
securityreqlnd . setProperty (” openapi:securityType”,
securitySchemelnd) ;
for (scope in securityReqEntry.getValue()){
scopelnd=parseScopelndividual (ontModel ,scope ,null) ;
securityreqInd . setProperty (” openapi:scope”, scopelnd);
}
}

return securityreqlInd;

Listing 5.26: SecurityRequirement

105

5.23 ParseOAuthFlowsIndividual
Method

OAuthFlowsObject has properties implicit, authorization-
Code, clientCredentials and Password. For the ones that
are not null, we call the corresponding method. Finally,
we return the OAuthFlows Individual.

method Individual parseOAuthFlowsIndividual (ontModel,

OauthFlowsObject oauthflowsObject){

if (oauthflowsObject. getImplicit ()!=null)

Individual oauthflowsInd=parselmplicitFlowIndividual (ontModel,
oauthflowsObject . getImplicit ());

else if (oauthflowsObject.getAuthorizationCode ()!=null)
Individual oauthflowsInd=parseAuthorizationCodeFlowIndividual (
ontModel ; oauthflowsObject . getAuthorizationCode () ;

else if (oauthflowsObject.getClientCredentials ()!=null)
Individual oauthflowsInd=parseClientCredentialsFlowIndividuall
(ontModel, oauthflowsObject.getClientCredentials ());

else

Individual oauthflowsInd=parsePasswordFlowIndividual (ontModel,
oauthflowsObject . getPassword ()) ;

return oauthflowslInd;

Listing 5.27: OAuth Flows

5.24 AuthorizationCode, ClientCreden-
tials, Password, Implicit, Scope
parsing Methods

For each of the following methods, we create the corres-
ponding Individual, then we set its properties and we re-
turn the Individual.

method Individual AuthorizationCodeFlowIndividual (ontModel,

OauthFlowObject oauthflowObject){

Individual oauthflowInd=createlndividual (ontModel, ”openapi:
AuthorizationCode”) ;

oauthflowInd .setProperty (” openapi:authorizationUrl” |
oauthflowObject . getTokenUrl ());

oauthflowInd .setProperty (” openapi:tokenUrl”, oauthflowObject .
getTokenUrl ());

106

oauthflowInd .setProperty (” openapi:refreshUrl”, oauthflowObject.
getRefreshUrl ());
for (Entry <String, String> scopeEntry in oauthflowsObject .
getScopes ()){
Individual scopelnd=parseScopelndividual (ontModel ,scopeEntry .
getKey (), scopeEntry.getValue());
oauthflowInd.setProperty (” openapi:scope”, scopelnd);

}

return oauthflowInd;

Listing 5.28: AuthorizationCode

method Individual parseClientCredentialsFlowIndividual (ontModel,

OauthFlowObject oauthflowObject){

Individual oauthflowInd=createlndividual (ontModel, ”openapi:
ClientCredentials”);

oauthflowInd .setProperty (” openapi:tokenUrl”, oauthflowObject .
getTokenUrl ());

oauthflowInd .setProperty (” openapi:refreshUrl”, oauthflowObject .
getRefreshUrl ());

for (Entry <String, String> scopeEntry in oauthflowsObject .
getScopes ()){
Individual scopelnd=parseScopelndividual (ontModel ,scopeEntry .
getKey (), scopeEntry.getValue());
oauthflowInd .setProperty (” openapi:scope”, scopelnd);

}

return oauthflowlInd;

Listing 5.29: ClientCredentials

method Individual ParsePasswordFlowIndividual (ontModel,
OauthFlowObject oauthflowObject) {
Individual oauthflowInd=createlndividual (ontModel, ”openapi:
Password”) ;
oauthflowInd .setProperty (” openapi:tokenUrl”, oauthflowObject .
getTokenUrl ()) ;
oauthflowInd .setProperty (” openapi:refreshUrl”, oauthflowObject.
getRefreshUrl ());
for (Entry <String, String> scopeEntry in oauthflowsObject .
getScopes ()){
Individual scopelnd=parseScopelndividual (ontModel,scopeEntry .
getKey (), scopeEntry.getValue());
oauthflowInd .setProperty (” openapi:scope”, scopelnd);

