TECHNICAL UNIVERSITY OF CRETE
DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING

Methodology for designing GDPR
compliant IoT applications

Christos Karageorgiou Kaneen
ckarageorgkaneen@gmail.com

Supervisor:

Euripides G.M Petrakis
petrakisQintelligence.tuc.gr

Thesis committee:

Vasilis Samoladas Antonios Deligiannakis
vsam@softnet.tuc.gr adeli@softnet.tuc.gr

December, 2019

https://www.tuc.gr/
https://www.ece.tuc.gr/
mailto:ckarageorgkaneen@gmail.com
mailto:petrakis@intelligence.tuc.gr
mailto:vsam@softnet.tuc.gr
mailto:adeli@softnet.tuc.gr

Abstract

As of May 2018, the enforcement of the EU’s General Data Protection Regulation
(GDPR) has introduced new standards for organizations processing personal data of
EU residents. With the purpose of giving people more control over their data, as well as
protecting them from potential data breaches, proving compliance with GDPR require-
ments, to regulators who mandate it, has become an ever-increasing priority for most
organizations, with steep fines to be paid for privacy violations. Due to the difficulty
of analyzing a running system for evaluating its compliance, GDPR requirements must
be taken into consideration during the system’s design phase. In this work, we provide
the methodology for analyzing these requirements and incorporating them into the de-
sign process of a Remote Patient Monitoring application. Since there is no universal
methodology that covers all application domains and systems, we focus on a single such
application domain: an IoT Service Oriented Architecture design for the cloud. By an-
alyzing the dependencies between all system components (such as personal data, users,
cloud services, etc.), we are able to create data-filled reports (related to the GDPR’s per-
sonal data demands) that can be used for evaluating compliance. In order to show proof
of concept, we apply the aforementioned analysis and represent our system’s information
of component properties, requirements and dependencies by means of a labeled-property
graph in a graph database. The decision of whether the system is GDPR compliant can
be reached once a series of questions (expressed as queries run upon the system graph)
have been answered and analyzed. The rationale behind our approach deems it much
easier to evaluate GDPR compliance once the designed system’s graph has been con-
structed. In summary, we demonstrate how such a graph can be created by taking as
input both: (a) design requirements and (b) GDPR requirements. We also demonstrate
how the evaluation of GDPR compliance lies within analyzing the results of queries run
upon the graph in a graph database.

Contents

1.3 Proposed solution|.
1.4 Existing work|
Il,si Illg:iii{i {i!lll‘:l !lls:I ---------------------------------

[2 Background|
[2.1 The General Data Protection Regulation|.
2.1.1 Definitionslo
[2.1.2 Compliance|
[2.1.3 Compliance questions|,

[2.4.1 Users and functional requirements|

[3 Solving the GDPR Compliance evaluation problem|
[3.1 Approachl
3.2 Designing a Remote Patient Monitoring System|
[3.2.1 Users and Functional Requirements|.

13.2.3 Incorporating GDPR Compliance requirements|
3.3 System GDPR Compliance evaluation|
13.3.1 Importing the System into a graph database|.
[3.3.2 Answering the compliance questions|

BA Demdo oo

[3.4.1 Answering the compliance questions|

[3.5.1 Determining GDPR Compliance]
[3.5.2 Applicability] o

[A Graph creation queries

11
11
11
12
15
16
16
16
21
23
25
25
25

27
27
28
28
29
31
42
42
43
61
64
82
82
82

83
83
84

85

101

Chapter 1

Introduction

The EU’s General Data Protection Regulation (GDPR) was created with the purpose
of regulating the way EU citizens’ personal data is protected by the organizations that
process it. All organizations that hold and process EU citizens’ personal data are required
to adapt to the new regulation. [1][2]

Considering the challenges of a rapidly evolving technological world that have
up until now given rise to major data breaches (such as the recent Facebook—Cambridge
Analytica scandal or the AOL search data leak more than a decade ago), the GDPR has
become, since its implementation on May 18th 2018, a strict prerequisite for any orga-
nization dealing with EU personal data. Proving compliance with the GDPR requires
having the ability to extensively document the processing procedures involving EU citi-
zens’ personal data, by evaluating its lawfulness, providing information on the security
measures enforced for its protection and ensuring that sufficient processing agreements
(i.e.consent) are in place. The importance of the regulation lies within its purpose: pro-
tecting EU citizens’ rights by clarifying the actions organizations must take to safeguard
them. [3][4]

1.1 Motivation

Due to the requirements posed by the GDPR (fundamental terms of which are described
in Chapter , organizations must be able to comply with strict rules about how personal
data (any data that can be used to identify a person) is manipulated within their systems.
More specifically, the road to compliance involves tackling complex issues such as:

(a) How personal data is stored, secured, processed, transmitted and erased
(b) How the policies related to its retention are enforced [5]

(¢c) How proof of provided or revoked written consent, for its obtainment and usage,
can be documented

Such issues lead to the question of what are the minimal steps that an orga-
nization must take to prove basic GDPR compliance, by taking into consideration the
interactions between its systems’ components and the personal data it processes on behalf
of its users.

In recent years, the rapid expansion of growing domains such as Big Data, Al,
Cloud computing and the IoT, among others, has brought to the forefront new challenges
primarily linked to the personal data and trust, such as data transparency (the ability
to easily access and work with data), data security and the clear presentation of terms of
data processing activities. Such challenges have given rise to the problem of designing a
system within relevant contexts (such as the IoT and the Cloud), by taking into account
basic GDPR requirements (briefly described in and more thoroughly in and
querying it for preliminary compliance evaluation. This problem is the one that we
attempt to provide a solution to in the following chapters. [6]

1.2 Problem definition

Recently, Neodj suggested that mastering GDPR requires prior knowledge in regards to
the ways personal data is stored and managed in a system. More specifically, as part of its
Privacy Shield solution, the company provides a comprehensive solution for compliance
with the GDPR regulation, that is not, however, meant to directly answer whether a
system is GDPR compliant or not but, rather, to provide the means (in graph form) of
evaluating it, by representing how personal data is stored and managed. This approach,
based on graph modeling and querying, attempts to connect personal data across all
system components (i.e. parts such as services and databases) and track where and how
personal information is stored, how it is used, how it moves to different locations or
systems, who has access to this data and whether users have provided or revoked consent
for doing so, among other activities more thoroughly described further on. [7]|8]

By elaborating on the above, in order to answer whether a system meets the
GDPR compliance criteria, the following questions must be answered:

0. What are the fundamental data entities?l
The persons to whom the personal data belongs and user and device entities related
to it

1. What data do you have?
The personal data held within the organization’s systems

2. Where is the data stored?
The internal systems (services, databases, etc.) in which the personal data is stored
and at what geographical location

3. How and when did you obtain data?
The fundamental entities (QO0) the personal data is related to, the consent provided
by persons (for its processing within the organization) and the time at which it was
provided

4. Why do you have the data?
The way in which the personal data is used (data usage) and the events of data
processing that involve it

5. Who has access to the data?
The entities (such as users and persons) that have access to the personal data

6. Do you have permission to use the data? For what purposes?
Whether the organization’s users have provided or revoked consents, as well as their
respective data usages

7. Is the data secure?
The security of personal data (at-rest and in-transit) within the components of the
system. This question regards whether all entities that stored or process personal
data employ the appropriate security mechanisms for its protection (OAuth2.0,
encryption, etc.)

8. How does the data travel through your systems?
Detailed information related to personal data lineage and data tracking: how and
when personal data moves within the organization’s internal systems [9]

!Question 0 was added for matters of convenience in our upcoming diagram design process (Chapter

9. Does the data ever cross international borders?
Whether the personal data crosses EU or non-EU borders into non-EU or EU
countries, respectively

The information described in these answers needs to be explicitly represented
in a formal way. Neo4j suggests that this information is best represented by means of
a semantic graph, where each one of the questions in the above list can be formulated
as a query on the graph whose results yield the data necessary for evaluating GDPR
compliance. Judging whether a system is compliant is not an automated process (i.e.
the decision cannot be made algorithmically). Instead, given the answers to the above
questions (the results of executing the queries corresponding to each question), the final
decision must be made by a human expert.

In our approach, we inspect the requirements of each and every one of the
aforementioned questions and:

(a) Demonstrate how an IoT system that encompasses fundamental GDPR personal
data requirements can be designed

(b) Answer the questions by querying the system, providing a means for evaluating
GDPR compliance

The next section describes our approach to tackling this problem, in more detail.

1.3 Proposed solution

Solving the GDPR compliance problem in its generality is a difficult problem. Although
our approach is inspired by Neo4J’s Privacy Shield solution, it is not just an application
of an existing methodology. In fact, no such as methodology exists. Although Neo4j’s
commercial solution provides guidelines for answering the GDPR compliance problems,
it does not openly demonstrate in detail, how to apply them to an existing system.

To provide a means for evaluating GDPR compliance, compliance requirements
must be taken into account in the system design phase. Presumably, the design of a sys-
tem depends on a system’s functional and non-functional requirements, which differ for
systems in different application domains. The solution thus depends on system function-
ality and the specific answers to each one of the GDPR questions can be provided once
the requirements of a system are specified. Thus, in order to tackle this difficult prob-
lem in its generality, we must take GDPR requirements into account from the beginning
of the requirements analysis phase of the system under consideration. This is realized
through a formal step-by-step procedure that involves the analysis and specification of
the GDPR requirements encoded in the 10 aforementioned questions that must be
encompassed in the design of a remote patient monitoring IoT system, in a series of UML
class diagrams. [10]

After designing a diagram for each question, we end up with our system’s unified
information class diagram that encapsulates all information related to the requirements
necessary for the evaluation of basic GDPR compliance. Therefore, the problem of decid-
ing upon the GDPR compliance of a system is transformed into designing the system’s
information class diagram by considering related requirements and using it to answer the
preliminary compliance questions. To do so, the class diagram must be made queryable,
a task that can be accomplished by transforming it into a semantic graph whose node
and relationship properties represent the knowledge of the application.

Appropriate tools for this representation are the property graph database model
and ontologies, such as OWL. In our approach, we decided to utilize the former for
expressing and querying the contents of the graphs due to its simplicity in usage and
wide range of available graph tools (e.g. databases) supporting it, opposed to the latter’s
high formality and lack of appropriate tools. [1T][12][I3][14]

Based on this approach, a system whose class diagram has been represented as
a graph in a graph database (such as Neo4j) can be evaluated for GDPR compliance
by analyzing the responses to the 10 GDPR queries run upon it. Since, however, a
system’s class diagram also encodes peculiarities related to its specific operation, the
above approach must be applied on each different system separately (as, obviously, no
universal class diagram exists for all system domains). In this work, to show proof of
concept, we deal with providing GDPR compliance evaluation for the use case of an IoT
and Cloud Service Oriented Architecture (SOA) of a remote patient monitoring system
that involves the handling of sensitive health-related personal data, characteristic to a
broad array of application domains wherein proving GDPR compliance is necessary. [15]

In short, the proposed solution employs an incremental approach. First, we
design a Remote Patient Monitoring [oT System, based on SOA principles, by following
a valid design approach based on UML and by also taking into account GDPR’s personal
data requirements reflected in the aforementioned questions (related to preliminary com-
pliance). Then, we represent the designed system as a graph. Finally, having defined the
knowledge of the system in a graph database, we answer the questions by appropriately
querying the resulting graph.

1.4 Existing work

Although the academic literature on such a subject is still relatively scarce, work loosely
related to ours includes:

e “Designing Data Protection for GDPR Compliance into IoT Healthcare
Systems”, a paper wherein researchers propose a data labeling model for support-
ing access control operations on privacy-critical patient data in the design of a
GDPR compliant IoT healthcare system. This paper deals with a limited set of
data transparency, access and privacy aspects of the regulation. [10]

e “A Consent and Data Management Model”, a project that “aims to utilize
semantic web technologies, such as OWL, in order to provide a common and cohe-
sive framework for representing and aiding in the compliance of legislations like the
GDPR. This research provides the integration of data management across different
information systems specifically adhering to the GDPR and helping controllers to
demonstrate compliance”. [17]

For a more thorough description of the above work, in addition to how it compares to
our own, see [2.3]

Outside the world of academia, a number of companies, such as Neodj (as
mentioned earlier), trust-hub and Cambridge Intelligence, provide commercial solutions
primarily based on graph analytics tools, such as graph database visualization, for dealing
with the problem of GDPR compliance. [I8]|[19]

1.5 Thesis structure

In Chapter [2| we present the tools and concepts we utilized for both the design of our
system, the construction of its graph representation and its querying, as well as further
details on related academic work. In Chapter |3] we describe the system we are going
to design, the steps for designing it based on GDPR principles and the methodology
for importing it into a graph database and queries for answering the 10 compliance
questions. In it, we also provide a demonstration of our method using the Neo4j graph
database. Finally, in Chapter] we summarize our approach by stating our conclusions
and mentioning future work.

10

Chapter 2

Background

2.1 The General Data Protection Regulation

Although the EU Parliament approved of the GDPR and adopted it in April 2016, the
regulation actually took effect on the 25" of May, 2018. Within its scope it:

“1. Lays down rules relating to the protection of natural persons with regard to the
processing of personal data and rules relating to the free movement of personal
data.

2. Protects fundamental rights and freedoms of natural persons and in particular their
right to the protection of personal data.”

Its core aim being to protect EU/EEA citizens from privacy and data breaches by bringing
laws around personal data, privacy and consent and by enforcing the obligation of privacy
by design. [20]

Under GDPR, organizations must be able to prove that personal data is gath-
ered legally. Furthermore, organizations collecting and processing personal data are
required to protect it from exploitation and misuse.

2.1.1 Definitions

Important terms defined by the regulation that are prerequisites for fully-grasping our
work include [21]:

e ‘personal data’: any information relating to a data subject, meaning a natural
person who can be identified in particular by reference to identifiers such as names,
id numbers, location data, online ids or factors specific to the physical, physiologi-
cal, genetic, mental, economic, cultural or social identity of that natural person

e ‘biometric data’: personal data resulting from specific technical processing relat-
ing to the physical, physiological or behavioral characteristics of a natural or legal
person, which allow or confirm the unique identification of that natural person

e ‘data concerning health’: personal data related to the physical or mental health
of a natural person, including the provision of health care services, which reveal
information about his or her health status

e ‘processing’: any operation or set of operations which is performed on personal
data or on sets of personal data, whether or not by automated means, such as collec-
tion, recording, organization, structuring, storage, adaptation, alteration, retrieval,
etc.

11

e ‘pseudonymisation’: the processing of personal data in such a manner that the
personal data can no longer be attributed to a specific data subject without the
use of additional information, provided that such additional information is kept
separately and is subject to technical and organizational measures to ensure that
the personal data is not attributed to an identified or identifiable natural person

e ‘controller’: the entity (natural or legal person, public authority, etc.) which,
alone or jointly with others, determines the purposes and means of the processing
of personal data

e ‘processor’: an entity (natural or legal person, public authority, etc.) which
processes personal data on behalf of the controller

e ‘consent’: means any freely given, specific, informed and unambiguous indication
of the data subject’s wishes signifying agreement to the processing of their personal
data

e ‘third party’: an entity (natural or legal person, public authority, etc.) other
than the data subject, controller, processor and persons that is authorized, under
the direct authority of the controller or processor, to process personal data

2.1.2 Compliance

Being able to demonstrate GDPR compliance requires the implementation of measures
meeting certain data protection criteria, on behalf of the data controller, that involve the
collecting and processing personal data. According to Art. 25: data protection measures
are required to be designed into the development of business processes for products and
services (privacy-by-default considerations). Thus, the implementation of effective data
protection measures in addition to the acts of being able to demonstrate the compliance
of data processing activities become liabilities that lie with the controller. Significant
data protection measures include the [22]:

e Identification of personal data: identifying the personal data being held and
where it resides is the first step on the road to compliance

e Protection of personal data: protecting personal data means that all compo-
nents of a system that process personal data must be designed with data protection
considerations in mind and specific technical and organizational measures must be
implemented to safeguard this information during processing. GDPR explicitly
champions encryption and pseudonymization techniques that reduce the risks as-
sociated with data processing

e Auditing of personal data: the inspection of personal data for determining what
data the organization should hold and should erase and how it is processed based
on organizational needs and status of consent (e.g. withdrawn)

e Management of consent and data usage: managing consent requires it to be
free, specific, informed and unambiguous. Furthermore, controllers must clearly
state their intended data usage purposes and request explicit consent each time
they do so

Therefore, some of the most impactful requirements an organization must be able to
consider and measures they must implement for achieving basic GDPR compliance are:

e Data Location & Consent: Controllers are obliged to acquire explicit consent
from users for the processing of their personal data for specific and clearly-stated
purposes at specific locations, as well as for transferring it outside the EU

12

e Right to access: Controllers must provide the means for users to access their
data at any time in a structured, machine-readable format

e Data portability: Data subjects should be able to transmit their personal data
to another controller without hindrance from the controller to which the personal
data has been provided

e Right to rectification: Data subjects should be able to correct any erroneous
personal data that controllers store

e Right to be forgotten: Data subjects should be able at any time to prompt
controllers into erasing all of their personal data, ceasing its distribution, and po-
tentially inhibiting any processors from continuing to use it

e Privacy by design: Controllers and processors must design their services consid-
ering the “state of the art” privacy and security technology to protect their users’
data. In the event of a data compromise, controllers and processors must notify
data subjects

The abstract data model of Fig. [I] summarizes the prerequisite knowledge of
personal data an organization must have for proving compliance: the processes that use
it, the platforms that store and exchange it, the people who own it and have access to it
and the places where it is stored at.

Uses
Personal Data
Generates

Responsible for

Figure 1: trust-hub’s core personal data model. [23]

According to the proposed approach of Neo4j, an organization seeking to meet
GDPR demands must be able to answer the following difficult questions of Fig. [2]in order
to provide insight into the transparency and traceability of the personal information
their system holds and thus a means for evaluating its compliance. In other words,
these questions reflect the necessary knowledge an organization must be able to prove
it holds, for satisfying the key personal data requirements related to GDPR compliance.
These requirements involve being able to track personal data movement across all internal
and external systems, applications and other components of a platform (mainly its data
lineage: where underlying data originates from and how it flows through the components).
More specifically:

13

where the personal data was acquired

whether consent for its usage was obtained and when

to and from which systems it moves over time

which geographical location it is stored at

how it gets processed

How and when
did you obtain
the data?

What data Where is the
do you have? data stored?

Do you have
Why do you Who has access permission to

have the data? to the data? use the data?
For what purposes?

Does the data
How does the data
Is the ever cross

travel through . :
data secure? e stemgs? international
y 2 : borders?

Figure 2: Neodj’s key GDPR requirements. [24]

Since the paths that personal data follows are complex and unpredictable, they
are best visualized as graph structures, implemented using a graph database. This choice
of structure and database best suits the nature of problems such as that of GDPR
compliance in which data relationships of interconnected systems and other entities such
as users, personal data, consent etc. are as important as the data itself. [25]

By creating a graph representation of a given platform in a graph database, an-
swers about the personal data being held can be provided by means of querying upon the
graph and extracting the required information (intertwined in nodes and relationships)
in tabular form. The resulting answer tables can then be used for reaching the final
decision on whether or not the system is GDPR compliant through means of evaluation
and analysis by the following qualified subjects:

e EU Regulators demanding proof of compliance [26]

e Data Protection Officers and internal organization staff responsible for preserving
privacy across all your systems [27]

Additionally, answers can also be provided to people such as users and con-
sumers who want to find out what an organization knows about them and how their
data is being used. The requirements thus associated with these questions will be ana-
lyzed in the next section and utilized in Chapter [3|for both the construction and querying
of an IoT platform.

14

2.1.3 Compliance questions

0.

What are the fundamental data entities?
The data subjects the personal data belongs to and the user and device entities
related to it

. What data do you have?

The personal data entities associated with the fundamental data entities

. Where is the data stored?

The database systems in which the personal data is stored and the geographical
location where they are located.

. How and when did you obtain data?

The fundamental data entities it is related to, meaning the entities it was derived
from (e.g. a device generating biometric personal data) and the time at which
explicit consent of a specific type was provided by the data subject (the data
belongs to), for enabling a data usage for its processing (see Q4).

. Why do you have the data?

The data processes involving the personal data and the purpose of the processing
(data usage) that specific consent types enable.

. Who has access to the data?

The user (data owner) that is related to the data subject it belongs to and other
users that have permission to access the data of the owner.

. Do you have permission to use the data? For what purposes?

Whether the data subject the personal data belongs to has provided and not re-
voked a consent for its usage.

Is the data secure?

Whether the systems the personal data travels through (or could potentially travel
through) and store it, and the fundamental data entities it is related to (see Q1) and
have access to it (see Q5) employ proven security mechanisms such as OAuth2.0,
master keys, and encryption, in-transit and at-rest.

. How does the data travel through your systems?

Detailed information on the tracking of personal data: the systems to and from
which the personal data travels, from the time of its acquisition to its usage by
data processes, in the context of given or revoked consents.

. Does the data ever cross international borders?

Whether the personal data ever crosses international borders refers the inspection
of country information associated with the entities that exchange personal data in
the context of data processing. Whether the personal data crosses EU or non-EU
borders into non-EU or EU countries, respectively (see Q4 and Q8).

15

2.2 Concepts & Tools

Our approach follows the incremental design of a Remote Patient Monitoring System,
that is based on previous work (described in . In this section, we present tools and
technologies that we utilize throughout the design, implementation and demonstration
of our solution.

