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Abstract

Functional magnetic resonance imaging (fMRI) is one of the most popular methods for

studying the human brain. The purpose of task-related fMRI data analysis is to determine

which brain areas are activated when a specific task is performed, based on the BOLD

signal analysis. Background BOLD signal reflects systematic fluctuations in regional brain

activity that are attributed to the existence of resting-state brain networks. However, this

structure usually is not taken into account in task-related fMRI data analysis.

A wide range of unsupervised multivariate statistical methods is being increasingly em-

ployed in fMRI data analysis. The main goal of these methods is to extract information

from a dataset, often with no prior knowledge of the experimental conditions. General-

ized canonical correlation analysis (gCCA) is a well known statistical method, that can be

considered as the problem of estimating a linear subspace, which is “common” to multiple

sets of random variables. We propose a new data generating model which takes into con-

sideration the existence of common task-related and rest-related components. Moreover,

we attempt to recover all task-related components via means of gCCA. We extensively test

our theoretical results using both artificial and real-world fMRI data. We observe that our

experimental findings corroborate our theoretical results, rendering our approach a very

good candidate for multi-subject task-related fMRI processing.
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Chapter 1

Introduction

Functional magnetic resonance imaging (fMRI) is one of the most popular methods for

studying the human brain. fMRI provides a non-invasive way to measure brain activity,

by detecting local changes of blood oxygen level density (BOLD) in the brain, over time.

More specifically, in fMRI data, a brain is represented by a finite set of volume elements

(voxels). For each voxel, we have a time series that indicates the concentration of oxygen

in this area over time. These time series are known as blood oxygenation level dependent

(BOLD) signals. The purpose of task-based fMRI data analysis is to determine which brain

areas are activated when a specific task is performed, based on the BOLD signal analysis.

Hence, brain activation maps related to specific tasks can be obtained. This procedure is

very useful for understanding how the human brain is functioning.

Spontaneous modulation of the BOLD signal, which cannot be attributed to the ex-

perimental paradigm or any other explicit input or output, is also present and is usually

viewed as “noise” in task-related studies [3, 4]. However, in addition to physiological and

magnetic noise, background BOLD signal reflects systematic fluctuations in regional brain

activity. In particular, BOLD fluctuations are correlated between functionally related brain

regions, forming resting-state brain networks. Moreover, this baseline activity continues

during task performance, showing a similar neuro-anatomical distribution to that observed

at rest [5, 6, 7, 8], while there are studies suggesting that measured neuronal responses rep-

resent an approximately linear superposition of task-evoked neuronal activity and ongoing

spontaneous activity [5].

Figure 1.1: An example of fMRI data [1].
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In order to isolate the signals that we are interested in, we can consider the problem of

fMRI data analysis as a blind source separation problem (BSS). Blind source separation

(BSS) refers to the problem of extracting a set of source signals from a set of mixed

signals, without using prior information (or with very little prior information) about the

source signals or the mixing process. The classical example of a source separation problem

is the cocktail party problem, where a number of people are talking simultaneously in

a room (for example, at a cocktail party), and a listener is trying to follow one of the

discussions. The human brain can handle this sort of auditory source separation problem,

but it is a difficult problem in digital signal processing. Hence, BSS aims in enhancing noisy

speech in real world environments and the applications are not just limited to speech/audio

processing but also include topics in astronomical, satellite, econometric, and biomedical

signal processing.

s1(t)

s2(t)

sD(t)

v1(t)

v2(t)

vD′(t)

ŝ1(t)

ŝ2(t)

ŝD(t)

Mixing
Process

Unmixing
Process

Source Signals Mixed Signals (Observed) Extracted Signals

Figure 1.2: Abstract view of the BSS problem.

BSS problems are, in general, highly under-determined, since lack of prior knowledge

(number of sources, characteristics of the source signals and the mixing procedure) may

lead to a set of multiple solutions for the same problem. A variety of methods in addressing

the BSS problem have been proposed in the literature. The most popular of them, among

others, are principal component analysis (PCA), independent compontent analysis (ICA),

nonnegative matrix factorization (NMF), as well as tensor factorizations models.

As a result, a wide range of unsupervised multivariate statistical methods is being

increasingly employed in fMRI data analysis. The main goal of these data driven methods

is to extract information from a dataset, often with no prior knowledge of the experimental

conditions. In the context of fMRI, multivariate methods provide statistical inference on

a whole-brain basis so as to describe brain responses in terms of spatial and temporal

patterns. The most common multivariate methods are Principal Component Analysis
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(PCA) [9, 10], Independent Component Analysis (ICA) [11, 12, 13, 14], and analysis via

tensor factorization models [15, 16, 17, 18, 19, 20, 21, 22].

Canonical correlation analysis (CCA) is a well known statistical method, developed by

Hotelling in 1936 [23]. Specifically, CCA can be seen as the problem of finding basis vectors

for two sets of random variables (i.e., two random vectors) such that the correlation between

the respective projections of the variables onto these basis vectors is mutually maximized

[24]. After considering the subspace that is spanned from such a set of basis vectors, CCA

can be also considered as the problem of estimating a linear subspace, which is “common”

to these sets of variables [25].

Generalization of CCA to more than two random vectors dates back to [26, 27, 28, 29,

30]. Kettenring proposed five different formulations of the generalized CCA (gCCA) prob-

lem in [31]; all of them reduce to the classical CCA when the number of random vectors

is two[32]. Among all different formulations of gCCA, the MAX-VAR formulation has at-

tracted particular attention, since it enjoys a simple solution via eigen-decomposition, while

scalable and structure promoting iterative algorithms for two of the gCCA formulations,

MAX-VAR and SUM-COR, have been proposed in [33, 34, 35].

1.1 Problem Definition

We focus on the case where the task-related fMRI experiment of a session consists of

only one type of stimulus. Our aim is to determine which brain areas are activated when

the stimulus is applied, and construct the associated brain activation maps.