}

return oauthflowInd;

Listing 5.30: Password

method Individual ParselmplicitFlowIndividual (ontModel,

OauthFlowObject oauthflowObject){

Individual oauthflowInd=createlndividual (ontModel, ”openapi:
Implicit”);

oauthflowInd .setProperty (” openapi:authorizationUrl”
oauthflowObject . getAuthorizationUrl ());

oauthflowInd .setProperty (” openapi:refreshUrl”, oauthflowObject .
getRefreshUrl ());

107

for (Entry <String, String> scopeEntry in oauthflowsObject .

getScopes ()){
Individual scopelnd=parseScopelndividual (ontModel ,scopeEntry .

getKey (), scopeEntry.getValue());
oauthflowInd .setProperty (” openapi:scope”, scopelnd);

}

return oauthflowInd;

}
Listing 5.31: Implicit

method parseScopelndividual (OntModel ontModel, String scopeName,
String scopeDescription){

Individual scopelnd = createlndividual (ontModel, ”openapi:Scope
77) .

scopelnd . setProperty (” openapi:name” , scopeName) ;

scopelnd .setProperty (" openapi: description”, scopeDescription);

return scopelnd;

Listing 5.32: Scope

108

Chapter 6

Examples Mapping
and Results

6.1 Swagger Petstore Mapping

In this section, we present how the mechanism that we
described in the previous chapter works on the example
of Swagger Petstore. In listing 6.1 the OpenAPI code for
Swagger Petstore is presented.

1 openapi: 73.0.07
> info:
version: 1.0.0
s title: Swagger Petstore
license:
6 name: MIT
7 Servers:
s — url: http://petstore.swagger.io/vl
9
o paths:
11 /pets:
12 get:
13 summary: List all pets
14 operationld: listPets
15 tags:
16 — pets
17 parameters:
18 — name: limit
19 in: query
20 description: How many items to return at one time (max

100)
21 required: false
22 schema :
23 type: integer
24 format: int32

109

25 responses:

26 200 7:

27 description: A paged array of pets

28 content:

29 application/json:

30 schema:

31 $ref: 7#/components/schemas/Pets”
32 default :

33 description: unexpected error

34 content:

35 application/json:

36 schema :

37 $ref: 7#/components/schemas/Error”

39 post:
10 summary: Create a pet
1 operationld: createPets

42 tags:

43 — pets

14 responses :

15 2017

16 description: Null response

17 default :

48 description: unexpected error
49 content :

50 application/json:

51 schema:

52 $ref: 7#/components/schemas/Error”

52 /pets/{petld}:

55 get:

56 summary: Info for a specific pet
57 operationld: showPetByld

58 tags:

59 — pets

60 parameters:

61 — name: petld

62 in: path

63 required: true

64 description: The id of the pet to retrieve
65 schema :

66 type: string

67 responses :

68 72007

69 description: Expected response to a valid request
70 content :

71 application/json:

72 schema :

73 $ref: 7#/components/schemas/Pet”
74 default :

75 description: unexpected error

76 content :

77 application/json:

78 schema :

79 $ref: 7#/components/schemas/Error”

g0 components:
81 schemas:
82 Pet 5

110

type: object
x—refersTo: "http://myserver/Animal”
required :
— id
— name
properties:
id :
type: integer
format: int64
name :
type: string
x—refersTo: "http://myserver/Animal.name”
tag:
type: string
Pets:
type: array
x—collectionOn: ”#/components/schemas/Pet”
items:
$ref: "#/components/schemas/Pet”
Error:
type: object
x—refersTo: "http://myserver/Errors”
required :
— code
— message
properties:
code:
type: integer
format: int32
message :
type: string

Listing 6.1: Swagger Petstore Example

In the beginning of the example - in line 2 info as
an Info Object is declared. This parses to an Info Class
Individual in our ontology. Next, in line 5 we have the de-
claration of license which corresponds to a License Class
Individual. The same happens in line 7 where we have the
declaration of Servers Object that is mapped to a Serv-
ers Class Individual. The property url maps to the url
property of Servers Class.