2.2.1 UML

The information diagrams that form the basis of our System’s graph model were created
using a subset of UML and were drawn using the web diagramming software draw.io. In
order to more clearly present the data contained in our designed System’s diagrams and
efficiently answer the aforementioned questions related to GDPR compliance by means
of queries, we must create an equivalent graph (a set of nodes and relationships, instead
of UML classes and associations) in a graph database. [28]

2.2.2 Property graphs

The property graph database model is represented by nodes (vertices), relationships
(edges), properties and labels that abide by a set of basic rules:

1. Nodes can have multiple labels for grouping and categorization purposes
2. Relationships can have one label (usually called a relationship type)
3. Both nodes and relationships can store properties represented by key-value pairs

4. All relationships are directed edges, starting at one node and ending at another

Entry, InProceedings
title="GraphLog: a
Visual Formalism ...”
numpages="13"
keyword="Datalog”

pages="404-416"

booktitle

has_author

has_author

title="PODS”
year="1990"
month="April”

fname=“Mariano”
Iname="Consens”

fname="Alberto”
Iname="Mendelzon”

fname="Peter”
Iname="Wood”

cites

Entry, Article
Journal

has_author title="Finding regular i
title="SIAM J. Comput.”

. simple paths ...”
vol="24"
num="6"

keyword=“recursive queries”

has_author published_in

pages="1235-1258"

Figure 3: Example of a property graph representing bibliographic information [12]

2.2.2.1 Querying property graphs

In order to provide a solution that is general, we must define an abstract query language
that will be used for import and answer querying purposes (see Chapter [3). For this
reason we define Pseudo@L, a highly-readable graph query pseudo-language, borrowing
concepts from Neodj’s Cypher and SQL. This language, created by us, is built
upon the following set of commands (Tables (1] - [4]) for reading, writing, returning and
creating data in a property graph. [29]

16

Read commands Description

SELECT Specify patterns to find in the database

OPTIONAL SELECT

Specify patterns to find in the database and use null for
patterns that do not exist

Table 1: PseudoQL read commands

Read sub-commands Description

WHERE

Add constraints to patterns in a
SELECT or OPTIONAL SELECT command

Specify that the output should be sorted in either
ORDER BY |ASC | DESC] | ascending (default) or descending order
(follows the RETURN command)

Table 2: PseudoQL read sub-commands

Write commands | Description

CREATE Create nodes and relationships

Table 3: PseudoQL write commands

Return commands | Description

RETURN Define what to include in the query return result

Table 4: PseudoQL return commands

Pseudo@L’s pattern constructs for reading and creating nodes and relationships in the
graph are based on an intuitive and easy-to-read syntax (Tables || - @

Node syntax examples

Description

0

A plain node

A node that can be referred to

(var) through the var variable
(:Labell:Label2: ... :LabelN) A node with labels Labell, Label2, ... and LabelN
(var:Labell:Label2: ... :LabelN) A node with labels Labell, Label2, ... and LabelN

that can be referred to through the var variable

(var:Label {keyl: valuel, key2: value2,
., keyN: valueN})

A node with label Label and properties:
{key1: valuel, key2:value2, ... | keyN:valueN}
that can be referred to through the var variable

Table 5: PseudoQL node syntax

17

Relationship syntax example Description

—— An undirected relationship

——> A directed relationship

A directed relationship that can be referred to

-[var]|-> through the var variable

A directed relationship with type TYPE that

-[var:TYPE]-> can be referred to through the var variable

A node with label Label and properties:
{keyl: valuel, key2:value2, ..., keyN:valueN}
that can be referred to through the var variable

-[var:TYPE {keyl: valuel, key2: value2,
..., keyN: valueN}]->

Table 6: PseudoQL relationship syntax

Combining the syntax for nodes and relationships we can express patterns such as the
following (Table 7). For a better understanding of PseudoQL, let’s write two queries (|1}
and [2) and inspect their results.

Pattern example
(nodel var:Labell:Label2 {keyl: valuel, key2: value2})
-[rel_var:TYPE {keyl: [1, “2”, [3]]}]->
(nodel var:Label3:Labeld {keyl: valuel, key2: value2})

Table 7: Pseudo@L pattern example

CREATE (authori:Author {fname: "Mariano", lname: "Consens"})

CREATE (author2:Author {fname: "Alberto", lname: "Mendelzon"})

CREATE (author3:Author {fname: "Peter", lname: "Wood"})

CREATE (entryl:Entry:InProceedings {
title: "Graphlog: a Visual Formalism...",
numpages:"13",
keyword: "Datalog"})

CREATE (entry2:Entry:Article {title: "Finding regular simple paths ...",
numpages: "24",
keyword: "recursive queries"})

CREATE (proceedings:Proceedings {title: "PODS", year: "1990",
month: "April"})

CREATE (journal:Journal {title: "SIAM J. Comput.", year: "1995",
vol: "24", num: "6"})

CREATE (proceedings)<-[:booktitle{pages: "404-416"}]-(entryl)
<-[:cites]-(entry2)-[:published_in {pages: "1235-1258"}]->(journal)

CREATE (author1)<-[:has_author {order: "1"}]-(entryl)
-[:has_author {order: "2"}]->(author2)

CREATE (author2)<-[:has_author {order: "1"}]-(entry2)
-[:has_author {order: "2"}]->(author3)

RETURN *

Listing 1: Create the bibliographic information property graph (Fig.)

18

numpages: "13"
keyword: "Datalog"

title: "GraphLog: a Visual Formalism .ﬂ."’

fname: "Mariano"

title: "PODS"
year: "1990"
month: "April"

Iname: "Consens" ihas author

Entry, Proceedings

InProceedings

booktitle
pages: "404-416"

title: "SIAM J. Comput."
:"1995"
Luogn

2
fname: "Alberto" o "6
Iname: "Mendelzon" %

v

has_author @
order: "2"

title: "Finding regular simple paths .,.“’

numpages: "24"
keyword: "recursive paths"

Figure 4: Resulting graph of PseudoQL query

SELECT (author:Author)<-[:has_author]-(:Article)

- [pub_in:published_in]->(:Journal {title: "SIAM J. Comput."})
OPTIONAL SELECT (author)

<-[:has_author] - (entry_in_proceedings:Entry: InProceedings)
RETURN author.lname as SIAMJComput_Author_Surname,

pub_in.pages as PublishedAtPages,

entry_in_proceedings.title as EntriesInProceedings

Listing 2: Query the bibliographic information graph (Fig.

e Query [l} Create and return the bibliographic information property graph (Fig.
4)

e Query [2} In the same graph, find and return the last name of the authors whose
article was published in the “SIAM J. Comput.” journal, at which pages and any
other entries in proceedings they may have. This query returns the data of Table
where the EntriesInProceedings field for Wood is null since he has not written
any in-proceedings entry.

SIAMJComput__Author Surname | PublishedAtPages | EntriesInProceedings
Wood 1235-1258 null
Mendelzon 1235-1258 GraphLog: a Visual Formalism...

Table 8: Query [2 result

19

2.2.2.2 UML-to-property-graph mapping

Answering the questions for evaluating GDPR compliance requires a graph representation
of the UML class diagrams (resulting from the System’s design process presented in
Chapter [3). In other words, once the diagrams have been constructed and combined,
they must be imported into a graph database as a single graph. This task can be
accomplished by following the simple UML-to-property-graph mapping, proposed by us,
as presented in Table [9

UML Property Graph
Class Node
Class name Node label
Association or Association class Relationship
Association or Association class name Relationship type
Attribute Property
. h Node with class and subclass names
Class-subclass correlation . .
and attributes as labels and properties

Table 9: UML-to-property-graph mapping

As an example, the class diagram of Fig. [5| would be modeled, according to our mapping,
as the property graph of Fig. [0

Event
-id: number
-timeCreated: string PROVIDED
-time: string
OF TYPE— Consent
REVOKED
-time: string
ConsentType '
-name: string Person
-description: string -name: string
-surname: string
Figure 5: An example UML class diagram
1E.g. the class-subclass correlation: class An, which is subclass of Ax—1, ..., which is subclass of A;
would be represented by a node with labels Ax, An—_1, ... and A1 containing the attributes of each class

as properties.

20

fid: numIJer,'
|tmeCreated: sting} |

e “9@%
. /p'.o.f;“' Te
| {fime: string}_'c{c\O
|_{time: sting}]

{name: string, (S
|descnption: stning}

{name: stnng,
|surname: stnng}

Figure 6: The property graph of the example UML class diagram (Fig. j

Notice how the UML FEwvent class and the Consent subclass both get mapped unto a
single property graph node with the class and subclass names as labels and the ¢d and
timeCreated attributes inherited as properties.

2.2.3 Graph databases

For comfortably manipulating a vast array of information modeled as nodes and rela-
tionships, we decided to adopt the graph database technology, for accomplishing tasks
such as graph creation and querying, for answering the questions required for evaluating
GDPR compliance. These NoSQL databases are inherently designed to handle complex
graph constructs with relative simplicity and speed, in contrast to traditional relational
databases, whose rigid schemas, strict table/column layout confinements and JOIN re-
quirements deem them unsuitable for our task. [30]

2.2.3.1 Neodj

The graph database we decided to adopt for our Demo (|3.4]) was Neo4j, a popular labeled-
property graph database management system, whose widely-used platform and highly-
expressive, well-document query language, Cypher, constitute reliable tools for querying
graphs. [31]

2.2.3.2 Cypher

Cypher is “a declarative graph query language that allows for expressive and efficient
querying and updating of the graph <...>. Cypher is designed to be simple, yet powerful;
highly complicated database queries can be easily expressed, emabling one to focus on
your domain, instead of getting lost in database access.”. 1t is inspired by SQL, reusing
part of its syntax (keywords such as WHERE and ORDER BY') while mixing it with a
human-readable, ASCII-art-like query syntax equivalent to the one used in our PseudoQ)L

(2.2.2.1)). For example, running the query of Fig. m upon the data graph of Fig. [§ yields
the result of Fig. [0 [32]

21

MATCH (r:Researcher)
OPTIONAL MATCH (r)-[:SUPERVISES]->(s:Student)
WITH r, count (s) AS studentsSupervised
MATCH (r)-[:AUTHORS]—>(pl:Publication)
OPTIONAL MATCH (pl)<-[:CITESx*]-(p2:Publication)
RETURN r.name, studentsSupervised,

count (DISTINCT p2Z2) AS citedCount

Figure 7: Example Cypher query (to be run on data graph of Fig.

Publication
Researcher Publication
‘AUTHORS ‘ acmid: 220

name: Nils acmid: 190

Student

name: Linda \
" f

3
r4
CITES @ Publication

acmid: 235
r5 —— ~—_ f
-
11 ro
Publication
acmid: 240 @
\—/ Publication
r10
acmid: 269

Figure 8: An example data graph showing supervision and citation data for researchers,
students and publications

| SUPERVISES ‘

Student

@4_ e

name: Sten *

SUPERVISES T8 SUPERVISES
Researcher

@ Researcher

name: Thor AUTHORS

name: Elin

‘ AUTHORS

r.name studentsSupervised citedCount

Nils 0 3
Elin 2 1

Figure 9: Result of example Cypher query (Fig D

Query (Fig. explanation: This query finds and returns the names of researchers,
the number of students they supervise and the number of distinct publications that cite
their own. For more details on Cypher querying, you may read the paper this example
was taken from or the language’s manual, which provides an introduction to the language
in addition to full documentation. [33][34]

22

2.3 Related work

According to recent academic literature, the most interesting related work includes:

e “Designing Data Protection for GDPR Compliance into IoT Healthcare
Systems”, which focuses on the “implications of the General Data Privacy Regula-
tion (GDPR) on the design of an IoT healthcare system”: In this paper, researchers
break down the regulation into requirements relevant to the technical design of in-
formation systems and show how to integrate the Decentralized Labelling Model
(DLM) with Fusion/UML methods to produce a GDPR Compliant IoT Architec-
ture. They propose a data labeling model to support access control for privacy-
critical patient data and formally define four basic operations: upload, delete and
download based on specific use cases of their healthcare application. Compared to
our own work, this paper focuses exclusively on the technical requirement implica-

tions of sections 1-3 of GDPR’s Chapter III [16][35]:

— data controllers must give the data subject read access (1) to their data in-

cluding any meta-data related to it
— the system must enable deletion of data (2) and restriction of processing

— the system functions must preserve the access rights of personal data (3)

However, personal data requirements (summarized in our work’s aforementioned
questions (2.1.3)) and used in Chapter [3|of our work) relating to where the personal
data is stored, whether consent was provided, data usages enabled by consent types

and tracking of the personal data, are not considered in this paper.

e “A Consent and Data Management Model”, a project encompassing a collec-
tion of publications and applications aimed at utilizing semantic web technologies
to provide a framework for aiding in GDPR Compliance. In this ongoing project,
a group of researchers at Trinity College Dublin have to-date carried out extensive
analysis of the GDPR and have quantified terms and obligations into the following

linked data resources and ontologies [17]:

— GDPRtEXT [36]: an RDF representation of the GDPR’s text (at article-

paragraph granularity) and a vocabulary of relevant terms and concepts

— GConsent [37]: an OWL2 ontology for representing consent for GDPR com-

pliance

— GDPRov [38]: an ontology for “expressing provenance of consent and data

lifecycles with a view towards GDPR compliance”

ject rights in relation to data protection regulations.”

Regarding compliance, they have created applications for:

Data Protection Rules Language [39]: “An ontology to express data sub-

— Evaluating GDPR Readiness [40]: wherein the above mentioned metadata
is exploited for evaluating GDPR readiness using an Irish government check-
list (a technically broader set of requirements compared to our considered
questions’) with SPARQL queries. Though, not all questions of the checklist

have yet been implemented. [41]

— Evaluating Compliance Data [42]: wherein provenance information is val-
idated using SHACL for ensuring organizations maintain all the required data

prior to evaluation of compliance [43]

23

— Test-driven approach for GDPR Compliance [44]: wherein “tests can
be generated that check for compliance using constraints gathered from re-
quirements”

Compared to our work, this project attempts to take into account all of the regu-
lation’s detailed requirements and provide an automated means for checking com-
pliance through a test-driven approach. Due to this ambitious undertaking’s still
ongoing and fragmentary nature, more concrete results are yet to be seen.

24

2.4 1iXen

The design of our Remote Patient Monitoring System was based on the iXen archi-
tecture due to its secure, open and interoperable nature which serves as a representative
template for the design of a wide category of systems. Building upon previous work
on IoT architecture design and implementation based on SOA and cloud micro-services,
iXen is a secure-by-design, highly configurable, expandable and modular architecture
that supports the generation of fully customizable applications by re-using devices and
services. These re-usable services, implement fundamental functionality and offer a pub-
lic interface allowing secure connections with other services (including third party ones).
5] 161 7

2.4.1 Users and functional requirements

It supports the following user groups and functional requirements:

e Systems administrators: they configure, maintain and monitor the cloud. In
addition to their competence for providing cloud services, they are responsible for
performing Create, Read, Update, Delete (CRUD) operations on (a) users (e.g.
they can register new users to the system and define their access rights) and (b)
devices. They are responsible for monitoring system operations at all times (e.g.
monitoring user activity).

e Infrastructure owners: they subscribe to the cloud for a fee and are granted
permission (by the cloud administrator) to register, configure, monitor or remove
devices in their possession.

e Application owners: they subscribe to the cloud and to a set of devices for a fee.
Once subscribed to devices, they can create applications using these devices. iXen
provides query mechanisms for selecting devices of interest using device properties
such as device type, geographic location, purpose etc. Application development in
iXen is supported by flow-based programming web tools. An application is defined
by wiring together the outputs of selected devices.

e Customers: they subscribe to applications for a fee. iXen provides query mecha-
nisms to users for selecting applications available for subscriptions based on criteria
such as purpose and functionality. Customers are only granted access rights to ap-
plications.

2.4.2 Architecture

iXen is designed as a composition of groups of autonomous RESTful services commu-
nicating with each other over HTTP, as shown in the architecture diagram of Fig. [I0]
48]

25

Gateways & Sensors i

v v 1 i

Administrator
Publish®] Policy £ Sensorst] Sensor €] Developer
Subscribe [€<>[Enforcement <. Query Interface Customer
Service Proxy 4 <7, Service Service H
' A
1
Data %] Policy ¥l Policy {I(I . Web
Storage Enforcement Enforcemen ' Application
Service Proxy 3 Proxy 5 '

{ v '

- icv E] Authcrlzatl
History Hlsmryﬂ E chllcy t qu:uplif.:atit:i*:nI L!s_er .ﬂ Policy Ll
Data Que.ry nporcemzen > Logic <> Idemlfl.catl.on ::b Decision
Base Service roxy Authorization|<~ Point
) A
- 1]
_ Mashupﬂ Pollcy Users Data | | :
Applicationf<€=> & 10 |€ > ..nforcemen Base : :
Storage Porxy1 [|€------------"----~-

Figure 10: iXen Architecture

In the following chapter, we re-design the iXen architecture as a Remote Patient
Monitoring System architecture by taking into account patient monitoring needs and the
requirements posed by the 10 GDPR questions and we create UML class diagrams that
will be imported into a graph database for creating answer queries for GDPR, compliance
evaluation.

26

Chapter 3

Solving the GDPR Compliance
evaluation problem

3.1 Approach

Our method’s general idea for tackling the problem of evaluating GDPR compliance in-
volves designing a Remote Patient Monitoring System by considering compliance-related
personal data requirements and querying it for results. Specifically, our solution is com-
posed of two stages:

1. Creating the class diagram of a Remote Patient Monitoring System that encom-
passes information taken from the IoT healthcare and cloud micro-service contexts
and fundamental GDPR requirements proposed by Neo4j’s questions (described in
2.1.3)

2. Querying the class diagram’s graph (populating a graph database) for answering
the questions, which leads to the creation of data reports for evaluating GDPR
compliance

27

3.2 Designing a Remote Patient Monitoring System

Our Remote Patient Monitoring System is founded on a re-design of the users, func-
tional requirements and underlying architecture of iXen, an IoT system composed of
RESTful cloud micro-services leveraging Service Oriented Architecture (SOA) principles
with a strong emphasis on security. Every functionality constitutes autonomous services
communicating with each other through RESTful interfaces over HT'TP. This design
follows a “Security by Design” approach, providing the necessary protection of services
and data in the cloud and providing services only to authorized users or other services.
Key components of this platform include services such as the Device Interface service
to which patients’ devices automatically transmit biometric data on a regular basis, as
well as the Publish-Subscribe service that implements the doctor-patient subscription and
publication mechanisms.

3.2.1 Users and Functional Requirements

Three types of users are supported:

1. Patients, who wear heart-monitoring sensor devices that independently send bio-
metric data to a service in the cloud

2. Doctors, who have the ability to subscribe to a number of patients, monitor their
conditions and access their personal data

3. Administrators, who hold the highest degree of access-right privileges, are able
to access, change and delete personal data across users and services within the
platform.

All users use a Web app interface to access their own data as well as various resources
residing on different services, depending on their level of authorization. Four groups of
components related to services are supported:

1. Sensor: Heart-rate-monitoring IoT devices are connected and continuously trans-
mit data to the Device Interface service, which publishes it to the Publish-Subscribe
service that sends it to subscribers and the Data Storage service.

2. Storage: The Pub-Sub DB (NoSQL database), which is part of the Publish-
Subscribe service, holds the active devices transmitting data, active subscriptions
and current device data (e.g. recently transmitted data). Heart-related health data,
as received from devices and older historic data is stored in the History DB ser-
vice (that contains a NoSQL database) through the Data Storage Service, whereas,
the historic data can be accessed through the Data History Recovery service. In-
formation related to user login credentials and authorization, such as roles and
permissions, is stored in the Relational DB, that is part of the User Identification
— Auth service.

3. Application Logic: The Application Logic service acts as the orchestrator in
between the other services. Every time a user request is issued through the Web
App’s interface, this service receives it and dispatches it to the appropriate service.

4. Security: Services related to security implement access control mechanisms based
on user roles and access policies. On registration, users receive login credentials and
an appropriate role related to their access-rights. On login, the User Identification
— Auth service assigns users an OAuth2.0 token that encodes particular service
authorization information by means of XACML, stored in the Authorization Policy

28

Decision Point service. For accessing resources, Policy Enforcement Proxy (PEP)
services forward a user’s OAuth2.0 token to the User Identification — Auth service
to check for validity. If positive, the steps that follow are illustrated in Fig.
Regarding inter-service communication, services securely talk to each other with
the help of a security key, referred to as a Master Key. In such a case, the PEP
service stores the master key which is compared with the in-header key of a service’s
request. This simple mechanism is illustrated in Fig. [49][50]

Protected Service

A
8. Response 7. forwarded User
HTTP request

A .
1. HTTP Request + OAUth2 token _ (" N 2 Validate OAuth token.

” Policy Enforcement “| User Identification-
Point Proxy Authorization Service

9. Response p 'y / 3. USER info

<
<

User

4. USER info
+

User HTTP 6. Permit/ Reject
Request vy

Authorization Policy
Decision Point

A
5. Evaluate Policies

Figure 11: iXen OAuth2.0 security model

1. HTTP Request + 2. Forwarded
Master Key e ™ HTTP Request

Policy Enforcement
Point Proxy

~—
4. Forwarded Response 3. Response

Service A Protected Service B

&
<

Figure 12: iXen Master Key security model

3.2.2 Architecture

The architecture of our Remote Patient Monitoring System, as illustrated in Fig. [I3] is
based on a redesign of the iXen architecture (Fig. by including information specific
to our users and functional requirements and removing those that are irrelevant to our
application, such as application generation using mashups.