1.2 Related Work

CCA and constrained CCA based methods have been applied to local voxel neighbor-

hoods to obtain adaptive subject-specific spatial filter kernels for noise reduction purposes

[36, 37, 38, 39]. In [40], the authors used gCCA to separate different temporal sources in

fMRI data. They assumed that there are some common temporal responses to external

stimulation in the subjects being studied, and they showed that these may be explored

using gCCA. In contrast, in [41], the underlying assumption is that there are multiple

subjects that share an unknown spatial response (or spatial map) to the common experi-

mental manipulation but may show different temporal responses to external stimulation.

In addition, estimating “common” subspaces from multiple datasets via CCA and gCCA

based methods have been considered in [42, 25].
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1.3 Our Contribution

We adopt the assumptions of [41], with respect to the common spatial maps, and as-

sume the existence of one common temporal component, which is related to the common

experimental excitation. We propose a new data generating model which takes into con-

sideration both the common task-related spatial component and the common rest-related

spatial components. We use gCCA and estimate the subspace that is spanned by the

common spatial components, both task- and rest-related. Based on this estimate, we com-

pute the common task-related time component, using, again, gCCA. Finally, we use the

estimated common task-related time component to derive an estimate of the associated

common task-related spatial component and construct the respective activation map.

We extensively test our theoretical results using both artificial and real-world fMRI

data. We observe that our experimental findings corroborate our theoretical results, ren-

dering our approach a very good candidate for multi-subject task-related fMRI processing.

1.4 Notation

Scalars are denoted by small letters, vectors by small bold letters, and matrices by

capital bold letters, for example, x, x, X. Sets are denoted by blackboard bold capital

letters, for example, U. R denotes the sets of real numbers. RI×J denotes the set of

(I × J) real matrices. Inequality A ≥ 0 means that matrix A has nonnegative elements

and RI×J
+ denotes the set of (I×J) real matrices with nonnegative elements. ‖·‖2 and ‖·‖F

denote, respectively, the spectral and the Frobenius norm of the matrix argument. The

transpose and the pseudoinverse of matrix A are denoted, respectively, by AT and A†. The

linear space spanned by the columns of matrix A is denoted by col(A). The orthogonal

projection onto a subspace S is denoted by PS . Finally, we introduce the Matlab style

notations A(:, l) and A(k, :), which denote, respectively, the l-th column and the k-th row

of matrix A.

1.5 Structure

In Chapter 2, we introduce the reader to the problem of analysing fMRI data. In

Chapter 3, we present the data generating model and our approach for estimating the

common task-related temporal and spatial components, via two successive gCCA problems.

We also discuss the estimation of the dimension of the common spatial subspace. In

Chapter 4, we apply our approach to both artificial and real-world fMRI data. Finally, in

Chapter 5, we conclude our work and we propose directions for future work.
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Chapter 2

Functional Magnetic Resonance

Imaging and Results

2.1 Introduction

Functional magnetic resonance imaging (fMRI) has, in less than two decades, become

the most commonly used method for the study of human brain function. fMRI is a tech-

nique that uses magnetic resonance imaging to measure brain activity by measuring changes

in the local oxygenation of blood, which in turn reflects the amount of local brain activity.

The analysis of fMRI data is exceedingly complex, requiring the use of sophisticated tech-

niques from signal and image processing and statistics in order to go from the raw data

to the finished product, which is generally a statistical map showing which brain regions

responded to a particular manipulation of mental or perceptual functions.

The most common method of fMRI takes advantage of the fact that, when neurons in

the brain become active, the amount of blood flowing through that area is increased. This

phenomenon has been known for more than 100 years, though the mechanisms that cause

it remain only partly understood. What is particularly interesting is that the amount of

blood that is sent to the area is more than is needed to replenish the oxygen that is used

by the activity of the cells [43]. Thus, the activity related increase in blood flow caused by

neuronal activity leads to a relative surplus in local blood oxygen. The signal measured in

fMRI depends on this change in oxygenation and is referred to as the blood oxygenation

level dependent (BOLD) signal.

For our purposes, it suffices to know that the BOLD signal is a measure of the ratio

of oxygenated to deoxygenated hemoglobin. Hemoglobin is a molecule in the blood that

carries oxygen from the lungs to all parts of the body. It has sites to bind up to four

oxygen molecules. A key discovery that led eventually to BOLD fMRI was that hemoglobin

molecules fully loaded with oxygen have different magnetic properties than hemoglobin

molecules with empty binding sites [44].

The theory, which is not yet fully worked out, is that active brain areas consume more

oxygen than inactive areas. When neural activity increases in an area, metabolic demands
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Figure 2.1: A hypothetical BOLD response (black curve) to a constant 10 sec neural acti-
vation (gray curve) [2].

rise and, as a result, the vascular system concentrates oxygenated hemoglobin into the

area. An idealized example of this process is shown in Figure 2.1. The concentration

of oxygenated hemoglobin into the area causes the ratio of oxygenated to deoxygenated

hemoglobin (i.e., the BOLD signal) to rise quickly. As this happens, the vascular system

over compensates, in the sense that the BOLD signal actually rises well above baseline to

a peak at around 6 sec after the end of the neural activity that elicited these responses.

Following this peak, the BOLD signal gradually decays back to baseline over a period of

20–25 sec.

2.2 Modeling the BOLD Response

The goal of almost all fMRI experiments is to obtain information about neural activity.

However, the BOLD response measured in most fMRI experiments provides only an indirect

measure of neural activation [45, 46]. Although it is commonly assumed that the BOLD

signal increases with neural activation, it is known that the BOLD response is much more

sluggish than the neural activation that is presumed to drive it. As a result, the peak of

the BOLD signal lags considerably behind the peak neural activation (e.g., see Figure 2.1).