After that, we have the first declaration of a Paths
Object in line 10 and then the first Operation Object in
line 11. These correspond to an Individual of Path Item
Class in OpenAPI ontology and an Individual of Oper-
ation Class. The command /pets is translated in the

111

ontology as an Individual of a Path Class, whose name
is /pets. In the next line we see a get command which is
mapped to a Method Individual. In line 15 we have a Tag
Object which maps to an Individual of Tag Class whose
property:name is pets.

In the following lines we have a declaration of a Para-
meter Object, which has the value query in the property
in. This is mapped to a Query Class Individual to our
ontology. In line 22 we have a declaration of a Schema
Object with type:integer, which parses to an Individual of
a Property Shape Class. After that, we have a declaration
of a Responses Object which maps to a Responses Class
Individual. The number “200” in the next line means that
the statusCode of the response is 200. In line 28 by the
command content a Media Type Object is declared which
maps to a Media Type Individual. The command applic-
ation/json is the value of the property name of the Media
Type Individual. The ref is a pointer to /components/s-
chemas/Pets, which means that the Schema declared in
the previous lines inherets the properties of the Schema
Pet under the Components. In line 47 default is a re-
sponse to statusCode which means that it is mapped to
an Individual of DefaultResponse Class, a subclass of Re-
sponse Class.

In line 39 the second Operation Object is declared.
As happened before, this is mapped to an Operation In-
dividual. The procedure in the next lines is the same as
the one followed in the first Operation Individual.

In line 54 there is the declaration of a second Path
Item Object. The command /pets/petld is an Individual
of Path Class with name /pets/petld. In line 60 the
Parameter Object has as value in the in property the

112

value path. This is mapped to an Individual of a Para-
meter Class in our ontology. Next, in line 65 there is a
declaration of a Schema Object with type:string. This is
translated as a Property Shape Individual in OpenAPI
ontology. The following lines are parsed in same manner
as mentioned above.

In line 82 Pet is a Schema Object which is mapped to
a NodeShape Class Individual. In line 84 the x-refersTo
property is used in order to link a Pet to an Animal defin-
ition. In fact, http://myserver/Animal becomes the value
of the property targetClass in Shape Class of the onto-
logy. In line 89 id is a Schema Object under the property
properties. This is mapped to a PropertyShape Class
Individual. Similarly, name is also mapped to a Proper-
tyShape Class Individual. The x-refersTo property in line
93 since it’s now applied to a PropertyShape Individual, as-
signs the value http://myserver/Animal.name to the path
property. The same thing happens in line 95 with tag.

Moreover, Pets in line 97 is a Schema Object de-
clared as an array, which means that it is associated to a
CollectionNodeShape Class Individual in OpenAPI on-
tology. The x-collectionOn property creates a new class
[Pets], subclassof Collection Class. This new Pet Class is
consisted of Pet Individuals. The next two lines which con-
sist of the commands 7tems and ref indicate that all items
of the array are Pet Individuals. Error is also a Schema
Object with the type:object which means, as mentioned
before, that is mapped to a NodeShape Class Individual.
In line 109 code is a Schema Object with type:integer,
hence a PropertyShape Class Individual, while in line 112
message with type:string is also a PropertyShape Class
Individual. Finally, the type and format in lines 110-111

113

1

2)

define the datatype of each schema (sh:datatype).

