
Technical University of Crete

Department of Electrical and Computer Engineering

Methodology for designing GDPR
compliant IoT applications

Christos Karageorgiou Kaneen
ckarageorgkaneen@gmail.com

Supervisor :
Euripides G.M Petrakis

petrakis@intelligence.tuc.gr

Thesis committee:
Vasilis Samoladas Antonios Deligiannakis

vsam@softnet.tuc.gr adeli@softnet.tuc.gr

December, 2019

https://www.tuc.gr/
https://www.ece.tuc.gr/
mailto:ckarageorgkaneen@gmail.com
mailto:petrakis@intelligence.tuc.gr
mailto:vsam@softnet.tuc.gr
mailto:adeli@softnet.tuc.gr

Abstract

As of May 2018, the enforcement of the EU’s General Data Protection Regulation
(GDPR) has introduced new standards for organizations processing personal data of
EU residents. With the purpose of giving people more control over their data, as well as
protecting them from potential data breaches, proving compliance with GDPR require-
ments, to regulators who mandate it, has become an ever-increasing priority for most
organizations, with steep fines to be paid for privacy violations. Due to the difficulty
of analyzing a running system for evaluating its compliance, GDPR requirements must
be taken into consideration during the system’s design phase. In this work, we provide
the methodology for analyzing these requirements and incorporating them into the de-
sign process of a Remote Patient Monitoring application. Since there is no universal
methodology that covers all application domains and systems, we focus on a single such
application domain: an IoT Service Oriented Architecture design for the cloud. By an-
alyzing the dependencies between all system components (such as personal data, users,
cloud services, etc.), we are able to create data-filled reports (related to the GDPR’s per-
sonal data demands) that can be used for evaluating compliance. In order to show proof
of concept, we apply the aforementioned analysis and represent our system’s information
of component properties, requirements and dependencies by means of a labeled-property
graph in a graph database. The decision of whether the system is GDPR compliant can
be reached once a series of questions (expressed as queries run upon the system graph)
have been answered and analyzed. The rationale behind our approach deems it much
easier to evaluate GDPR compliance once the designed system’s graph has been con-
structed. In summary, we demonstrate how such a graph can be created by taking as
input both: (a) design requirements and (b) GDPR requirements. We also demonstrate
how the evaluation of GDPR compliance lies within analyzing the results of queries run
upon the graph in a graph database.

1

Contents

1 Introduction 4
1.1 Motivation . 5
1.2 Problem definition . 6
1.3 Proposed solution . 8
1.4 Existing work . 9
1.5 Thesis structure . 10

2 Background 11
2.1 The General Data Protection Regulation 11

2.1.1 Definitions . 11
2.1.2 Compliance . 12
2.1.3 Compliance questions . 15

2.2 Concepts & Tools . 16
2.2.1 UML . 16
2.2.2 Property graphs . 16
2.2.3 Graph databases . 21

2.3 Related work . 23
2.4 iXen . 25

2.4.1 Users and functional requirements 25
2.4.2 Architecture . 25

3 Solving the GDPR Compliance evaluation problem 27
3.1 Approach . 27
3.2 Designing a Remote Patient Monitoring System 28

3.2.1 Users and Functional Requirements 28
3.2.2 Architecture . 29
3.2.3 Incorporating GDPR Compliance requirements 31

3.3 System GDPR Compliance evaluation . 42
3.3.1 Importing the System into a graph database 42
3.3.2 Answering the compliance questions 43

3.4 Demo . 61
3.4.1 Answering the compliance questions 64

3.5 Discussion . 82
3.5.1 Determining GDPR Compliance 82
3.5.2 Applicability . 82

4 Conclusions & Future Work 83
4.1 Conclusions . 83
4.2 Future Work . 84

A Graph creation queries 85

2

References 101

3

Chapter 1

Introduction

The EU’s General Data Protection Regulation (GDPR) was created with the purpose
of regulating the way EU citizens’ personal data is protected by the organizations that
process it. All organizations that hold and process EU citizens’ personal data are required
to adapt to the new regulation. [1][2]

Considering the challenges of a rapidly evolving technological world that have
up until now given rise to major data breaches (such as the recent Facebook–Cambridge
Analytica scandal or the AOL search data leak more than a decade ago), the GDPR has
become, since its implementation on May 18th 2018, a strict prerequisite for any orga-
nization dealing with EU personal data. Proving compliance with the GDPR requires
having the ability to extensively document the processing procedures involving EU citi-
zens’ personal data, by evaluating its lawfulness, providing information on the security
measures enforced for its protection and ensuring that sufficient processing agreements
(i.e.consent) are in place. The importance of the regulation lies within its purpose: pro-
tecting EU citizens’ rights by clarifying the actions organizations must take to safeguard
them. [3][4]

4

1.1 Motivation

Due to the requirements posed by the GDPR (fundamental terms of which are described
in Chapter 2), organizations must be able to comply with strict rules about how personal
data (any data that can be used to identify a person) is manipulated within their systems.
More specifically, the road to compliance involves tackling complex issues such as:

(a) How personal data is stored, secured, processed, transmitted and erased

(b) How the policies related to its retention are enforced [5]

(c) How proof of provided or revoked written consent, for its obtainment and usage,
can be documented

Such issues lead to the question of what are the minimal steps that an orga-
nization must take to prove basic GDPR compliance, by taking into consideration the
interactions between its systems’ components and the personal data it processes on behalf
of its users.

In recent years, the rapid expansion of growing domains such as Big Data, AI,
Cloud computing and the IoT, among others, has brought to the forefront new challenges
primarily linked to the personal data and trust, such as data transparency (the ability
to easily access and work with data), data security and the clear presentation of terms of
data processing activities. Such challenges have given rise to the problem of designing a
system within relevant contexts (such as the IoT and the Cloud), by taking into account
basic GDPR requirements (briefly described in 1.2 and more thoroughly in 2.1.3) and
querying it for preliminary compliance evaluation. This problem is the one that we
attempt to provide a solution to in the following chapters. [6]

5

1.2 Problem definition

Recently, Neo4j suggested that mastering GDPR requires prior knowledge in regards to
the ways personal data is stored and managed in a system. More specifically, as part of its
Privacy Shield solution, the company provides a comprehensive solution for compliance
with the GDPR regulation, that is not, however, meant to directly answer whether a
system is GDPR compliant or not but, rather, to provide the means (in graph form) of
evaluating it, by representing how personal data is stored and managed. This approach,
based on graph modeling and querying, attempts to connect personal data across all
system components (i.e. parts such as services and databases) and track where and how
personal information is stored, how it is used, how it moves to different locations or
systems, who has access to this data and whether users have provided or revoked consent
for doing so, among other activities more thoroughly described further on. [7][8]

By elaborating on the above, in order to answer whether a system meets the
GDPR compliance criteria, the following questions must be answered:

0. What are the fundamental data entities?1

The persons to whom the personal data belongs and user and device entities related
to it

1. What data do you have?
The personal data held within the organization’s systems

2. Where is the data stored?
The internal systems (services, databases, etc.) in which the personal data is stored
and at what geographical location

3. How and when did you obtain data?
The fundamental entities (Q0) the personal data is related to, the consent provided
by persons (for its processing within the organization) and the time at which it was
provided

4. Why do you have the data?
The way in which the personal data is used (data usage) and the events of data
processing that involve it

5. Who has access to the data?
The entities (such as users and persons) that have access to the personal data

6. Do you have permission to use the data? For what purposes?
Whether the organization’s users have provided or revoked consents, as well as their
respective data usages

7. Is the data secure?
The security of personal data (at-rest and in-transit) within the components of the
system. This question regards whether all entities that stored or process personal
data employ the appropriate security mechanisms for its protection (OAuth2.0,
encryption, etc.)

8. How does the data travel through your systems?
Detailed information related to personal data lineage and data tracking: how and
when personal data moves within the organization’s internal systems [9]

1Question 0 was added for matters of convenience in our upcoming diagram design process (Chapter
3)

6

9. Does the data ever cross international borders?
Whether the personal data crosses EU or non-EU borders into non-EU or EU
countries, respectively

The information described in these answers needs to be explicitly represented
in a formal way. Neo4j suggests that this information is best represented by means of
a semantic graph, where each one of the questions in the above list can be formulated
as a query on the graph whose results yield the data necessary for evaluating GDPR
compliance. Judging whether a system is compliant is not an automated process (i.e.
the decision cannot be made algorithmically). Instead, given the answers to the above
questions (the results of executing the queries corresponding to each question), the final
decision must be made by a human expert.

In our approach, we inspect the requirements of each and every one of the
aforementioned questions and:

(a) Demonstrate how an IoT system that encompasses fundamental GDPR personal
data requirements can be designed

(b) Answer the questions by querying the system, providing a means for evaluating
GDPR compliance

The next section describes our approach to tackling this problem, in more detail.

7

1.3 Proposed solution

Solving the GDPR compliance problem in its generality is a difficult problem. Although
our approach is inspired by Neo4J’s Privacy Shield solution, it is not just an application
of an existing methodology. In fact, no such as methodology exists. Although Neo4j’s
commercial solution provides guidelines for answering the GDPR compliance problems,
it does not openly demonstrate in detail, how to apply them to an existing system.

To provide a means for evaluating GDPR compliance, compliance requirements
must be taken into account in the system design phase. Presumably, the design of a sys-
tem depends on a system’s functional and non-functional requirements, which differ for
systems in different application domains. The solution thus depends on system function-
ality and the specific answers to each one of the GDPR questions can be provided once
the requirements of a system are specified. Thus, in order to tackle this difficult prob-
lem in its generality, we must take GDPR requirements into account from the beginning
of the requirements analysis phase of the system under consideration. This is realized
through a formal step-by-step procedure that involves the analysis and specification of
the GDPR requirements encoded in the 10 aforementioned questions (1.2) that must be
encompassed in the design of a remote patient monitoring IoT system, in a series of UML
class diagrams. [10]

After designing a diagram for each question, we end up with our system’s unified
information class diagram that encapsulates all information related to the requirements
necessary for the evaluation of basic GDPR compliance. Therefore, the problem of decid-
ing upon the GDPR compliance of a system is transformed into designing the system’s
information class diagram by considering related requirements and using it to answer the
preliminary compliance questions. To do so, the class diagram must be made queryable,
a task that can be accomplished by transforming it into a semantic graph whose node
and relationship properties represent the knowledge of the application.

Appropriate tools for this representation are the property graph database model
and ontologies, such as OWL. In our approach, we decided to utilize the former for
expressing and querying the contents of the graphs due to its simplicity in usage and
wide range of available graph tools (e.g. databases) supporting it, opposed to the latter’s
high formality and lack of appropriate tools. [11][12][13][14]

Based on this approach, a system whose class diagram has been represented as
a graph in a graph database (such as Neo4j) can be evaluated for GDPR compliance
by analyzing the responses to the 10 GDPR queries run upon it. Since, however, a
system’s class diagram also encodes peculiarities related to its specific operation, the
above approach must be applied on each different system separately (as, obviously, no
universal class diagram exists for all system domains). In this work, to show proof of
concept, we deal with providing GDPR compliance evaluation for the use case of an IoT
and Cloud Service Oriented Architecture (SOA) of a remote patient monitoring system
that involves the handling of sensitive health-related personal data, characteristic to a
broad array of application domains wherein proving GDPR compliance is necessary. [15]

In short, the proposed solution employs an incremental approach. First, we
design a Remote Patient Monitoring IoT System, based on SOA principles, by following
a valid design approach based on UML and by also taking into account GDPR’s personal
data requirements reflected in the aforementioned questions (related to preliminary com-
pliance). Then, we represent the designed system as a graph. Finally, having defined the
knowledge of the system in a graph database, we answer the questions by appropriately
querying the resulting graph.

8

1.4 Existing work

Although the academic literature on such a subject is still relatively scarce, work loosely
related to ours includes:

• “Designing Data Protection for GDPR Compliance into IoT Healthcare
Systems”, a paper wherein researchers propose a data labeling model for support-
ing access control operations on privacy-critical patient data in the design of a
GDPR compliant IoT healthcare system. This paper deals with a limited set of
data transparency, access and privacy aspects of the regulation. [16]

• “A Consent and Data Management Model”, a project that “aims to utilize
semantic web technologies, such as OWL, in order to provide a common and cohe-
sive framework for representing and aiding in the compliance of legislations like the
GDPR. This research provides the integration of data management across different
information systems specifically adhering to the GDPR and helping controllers to
demonstrate compliance”. [17]

For a more thorough description of the above work, in addition to how it compares to
our own, see 2.3.

Outside the world of academia, a number of companies, such as Neo4j (as
mentioned earlier), trust-hub and Cambridge Intelligence, provide commercial solutions
primarily based on graph analytics tools, such as graph database visualization, for dealing
with the problem of GDPR compliance. [18][19]

9

1.5 Thesis structure

In Chapter 2, we present the tools and concepts we utilized for both the design of our
system, the construction of its graph representation and its querying, as well as further
details on related academic work. In Chapter 3, we describe the system we are going
to design, the steps for designing it based on GDPR principles and the methodology
for importing it into a graph database and queries for answering the 10 compliance
questions. In it, we also provide a demonstration of our method using the Neo4j graph
database. Finally, in Chapter 4 we summarize our approach by stating our conclusions
and mentioning future work.

10

Chapter 2

Background

2.1 The General Data Protection Regulation

Although the EU Parliament approved of the GDPR and adopted it in April 2016, the
regulation actually took effect on the 25th of May, 2018. Within its scope it:

“1. Lays down rules relating to the protection of natural persons with regard to the
processing of personal data and rules relating to the free movement of personal
data.

2. Protects fundamental rights and freedoms of natural persons and in particular their
right to the protection of personal data.”

Its core aim being to protect EU/EEA citizens from privacy and data breaches by bringing
laws around personal data, privacy and consent and by enforcing the obligation of privacy
by design. [20]

Under GDPR, organizations must be able to prove that personal data is gath-
ered legally. Furthermore, organizations collecting and processing personal data are
required to protect it from exploitation and misuse.

2.1.1 Definitions

Important terms defined by the regulation that are prerequisites for fully-grasping our
work include [21]:

• ‘personal data’: any information relating to a data subject, meaning a natural
person who can be identified in particular by reference to identifiers such as names,
id numbers, location data, online ids or factors specific to the physical, physiologi-
cal, genetic, mental, economic, cultural or social identity of that natural person

• ‘biometric data’: personal data resulting from specific technical processing relat-
ing to the physical, physiological or behavioral characteristics of a natural or legal
person, which allow or confirm the unique identification of that natural person

• ‘data concerning health’: personal data related to the physical or mental health
of a natural person, including the provision of health care services, which reveal
information about his or her health status

• ‘processing’: any operation or set of operations which is performed on personal
data or on sets of personal data, whether or not by automated means, such as collec-
tion, recording, organization, structuring, storage, adaptation, alteration, retrieval,
etc.