29

f’

[

P

VY ammm]
[

wosey !

lo120Q

lasn

TR

- -

-

]
I
l

'
,
#

0L ~aFLIINNCD

ada
[euonejay | Axoid od fusnooay aa
e lustisaIou AioisiH ereQ Aoisiy
iod ny - uoieslus E; foied E; . =
uoisiosq Aood Y o eRl S
[z Uonezuouny E n
Z fxoid wiod
uawaiolg abelols ereQg
E Konod E
21607
ddy
. | L
¢ Axoid 80
ddy gam U104 1USWS2J0jug aquUosgns-ysignd gng-and
food —
= E E S—
SOBLIBIU| 821A8(] ¥ Axo1d wuiod Burlienp sonaq
. Wwawaaioug foijod : :
E] [= E]
. _\% T N
I | “ : 401V P
’ | U g f
[P ' 5350 -—
VST 01 0ALYTIH
! 1

Figure 13: Remote Patient Monitoring System architecture diagram

30

3.2.3 Incorporating GDPR Compliance requirements

In this section we provide the methodology for incrementally constructing the unified
class diagram of our Remote Patient Monitoring System by taking into account the
requirements of each and every one of the specific 10 preliminary GDPR Compliance
evaluation questionsﬂ in addition to the users, functional requirements and architecture
defined in the previous subsection.

Our platform, as already mentioned, includes user patients wearing sensor de-
vices measuring heart rate data, users that can subscribe to one another and user admin-
istrators having full-access privileges over all System information. Furthermore, all users
use a web interface through which they can access the services’ APIs and can perform a
range of operations, depending on their roles.

3.2.3.1 Constructing the System class diagram

In this subsection we take each question and create its corresponding class diagram,
leading up to the resulting class diagram of the whole System (Fig. [21)).

3.2.3.1.1 0. What are the fundamental data entities?

Analysis: Since our domain of interest revolves around patient monitoring, these data
entities are:

e Person: the data subjects the personal data belongs to

e User: patient, doctor and admin users of the Remote Patient Monitoring System,
related to Persons

e Device: devices worn by user patients for remote health monitoring purposes

Person

-name: string
-surname: string

RELATED_TO
\
User
-name: string
‘ Patient ‘ ‘ Doctor ‘ ‘ Admin
RELATED_TO Device

‘ -name: string
‘ HeartRateSensor }—’—D -description: string

Figure 14: Q0 Remote Patient Monitoring System class diagram

Descriptions to the questions are provided in

31

3.2.3.1.2 1. What data do you have?

Analysis: The categories of personal data we have are:
e UserData: user data such as username, email and phone

e SubscriptionData: user subscription data such as subscriber and subscribees

o SensorData: sensor data such as heart rate

Person

-name: string
-surname: string

BELONGS_TO

|
T

PersonalData

)

UserData SubscriptionData SensorData
-user: string -subscriberUser: string -sensor: string
-email: string -subscribeeUsers: string -heartRate: number
-phone: string -timeModified: string -timeModified: string

-timeModified: string ‘
RELATED_TO RELATED_TO
I

RELATED_TO

User
‘ HeartRateSensor ‘
; !

-name: string

Figure 15: @1 Remote Patient Monitoring System class diagram

32

3.2.3.1.3 2. Where is the data stored?

Analysis: Where the data is stored refers to the categories of database systems that act
as storage for the personal data which, according to our functional requirements, are:

e RelationalDB: storage database of UserData
o PubSubDB: storage database of SubscriptionData

e HistoryDB: storage database of SensorData

UserData SubscriptionData SensorData

-user: string -subscriberUser: string -sensor: string
-email: string -subscribeeUsers: string -heartRate: number
-phone: string -timeModified: string -timeModiified: string
-timeModified: string

STORED_IN STORED_IN STORED_IN

RelationalDB PubSubDB HistoryDB

VNV

System

-user: string
-version: string
-description: string

Figure 16: @2 Remote Patient Monitoring System class diagram

33

3.2.3.1.4 3. How and when did you obtain the data?

Analysis: The new entities that are of interest to us within the context of this question’s
requirements, are:

e (Consent: a consent event, provided or revoked by a person

e ConsentType: the type of a Consent (e.g. ‘Terms and Conditions’)

Event
-timeCreated: string PROVIDED
-time: string
Consent
REVOKED
-time: string
OF_TYPE ;
Person
-name: string
-surname: string
ConsentType
-name: string
-description: string

Figure 17:)3 Remote Patient Monitoring System class diagram

34

3.2.3.1.5 4. Why do you have the data?

Analysis: Why we have the personal data introduces two new entities (a) representing
the data usage that a consent type enables and (b) the categories of data process events
that process personal data. The corresponding entities are:

e DataUsage: the purpose of data processing, enabled by a specific ConsentType

e DataProcess: the event of data processing, involving personal data belonging to a
person:
— DataAccess: the event of data access to a User from a WebApp
— DataUpdate: the event of data updating done from a WebApp to a DB

— DataFEzport: the event of exporting data from a DB to an AmbulanceService
(third party first-aid emergency ambulance service)

— InternalDataMovement: the event of an internal data movement involving
data exchanged from one System to another System (where System may be
either a cloud Service or a DB) E|

ConsentType

-name: string
-description: string

Event

‘ -timeCreated: string /W\

enables
INVOLVES T

o[Dwaprocss | Datahcces

/l\\F ROM
TO D: “
‘ DataUpdate ‘QFROMA‘ WebApp
\

InternalDataMovement
TO

-name: string TO
“description: string FROM J FROM

DataUsage

User
TO%{ -name: string ‘

-name: string
-description: string

System
-name: string
-version: string | —
-description: string

Figure 18:)4 Remote Patient Monitoring System class diagram

2 System is the superclass of DB and Service classes (see the resulting class diagram of Fig. and
should not be confused with the Remote Patient Monitoring System that contains it.
3T0 and FROM associations indicate the flow of data to and from entities.

35

3.2.3.1.6 5. Who has access to the data?

Analysis: Data access rights are denoted as ‘CAN _ACCESS DATA OF’ associations
between users.

CAN_ACCESS_DATA_OF CAN_ACCESS_DATA_OF

CAN_ACCESS_DATA_OF

Figure 19: Q5 Remote Patient Monitoring System class diagramﬂ

3.2.3.1.7 6. Do you have permission to use the data? For what purposes?

Analysis: No new GDPR entities are introduced here (the entities that are involved in
this question are: PersonalData, Person, Consent, ConsentType, DataUsage). For more
information, see question description ([2.1.3).

4We assume that a Doctor can access the data of one or more Patients, whereas all Admins can
access the data of all Doctors and all Patients.

36

3.2.3.1.8 7. Is the data secure?

Analysis: According to its functional requirements, our Remote Patient Monitoring Sys-
tem supports the following security schemes:

o RESTServiceSecurity: The security scheme employed by User, Device and Service
entities:

— OAuth2: OAuth2.0 tokens are issued to users upon login for identity, role and
permission confirmation

— MasterKey: A secret key for secure inter-service communication

— Permission: A permission for accessing a particular resource

— Role: A collection of permissions, described in its corresponding XACML rule

— XACMLRule: A rule formally describing the services and resources that users
can access based on the roles and permissions they hold

5We assume that all Devices, Services and Users of our platform employ REST service security.

37

Buiys :uondiosap-
Buins :uoisian-
Buiys :eweu-

waishs

Buins :uonduosap-

Buins :Anunoo-
Buis :uoneoo|-

ERITNETS

SAOTdNE

guinvo Buins :uonduosap-
Kayarsep
40 INan313 40 INaw313

Buwys :uonduosap-

Buiys :uopduosap-
Buis :sweu-

a0l

‘m>0._n__>_m_L

SACTdNG

Buinys :aweu-

198

40 IN3aW313

I

Bups :8|ny|0AUODSSEI0.-

SINYTNJVX

funoegeoinles s3y

O INEERERS

40 IN3W313

/

SVH

SYH-@

Bupys :eweu-

sjod

]

SVH

y

m_.:.:m :@0Inosal-

Buiss :uonoyd 1 1 H-
Buis :sweu-

uoissiwiad

Figure 20: Q7 Remote Patient Monitoring System class diagramﬂ

38

3.2.3.1.9 8. How does the data travel through your systems?
Analysis: No new GDPR entities are introduced here (the entities that are involved

in this question are: PersonalData, Person, Event, System, App, User, ConsentType,
DataUsage). For more information, see question description (2.1.3)).

3.2.3.1.10 9. Does the data ever cross international borders?
Analysis: No new GDPR entities are introduced here (the entities that are involved in

this question are: PersonalData, Person, DataProcess, System, App, User). For more
information, see question description ([2.1.3).

39

3.2.3.1.11 The resulting System class diagram

Combining each separate question’s class diagram and the architecture diagram (Fig.
13)), we construct the final class diagram of our Remote Patient Monitoring System, as
illustrated in Fig. [2I The role of the resulting diagram is twofold: it can be used
to (a) answer the GDPR compliance-related questions and (b) implement the system.
Therefore, both problems are handled in one step and there is no need to separate
the system design process from evaluation of GDPR compliance, since the compliance
requirements have been incorporated by design.

5The USES, PART _OF and CONNECTED _TO associations are taken directly from the architecture
diagram.

40

e
aaansand

wioduoisioaq
£

T I
fianooay efxoigiurog adl
RoisiHerea wawaoloju3folod
1 Axoidiutod , [
! — NI"a350LS
J0luwg NIA3OLS NIa3soLs
Buifienpeaineq
a
gakioisiH | , {
— Butis :payipojyaL- BuLis :paypopaw-
7 [P —— Buuys :paypoyewi- Jaquinu :sjeyueay- Buuys :auoyd-
Shcoigiod S RRoIIod 180 Buiys :s18sn@8qUISNS- Buuys :iosuss- BuLs :jrews-
il 7 Juswadiopuzfoljod wawsoiojuzoljod Buus :uesniaquosgns- eleqIoSUsS Buiys :1asn-
elequonduosans eleqiasn
| 1neq ~
—— OL @3lviad
21607ddy . _ _ |
OL @3lviad OL @3lviay

AVARVARAVS

Buiys :uonduossp-
> Buiys :aweu-
\ soimea

> Buuys :Aipunoo-
\Vi

Buiys :uoneool-

- ERINVEL)

e

0 0Ll a3Lviad

f VR SAOTdING oL7sONoT38
10000Q [RE wsned

Bulis :uonduossp-

Y Buins rouet [owev] |
Buys :uonduosap- SAOTdNI - T T oL BuLys uonduosap-
Bus ‘uoision- 7 L Buns ‘aweu-
Bupss ‘owreu- | TSy e Rueapinyy
warshs ,

o[sminema_|
s3sn %
VARV

WouA

o 0 smvng | ssngmeg | —samomi——
[wvo | AOTdINZ
oL a3ivay .
[fowersem | SvH Bt vondieer
— — 6
40" INIWI13— 40 LNIWI13 Bums ‘pareaioawl- Spesneied
_ . - v
| Ho7INaw313 [wowx:emgomogsseane| B e [TTeye——
BINYINOVYX Buiys :eweu-
uosiad se|qeus
—
U ! 1S3d SVYH
- Buiys :uonduosap-
% FdAL 40— Buuns ‘aweu-
_ dAj
407ININZT3 Buris Tasincsar adRpuasuon

aaoA3d

BuLs :uonoyd L I H-
Buys :eweu-

40 IN3an313

uoIssILLIB,
issiuiad Buiys :awn-

a3ainodd

UoneIoosse , 4O VIVa SSFOOV NV,

100sse 0/ “gIFLOINNOD.

Remote Patient Monitoring System class diagramﬂ
41

Figure 21

3.3 System GDPR Compliance evaluation

Although UML is appropriate for design purposes, it does not inherently support in-
formation processing and there are currently no tools for querying the information it
represents. The ability for querying is provided by a tool such as a graph database,
which we employ in our method. In the following subsection, we provide the algorithms
and queries in the PseudoQL pseudo-language (that we defined in for importing
the class diagram and answering the questions in a property graph database.

3.3.1 Importing the System into a graph database

Prior to answering the questions for evaluating GDPR compliance, we must import the re-
sulting Remote Patient Monitoring System class diagram (Fig. into a graph database.
This means that we must create a property graph equivalent to the diagram. To do so, we
abide by the UML-to-property-graph mapping convention we defined in [0) where classes,
associations and attributes are translated into property graph nodes, relationships and
properties.

Creating the equivalent diagram property graph involves running the PseudoQL
query that is presented in the Appendix @ Fig. illustrates the resulting property
graph.

System,Ser...

System,Ser...

Masterk...
System,Ser...

System,Ser...

i System,Ser...
T il i)
- G 3 | s System,Ser...
- 1 T E by 1

o jl'.'

?"Ys S:.'stem.DB...’ '

| & i
A 45ystem.[}ﬁ,...

gl Device,.. &

T
I
b

%
System,DE, ...

4 B

app.we... NS ’ s (
. lersona. ..
- — '«I'F-'E"
UserDo...

Persona...

C#’
PRWIDED '

Figure 22: Remote Patient Monitoring System graph

=
(=]
®
o

:
B
B

42

3.3.2 Answering the compliance questions

For each of the following questions we provide a description, the algorithm of the answer
query, the actual answer query in the Pseudo@QL query language, the tabular data re-
port results it yields and brief comments on them. These reports can be more formally
analyzed by a human expert such as a Data Protection Officer or equivalent compliance
authority, for evaluating GDPR compliance. Although, instantiated data is required for
determining compliance, the following result tables provide a template of how real-data
reports of an instantiated platform will look like.

3.3.2.1 Answer 0. What are the fundamental data entities?

Description: Query all fundamental data entity nodes.

Query explanation:

1. Find nodes whose labels include Device, Person or User

2. Return them

SELECT (e)
WHERE e:Device or e:Person or e:User
RETURN LABELS_Q0F(e) as type,

e as fdDataEntity

Listing 3: Pseudo@L QO answer query

type fdDataEntity

[Device HeartRateSensor] |{name:string,description:string}
[Person] {name:string,surname:string}
[User, Patient] {name:string}

[User,Doctor] {name:string}

[User, Admin] {name:string}

Figure 23: Pseudo@QL QO answer query result

Query result comments: This answer yields rows containing each registered fundamental
data entity (e.g. the patient user).

43

3.3.2.2 Answer 1. What data do you have?

Description: Query all personal data nodes and the person nodes they belong to.

Query explanation:

1. Find personal data nodes and person nodes they belong to

2. Return them

SELECT (pd:PersonalData)-[:BELONGS_TO0]->(p:Person)
RETURN LABELS_OF (pd) as pdType,

pd as personalData,
p as person

Listing 4: Pseudo@QL Q1 answer query

pdType personalData person

PersonalData.SubscriptionData] [{subscriberUser:string,subscribeeUsers:list_of_strings.timeModified:string} name:string,surname:string}
PersonalData, SensorData] heartRate:number.timeModified:string, sensor:string} name:string,surname:string}
PersonalData.UserData] phone:string.timeModified:string, user:string, emailstring} name:string,surname:string}

Figure 24: Pseudo@QL Q1 answer query result

Query result comments: This answer yields rows containing the personal data held within

the Remote Patient Monitoring System (e.g. SensorData), its contents and the informa-
tion of the data subject it belongs to.

44

3.3.2.3 Answer 2. Where is the data stored?

Description: Query all DB nodes where personal data is stored in.

Query explanation:

1. Find personal data nodes and person nodes they belong to
2. Find the DB nodes the personal data is stored in

3. Find the service nodes the DB nodes are part of

4. Return the personal data nodes, their corresponding person nodes, the DB nodes

and location properties

SELECT (p:Person)<-[:BELONGS_TO] - (pd:PersonalData)
OPTIONAL SELECT (pd)-[:STORED_IN]->(db:DB)
OPTIONAL SELECT (db)-[:PART_OF]->(dbS:Service)
RETURN LABELS_OF(pd) as pdType,
pd as personalData,
p as person,
LABELS_OF(db) as DBType,
db as DB,
CASE
WHEN EXISTS((db)-[:PART_OF]->(dbS)) THEN
dbS.location
ELSE
db.location
END as location,
CASE
WHEN EXISTS((db)-[:PART_OF]->(dbS)) THEN
dbS.country
ELSE
db.country
END as country

Listing 5: Pseudo@QL Q2 answer query

pdType personalData person DEType DE location |country
subscriberlser:string,subscr name:string, descripti

[PersonalData, Subsc beelsers:list_of_strings,time [{name:string,surna on:string,v ersion:strin

riptionData] Modified:string} me:string} [System,DB,PubSubDB] |g} string string
name:string, country:s
ltring.description:string

[PersonalData, Senso |{heartRate:number.timeModifi [{name:string.suna |[System.DB,Service, Histor|location:string.version

rData) ed:string, sensor:string} me:string} yDEB] “string} string string
name:string, descripti

[PersonalData, UserD |{phone:string timeModified:strif{name :=sfring.surna on:string,

ata) ng.user:string.email:string} [messtring} [System, DB, RelationalDB] v ersion:string} string string

Figure 25: PseudoQL Q2 answer query result

Query result comments: This answer yields rows containing the database system in which
each personal data entity is stored (e.g. RelationalDB), its information (e.g. version)

and the physical location of the database system is located at.

45

3.3.2.4 Answer 3. How and when did you obtain the data?

Description: Query all personal data nodes, the person nodes they belong to, consent
nodes they provided and related consent type nodes and the time at which they were

provided.

Query explanation:

1.

they belong to

consent type nodes and the time the consent was provided

Find personal data nodes, data entity nodes they are related to and person nodes

Find the consent nodes provided by the person nodes and their consent type nodes

Return the personal data nodes, the person nodes, the provided consent nodes, the

P

C

as person,

as consent,

cT as consentType,
prov.time as timeConsentProvided

de as fdDataEntity,

SELECT (de)<-[:RELATED_TO] - (pd:PersonalData)
- [:BELONGS_TO] ->(p:Person)

OPTIONAL SELECT (p)-[prov:PROVIDED]->(c:Consent)
-[:0F_TYPE] ->(cT:ConsentType)

RETURN LABELS_OF(pd) as pdType,
pd as personalData,

Listing 6: Pseudo@L Q3 answer query

pdType

personalData

person

fdDataEntity

consent

consentType

timeConsentProvid
ed

[PersonalData, Sub

subscriberUser:string,subscribe
eUsers:list_of_strings.timeModif

{name:string.surna

{timeCreated:string

{name:string,descri

scriptionData] ied:string} me:string} {name:string} i ption:string} string
subscriberUser:string,subscribe

[PersonalData,Sub |eUsers:list_of_strings.timeModif [{name:string.surna {timeCreated:string [{name:string.descri

scriptionData] ied:string} me:string} {name:string} i ption:string} string
subscriberUser:string,subscribe

[PersonalData,Sub |eUsers:list_of_strings.timeModif [{name:string.surna {timeCreated:string [{name:string.descri

scriptionData] ied:string} me:string} {name:string} ption:-string} string

[PersonalData,Sen [heartRate:number timeModified fname:string,surma f{name:string,descri ftimeCreated:string [[name:string, descri

sorData] :string,sensor:string} me:string} ption:string} ption:string} string

[PersonalData,User f[phone:string timeModified:strin [name:string,surna timeCreated:string [{name:string.descri

Data] g.user:string,email:string} me:string} {name:string} string

ption:string}

Figure 26: PseudoQL Q3 answer query result

Query result comments: This answer yields rows containing the information of the user

or device fundamental data entity each personal data entity is related to and information
of the consent that the data owner has provided (e.g. time of consent creation, time of

consent provision, consent type).

46

3.3.2.5 Answer 4. Why do you have the data?

Description: Query all personal data nodes, the person nodes they belong to, consent
nodes, related consent type nodes and the data usage nodes they enable. Also, query
the data process nodes that involve the personal data nodes and the nodes to and from
which they exchange data.

Query explanation:

1. Find personal data nodes and person nodes they belong to

2. Find the consent nodes, provided by the person nodes and consent type nodes they
are related to

3. Find the data usage nodes enabled by the consent type nodes
4. Find the data process nodes involving the personal data nodes
5. Find the nodes to and from which the data process nodes send and receive data

6. Return the personal data nodes, the person nodes, the data usage nodes, the data
process nodes and the nodes to and from which the latter send and receive data

SELECT (pd:PersonalData)-[:BELONGS_TO]->(p:Person)
SELECT (p)-[:PROVIDED]->(:Consent)-[:0F_TYPE]->(cT:ConsentType)
SELECT (cT)-[:ENABLES]->(du:DataUsage)
OPTIONAL SELECT (pd)<-[:INVOLVES]-(dp:DataProcess)
OPTIONAL SELECT (f)-[:FROM]->(dp)-[:T0]1->(t)
RETURN LABELS_OF (pd) as pdType,

pd as personalData,

p as person,

COLLECT (du) as dataUsages,

LABELS_OF (dp) as dpType,

dp as dataProcess,

[LABELS_OF(f), f] as from,

[LABELS_OF(t), t] as to

Listing 7: Pseudo@L Q4 answer query

Query result comments: This answer yields rows containing information about the data
usages of each personal data entity (enabled by the consent provided by its owner),
information of events that involve it by means of data processing and the entities (e.g.
apps, Systems, Users, third parties) to and from which it travels (in the context of each
data processing event).

47

personalData person datallsages dpType dataProcess [from lto
[[App,WebAp

subscriberUser:string pl.