6.2 UpsTo Example

Listing 6.2 illustrates the UpsTo example which is used
along with Swagger Petstore in order to run queries and
get results from two OpenAPI examples at the same time.
UpsTo is in fact an API containing datasets. The opera-
tions available include searching for a specific dataset by
providing name and version.

openapi: 3.0.1

servers:
— url: ’{scheme}://developer.uspto.gov/ds—api’
variables:
scheme:
description: ’'The Data Set API is accessible via https and
http’
enum :
— ’https”’
— “http’
default: ’“https’
info:

description: >—
The Data Set API (DSAPI) allows the public users to discover
and search USPTO exported data sets. With the help of GET
call , it returns the list of data fields that are searchable.
With the help of POST call , data can be fetched based on the
filters on the field names.
version: 1.0.0
title: USPTO Data Set API
contact:
name: Open Data Portal
url: ’"https://developer.uspto.gov’
email: developer@uspto.gov
tags:
— name: metadata
description: Find out about the data sets
— name: search
description: Search a data set
paths:
/:
get:
tags:
— metadata
operationld: list —data—sets
summary: List available data sets
responses:
200 7:

114

description: Returns a list of data sets

content:
application/json:
schema:
$ref: ’#/components/schemas/dataSetList’
example :
”total”: 2,
Vapis”: |
{
”apiKey”: ”"oa_citations”,
”apiVersionNumber”: "v1”
7apiUrl”: ”https://developer.uspto.gov/ds—
api/oa_citations/vl/fields”,
"apiDocumentationUrl”: ”https://developer.

uspto.gov/ds—api—docs/index.html?url=https://developer.uspto.
gov/ds—api/swagger/docs/oa_citations.json”

]

}
/{dataset}/{version}/fields:
get:
tags:
— metadata
summary: Provides the general information about the API and
the list of fields that can be used to query the dataset.
operationld: list —searchable—fields

)

parameters:
— name: dataset
in: path
description: ’'Name of the dataset.’
required: true
example: ”"oa_citations”
schema :

type: string
— name: version
in: path
description: Version of the dataset.
required: true
example: 7v1”
schema :

type: string

responses :
200 7:
description: >—

The dataset API for the given version is found and it
is accessible to consume.

content:
application/json:
schema :
type: string
404 7
description: >—

The combination of dataset name and version is not
found in the system or it is not published yet to be consumed
by public.

content:
application/json:

115

100
101
102
103

104

105
106
107
108
109
110

111

schema:
type: string
/{dataset}/{version}/records:

post:
tags:
— search
summary: Provides search capability for the data set with
the given search criteria.
operationld: perform—search
parameters:
— name: version
in: path

description: Version of the dataset.
required: true
schema:
type: string
default: vl
— name: dataset
in: path
description: ’Name of the dataset. In this case, the
default value is oa_citations’
required: true
schema :
type: string
default: oa_citations
responses:
200 7:
description: successful operation
content :
application/json:
schema:
type: array
items:
type: object
additionalProperties:
type: object
404 7
description: No matching record found for the given
criteria .
requestBody :
content:
application /x—www—form—urlencoded:
schema:
type: object
properties:
criteria:
description: >—
Uses Lucene Query Syntax in the format of
propertyName : value , propertyName :[numl TO num?2
] and date range format: propertyName :[yyyyMMdd TO yyyyMMdd] .
In the response please see the ’docs’ element which has the
list of
record objects. Each record structure would
consist of all the fields and their corresponding values.
type: string
default: ’*x:x’
start:

116

137

138

139

140

141

description: Starting record number. Default
value is 0.
type: integer
default: 0
rows:
description: >—

Specify number of rows to be returned. If you
run the search with default values, in the response you will
see ’'numFound’ attribute which will tell the number of records
available in

the dataset.