11

• ‘pseudonymisation’: the processing of personal data in such a manner that the
personal data can no longer be attributed to a specific data subject without the
use of additional information, provided that such additional information is kept
separately and is subject to technical and organizational measures to ensure that
the personal data is not attributed to an identified or identifiable natural person

• ‘controller’: the entity (natural or legal person, public authority, etc.) which,
alone or jointly with others, determines the purposes and means of the processing
of personal data

• ‘processor’: an entity (natural or legal person, public authority, etc.) which
processes personal data on behalf of the controller

• ‘consent’: means any freely given, specific, informed and unambiguous indication
of the data subject’s wishes signifying agreement to the processing of their personal
data

• ‘third party’: an entity (natural or legal person, public authority, etc.) other
than the data subject, controller, processor and persons that is authorized, under
the direct authority of the controller or processor, to process personal data

2.1.2 Compliance

Being able to demonstrate GDPR compliance requires the implementation of measures
meeting certain data protection criteria, on behalf of the data controller, that involve the
collecting and processing personal data. According to Art. 25 : data protection measures
are required to be designed into the development of business processes for products and
services (privacy-by-default considerations). Thus, the implementation of effective data
protection measures in addition to the acts of being able to demonstrate the compliance
of data processing activities become liabilities that lie with the controller. Significant
data protection measures include the [22]:

• Identification of personal data: identifying the personal data being held and
where it resides is the first step on the road to compliance

• Protection of personal data: protecting personal data means that all compo-
nents of a system that process personal data must be designed with data protection
considerations in mind and specific technical and organizational measures must be
implemented to safeguard this information during processing. GDPR explicitly
champions encryption and pseudonymization techniques that reduce the risks as-
sociated with data processing

• Auditing of personal data: the inspection of personal data for determining what
data the organization should hold and should erase and how it is processed based
on organizational needs and status of consent (e.g. withdrawn)

• Management of consent and data usage: managing consent requires it to be
free, specific, informed and unambiguous. Furthermore, controllers must clearly
state their intended data usage purposes and request explicit consent each time
they do so

Therefore, some of the most impactful requirements an organization must be able to
consider and measures they must implement for achieving basic GDPR compliance are:

• Data Location & Consent: Controllers are obliged to acquire explicit consent
from users for the processing of their personal data for specific and clearly-stated
purposes at specific locations, as well as for transferring it outside the EU

12

• Right to access: Controllers must provide the means for users to access their
data at any time in a structured, machine-readable format

• Data portability: Data subjects should be able to transmit their personal data
to another controller without hindrance from the controller to which the personal
data has been provided

• Right to rectification: Data subjects should be able to correct any erroneous
personal data that controllers store

• Right to be forgotten: Data subjects should be able at any time to prompt
controllers into erasing all of their personal data, ceasing its distribution, and po-
tentially inhibiting any processors from continuing to use it

• Privacy by design: Controllers and processors must design their services consid-
ering the “state of the art” privacy and security technology to protect their users’
data. In the event of a data compromise, controllers and processors must notify
data subjects

The abstract data model of Fig. 1 summarizes the prerequisite knowledge of
personal data an organization must have for proving compliance: the processes that use
it, the platforms that store and exchange it, the people who own it and have access to it
and the places where it is stored at.

Figure 1: trust-hub’s core personal data model. [23]

According to the proposed approach of Neo4j, an organization seeking to meet
GDPR demands must be able to answer the following difficult questions of Fig. 2 in order
to provide insight into the transparency and traceability of the personal information
their system holds and thus a means for evaluating its compliance. In other words,
these questions reflect the necessary knowledge an organization must be able to prove
it holds, for satisfying the key personal data requirements related to GDPR compliance.
These requirements involve being able to track personal data movement across all internal
and external systems, applications and other components of a platform (mainly its data
lineage: where underlying data originates from and how it flows through the components).
More specifically:

13

• where the personal data was acquired

• whether consent for its usage was obtained and when

• to and from which systems it moves over time

• which geographical location it is stored at

• how it gets processed

Figure 2: Neo4j’s key GDPR requirements. [24]

Since the paths that personal data follows are complex and unpredictable, they
are best visualized as graph structures, implemented using a graph database. This choice
of structure and database best suits the nature of problems such as that of GDPR
compliance in which data relationships of interconnected systems and other entities such
as users, personal data, consent etc. are as important as the data itself. [25]

By creating a graph representation of a given platform in a graph database, an-
swers about the personal data being held can be provided by means of querying upon the
graph and extracting the required information (intertwined in nodes and relationships)
in tabular form. The resulting answer tables can then be used for reaching the final
decision on whether or not the system is GDPR compliant through means of evaluation
and analysis by the following qualified subjects:

• EU Regulators demanding proof of compliance [26]

• Data Protection Officers and internal organization staff responsible for preserving
privacy across all your systems [27]

Additionally, answers can also be provided to people such as users and con-
sumers who want to find out what an organization knows about them and how their
data is being used. The requirements thus associated with these questions will be ana-
lyzed in the next section and utilized in Chapter 3 for both the construction and querying
of an IoT platform.

14

2.1.3 Compliance questions

0. What are the fundamental data entities?
The data subjects the personal data belongs to and the user and device entities
related to it

1. What data do you have?
The personal data entities associated with the fundamental data entities

2. Where is the data stored?
The database systems in which the personal data is stored and the geographical
location where they are located.

3. How and when did you obtain data?
The fundamental data entities it is related to, meaning the entities it was derived
from (e.g. a device generating biometric personal data) and the time at which
explicit consent of a specific type was provided by the data subject (the data
belongs to), for enabling a data usage for its processing (see Q4).

4. Why do you have the data?
The data processes involving the personal data and the purpose of the processing
(data usage) that specific consent types enable.

5. Who has access to the data?
The user (data owner) that is related to the data subject it belongs to and other
users that have permission to access the data of the owner.

6. Do you have permission to use the data? For what purposes?
Whether the data subject the personal data belongs to has provided and not re-
voked a consent for its usage.

7. Is the data secure?
Whether the systems the personal data travels through (or could potentially travel
through) and store it, and the fundamental data entities it is related to (see Q1) and
have access to it (see Q5) employ proven security mechanisms such as OAuth2.0,
master keys, and encryption, in-transit and at-rest.

8. How does the data travel through your systems?
Detailed information on the tracking of personal data: the systems to and from
which the personal data travels, from the time of its acquisition to its usage by
data processes, in the context of given or revoked consents.

9. Does the data ever cross international borders?
Whether the personal data ever crosses international borders refers the inspection
of country information associated with the entities that exchange personal data in
the context of data processing. Whether the personal data crosses EU or non-EU
borders into non-EU or EU countries, respectively (see Q4 and Q8).

15

2.2 Concepts & Tools

Our approach follows the incremental design of a Remote Patient Monitoring System,
that is based on previous work (described in 2.3). In this section, we present tools and
technologies that we utilize throughout the design, implementation and demonstration
of our solution.

2.2.1 UML

The information diagrams that form the basis of our System’s graph model were created
using a subset of UML and were drawn using the web diagramming software draw.io. In
order to more clearly present the data contained in our designed System’s diagrams and
efficiently answer the aforementioned questions related to GDPR compliance by means
of queries, we must create an equivalent graph (a set of nodes and relationships, instead
of UML classes and associations) in a graph database. [28]

2.2.2 Property graphs

The property graph database model is represented by nodes (vertices), relationships
(edges), properties and labels that abide by a set of basic rules:

1. Nodes can have multiple labels for grouping and categorization purposes

2. Relationships can have one label (usually called a relationship type)

3. Both nodes and relationships can store properties represented by key-value pairs

4. All relationships are directed edges, starting at one node and ending at another

Figure 3: Example of a property graph representing bibliographic information [12]

2.2.2.1 Querying property graphs

In order to provide a solution that is general, we must define an abstract query language
that will be used for import and answer querying purposes (see Chapter 3). For this
reason we define PseudoQL, a highly-readable graph query pseudo-language, borrowing
concepts from Neo4j’s Cypher (2.2.3.2) and SQL. This language, created by us, is built
upon the following set of commands (Tables 1 - 4) for reading, writing, returning and
creating data in a property graph. [29]

16

Read commands Description
SELECT Specify patterns to find in the database

OPTIONAL SELECT Specify patterns to find in the database and use null for
patterns that do not exist

Table 1: PseudoQL read commands

Read sub-commands Description

WHERE Add constraints to patterns in a
SELECT or OPTIONAL SELECT command

ORDER BY [ASC | DESC]
Specify that the output should be sorted in either
ascending (default) or descending order
(follows the RETURN command)

Table 2: PseudoQL read sub-commands

Write commands Description
CREATE Create nodes and relationships

Table 3: PseudoQL write commands

Return commands Description
RETURN Define what to include in the query return result

Table 4: PseudoQL return commands

PseudoQL’s pattern constructs for reading and creating nodes and relationships in the
graph are based on an intuitive and easy-to-read syntax (Tables 5 - 6).

Node syntax examples Description
() A plain node

(var) A node that can be referred to
through the var variable

(:Label1:Label2: . . . :LabelN) A node with labels Label1, Label2, . . . and LabelN

(var:Label1:Label2: . . . :LabelN) A node with labels Label1, Label2, . . . and LabelN
that can be referred to through the var variable

(var:Label {key1: value1, key2: value2,
. . . , keyN: valueN})

A node with label Label and properties:
{key1: value1, key2:value2, . . . , keyN:valueN}
that can be referred to through the var variable

Table 5: PseudoQL node syntax

17

Relationship syntax example Description
−− An undirected relationship
−−> A directed relationship

-[var]-> A directed relationship that can be referred to
through the var variable

-[var:TYPE]-> A directed relationship with type TYPE that
can be referred to through the var variable

-[var:TYPE {key1: value1, key2: value2,
. . . , keyN: valueN}]->

A node with label Label and properties:
{key1: value1, key2:value2, . . . , keyN:valueN}
that can be referred to through the var variable

Table 6: PseudoQL relationship syntax

Combining the syntax for nodes and relationships we can express patterns such as the
following (Table 7). For a better understanding of PseudoQL, let’s write two queries (1
and 2) and inspect their results.

Pattern example
(node1_var:Label1:Label2 {key1: value1, key2: value2})

-[rel_var:TYPE {key1: [1, “2”, [3]]}]->
(node1_var:Label3:Label4 {key1: value1, key2: value2})

Table 7: PseudoQL pattern example

CREATE (author1:Author {fname: "Mariano", lname: "Consens"})
CREATE (author2:Author {fname: "Alberto", lname: "Mendelzon"})
CREATE (author3:Author {fname: "Peter", lname: "Wood"})
CREATE (entry1:Entry:InProceedings {

title: "GraphLog: a Visual Formalism...",
numpages:"13",
keyword:"Datalog"})

CREATE (entry2:Entry:Article {title: "Finding regular simple paths ...",
numpages: "24",
keyword: "recursive queries"})

CREATE (proceedings:Proceedings {title: "PODS", year: "1990",
month: "April"})

CREATE (journal:Journal {title: "SIAM J. Comput.", year: "1995",
vol: "24", num: "6"})

CREATE (proceedings)<-[:booktitle{pages: "404-416"}]-(entry1)
<-[:cites]-(entry2)-[:published_in {pages: "1235-1258"}]->(journal)

CREATE (author1)<-[:has_author {order: "1"}]-(entry1)
-[:has_author {order: "2"}]->(author2)

CREATE (author2)<-[:has_author {order: "1"}]-(entry2)
-[:has_author {order: "2"}]->(author3)

RETURN *

Listing 1: Create the bibliographic information property graph (Fig. 3)

18

Figure 4: Resulting graph of PseudoQL query 1

SELECT (author:Author)<-[:has_author]-(:Article)
-[pub_in:published_in]->(:Journal {title: "SIAM J. Comput."})

OPTIONAL SELECT (author)
<-[:has_author]-(entry_in_proceedings:Entry:InProceedings)

RETURN author.lname as SIAMJComput_Author_Surname,
pub_in.pages as PublishedAtPages,
entry_in_proceedings.title as EntriesInProceedings

Listing 2: Query the bibliographic information graph (Fig. 3, 4)

• Query 1: Create and return the bibliographic information property graph (Fig. 3,
4)

• Query 2: In the same graph, find and return the last name of the authors whose
article was published in the “SIAM J. Comput.” journal, at which pages and any
other entries in proceedings they may have. This query returns the data of Table
8, where the EntriesInProceedings field for Wood is null since he has not written
any in-proceedings entry.

SIAMJComput_Author_Surname PublishedAtPages EntriesInProceedings
Wood 1235-1258 null
Mendelzon 1235-1258 GraphLog: a Visual Formalism...

Table 8: Query 2 result

19

2.2.2.2 UML-to-property-graph mapping

Answering the questions for evaluating GDPR compliance requires a graph representation
of the UML class diagrams (resulting from the System’s design process presented in
Chapter 3). In other words, once the diagrams have been constructed and combined,
they must be imported into a graph database as a single graph. This task can be
accomplished by following the simple UML-to-property-graph mapping, proposed by us,
as presented in Table 9.

UML Property Graph
Class Node

Class name Node label
Association or Association class Relationship

Association or Association class name Relationship type
Attribute Property

Class-subclass correlation 1 Node with class and subclass names
and attributes as labels and properties

Table 9: UML-to-property-graph mapping

As an example, the class diagram of Fig. 5 would be modeled, according to our mapping,
as the property graph of Fig. 6.

Figure 5: An example UML class diagram

1E.g. the class-subclass correlation: class AN , which is subclass of AN−1, ..., which is subclass of A1

would be represented by a node with labels AN , AN−1, ... and A1 containing the attributes of each class
as properties.

20

Figure 6: The property graph of the example UML class diagram (Fig. 5)

Notice how the UML Event class and the Consent subclass both get mapped unto a
single property graph node with the class and subclass names as labels and the id and
timeCreated attributes inherited as properties.