,subscribeeUsers:list_ name:string, |[[User,Doctor]

of_strings.timeModifie
d:-string}

fname:string,su
rname: string}

[{name:string.des
cription: string}]

[Event,DataProce
55, Datafccess]

string}

timeCreated:

description:str|,

ing}]

name:string}]

subscriberl)ser:string

,subscribeeUsers:list_
of_strings.timeModifie
d:string}

{name:string,su
rmame:string}

[{name:string.des
cription:string}]

[Event,InternalDat
alov ement,Data
Process]

string}

timeCreated:

[[System,Ser

ice,PEPProx
3l ,
name:string,
country:string
.description:st
ring.location:s
ltring v ersion:s
ltring}]

[[Systemn, Ser

ice,PublishS
ubscribe],
name:string,
country:string
.description:st
ring.location:s
ltring v ersion:s
ltring}]

heartRate:number,tim
eModified:string,sens
or:string}

fname:string,su
rame:string}

[{name:string.des
cription:string}]

[Event,DataProce
ss,Dataf\ccess]

string}

timeCreated:

[TApp.WebAp

pl. _
name:string,

description:str|,

ing}]

[[User,Doctor]

name:string}]

phone:string.timeMod
ified:string.user:string,
email:string}

fname:string,su
rame:string}

[{name:string.des
cription:string}]

[Event,DataProce
s, DataExport]

string}

timeCreated:

[[System, DB,
RelationalDB]

name:string,
description:str
ing,version:str
ingj]

[[AmbulanceS
ervice,ThirdP
arty.
name:string,
description:str
ingj]

subscriberUser:string
.subscribeeUsers:list_
of_strings.timeModifie

fname:string,su
rname:string}

[{name:string.des

[Event,DataProce

timeCreated:

[[App,WebAp
pl. _
name:string,
description:str

[[System,DB,
FPubSubDB],
name:string,
description:str
ing,version:str

d:string}

cription: string}]

55, Datalpdate]

string}

ing}]

ing}]

Figure 27: Pseudo@QL Q4 answer query result

48

3.3.2.6 Answer 5. Who has access to the data?

Description: Query all personal data nodes, the person nodes they belong to, the user
nodes (data owners) related to the person nodes, the DB nodes they are linked to (de-
noting storage) and the non-owner user nodes that can access the owner’s data.

Query explanation:

1. Find personal data nodes, the person nodes they belong to, the user nodes related
to the person nodes (personal data owners) and the DB nodes the personal data is
stored in

2. Find the user nodes that can access the data of the owner user nodes

3. Return the personal data nodes, the person nodes, data usage nodes, the DB nodes,
the user owner nodes and the other user nodes that can access the personal data

SELECT (pdOwnerUser:User)-[:RELATED_TO]->(p:Person)

<-[:BELONGS_TO0] - (pd:PersonalData) - [: STORED_IN]->(db:DB)
OPTIONAL SELECT (otherUser:User)-[CAN_ACCESS_DATA_OF]->(pdQOwnerUser)
RETURN LABELS_OF(pd) as pdType,

pd as personalData,

p as person,

LABELS_OF(db) as DBType,

db as DB,

pdOwnerUser,

COLLECT (otherUser) as otherUsersWAccess

Listing 8: Pseudo@L Qb answer query

Query result comments: This answer yields rows containing the access information for
each personal data entity, meaning the owner and all other users that can access it.

49

[{Bums:awreu

{Bus:awreu}]

{Buins:aLeu

{Bu
nsuoisiaabul
ns:uonduosap

‘Bus aweu

[aqare
uone|sy ga waisis]

{Buins:awewns Buuls:aweu

{Buu

157 rews Bumstiasn Bus:paippo e Buns auoyd

[ereasn eIEqQEUOSIad]

|

{Bus:awreul]

{Buins:aLeu

{Buny

S:uoIsIa A Buiy
s:uoeao| Gul
1=:uonduosap’
Buns:Aiunoo
‘Bus:aweu

[gafioisiy
‘301UBS ‘G WaIsAg)

{Buins:awewns Buuls:aweu

{Buins:losuas BuLIS paIIpo Ay ELIL IagLLINUaTEUBRaY

[ere(uOsSUaS EIRQEUOSIa]]

[

{Bus:awreu}]

{Bums:aweu

{Buy
ns:uoisiaabul
ns:uonduosap

=]
qnsand gaasis]

{Bums:aweuwns Bums:aweu

{Bus:paiypojyawn‘sh
ums jo 1sisasn@aquasgns Bumsiasniaquosgns

[erequonduosgng “ereqeuosiad]

‘Buuis:aweu
0 {Buns:aLreu {Bui [aal {Bums:awewns Bus:aweu {Buns:paypopyawn’sh| [emeguondudsgngereqeuosiad]
nsuoiseabul gnggnd g waisis] us o 1sI-s1esnesquosqns Busesniaquosgns
nsiuondussap
‘Bus aweu
55320y Jasnuaumopd an adA1aq uosiad elE(EUosIad adA | pd
MEISENIBLID

PseudoQL Qb answer query result

Figure 28

50

3.3.2.7 Answer 6. Do you have permission to use the data? For what
purposes?

Description: Query all personal data nodes, the person nodes they belong to, the DB
nodes they are linked to (denoting storage) and whether the person nodes have provided
and not revoked a consent node for its data usage.

Query explanation:

1. Find personal data nodes and the person nodes they belong to

2. Find the consent nodes provided or revoked by the person nodes, the related consent
type nodes and the data usage nodes they enable

3. Return the personal data nodes, the person nodes, the data usage nodes, and a
boolean value of whether there exists a provided and not a revoked relationship
between the person nodes and the consent nodes (as denoting permission to use
the data)

SELECT (pd:PersonalData)-[:BELONGS_TO0]->(p:Person)
OPTIONAL SELECT (p)-->(c:Consent)
-[:0F_TYPE] ->(cT:ConsentType)
- [:ENABLES] ->(du:DataUsage)
RETURN LABELS_OF(pd) as pdType,
pd as personalData,
p as person,
COLLECT (du) as dataUsagesEnabledByPerson,
EXISTS((p)- [:PROVIDED]->(c)- [:0F_TYPE]->(cT)
- [:ENABLES]->(du)) AND
NOT EXISTS((p)-[:REVOKED]->(c)-[:0F_TYPE]->(cT)
- [:ENABLES] ->(du))
as permissionToUseData

Listing 9: Pseudo@L Q6 answer query

permissionTo
personalData person datal)sagesEnabledByPerson lUseData
subscriberlser:string,subscribeeUsers:list_of [{name:string.description:string},
| strings, timeModified:string} {name:string, surname:string} {name:string, description:string}] false
heartRate:number timeModified:string, sensor: [{name:string,description:string},
string} {name:string, surname:string} [{name:string,description:string})] false

Figure 29: PseudoQL Q6 answer query result

Query result comments: This answer yields rows containing information about the data
usages enabled by the owners of each personal data entity and a boolean value denoting
whether the data processors holding the data have permission to use it (which depends
on whether consent for related data usages has been provided and not revoked). This
answer may be a determinant for non-compliance if the permissionToUseData evaluates

to false too many times.

o1

3.3.2.8 Answer 7. Is the data secure?

Description: Query all personal data nodes, the DB nodes they are linked to (denoting
storage), the user or device fundamental data entity nodes and whether or not they em-
ploy REST Service Security.

Query explanation:

1. Find personal data nodes, the person nodes they belong to and the DB nodes the
personal data is stored in

2. Find the fundamental data entity nodes related to the person nodes

Find the service nodes the DB nodes are part of

-

Find the REST Service Security node and its security element nodes

5. Return the personal data nodes, the person nodes, the DB nodes, a boolean value
of whether the fundamental data entity nodes and the db nodes (or the service the
db is part of) employ REST Service Security and the REST Service Security node
and its security element nodes

SELECT (p:Person)<-[:BELONGS_TO] - (pd:PersonalData)
- [:STORED_IN]->(db:DB)
OPTIONAL SELECT (fdEntity)-[:RELATED_TO]->(p:Person)
OPTIONAL SELECT (db)-[:PART_OF]->(serviceOfdb:Service)
OPTIONAL SELECT (restServiceSec:RESTServiceSecurity)
<-[:ELEMENT_OF] - (secElem)
RETURN LABELS_OF (pd) as pdType,
pd as personalData,
p as person,
LABELS_QOF (db) as DBType,
db as DB,
CASE
WHEN "Service" IN LABELS_OF(db) THEN
EXISTS((fdEntity)
- [:EMPLOYS] ->(restServiceSec)) AND
EXISTS((db)-[:EMPLOYS]->(restServiceSec))
ELSE
EXISTS((fdEntity)
- [:EMPLOYS] ->(restServiceSec)) AND
EXISTS((serviceOfdb)
- [:EMPLOYS] ->(restServiceSec))
END as isDataSecure,
[LABELS_OF (restServiceSec), restServiceSec]
as securityType,
COLLECT([LABELS_OF (secElem), secElem])
as securityElements

Listing 10: Pseudo@QL Q7 answer query

Query result comments: This answer yields rows containing information about the secu-
rity type available in our Platform (REST Service Security), its elements (e.g. OAuth2.0)

92

[[{Buwms:aweu

‘[e1oy]] [{Bums:uonayd] 14 Bus:amnosal Bus:aweu
‘[uoissiwad]] [{Bums:uonduossap

‘[Aunosaghayesep]] [(Buns:anyonuo)ssanoe
‘[aingnoy k1 [{Bums uondussap) [zyiny Q] {Buus:aureu
“[8joy]] [{Buns-uonoyd | |4 Bunsaoinosarbuns:aweu
‘[uoissiwad]] [{Buns:uonduos

-ap} [AunsesAaysase]] [{Buns:ainygionuodssaaoe) [ainy
“1M0w ¥l [{Bums:uonduasap} [zyingol] [{Bums aweu} [ajoy|
-] [{Bums:uonayd | | 4 Bugs:asnosasBus:aweu} fuoissiw)
-1ad]] [{Buws:uendussap} [Aunsaghaysise] [{Bus:any
-onuonssanae} any Y ¥ [{Buns:uonduosap) [zuinyo]]

[{Buins-uonduosap
TAunoagaoiuag 1S3Y]]

ani|

{Buinsiuoisian'Bu
ustuomeoo| Bulysiuonduasy
p*Buiys:Anunoo*Buuis:aleu

[aghios
IH a01ues g wasisg]

{Bulys-aw
euns‘Bus:awey

{Buystiosuas Bus:paipp
oL IaguINUaTEHLESY

[e1eq
losuas ‘elegeuosad]

[[{Buws:awreu

“[8joy]] [{Buns-uonoyd | |4 Bunsaoinosarbuns:aweu
‘[uoissiwiad]] [{Buns:uonduosap
‘[AunoasAayeisepy]] [(funs anygonuo)ssacoe
‘amgnoy ¥11 [{Bumsuenduasap) [zyinyol] [{Bums:aweu
‘[ejoy]] [{Bums:uonayd | 14 Bus:amnosalBus:aweu
‘[uoissiwad]] [{Buns uonduos|

-ap} [Aunoaghayparsey]] [(Buns:anyjonuosssanoe) [any|
-1 ¥l [{Buws:uondussap} [zyingo]] [{Buis sweu} [sjoy
I [{Bums uonayd] | H Bums asinosarbuins aweu) uoissiw
-lad]] [{Bums:uonduosap} [AunoagAayiaise]] [(Bums ainy
-Jonuonssaaae} [ang i dw ¥]] [{Buns-uonduosap) [zuiny o]l

[{Bus uonduosap
‘[faunsaganiuag | S3Y])

any|

{Bums:uoisian’bu
ms:uonduosap Bums aweu

1
909nsand ' gq waisig]

{Bustaw|
BuIns Bus sy

{Bums:paiyipojyaLun s
Buwis™jo 151 °s1a5M33q LIS
qns’Bums:iasniagquasgns

[e1eqUOond,
U2SgNS BB [EU0SIad]

sjuaLWagAunaas|

adA | Aunaas

aInJaseleqs|

=[8]

add]gg

uos.ad

eyE(Eeuosiad

adA | pd

PseudoQL Q7 answer query result

Figure 30

93

and a boolean value denoting whether each personal data entity is secure (which depends
on whether the fundamental entity it is related to, such as Users and Devices, and the
System it is stored in both employ REST Service Security). Since all Users, Devices and
Systems of our platform employ REST Service Security by design, the boolean value is
true for every personal data entity. This answer may be a determinant for non-compliance
if a human expert, such as a Data Protection Officer deems the security elements involved
with each personal data entity as inadequate for fullfiling GDPR security demands.

o4

3.3.2.9 Answer 8. How does the data travel through your systems?

Description: Query all event nodes, the personal data they involve and the nodes (sys-
tems, users, apps, etc.) they exchange it with.

Query explanation:

1. Find personal data nodes, the person nodes they belong to and the events nodes
the person nodes are connected with, where the events nodes are either consent
nodes or data process nodes involving the personal data nodes

2. If the event nodes are data process nodes: find the nodes to and from which the
event nodes send and receive data, whereas if the event nodes are consent nodes:
find their corresponding consent type nodes and the data usage nodes they enable

3. Return the personal data nodes, the person nodes, a custom description of the
event and times of creation, provision or revocation (depending on the type of the
event nodes)

SELECT (pd:PersonalData)-[:BELONGS_TO0]->(p:Person)
SELECT (e:Event)
WHERE e:Consent OR (e:DataProcess AND
(pd)<-[:INVOLVES]-(e))
OPTIONAL SELECT (e)-[consent_rel]-(p)
OPTIONAL SELECT (t)-[:T0]-(e)-[:FROM]-(£)
OPTIONAL SELECT (e)-[:0F_TYPE]->(cT:ConsentType)
- [:ENABLES] ->(du:DataUsage)
RETURN LABELS_OF (pd) as pdType,
pd as personalData,
p as person,
LABELS_OF(e) as eventType,
CASE
WHEN e:Consent THEN
"OF_TYPE: "+cT.name+" ("+LABELS_OF(cT) [0]+
") | FOR: "+du.name+" ("+
LABELS_OF (du) [0]+")"
ELSE
"FROM: "+f.name+" ("+LABELS_OF(f) [0]+
") | TO: "+t.name+" ("+
LABELS_OF (t) [0]+")"
END as eventDescription,
CASE
WHEN consent_rel IS NOT null THEN
consent_rel.time+" ("+TYPE(consent_rel)+")"
ELSE
e.timeCreated
END as time
ORDER BY time DESC

Listing 11: Pseudo@L Q8 answer query

95

pdType

personalData

person

eventType

eventDescription

time

[PersonalData,UserD
ata)

{phone:string,time
Modified:string,use
r:string.email:string

{name:string. sur
name:string}

[Event,Conse
nt]

OF_TYPE: string (ConsentType) | FOR:

(Datallsage)

string

string (REVOKED)

[PersonalData, Subscr
iptionData)

{subscriberUser:str
ing,subscribeeUser
s:list_of_strings.ti

meModified:string}

{name:string, sur
name:string}

[Event,Conse
nt]

OF_TYPE: string (ConsentType) | FOR:

(Datallsage)

string

string (PROVIDED)

[PersonalData, Sensor
Data]

{heartRate-number,
timeModified:string
.sensor:string}

{name:string, sur
name:string}

[Event,Conse
nt]

OF_TYPE: string (ConsentType) | FOR:

(DataUsage)

string

string (PROVIDED)

[PersonalData, UserD
ata)

{phone:string time
Modified:string,use
r:string,email:string

{name:string, sur
name:string}

[Event,Conse
nt]

OF_TYPE: string (ConsentType) | FOR:

(Datallsage)

string

string (PROVIDED)

[PersonalData, Subscr

{subscriberUser:str
ing,subscribeeUser
slist_of_strings.ti

{name:string, sur

[Event Interna
|DataMov e-
ment.DataPro

iptionData] meModified:string} |name:string} cess] FROM: string (System) | TO: string (System) [string
{subscriberlser:str [Event.Interna
ing.subscribeelser| |Datalov e-

[PersonalData, Subscr|s:list_of_strings.ti [{name:string,sur[ment,DataPro

iptionData] meMeodified:string} [name:string} |cess] FROM: string (System) | TO: string (System) |string
{subscriberUser:str [Event,Interna
ing,subscribeeUser |Datalov e-

[PersonalData, Subscr|s:list_of_strings.ti {{name:string.sur[ment,DataPro

iptionData) meModified:string} |name:string} cess) FROM: string (System) | TO: string (System) [string
{heartRate:number, [Event, DataPr

[PersonalData, Sensor [timeModified: string [{name:string, surfocess, DataAc

Data] ,sensor:string} name:string} cess] FROM: string (App) | TO: string (User) string
{heartRate_number, [Event,DataPr

[PersonalData, Sensor [timeModified: string |[{name:string, surfocess, Datalp

Data] .sensor:string} name:string} |date] FROM: string (App) | TO: string (System) string
{phone:string time
Modified:string,use [Event,DataPr

[PersonalData,UserD [r:string,email:string|{{name:string, surjpcess. DataEx|FROM: string (System) | TO: string (Ambu-

ata) name:string} lanceService) string

port]

Figure 31: PseudoQL Q8 answer query result

o6

Query result comments: This answer yields rows containing descriptions of each Consent
or DataProcess event related to each personal data entity (such as consent types and
data usages (for Consent events) and apps, users, systems and third parties to and from
which the data was exchanged (for DataProcess events) and time related to each event.

o7

3.3.2.10 Answer 9. Does the data ever cross international borders?

Description: Query the data process event nodes, the personal data nodes they involve
and the nodes (systems, users, apps, etc.) they exchange it with.

Query explanation:

1. Find personal data nodes, the person nodes they belong to and data process events
involving the personal data nodes

2. Find the nodes to and from which the data process nodes send and receive data
3. Find the service nodes the ‘to’ entity nodes are part of
4. Find the service nodes the ‘from’ entity nodes are part of

5. Return the personal data nodes, the person nodes, a description of the event, the
‘from’ node countries, the ‘to’ node countries and the times of creation of the data
process nodes

SELECT (p:Person)<-[:BELONGS_TO] - (pd:PersonalData)
<-[:INVOLVES] - (dp:DataProcess)
OPTIONAL SELECT (t)-[:T0]-(dp)-[:FROM]-(£f)
OPTIONAL SELECT (f)-[:PART_OF]->(serviceOfFromDB:Service)
OPTIONAL SELECT (t)-[:PART_OF]->(serviceOfToDB:Service)
RETURN LABELS_OF(pd) as pdType,
pd as personalData,
p as person,
LABELS_OF(dp) as dataProcessType,
"FROM: "+f.name+" ("+LABELS_OF(f)[0]+")| TO: "+
t.name+" ("+LABELS_OF(t) [0]+")"
as eventDescription,
CASE
WHEN NOT EXISTS((f)
- [:PART_OF] ->(serviceOfFromDB)) THEN
f.country
ELSE
service0fFromDB. country
END as fromEntity_country,
CASE
WHEN NOT EXISTS((t)
- [:PART_OF] ->(service0fToDB:Service)) THEN
t.country
ELSE
service0fToDB. country
END as toEntity_country,
dp.timeCreated as time
ORDER BY time DESC

Listing 12: Pseudo@QL Q9 answer query

Query result comments: This answer yields rows containing concatenated descriptions
of each DataProcess event related to each personal data entity and the country of the

o8

Bus Buus Bus (wasAsg) Buus [ssac014EIRq UBWS {Buins:aLeu {Bus:rewsa‘Bun B
‘0l J(weishs) Buns cyoyd | roperegewsiu s ag] insBums aweu} 1s1asn Buns:paijipo| 1equesn Breq
wawi'bums:auoyd}| -euosiad]
Buns Buns [nu (wasig) [m1epdnEel {Bums:aweu {Buiysrews’Buu [e
Bums 0] |(ddy) Bums (Oodd [BQissatoidereq waad] ans Buis:aweu) isasn Buns:paijipo| reQiasn B
ey Bums:auoyd}| -euosiad]
Buns Buns Buns (weisAg) Buys [ssanoidereqiusws | [Bums:aweu {Busziosua [e1E
01 (weisds) Buns -oy4 | ropereqrewaiu)‘ua ag] ins Buuis:aweu} | s Bulis:palypopaw [Qlosuas eieq
nsquinuaieyuesyl -jeuosiad]
Bus Jinu [nu (1asn) [ssa0oyE {Buins:aLeu {Bus:iosua [E1E
Buns ;0] |(ddy) Bums - yodd [eq ssenoiderequsag] ins Bums:aweu} | s Bulis:paiypopaw | Qlosuag eleq
n'laqunuaeyueayl| -euosiad]
Buns Buns [nu (wasig) [m1epdnEel {Bums:aweu {Bus:paippopy [erequon
Bumis 0] |(ddy) Bumis (odd |BQ ssacoideeg waag] insBums:aweu} | awnsBuys jo 1s1): [duosgng ereq
siasnaaquosgns‘hu| -jeuosiad)
u3stIasnagquasgns}
awn A Anun uonduosaquana adA | ssao0idelep uosiad eleqEUosIad adA) pd

unod Alugol

02 Ayuguiody

Figure 32: PseudoQL Q9 answer query result

99

entity from which the data derived and of the entity to which it has traveled (if such
information does not exist for the given entities, null is returned). This answer may be of
special interest to a human expert, such as a regulator, for inspecting the countries from
and to which personal data entities may travel (e.g. whether EU borders were crossed).

60

3.4 Demo

In this section, we demonstrate our method on an example instance of our Remote Patient
Monitoring System using the Neo4j graph database and the Cypher querying language.
This System is based off of the instantiated architecture illustrated in Fig. consisting
of FIWARE services (running on the OpenStack infrastructure), including dummy data
for representing the properties of users, personal data, consents, data usages, and all the
rest of the instance’s components. [51][52]

Creating the equivalent property graph, as illustrated in Fig. [34] is accom-
plished by first running the Cypher parameter-related query [24 which creates the dummy
data (by binding key-value pairs of data to parameters). After that query has ran, we
run the Cypher query that creates all the necessary nodes and relationships. Both
queries are presented in the Appendix m Finally, we run the Cypher answer queries
presented in the following subsections and inspect their results.