type: integer
default: 100

required :
— criteria
components:
schemas :
dataSetList :

type: object
properties:

total:
type: integer
apis:
type: array
items:

type: object
properties:
apiKey:
type: string
description: To be used as a dataset parameter
value
apiVersionNumber :
type: string
description: To be used as a version parameter
value
apiUrl:
type: string
format: uriref
description: ”"The URL describing the dataset’s
fields”
apiDocumentationUrl:
type: string
format: uriref
description: A URL to the API console for each API

Listing 6.2: UpsTo example

6.3 Queries and Results

To discover services over the Web, we might opt to de-
velop tools capable for searching SOAS 3.0 service cata-
logues over the Web. A more elaborate solution requires

117

that services are instantiated to the SOAS 3.0 ontology (a
parser is capable of interpreting the meaning of SOAS 3.0
descriptions and for mapping concepts to the ontology us-
ing Apache Jena or OWL API). This would enable applic-
ation of state-of-the- art query languages (e.g. SPARQL)
for service discovery. Reasoning (e.g. using Pellet) can also
be used for detecting inconsistencies in SOAS representa-
tions. Machine readable representations can also facilitate
more complicated tasks such as service synthesis and ser-
vice orchestration. For this purpose we have run some
queries to the example of Swagger Petstore and UpsTo in
order to check the results.

PREFIX rdf : <http://www.w3.o0rg/1999/02/22 rdf_syntax_ns>
PREFIX openapi: <http://www.intelligence .tuc.gr/ns/open—api>
SELECT ?pathName
WHERE {
?document rdf:type openapi:Document .
?document openapi:supportedOperation ?operation .
7operation openapi:tag 7tag .
7tag openapi:name pets
?operation openapi:onPath ?pathName .

Answer:
1. /pets (petstore)
2. /pets/{petld} (petstore)

Listing 6.3: Retrieve all paths that use tag with name-pets

PREFIX rdf:<http://www.w3.0rg/1999/02/22 rdf_syntax_ns>
PREFIX openapi: <http://www.intelligence .tuc.gr/ns/open—api>

SELECT ?description

WHERE {

?document rdf:type openapi:Document .

?document openapi:supportedOperation 7operation .
?oparation openapi:responses fresponses
?responses openapi:statusCode 200 .

?responses openapi:description ?description

Answer :
1. A paged array of pets (petstore)

118

Expected response to a valid request (petstore)
successful operation (UpsTo)

Returns a list of data sets (UpsTo)

The dataset API for the given version is found and it is
accessible to consume (upsTo)

T W N

Listing 6.4: Retrieve descriptions of responses with status code
200

PREFIX rdf:<http://www.w3.0rg/1999/02/22 rdf_syntax_ns>
PREFIX openapi: <http://www.intelligence .tuc.gr/ns/open—api>

SELECT ?parameterName

WHERE {

?document rdf:type openapi:Document

?document openapi:supportedOperation 7operation
?operation openapi:paramerets ?parameter
?parameter rdf:type openapi:Query

?parameter openapi:name ?parameterName

Answer :

1. dataset (UpsTo)
2. version (UpsTo)
3. petld (petstore)

Listing 6.5: Retrieve all names of parameters that are used in
Path

PREFIX rdf:<http://www.w3.o0rg/1999/02/22 _rdf_syntax_ns>
PREFIX openapi: <http://www.intelligence.tuc.gr/ns/open—api>

SELECT ?operationld, ?operationld

WHERE {

?document rdf:type openapi:Document

?document openapi:supportedOperation 7operation
?operation openapi:tag 7tag

?7tag openapi:name ?tagNames

7operation openapi:operationld ?operationld.

Answer :

1. list —data—sets , metadata (upsTo)
2. perform—search, search (upsTo)
3. listPets, pets (petstore)

4. createPets, pets (petstore)

5. showPetByld, pets (petstore)

Listing 6.6: Retrieve operationld’s with the corresponding tag
name

119

PREFIX rdf:<http://www.w3.o0rg/1999/02/22 _rdf_syntax_ns>
PREFIX openapi: <http://www.intelligence .tuc.gr/ns/open—api>
SELECT “?7serviceTitle

WHERE {

?document rdf:type openapi:Document .