2.2.3 Graph databases

For comfortably manipulating a vast array of information modeled as nodes and rela-
tionships, we decided to adopt the graph database technology, for accomplishing tasks
such as graph creation and querying, for answering the questions required for evaluating
GDPR compliance. These NoSQL databases are inherently designed to handle complex
graph constructs with relative simplicity and speed, in contrast to traditional relational
databases, whose rigid schemas, strict table/column layout confinements and JOIN re-
quirements deem them unsuitable for our task. [30]

2.2.3.1 Neo4j

The graph database we decided to adopt for our Demo (3.4) was Neo4j, a popular labeled-
property graph database management system, whose widely-used platform and highly-
expressive, well-document query language, Cypher, constitute reliable tools for querying
graphs. [31]

2.2.3.2 Cypher

Cypher is “a declarative graph query language that allows for expressive and efficient
querying and updating of the graph <. . .>. Cypher is designed to be simple, yet powerful;
highly complicated database queries can be easily expressed, enabling one to focus on
your domain, instead of getting lost in database access.”. It is inspired by SQL, reusing
part of its syntax (keywords such as WHERE and ORDER BY) while mixing it with a
human-readable, ASCII-art-like query syntax equivalent to the one used in our PseudoQL
(2.2.2.1). For example, running the query of Fig. 7 upon the data graph of Fig. 8 yields
the result of Fig. 9. [32]

21

Figure 7: Example Cypher query (to be run on data graph of Fig. 8)

Figure 8: An example data graph showing supervision and citation data for researchers,
students and publications

Figure 9: Result of example Cypher query (Fig 7)

Query (Fig. 7) explanation: This query finds and returns the names of researchers,
the number of students they supervise and the number of distinct publications that cite
their own. For more details on Cypher querying, you may read the paper this example
was taken from or the language’s manual, which provides an introduction to the language
in addition to full documentation. [33][34]

22

2.3 Related work

According to recent academic literature, the most interesting related work includes:

• “Designing Data Protection for GDPR Compliance into IoT Healthcare
Systems”, which focuses on the “implications of the General Data Privacy Regula-
tion (GDPR) on the design of an IoT healthcare system”: In this paper, researchers
break down the regulation into requirements relevant to the technical design of in-
formation systems and show how to integrate the Decentralized Labelling Model
(DLM) with Fusion/UML methods to produce a GDPR Compliant IoT Architec-
ture. They propose a data labeling model to support access control for privacy-
critical patient data and formally define four basic operations: upload, delete and
download based on specific use cases of their healthcare application. Compared to
our own work, this paper focuses exclusively on the technical requirement implica-
tions of sections 1-3 of GDPR’s Chapter III [16][35]:

– data controllers must give the data subject read access (1) to their data in-
cluding any meta-data related to it

– the system must enable deletion of data (2) and restriction of processing

– the system functions must preserve the access rights of personal data (3)

However, personal data requirements (summarized in our work’s aforementioned
questions (2.1.3) and used in Chapter 3 of our work) relating to where the personal
data is stored, whether consent was provided, data usages enabled by consent types
and tracking of the personal data, are not considered in this paper.

• “A Consent and Data Management Model”, a project encompassing a collec-
tion of publications and applications aimed at utilizing semantic web technologies
to provide a framework for aiding in GDPR Compliance. In this ongoing project,
a group of researchers at Trinity College Dublin have to-date carried out extensive
analysis of the GDPR and have quantified terms and obligations into the following
linked data resources and ontologies [17]:

– GDPRtEXT [36]: an RDF representation of the GDPR’s text (at article-
paragraph granularity) and a vocabulary of relevant terms and concepts

– GConsent [37]: an OWL2 ontology for representing consent for GDPR com-
pliance

– GDPRov [38]: an ontology for “expressing provenance of consent and data
lifecycles with a view towards GDPR compliance”

– Data Protection Rules Language [39]: “An ontology to express data sub-
ject rights in relation to data protection regulations.”

Regarding compliance, they have created applications for:

– Evaluating GDPR Readiness [40]: wherein the above mentioned metadata
is exploited for evaluating GDPR readiness using an Irish government check-
list (a technically broader set of requirements compared to our considered
questions’) with SPARQL queries. Though, not all questions of the checklist
have yet been implemented. [41]

– Evaluating Compliance Data [42]: wherein provenance information is val-
idated using SHACL for ensuring organizations maintain all the required data
prior to evaluation of compliance [43]

23

– Test-driven approach for GDPR Compliance [44]: wherein “tests can
be generated that check for compliance using constraints gathered from re-
quirements”

Compared to our work, this project attempts to take into account all of the regu-
lation’s detailed requirements and provide an automated means for checking com-
pliance through a test-driven approach. Due to this ambitious undertaking’s still
ongoing and fragmentary nature, more concrete results are yet to be seen.

24

2.4 iXen

The design of our Remote Patient Monitoring System (3.2) was based on the iXen archi-
tecture due to its secure, open and interoperable nature which serves as a representative
template for the design of a wide category of systems. Building upon previous work
on IoT architecture design and implementation based on SOA and cloud micro-services,
iXen is a secure-by-design, highly configurable, expandable and modular architecture
that supports the generation of fully customizable applications by re-using devices and
services. These re-usable services, implement fundamental functionality and offer a pub-
lic interface allowing secure connections with other services (including third party ones).
[45][46][47]

2.4.1 Users and functional requirements

It supports the following user groups and functional requirements:

• Systems administrators: they configure, maintain and monitor the cloud. In
addition to their competence for providing cloud services, they are responsible for
performing Create, Read, Update, Delete (CRUD) operations on (a) users (e.g.
they can register new users to the system and define their access rights) and (b)
devices. They are responsible for monitoring system operations at all times (e.g.
monitoring user activity).

• Infrastructure owners: they subscribe to the cloud for a fee and are granted
permission (by the cloud administrator) to register, configure, monitor or remove
devices in their possession.

• Application owners: they subscribe to the cloud and to a set of devices for a fee.
Once subscribed to devices, they can create applications using these devices. iXen
provides query mechanisms for selecting devices of interest using device properties
such as device type, geographic location, purpose etc. Application development in
iXen is supported by flow-based programming web tools. An application is defined
by wiring together the outputs of selected devices.

• Customers: they subscribe to applications for a fee. iXen provides query mecha-
nisms to users for selecting applications available for subscriptions based on criteria
such as purpose and functionality. Customers are only granted access rights to ap-
plications.

2.4.2 Architecture

iXen is designed as a composition of groups of autonomous RESTful services commu-
nicating with each other over HTTP, as shown in the architecture diagram of Fig. 10.
[48]

25

Figure 10: iXen Architecture

In the following chapter, we re-design the iXen architecture as a Remote Patient
Monitoring System architecture by taking into account patient monitoring needs and the
requirements posed by the 10 GDPR questions and we create UML class diagrams that
will be imported into a graph database for creating answer queries for GDPR compliance
evaluation.

26

Chapter 3

Solving the GDPR Compliance
evaluation problem

3.1 Approach

Our method’s general idea for tackling the problem of evaluating GDPR compliance in-
volves designing a Remote Patient Monitoring System by considering compliance-related
personal data requirements and querying it for results. Specifically, our solution is com-
posed of two stages:

1. Creating the class diagram of a Remote Patient Monitoring System that encom-
passes information taken from the IoT healthcare and cloud micro-service contexts
and fundamental GDPR requirements proposed by Neo4j’s questions (described in
2.1.3)

2. Querying the class diagram’s graph (populating a graph database) for answering
the questions, which leads to the creation of data reports for evaluating GDPR
compliance

27

3.2 Designing a Remote Patient Monitoring System

Our Remote Patient Monitoring System is founded on a re-design of the users, func-
tional requirements and underlying architecture of iXen, an IoT system composed of
RESTful cloud micro-services leveraging Service Oriented Architecture (SOA) principles
with a strong emphasis on security. Every functionality constitutes autonomous services
communicating with each other through RESTful interfaces over HTTP. This design
follows a “Security by Design” approach, providing the necessary protection of services
and data in the cloud and providing services only to authorized users or other services.
Key components of this platform include services such as the Device Interface service
to which patients’ devices automatically transmit biometric data on a regular basis, as
well as the Publish-Subscribe service that implements the doctor-patient subscription and
publication mechanisms.

3.2.1 Users and Functional Requirements

Three types of users are supported:

1. Patients, who wear heart-monitoring sensor devices that independently send bio-
metric data to a service in the cloud

2. Doctors, who have the ability to subscribe to a number of patients, monitor their
conditions and access their personal data

3. Administrators, who hold the highest degree of access-right privileges, are able
to access, change and delete personal data across users and services within the
platform.

All users use a Web app interface to access their own data as well as various resources
residing on different services, depending on their level of authorization. Four groups of
components related to services are supported:

1. Sensor: Heart-rate-monitoring IoT devices are connected and continuously trans-
mit data to the Device Interface service, which publishes it to the Publish-Subscribe
service that sends it to subscribers and the Data Storage service.

2. Storage: The Pub-Sub DB (NoSQL database), which is part of the Publish-
Subscribe service, holds the active devices transmitting data, active subscriptions
and current device data (e.g. recently transmitted data). Heart-related health data,
as received from devices and older historic data is stored in the History DB ser-
vice (that contains a NoSQL database) through the Data Storage Service, whereas,
the historic data can be accessed through the Data History Recovery service. In-
formation related to user login credentials and authorization, such as roles and
permissions, is stored in the Relational DB, that is part of the User Identification
– Auth service.

3. Application Logic: The Application Logic service acts as the orchestrator in
between the other services. Every time a user request is issued through the Web
App’s interface, this service receives it and dispatches it to the appropriate service.

4. Security: Services related to security implement access control mechanisms based
on user roles and access policies. On registration, users receive login credentials and
an appropriate role related to their access-rights. On login, the User Identification
– Auth service assigns users an OAuth2.0 token that encodes particular service
authorization information by means of XACML, stored in the Authorization Policy

28

Decision Point service. For accessing resources, Policy Enforcement Proxy (PEP)
services forward a user’s OAuth2.0 token to the User Identification – Auth service
to check for validity. If positive, the steps that follow are illustrated in Fig. 11.
Regarding inter-service communication, services securely talk to each other with
the help of a security key, referred to as a Master Key. In such a case, the PEP
service stores the master key which is compared with the in-header key of a service’s
request. This simple mechanism is illustrated in Fig. 12. [49][50]

Figure 11: iXen OAuth2.0 security model

Figure 12: iXen Master Key security model

3.2.2 Architecture

The architecture of our Remote Patient Monitoring System, as illustrated in Fig. 13, is
based on a redesign of the iXen architecture (Fig. 10) by including information specific
to our users and functional requirements and removing those that are irrelevant to our
application, such as application generation using mashups.

29

Figure 13: Remote Patient Monitoring System architecture diagram

30

3.2.3 Incorporating GDPR Compliance requirements

In this section we provide the methodology for incrementally constructing the unified
class diagram of our Remote Patient Monitoring System by taking into account the
requirements of each and every one of the specific 10 preliminary GDPR Compliance
evaluation questions1, in addition to the users, functional requirements and architecture
defined in the previous subsection.

Our platform, as already mentioned, includes user patients wearing sensor de-
vices measuring heart rate data, users that can subscribe to one another and user admin-
istrators having full-access privileges over all System information. Furthermore, all users
use a web interface through which they can access the services’ APIs and can perform a
range of operations, depending on their roles.

3.2.3.1 Constructing the System class diagram

In this subsection we take each question and create its corresponding class diagram,
leading up to the resulting class diagram of the whole System (Fig. 21).

3.2.3.1.1 0. What are the fundamental data entities?

Analysis: Since our domain of interest revolves around patient monitoring, these data
entities are:

• Person: the data subjects the personal data belongs to

• User : patient, doctor and admin users of the Remote Patient Monitoring System,
related to Persons

• Device: devices worn by user patients for remote health monitoring purposes

Figure 14: Q0 Remote Patient Monitoring System class diagram

1Descriptions to the questions are provided in 2.1.3

31

3.2.3.1.2 1. What data do you have?

Analysis: The categories of personal data we have are:

• UserData: user data such as username, email and phone

• SubscriptionData: user subscription data such as subscriber and subscribees

• SensorData: sensor data such as heart rate

Figure 15: Q1 Remote Patient Monitoring System class diagram

32

3.2.3.1.3 2. Where is the data stored?

Analysis: Where the data is stored refers to the categories of database systems that act
as storage for the personal data which, according to our functional requirements, are:

• RelationalDB : storage database of UserData

• PubSubDB : storage database of SubscriptionData

• HistoryDB : storage database of SensorData

Figure 16: Q2 Remote Patient Monitoring System class diagram

33

3.2.3.1.4 3. How and when did you obtain the data?

Analysis: The new entities that are of interest to us within the context of this question’s
requirements, are:

• Consent : a consent event, provided or revoked by a person

• ConsentType: the type of a Consent (e.g. ‘Terms and Conditions’)

Figure 17: Q3 Remote Patient Monitoring System class diagram

34

3.2.3.1.5 4. Why do you have the data?

Analysis: Why we have the personal data introduces two new entities (a) representing
the data usage that a consent type enables and (b) the categories of data process events
that process personal data. The corresponding entities are:

• DataUsage: the purpose of data processing, enabled by a specific ConsentType

• DataProcess: the event of data processing, involving personal data belonging to a
person:

– DataAccess: the event of data access to a User from a WebApp

– DataUpdate: the event of data updating done from a WebApp to a DB

– DataExport : the event of exporting data from a DB to an AmbulanceService
(third party first-aid emergency ambulance service)

– InternalDataMovement : the event of an internal data movement involving
data exchanged from one System to another System (where System may be
either a cloud Service or a DB) 2

Figure 18: Q4 Remote Patient Monitoring System class diagram 3

2System is the superclass of DB and Service classes (see the resulting class diagram of Fig. 21) and
should not be confused with the Remote Patient Monitoring System that contains it.

3TO and FROM associations indicate the flow of data to and from entities.

35

3.2.3.1.6 5. Who has access to the data?

Analysis: Data access rights are denoted as ‘CAN_ACCESS_DATA_OF’ associations
between users.

Figure 19: Q5 Remote Patient Monitoring System class diagram 4

3.2.3.1.7 6. Do you have permission to use the data? For what purposes?

Analysis: No new GDPR entities are introduced here (the entities that are involved in
this question are: PersonalData, Person, Consent, ConsentType, DataUsage). For more
information, see question description (2.1.3).

4We assume that a Doctor can access the data of one or more Patients, whereas all Admins can
access the data of all Doctors and all Patients.

36

3.2.3.1.8 7. Is the data secure?

Analysis: According to its functional requirements, our Remote Patient Monitoring Sys-
tem supports the following security schemes:

• RESTServiceSecurity : The security scheme employed by User, Device and Service
entities:

– OAuth2 : OAuth2.0 tokens are issued to users upon login for identity, role and
permission confirmation

– MasterKey : A secret key for secure inter-service communication

– Permission: A permission for accessing a particular resource

– Role: A collection of permissions, described in its corresponding XACML rule

– XACMLRule: A rule formally describing the services and resources that users
can access based on the roles and permissions they hold

5We assume that all Devices, Services and Users of our platform employ REST service security.

37

Figure 20: Q7 Remote Patient Monitoring System class diagram 5

38

3.2.3.1.9 8. How does the data travel through your systems?

Analysis: No new GDPR entities are introduced here (the entities that are involved
in this question are: PersonalData, Person, Event, System, App, User, ConsentType,
DataUsage). For more information, see question description (2.1.3).

3.2.3.1.10 9. Does the data ever cross international borders?