Assumptions: For the purposes of limiting the complexity of our graph and providing
a clear view of our method without getting lost in data specifics, we have made the
following assumptions about the information held in our instantiated system:

e There are two consent types:

1. Terms & Conditions
2. Patient Emergency Condition

e There are four types of data processing events:

1. Internal data movement
2. Data Access
3. Data Update
4. Data Export
e Our instance only holds information about all the users, devices and services which

employ REST Service Security. For the sake of simplicity, role, permission and
XACML information data was excluded from this demo]

7Queriesand and the following answer queries can be run and inspected in any running sandbox,
cloud, desktop or containerized deployment of the Neo4j database.

8For matters of convenience, we bound the instance’s data (properties) to Cypher parameters prior
to executing our main import query. To explore the specific data used to populate our nodes and
relationships, you may inspect the :param query JSON objects (query

61

IIIIIIIIIIIII

01~ d3L03NNOD

J0SsAN

e =TT Jawo) gqgobBuopy

[——

821047Yiny 3201A8) - WPI <
[= E]

BN snubifo
E]
21607
ddy
s | L
JENGIE gagobuoly
= ddv gem BUlIM @meﬁcoo uouQ
>
aoBIB)U| 821A8(] BWIIA Buikisnp ao1naq
E] E E]

’ .\ M -_ 14.

--- " " ' 40714V -—
- ! uipy ! '

S : s38n «—

H CoTTT o 0LT0ALYITH

L
L

Figure 33: Instantiated Remote Patient Monitoring System architecture diagram

62

Adam

Wilmad

ist
MongoDB

= e o
o LA
AuthzForce pad Wilma3 #’
r;-' Comet cm%
{

AL

Wilma2

Cyanus
QAuth 2.0

Figure 34: Instantiated Remote Patient Monitoring System graph

63

3.4.1 Answering the compliance questions

These queries were based off of the Pseudo@L answer queries presented in|3.3.2] Cypher’s
MATCH clause is equivalent to PseudoQL’s SELECT command, whereas self-explanatory
functions and expressions such as as EXISTS, CASE, etc. are mostly the same. [53]

3.4.1.1 Answer 0. What are the fundamental data entities?

MATCH (e)
WHERE e:Device or e:Person or e:User
RETURN LABELS(e) as type,

e as fdDataEntity

Listing 13: Cypher Q0 answer query

type fdDataEntity

lD evice HeartRateSensor] [[name:hrs description:A sensor device that tracks your heart rate }
[Ferson] tname:Pat.surname:Williams}

[Person] fname:Doc,surname:Brown}

[Person] tname:Adam,surname: Smith}

[User, Patient] fname:uPat}

[User,Doctor] fname:uDoc}

[User, Admin] fname:uAdam}

Figure 35: Cypher Q0 answer query result

64

3.4.1.2 Answer 1. What data do you have?

MATCH (pd:PersonalData)-[:BELONGS_TO]->(p:Person)
RETURN LABELS(pd) as pdType,

pd as personalData,

p as person

Listing 14: Cypher Q1 answer query

person

heartRate:100.0,timeModified:2018-12-

pdType personalData
11720:08:13.538991+03:00,sensor:hrs}

[PersonalData, SensorData]

{name:Pat.surname:Williams}

ltphone:+306900000001, user-uPat timeModified:2018-12-
[PersonalData,UserData] 11T12:31:14.645876+03:00,email-patwilliams@domain.com}

{name:Pat.surname:Williams}

subscriberUser:.uDoc, timeModified:2018-12-
[PersonalData, SubscriptionData] [11T16:01:16.645876+03:00,subscribeelsers:[uPat]}

{name:Doc,surname:Brown}

’{ph one:+306900000002,user:uDoc timeModified:2018-11 -

[PersonalData,UserData] 26T15:01:10.648376+03:00,email-dochrown@domain.com}

{name:Doc,surname:Brown}

’{ph one:+306900000003.timeModified:2018-11-

[PersonalData, UserData] 25T10:12:03.448076+03:00,user-.uAdam,email-adamsmith@domain.com}

{name:Adam,surname:Smith}

Figure 36: Cypher Q1 answer query result

65

3.4.1.3 Answer 2. Where is the data stored?

MATCH (p:Person)<-[:BELONGS_TO] - (pd:PersonalData)
OPTIONAL MATCH (pd)-[:STORED_IN]->(db:DB)
OPTIONAL MATCH (db)-[:PART_OF]->(dbS:Service)
RETURN LABELS(pd) as pdType,
pd as personalData,
p as person,
LABELS(db) as DBType,
db as DB,
CASE
WHEN EXISTS((db)-[:PART_OF]->(dbS)) THEN
dbS.location
ELSE
db.location
END as location,
CASE
WHEN EXISTS((db)-[:PART_OF]->(dbS)) THEN
dbS. country
ELSE
db.country
END as country

Listing 15: Cypher Q2 answer query

66

Ho| uoiyeley {gr o guoisieagg co_umu_ucm__.ﬂ [aare {ynwis awe {Wwoo urewop@Lyiwsiuepe;| [ereqiasn BreqEUOSIad]
-ny 2 p Jasnuondussap 10sAp awenluoneey gQ waisAs]| wns wepy aweul| relwa WepyNI8sN 0 E0+9/ 08 S0-ZT0T LS
T
-8T0Z:PaYIPOWELIN £ 0000000690+ Buoyd

Ho| uoipesy {gT 0 gruoisiaa‘gQ uoeanuay) [gae {umaig:aw { woorurewop @umoigoop:|rews [ereqiasn ‘ereQEUCSIad]
-ny 2 p JasnuonduosapOsAp aweuiuoneey‘gq waelsis]| euns‘oogiaweu} ‘00°£0+9/E879 0T TOSTL9Z-TT-
8T0Z-PaUIPONBWN 20N-I8SN 200000006908+
auoyd

Ha| uoipelsy {70 yiuoisian’gq aquos| [aa {umoug:aw {iegn] [elequonduasgns eleqeuosiad]
-gns-ysignd Jasn-uondussap'ggobuop gnsgng aaiwaisAs]| euns aoqiaweul s1asnaaquasqns 00e0+9/85F9 9T TO9TLTT
gnsqnd:aweu} -ZT-8T0Z:PRlIPopRELIN 20N Iasnlaquasgns

Ho| uoiqelay {gT o guoisiaagg co_“mu_ucm_ﬂ [aare {sLelma { Wwoa urewopd) [e1eqiasn BreqEUOSIad]
-y 2 P lesnuonduosap DsAn aweliuoneey ‘ga walsAs]wewnsed aweu)| swemied: | ewa’ 0y e0+9/8589 FTTEETLTT
!
-BT0Z-PaI{poBLIN 1B 4NZISSN TON00000690E +
-auoyd

Ho| uoipelsy {07 0" pruoISIa A'uclpEIaY uoITEd0| g [gafuosiy’ {sLwel e {s1y2105UBs QY C0+TEE6ES ET-R00ZLTT [ereQIOSUAS EIEQ[EUOSIaS]
AloisiH Josuas aley| a0lues 'ga walshs]|wewns ey -aweu} -ZT-8TOZ PRUIpPONBWI (00T @TeyLEaY

yeay:uondussap yo:Aaunca goobuoy
1siyaweul
Anunoo uoipeEag| aq| adf1gq uosiad eleqEUcsad adA | pd

Cypher Q2 answer query result

Figure 37

67

3.4.1.4 Answer 3. How and when did you obtain the data?

MATCH (de)<-[:RELATED_TOQ] - (pd:PersonalData)
- [:BELONGS_T0] ->(p:Person)
OPTIONAL MATCH (p)- [prov:PROVIDED]->(c:Consent)
-[:0F_TYPE] ->(cT:ConsentType)
RETURN LABELS(pd) as pdType,
pd as personalData,
p as person,
de as fdDataEntity,
Cc as consent,
cT as consentType,
prov.time as timeConsentProvided

Listing 16: Cypher Q3 answer query

68

00-€0+9L08%7 E0-ET-0T1SE
“TT-8T0%]

{"suompuoa pue swie abiesn
1asn [e1auag uonduasap’suonipuo)
P SLUIS | BWEl

(00-€0+9.08VY €O-ET-0TL5Z
-TT-8T0Z-patealjaLu,

{wepyn:aweu

{pws:a
LUELINS WPy aLueu}

{woo urewop@)
JUILUISLUEPE:|[BWa WepyN Iasn 00 €0+ 9/ 08P €0°ZT /0T 157
-I1-8T0Z-PRUIPONBLIL E0000000690€ +:8uoyd

[erequesn e1EQRUOSIBL]

00°€0+9£879 0T:20°GT 197 {"suonipuoa pue suuay abesn| {00:£0+9./E879 0T-20:ST19¢ {pogn:awey {umoig [ereqiesn eregeuosiad]
-TT-8T0g| 1@sn perauaguonduosap’suonipuod) -TT-BT0g palealnawn, “ALUBLINS D00 aWeu}| WoD uIeLLIop S UMoIg20p: rewa 00 £0+9/ £879 0T T0:ST 19|
® SUUB | ‘aUIRY -TT-8T0Z:P3YIPOBWI 30gN-I9SN 20000000690 +:3uoyd
00°€0+9/£879 01:20°GT 197 {"suonipuoa pue suuey abesn| {00:60+9./E879 0T-20:5T 19¢ {pogn:aweu {umoig {[redn]:s1esn2aquosgns 00:60+9/8579 9T-TO-9TLTT [eyequd)
-TT-8T0g| 1@sn [ersuaguonduosap suonipuo) -TT-8T0gZ palealnawn, “aLUELINS D0 aLUEel) -ZT-8T0Z palypojyawn sogn:asnlagquosgns) nduosqns “eregeuosiad]
& SLUia | Jaweu
00°€0+98599 €T -ZC2TLTT, [suonipuod pue swis) sbesn| [00:£0+9/8579 ET-26 2T 11T, fregnaueu {swelny {w[lereqiesn eregeUosag]
-ZT-8T0g7] 19sn [elausgy-uonduosap sUORIPUDD) -ZT-8T0Z palealnaun; “alBLINS Ted aweu}| 0o urelop@sirel|mied: rewa 00 e0+9/ 8579 vT TS ZTLTT
® SWa | -aurey -ZT-8T0Z:P3IPOBIIN BN IS TO000000GI0E + Buoyd
00°€0+9/8599 LT ZEZTLTT {uonipuo uonenyis AausBiaws| [00°€0+9/85v9 LT ZE ZTLTT] {regn-aueu {sweIfny {w(fereqiesn eregEUOsIa]
-ZT-810z] wieay usned-uonduosap uonipuod) -ZT-8T0Z:pateaI e “ALBLINS Ted awweu)| 02 urelop@se]|imied: rews 00 c0+9. 8579 T TE ZTLTT
Aouafiaw3 waned auey ~ZT-8T0Z-P3YIPOBIIN TE N J8SN TO0000006I0E +-8uoyd
00°€0+9/8579 £T-2EZTLTT, ["suonipuoa pue swisy sbesn| [00£0+9/85V9 €T.2€ 2T LTT] [arer uEay {swenmy {S1-10SU8S 00-C0+T6A6ES £T-80-0ZLTT] [e]

~Z1-8T0%]

1asn [e1auag uonduasap’suonipuo)
B SLUIS | BB

~ZT-8T0Z-patealdaLu,

ok S:2EN 1BLY) 821437 105
-uas yruonduosap'siyaiwey

“ALBLINS T aweu}

-ZT-BT0Z:PAUIPOINELI (00T 1Ry HEaY

EQI0SUSS Bl eu0siad]

00-E0+9./85¥9 [T-ZE-ZT1TT
L1810

{"uompuoo vonenus Aouabiaws
Lp[eay usned uonduassp uoypuos)
Aouafialwg juaneg:alweu

{00°£0+9/85v9 I TZE 2T LT]
ZT-8T0Z:patEaIDawy,

{-a1e1 yEay
1ok S3oB1 JEY) 821A8P 105
-uas y:uonduasap'siyawey,

{swen
BLBLINS Ted alueu)

{511105U8S 00°E0+ T66GES ET-R00Z LTT]
~CT-8T0Z PRYIPOBLIN O Q0T Sy uEay

[=
B(JI0SUSS Ble(euosiad]

papianigiuasuodaiun)|

adA uasuoo

UEEU0D)

Anuzeregpy

uosiad

ejeqeucslad

adf) pd

Cypher Q3 answer query result

Figure 38

69

3.4.1.5 Answer 4. Why do you have the data?

MATCH (pd:PersonalData)-[:BELONGS_TO]->(p:Person)
MATCH (p)-[:PROVIDED]->(:Consent)-[:0F_TYPE]->(cT:ConsentType)
MATCH (cT)-[:ENABLES]->(du:DataUsage)
OPTIONAL MATCH (pd)<-[:INVOLVES]-(dp:DataProcess)
OPTIONAL MATCH (f)-[:FROM]->(dp)-[:T0]->(t)
RETURN LABELS(pd) as pdType,

pd as personalData,

p as person,

COLLECT(du) as dataUsages,

LABELS(dp) as dpType,

dp as dataProcess,

[LABELS(f), f] as from,

[LABELS(t), t] as to

Listing 17: Cypher Q4 answer query

70

dType

personalData

erson

[dataUsages

feType

[dataProcess.

PersonalData SensorData]

hearlR ate:100.0 timeModified:

LlTZD DB 13.530091+03:00,sen
Si

{name:Pat sumame:Wilia
ms}

g
name:Sensor Data AUTo-send-
fng. description: Automatic
fransmission of health-related
lata (generated by the heart
fate sensor device) to services
ithin the Remote Patient Moni-
oring infrastructure},
{name: Personal Data Gen &
[Processing description: Generati
fon of health-related sensor
ldata, user data and subscription
lata and its processing by
Imeans of internal data mov e-
Iment. data access, update and
lexport} fname-Emergency User
[Data Export description-Export
lof personal patient data to an
lexternal, third party ambulance
lservice (in case of an emer-
lgency health situation)}]

[Event DataProcess IntemalData
[Movement]

[timeCreated:2019-04-
(08T09:01:03 508032+03:
oo}

[[System Service, Devicelnterface] {name:Device Interface
[Service. country: GR, description:Device Interface
|Senvice,location:Heraklion,v ersion j]

[1System.Service PEPPIo
ne:Wilma3, country-GR

desl:npt\on https/fiware-

Ipep-

lproxy.readthedocs io,locat

fion: Heraklion,version]

PersonalData UserData]

phone:
306000000001 useruPa e
Motified:2018-
5104 eacireeos 00.em

name:Pat sumame-Wilia
S

fransmission of health-related
ldata (generated by the heart
Irate sensor device) to services
ithin the Remote Patient Moni-
oring infrastructure},
{name: Personal Data Gen &
[Processing description: Generati
lon of health-related sensor
ldata, user data and subscription
lata and ts processing by
Imeans of internal data mov e-
ment, data access, update and
lexpart} {name:Emergency User
IData Export description: Export
lof personal patient data to an
lexternal, third party ambulance
lservice (in case of an emer-

[PersonalData, UserData]

|+306900000001. user uPattime

Modified-2018-1

11T12:31:14 M537S< 03: DD em
m}

name:Pat, sumame: Willa
Ims)

Event DataProcess DataExport]

litime Created:2019-04-
[15T17:06:00.27773+03:0)

(U

[1Systom. 0B RelationaDB (e ySQL descrptio User
Id DBversion6.0.16]

I[ThirdParty AmbulanceSe
Ivice] {name: Emergency
[Ambulance
[Service.description First
leid emergency ambulance
lservice J]

lgency health situation)}]
name-Sensor Data Auto-send-
g, description: Automatic
fransmission of healthrelated
lata (generated by the heart
frate sensor device) to services
ithin the Remote Patient Moni-
oring infrastructure},
(name: Personal Data Gen &
[Processing description: Generati
lon of health-related sensor
ldata, user data and subscription
ldata and its processing by
Imeans of internal data mov e-
Iment, data access, update and
lexport} nam ency User
IData Export. nesmptmn Expm
lof personal patient data to an
lexternal, third party ambulance
lservice (in case of an emer-

PersonalData UserData]

JDSDDDDDDDM timeModified-2

ZSTLD 1203 448076+03:00 use
I-uAdam,email

name:

Imain.com)

jth}

[Event DataProcess DataAccess]

ktimeCreated:2010-04-
110T11:15:00.448076+03:

oo

[[App WebApp] {name:MyHeartMonitor, description:A pa-
ient heart rate monitoring web app}]

[[User Doctor],
name-uDoc]]

lgency health situation)}]
a Auto-send-
g, description: Automatic
fransmission of health-related
ldata (generated by the heart
fate sensor device) to services
ithin the Remote Patient Moni-
oring infrastructure],
name:Personal Data Gen &
[Processing description: Generati
lon of health-related sensor
lata, user data and subscription
ldata and its processing by
Imeans of intenal data mov e-
Iment, data access, update and

jnuil

Inuil

nullnull]

nulnul]

PersonalDat;

subscriberUser uDoc, timeModi
ed:2018-12-
[L1T16:01:16.645676+03:00,5ub|
lscribeeUsers:[uPat]}

(name:Doc, sumame: Brow
I}

lexporty]
name-Sensor Data Auto-send-

ing.description: Automatic
fransmission of health.related
ldata (generated by the heart
frate sensor device) to services
ithin the Remote Patient Moni-
oring infrastructure},
name: Personal Data Gen &
Proceseing deccrpion: Generat
jon of health-related se
ata, user data and subsmpm.n
ldata and its processing by
Imeans of internal data mov e-
ment, data access, update and
xport}]

[Event DataPr DataUpdate]

fitime Created:2010-04-
15T 17:06:00.27773+03:0)

0}

[[App WebApp] {name:MyHeartMonitor description:A pa-
ient heart rate monitoring web app}]

[[System.DB,RelationalDB)

name:MySOL, description
[User Id &Authent\:a{mn
IDB.version:8.0.16}

ne:
|+306900000002,user uDoc, ime|
Modified:2018-11-

[26T 15:01:10.648376+03: DD em
il

ata Auto-send-

ing.description:Automatic
fransmission of health-related
lata (generated by the heart
rate sensor device) to services

ithin the Remote Patient Moni-
foring infrastructure},

fname: Personal Data Gen &
[Processing description: Generati
fon of health-related sensor
ldata, user data and subscription
ldata and its processing by
Imeans of intenal data mov e-
ment, data access, update and

ol

nul

[PersonalData, UserData]

name:Doc, sumame: Brow
I}

lexport}]

[mull.nul]

i]

Figure 39: Cypher Q4 answer query result

71

3.4.1.6 Answer 5. Who has access to the data?

MATCH (pdOwnerUser:User)-[:RELATED_TO]->(p:Person)

<- [:BELONGS_TO] - (pd:PersonalData) - [: STORED_IN] ->(db:DB)
OPTIONAL MATCH (otherUser:User)-[CAN_ACCESS_DATA_OF]->(pdOwnerUser)
RETURN LABELS(pd) as pdType,

pd as personalData,

p as person,

LABELS(db) as DBType,

db as DB,

pdOwnerUser,

COLLECT (otherUser) as otherUsersWAccess

Listing 18: Cypher Q5 answer query

72

{wrepyn:awew

{aToguosangg
uonEINUAYINY ¥ p| Jasn:uonduosap DA awe

[aareuoneey gq weisAs]

{yILS BLELINS Lepy-aLUEL)

{wos urewop @iy
L9 LWIBPYN-I3SN 00:E0+ 0/ 08FY E0°ZT 0T L5g
-TT-8T02 PRYPONAWL 00000006908 +:3uoyd

wsLuEpE

[ereqiasn eregreuosiad]

[{urepyn:aweu]] [oognaweu [aT 0 gruosiea gq| [gaeuonepy g waisis] [umoig:alwewns sog-atlew) {wo| [eeq@iesneRQRUOSIad]
uoEINUSYINY ¥ p| JasnuonduosapHSAp el I UBLLIOP @ UMOIGI0P: IEWa 00 £0+9/ £8F9 0T TO'STL92
-1
-gT0Z PaIJIpojaLIn 00N 18SN°Z0000000690¢€ + 8uoyd
[{wrepyn-aweul] [oogn-aureu {y 0 puoisian'gq aquosqng) [aggnsong’gq waisig) {umoigrawrewns sogaweu)) {ledn]siasnaaquasqns gy g0+9/8579 9T TO9TLTT [e1eQ
-ysiignd Jasn:uonduasap ggofuoy gnsgnd:awreu -ZT-870Z-palyipoawn sogn.asnaguosgns)uonduasgng elegeuosiad
[{wepyn:aweu} {oogn:aweul] {mgnaweu {aT 0 guoisie A gq| [gareuoneey ggwaisAs] {swep awewnsed:aweu} {woo| [ereQIasn EEQRUOSIad
uonEDNUAYING ® P 18sn uonduosap DsApawey ‘UreLIOp@SLuel|Imed:|BwWa 00:00+9. 8579 T TS ZTLTT
4!
-BT0Z:PIIPOINBWI 14N 185N ' T0000000690E +:8uoyd
[{wepyn:aweu} faogn:aweul] {®gnaweu {0T o vuoisiaa‘uoippesayuoneao'gql [gafosigeniuag ggwaishs] [swepaweunsedaweu} {sIyr105UBs 000+ TAEES €T 80:0Z LTT|[ereqiosuas eleqgEUOSIad]
Ainsiy Josuag aley -ZT-BTOZ-PAIHPOELIN) 00T Bl yuEaL}
yeay:uondussapyo:-Agunoa ggobuopy 1siy:auneu
SSE00y\Slasryayio| esppaumopd aad ad41aq| uosiad ejeqeucsiad adf) pd