?document openapi:info 7info .
?7info openapi:serviceTitle? ?serviceTitle.

Answer :
1. Swagger Petstore (petstore)
2. USPTO Data Set API (upsTo)

Listing 6.7: Retrieve service titles

Seeing the above results and comparing with the Pet-
store and UpsTo examples we observe that the parameters
returned are the same with the ones declared in sections
6.1 and 6.2. Hence, by using SOAS 3.0 we are able to
translate an OpenAPI Service to the OpenAPI Ontology
and then take advantage of the SPARQL language in order
to pose queries and get the corresponding responses while
having eliminated the ambiguities that could initially exist
in the OpenAPI description service.

We now present a more interesting example. In list-
ing 6.8 we may see the example of Swagger Petstore with
different kind of pets (cats, dogs) enriched with the exten-
sion properties that were introduced by SOAS 3.0. Listing
6.9 shows a query used for retrieving all Operation Ids in
Swagger Petstore that are related with pets. The results
returned are [ist pets, create pets, list dogs, list cats.
What we have done is to connect the Operations with
their corresponding Tags, add to them the x-onResource
property in order to connect them with the correspond-
ing Schema and use the x-refersTo and x-kindOf extension
properties in order to semantically refer to a Pet onto-

120

logy in the Web. This example illustrates the reason for
which the transformation of OAS (and therefore SOAS)
services in ontology is important. What we realize is that
this work creates machine-understandable services that are
now able to take into consideration hidden and indirect re-
lationships.

tags:
—name: pets
description: Everything about Pets
x—onResourse: ’'#/components/schemas/Pet’

—name: cats
description: Everything about Cats
x—onResourse: ’#/components/schemas/Cat’

—name: dogs
description: Everything about Dogs
x—onResourse: ’#/components/schemas/Dog

)

paths:
/pets:
get:
summary: List all pets
operationld: list pets
tag:
—pets

post:
summary : Create a pet
operationld: create pets
tag:
—pets
/dogs:
get:
summary: List all dogs
operationld: list dogs
tag:
—dogs

/cats:
get:
summary: list all cats
operationld: list cats
tag:
—cats

components:
schemas:
Pet:

121

type: object
x—refersTo: http://schema.org/Pet
discriminator :
propertyName: petType
properties:
name:
type: string
petType:
type: string
required :
— name
— petType
Cat:
description: A representation of a cat
allOf:
— $ref: '#/components/schemas/Pet’
— type: object
x—kindOf: http://schema.org/Pet
properties:
huntingSkill:
type: string
description: The measured skill for hunting

enum :
— clueless
— lazy
— adventurous
— aggressive
required :
— huntingSkill
Dog:
description: A representation of a dog
allOf:

— $ref: ’#/components/schemas/Pet’
— type: object
x—kindOf: http://schema.org/Pet
properties:
packSize:
type: integer
format: int32
description: the size of the pack the dog is from

default: 0
minimum: 0
required :
— packSize

Listing 6.8: Swagger Petstore Example with Cats and Dogs

PREFIX openapi: <http://www.intelligence .tuc.gr/ns/open—api>
PREFIX schema : <https://schema.org/>

SELECT ?operationld

WHERE {

?document rdf:type openapi:Document

?document openapi:supportedEntity ?schemalnd
?schemalnd openapi:targetClass schema:Pet.
?7schemalnd openapi:supportedOperation ?operationInd
?operationlnd openapi:operationld ?operationld

}
122

Answer :

1. list pets

2. create pets
3. list dogs

4. list cats

Listing 6.9: Example of how a Query returns hidden relationships

123

Chapter 7

Conclusion and
Future Work

7.1 Conclusions

Throughout this thesis we were mainly focused on ap-
proaches for describing RESTful services, as the major-
ity of Cloud services are offered by means of Web services
based on the REST architecture style. There are diverse
techniques for implementing RESTful services. What we
adopted and suggested was OpenAPI Specification.