Analysis: No new GDPR entities are introduced here (the entities that are involved in
this question are: PersonalData, Person, DataProcess, System, App, User). For more
information, see question description (2.1.3).

39

3.2.3.1.11 The resulting System class diagram
Combining each separate question’s class diagram and the architecture diagram (Fig.
13), we construct the final class diagram of our Remote Patient Monitoring System, as
illustrated in Fig. 21. The role of the resulting diagram is twofold: it can be used
to (a) answer the GDPR compliance-related questions and (b) implement the system.
Therefore, both problems are handled in one step and there is no need to separate
the system design process from evaluation of GDPR compliance, since the compliance
requirements have been incorporated by design.

6The USES, PART_OF and CONNECTED_TO associations are taken directly from the architecture
diagram.

40

Figure 21: Remote Patient Monitoring System class diagram 6

41

3.3 System GDPR Compliance evaluation

Although UML is appropriate for design purposes, it does not inherently support in-
formation processing and there are currently no tools for querying the information it
represents. The ability for querying is provided by a tool such as a graph database,
which we employ in our method. In the following subsection, we provide the algorithms
and queries in the PseudoQL pseudo-language (that we defined in 2.2.2.1) for importing
the class diagram and answering the questions in a property graph database.

3.3.1 Importing the System into a graph database

Prior to answering the questions for evaluating GDPR compliance, we must import the re-
sulting Remote Patient Monitoring System class diagram (Fig. 21) into a graph database.
This means that we must create a property graph equivalent to the diagram. To do so, we
abide by the UML-to-property-graph mapping convention we defined in 9, where classes,
associations and attributes are translated into property graph nodes, relationships and
properties.

Creating the equivalent diagram property graph involves running the PseudoQL
query 23 that is presented in the Appendix (A). Fig. 22 illustrates the resulting property
graph.

Figure 22: Remote Patient Monitoring System graph

42

3.3.2 Answering the compliance questions

For each of the following questions we provide a description, the algorithm of the answer
query, the actual answer query in the PseudoQL query language, the tabular data re-
port results it yields and brief comments on them. These reports can be more formally
analyzed by a human expert such as a Data Protection Officer or equivalent compliance
authority, for evaluating GDPR compliance. Although, instantiated data is required for
determining compliance, the following result tables provide a template of how real-data
reports of an instantiated platform will look like.

3.3.2.1 Answer 0. What are the fundamental data entities?

Description: Query all fundamental data entity nodes.

Query explanation:

1. Find nodes whose labels include Device, Person or User

2. Return them

SELECT (e)
WHERE e:Device or e:Person or e:User
RETURN LABELS_OF(e) as type,

e as fdDataEntity

Listing 3: PseudoQL Q0 answer query

Figure 23: PseudoQL Q0 answer query result

Query result comments: This answer yields rows containing each registered fundamental
data entity (e.g. the patient user).

43

3.3.2.2 Answer 1. What data do you have?

Description: Query all personal data nodes and the person nodes they belong to.

Query explanation:

1. Find personal data nodes and person nodes they belong to

2. Return them

SELECT (pd:PersonalData)-[:BELONGS_TO]->(p:Person)
RETURN LABELS_OF(pd) as pdType,

pd as personalData,
p as person

Listing 4: PseudoQL Q1 answer query

Figure 24: PseudoQL Q1 answer query result

Query result comments: This answer yields rows containing the personal data held within
the Remote Patient Monitoring System (e.g. SensorData), its contents and the informa-
tion of the data subject it belongs to.

44

3.3.2.3 Answer 2. Where is the data stored?

Description: Query all DB nodes where personal data is stored in.

Query explanation:

1. Find personal data nodes and person nodes they belong to

2. Find the DB nodes the personal data is stored in

3. Find the service nodes the DB nodes are part of

4. Return the personal data nodes, their corresponding person nodes, the DB nodes
and location properties

SELECT (p:Person)<-[:BELONGS_TO]-(pd:PersonalData)
OPTIONAL SELECT (pd)-[:STORED_IN]->(db:DB)
OPTIONAL SELECT (db)-[:PART_OF]->(dbS:Service)
RETURN LABELS_OF(pd) as pdType,

pd as personalData,
p as person,
LABELS_OF(db) as DBType,
db as DB,
CASE

WHEN EXISTS((db)-[:PART_OF]->(dbS)) THEN
dbS.location

ELSE
db.location

END as location,
CASE

WHEN EXISTS((db)-[:PART_OF]->(dbS)) THEN
dbS.country

ELSE
db.country

END as country

Listing 5: PseudoQL Q2 answer query

Figure 25: PseudoQL Q2 answer query result

Query result comments: This answer yields rows containing the database system in which
each personal data entity is stored (e.g. RelationalDB), its information (e.g. version)
and the physical location of the database system is located at.

45

3.3.2.4 Answer 3. How and when did you obtain the data?

Description: Query all personal data nodes, the person nodes they belong to, consent
nodes they provided and related consent type nodes and the time at which they were
provided.

Query explanation:

1. Find personal data nodes, data entity nodes they are related to and person nodes
they belong to

2. Find the consent nodes provided by the person nodes and their consent type nodes

3. Return the personal data nodes, the person nodes, the provided consent nodes, the
consent type nodes and the time the consent was provided

SELECT (de)<-[:RELATED_TO]-(pd:PersonalData)
-[:BELONGS_TO]->(p:Person)

OPTIONAL SELECT (p)-[prov:PROVIDED]->(c:Consent)
-[:OF_TYPE]->(cT:ConsentType)

RETURN LABELS_OF(pd) as pdType,
pd as personalData,
p as person,
de as fdDataEntity,
c as consent,
cT as consentType,
prov.time as timeConsentProvided

Listing 6: PseudoQL Q3 answer query

Figure 26: PseudoQL Q3 answer query result

Query result comments: This answer yields rows containing the information of the user
or device fundamental data entity each personal data entity is related to and information
of the consent that the data owner has provided (e.g. time of consent creation, time of
consent provision, consent type).

46

3.3.2.5 Answer 4. Why do you have the data?

Description: Query all personal data nodes, the person nodes they belong to, consent
nodes, related consent type nodes and the data usage nodes they enable. Also, query
the data process nodes that involve the personal data nodes and the nodes to and from
which they exchange data.

Query explanation:

1. Find personal data nodes and person nodes they belong to

2. Find the consent nodes, provided by the person nodes and consent type nodes they
are related to

3. Find the data usage nodes enabled by the consent type nodes

4. Find the data process nodes involving the personal data nodes

5. Find the nodes to and from which the data process nodes send and receive data

6. Return the personal data nodes, the person nodes, the data usage nodes, the data
process nodes and the nodes to and from which the latter send and receive data

SELECT (pd:PersonalData)-[:BELONGS_TO]->(p:Person)
SELECT (p)-[:PROVIDED]->(:Consent)-[:OF_TYPE]->(cT:ConsentType)
SELECT (cT)-[:ENABLES]->(du:DataUsage)
OPTIONAL SELECT (pd)<-[:INVOLVES]-(dp:DataProcess)
OPTIONAL SELECT (f)-[:FROM]->(dp)-[:TO]->(t)
RETURN LABELS_OF(pd) as pdType,

pd as personalData,
p as person,
COLLECT(du) as dataUsages,
LABELS_OF(dp) as dpType,
dp as dataProcess,
[LABELS_OF(f), f] as from,
[LABELS_OF(t), t] as to

Listing 7: PseudoQL Q4 answer query

Query result comments: This answer yields rows containing information about the data
usages of each personal data entity (enabled by the consent provided by its owner),
information of events that involve it by means of data processing and the entities (e.g.
apps, Systems, Users, third parties) to and from which it travels (in the context of each
data processing event).

47

Figure 27: PseudoQL Q4 answer query result

48

3.3.2.6 Answer 5. Who has access to the data?

Description: Query all personal data nodes, the person nodes they belong to, the user
nodes (data owners) related to the person nodes, the DB nodes they are linked to (de-
noting storage) and the non-owner user nodes that can access the owner’s data.

Query explanation:

1. Find personal data nodes, the person nodes they belong to, the user nodes related
to the person nodes (personal data owners) and the DB nodes the personal data is
stored in

2. Find the user nodes that can access the data of the owner user nodes

3. Return the personal data nodes, the person nodes, data usage nodes, the DB nodes,
the user owner nodes and the other user nodes that can access the personal data

SELECT (pdOwnerUser:User)-[:RELATED_TO]->(p:Person)
<-[:BELONGS_TO]-(pd:PersonalData)-[:STORED_IN]->(db:DB)

OPTIONAL SELECT (otherUser:User)-[CAN_ACCESS_DATA_OF]->(pdOwnerUser)
RETURN LABELS_OF(pd) as pdType,

pd as personalData,
p as person,
LABELS_OF(db) as DBType,
db as DB,
pdOwnerUser,
COLLECT(otherUser) as otherUsersWAccess

Listing 8: PseudoQL Q5 answer query

Query result comments: This answer yields rows containing the access information for
each personal data entity, meaning the owner and all other users that can access it.

49

Figure 28: PseudoQL Q5 answer query result

50

3.3.2.7 Answer 6. Do you have permission to use the data? For what
purposes?

Description: Query all personal data nodes, the person nodes they belong to, the DB
nodes they are linked to (denoting storage) and whether the person nodes have provided
and not revoked a consent node for its data usage.

Query explanation:

1. Find personal data nodes and the person nodes they belong to

2. Find the consent nodes provided or revoked by the person nodes, the related consent
type nodes and the data usage nodes they enable

3. Return the personal data nodes, the person nodes, the data usage nodes, and a
boolean value of whether there exists a provided and not a revoked relationship
between the person nodes and the consent nodes (as denoting permission to use
the data)

SELECT (pd:PersonalData)-[:BELONGS_TO]->(p:Person)
OPTIONAL SELECT (p)-->(c:Consent)

-[:OF_TYPE]->(cT:ConsentType)
-[:ENABLES]->(du:DataUsage)

RETURN LABELS_OF(pd) as pdType,
pd as personalData,
p as person,
COLLECT(du) as dataUsagesEnabledByPerson,
EXISTS((p)-[:PROVIDED]->(c)-[:OF_TYPE]->(cT)

-[:ENABLES]->(du)) AND
NOT EXISTS((p)-[:REVOKED]->(c)-[:OF_TYPE]->(cT)

-[:ENABLES]->(du))
as permissionToUseData

Listing 9: PseudoQL Q6 answer query

Figure 29: PseudoQL Q6 answer query result

Query result comments: This answer yields rows containing information about the data
usages enabled by the owners of each personal data entity and a boolean value denoting
whether the data processors holding the data have permission to use it (which depends
on whether consent for related data usages has been provided and not revoked). This
answer may be a determinant for non-compliance if the permissionToUseData evaluates
to false too many times.

51

3.3.2.8 Answer 7. Is the data secure?

Description: Query all personal data nodes, the DB nodes they are linked to (denoting
storage), the user or device fundamental data entity nodes and whether or not they em-
ploy REST Service Security.

Query explanation:

1. Find personal data nodes, the person nodes they belong to and the DB nodes the
personal data is stored in

2. Find the fundamental data entity nodes related to the person nodes

3. Find the service nodes the DB nodes are part of

4. Find the REST Service Security node and its security element nodes

5. Return the personal data nodes, the person nodes, the DB nodes, a boolean value
of whether the fundamental data entity nodes and the db nodes (or the service the
db is part of) employ REST Service Security and the REST Service Security node
and its security element nodes

SELECT (p:Person)<-[:BELONGS_TO]-(pd:PersonalData)
-[:STORED_IN]->(db:DB)

OPTIONAL SELECT (fdEntity)-[:RELATED_TO]->(p:Person)
OPTIONAL SELECT (db)-[:PART_OF]->(serviceOfdb:Service)
OPTIONAL SELECT (restServiceSec:RESTServiceSecurity)

<-[:ELEMENT_OF]-(secElem)
RETURN LABELS_OF(pd) as pdType,

pd as personalData,
p as person,
LABELS_OF(db) as DBType,
db as DB,
CASE

WHEN "Service" IN LABELS_OF(db) THEN
EXISTS((fdEntity)

-[:EMPLOYS]->(restServiceSec)) AND
EXISTS((db)-[:EMPLOYS]->(restServiceSec))

ELSE
EXISTS((fdEntity)

-[:EMPLOYS]->(restServiceSec)) AND
EXISTS((serviceOfdb)

-[:EMPLOYS]->(restServiceSec))
END as isDataSecure,
[LABELS_OF(restServiceSec), restServiceSec]

as securityType,
COLLECT([LABELS_OF(secElem), secElem])

as securityElements

Listing 10: PseudoQL Q7 answer query

Query result comments: This answer yields rows containing information about the secu-
rity type available in our Platform (REST Service Security), its elements (e.g. OAuth2.0)

52

Figure 30: PseudoQL Q7 answer query result

53

and a boolean value denoting whether each personal data entity is secure (which depends
on whether the fundamental entity it is related to, such as Users and Devices, and the
System it is stored in both employ REST Service Security). Since all Users, Devices and
Systems of our platform employ REST Service Security by design, the boolean value is
true for every personal data entity. This answer may be a determinant for non-compliance
if a human expert, such as a Data Protection Officer deems the security elements involved
with each personal data entity as inadequate for fullfiling GDPR security demands.

54

3.3.2.9 Answer 8. How does the data travel through your systems?

Description: Query all event nodes, the personal data they involve and the nodes (sys-
tems, users, apps, etc.) they exchange it with.

Query explanation:

1. Find personal data nodes, the person nodes they belong to and the events nodes
the person nodes are connected with, where the events nodes are either consent
nodes or data process nodes involving the personal data nodes

2. If the event nodes are data process nodes: find the nodes to and from which the
event nodes send and receive data, whereas if the event nodes are consent nodes:
find their corresponding consent type nodes and the data usage nodes they enable

3. Return the personal data nodes, the person nodes, a custom description of the
event and times of creation, provision or revocation (depending on the type of the
event nodes)

SELECT (pd:PersonalData)-[:BELONGS_TO]->(p:Person)
SELECT (e:Event)
WHERE e:Consent OR (e:DataProcess AND

(pd)<-[:INVOLVES]-(e))
OPTIONAL SELECT (e)-[consent_rel]-(p)
OPTIONAL SELECT (t)-[:TO]-(e)-[:FROM]-(f)
OPTIONAL SELECT (e)-[:OF_TYPE]->(cT:ConsentType)

-[:ENABLES]->(du:DataUsage)
RETURN LABELS_OF(pd) as pdType,

pd as personalData,
p as person,
LABELS_OF(e) as eventType,
CASE

WHEN e:Consent THEN
"OF_TYPE: "+cT.name+" ("+LABELS_OF(cT)[0]+

") | FOR: "+du.name+" ("+
LABELS_OF(du)[0]+")"

ELSE
"FROM: "+f.name+" ("+LABELS_OF(f)[0]+

") | TO: "+t.name+" ("+
LABELS_OF(t)[0]+")"

END as eventDescription,
CASE

WHEN consent_rel IS NOT null THEN
consent_rel.time+" ("+TYPE(consent_rel)+")"

ELSE
e.timeCreated

END as time
ORDER BY time DESC

Listing 11: PseudoQL Q8 answer query

55

Figure 31: PseudoQL Q8 answer query result

56

Query result comments: This answer yields rows containing descriptions of each Consent
or DataProcess event related to each personal data entity (such as consent types and
data usages (for Consent events) and apps, users, systems and third parties to and from
which the data was exchanged (for DataProcess events) and time related to each event.