Almost all current applications of fMRI assume that the transformation from neural

activation to BOLD response can be modeled as a linear, time-invariant system. Although

it is becoming increasingly clear that the transformation is, in fact, nonlinear (e.g., [47, 48,

49]). It also appears that these departures from linearity are not severe so long as events

are well separated in time (e.g., at least a few seconds apart) and brief exposure durations

are avoided [49].

In the linear systems approach, one can conceive of the vascular system that responds
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to a sudden oxygen debt as a black box. The input is neural activation and the output

is the BOLD response. Let Ni (t) denote the neural activation induced by this event at

time t and let Bi (t) denote the corresponding BOLD response. Then, from the systems

theory perspective, the box represents the set of all mathematical transformations that

convert the neural activation Ni (t) into the BOLD response Bi (t). For convenience, we

will express this mathematical relationship as

Bi (t) = f (Ni (t)) , (2.1)

where the operator f symbolizes the workings of the black box.

A system of this type is said to be linear and time-invariant if and only if it satisfies

the superposition principle, which is stated as follows:

If f (N1 (t)) = B1 (t) and f (N2 (t)) = B2 (t) ,

then f (α1N1 (t) + α2N2 (t)) = α1B1 (t) + α2B2 (t) ,
(2.2)

for any constants α1, α2.

In other words, if we know what the BOLD response is to neural activation N1 (t) and

to neural activation N2 (t), then we can determine exactly what the BOLD response will

be to any weighted sum of these two neural activations by computing the same weighted

sum of the component BOLD responses.

If the superposition principle holds, then there is a straightforward way to determine

the BOLD response to any neural activation from the results of one simple experiment.

All we need to do is to measure the BOLD response that occurs when the neural activation

is an impulse. Denote the BOLD response in this idealized experiment by h (t). In linear

systems theory, the function h (t) is called the impulse response function and is the response

of the system to an impulse. In the fMRI literature, h (t) is known as the hemodynamic

response function (HRF).

If the relationship between neural activation and the BOLD response satisfies super-

position, then, once we know the HRF, the BOLD response to any neural activation N (t)

can be computed exactly from the convolution integral:

B (t) =

∫ t

0

N (τ)h (t− τ) dτ. (2.3)

The convolution integral massively simplifies the analysis of fMRI data and, as a result, it

forms the basis for the most popular methods of fMRI data analysis.
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Figure 2.2: Two popular models of the HRF [2].

Given that the HRF plays such a critical role in analyzing fMRI data, the natural next

question to ask is: how can we determine numerical values of the HRF? A popular method

is to select a specific mathematical function for the HRF based on our knowledge of what

we think this function should look like. For example, we know the HRF should peak at

roughly 6 s and then slowly decay back to baseline. So, we could select a mathematical

function with these properties and then just assume that this is a good model of the HRF.

In fact, this is, by far, the most popular method for determining the HRF in fMRI data

analysis. The most popular choices are a gamma function or the difference of two gamma

functions. Examples of both of these models are shown in Figure 2.2.

2.3 Data Analysis

The size of acquired fMRI data greatly complicates its analysis. First, as mentioned

above, a typical scanning session generates a huge amount of data. Second, fMRI data is

characterized by substantial spatial and temporal correlations. For example, the sluggish

nature of the BOLD response means that, if the BOLD response in some voxel is greater

than the average on one TR, then it is also likely to be greater than the average on the

ensuing TR. Similarly, because brain tissue in neighboring voxels will be supplied by a

similar vasculature, a large response in one voxel increases the likelihood that a large

response will also be observed at neighboring voxels. A third significant challenge to fMRI

data analysis is the noisy nature of fMRI data. Typically the signal that the data analysis

techniques are trying to find is less than 2 or 3 % of the total BOLD response.

The analysis of fMRI BOLD data is broken down into two general stages - preprocessing

and task-related analysis. Preprocessing includes a number of steps that are required
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to prepare the data for task-related analysis. This includes, for example, aligning the

functional and structural scans, correcting for any possible head movements that might

have occurred during the functional run, and various types of smoothing (to reduce noise).

Typically, the same preprocessing steps are always completed, regardless of the particular

research questions that the study was designed to address. In contrast, the task-related

analyses include all analyses that are directed at these questions.

2.3.1 Task-Related Data Analysis

At the preprocessing stages, the quality of the fMRI data is improved. After that,

statistical analysis is attempted to determine which voxels are activated by the stimulation.

Most fMRI studies are established upon the correlation of hemodynamic response function

with stimulation. Activation defines the local intensity changes in the voxels. These

methods can be grouped into two broad categories: the univariate methods (hypothesis

testing methods), and the multivariate methods (exploratory methods) [50].

The univariate methods attempt to define which voxels can be characterized as activated

given one signal model. This allows the parametrization of the response and then the

estimation of the model parameters. The univariate methods are widely used to analyze

brain data obtained from fMRI. In these methods, signal estimation and the presence or

the absence of activation are defined by the statistical test. One of the most popular

methods is the generalized linear model (GLM), which is based upon the hypothesis of

linear correlation between neuro-activities and the tasks [51].

Multivariate methods are also applied to fMRI data analysis, which extract information

from dataset, often with any prior knowledge of the experimental conditions. They use

some structural properties, such as decorrelation, independence, similarity measures, that

can discriminate between features of interest present in the data. Unlike the univariate

methods which carry out voxel-wise statistical analysis, multivariate methods provide sta-

tistical inference about the whole brain so as to describe brain responses in terms of spatial

patterns [12]. A wide range of multivariate statistical methods is being increasingly em-

ployed to analyse the fMRI time series. fMRI data are essentially multivariate in nature,

since information about thousands of measured locations (voxels) are being impacted in

each scan [52]. Those methods aim at summarizing the spatial and temporal structures of

the data. As the distribution of brain regions are involved in a task, it seems to be desir-

able to use the spatially distributed information from different areas to understand a brain

function. So the multivariate approaches seem to be interesting in this case to consider the

spatially distributed information. The most common multivariate methods, among others,
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are Principal Component Analysis (PCA), Independent Component Analysis (ICA), and

Multi-Voxel Pattern Analysis (MVPA).