The selection of the OAS, was motivated by the pop-
ularity of the specification, its powerful tool support, and
the active community. OpenAPI Specification offers a
human-friendly environment for discovering RESTful ser-
vices. However, despite being machine-readable the spe-
cification is not machine-understandable, thus limiting the
availability of tools that facilitate machine tasks such as
service discovery. Taking advantage of the extension fea-
tures foreseen in OAS 3.0, our approach suggested that
OAS properties must be semantically annotated. Lever-
aging latest results for hypermedia-based construction of
Web APIs, service descriptions were translated to the OpenAPI
ontology by using the mechanism that was implemented

124

and explained along with its algorithm in this thesis. The
translation of a service to an ontology enables the use
of Semantic Web tools such as reasoners and query lan-
guages, something that was shown in Chapter 6 when
presenting the results from the SPARQL queries. There-
fore, the application of SOAS 3.0 enables the services to
become machine-understandable while taking advantage
of semantic technologies.

7.2 Future Work

The last update (version 3.0) of OpenAPI Specification
added support to two very imporant features. The first
one is Callbacks and the other one is Links. Callbacks
are asynchronous requests that the server service will send
to some other service in response to certain events. This
feature improves the workflow that the server API offers
to its clients. Using links, enables the description of how
various values returned by one operation can be used as
input for other operations. Both these new features make
the enrichment of our proposed mechanism - in order to
support HATEOAS - possible. By doing that, we might
take advantage of the possibilities that OAS has to offer
such as explorable API - meaning the ability to browse
around the data. This makes it a lot easier for the client
developers to build a mental model of the API and its data
structures.

125

List of Figures

2.1
2.2
2.3
24
2.9
2.6
2.7
2.8

3.1
3.2
3.3

4.1

4.2

4.3

4.4

4.5

4.6

SOAP envelope 6
Swagger Editor example 11
Swagger UL 12
Differences between the two versions of OAS 14
Hydra Core Vocabulary 18
Description of an IRI Template 20
Hydra Supported Property Class 21
Apache Jena Framework 23
OAS v3 document Structure 27
OpenAPI Version 3 Ontology 44
Security Class in OpenAPI v3 Ontology . 47
Workflow of OpenAPI Object to Document

Individual mapping 5%)
Workflow of Info Object to Info Individual

mapping 5(6)
Workflow of Server Object to Server Indi-

vidual mapping 58
Workflow of Operation Object to Operation

Individual mapping 61
Workflow of External Doc Object to Ex-

ternal Doc Individual mapping 62

Workflow of QueryParameter Object to Query-
Parameter Individual mapping 65

126

4.7 Workflow of RequestBody Object to Re-
questBody Individual mapping
4.8 Workflow of Response Object to Response
Individual mapping
4.9 Workflow of Tag Object to Tag Individual
MappINg o o
4.10 Workflow of Schema Object to Shape Indi-
vidual mapping
4.11 Workflow of SecurityScheme Object to Se-
curity Individual mapping
4.12 Workflow of SecurityRequirement Object to
SecurityRequirement Individual mapping .