57

3.3.2.10 Answer 9. Does the data ever cross international borders?

Description: Query the data process event nodes, the personal data nodes they involve
and the nodes (systems, users, apps, etc.) they exchange it with.

Query explanation:

1. Find personal data nodes, the person nodes they belong to and data process events
involving the personal data nodes

2. Find the nodes to and from which the data process nodes send and receive data

3. Find the service nodes the ‘to’ entity nodes are part of

4. Find the service nodes the ‘from’ entity nodes are part of

5. Return the personal data nodes, the person nodes, a description of the event, the
‘from’ node countries, the ‘to’ node countries and the times of creation of the data
process nodes

SELECT (p:Person)<-[:BELONGS_TO]-(pd:PersonalData)
<-[:INVOLVES]-(dp:DataProcess)

OPTIONAL SELECT (t)-[:TO]-(dp)-[:FROM]-(f)
OPTIONAL SELECT (f)-[:PART_OF]->(serviceOfFromDB:Service)
OPTIONAL SELECT (t)-[:PART_OF]->(serviceOfToDB:Service)
RETURN LABELS_OF(pd) as pdType,

pd as personalData,
p as person,
LABELS_OF(dp) as dataProcessType,
"FROM: "+f.name+" ("+LABELS_OF(f)[0]+")| TO: "+

t.name+" ("+LABELS_OF(t)[0]+")"
as eventDescription,

CASE
WHEN NOT EXISTS((f)

-[:PART_OF]->(serviceOfFromDB)) THEN
f.country

ELSE
serviceOfFromDB.country

END as fromEntity_country,
CASE

WHEN NOT EXISTS((t)
-[:PART_OF]->(serviceOfToDB:Service)) THEN

t.country
ELSE

serviceOfToDB.country
END as toEntity_country,
dp.timeCreated as time

ORDER BY time DESC

Listing 12: PseudoQL Q9 answer query

Query result comments: This answer yields rows containing concatenated descriptions
of each DataProcess event related to each personal data entity and the country of the

58

Figure 32: PseudoQL Q9 answer query result

59

entity from which the data derived and of the entity to which it has traveled (if such
information does not exist for the given entities, null is returned). This answer may be of
special interest to a human expert, such as a regulator, for inspecting the countries from
and to which personal data entities may travel (e.g. whether EU borders were crossed).

60

3.4 Demo

In this section, we demonstrate our method on an example instance of our Remote Patient
Monitoring System using the Neo4j graph database and the Cypher querying language.
This System is based off of the instantiated architecture illustrated in Fig. 33, consisting
of FIWARE services (running on the OpenStack infrastructure), including dummy data
for representing the properties of users, personal data, consents, data usages, and all the
rest of the instance’s components. [51][52]

Creating the equivalent property graph, as illustrated in Fig. 34, is accom-
plished by first running the Cypher parameter-related query 24 which creates the dummy
data (by binding key-value pairs of data to parameters). After that query has ran, we
run the Cypher query 25 that creates all the necessary nodes and relationships. Both
queries are presented in the Appendix (A).7 Finally, we run the Cypher answer queries
presented in the following subsections and inspect their results.

Assumptions: For the purposes of limiting the complexity of our graph and providing
a clear view of our method without getting lost in data specifics, we have made the
following assumptions about the information held in our instantiated system:

• There are two consent types:

1. Terms & Conditions

2. Patient Emergency Condition

• There are four types of data processing events:

1. Internal data movement

2. Data Access

3. Data Update

4. Data Export

• Our instance only holds information about all the users, devices and services which
employ REST Service Security. For the sake of simplicity, role, permission and
XACML information data was excluded from this demo.8

7Queries 24 and 25 and the following answer queries can be run and inspected in any running sandbox,
cloud, desktop or containerized deployment of the Neo4j database.

8For matters of convenience, we bound the instance’s data (properties) to Cypher parameters prior
to executing our main import query. To explore the specific data used to populate our nodes and
relationships, you may inspect the :param query JSON objects (query 24)

61

Figure 33: Instantiated Remote Patient Monitoring System architecture diagram

62

Figure 34: Instantiated Remote Patient Monitoring System graph

63

3.4.1 Answering the compliance questions

These queries were based off of the PseudoQL answer queries presented in 3.3.2. Cypher ’s
MATCH clause is equivalent to PseudoQL’s SELECT command, whereas self-explanatory
functions and expressions such as as EXISTS, CASE, etc. are mostly the same. [53]

3.4.1.1 Answer 0. What are the fundamental data entities?

MATCH (e)
WHERE e:Device or e:Person or e:User
RETURN LABELS(e) as type,

e as fdDataEntity

Listing 13: Cypher Q0 answer query

Figure 35: Cypher Q0 answer query result

64

3.4.1.2 Answer 1. What data do you have?

MATCH (pd:PersonalData)-[:BELONGS_TO]->(p:Person)
RETURN LABELS(pd) as pdType,

pd as personalData,
p as person

Listing 14: Cypher Q1 answer query

Figure 36: Cypher Q1 answer query result

65

3.4.1.3 Answer 2. Where is the data stored?

MATCH (p:Person)<-[:BELONGS_TO]-(pd:PersonalData)
OPTIONAL MATCH (pd)-[:STORED_IN]->(db:DB)
OPTIONAL MATCH (db)-[:PART_OF]->(dbS:Service)
RETURN LABELS(pd) as pdType,

pd as personalData,
p as person,
LABELS(db) as DBType,
db as DB,
CASE

WHEN EXISTS((db)-[:PART_OF]->(dbS)) THEN
dbS.location

ELSE
db.location

END as location,
CASE

WHEN EXISTS((db)-[:PART_OF]->(dbS)) THEN
dbS.country

ELSE
db.country

END as country

Listing 15: Cypher Q2 answer query

66

Figure 37: Cypher Q2 answer query result

67

3.4.1.4 Answer 3. How and when did you obtain the data?

MATCH (de)<-[:RELATED_TO]-(pd:PersonalData)
-[:BELONGS_TO]->(p:Person)

OPTIONAL MATCH (p)-[prov:PROVIDED]->(c:Consent)
-[:OF_TYPE]->(cT:ConsentType)

RETURN LABELS(pd) as pdType,
pd as personalData,
p as person,
de as fdDataEntity,
c as consent,
cT as consentType,
prov.time as timeConsentProvided

Listing 16: Cypher Q3 answer query

68

Figure 38: Cypher Q3 answer query result

69

3.4.1.5 Answer 4. Why do you have the data?

MATCH (pd:PersonalData)-[:BELONGS_TO]->(p:Person)
MATCH (p)-[:PROVIDED]->(:Consent)-[:OF_TYPE]->(cT:ConsentType)
MATCH (cT)-[:ENABLES]->(du:DataUsage)
OPTIONAL MATCH (pd)<-[:INVOLVES]-(dp:DataProcess)
OPTIONAL MATCH (f)-[:FROM]->(dp)-[:TO]->(t)
RETURN LABELS(pd) as pdType,

pd as personalData,
p as person,
COLLECT(du) as dataUsages,
LABELS(dp) as dpType,
dp as dataProcess,
[LABELS(f), f] as from,
[LABELS(t), t] as to

Listing 17: Cypher Q4 answer query

70

Figure 39: Cypher Q4 answer query result

71

3.4.1.6 Answer 5. Who has access to the data?

MATCH (pdOwnerUser:User)-[:RELATED_TO]->(p:Person)
<-[:BELONGS_TO]-(pd:PersonalData)-[:STORED_IN]->(db:DB)

OPTIONAL MATCH (otherUser:User)-[CAN_ACCESS_DATA_OF]->(pdOwnerUser)
RETURN LABELS(pd) as pdType,

pd as personalData,
p as person,
LABELS(db) as DBType,
db as DB,
pdOwnerUser,
COLLECT(otherUser) as otherUsersWAccess

Listing 18: Cypher Q5 answer query

72

Figure 40: Cypher Q5 answer query result

73

3.4.1.7 Answer 6. Do you have permission to use the data? For what
purposes?

MATCH (pd:PersonalData)-[:BELONGS_TO]->(p:Person)
OPTIONAL MATCH (p)-->(c:Consent)

-[:OF_TYPE]->(cT:ConsentType)
-[:ENABLES]->(du:DataUsage)

RETURN LABELS(pd) as pdType,
pd as personalData,
p as person,
COLLECT(du) as dataUsagesEnabledByPerson,
EXISTS((p)-[:PROVIDED]->(c)-[:OF_TYPE]->(cT)

-[:ENABLES]->(du)) AND
NOT EXISTS((p)-[:REVOKED]->(c)

-[:OF_TYPE]->(cT)-[:ENABLES]->(du))
as permissionToUseData

Listing 19: Cypher Q6 answer query

74

Figure 41: Cypher Q6 answer query result

75

3.4.1.8 Answer 7. Is the data secure?

MATCH (p:Person)<-[:BELONGS_TO]-(pd:PersonalData)
-[:STORED_IN]->(db:DB)

OPTIONAL MATCH (fdEntity)-[:RELATED_TO]->(p:Person)
OPTIONAL MATCH (db)-[:PART_OF]->(serviceOfdb:Service)
OPTIONAL MATCH (restServiceSec:RESTServiceSecurity)

<-[:ELEMENT_OF]-(secElem)
RETURN LABELS(pd) as pdType,

pd as personalData,
p as person,
LABELS(db) as DBType,
db as DB,
CASE

WHEN "Service" IN LABELS(db) THEN
EXISTS((fdEntity)

-[:EMPLOYS]->(restServiceSec)) AND
EXISTS((db)-[:EMPLOYS]->(restServiceSec))

ELSE
EXISTS((fdEntity)

-[:EMPLOYS]->(restServiceSec)) AND
EXISTS((serviceOfdb)

-[:EMPLOYS]->(restServiceSec))
END as isDataSecure,
[LABELS(restServiceSec), restServiceSec]

as securityType,
COLLECT([LABELS(secElem), secElem])

as securityElements

Listing 20: Cypher Q7 answer query

76

Figure 42: Cypher Q7 answer query result

77

3.4.1.9 Answer 8. How does the data travel through your systems?

MATCH (pd:PersonalData)-[:BELONGS_TO]->(p:Person)
MATCH (e:Event)
WHERE e:Consent OR (e:DataProcess AND

(pd)<-[:INVOLVES]-(e))
OPTIONAL MATCH (e)-[consent_rel]-(p)
OPTIONAL MATCH (t)-[:TO]-(e)-[:FROM]-(f)
OPTIONAL MATCH (e)-[:OF_TYPE]->(cT:ConsentType)

-[:ENABLES]->(du:DataUsage)
RETURN LABELS(pd) as pdType,

pd as personalData,
p as person,
LABELS(e) as eventType,
CASE

WHEN e:Consent THEN
"OF_TYPE: "+cT.name+" ("+LABELS(cT)[0]+

") | FOR: "+du.name+" ("+
LABELS(du)[0]+")"

ELSE
"FROM: "+f.name+" ("+LABELS(f)[0]+

") | TO: "+t.name+" ("+
LABELS(t)[0]+")"

END as eventDescription,
CASE

WHEN consent_rel IS NOT null THEN
consent_rel.time+" ("+TYPE(consent_rel)+")"

ELSE
e.timeCreated

END as time
ORDER BY time DESC

Listing 21: Cypher Q8 answer query

78

Figure 43: Cypher Q8 answer query result

79

3.4.1.10 Answer 9. Does the data ever cross international borders?

MATCH (p:Person)<-[:BELONGS_TO]-(pd:PersonalData)
<-[:INVOLVES]-(dp:DataProcess)

OPTIONAL MATCH (t)-[:TO]-(dp)-[:FROM]-(f)
OPTIONAL MATCH (f)-[:PART_OF]->(serviceOfFromDB:Service)
OPTIONAL MATCH (t)-[:PART_OF]->(serviceOfToDB:Service)
RETURN LABELS(pd) as pdType,

pd as personalData,
p as person,
LABELS(dp) as dataProcessType,
"FROM: "+f.name+" ("+LABELS(f)[0]+")| TO: "+

t.name+" ("+LABELS(t)[0]+")"
as eventDescription,

CASE
WHEN NOT EXISTS((f)

-[:PART_OF]->(serviceOfFromDB)) THEN
f.country

ELSE
serviceOfFromDB.country

END as fromEntity_country,
CASE

WHEN NOT EXISTS((t)
-[:PART_OF]->(serviceOfToDB:Service)) THEN

t.country
ELSE

serviceOfToDB.country
END as toEntity_country,
dp.timeCreated as time

ORDER BY time DESC

Listing 22: Cypher Q9 answer query

80

Figure 44: Cypher Q9 answer query result

81

3.5 Discussion

What our work accomplishes is a means for creating compliance data reports (related
to fundamental personal data aspects of the GDPR) for a Remote Patient Monitoring
System. More specifically, the steps for designing it involve identifying all components
that use or could potentially use GDPR-regulated personal information entities (and
their relationships to each other) and building a logical model of all components and
their connections represented as a UML data model. The UML model must then be
converted into a property graph model that can be instantiated and loaded into a graph
database. Once, the data has been loaded, answer queries such as the ones we provided
can be created and run upon the graph for addressing the personal data requirements of
the GDPR. The query results provide a visual representation of how the entities of the
whole system interact with the personal data they both hold and use.

3.5.1 Determining GDPR Compliance

It is important to state that definitive decisions about compliance and non-compliance
must be made by GDPR experts. These decisions are determined primarily by the
instances of the system’s data model containing real data and not exclusively by the data
model itself. Nevertheless, the data model must be carefully constructed a-priori, based
on the provided GDPR questions so as to include appropriate GDPR-related entities
(consent, data processes, etc.) related to personal data compliance requirements, which
are crucial for determining the outcome of the compliance evaluation process.

3.5.2 Applicability

All privacy-minded applications involving personal data require and operate based on
the following mechanisms and activities:

(a) data acquisition

(b) data exchange between users and services

(c) database storage and retrieval of data

(d) data communication with third-parties

(e) security for data and services and devices that it relates to

Thus, we argue that our solution is general and that it can be applied to a wide
range of application domains wherein personal data security and privacy considerations
pertaining to GDPR compliance requirements must be enforced and maintained by design
and in operation.