Cypher Qb answer query result

Figure 40

73

3.4.1.7 Answer 6. Do you have permission to use the data? For what
purposes?

MATCH (pd:PersonalData)-[:BELONGS_TO]->(p:Person)
OPTIONAL MATCH (p)-->(c:Consent)
-[:0F_TYPE] ->(cT:ConsentType)
- [:ENABLES] ->(du:DataUsage)
RETURN LABELS(pd) as pdType,
pd as personalData,
p as person,
COLLECT(du) as dataUsagesEnabledByPerson,
EXISTS((p)-[:PROVIDED]->(c)-[:0F_TYPE]->(cT)
- [:ENABLES]->(du)) AND
NOT EXISTS((p)- [:REVOKED]->(c)
- [:0F_TYPE] ->(cT) - [:ENABLES] ->(du))
as permissionToUseData

Listing 19: Cypher Q6 answer query

74

pdType

personalData person

datallsagesEnabledByPerson

permissionToUseData

[PersonalData, SensorData]

heartRate:100.0 timeModified: 2018-12-
11T20:08:13.539991+03:00 sensor:hrs}

{name:Pat,surname:Williams|

name:Sensor Data Auto-
sending,description-Automatic
transmission of health-related data
(generated by the heart rate sensor
device) to services within the Re-
mote Patient Monitoring infrastruc-
ture}.{name:Personal Data Gen &
Processing, description:Generation
of health-related sensor data, user
data and subscription data and its
processing by means of internal
data movement, data access, up-
date and export}]

true

[PersonalData UserData]

phone:
+306900000001, user:uPat timeModified:2018-12-

ain_com}

11T12:31:14.645876+03:00 email:-patwilliams@dom [{name:Pat,surname:Williams|
}

[{name:Emergency User Data Ex-
port,description:Export of personal
patient data to an external, third
party ambulance service (in case of
an emergency health situation)},
name:Sensor Data Auto-
sending.description:Automatic
transmission of health-related data
(generated by the heart rate sensor
device) to services within the Re-
mote Patient Monitoring infrastruc-
ture}.{name:Personal Data Gen &
Processing.description:Generation
of health-related sensor data, user
data and subscription data and its
processing by means of internal
data movement, data access, up-
date and export}]

true

[PersonalData, SubscriptionData]

subscriberUser-uDoc. timeModified:2018-12-

11T16:01:16 645876+03:00,subscribeeUsers:[uPat]}|{name:Doc, surmname: Brown}

[{name:Sensor Data Auto-
sending.description:Automatic
transmission of health-related data
(generated by the heart rate sensor
device) to services within the Re-
mote Patient Monitoring infrastruc-
lture}.{name:Personal Data Gen &
Processing,description:Generation
of health-related sensor data, user
data and subscription data and its
processing by means of internal
data movement, data access, up-
date and export}]

true

[PersonalData,UserData]

phone:
+306900000002_user:uDoc timeModified:2018-11-
26T15:01:10.648376+03:00 email-docbrown@domai

[{name:Sensor Data Aufo-
sending.description-:Automatic
ransmission of health-related data
(generated by the heart rate sensor
device) to services within the Re-
mote Patient Monitoring infrastruc-
[ture}.{name-Personal Data Gen &
Processing,description:Generation
of health-related sensor data, user
data and subscription data and its
processing by means of internal
data movement, data access, up-

n.com} {name:Doc, surname:Brown}

date and export}]

true

Figure 41: Cypher Q6 answer query result

75

3.4.1.8 Answer 7. Is the data secure?

MATCH (p:Person)<-[:BELONGS_TO] - (pd:PersonalData)
-[:STORED_IN] ->(db:DB)
OPTIONAL MATCH (fdEntity)-[:RELATED_TO]->(p:Person)
OPTIONAL MATCH (db)-[:PART_OF]->(serviceOfdb:Service)
OPTIONAL MATCH (restServiceSec:RESTServiceSecurity)
<-[:ELEMENT_OF] - (secElem)
RETURN LABELS(pd) as pdType,
pd as personalData,
p as person,
LABELS(db) as DBType,
db as DB,
CASE
WHEN "Service" IN LABELS(db) THEN
EXISTS((fdEntity)
- [:EMPLOYS] ->(restServiceSec)) AND
EXISTS((db) - [:EMPLOYS]->(restServiceSec))
ELSE
EXISTS((fdEntity)
- [:EMPLOYS] ->(restServiceSec)) AND
EXISTS((serviceO0fdb)
- [:EMPLOYS] ->(restServiceSec))
END as isDataSecure,
[LABELS (restServiceSec), restServiceSec]
as securityType,
COLLECT([LABELS(secElem), secElem])
as securityElements

Listing 20: Cypher Q7 answer query

76

Tuondiosep Aunoas Aey| s suweu] aunossAasmasepy TTuondiosap Aaunosg] S (010 v UossuoipEiey tonEoor g [80R0EIHe01meS g0 WereAS] [SWE i suswns 12 g swe) [SIU10SUB= 0060+ T666ES ET-80-021TT] [ErEquosuss BEqEUos g
IIHnsu tpneoy; s 07 pnyorawelfzinyall] 8d1mes 1S3y surU} [Aunossadiuas 1STY]] Aoisi Josuss arey ~ZT-BT02PAIPOPAWIN'0 00T "BTENIEaU}
ueay-uonduosap 4o Anunoo ggobuoy|
1510 2ureu)
Taunaas Kay) aisei awed]’ SHIISEN, [uondiasap Aaunoag) ET Tr 0 p oI 4'ad aquasans usiand] [80AnSand 50 WasAs]| (Umoig awewuins 20q-auew)] [leanfsiast 00°60+9.8579 9T-T0:9TLTT| [erequonduosans eeqreusiad]
-1I'[{nau ypmeoy; s 0z wnygeweu fepnyoll] 8aimes |S3y sweu) | 185 153] Jesn 8q0buoyy gnsqnd sureu] -ZT-8T0Z-PAHIPOWBLIR DogN-Iss)
Tt aunoas Aay Jaiseiyawed) SHASEY, [Cuonduasap Aunoag] an (ST 0'8:UOISI2'5Q UonEIRULY [BQrEUoRERY 80 WaAS] EWENA SWewns g o) (wos U2 00- 009859 FT-TE 2 TLTT [eeqies eeqEuesiag]
-1I'[{nau ypmeoy; s 0z wnygeweu fepnyoll] 8aimes |S3y sweu) | 185 153] -nY ® pliesn 10SAWN By -Z1-8T02 PAIIPONBWI TEgN Jasn” +-8uoyd
Tt aunoas Aay Jaiseiyawed) SHASEY, [Cuonduasap Aunoag] e oT0guIsian'gq uonzanuay) [GQrwmERY a0 WereAs] [umoig sueumssog W] [woa [ELU2'00-60+9.£879 0T-T0:ST 17| [Eeqiesn eEqrEuos]
-1I'[{nau ypmeoy; s 0z ynygeweu fepnyoll] 8aimes |S3y sweu) | 185 153] -nY ® pliesn 10SAWN By -T1-8T0Z PaYpopyaW‘30Qn 18sn’ +-8uoyd
T-uondiosap Aumoas Aey 1isep sureu] [aunossAasaisey, [Fuonduosap Aunosg] ET T5T 0 8 Uorsia'aQ UonEoRue [GQrwoNERY 80 WereAS] [ILS swsuns wepy swed) Jweo U TEeqres e qEuosa]
IIHnsu tpneoy; s 07 pnyorawelfzinyall] 8d1mes 1S3y surU} [Aunossadiuas 1STY]] Ny B P 1950 UONALISAP TOSAN Bk OP@UWSLLIEPE’| LIS WEPYR‘IBSN'0°E0+94 0BFY £0°ZT 0T 167
118102 ' +-suod
s1uswWa[3Aunaas| adfk | Aunoas| anoageregs aq| adA1gq]| uosiad| e1eqeuosIad 8dA pd

Cypher Q7 answer query result

Figure 42

7

3.4.1.9 Answer 8. How does the data travel through your systems?

MATCH (pd:PersonalData)-[:BELONGS_TO]->(p:Person)
MATCH (e:Event)
WHERE e:Consent OR (e:DataProcess AND
(pd)<-[:INVOLVES]-(e))
OPTIONAL MATCH (e)-[consent_rel]-(p)
OPTIONAL MATCH (t)-[:T0J]-(e)-[:FROM]-(£)
OPTIONAL MATCH (e)-[:0F_TYPE]->(cT:ConsentType)
- [:ENABLES] ->(du:DataUsage)
RETURN LABELS(pd) as pdType,
pd as personalData,
p as person,
LABELS(e) as eventType,
CASE
WHEN e:Consent THEN

"OF_TYPE: "McT.name[" ("+LABELS(cT) [0]H
") | FOR: “Hdu.namei" (”H
LABELS (du) [0]}#]") "
ELSE
"FROM: "+f .name}+" ("#LABELS(£f) [0]H
"y | TO: "It.namei" (“H
LABELS () [0][#") "
END as eventDescription,
CASE
WHEN consent_rel IS NOT null THEN
consent_rel.timei" ("HTYPE(consent_rel)H")"
ELSE
e.timeCreated
END as time
ORDER BY time DESC

Listing 21: Cypher Q8 answer query

78

([@3aIn0Hd] 00°60+9.85F9 £T'2E 2T LTT-2T-8T0¢]

(abesnereq) Bussasold 3
Uag) B1eq [BUOSBY YO | (8dA1IuBsU0T) SUONIpUD]) B SULS | 'IdAL 40|

[uasuonuang]

{SUrelW BURLINS T g aLUEl

ZT-BT0Z P34 POWBLNTESN 198N T 00000 00BI0E+ m:o;n

([@3aIn0Hd] 00°60+9.85F9 ET'2E 2T LTT-2T-810¢]

(aBesneeq) Bupuss
-0y BreQ U0sues Hod | (2dAjuasuog) suonipuo) B SWa | 3dA 140

[uasuonuang]

{SUrelW BURLINS T g aLUEl

{0y urewop G SUL IMed: fe LB 00 £0+9, 858 FTTEZT1T]
ZT-T02 P24 PO WL YEGN-1SN 10000000690 €+-3toud

([@3aIAOHd] 00°60+9/85F9 £T'2E 2T LTT-2T-8T0¢

(abesnereq) Bussanold |
uag eleg [euosig HOd | (2dAjuasuod) suonipuo) 2 swia | 34l 40|

[uasuonuang]

{SUrelW BLURLINS T aLUEl

{81y 105UBS" 00'E0+ THEAES €T 80°0Z LTT-ZT-BT0Z PAIIPOBLIN'Q 00T B1By1LEay

(@3Q1A0Yd) 00-€0+9.859 €T-2E-ZTLTT-ZT-8T07

(abesneeq) Bupuss)
-0y BreQ U0sues Hod | (adAiuasuog) suonpuo) B SUa | 3dA 140

[uasuo)wang

SRl aLreuIIns Ted atuey

{Si\-105Uas"00:£0+ T666ES ET-80-02 LTT-21-8T0Z-PAYIPONBLIID 00T -a1eyeay

00-60+9.8579 LT-2E-¢TLTT-C1-810¢

(aBesneeq) vodx3 e1eq Jasn Aouad|
-13W3 YO | (sdh ussuog) uonipun) Asusbisuz waned ‘IdAl 40

[uasuo)wang

[YWS aureuIns wepy-awey

{Wod urLop@ LpILSLIE pE:jBWa | WIS 00-£0 +9L 087 €

00-80+9185¥9 [T-¢E-¢T1T1-Z1-810¢]

(abesnereq) vodx3 e1eQ Jasn Aouab)
-13W3 YO | (sdh ussuog) uonipun) Asusbisuz waned ‘IdAl 40

[uasuonuaad]

{umoig alewns 20Q:aLel

10D U0 pE W0)420p LU 00 £0+9/ 879 0T T0.ST197
“TTAT02 PAYPONBLR 200N 138N 700000 00630+ BUoLd

00°€0+9.85P9 " LT-ZECTLTT-ZT-8T0Y)

(abesnereq) vodx3 e1eQ Jasn Aouab)
-13UW3 YO | (sdh ussuoy) uonipun) Asusbisuig waned ‘IdAL J0

[asuo)uang]

{UMoIg ALLIBLINS D0 ALUIEU

{lregnl-siasneequasqNs 00-£0+9. 8579 9T-TO-OTLTT|
212102 P2 O 8L 20gNIasSYaquasgns,

([@3aIn0Yd) 00°€0+9.85P9 LT 2L TTLTT-2T-2T0¢]

(aBesnereq) vodx3 v1EQ Jasn Aousb|
-18w3 "4 04 | (edA j3uesuo]) uonipue) Asusbews wened -34A1 40

[asuo)uang]

{SULR||W BLUIBLINS T g aLlEL

{woy upwop@) sum ed fBLa‘00'e0+9, 8579 ¥T TE ZTLT]
Z1-8T0Z PEUIPOIN BWN TE4N-I8SN TO000000AI0E+-2uayd

(@3aINn0Yd) 00°€0+9.85P9 LT 2L ZTLTT-ZT-2T07

(aBesneeq) vodx3 v1EQ Jasn Aoush)
-18w3 "4 04 | (edA j3uesuo)) uonipue) Asusbews wened -34A1 40

[uasuo)uang]

{SUe| BURLINS T aLUEL

{81 105UBS"00'E0+ THEEES €T°20°02 LTT-ZT-8T0Z PAYIPOJBLIN'Q 00T B1ByLEay

00-£0+Z£080S £0-T0-60180-#0-610¢|

(w=sfs) cewpm -0 | (weisds) eiues adepaiu| 83imag -NOH4|

[luaLua Ao ereq Ews1u| SSa00ldeleq Juaid]

{SUrel i aLIewIInS Ted atuey

{s1y.105UB5"00-E0+ T666ES £1:80-02 LTT-Z1-8L0Z-PEYIPOELIN 0 00T -81eyLEay

00°€0+9.L087P 00-ST-TTLOT-P0-6T0Z)

(15n) 200 QL | (4dy] 101UOWMESHAN “NOE]

[ssaa0yeIeq ssacnideleq uand]

{SULR||W BLUIBLINS T g aLlEL

{wo2 urewop @ surewed:yeLia’00 £0+9, 8579 ¥1-TE-ZTLT]
ZT-8T0Z PAYIPO AW 1B4N"136N T (000000690 €+ auoyd

00°€0+ELL242700°90-LT LST-P0-6T0E]

(Arreg
-pay 1) 891ues sournguy Aoushiswl (0 | (weisis) 10SAN WO H4|

[nodxgerRq ssacndeieg uasg]

{SULR||W BLUIBLINS T g aLlEL

T wod ureWwop @ swel e d-FeLIS 0020 +9. 8599 #1 T 2T ATT]
21-T02 P2 PO WL YESN-1SN TO000000690€+-3Uoud

00°€0+ELL242700°90-LT LST-P0-6T0E]

(wa1sA5) 10SAN "0L | (ddy) 1onuopueapin “NOU

[e1pdnErRg ssannideIeg ua g

{UMoIg ALLBLLINS 20 ALUIEU

([edr's135123q035qNS 00 £0+9. 8579 9T TO'9TLTT]
-ZT-8T0Z PAIPO BWIY 20N J8syaquasqns

EINE

uonduasaqiua g

adA jua g

uosiad|

eleqreuosiad

Cypher Q8 answer query result

Figure 43

79

3.4.1.10 Answer 9. Does the data ever cross international borders?

MATCH (p:Person)<-[:BELONGS_TO] - (pd:PersonalData)
<-[:INVOLVES] - (dp:DataProcess)
OPTIONAL MATCH (t)-[:T0J]-(dp)-[:FROM]-(£f)
OPTIONAL MATCH (f)-[:PART_OF]->(serviceOfFromDB:Service)
OPTIONAL MATCH (t)-[:PART_OF]->(service0fToDB:Service)
RETURN LABELS(pd) as pdType,
pd as personalData,
p as person,
LABELS(dp) as dataProcessType,
"FROM: '[+f.nameq" iILABELS(f)[O")l T0: "M
t. name+” " BELS(t)[O]I")"
as eventDescription,
CASE
WHEN NOT EXISTS((f)
- [:PART_OF] ->(service0fFromDB)) THEN
f.country
ELSE
service0fFromDB. country
END as fromEntity_country,
CASE
WHEN NOT EXISTS((t)
- [:PART_OF] ->(service0fToDB:Service)) THEN
t.country
ELSE
serviceOfToDB. country
END as toEntity_country,
dp.timeCreated as time
ORDER BY time DESC

Listing 22: Cypher Q9 answer query

80

g O o) (washs) cewyy [aw] {swelpawewns e auweul {sIU-10SUas 00°£0+ TEGEES £T-80:02 1TT| [E1RQI0SUSS EIEQEUOSI]]
‘£0+Z£0805°€0°T0°60.180) ‘01 llwaiss) aa1uag aelE| 331430 “NOUL| 3 M0 EIRQEWSII| SSa201deB0 U AT -ZT-8T0Z°PRYIPOWBLLN'Q Q0T 1By LESY
“v0-6T07|
00| 1 (1esn) 20gn -0 [{ddy) jonuoprespApn oy [sseaoyereq ssataidereguang] {swenm swewns eq:aweu}] {woo urewopDswelmed:|ews 00:60+9/8579 PT-TEZTATI] [ElEQiesn Ereqeuosiad]
‘£0+9.08¥ 00°ST-TT.LOT| -ZT-8T0Z-PaIIPO AN TR dN2IaSN TO000000690¢€ + -auoyd
- ¥0-6T0¢)
f G| (Kregpiy]) adiuas adue| [uodxgereq‘ssaangeegiuarg] {Swelw awewns ey aueu} {woa urewop@surelwred |ewWs 00 £0+9.8570 T TEZTLTT [BRQiasn BleqRuosIa]
O°E0+ELIEZ 00°90-4T1ST] -nquy Aausbiews ‘o) lweisAs) 10SAN -WoH- -ZT-8T0Z-PRUIROISLIN 14 N-18SN TO0000006I0E +-Buoyd
#0610
0 49 I (waisAs) 1OSAN -0 L [(ddy) JonuopireaHAN WOYS] [erepdnereqssadoigereguang] {umaigiawewns aoq:awed) {[regn]:sJasn2aquasqns 00:e0+9. 8579 9T-TO9T LTT| [ereq
0:80+E 112 00°90° LT 1ST] -ZT-8T0Z PaIypojaLLn Dogn-Iasnlaquasqns)| uonduosqng ereqeuosiad)
“P0-610¢
awn Anunoo fnugoy| AnunosApugwor uonduasagiua g adk | ssaoolderep uos.ad le([EUOSId adk] pd|

Cypher Q9 answer query result

Figure 44

81

3.5 Discussion

What our work accomplishes is a means for creating compliance data reports (related
to fundamental personal data aspects of the GDPR) for a Remote Patient Monitoring
System. More specifically, the steps for designing it involve identifying all components
that use or could potentially use GDPR-regulated personal information entities (and
their relationships to each other) and building a logical model of all components and
their connections represented as a UML data model. The UML model must then be
converted into a property graph model that can be instantiated and loaded into a graph
database. Once, the data has been loaded, answer queries such as the ones we provided
can be created and run upon the graph for addressing the personal data requirements of
the GDPR. The query results provide a visual representation of how the entities of the
whole system interact with the personal data they both hold and use.

3.5.1 Determining GDPR Compliance

It is important to state that definitive decisions about compliance and non-compliance
must be made by GDPR experts. These decisions are determined primarily by the
instances of the system’s data model containing real data and not exclusively by the data
model itself. Nevertheless, the data model must be carefully constructed a-priori, based
on the provided GDPR questions so as to include appropriate GDPR-related entities
(consent, data processes, etc.) related to personal data compliance requirements, which
are crucial for determining the outcome of the compliance evaluation process.

3.5.2 Applicability

All privacy-minded applications involving personal data require and operate based on
the following mechanisms and activities:

a) data acquisition

(
(b

data exchange between users and services

)
)
(c) database storage and retrieval of data
(d) data communication with third-parties
)

(e) security for data and services and devices that it relates to

Thus, we argue that our solution is general and that it can be applied to a wide
range of application domains wherein personal data security and privacy considerations
pertaining to GDPR compliance requirements must be enforced and maintained by design
and in operation.

To show proof of concept, the effectiveness of the solution is demonstrated in a
remote health monitoring application, but it is not strictly limited, specific, nor tightly-
bound to IoT, Cloud or patient monitoring contexts.

82

Chapter 4

Conclusions & Future Work

4.1 Conclusions

In this thesis, we addressed the problem of designing a Remote Patient Monitoring Sys-
tem that can be queried with the help of a graph database for evaluating basic GDPR
compliance. Our work’s contributions include providing a step-by-step methodology for:

e constructing the a Remote Patient Monitoring System based on the requirements
of 10 GDPR-compliance-related questions

e creating reports for the evaluation of basic GDPR compliance by querying the
System’s property graph in a graph database

83

4.2 Future Work

Regarding improvements upon our work, the following ideas may prove fruitful for future
research:

e Refine the GDPR security requirements of the design process by including ‘pseudonymiza-
tion’ schemes, such as data encryption

e Utilize semantic web technologies such as OWL, RDF and Linked Data in order
to better define and possibly automate or replace the graph database operations
and/or implement SPARQL queries as an alternative to a graph query language
(such as Cypher) queries for evaluating the platform’s GDPR compliance

e Investigate the design of a “Compliance Cloud Service” as part of a Compliance
as a Service (CaaS) infrastructure, wherein a “compliance micro-service” receives
constant system changes in order to update internal graph structures and subtly
manage all issues related to GDPR compliance. For example, in a distributed
system containing an Authentication service, among other services, every incoming
request and outcoming response (such as user login or registration) may be signaled
to a Compliance Service that updates a set of nodes and relationships storing
personal data and related entities (such as users, their credentials and time of
login) offering a means for real-time compliance monitoring.