Tensor factorization models have been also proposed in processing fMRI data. In con-

trast to PCA and ICA, tensor factorization models are unique under mild conditions,

without enforcing any constraints to source signals. In Andersen and Rayens (2004) it was

demonstrated how the PARAFAC (CP) model is useful in the analysis of neuroimaging

data such as fMRI [15]. However, degeneration of the unconstrained PARAFAC model is a

frequent problem in the analysis of fMRI data. Additional applications of multilinear (mul-

tiway) modeling in fMRI include the PICA model [16], where the ICA model is extended

for tensors. Also, the Shifted PARAFAC model (SCP) has been proposed in processing

fMRI data, since time shifts occur naturally in fMRI data. For instance, these could be due

to hemodynamic delay [53] or they could arise in stimuli studies [54], where delays play a

particularly important role. Finally, the PARAFAC model with orthogonality constraints

over the spatial mode has been proposed in processing fMRI data in [55], in order to reduce

cross-talk between spatial components and eliminate degeneration phenomena.

CCA and constrained CCA based methods has been applied to local voxel neighbor-

hoods to obtain adaptive subject-specific spatial filter kernels for noise reduction purposes

[36, 37, 38, 39]. In [40], the authors used gCCA to separate different temporal sources in

fMRI data. They assumed that there are some common temporal responses to external

stimulation in the subjects being studied, and they showed that these may be explored

using gCCA. In contrast, in [41], the underlying assumption is that there are multiple

subjects that share an unknown spatial response (or spatial map) to the common experi-

mental manipulation but may show different temporal responses to external stimulation.

In addition, estimating “common” subspaces from multiple datasets via CCA and gCCA

based methods have been considered in [42, 25].
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Multi-subject fMRI data analysis

3.1 Data Model

Let {Xk}Kk=1 be a set of matrices, where Xk ∈ RN×M denotes the data of the k-th

subject, N denotes the number of voxels, and M denotes the number of time points (note

that, in general, N � M). Let R be a positive integer smaller than M . For each matrix

Xk, for k = 1, . . . , K, we adopt the model

Xk = λkasT + AST
k + Ek, (3.1)

where:

1. a ∈ RN
+ and s ∈ RM denote, respectively, the common, to all subjects, task-related

spatial and temporal component, and λk ∈ R+ denotes the intensity of the common

rank-one term for the k-th subject;

2. A ∈ RN×(R−1)
+ , whose columns are the common, to all subjects, spatial components

related with the spontaneous fMRI activity;

3. Sk ∈ RM×(R−1), whose columns are the temporal components, which are associated

with the spontaneous fMRI activity and, in general, vary across subjects;

4. Ek ∈ RN×M denotes the “unmodeled fMRI signal” of the k-th subject and can be

considered as (strong) additive noise. We assume that terms Ek are statistically

independent from each other.

We propose model (3.1) based on both the existing literature [3, 4, 5, 6, 7, 8, 14, 41, 12]

and the detailed examination of our real-world data. Our aim is to obtain an accurate

estimate of the common spatial term a, which will lead to a precise activation brain map

and by extension to the localization of the stimulated brain areas.

In order to use simpler notation, we define the matrix of the common spatial components

W := [a A] ∈ RN×R
+ , (3.2)
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and the matrices of the temporal components

Zk := [λks Sk] ∈ RM×R, for k = 1, . . . , K. (3.3)

We further assume that matrices W and Zk, for k = 1, . . . , K, are full-column rank.

Using this notation, matrix Xk, defined in (3.1), can be expressed as

Xk = WZT
k + Ek. (3.4)

One way to achieve our aim, that is, to estimate a, is to concatenate matrices Xk, for

k = 1, . . . , K, and construct matrix X as

X := [X1 . . . XK ] = WZT + E, (3.5)

where matrices Z and E are defined similarly to X, and use matrix factorization techniques

to obtain estimates of W and Z. However, without imposing stringent constraints on W

and Z, their estimation is a difficult task. This happens because, if (Ŵ, Ẑ) is a pair

that achieves the best rank-R approximation of matrix X, then, for any invertible matrix

H ∈ RR×R, the pair (W̃ = ŴH, Z̃ = ẐH−T ) attains the same approximation error.

Without imposing stringent constraints on W and Z, we can only obtain estimates of the

subspaces col (W) and col (Z) .

3.2 On the Estimation of Common Subspaces and

Common Components

In this section, we describe our approach for the estimation of the common spatial

factor a, which consists of three stages:

1. we use Xk, for k = 1, . . . , K, and obtain an orthonormal basis for an estimate of the

common spatial subspace, col(W), by solving a gCCA problem;

2. using the solution of the first stage, we obtain an estimate of the unique common

time component s, by solving a second gCCA problem;

3. using the estimate of s, we obtain an estimate of a (we propose two different esti-

mates).
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3.2.1 Common Spatial Subspace Estimation via gCCA

We assume that the dimension, R, of the common spatial subspace, col(W), is known;

we shall say more on this important topic later.

In order to estimate an orthonormal basis for the common spatial subspace, col(W),

we solve the following optimization problem, which arises from the MAXVAR formulation

of the gCCA [28]

min
{Qk}Kk=1,G

K∑
k=1

‖XkQk −G‖2F

s.t. GTG = IR,

(3.6)

where Qk ∈ RM×R, for k = 1, . . . , K, and G ∈ RN×R.

The solution Qo
k, for k = 1, . . . , K, and Go of problem (3.6) can be computed as follows.