To show proof of concept, the effectiveness of the solution is demonstrated in a
remote health monitoring application, but it is not strictly limited, specific, nor tightly-
bound to IoT, Cloud or patient monitoring contexts.

82

Chapter 4

Conclusions & Future Work

4.1 Conclusions

In this thesis, we addressed the problem of designing a Remote Patient Monitoring Sys-
tem that can be queried with the help of a graph database for evaluating basic GDPR
compliance. Our work’s contributions include providing a step-by-step methodology for:

• constructing the a Remote Patient Monitoring System based on the requirements
of 10 GDPR-compliance-related questions

• creating reports for the evaluation of basic GDPR compliance by querying the
System’s property graph in a graph database

83

4.2 Future Work

Regarding improvements upon our work, the following ideas may prove fruitful for future
research:

• Refine the GDPR security requirements of the design process by including ‘pseudonymiza-
tion’ schemes, such as data encryption

• Utilize semantic web technologies such as OWL, RDF and Linked Data in order
to better define and possibly automate or replace the graph database operations
and/or implement SPARQL queries as an alternative to a graph query language
(such as Cypher) queries for evaluating the platform’s GDPR compliance

• Investigate the design of a “Compliance Cloud Service” as part of a Compliance
as a Service (CaaS) infrastructure, wherein a “compliance micro-service” receives
constant system changes in order to update internal graph structures and subtly
manage all issues related to GDPR compliance. For example, in a distributed
system containing an Authentication service, among other services, every incoming
request and outcoming response (such as user login or registration) may be signaled
to a Compliance Service that updates a set of nodes and relationships storing
personal data and related entities (such as users, their credentials and time of
login) offering a means for real-time compliance monitoring.

84

Appendix A

Graph creation queries

Listing 23: PseudoQL query for creating the Remote Patient Monitoring System class
diagram schema graph
// Q0
// Create nodes
CREATE (p:Person {name: 'string', surname: 'string'})
CREATE (upat:User:Patient {name: 'string'})
CREATE (udoc:User:Doctor {name: 'string'})
CREATE (uad:User:Admin {name: 'string'})
CREATE (hrs:Device:HeartRateSensor {name: 'string',

description: 'string'})
// Find existing elements
SELECT (u:User)
// Create relationships
CREATE (u)-[:RELATED_TO]->(p)
CREATE (upat)<-[:RELATED_TO]-(hrs)
// Q1
// Create nodes
CREATE (ud:PersonalData:UserData {

user: 'string',
email: 'string',
phone: 'string',
timeModified: 'string'

})
CREATE (sd:PersonalData:SensorData {

sensor: 'string',
heartRate: 'number',
timeModified: 'string'

})
CREATE (subd:PersonalData:SubscriptionData {

subscriberUser: 'string',
subscribeeUsers: 'list_of_strings',
timeModified: 'string'

})
// Find existing elements
SELECT (pd:PersonalData)
// Create relationships

85

CREATE (pd)-[:BELONGS_TO]->(p)
CREATE (ud)-[:RELATED_TO]->(u)<-[:RELATED_TO]-(subd)
CREATE (sd)-[:RELATED_TO]->(hrs)
// Q2
// Create nodes
CREATE (relDB:System:DB:RelationalDB {

name: 'string',
version: 'string',
description: 'string'

})
CREATE (pubSubDB:System:DB:PubSubDB {

name: 'string',
version: 'string',
description: 'string'

})
CREATE (histDB:System:DB:Service:HistoryDB {

name: 'string',
version: 'string',
description: 'string',
location: 'string',
country: 'string'

})
CREATE (app:App:WebApp {

name: 'string',
description: 'string'

})
CREATE (appLogic:System:Service:AppLogic {

name: 'string',
version: 'string',
description: 'string',
location: 'string',
country: 'string'

})
CREATE (uIdAuth:System:Service:UserIdAuth {

name: 'string',
version: 'string',
description: 'string',
location: 'string',
country: 'string'

})
CREATE (authPDP:System:Service:AuthorizationPDP {

name: 'string',
version: 'string',
description: 'string',
location: 'string',
country: 'string'

})
CREATE (pubSub:System:Service:PublishSubscribe {

name: 'string',
version: 'string',

86

description: 'string',
location: 'string',
country: 'string'

})
CREATE (dataStorage:System:Service:DataStorage {

name: 'string',
version: 'string',
description: 'string',
location: 'string',
country: 'string'

})
CREATE (dataHistRecovery:System:Service:DataHistoryRecovery {

name: 'string',
version: 'string',
description: 'string',
location: 'string',
country: 'string'

})
CREATE (devInterface:System:Service:DeviceInterface {

name: 'string',
version: 'string',
description: 'string',
location: 'string',
country: 'string'

})
CREATE (devQuerying:System:Service:DeviceQuerying {

name: 'string',
version: 'string',
description: 'string',
location: 'string',
country: 'string'

})
CREATE (pepProxy1:System:Service:PEPProxy1 {

name: 'string',
version: 'string',
description: 'string',
location: 'string',
country: 'string'

})
CREATE (pepProxy2:System:Service:PEPProxy2 {

name: 'string',
version: 'string',
description: 'string',
location: 'string',
country: 'string'

})
CREATE (pepProxy3:System:Service:PEPProxy3 {

name: 'string',
version: 'string',

87

description: 'string',
location: 'string',
country: 'string'

})
CREATE (pepProxy4:System:Service:PEPProxy4 {

name: 'string',
version: 'string',
description: 'string',
location: 'string',
country: 'string'

})
// Create relationships
CREATE (relDB)<-[:STORED_IN]-(ud)
CREATE (pubSubDB)<-[:STORED_IN]-(subd)
CREATE (histDB)<-[:STORED_IN]-(sd)
CREATE (u)-[:USES]->(app)
CREATE (app)-[:CONNECTED_TO]->(appLogic)
CREATE (authPDP)<-[:CONNECTED_TO]-(uIdAuth)<-[:PART_OF]-(relDB)
CREATE (pubSub)<-[:PART_OF]-(pubSubDB)
CREATE (uIdAuth)<-[:CONNECTED_TO]-(pepProxy1)-[:CONNECTED_TO]->(authPDP)
CREATE (uIdAuth)<-[:CONNECTED_TO]-(pepProxy3)-[:CONNECTED_TO]->(authPDP)
CREATE (uIdAuth)<-[:CONNECTED_TO]-(pepProxy4)-[:CONNECTED_TO]-> (authPDP)
CREATE (devQuerying)-[:CONNECTED_TO]->(pubSub)
CREATE (devQuerying)-[:CONNECTED_TO]->(pepProxy4)
CREATE (pepProxy3)-[:CONNECTED_TO]->(pubSub)
CREATE (pubSub)-[:CONNECTED_TO]->(pepProxy2)

-[:CONNECTED_TO]->(dataStorage)-[:CONNECTED_TO]->(histDB)
CREATE (pepProxy1)-[:CONNECTED_TO]->(dataHistRecovery)

-[:CONNECTED_TO]->(histDB)
CREATE (hrs)-[:CONNECTED_TO]->(devInterface)-[:CONNECTED_TO]->(pepProxy3)
CREATE (appLogic)-[:CONNECTED_TO]->(uIdAuth)
CREATE (appLogic)-[:CONNECTED_TO]->(pepProxy1)
CREATE (appLogic)-[:CONNECTED_TO]->(pepProxy3)
CREATE (appLogic)-[:CONNECTED_TO]->(pepProxy4)
// Q3
// Create nodes
CREATE (c:Event:Consent {timeCreated: 'string'})
CREATE (cT:ConsentType {

name: 'string',
description: 'string'

})
// Create relationships
CREATE (p)-[:PROVIDED {time: 'string'}]->(c)
CREATE (p)-[:REVOKED {time: 'string'}]->(c)
CREATE (c)-[:OF_TYPE]->(cT)
// Q4
// Create nodes
CREATE (du:DataUsage {

name: 'string',
description: 'string'

})

88

CREATE (internalDataMovement:InternalDataMovement:DataProcess:Event {
timeCreated: 'string'

})
CREATE (dataAccess:DataAccess:DataProcess:Event {timeCreated: 'string'})
CREATE (dataUpdate:DataUpdate:DataProcess:Event {timeCreated: 'string'})
CREATE (dataExport:DataExport:DataProcess:Event {timeCreated: 'string'})
CREATE (ambulance:AmbulanceService:ThirdParty {

name: 'string',
description: 'string'

})
// Find existing elements
SELECT (db:DB)
SELECT (s:System)
SELECT (dp:DataProcess)
// Create relationships
CREATE (cT)-[:ENABLES]->(du)
CREATE (dp)-[:INVOLVES]->(pd)
CREATE (s)-[:FROM]->(internalDataMovement)
CREATE (internalDataMovement)-[:TO]->(s)
CREATE (app)-[:FROM]->(dataAccess)
CREATE (dataAccess)-[:TO]->(u)
CREATE (app)-[:FROM]->(dataUpdate)
CREATE (dataUpdate)-[:TO]->(db)
CREATE (db)-[:FROM]->(dataExport)
CREATE (dataExport)-[:TO]->(ambulance)
// Q5
// Find existing elements
SELECT (pat:Patient)
SELECT (doc:Doctor)
SELECT (admin:Admin)
// Create relationships
CREATE (doc)-[:CAN_ACCESS_DATA_OF]->(pat)
CREATE (admin)-[:CAN_ACCESS_DATA_OF]->(doc)
CREATE (admin)-[:CAN_ACCESS_DATA_OF]->(pat)
// Q7
// Create nodes
CREATE (restServiceSecurity:RESTServiceSecurity {description: 'string'})
CREATE (oauth2:OAuth2 {description: 'string'})
CREATE (masterKeySecurity:MasterKeySecurity {description: 'string'})
CREATE (role:Role {name: 'string'})
CREATE (xacmlRule:XACMLRule {accessControlRule: 'string'})
CREATE (perm :Permission {name: 'string', HTTPAction: 'string',

resource: 'string'})
// Find existing elements
SELECT (service:Service)
// Create relationships
CREATE (oauth2)-[:ELEMENT_OF]->(restServiceSecurity)
CREATE (masterKeySecurity)-[:ELEMENT_OF]->(restServiceSecurity)
CREATE (role)-[:ELEMENT_OF]->(restServiceSecurity)
CREATE (xacmlRule)-[:ELEMENT_OF]->(restServiceSecurity)
CREATE (perm)-[:ELEMENT_OF]->(restServiceSecurity)

89

CREATE (role)-[:HAS]->(xacmlRule)
CREATE (role)-[:HAS]->(perm)
CREATE (u)-[:HAS]->(role)
CREATE (u)-[:EMPLOYS]->(restServiceSecurity)
CREATE (hrs)-[:EMPLOYS]->(restServiceSecurity)
CREATE (service)-[:EMPLOYS]->(restServiceSecurity)

Listing 24: Cypher query for creating the data parameters for the Demo’s (3.4) instan-
tiated Remote Patient Monitoring System graph

// Q0 params
:params patProps: {name: "Pat", surname: "Williams"},

docProps: {name: "Doc", surname: "Brown"},
adamProps: {name: "Adam", surname: "Smith"},
uPatProps: {name: "uPat"},
uDocProps: {name: "uDoc"},
uAdamProps: {name: "uAdam"},
hrsProps: {
name: "hrs",
description: "A sensor device that tracks your heart rate."

},
// Q1 params

PatudProps: {
user: "uPat",
email: "patwilliams@domain.com",
phone: "+306900000001",
timeModified: "2018-12-11T12:31:14.645876+03:00"

},
DocudProps: {

user: "uDoc",
email: "docbrown@domain.com",
phone: "+306900000002",
timeModified: "2018-11-26T15:01:10.648376+03:00"

},
AdamudProps: {

user: "uAdam",
email: "adamsmith@domain.com",
phone: "+306900000003",
timeModified: "2018-11-25T10:12:03.448076+03:00"

},
DocsubdProps: {

subscriberUser: "uDoc",
subscribeeUsers: ["uPat"],
timeModified: "2018-12-11T16:01:16.645876+03:00"

},
PatsdProps: {

sensor: "hrs",
heartRate: 100,
timeModified: "2018-12-11T20:08:13.539991+03:00"

},
// Q2 params

90

appProps: {
name: "MyHeartMonitor",
description: "A patient heart rate monitoring web app"

},
relDBProps: {

name: "MySQL",
version: "8.0.16",
description: "User Id & Authentication DB"

},
pubSubDBProps: {

name: "pubSub MongoDB",
version: "4.0.4",
description: "User Publish-Subscribe DB"

},
histDBProps: {

name: "hist MongoDB",
version: "4.0.10",
description: "Heart Rate Sensor History DB",
location: "Heraklion",
country: "GR"

},
appLogicProps: {

name: "App Logic Service",
version: "",
description: "App Logic Service",
location: "Heraklion",
country: "GR"

},
uIdAuthProps: {

name: "IdM-Keyrock",
version: "",
description: "https://fiware-idm.readthedocs.io",
location: "Heraklion",
country: "GR"

},
authPDPProps: {

name: "AuthzForce",
version: "",
description:

"https://authzforce-ce-fiware.readthedocs.io",
location: "Heraklion",
country: "GR"

},
pubSubProps: {

name: "Orion Context Broker",
version: "",
description: "https://fiware-orion.readthedocs.io",
location: "Heraklion",
country: "GR"

},
dataStorageProps: {

91

name: "Cygnus",
version: "",
description: "https://fiware-cygnus.readthedocs.io",
location: "Heraklion",
country: "GR"

},
dataHistRecoveryProps: {

name: "Comet",
version: "",
description: "https://fiware-sth-comet.readthedocs.io",
location: "Heraklion",
country: "GR"

},
devInterfaceProps: {

name: "Device Interface Service",
version: "",
description: "Device Interface Service",
location: "Heraklion",
country: "GR"

},
devQueryingProps: {

name: "Device Querying Service",
version: "",
description: "Device Querying Service",
location: "Heraklion",
country: "GR"

},
pepProxy1Props: {

name: "Wilma1",
version: "",
description: "https://fiware-pep-proxy.readthedocs.io",
location: "Heraklion",
country: "GR"

},
pepProxy2Props: {

name: "Wilma2",
version: "",
description: "https://fiware-pep-proxy.readthedocs.io",
location: "Heraklion",
country: "GR"

},
pepProxy3Props: {

name: "Wilma3",
version: "",
description: "https://fiware-pep-proxy.readthedocs.io",
location: "Heraklion",
country: "GR"

},
pepProxy4Props: {

name: "Wilma4",
version: "",

92

description: "https://fiware-pep-proxy.readthedocs.io",
location: "Heraklion",
country: "GR"

},
// Q3 params

patTermsNCondProps: {
timeCreated: "2018-12-11T12:32:13.645876+03:00"

},
patEmergCondProps: {

timeCreated: "2018-12-11T12:32:17.645876+03:00"
},
docTermsNCondProps: {

timeCreated: "2018-11-26T15:02:10.648376+03:00"
},
adamTermsNCondProps: {

timeCreated: "2018-11-25T10:13:03.448076+03:00"
},
patTermsNCondProvidedProps: {

time: "2018-12-11T12:32:13.645876+03:00"
},
patEmergCondProvidedProps: {

time: "2018-12-11T12:32:17.645876+03:00"
},
docTermsNCondProvidedProps: {

time: "2018-11-26T15:02:10.648376+03:00"
},
adamTermsNCondProvidedProps: {

time: "2018-11-25T10:13:03.448076+03:00"
},
termsNCondProps: {

name: "Terms & Conditions",
description: "General user usage terms and conditions."