84

Appendix A

Graph creation queries

Listing 23: PseudoQL query for creating the Remote Patient Monitoring System class

diagram schema graph

// Qo

// Create nodes

CREATE (p:Person {name: 'string[L surname: 'stringm})

CREATE (upat:User:Patient {name: 'strin%p})
+

CREATE (udoc:User:Doctor {name: 'string|'l})
CREATE (uad:User:Admin {name: 'stringm})
CREATE (hrs:Device:HeartRateSensor {name: 'stringm,
description: 'stringﬂ})
// Find ezisting elements
SELECT (u:User)
// Create relationships
CREATE (u)-[:RELATED_TO]->(p)
CREATE (upat)<-[:RELATED_TO] - (hrs)
// Q1
// Create nodes
CREATE (ud:PersonalData:UserData {
user: 'string'|,
email: 'stringl'|,
phone: 'string'|,
timeModified: 'string]|
H
CREATE (sd:PersonalData:SensorData {
sensor: 'stringm,
heartRate: 'numberm,
timeModified: 'string]|
b
CREATE (subd:PersonalData:SubscriptionData {
subscriberUser: 'stringm,
subscribeeUsers: '1ist_of_stringsm,
timeModified: 'string]|
i)
// Find exzisting elements
SELECT (pd:PersonalData)
// Create relationships

85

CREATE (pd) - [:BELONGS_T0]->(p)
CREATE (ud)- [:RELATED_TO]->(u)<-[:RELATED_TO] - (subd)
CREATE (sd)- [:RELATED_TO]-> (hrs)
/7 Q2
// Create nodes
CREATE (relDB:System:DB:RelationalDB {
name: 'stringm,
version: 'strin@],
description: 'striné]
i)
CREATE (pubSubDB:System:DB:PubSubDB {
name: 'stringm,
version: 'strin@],
description: 'striné]
b
CREATE (histDB:System:DB:Service:HistoryDB {
name: 'stringm,
version: 'striné],
description: 'string],
location: 'string'|,
country: 'string
i)
CREATE (app:App:WebApp {
name: 'stringm,
description: 'stringm
i)
CREATE (appLogic:System:Service:AppLogic {
name: 'stringm,
version: 'strinﬂ],
description: 'striné],
location: 'stringl'|,
country: 'string
i)
CREATE (uIdAuth:System:Service:UserIdAuth {
name: 'stringm,
version: 'striné],
description: 'string],
location: 'string'|,
country: 'string
i)
CREATE (authPDP:System:Service:AuthorizationPDP {
name: 'stringm,
version: 'string],
description: 'striné],
location: 'string'|,
country: 'string
D
CREATE (pubSub:System:Service:PublishSubscribe {
name: 'stringm,

version: 'strin@],

86

description: 'striné],
location: 'string'|,
country: 'string
)
CREATE (dataStorage:System:Service:DataStorage {
name: 'stringm,
version: 'striné],
description: 'string],
location: 'stringl'|,
country: 'string
i)
CREATE (dataHistRecovery:System:Service:DataHistoryRecovery {
name: 'stringm,
version: 'striné],
description: 'striné],
location: 'stringl'|,
country: 'string
b
CREATE (devInterface:System:Service:Devicelnterface {
name: 'stringm,
version: 'striné],
description: 'strinﬁ],
location: 'string'|,
country: 'string
b9
CREATE (devQuerying:System:Service:DeviceQuerying {
name: 'stringm,
version: 'strinﬁ],
description: 'striné],
location: 'string|'|,
country: 'string
o)
CREATE (pepProxyl:System:Service:PEPProxyl {
name: 'stringm,
version: 'striné],
description: 'striné],
location: 'string'|,
country: 'string
b
CREATE (pepProxy2:System:Service:PEPProxy2 {
name: 'stringm,
version: 'striné],
description: 'striné],
location: 'string'|,
country: 'string
b
CREATE (pepProxy3:System:Service:PEPProxy3 {
name: 'stringm,
version: 'striné],

87

description: 'stringm,
location: 'stringl'|,
country: 'string
b
CREATE (pepProxy4:System:Service:PEPProxy4 {
name: ‘stringﬂ,
version: 'stringm,
description: 'stringm,
location: 'stringl'|,
country: 'string
b
// Create relationships
CREATE (relDB)<-[:STORED_IN] - (ud)
CREATE (pubSubDB)<-[:STORED_IN] - (subd)
CREATE (histDB)<-[:STORED_IN]-(sd)
CREATE (u)-[:USES]->(app)
CREATE (app) - [: CONNECTED_T0] -> (appLogic)
CREATE (authPDP)<-[:CONNECTED_TO] - (uIdAuth)<-[:PART_OF] - (relDB)
CREATE (pubSub)<-[:PART_OF] - (pubSubDB)
CREATE (uIdAuth)<-[:CONNECTED_TO] - (pepProxy1) - [:CONNECTED_TO]->(authPDP)
CREATE (uIdAuth)<- [:CONNECTED_TO] - (pepProxy3) - [: CONNECTED_TO] ->(authPDP)
CREATE (uIdAuth)<-[:CONNECTED_TO] - (pepProxy4)- [:CONNECTED_TO0]-> (authPDP)
CREATE (devQuerying)-[:CONNECTED_TO] ->(pubSub)
CREATE (devQuerying)-[:CONNECTED_TO]->(pepProxy4)
CREATE (pepProxy3) - [:CONNECTED_TO] -> (pubSub)
CREATE (pubSub) - [: CONNECTED_T0] -> (pepProxy2)
- [: CONNECTED_TO] ->(dataStorage) - [: CONNECTED_TO] -> (histDB)
CREATE (pepProxyl)-[:CONNECTED_TO]->(dataHistRecovery)
- [:CONNECTED_TO] ->(histDB)
CREATE (hrs)-[:CONNECTED_TO] ->(devInterface)-[:CONNECTED_TO] ->(pepProxy3)
CREATE (appLogic)-[:CONNECTED_TO]->(uIdAuth)
CREATE (appLogic)-[:CONNECTED_TO] ->(pepProxyl)
CREATE (appLogic) - [: CONNECTED_TO] ->(pepProxy3)
CREATE (appLogic)-[:CONNECTED_TO] ->(pepProxy4)
/7 Q3
// Create nodes
CREATE (c:Event:Consent {timeCreated: 'stringm})
CREATE (cT:ConsentType {
name: ‘stringﬂ,
description: 'stringm
b
// Create relationships
CREATE (p)-[:PROVIDED {time: 'string'{}]->(c)
CREATE (p)-[:REVOKED {time: 'StringHE]—>(c)
CREATE (c)-[:0F_TYPE]->(cT)
/7 Q4
// Create nodes
CREATE (du:DataUsage {
name: ‘stringﬂ,
description: 'stringm

D

88

CREATE (internalDataMovement:InternalDataMovement:DataProcess:Event {

timeCreated: 'stringm
b
CREATE (datalAccess:DataAccess:DataProcess:Event {timeCreated:
CREATE (dataUpdate:DataUpdate:DataProcess:Event {timeCreated:
CREATE (dataExport:DataExport:DataProcess:Event {timeCreated:
CREATE (ambulance:AmbulanceService:ThirdParty {
name: ‘stringﬂ,
description: 'stringm
)
// Find exzisting elements
SELECT (db:DB)
SELECT (s:System)
SELECT (dp:DataProcess)
// Create relationships
CREATE (cT)-[:ENABLES]->(du)
CREATE (dp)- [: INVOLVES] ->(pd)
CREATE (s)-[:FROM]->(internalDataMovement)
CREATE (internalDataMovement)-[:T0]->(s)
CREATE (app)-[:FROM]->(dataAccess)
CREATE (dataAccess)-[:T0]->(w)
CREATE (app) - [:FROM] ->(dataUpdate)
CREATE (dataUpdate)-[:T0]->(db)
CREATE (db) - [:FROM] ->(dataExport)
CREATE (dataExport)-[:T0]->(ambulance)
/7 Q5
// Find ezisting elements
SELECT (pat:Patient)
SELECT (doc:Doctor)
SELECT (admin:Admin)
// Create relationships
CREATE (doc)-[:CAN_ACCESS_DATA_OF]->(pat)
CREATE (admin)- [:CAN_ACCESS_DATA_OF]->(doc)
CREATE (admin)-[:CAN_ACCESS_DATA_QOF]->(pat)
/7 Q7
// Create nodes
CREATE (restServiceSecurity:RESTServiceSecurity {description:
CREATE (oauth2:0Auth2 {description: 'stringm})

'string'[})
'string'[})
'string'})

'stringm})

CREATE (masterKeySecurity:MasterKeySecurity {description: 'stringﬂ})

CREATE (role:Role {name: 'string|'[})
CREATE (xacmlRule:XACMLRule {accessControlRule: 'stringm})

CREATE (perm :Permission {name: 'stringﬂ, HTTPAction: 'stringﬂ,

resource: 'stringm})
// Find ezisting elements
SELECT (service:Service)
// Create relationships
CREATE (oauth2)- [:ELEMENT_OF] ->(restServiceSecurity)

CREATE (masterKeySecurity)- [:ELEMENT_OF]->(restServiceSecurity)

CREATE (role)-[:ELEMENT_OF]->(restServiceSecurity)
CREATE (xacmlRule)- [:ELEMENT_OF]->(restServiceSecurity)
CREATE (perm) - [:ELEMENT_OF]->(restServiceSecurity)

89

CREATE (role)-[:HAS]->(xacmlRule)

CREATE (role)-[:HAS]->(perm)

CREATE (u)-[:HAS]->(role)

CREATE (u)-[:EMPLOYS]->(restServiceSecurity)
CREATE (hrs)-[:EMPLOYS]->(restServiceSecurity)
CREATE (service)-[:EMPLOYS]->(restServiceSecurity)

Listing 24: Cypher query for creating the data parameters for the Demo’s (3.4) instan-
tiated Remote Patient Monitoring System graph

// Q0 params
:params patProps: {name: "Pat", surname: "Williams"},
docProps: {name: "Doc", surname: "Brown"},
adamProps: {name: "Adam", surname: "Smith"},
uPatProps: {name: "uPat"},
uDocProps: {name: "uDoc"},
uAdamProps: {name: "uAdam"},
hrsProps: {
name: "hrs",
description: "A sensor device that tracks your heart rate."
3,
// @1 params
PatudProps: {
user: "uPat",
email: "patwilliams@domain.com",
phone: "+306900000001",
timeModified: "2018-12-11T12:31:14.645876+03:00"
s
DocudProps: {
user: "uDoc",
email: "docbrown@domain.com",
phone: "+306900000002",
timeModified: "2018-11-26T15:01:10.648376+03:00"
s
AdamudProps: {
user: "uAdam",
email: "adamsmith@domain.com",
phone: "+306900000003",
timeModified: "2018-11-25T10:12:03.448076+03:00"
s
DocsubdProps: {
subscriberUser: "uDoc",
subscribeeUsers: ["uPat"],
timeModified: "2018-12-11T16:01:16.645876+03:00"
s
PatsdProps: {
sensor: '"hrs",
heartRate: 100,
timeModified: "2018-12-11T20:08:13.539991+03:00"
s
// Q2 params

90

appProps: {
name: "MyHeartMonitor",
description: "A patient heart rate monitoring web app"
s
relDBProps: {
name: "MySQL",
version: "8.0.16",
description: "User Id & Authentication DB"
,
pubSubDBProps: {
name: "pubSub MongoDB",
version: "4.0.4",
description: "User Publish-Subscribe DB"
},
histDBProps: {
name: "hist MongoDB",
version: "4.0.10",
description: "Heart Rate Sensor History DB",
location: "Heraklion",
country: "GR"
},
appLogicProps: {
name: "App Logic Service",
version: "",
description: "App Logic Service",
location: "Heraklion",
country: "GR"
s
uldAuthProps: {
name: "IdM-Keyrock",
version: "",
description: "https://fiware-idm.readthedocs.io",
location: "Heraklion",
country: "GR"
3,
authPDPProps: {
name: "AuthzForce",
version: "",
description:
"https://authzforce-ce-fiware.readthedocs.io",
location: "Heraklion",
country: "GR"
},
pubSubProps: {
name: "Orion Context Broker",
version: "",
description: "https://fiware-orion.readthedocs.io",
location: "Heraklion",
country: "GR"
+,
dataStorageProps: {

91

name: "Cygnus",
version: "",
description: "https://fiware-cygnus.readthedocs.io",
location: "Heraklion",
country: "GR"
s
dataHistRecoveryProps: {
name: "Comet",
version: "",
description: "https://fiware-sth-comet.readthedocs.io",
location: "Heraklion",
country: "GR"
s
devInterfaceProps: {
name: "Device Interface Service",
version: "",
description: "Device Interface Service",
location: "Heraklion",
country: "GR"
s
devQueryingProps: {
name: "Device Querying Service",
version: "",
description: "Device Querying Service',
location: "Heraklion",
country: "GR"
s
pepProxylProps: {
name: "Wilmal",
version: "",
description: "https://fiware-pep-proxy.readthedocs.io",
location: "Heraklion",
country: "GR"
.
pepProxy2Props: {
name: "Wilma2",
version: "",
description: "https://fiware-pep-proxy.readthedocs.io",
location: "Heraklion",
country: "GR"
.
pepProxy3Props: {
name: "Wilma3",
version: "",
description: "https://fiware-pep-proxy.readthedocs.io",
location: "Heraklion",
country: "GR"
s
pepProxy4Props: {
name: "Wilma4d",
version: "",

92

description: "https://fiware-pep-proxy.readthedocs.io",
location: "Heraklion",
country: "GR"
s
// Q3 params
patTermsNCondProps: {
timeCreated: "2018-12-11T12:32:13.645876+03:00"
.
patEmergCondProps: {
timeCreated: "2018-12-11T12:32:17.645876+03:00"
s
docTermsNCondProps: {
timeCreated: "2018-11-26T15:02:10.648376+03:00"
},
adamTermsNCondProps: {
timeCreated: "2018-11-25T10:13:03.448076+03:00"
s
patTermsNCondProvidedProps: {
time: "2018-12-11T12:32:13.645876+03:00"
s
patEmergCondProvidedProps: {
time: "2018-12-11T12:32:17.645876+03:00"
I
docTermsNCondProvidedProps: {
time: "2018-11-26T15:02:10.648376+03:00"
3,
adamTermsNCondProvidedProps: {
time: "2018-11-25T10:13:03.448076+03:00"
s
termsNCondProps: {
name: "Terms & Conditions",
description: "General user usage terms and conditions."
3,
emergCondProps: {
name: "Patient Emergency Condition",
description:
"Patient health emergency situation condition."
},
// Q4 params
pdGenNProcessingProps:{
name: "Personal Data Gen & Processing",
description: "Generation of health-related
sensor data, user data and subscription
data and its processing by means of
internal data movement,
data access, update and export"
},
sdAutoSendProps: {
name: "Sensor Data Auto-sending",
description: "Automatic transmission of
health-related data (generated by the

93

heart rate sensor device) to services
within the Remote Patient Monitoring
infrastructure"
s
udEmergExportProps: {
name: "Emergency User Data Export',
description: "Export of personal patient data to an
external, third party ambulance service
(in case of an emergency health
situation)"
s
internalDataMovementProps: {
timeCreated: "2019-04-08T09:01:03.508032+03:00"
},
dataAccessProps: {
timeCreated: "2019-04-10T11:15:00.448076+03:00"
s
dataUpdateProps: {
timeCreated: "2019-04-15T17:06:00.27773+03:00"
s
dataExportProps: {
timeCreated: "2019-04-15T17:06:00.27773+03:00"
I
ambulanceProps: {
name: "Emergency Ambulance Service",
description: "First aid emergency ambulance service."
s
// Q7 params
restServiceSecurityProps: {
name: "REST Service Security",
description: ""
.
oauth2Props: {
name: "OAuth 2.0",
description: "https://oauth.net/"
},
masterKeySecProps: {
name: "Master Key Security",
description: ""

Listing 25: Cypher query for creating the instantiated graph of the Remote Patient
Monitoring System for the Demo ({3.4)

/7 Qo
MERGE (Pat:Person {name: EpatProps.name, surname: EpatProps.surname})
MERGE (uPat:User:Patient {name: EuPatProps.name})
MERGE (hrs:Device:HeartRateSensor {name: EhrsProps.name,
description: EhrsProps.description})
MERGE (uDoc:User:Doctor {name: EuDocProps.name})
MERGE (Doc:Person {name: EdocProps.name, surname: EdocProps.surname})

94

MERGE (uAdam:User:Admin {name: EuAdamProps.name})

MERGE (Adam:Person {name: EadamProps.name,

surname: EadamProps.surname})

// Create relationships

MERGE (Pat)<-[:RELATED_TO] - (uPat)<-[:RELATED_TO] - (hrs)

MERGE (uDoc) - [:RELATED_TO] ->(Doc)

MERGE (uAdam) - [:RELATED_TO]->(Adam)

/7 Q1

MERGE (Patud:PersonalData:UserData {
user: EPatudProps.user,
email: EPatudProps.email,
phone: EPatudProps.phone,
timeModified: [$PatudProps.timeModified

9]
MERGE (Docud:PersonalData:UserData {
user: EDocudProps.user,
email: EDocudProps.email,
phone: EDocudProps.phone,
timeModified: EDocudProps.timeModified
i9)

MERGE (Adamud:PersonalData:UserData {
user: EAdamudProps.user,
email: EAdamudProps.email,
phone: EAdamudProps.phone,
timeModified: [$AdamudProps.timeModified

i)

MERGE (Docsubd:PersonalData:SubscriptionData {
subscriberUser: EDocsuderops.subscriberUser,
subscribeeUsers: EDocsuderops.subscribeeUsers,
timeModified: EDocsuderops.timeModified

9]
MERGE (Patsd:PersonalData:SensorData {
Sensor: EPatsdProps.sensor,
heartRate: EPatsdProps.heartRate,
timeModified: EPatsdProps.timeModified
i9)

// Create relationships

MERGE (uPat)<-[:RELATED_TO] - (Patud) - [:BELONGS_TO]->(Pat)

MERGE (uDoc)<-[:RELATED_TO] - (Docud) - [:BELONGS_TO] ->(Doc)

MERGE (uAdam)<-[:RELATED_TO] - (Adamud) - [: BELONGS_TO] ->(Adam)

MERGE (uDoc)<-[:RELATED_TO] - (Docsubd) - [: BELONGS_TO] ->(Doc)

MERGE (hrs)<-[:RELATED_TO]-(Patsd)-[:BELONGS_TO]->(Pat)

// 42

// Create nodes

MERGE (app:App:WebApp {
name: EappProps.name,
description: EappProps.description

i)

MERGE (relDB:System:DB:RelationalDB {

name: ErelDBProps.name,

95

version: ErelDBProps.version,
description: ErelDBProps.description

o)

MERGE (pubSubDB:System:DB:PubSubDB {
name: EpubSubDBProps.name,
version: EpubSubDBProps.version,
description: EpubSubDBProps.description

o)

MERGE (histDB:System:DB:Service:HistoryDB {
name: EhistDBProps.name,
version: HhistDBProps.version,
description: EhistDBProps.description,
location: EhistDBProps.location,
country: EhistDBProps.country

o)

MERGE (appLogic:System:Service:AppLogic {
name: EappLogicProps.name,
version: EappLogicProps.version,
description: EappLogicProps.description,
location: EappLogicProps.location,
country: EappLogicProps.location

i)

MERGE (uIdAuth:System:Service:UserIdAuth {
name: EuIdAuthProps.name,
version: EuIdAuthProps.version,
description: EuIdAuthProps.description,
location: uIdAuthProps .location,

S

country: IdAuthProps.country

i)
MERGE (authPDP:System:Service:AuthorizationPDP {
name: EauthPDPProps.name,
version: EauthPDPProps.version,
description: EauthPDPProps.description,
location: authPDPProps .location,
$a

country: uthPDPProps.country

b

MERGE (pubSub:System:Service:PublishSubscribe {
name: EpubSubProps.name,
version: EpubSubProps.version,
description: EpubSubProps.description,
location: EpubSubProps.location,
country: EpubSubProps.country

D

MERGE (dataStorage:System:Service:DataStorage {
name: EdataStorageProps.name,
version: EdataStorageProps.version,
description: EdataStorageProps.description,
location: EdataStorageProps.location,
country: EdataStorageProps.country

96

o)

MERGE (dataHistRecovery:System:Service:DataHistoryRecovery {
name: EdataHistRecoveryProps.name,
version: EdataHistRecoveryProps.version,
description: EdataHistRecoveryProps.description,
location: EdataHistRecoveryProps.location,
country: EdataHistRecoveryProps.country

D

MERGE (devInterface:System:Service:DeviceInterface {
name: EdevInterfaceProps.name,
version: EdevInterfaceProps.version,
description: EdevInterfaceProps.description,
location: EdevInterfaceProps.1ocation,
country: EdevlnterfaceProps.country

i)

MERGE (devQuerying:System:Service:DeviceQuerying {
name: EderueryingProps.name,
version: EderueryingProps.version,
description: EderueryingProps.description,
location: derueryingProps .location,

$d

country: evQueryingProps.country

i)

MERGE (pepProxyl:System:Service:PEPProxyl {
name: EpepProxylProps.name,
version: EpepProxylProps.version,
description: EpepProxylProps.description,
location: EpepProxylProps.location,
country: EpepProxylProps.country

o)

MERGE (pepProxy2:System:Service:PEPProxy2 {
name: EpepPronyProps.name,
version: HpepPronyProps.version,
description: EpepPronyProps.description,
location: EpepPronyProps.location,

country: EpepProxy2Props.country

o)