For a fixed G, the optimal Qk can be expressed as Qk(G) = X†kG, for k = 1, . . . , K. If we

substitute this expression into problem (3.6), then the problem becomes

max
GTG=IR

Tr

(
GT

(
K∑
k=1

XkX
†
k

)
G

)
. (3.7)

If we define

M :=
K∑
k=1

XkX
†
k, (3.8)

with eigenvalue decomposition given by

M = UMΛMUT
M , (3.9)

then an optimal solution Go is given by [34]

Go = UM (:, 1 : R) . (3.10)

If the fMRI data matrices Xk were noiseless, in the sense that Ek = 0, for k = 1, . . . , K,

then the solution of problem (3.6) would result to Go, such that (see (3.4))

col(Go) = col(W). (3.11)

Furthermore, in this case and for all k ∈ {1, . . . , K}, matrices Qo
k and Zk would span the
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same subspace, namely

col(Qo
k) = col (Zk) . (3.12)

This holds because, if W = GoP, then Qo
k = X†kG

o =
(
ZT

k

)†
W†Go = ZkF, where

F :=
(
ZT

k Zk

)−1
P−1. The fact that Ek, for k = 1, . . . , K, are nonzero makes (3.11) and

(3.12) approximate and not exact equalities.

In the sequel, we shall compute an estimate of s by assuming that (3.12) is exact. We

shall check the accuracy of our arguments and the effectiveness of our approach in the

section with the experimental results.

3.2.2 Estimation of the Common Time Component

We have no reason to believe that, in general, the spontaneous fMRI components Sk,

for k = 1, . . . , K, generate the same or even close subspaces. Thus, we assume that (see

(3.3))
K⋂
k=1

col (Zk) = col (s) , (3.13)

which, using (3.12), leads to
K⋂
k=1

col (Qo
k) = col (s) . (3.14)

We obtain an estimate of s by solving the following MAXVAR problem

min
{dk}Kk=1,g

K∑
k=1

‖Qo
kdk − g‖22

s.t. ‖g‖ = 1.

(3.15)

If we denote the optimal g in (3.15) by go, we have that

go = ± s

‖s‖2
. (3.16)

Since (3.12) defines a family of approximate equalities, equality (3.14) and, therefore, (3.16)

are approximate.
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3.2.3 Estimation of the common spatial component a

Having obtained the estimate go of the common temporal component, s, we can esti-

mate the common spatial component, a, by using various approaches. First, we consider

the constrained optimization problem

min
λ≥0

K∑
k=1

‖Xk − λkagoT ‖2F

s.t. a ∈ col (Go) .

(3.17)

Let X̃k = Pcol(Go)Xk, for k = 1, . . . , K, denote the data matrices after projecting them

onto the subspace spanned by the columns of matrix Go. Then, one can easily show that

the optimization problem (3.17) is equivalent to the problem

min
λ≥0

K∑
k=1

‖X̃k − λkagoT ‖2F . (3.18)

Next, we consider problem (3.18) with additional nonnegativity constraints on a, namely

min
a≥0,λ≥0

K∑
k=1

‖X̃k − λkagoT ‖2F . (3.19)

The solution ao of this problem is an estimate of the common spatial component a.

A second approach emerges by assuming that λk = 1, for k = 1, . . . , K. Then, we can

estimate a by computing the average inner product between go and each voxel’s time-series,

namely

â =

(
1

K

K∑
k=1

X̃kg
o

)
+

. (3.20)

3.3 On the Dimension of Common Spatial Subspace

In Subsection 3.2.1, we assumed that we know the true dimension, R, of the common

spatial subspace, col(W), and derived the optimal orthonormal basis Go of col(W). Of

course, in general, the value of R is not known, thus, we must estimate it. As we shall see

in the section with the experimental results, the estimate of the common time component,

go, is quite “stable” if the value of the assumed rank belongs to a certain set of values.

Thus, since the focus, in this work, is on the estimation of a, which is achieved via go,
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we may argue that an accurate common spatial subspace dimension estimation is not of

foremost importance. However, in the sequel, we provide a procedure which gives us very

useful information about the value of R.

Let the assumed dimension of the common spatial subspace be R̂ = R. Let K1 and K2

be a partition of the set of the subjects {1, . . . , K}. In the noiseless case, if we solve the

problem corresponding to (3.6) twice, for k ∈ K1 and for k ∈ K2, and call the resulting

orthonormal bases Go
1 and Go

2, respectively, then we must have

col(Go
1) = col(Go

2). (3.21)

That is, the common spatial subspaces, in the two cases, coincide. If we start adding noise

and repeat the process, then we will obtain col(Go
1) and col(Go

2) which will be “close” to

each other. One way to measure the distance between subspaces S1 and S2 is to compute

their gap, defined as [56]

ρg,2 (S1,S2) := ‖PS1 −PS2‖2. (3.22)

Thus, if R̂ = R and ‖Ek‖2 = O(ε), for k = 1, . . . , K, where ε is a small positive number,

then we expect that

‖Pcol(Go
1)
−Pcol(Go

2)
‖2 = O(ε). (3.23)

If R̂ > R, then, by solving (3.6), besides the R-dimensional common subspace, col(W), we

shall try to model “common” noise subspace. Since the noise terms Ek are independent

across subjects and N � M , we do not expect to find any common noise subspace in the

two subsets, K1 and K2. Thus, in this case, we expect that

‖Pcol(Go
1)
−Pcol(Go

2)
‖2 ≈ 1. (3.24)

At last, if R̂ < R and the rank-one terms that constitute the product WZT
k are of almost

“equal” strength then, we expect that

O(ε) ≤ ‖Pcol(Go
1)
−Pcol(Go

2)
‖2 / 1, (3.25)

because, col(Go
1) and col(Go

2) will “randomly” capture R̂ out of R dimensions of the com-

mon spatial subspace.