127

66

69

70

72

74

76

Bibliography

[1] Semantically Enriched API Descriptions for Improv-
ing Service Discovery in Cloud Environments, Nikolaos
Mainas, 2017

2] SOAS 3.0: Semantically Enriched OpenAPI 3.0 De-
scriptions and Ontology for REST Services, Nikolaos

Mainas, Euripides G.M. Petrakis, 2019
[3] Semantic Web, Wikipedia
[4] What Is the Semantic Web, ontotext
5] Jack Koftikian. Simple Object Access Protocol (SOAP)
6]

6| W3C.org. Web Services Description Language
(WSDL). 2011

7] W3schools.com. XML WSDL

8] Techopedia.com. UDDI

9] Roy Fielding. REST dissertation. 2000
[

10] Understanding Security and Dependability for SOAP
and REST, apicasystems.com

11] Ontology (information science), Wikipedia

13| OWL, w3.org

1]

[12] What are ontologies?, ontotext.com

[13]

[14] A Guide to What’s New in OpenAPI 3.0, Swagger.io

128

[15] Hydra Core Vocabulary, hydra-cg.com

[16] Hydra: Hypermedia-Driven Web APIs, markus-
lanthaler.com /hydra/

[17] JSON-LD 1.0, w3.org/TR/json-1d/
[18] Apache Jena, jena.apache.org

[19] SPARQL 1.1 Query Language, w3.org/ TR /sparql11-
query/

20| Pellet: A Practical OWL-DL Reasoner
21| OpenAPI Spec and Swagger, idratherbewriting.com
22

23

OpenAPI Specification, swagger.io
Web Service Description, IBM.com
24) Why Web Services?, tutorialspoint.com

120
21]
22
123
24
125

25| Why Web Services are important, flylib.com

129

	Introduction
	Motivation
	Problem Definition
	Problem Solution
	Contributions of the Work
	Thesis Structure

	Background
	SOAP
	WSDL and UDDI
	REST
	Differences between SOAP and REST
	WADL
	OpenAPI Specification
	OAS v2 - OAS v3
	Semantic Web
	Ontologies and OWL
	Hydra Core Vocabulary
	Apache Jena
	Semantic Reasoners - Pellet

	 The Semantic OpenAPI Specification 3.0
	Why OpenAPI Specification
	Swagger Petstore
	Description of the OAS
	Enriching the OpenAPI Specification
	 OpenAPI v3 Ontology

	Instantiating OpenAPI Services to the OpenAPI Ontology
	Mapping of OpenAPI Object to Document Class
	Mapping of Info Object to Info Class
	Mapping of Contact Object to Contact Class
	Mapping of Licence Object to Licence Class
	Mapping of a Server Object to Server Class
	Mapping of Operation Object to Operation Class
	Mapping of External Doc Object to External Doc Class
	Mapping of Parameter Object to Path, Query, Cookie, Header Class
	Mapping of Request Body Object to Request Body Class
	Mapping of Media Type Object to Media Type Class
	Mapping of Encoding Object to Encoding Class
	Mapping of Response Object to Response Class
	Mapping of Tag Object to Tag Class
	Mapping of Schema Object to Shape Class
	Mapping of XML Object to XML Class
	Mapping of Security Scheme Object to Security Class
	Mapping of Security Requirement Object to Security Requirement Class

	Implementation
	ParseOperationObject Method
	CombineParameters Method
	ParsePathObject Method
	ParseInfoObject Method
	ParseServerObject Method
	ParseExternalDocObject Method
	ParseXMLObject Method
	GetMethodIndividual Method
	GetStyleIndividual Method
	ParseMediaTypeObject Method
	ParseEncodingObject Method
	ParseHeaderObject, ParseCookieObject, ParseQueryObject, ParsePathParameterObject Methods
	GetDatatype Method
	ParseResponseObject Method
	ParseRequestObject Method
	ParseTagObject Method
	ParseSchemaObject Method
	CreateNodeShape Method
	CreatePropertyShape Method
	CreateCollectionNodeShape Method
	ParseSecuritySchemeObject Method
	ParseSequrityReqObject Method
	ParseOAuthFlowsIndividual Method
	AuthorizationCode, ClientCredentials, Password, Implicit, Scope parsing Methods

	Examples Mapping and Results
	Swagger Petstore Mapping
	UpsTo Example
	Queries and Results

	Conclusion and Future Work
	Conclusions
	Future Work

	List of Figures
	Bibliography