MERGE (pepProxy3:System:Service:PEPProxy3 {
name: EpepProxyBProps.name,
version: EpepProxyBProps.version,
description: EpepProxySProps.description,
location: EpepProxyBProps.location,

country: EpepProxyBProps.country
i)

MERGE (pepProxy4:System:Service:PEPProxy4 {
name: EpepProxy4Props.name,
version: EpepProxy4Props.version,
description: EpepProxy4Props.description,

location: ﬁpepProxy4Props.1ocation,
country: ﬁpepProxy4Props.country

97

D

// Create relationships

MERGE
MERGE
MERGE
MERGE
MERGE
MERGE
MERGE
MERGE
MERGE
MERGE
MERGE
MERGE
MERGE
MERGE
MERGE
MERGE
MERGE
MERGE
MERGE

(u:User)

(u) - [:USES] -> (app)

(app) - [: CONNECTED_TO] -> (appLogic)

(ud:UserData)

(relDB)<-[:STORED_IN] - (ud)

(authPDP)<- [: CONNECTED_TO] - (uIdAuth)<- [: PART_OF] - (relDB)
(subd:SubscriptionData)

(pubSubDB) <- [: STORED_IN] - (subd)

(pubSub) <~ [: PART_OF] - (pubSubDB)

(sd:SensorData)

(histDB)<-[:STORED_IN] - (sd)
(uIdAuth)<-[:CONNECTED_TO] - (pepProxy1) - [: CONNECTED_TO] - > (authPDP)
(uIdAuth)<- [: CONNECTED_TO] - (pepProxy3) - [: CONNECTED_TO] -> (authPDP)
(uIdAuth)<-[:CONNECTED_TO] - (pepProxy4) - [: CONNECTED_TO] - > (authPDP)
(appLogic) - [: CONNECTED_TO] ->(uIdAuth)
(devQuerying) - [: CONNECTED_TO] -> (pubSub)
(devQuerying) - [: CONNECTED_TQ] -> (pepProxy4)
(pepProxy3) - [: CONNECTED_TO] -> (pubSub)

(pubSub) - [: CONNECTED_T0] -> (pepProxy?2) - [: CONNECTED_TO0] ->

(dataStorage) - [: CONNECTED_TO] ->(histDB)

MERGE

(pepProxy1l) - [: CONNECTED_TO] ->(dataHistRecovery)

- [:CONNECTED_TO0] -> (histDB)

MERGE
MERGE
MERGE
MERGE
MERGE
MERGE
/7 Q3

(hrs) - [: CONNECTED_TO] ->(devInterface) - [: CONNECTED_TO] -> (pepProxy3)
(appLogic) - [: CONNECTED_TO] -> (uIdAuth)

(appLogic) - [: CONNECTED_TQ] - > (pepProxy1)

(appLogic) - [: CONNECTED_TOQ] -> (pepProxy3)

(appLogic) - [: CONNECTED_TO] - > (pepProxy4)
(appLogic) - [: CONNECTED_TO] -> (uIdAuth)

// Create modes

MERGE

o)
MERGE

H
MERGE

o)
MERGE

)

MERGE

b
MERGE

(patTermsNCond:Event :Consent {
timeCreated: EpatTermsNCondProps.timeCreated

(patEmergCond:Event:Consent {
timeCreated: EpatEmergCondProps.timeCreated

(docTermsNCond :Event :Consent {
timeCreated: EdocTermsNCondProps.timeCreated

(adamTermsNCond:Event : Consent {
timeCreated: EadamTermsNCondProps.timeCreated

(termsNCond:ConsentType {
name: EtermsNCondProps.name,
description: EtermsNCondProps.description

(emergCond:ConsentType {

name: EemergCondProps.name,
description: EemergCondProps.description

98

D
// Create relationships
MERGE (Pat)
- [:PROVIDED {time: EpatTermsNCondProvidedProps.time}]—>
(patTermsNCond)
MERGE (Pat)
-[:PROVIDED {time: EpatEmergCondProvidedProps.time}]—>
(patEmergCond)
MERGE (Doc)
- [:PROVIDED {time: EdocTermsNCondProvidedProps.time}]—>
(docTermsNCond)
MERGE (Adam)
- [:PROVIDED {time: EadamTermsNCondProvidedProps.time}]—>
(adamTermsNCond)
MERGE (patTermsNCond) - [:0F_TYPE]->(termsNCond)
MERGE (patEmergCond)-[:0F_TYPE]->(emergCond)
MERGE (docTermsNCond) - [:0F_TYPE] ->(termsNCond)
MERGE (adamTermsNCond) - [:0F_TYPE]->(termsNCond)
/7 Q4
// Create modes
MERGE (pdGenNProcessing:DataUsage {
name: EpdGenNProcessingProps.name,
description: EpdGenNProcessingProps.description
i)
MERGE (sdAutoSend:DataUsage {
name: EsdAutoSendProps.name,
description: EsdAutoSendProps.description
D
MERGE (udEmergExport:DataUsage {
name: EudEmergExportProps.name,
description: EudEmergExportProps.description
b
MERGE (internalDataMovement:Event:DataProcess:InternalDataMovement {
timeCreated: EinternalDataMovementProps.timeCreated
i)
MERGE (dataAccess:Event:DataProcess:DataAccess {
timeCreated: EdataAccessProps.timeCreated
)
MERGE (dataUpdate:Event:DataProcess:DataUpdate {
timeCreated: EdataUpdateProps.timeCreated
i)
MERGE (dataExport:Event:DataProcess:DataExport {
timeCreated: EdataEXportProps.timeCreated
D
MERGE (ambulance:ThirdParty:AmbulanceService {
name: EambulanceProps.name,
description: EambulanceProps.description
i)
// Create relationships
MERGE (termsNCond) - [:ENABLES] ->(pdGenNProcessing)

99

MERGE (termsNCond) - [:ENABLES] ->(sdAutoSend)
MERGE (emergCond) - [:ENABLES] ->(udEmergExport)
MERGE (Patsd)<-[:INVOLVES]-(internalDataMovement)
MERGE (Patud)<-[:INVOLVES]-(dataAccess)
MERGE (Docsubd)<-[:INVOLVES] - (dataUpdate)
MERGE (Patud)<-[:INVOLVES]-(dataExport)
MERGE (devInterface)-[:FROM]->(internalDataMovement)-[:TO]->(pepProxy3)
MERGE (app)-[:FROM]->(dataAccess)-[:T0]->(uDoc)
MERGE (app) - [:FROM] ->(dataUpdate) - [: TO] ->(relDB)
MERGE (relDB)-[:FROM]->(dataExport)-[:T0]->(ambulance)
/7 Q5
// Find existing elements
MERGE (patient:Patient)
MERGE (doctor:Doctor)
MERGE (admin:Admin)
// Create relationships
MERGE (uPat)<-[:CAN_ACCESS_DATA_QF] - (uDoc)
MERGE (doctor)<-[:CAN_ACCESS_DATA_OF] - (admin)
MERGE (patient)<-[:CAN_ACCESS_DATA_OF]-(admin)
/7 Q7
// Find existing elements
MERGE (d:Device)
MERGE (s:Service)
// Create nodes
MERGE (restServiceSecurity:RESTServiceSecurity {
name: ErestSerViceSecurityProps.name,
description: ErestServiceSecurityProps.description
D
MERGE (oauth2:0Auth?2 {
name: anuthQProps.name,
description: anuthQProps.description
H
MERGE (masterKeySec:MasterKeySecurity {
name: asterKeySecProps .name,
description: EmasterKeySecProps.description
H
// Create relationships
MERGE (oauth2)-[:ELEMENT_OF]->(restServiceSecurity)
MERGE (masterKeySec)-[:ELEMENT_OF]->(restServiceSecurity)
MERGE (u)- [:EMPLOYS]->(restServiceSecurity)
MERGE (d)-[:EMPLOYS]->(restServiceSecurity)
MERGE (s)-[:EMPLOYS]->(restServiceSecurity)

For write and match operations we chose Cypher’'s MERGE clause instead of CREATE and MATCH.
MERGE first checks if existing nodes and/or relationships already exist. If they already exist, it binds
them to a given variable. If they do not exist, it creates them. This guarantees uniqueness in node and
relationship creation (no duplicate elements), in case the queries are re-run. [54]

100

References

[1]

2]

3]

[4]

[5]

[6]

7]
18]

19]

[10]

[11]

[12]

[13]

[14]

European Parliament and Council of European Union. Regulation (EU) 2016/679
of the European Parliament and of the Council of 27 April 2016 on the protection
of natural persons with regard to the processing of personal data and on the free
movement of such data, and repealing Directive 95/46/EC (General Data
Protection Regulation) (Text with EEA relevance).
https://eur-lex.europa.eu/eli/reg/2016/679/0jl 2016.

Ben Wolford. What are the GDPR Fines? https://gdpr.eu/fines/, 2018.

Facebook—Cambridge Analytica data scandal — Wikipedia, the free encyclopedia.
https://en.wikipedia.org/w/index.php?title=Facebooki,E2%807%
93Cambridge_Analytica_data_scandal&oldid=927996299|

AOL search data leak — Wikipedia, the free encyclopedia. https://en.
wikipedia.org/w/index.php?7title=A0L_search_data_leak&o1did=924339868.

Data retention — Wikipedia, The Free Encyclopedia. https:
//en.wikipedia.org/w/index.php?title=Data_retention&oldid=925527721.

Recital 58, The Principle of Transparency.
https://gdpr-info.eu/recitals/no-58/.

Neo4j. https://neodj.com/.

Neo4j Privacy Shield: The Graph Solution for GDPR.
https://neo4j.com/use-cases/gdpr-compliance/.

Data lineage — Wikipedia, the free encyclopedia. https:
//en.wikipedia.org/w/index.php?title=Data_lineage&oldid=927367434.

Unified Modeling Language (UML) — Wikipedia, the free encyclopedia.
https://en.wikipedia.org/w/index.php?title=Unified_Modeling_Language&
01did=927130803.

Graph database — Wikipedia, the free encyclopedia. https:
//en.wikipedia.org/w/index.php?title=Graph_database&oldid=927409485.

Renzo Angles. The Property Graph Database Model. In Proceedings of the 12th
Alberto Mendelzon International Workshop on Foundations of Data Management,
Cali, Colombia, May 21-25, 2018, 2018.

Ontology (information science) — Wikipedia, The Free Encyclopedia.
https://en.wikipedia.org/w/index.php?title=0Ontology_(information_
science)&o01did=927115114.

Web Ontology Language (OWL). https://www.w3.org/0WL/.

101

https://eur-lex.europa.eu/eli/reg/2016/679/oj
https://gdpr.eu/fines/
https://en.wikipedia.org/w/index.php?title=Facebook%E2%80%93Cambridge_Analytica_data_scandal&oldid=927996299
https://en.wikipedia.org/w/index.php?title=Facebook%E2%80%93Cambridge_Analytica_data_scandal&oldid=927996299
https://en.wikipedia.org/w/index.php?title=AOL_search_data_leak&oldid=924339868
https://en.wikipedia.org/w/index.php?title=AOL_search_data_leak&oldid=924339868
https://en.wikipedia.org/w/index.php?title=Data_retention&oldid=925527721
https://en.wikipedia.org/w/index.php?title=Data_retention&oldid=925527721
https://gdpr-info.eu/recitals/no-58/
https://neo4j.com/
https://neo4j.com/use-cases/gdpr-compliance/
https://en.wikipedia.org/w/index.php?title=Data_lineage&oldid=927367434
https://en.wikipedia.org/w/index.php?title=Data_lineage&oldid=927367434
https://en.wikipedia.org/w/index.php?title=Unified_Modeling_Language&oldid=927130803
https://en.wikipedia.org/w/index.php?title=Unified_Modeling_Language&oldid=927130803
https://en.wikipedia.org/w/index.php?title=Graph_database&oldid=927409485
https://en.wikipedia.org/w/index.php?title=Graph_database&oldid=927409485
https://en.wikipedia.org/w/index.php?title=Ontology_(information_science)&oldid=927115114
https://en.wikipedia.org/w/index.php?title=Ontology_(information_science)&oldid=927115114
https://www.w3.org/OWL/

[15] Service-oriented architecture — Wikipedia, the free encyclopedia.
https://en.wikipedia.org/w/index.php?title=Service-
oriented_architecture&oldid=927325893|

[16] Florian Kammiiller, Oladapo O Ogunyanwo, and Christian W Probst. Designing
Data Protection for GDPR Compliance into IoT Healthcare Systems. arXiv
preprint arXiv:1901.02426, 2019.

[17] A Consent and Data Management Model.
http://openscience.adaptcentre.ie/projects/CDMM/.

[18] trust-hub. https://www.trust-hub.com/.
[19] Cambridge Intelligence. https://cambridge-intelligence.com/.

[20] Art. 1 GDPR, Subject-matter and objectives.
https://gdpr-info.eu/art-1-gdpr/.

[21] Art. 4 GDPR, Definitions. https://gdpr-info.eu/art-4-gdpr/,

[22] Art. 25 GDPR, Data protection by design and by default.
https://gdpr-info.eu/art-25-gdpr/.

[23] trust-hub: using graph technologies to power personal data compliance.
https://cambridge-intelligence.com/trust-hub-using-graph-
technologies-to-power-personal-data-compliance/.

[24] Neo4 Privacy Shield Data Sheet.
https://neodj.com/resources/neodj-privacy-shield-data-sheet/.

[25] Directed graph — Wikipedia, The Free Encyclopedia. https:
//en.wikipedia.org/w/index.php?title=Directed_graph&oldid=921240292.

[26] Information Commissioner’s Office — Wikipedia, The Free Encyclopedia.
https://en.wikipedia.org/w/index.php?title=Information_Commissioner?
27s_0ffice&o0ldid=917179011.

[27] Art. 38 GDPR, Position of the data protection officer.
https://gdpr-info.eu/art-38-gdpr/.

[28] draw.io. https://about.draw.io/.

[29] SQL. https://en.wikipedia.org/w/index.php?title=SQL&01did=926073015.
[30] Graph DB vs RDBMS. https://neo4j.com/developer/graph-db-vs-rdbms/.
[31] Neodj Graph Platform. https://neo4j.com/product/.

[32] Cypher Graph Query Language.
https://neodj.com/cypher-graph-query-language/.

[33] Nadime Francis, Alastair Green, Paolo Guagliardo, Leonid Libkin, Tobias
Lindaaker, Victor Marsault, Stefan Plantikow, Mats Rydberg, Petra Selmer, and
Andrés Taylor. Cypher: An Evolving Query Language for Property Graphs. In
Proceedings of the 2018 International Conference on Management of Data,
SIGMOD 18, pages 1433-1445, New York, NY, USA, 2018. ACM.

[34] Cypher Manual. https://neodj.com/docs/cypher-manual.

102

https://en.wikipedia.org/w/index.php?title=Service-oriented_architecture&oldid=927325893
https://en.wikipedia.org/w/index.php?title=Service-oriented_architecture&oldid=927325893
http://openscience.adaptcentre.ie/projects/CDMM/
https://www.trust-hub.com/
https://cambridge-intelligence.com/
https://gdpr-info.eu/art-1-gdpr/
https://gdpr-info.eu/art-4-gdpr/
https://gdpr-info.eu/art-25-gdpr/
https://cambridge-intelligence.com/trust-hub-using-graph-technologies-to-power-personal-data-compliance/
https://cambridge-intelligence.com/trust-hub-using-graph-technologies-to-power-personal-data-compliance/
https://neo4j.com/resources/neo4j-privacy-shield-data-sheet/
https://en.wikipedia.org/w/index.php?title=Directed_graph&oldid=921240292
https://en.wikipedia.org/w/index.php?title=Directed_graph&oldid=921240292
https://en.wikipedia.org/w/index.php?title=Information_Commissioner%27s_Office&oldid=917179011
https://en.wikipedia.org/w/index.php?title=Information_Commissioner%27s_Office&oldid=917179011
https://gdpr-info.eu/art-38-gdpr/
https://about.draw.io/
https://en.wikipedia.org/w/index.php?title=SQL&oldid=926073015
https://neo4j.com/developer/graph-db-vs-rdbms/
https://neo4j.com/product/
https://neo4j.com/cypher-graph-query-language/
https://neo4j.com/docs/cypher-manual

[35] Chapter 3 GDPR, Rights of the data subject.
https://gdpr-info.eu/chapter-3/.

[36] GDPRtEXT. http://openscience.adaptcentre.ie/projects/GDPRtEXT/.

[37] GConsent - A consent ontology based on the GDPR.
https://w3id.org/GConsent!

[38] GDPRov - GDPR Provenance Ontology.
http://openscience.adaptcentre.ie/projects/CDMM/GDPRov/.

[39] Data Protection Rules Language.
https://openscience.adaptcentre.ie/projects/CDMM/DPRL/.

[40] Queryable Provenance Metadata For GDPR Compliance - GDPR
Readiness-Checklist SPARQL demo.
http://openscience.adaptcentre.ie/GDPR-checklist-demo/demo/.

[41] SPARQL Query Language for RDF.
https://wwuw.w3.org/TR/rdf-sparql-query/.

[42] Exploring GDPR Compliance Over Provenance Graphs Using SHACL.
http://openscience.adaptcentre.ie/projects/CDMM/compliance/model.html.

[43] Shapes Constraint Language (SHACL). https://www.w3.org/TR/shacl/.

[44] Test-driven approach for GDPR Compliance.
http://openscience.adaptcentre.ie/projects/CDMM/compliance/index.html.

[45] Xenophon Koundourakis and Euripides G.M. Petrakis. iXen: Secure
Context-Driven Service Oriented Architecture for the Internet of Things in the
Cloud. 2019. unpublished.

[46] Microservices — Wikipedia, The Free Encyclopedia. https:
//en.wikipedia.org/w/index.php?title=Microservices&oldid=928830113.

[47] Security by Design Principles.
https://www.owasp.org/index.php/Security_by_Design_Principles.

[48] Representational state transfer (REST) — Wikipedia, The Free Encyclopedia.
https://en.wikipedia.org/w/index.php?title=Representational_state_
transfer&oldid=928353400.

[49] OAuth 2.0. https://oauth.net/2/.

[50] XACML — Wikipedia, The Free Encyclopedia.
https://en.wikipedia.org/w/index.php?title=XACML&01did=920117198.

[51] FIWARE. https://www.fiware.org/.

[52] OpenStack — Wikipedia, The Free Encyclopedia.
https://en.wikipedia.org/w/index.php?title=0penStack&oldid=922665020.

[53] Cypher MATCH clause.
https://neodj.com/docs/cypher-manual/current/clauses/match/.

[54] Cypher MERGE clause.

https://neodj.com/docs/cypher-manual/current/clauses/merge/.

103

https://gdpr-info.eu/chapter-3/
http://openscience.adaptcentre.ie/projects/GDPRtEXT/
https://w3id.org/GConsent
http://openscience.adaptcentre.ie/projects/CDMM/GDPRov/
https://openscience.adaptcentre.ie/projects/CDMM/DPRL/
http://openscience.adaptcentre.ie/GDPR-checklist-demo/demo/
https://www.w3.org/TR/rdf-sparql-query/
http://openscience.adaptcentre.ie/projects/CDMM/compliance/model.html
https://www.w3.org/TR/shacl/
http://openscience.adaptcentre.ie/projects/CDMM/compliance/index.html
https://en.wikipedia.org/w/index.php?title=Microservices&oldid=928830113
https://en.wikipedia.org/w/index.php?title=Microservices&oldid=928830113
https://www.owasp.org/index.php/Security_by_Design_Principles
https://en.wikipedia.org/w/index.php?title=Representational_state_transfer&oldid=928353400
https://en.wikipedia.org/w/index.php?title=Representational_state_transfer&oldid=928353400
https://oauth.net/2/
https://en.wikipedia.org/w/index.php?title=XACML&oldid=920117198
https://www.fiware.org/
https://en.wikipedia.org/w/index.php?title=OpenStack&oldid=922665020
https://neo4j.com/docs/cypher-manual/current/clauses/match/
https://neo4j.com/docs/cypher-manual/current/clauses/merge/

[55] Ascii art — Wikipedia, the free encyclopedia.
https://en.wikipedia.org/w/index.php?title=ASCII_art&oldid=925954266.

[56] Semantic Web. https://www.w3.org/standards/semanticweb/.

[57] Konstantinos Douzis, Stelios Sotiriadis, Euripides G.M. Petrakis, and Cristiana
Amza. Modular and Generic loT Management on the Cloud. Future Gener.
Comput. Syst., 78(P1):369-378, January 2018.

[58] Cypher Parameters.
https://neodj.com/docs/cypher-manual/current/syntax/parameters/.

[59] Art. 39 GDPR, Tasks of the data protection officer.
https://gdpr-info.eu/art-39-gdpr/.

104

https://en.wikipedia.org/w/index.php?title=ASCII_art&oldid=925954266
https://www.w3.org/standards/semanticweb/
https://neo4j.com/docs/cypher-manual/current/syntax/parameters/
https://gdpr-info.eu/art-39-gdpr/

	Introduction
	Motivation
	Problem definition
	Proposed solution
	Existing work
	Thesis structure

	Background
	The General Data Protection Regulation
	Definitions
	Compliance
	Compliance questions

	Concepts & Tools
	UML
	Property graphs
	Graph databases

	Related work
	iXen
	Users and functional requirements
	Architecture

	Solving the GDPR Compliance evaluation problem
	Approach
	Designing a Remote Patient Monitoring System
	Users and Functional Requirements
	Architecture
	Incorporating GDPR Compliance requirements

	System GDPR Compliance evaluation
	Importing the System into a graph database
	Answering the compliance questions

	Demo
	Answering the compliance questions

	Discussion
	Determining GDPR Compliance
	Applicability

	Conclusions & Future Work
	Conclusions
	Future Work

	Graph creation queries
	References