Accurate expressions for the distance between subspaces col(Go
1) and col(Go

2) lie beyond

the scope of this manuscript, require tools from matrix perturbation theory, and pose
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stringent assumptions on the size of the noise, which may not be fulfilled in our case. We

will check the usefulness of our claims experimentally later.

3.4 Data Compression

Let Xk ∈ RV×T , for k = 1, . . . , K, be a set of full column rank K matrices. As we

showed in the section III.A., in order to solve that MAXVAR problem, we have to calculate

and decompose a V ×V matrix, which may be prohibitive on a standard computer for large

values of V . In this section we show that, when KT << V , there is a way for circumvent

this problem.

Let matrix Y ∈ RV×KT denote the matrix that emerges after the concatenation of

matrices Xk along the second dimension, namely

Y = [X1 . . .XK ] (3.26)

and consider a factorization of Y

Y = UY VT
Y , (3.27)

such that UY ∈ RV×KT with UT
Y UY = IKT and VY ∈ RKT×KT . Then, it holds that

col (Xk) ⊆ col (Y) =
K⋃
k=1

col (Xk) . (3.28)

Furthermore, we have that

col (Y) ⊆ col (UY ) . (3.29)

Therefore, we can conclude that for each matrix Xk there exists a matrix Hk ∈ RKT×T

such that

Xk = UY Hk (3.30)

for k = 1, . . . , K and since UT
Y UY = IKT , we also have

Hk = UT
Y Xk (3.31)

for k = 1, . . . , K.
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Recall that matrix M is defined as

M =
K∑
k=1

XkX
†
k =

K∑
k=1

Xk

(
XT

k Xk

)−1
XT

k . (3.32)

Due to relation (3.30), we have that

M =

K∑
k=1

Xk

(
XT

kXk

)−1
XT

k

= UY

(
K∑
k=1

Hk

(
HT

kHk

)−1
HT

k

)
UT

Y

= UY M̃UT
Y ,

(3.33)

where M̃ =
∑K

k=1 Hk

(
HT

k Hk

)−1
HT

k ∈ RKT×KT . Consider the eigenvalue decompositions

of matrices M and M̃

M = UMΛMUT
M and M̃ = UM̃ΛM̃UT

M̃
. (3.34)

Since M = UY M̃UT
Y and UT

Y UY = IKT , we have that

ΛM = ΛM̃ and UM = UY UM̃ . (3.35)

Concluding, since we are interested on R first eigenvectors of matrix M, [UM ]:,1:R and the

following is true

[UM ]:,1:R = UY [UM̃ ]:,1:R , (3.36)

it suffices to solve the MAXVAR problem for matrices Hk, calculate [UM̃ ]:,1:R, and via UY ,

obtain Go without direct calculation of matrix M.
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Experiments

4.1 Synthetic Data

4.1.1 Description of the Datasets

Four categories of simulated datasets were generated according to the data model used

in (3.1). For each category, the proposed method was tested on a set of 100 randomly

generated datasets. Specifically, vector a and matrix A were generated randomly with in-

dependent and identically distributed (i.i.d.) elements, taking values uniformly at random

in the interval [0,1], while vector s, matrices Sk, and Ek, for k = 1, . . . , K, were generated

with i.i.d. elements with sm, Sk(m, r), and Ek(n,m) ∼ N (0, 1). Next, we quote the factor

dimensions for each category.

category (i) category (ii) category (iii)
N 1,000 5,000 100,000
M 75 100 100
K 10 20 25
R 5 10 30

In Figures 4.1–4.9, we present the mean absolute correlation coefficients for factors λ,

a, and s, respectively, for categories (i), (ii), and (iii), under different SNR values. In our

experiments, we used the following SNR definition

SNR =

∑K
k=1

∥∥λkasT
∥∥2
F∑K

k=1 ‖AST
k + Ek‖

2

F

. (4.1)

For each realization, we controlled the SNR value by appropriately tuning the coefficient

β in the following relation

Xk = λkasT + β
(
AST

k + Ek

)
. (4.2)

Finally, three methods were tested for each synthetic dataset. The first method was

to directly attempt to retrieve factors λ, a, and s from matrices {Xk}Kk=1, via solving the
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following problem

min
λ≥0,a≥0,s

K∑
k=1

‖Xk − λkasT‖2F . (4.3)

in an alternating fashion (ALS minimization). The second method was to estimate the

common spatial subspace Go first and then to estimate factors λ, a, and s from matrices{
X̃k

}K

k=1
, as solutions of

min
λ≥0,a≥0,s

K∑
k=1

‖X̃k − λkasT‖2F . (4.4)

As for the third method, both common spatial subspace Go and common temporal compo-

nent go were estimated first and then factors λ and a were estimated via ALS minimization

of the problem in (3.19). Since ALS minimization is sensitive to local minima, each op-

timization problem was solved for 3 different initializations and only the solution that

achieved the lowest value of the cost function was kept.
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Figure 4.1: Mean correlation coefficient between λtrue and λest, over 100 runs and different
SNR values, for the three considered methods in category (i).
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Figure 4.2: Mean correlation coefficient between atrue and aest, over 100 runs and different
SNR values, for the three considered methods in category (i).
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Figure 4.3: Mean correlation coefficient between strue and sest, over 100 runs and different
SNR values, for the three considered methods in category (i).
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Figure 4.4: Mean correlation coefficient between λtrue and λest, over 100 runs and different
SNR values, for the three considered methods in category (ii).
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Figure 4.5: Mean correlation coefficient between atrue and aest, over 100 runs and different
SNR values, for the three considered methods in category (ii).
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Figure 4.6: Mean correlation coefficient between strue and sest, over 100 runs and different
SNR values, for the three considered methods in category (ii).