},
emergCondProps: {

name: "Patient Emergency Condition",
description:

"Patient health emergency situation condition."
},

// Q4 params
pdGenNProcessingProps:{

name: "Personal Data Gen & Processing",
description: "Generation of health-related

sensor data, user data and subscription
data and its processing by means of
internal data movement,
data access, update and export"

},
sdAutoSendProps: {

name: "Sensor Data Auto-sending",
description: "Automatic transmission of

health-related data (generated by the

93

heart rate sensor device) to services
within the Remote Patient Monitoring
infrastructure"

},
udEmergExportProps: {

name: "Emergency User Data Export",
description: "Export of personal patient data to an

external, third party ambulance service
(in case of an emergency health
situation)"

},
internalDataMovementProps: {

timeCreated: "2019-04-08T09:01:03.508032+03:00"
},
dataAccessProps: {

timeCreated: "2019-04-10T11:15:00.448076+03:00"
},
dataUpdateProps: {

timeCreated: "2019-04-15T17:06:00.27773+03:00"
},
dataExportProps: {

timeCreated: "2019-04-15T17:06:00.27773+03:00"
},
ambulanceProps: {

name: "Emergency Ambulance Service",
description: "First aid emergency ambulance service."

},
// Q7 params

restServiceSecurityProps: {
name: "REST Service Security",
description: ""

},
oauth2Props: {

name: "OAuth 2.0",
description: "https://oauth.net/"

},
masterKeySecProps: {

name: "Master Key Security",
description: ""

}

Listing 25: Cypher query for creating the instantiated graph of the Remote Patient
Monitoring System for the Demo (3.4)

// Q0
MERGE (Pat:Person {name: $patProps.name, surname: $patProps.surname})
MERGE (uPat:User:Patient {name: $uPatProps.name})
MERGE (hrs:Device:HeartRateSensor {name: $hrsProps.name,

description: $hrsProps.description})
MERGE (uDoc:User:Doctor {name: $uDocProps.name})
MERGE (Doc:Person {name: $docProps.name, surname: $docProps.surname})

94

MERGE (uAdam:User:Admin {name: $uAdamProps.name})
MERGE (Adam:Person {name: $adamProps.name,

surname: $adamProps.surname})
// Create relationships
MERGE (Pat)<-[:RELATED_TO]-(uPat)<-[:RELATED_TO]-(hrs)
MERGE (uDoc)-[:RELATED_TO]->(Doc)
MERGE (uAdam)-[:RELATED_TO]->(Adam)
// Q1
MERGE (Patud:PersonalData:UserData {

user: $PatudProps.user,
email: $PatudProps.email,
phone: $PatudProps.phone,
timeModified: $PatudProps.timeModified

})
MERGE (Docud:PersonalData:UserData {

user: $DocudProps.user,
email: $DocudProps.email,
phone: $DocudProps.phone,
timeModified: $DocudProps.timeModified

})
MERGE (Adamud:PersonalData:UserData {

user: $AdamudProps.user,
email: $AdamudProps.email,
phone: $AdamudProps.phone,
timeModified: $AdamudProps.timeModified

})
MERGE (Docsubd:PersonalData:SubscriptionData {

subscriberUser: $DocsubdProps.subscriberUser,
subscribeeUsers: $DocsubdProps.subscribeeUsers,
timeModified: $DocsubdProps.timeModified

})
MERGE (Patsd:PersonalData:SensorData {

sensor: $PatsdProps.sensor,
heartRate: $PatsdProps.heartRate,
timeModified: $PatsdProps.timeModified

})
// Create relationships
MERGE (uPat)<-[:RELATED_TO]-(Patud)-[:BELONGS_TO]->(Pat)
MERGE (uDoc)<-[:RELATED_TO]-(Docud)-[:BELONGS_TO]->(Doc)
MERGE (uAdam)<-[:RELATED_TO]-(Adamud)-[:BELONGS_TO]->(Adam)
MERGE (uDoc)<-[:RELATED_TO]-(Docsubd)-[:BELONGS_TO]->(Doc)
MERGE (hrs)<-[:RELATED_TO]-(Patsd)-[:BELONGS_TO]->(Pat)
// Q2
// Create nodes
MERGE (app:App:WebApp {

name: $appProps.name,
description: $appProps.description

})
MERGE (relDB:System:DB:RelationalDB {

name: $relDBProps.name,

95

version: $relDBProps.version,
description: $relDBProps.description

})
MERGE (pubSubDB:System:DB:PubSubDB {

name: $pubSubDBProps.name,
version: $pubSubDBProps.version,
description: $pubSubDBProps.description

})
MERGE (histDB:System:DB:Service:HistoryDB {

name: $histDBProps.name,
version: $histDBProps.version,
description: $histDBProps.description,
location: $histDBProps.location,
country: $histDBProps.country

})
MERGE (appLogic:System:Service:AppLogic {

name: $appLogicProps.name,
version: $appLogicProps.version,
description: $appLogicProps.description,
location: $appLogicProps.location,
country: $appLogicProps.location

})
MERGE (uIdAuth:System:Service:UserIdAuth {

name: $uIdAuthProps.name,
version: $uIdAuthProps.version,
description: $uIdAuthProps.description,
location: $uIdAuthProps.location,
country: $uIdAuthProps.country

})
MERGE (authPDP:System:Service:AuthorizationPDP {

name: $authPDPProps.name,
version: $authPDPProps.version,
description: $authPDPProps.description,
location: $authPDPProps.location,
country: $authPDPProps.country

})
MERGE (pubSub:System:Service:PublishSubscribe {

name: $pubSubProps.name,
version: $pubSubProps.version,
description: $pubSubProps.description,
location: $pubSubProps.location,
country: $pubSubProps.country

})
MERGE (dataStorage:System:Service:DataStorage {

name: $dataStorageProps.name,
version: $dataStorageProps.version,
description: $dataStorageProps.description,
location: $dataStorageProps.location,
country: $dataStorageProps.country

96

})
MERGE (dataHistRecovery:System:Service:DataHistoryRecovery {

name: $dataHistRecoveryProps.name,
version: $dataHistRecoveryProps.version,
description: $dataHistRecoveryProps.description,
location: $dataHistRecoveryProps.location,
country: $dataHistRecoveryProps.country

})
MERGE (devInterface:System:Service:DeviceInterface {

name: $devInterfaceProps.name,
version: $devInterfaceProps.version,
description: $devInterfaceProps.description,
location: $devInterfaceProps.location,
country: $devInterfaceProps.country

})
MERGE (devQuerying:System:Service:DeviceQuerying {

name: $devQueryingProps.name,
version: $devQueryingProps.version,
description: $devQueryingProps.description,
location: $devQueryingProps.location,
country: $devQueryingProps.country

})
MERGE (pepProxy1:System:Service:PEPProxy1 {

name: $pepProxy1Props.name,
version: $pepProxy1Props.version,
description: $pepProxy1Props.description,
location: $pepProxy1Props.location,
country: $pepProxy1Props.country

})
MERGE (pepProxy2:System:Service:PEPProxy2 {

name: $pepProxy2Props.name,
version: $pepProxy2Props.version,
description: $pepProxy2Props.description,
location: $pepProxy2Props.location,
country: $pepProxy2Props.country

})
MERGE (pepProxy3:System:Service:PEPProxy3 {

name: $pepProxy3Props.name,
version: $pepProxy3Props.version,
description: $pepProxy3Props.description,
location: $pepProxy3Props.location,
country: $pepProxy3Props.country

})
MERGE (pepProxy4:System:Service:PEPProxy4 {

name: $pepProxy4Props.name,
version: $pepProxy4Props.version,
description: $pepProxy4Props.description,
location: $pepProxy4Props.location,
country: $pepProxy4Props.country

97

})
// Create relationships
MERGE (u:User)
MERGE (u)-[:USES]->(app)
MERGE (app)-[:CONNECTED_TO]->(appLogic)
MERGE (ud:UserData)
MERGE (relDB)<-[:STORED_IN]-(ud)
MERGE (authPDP)<-[:CONNECTED_TO]-(uIdAuth)<-[:PART_OF]-(relDB)
MERGE (subd:SubscriptionData)
MERGE (pubSubDB)<-[:STORED_IN]-(subd)
MERGE (pubSub)<-[:PART_OF]-(pubSubDB)
MERGE (sd:SensorData)
MERGE (histDB)<-[:STORED_IN]-(sd)
MERGE (uIdAuth)<-[:CONNECTED_TO]-(pepProxy1)-[:CONNECTED_TO]->(authPDP)
MERGE (uIdAuth)<-[:CONNECTED_TO]-(pepProxy3)-[:CONNECTED_TO]->(authPDP)
MERGE (uIdAuth)<-[:CONNECTED_TO]-(pepProxy4)-[:CONNECTED_TO]->(authPDP)
MERGE (appLogic)-[:CONNECTED_TO]->(uIdAuth)
MERGE (devQuerying)-[:CONNECTED_TO]->(pubSub)
MERGE (devQuerying)-[:CONNECTED_TO]->(pepProxy4)
MERGE (pepProxy3)-[:CONNECTED_TO]->(pubSub)
MERGE (pubSub)-[:CONNECTED_TO]->(pepProxy2)-[:CONNECTED_TO]->
(dataStorage)-[:CONNECTED_TO]->(histDB)
MERGE (pepProxy1)-[:CONNECTED_TO]->(dataHistRecovery)

-[:CONNECTED_TO]->(histDB)
MERGE (hrs)-[:CONNECTED_TO]->(devInterface)-[:CONNECTED_TO]->(pepProxy3)
MERGE (appLogic)-[:CONNECTED_TO]->(uIdAuth)
MERGE (appLogic)-[:CONNECTED_TO]->(pepProxy1)
MERGE (appLogic)-[:CONNECTED_TO]->(pepProxy3)
MERGE (appLogic)-[:CONNECTED_TO]->(pepProxy4)
MERGE (appLogic)-[:CONNECTED_TO]->(uIdAuth)
// Q3
// Create nodes
MERGE (patTermsNCond:Event:Consent {

timeCreated: $patTermsNCondProps.timeCreated
})
MERGE (patEmergCond:Event:Consent {

timeCreated: $patEmergCondProps.timeCreated
})
MERGE (docTermsNCond:Event:Consent {

timeCreated: $docTermsNCondProps.timeCreated
})
MERGE (adamTermsNCond:Event:Consent {

timeCreated: $adamTermsNCondProps.timeCreated
})
MERGE (termsNCond:ConsentType {

name: $termsNCondProps.name,
description: $termsNCondProps.description

})
MERGE (emergCond:ConsentType {

name: $emergCondProps.name,
description: $emergCondProps.description

98

})
// Create relationships
MERGE (Pat)

-[:PROVIDED {time: $patTermsNCondProvidedProps.time}]->
(patTermsNCond)

MERGE (Pat)
-[:PROVIDED {time: $patEmergCondProvidedProps.time}]->

(patEmergCond)
MERGE (Doc)

-[:PROVIDED {time: $docTermsNCondProvidedProps.time}]->
(docTermsNCond)

MERGE (Adam)
-[:PROVIDED {time: $adamTermsNCondProvidedProps.time}]->

(adamTermsNCond)
MERGE (patTermsNCond)-[:OF_TYPE]->(termsNCond)
MERGE (patEmergCond)-[:OF_TYPE]->(emergCond)
MERGE (docTermsNCond)-[:OF_TYPE]->(termsNCond)
MERGE (adamTermsNCond)-[:OF_TYPE]->(termsNCond)
// Q4
// Create nodes
MERGE (pdGenNProcessing:DataUsage {

name: $pdGenNProcessingProps.name,
description: $pdGenNProcessingProps.description

})
MERGE (sdAutoSend:DataUsage {

name: $sdAutoSendProps.name,
description: $sdAutoSendProps.description

})
MERGE (udEmergExport:DataUsage {

name: $udEmergExportProps.name,
description: $udEmergExportProps.description

})
MERGE (internalDataMovement:Event:DataProcess:InternalDataMovement {

timeCreated: $internalDataMovementProps.timeCreated
})
MERGE (dataAccess:Event:DataProcess:DataAccess {

timeCreated: $dataAccessProps.timeCreated
})
MERGE (dataUpdate:Event:DataProcess:DataUpdate {

timeCreated: $dataUpdateProps.timeCreated
})
MERGE (dataExport:Event:DataProcess:DataExport {

timeCreated: $dataExportProps.timeCreated
})
MERGE (ambulance:ThirdParty:AmbulanceService {

name: $ambulanceProps.name,
description: $ambulanceProps.description

})
// Create relationships
MERGE (termsNCond)-[:ENABLES]->(pdGenNProcessing)

99

MERGE (termsNCond)-[:ENABLES]->(sdAutoSend)
MERGE (emergCond)-[:ENABLES]->(udEmergExport)
MERGE (Patsd)<-[:INVOLVES]-(internalDataMovement)
MERGE (Patud)<-[:INVOLVES]-(dataAccess)
MERGE (Docsubd)<-[:INVOLVES]-(dataUpdate)
MERGE (Patud)<-[:INVOLVES]-(dataExport)
MERGE (devInterface)-[:FROM]->(internalDataMovement)-[:TO]->(pepProxy3)
MERGE (app)-[:FROM]->(dataAccess)-[:TO]->(uDoc)
MERGE (app)-[:FROM]->(dataUpdate)-[:TO]->(relDB)
MERGE (relDB)-[:FROM]->(dataExport)-[:TO]->(ambulance)
// Q5
// Find existing elements
MERGE (patient:Patient)
MERGE (doctor:Doctor)
MERGE (admin:Admin)
// Create relationships
MERGE (uPat)<-[:CAN_ACCESS_DATA_OF]-(uDoc)
MERGE (doctor)<-[:CAN_ACCESS_DATA_OF]-(admin)
MERGE (patient)<-[:CAN_ACCESS_DATA_OF]-(admin)
// Q7
// Find existing elements
MERGE (d:Device)
MERGE (s:Service)
// Create nodes
MERGE (restServiceSecurity:RESTServiceSecurity {

name: $restServiceSecurityProps.name,
description: $restServiceSecurityProps.description

})
MERGE (oauth2:OAuth2 {

name: $oauth2Props.name,
description: $oauth2Props.description

})
MERGE (masterKeySec:MasterKeySecurity {

name: $masterKeySecProps.name,
description: $masterKeySecProps.description

})
// Create relationships
MERGE (oauth2)-[:ELEMENT_OF]->(restServiceSecurity)
MERGE (masterKeySec)-[:ELEMENT_OF]->(restServiceSecurity)
MERGE (u)-[:EMPLOYS]->(restServiceSecurity)
MERGE (d)-[:EMPLOYS]->(restServiceSecurity)
MERGE (s)-[:EMPLOYS]->(restServiceSecurity)

For write and match operations we chose Cypher’s MERGE clause instead of CREATE and MATCH.
MERGE first checks if existing nodes and/or relationships already exist. If they already exist, it binds
them to a given variable. If they do not exist, it creates them. This guarantees uniqueness in node and
relationship creation (no duplicate elements), in case the queries are re-run. [54]

100

References

[1] European Parliament and Council of European Union. Regulation (EU) 2016/679
of the European Parliament and of the Council of 27 April 2016 on the protection
of natural persons with regard to the processing of personal data and on the free
movement of such data, and repealing Directive 95/46/EC (General Data
Protection Regulation) (Text with EEA relevance).
https://eur-lex.europa.eu/eli/reg/2016/679/oj, 2016.