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

SNR

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

M
e

a
n

 C
o

rr
e

la
ti
o

n
 C

o
e

ff
ic

ie
n

t

Method one

Method two

Method three

Figure 4.7: Mean correlation coefficient between λtrue and λest, over 100 runs and different
SNR values, for the three considered methods in category (iii).
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Figure 4.8: Mean correlation coefficient between atrue and aest, over 100 runs and different
SNR values, for the three considered methods in category (iii).
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Figure 4.9: Mean correlation coefficient between strue and sest, over 100 runs and different
SNR values, for the three considered methods in category (iii).
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4.2 Real World Data

In this section, we test our approach using real-world task-related fMRI data. Specifi-

cally, we process four datasets, recorded at the University of Crete General Hospital, from

a group of 25 healthy adults performing four visual tasks which were identical in all but

one aspect (the precise kinematics of an observed person-directed action). First, we quote

some information regarding the experiment design and the preprocessing pipeline that was

applied to the data and, then, we present the results obtained by analyzing the data using

our method.

4.2.1 Experiment design

The fMRI block design consists of four action observation conditions, each involving

four “active” 35 sec blocks alternating with four 35 sec baseline blocks. Indicative speci-

fications are presented below. A video clip illustrating a two-movement action sequence

was presented 6 times within each “active” block. The stimulus set-up was identical across

blocks and conditions, consisting of a fixed red spot at the center of the display, presenting

a female person sitting behind a table. A white tea cup was positioned on the table and a

ceramic bowl 30 cm in diameter was located on a smaller table right next to the person’s

head. The data employed in the main analyses reported here were derived from four ex-

perimental conditions examining the effects of an action with the same goal but different

kinematics:

(i) Fast to cup - Slow to person: It consists of a rapid grasping movement toward the

tea cup (time duration equal to 700 ms and average velocity equal to 0.64 m/sec),

followed by a much slower movement that brings the cup to the person’s mouth

(time duration equal to 3300 ms and average velocity equal to 0.14 m/sec).

(ii) Slow to cup - Fast to person: It consists of a slow grasping movement toward the

tea cup (time duration equal to 3300 ms and average velocity equal to 0.14 m/sec),

followed by a much faster movement that brings the cup to the person’s mouth (time

duration equal to 700 ms and average velocity equal to 0.64 m/sec). The stimulus

layout is identical to (i).

(iii) Fast to cup - Slow to bowl: It consists of a rapid grasping movement toward the

tea cup (time duration equal to 700 ms and average velocity equal to 0.64 m/sec),

followed by a much slower movement that brings the cup over the edge of the bowl



38 Chapter 4. Experiments

(time duration equal to 3300 ms and average velocity equal to 0.14 m/sec) which is

located in the position of the person’s head in conditions (i) and (ii).

(iv) Aimless action: The proximal and distal tables seen in conditions (i-iii) constitute

the visual background in a 5 sec video clip depicting an extended hand executing

a two-step motion toward the center of the proximal table and then toward (but

not reaching) the distal table). Peak motion velocity was the same for the first and

second step of the action, which was repeated 6 times within each “active”‘ block.

Each recording session consisted of 4 35 sec “active” blocks alternating with 4 35 sec

“baseline” blocks. The baseline was identical in the two conditions and consisted of the

repeated presentation of a static hand over the same background setting displayed in the

“active” blocks. A sample sequence of frames is shown in Figure 4.10.

Figure 4.10: A sample sequence of frames from the described experiment

4.2.2 Image acquisition and pre-processing

For the BOLD-fMRI, a T2∗-weighted, fat-saturated 2D-FID-EPI sequence was used

with the following parameters: repetition time (TR) 3500 ms, echo time (TE) 50 ms, field

of view (FOV) 192× 192× 108 (x, y, z), acquisition voxel size 3× 3× 3 mm. Whole brain

scans consisted of 36 transverse slices with 3.0-mm slice thickness and no interslice gap. The

time series recorded in each condition comprised 80 volumes (time points), with 40 volumes

recorded during observation of repeated person-directed action and 40 volumes recorded
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during observation of repeated presentation of the static hand. In all analyses the first 5

volumes of each time series were ignored as is customary in fMRI studies. Additionally, high

resolution anatomical images were acquired sagittally, using a 3D magnetization-prepared

rapid acquisition gradient echo sequence (3D-MPRAGE) with the following parameters:

TR 9.8 ms, TE 4.6 ms, flip angle 8 deg, inversion time (TI) 922 ms, FOV 180× 230 (x, z),

with acquisition voxel size of 0.98× 0.98 (x, z) and slice thickness of 1 mm.

For both datasets, image preprocessing was performed in SPM8 (Statistical Paramet-

ric Mapping software, SPM: Welcome Department of Imaging Neuroscience, London, UK;

available at: http://www.fil.ion.ucl.ac.uk/spm/). Initially, EPI scans were spatially re-

aligned to the first image of the first time-series using second-degree B-spline interpola-

tion algorithms and motion-corrected through rigid body transformations (three transla-

tions and three rotations about each axis). Next, images were spatially normalized to

a common brain space (MNI template) and smoothed using an isotropic Gaussian filter

(FWHM=8 mm). At last, the SPM platform is able to provide a time response component,

based on the activation onsets and offsets, which is expected to appear in the activated

brain voxels.

From now on, we denote this expected response as sexp, which will be the same for both

conditions, since, as we mentioned above, the stimulus layout, between the two conditions,

is identical.
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Figure 4.11: Results from condition (i).



40 Chapter 4. Experiments

10 20 30 40 50 60 70

Time

-0.2

-0.1

0

0.1

0.2

0.3
Expected Response

(a) Retrieved go for varying common sub-
space dimensions, from 10 to 40, for con-
dition (ii). The signal depicted with blue
stars is the sexp.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

A
b

s
o

lu
te

 C
o

rr
e

la
ti
o

n
 C

o
e

ff
ic

ie
n

t

10 20 30 40 50 60 70

Common Subspace Dimension

(b) Absolute correlation coefficient between
sexp and go across different common subspace
dimensions.