[2] Ben Wolford. What are the GDPR Fines? https://gdpr.eu/fines/, 2018.

[3] Facebook–Cambridge Analytica data scandal — Wikipedia, the free encyclopedia.
https://en.wikipedia.org/w/index.php?title=Facebook%E2%80%
93Cambridge_Analytica_data_scandal&oldid=927996299.

[4] AOL search data leak — Wikipedia, the free encyclopedia. https://en.
wikipedia.org/w/index.php?title=AOL_search_data_leak&oldid=924339868.

[5] Data retention — Wikipedia, The Free Encyclopedia. https:
//en.wikipedia.org/w/index.php?title=Data_retention&oldid=925527721.

[6] Recital 58, The Principle of Transparency.
https://gdpr-info.eu/recitals/no-58/.

[7] Neo4j. https://neo4j.com/.

[8] Neo4j Privacy Shield: The Graph Solution for GDPR.
https://neo4j.com/use-cases/gdpr-compliance/.

[9] Data lineage — Wikipedia, the free encyclopedia. https:
//en.wikipedia.org/w/index.php?title=Data_lineage&oldid=927367434.

[10] Unified Modeling Language (UML) — Wikipedia, the free encyclopedia.
https://en.wikipedia.org/w/index.php?title=Unified_Modeling_Language&
oldid=927130803.

[11] Graph database — Wikipedia, the free encyclopedia. https:
//en.wikipedia.org/w/index.php?title=Graph_database&oldid=927409485.

[12] Renzo Angles. The Property Graph Database Model. In Proceedings of the 12th
Alberto Mendelzon International Workshop on Foundations of Data Management,
Cali, Colombia, May 21-25, 2018, 2018.

[13] Ontology (information science) — Wikipedia, The Free Encyclopedia.
https://en.wikipedia.org/w/index.php?title=Ontology_(information_
science)&oldid=927115114.

[14] Web Ontology Language (OWL). https://www.w3.org/OWL/.

101

https://eur-lex.europa.eu/eli/reg/2016/679/oj
https://gdpr.eu/fines/
https://en.wikipedia.org/w/index.php?title=Facebook%E2%80%93Cambridge_Analytica_data_scandal&oldid=927996299
https://en.wikipedia.org/w/index.php?title=Facebook%E2%80%93Cambridge_Analytica_data_scandal&oldid=927996299
https://en.wikipedia.org/w/index.php?title=AOL_search_data_leak&oldid=924339868
https://en.wikipedia.org/w/index.php?title=AOL_search_data_leak&oldid=924339868
https://en.wikipedia.org/w/index.php?title=Data_retention&oldid=925527721
https://en.wikipedia.org/w/index.php?title=Data_retention&oldid=925527721
https://gdpr-info.eu/recitals/no-58/
https://neo4j.com/
https://neo4j.com/use-cases/gdpr-compliance/
https://en.wikipedia.org/w/index.php?title=Data_lineage&oldid=927367434
https://en.wikipedia.org/w/index.php?title=Data_lineage&oldid=927367434
https://en.wikipedia.org/w/index.php?title=Unified_Modeling_Language&oldid=927130803
https://en.wikipedia.org/w/index.php?title=Unified_Modeling_Language&oldid=927130803
https://en.wikipedia.org/w/index.php?title=Graph_database&oldid=927409485
https://en.wikipedia.org/w/index.php?title=Graph_database&oldid=927409485
https://en.wikipedia.org/w/index.php?title=Ontology_(information_science)&oldid=927115114
https://en.wikipedia.org/w/index.php?title=Ontology_(information_science)&oldid=927115114
https://www.w3.org/OWL/

[15] Service-oriented architecture — Wikipedia, the free encyclopedia.
https://en.wikipedia.org/w/index.php?title=Service-
oriented_architecture&oldid=927325893.

[16] Florian Kammüller, Oladapo O Ogunyanwo, and Christian W Probst. Designing
Data Protection for GDPR Compliance into IoT Healthcare Systems. arXiv
preprint arXiv:1901.02426, 2019.

[17] A Consent and Data Management Model.
http://openscience.adaptcentre.ie/projects/CDMM/.

[18] trust-hub. https://www.trust-hub.com/.

[19] Cambridge Intelligence. https://cambridge-intelligence.com/.

[20] Art. 1 GDPR, Subject-matter and objectives.
https://gdpr-info.eu/art-1-gdpr/.

[21] Art. 4 GDPR, Definitions. https://gdpr-info.eu/art-4-gdpr/.

[22] Art. 25 GDPR, Data protection by design and by default.
https://gdpr-info.eu/art-25-gdpr/.

[23] trust-hub: using graph technologies to power personal data compliance.
https://cambridge-intelligence.com/trust-hub-using-graph-
technologies-to-power-personal-data-compliance/.

[24] Neo4 Privacy Shield Data Sheet.
https://neo4j.com/resources/neo4j-privacy-shield-data-sheet/.

[25] Directed graph — Wikipedia, The Free Encyclopedia. https:
//en.wikipedia.org/w/index.php?title=Directed_graph&oldid=921240292.

[26] Information Commissioner’s Office — Wikipedia, The Free Encyclopedia.
https://en.wikipedia.org/w/index.php?title=Information_Commissioner%
27s_Office&oldid=917179011.

[27] Art. 38 GDPR, Position of the data protection officer.
https://gdpr-info.eu/art-38-gdpr/.

[28] draw.io. https://about.draw.io/.

[29] SQL. https://en.wikipedia.org/w/index.php?title=SQL&oldid=926073015.

[30] Graph DB vs RDBMS. https://neo4j.com/developer/graph-db-vs-rdbms/.

[31] Neo4j Graph Platform. https://neo4j.com/product/.

[32] Cypher Graph Query Language.
https://neo4j.com/cypher-graph-query-language/.

[33] Nadime Francis, Alastair Green, Paolo Guagliardo, Leonid Libkin, Tobias
Lindaaker, Victor Marsault, Stefan Plantikow, Mats Rydberg, Petra Selmer, and
Andrés Taylor. Cypher: An Evolving Query Language for Property Graphs. In
Proceedings of the 2018 International Conference on Management of Data,
SIGMOD ’18, pages 1433–1445, New York, NY, USA, 2018. ACM.

[34] Cypher Manual. https://neo4j.com/docs/cypher-manual.

102

https://en.wikipedia.org/w/index.php?title=Service-oriented_architecture&oldid=927325893
https://en.wikipedia.org/w/index.php?title=Service-oriented_architecture&oldid=927325893
http://openscience.adaptcentre.ie/projects/CDMM/
https://www.trust-hub.com/
https://cambridge-intelligence.com/
https://gdpr-info.eu/art-1-gdpr/
https://gdpr-info.eu/art-4-gdpr/
https://gdpr-info.eu/art-25-gdpr/
https://cambridge-intelligence.com/trust-hub-using-graph-technologies-to-power-personal-data-compliance/
https://cambridge-intelligence.com/trust-hub-using-graph-technologies-to-power-personal-data-compliance/
https://neo4j.com/resources/neo4j-privacy-shield-data-sheet/
https://en.wikipedia.org/w/index.php?title=Directed_graph&oldid=921240292
https://en.wikipedia.org/w/index.php?title=Directed_graph&oldid=921240292
https://en.wikipedia.org/w/index.php?title=Information_Commissioner%27s_Office&oldid=917179011
https://en.wikipedia.org/w/index.php?title=Information_Commissioner%27s_Office&oldid=917179011
https://gdpr-info.eu/art-38-gdpr/
https://about.draw.io/
https://en.wikipedia.org/w/index.php?title=SQL&oldid=926073015
https://neo4j.com/developer/graph-db-vs-rdbms/
https://neo4j.com/product/
https://neo4j.com/cypher-graph-query-language/
https://neo4j.com/docs/cypher-manual

[35] Chapter 3 GDPR, Rights of the data subject.
https://gdpr-info.eu/chapter-3/.

[36] GDPRtEXT. http://openscience.adaptcentre.ie/projects/GDPRtEXT/.

[37] GConsent - A consent ontology based on the GDPR.
https://w3id.org/GConsent.

[38] GDPRov - GDPR Provenance Ontology.
http://openscience.adaptcentre.ie/projects/CDMM/GDPRov/.

[39] Data Protection Rules Language.
https://openscience.adaptcentre.ie/projects/CDMM/DPRL/.

[40] Queryable Provenance Metadata For GDPR Compliance - GDPR
Readiness-Checklist SPARQL demo.
http://openscience.adaptcentre.ie/GDPR-checklist-demo/demo/.

[41] SPARQL Query Language for RDF.
https://www.w3.org/TR/rdf-sparql-query/.

[42] Exploring GDPR Compliance Over Provenance Graphs Using SHACL.
http://openscience.adaptcentre.ie/projects/CDMM/compliance/model.html.

[43] Shapes Constraint Language (SHACL). https://www.w3.org/TR/shacl/.

[44] Test-driven approach for GDPR Compliance.
http://openscience.adaptcentre.ie/projects/CDMM/compliance/index.html.

[45] Xenophon Koundourakis and Euripides G.M. Petrakis. iXen: Secure
Context-Driven Service Oriented Architecture for the Internet of Things in the
Cloud. 2019. unpublished.

[46] Microservices — Wikipedia, The Free Encyclopedia. https:
//en.wikipedia.org/w/index.php?title=Microservices&oldid=928830113.

[47] Security by Design Principles.
https://www.owasp.org/index.php/Security_by_Design_Principles.

[48] Representational state transfer (REST) — Wikipedia, The Free Encyclopedia.
https://en.wikipedia.org/w/index.php?title=Representational_state_
transfer&oldid=928353400.

[49] OAuth 2.0. https://oauth.net/2/.

[50] XACML — Wikipedia, The Free Encyclopedia.
https://en.wikipedia.org/w/index.php?title=XACML&oldid=920117198.

[51] FIWARE. https://www.fiware.org/.

[52] OpenStack — Wikipedia, The Free Encyclopedia.
https://en.wikipedia.org/w/index.php?title=OpenStack&oldid=922665020.

[53] Cypher MATCH clause.
https://neo4j.com/docs/cypher-manual/current/clauses/match/.

[54] Cypher MERGE clause.
https://neo4j.com/docs/cypher-manual/current/clauses/merge/.

103

https://gdpr-info.eu/chapter-3/
http://openscience.adaptcentre.ie/projects/GDPRtEXT/
https://w3id.org/GConsent
http://openscience.adaptcentre.ie/projects/CDMM/GDPRov/
https://openscience.adaptcentre.ie/projects/CDMM/DPRL/
http://openscience.adaptcentre.ie/GDPR-checklist-demo/demo/
https://www.w3.org/TR/rdf-sparql-query/
http://openscience.adaptcentre.ie/projects/CDMM/compliance/model.html
https://www.w3.org/TR/shacl/
http://openscience.adaptcentre.ie/projects/CDMM/compliance/index.html
https://en.wikipedia.org/w/index.php?title=Microservices&oldid=928830113
https://en.wikipedia.org/w/index.php?title=Microservices&oldid=928830113
https://www.owasp.org/index.php/Security_by_Design_Principles
https://en.wikipedia.org/w/index.php?title=Representational_state_transfer&oldid=928353400
https://en.wikipedia.org/w/index.php?title=Representational_state_transfer&oldid=928353400
https://oauth.net/2/
https://en.wikipedia.org/w/index.php?title=XACML&oldid=920117198
https://www.fiware.org/
https://en.wikipedia.org/w/index.php?title=OpenStack&oldid=922665020
https://neo4j.com/docs/cypher-manual/current/clauses/match/
https://neo4j.com/docs/cypher-manual/current/clauses/merge/

[55] Ascii art — Wikipedia, the free encyclopedia.
https://en.wikipedia.org/w/index.php?title=ASCII_art&oldid=925954266.

[56] Semantic Web. https://www.w3.org/standards/semanticweb/.

[57] Konstantinos Douzis, Stelios Sotiriadis, Euripides G.M. Petrakis, and Cristiana
Amza. Modular and Generic IoT Management on the Cloud. Future Gener.
Comput. Syst., 78(P1):369–378, January 2018.

[58] Cypher Parameters.
https://neo4j.com/docs/cypher-manual/current/syntax/parameters/.

[59] Art. 39 GDPR, Tasks of the data protection officer.
https://gdpr-info.eu/art-39-gdpr/.

104

https://en.wikipedia.org/w/index.php?title=ASCII_art&oldid=925954266
https://www.w3.org/standards/semanticweb/
https://neo4j.com/docs/cypher-manual/current/syntax/parameters/
https://gdpr-info.eu/art-39-gdpr/

	Introduction
	Motivation
	Problem definition
	Proposed solution
	Existing work
	Thesis structure

	Background
	The General Data Protection Regulation
	Definitions
	Compliance
	Compliance questions

	Concepts & Tools
	UML
	Property graphs
	Graph databases

	Related work
	iXen
	Users and functional requirements
	Architecture

	Solving the GDPR Compliance evaluation problem
	Approach
	Designing a Remote Patient Monitoring System
	Users and Functional Requirements
	Architecture
	Incorporating GDPR Compliance requirements

	System GDPR Compliance evaluation
	Importing the System into a graph database
	Answering the compliance questions

	Demo
	Answering the compliance questions

	Discussion
	Determining GDPR Compliance
	Applicability

	Conclusions & Future Work
	Conclusions
	Future Work

	Graph creation queries
	References