Figure 4.12: Results from condition (ii).
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Figure 4.14: Results from condition (iv).

4.2.3 Results

Next, we present the results from our gCCA based analysis of the datasets from all

conditions (i)-(iv). More specifically, in Figures 4.11 - 4.14, we illustrate for each dataset,

respectively,

- (left) the extracted common temporal component go that emerged for various com-

mon spatial subspace dimensions, as well as the normalized, to unit 2-norm, expected

response sexp.

- (right) the absolute correlation coefficients between sexp and the extracted common

temporal component go, that emerged for all possible common subspace dimensions.

For all conditions, we observe that:

- the estimated common temporal components go, for different common spatial sub-

space dimensions, are very much alike; this implies that our estimate is not sensitive

to the common subspace dimension, which is unknown, in general. Thus, we can get

useful results over a wide range of values of the dimension of the common subspace.

- the estimated common temporal components go are quite similar to the expected

signal sexp. Their correlation coefficients take values at about 0.7-0.8, over a wide
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range of dimensions, while they outreach 0.8 in some cases.

Consequently, we conclude that our method effectively estimates the common temporal

component, without using prior knowledge about its shape.

Regarding the rank determination procedure for the datasets from conditions (i) and

(ii), in Figures 4.18, 4.22, 4.26, and 4.30, we depict the gap function between two estimates

of the “common” subspace, S1 and S2, for all possible dimensions, starting from 1 to 74

(length of each voxel time series minus one). We observe that the value of the gap function

becomes approximately equal to 1, for all dimensions larger than a dimension of around

20. On the other hand, for lower dimension the gap function takes values between zero and

one. This observation indicates the appropriateness of a low rank model, while it enable

us to obtain an estimate for the rank of the model.

As for the extracted spatial components, in Figures 4.15, 4.17, 4.19, 4.21, 4.23, 4.25,

4.27, and 4.29, we present the spatial maps that emerged from the two proposed approaches,

for all conditions, while in Figures 4.16, 4.20, 4.24, and 4.28, we present the intensities

across subjects of the rank one term that emerged from applying the second method.

For both conditions, we can deduce that voxels from the occipital and parietal lobes

present a strong activation, across almost all subjects. Furthermore, we can observe that

voxels from the premotor cortex (PMv area) and inferior frontal gyrus also present activa-

tion. Both observations are consistent with the nature of the experiment.
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Figure 4.15: Nonnegative map ao
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Figure 4.16: Intensities of the rank
one term λ across subjects for the
nonnegative case and “common” subspace
dimension equal to 23, for condition (i).
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Figure 4.17: Projected mean map
â calculated for common subspace
dimension equal to 23, for condition (i).

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

g
,2

10 20 30 40 50 60 70

Common Subspace Dimension

Figure 4.18: Gap function ρg,2 (S1,S2)
evaluated for varying dimension of S1
and S2, for condition (i).
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Figure 4.19: Nonnegative map ao

calculated for common subspace
dimension equal to 23, for condition (ii).
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Figure 4.20: Intensities of the rank
one term λ across subjects for the
nonnegative case and “common”
subspace dimension equal to 23,
for condition (ii).
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Figure 4.21: Projected mean map â
calculated for common subspace
dimension equal to 23, for condition (ii).

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

g
,2

10 20 30 40 50 60 70

Common Subspace Dimension

Figure 4.22: Gap function ρg,2 (S1,S2) evalu-
ated for varying dimension of S1 and S2, for
condition (ii).
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Figure 4.23: Nonnegative map ao

calculated for common subspace
dimension equal to 23, for condition (iii).
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Figure 4.24: Intensities of the rank one
term across subject for the nonnegative
case and “common”
subspace dimension equal to 23, for condition
(iii).
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Figure 4.25: Projected mean map â
calculated for common subspace
dimension equal to 23, for condition (iii).
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Figure 4.26: Gap function ρg,2 (S1,S2)
evaluated for varying dimension of S1
and S2, for condition (iii).
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Figure 4.27: Nonnegative map ao

calculated for common subspace
dimension equal to 23, for condition (iv).
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Figure 4.28: Intensities of the rank one
term across subject for the nonnegative
case and “common” subspace dimension
equal to 23, for condition (iv).
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Figure 4.29: Projected mean map â
calculated for common subspace
dimension equal to 23, for condition (iv).
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Figure 4.30: Gap function ρg,2 (S1,S2)
evaluated for varying dimension of S1
and S2, for condition (iv).
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Chapter 5

Conclusion & Future Work

5.1 Conclusion

In this work, we considered the problem of multi-subject task-related fMRI data anal-

ysis with one type of stimulus. We proposed a data generating model that takes into

account both task-related and resting-state components. We used two successive gCCAs

and computed, blindly, an estimate of the common spatial subspace, the common temporal

component, and the common activation map. Moreover, we proposed a method for the

rank determination problem. At last, we tested our approach, using both synthetic and

real-world data.

5.2 Future Work

Experimental designs with multiple types of stimuli are popular in the fMRI area.

Therefore, extending our methods for the case of multiple types of stimuli/tasks is chal-

lenging. In the proposed model, besides the common activation term, there are structured

terms that express the brain activity at rest. Recovering the resting-state components is

also challenging due to the ambiguities of the matrix factorization problem.

Besides fMRI, many other techniques have been employed in the endeavor of deciphering

the human brain, like EEG, MEG, and others. Testing our methods in data analysis from

other modalities and exploiting gCCA in concurrent data analysis from different modalities

is intriguing.

At last, tensor decomposition models for multidimensional data analysis have attracted

intense research interest over the last years. Combining and adapting gCCA with/to pop-

ular tensor models like PARAFAC, Tucker, BTD, and others, should be taken into consid-

eration. Finally, devising parallel algorithms for gCCA based analysis of large collections

of data should be considered.
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