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MegiAnym

H magovoa dwaktogkr] datopry agood tv avantuén kat afloAdynon
TIEONYHEVWV TEXVIKWOV ATOKOLONG CHTNONG 0€ KTIQLAKES EYKATAOTAOELS OXEOOV

HUNOEVIKTC EVEQYELAKT)S KATAVAAWOTG KAl [IKQODIKTLA.

L10 magamdvw mAaiolo, €ytve Kat aQXV AeTTTOUEQT|G DleQevVNOT KL AVAALOT)
TG €VEQYELAKI)G aTOdOOTG €VOC TEOTLTIOL KTIQIOU KATOWKLWOV KAl €VOG
TEOTLTIOL KTIRloL Bropunxavikrg xonone (/yoapeiwv). Ta ktigux Leaf House kot
Leaf Lab tov peAetn|Onkav, xaoaktnollovtat wg oxedOV HNOEVIKTG EVEQYELXKT]C
KatavAAwong  (near-zero  energy  buildings), «kaBwg  ovvdvalovv
ATIOTEAEOUATIKA CLOTNHATA OlXXelQLOTG evéQyelag pe ula evgela ykapa
avtopatiopwy, texvoAoyiec  AIIE kat amoOrnkevon evépyewas. ' v
aELOAGYNON TG €VEQYELXKTG ATODO0TC TWV KTIOIWV ATV avamtuxOnke kat
xonowomomOnke pebodoAoyia 1 omoia tegLeAduPave tn ANy kat a&lomoinom
HETONOEWV  OLVONKWV — €0WTEQIKOV KAl  eEwTeQkOL  meQIBAAAOVTOC,
EVEQYELAKWV KATAVAAWDOEwV Kat NAekToontagaywyns and AIIE. Emnpoo0eta,
avantoxOnkav  HovTéAa  OUVAMIKNG  TIEOOOMOIWONG  TWV — KTIQLAKWV
EYKATAOTACEWV e XONon Twv Aoyiopuwv Open Studio / EnergyPlus, yia ta
omola éywe enmaAnBevon Paoel twv magamavw petEroewv. H avaAvon
avédelEe v avaykadmTa emaAfevong kat avAALONG TNG TEAYUATIKTG
EVEQYELAKNG ATMOd00TG TWV KTIQWAKWY  EYKATAOTACEWV KaOw¢ kat g
evoexopevng amokAlong (performance gap) amo TNV «QewEnTik)» antddoOot Tov
TMEOKVTITEL BACEL VTTOAOYLOTIKWV HOVTEAWY TOL XENOLHOTOoVVTaL ouvrOwg
KATA TOV OXedOUO 1] TNV eVEQYELAKT) avaaOpion evog ktiplov.

H dnuovgyia emaAnOevpévwv HOVTEAWY €VEQYELAKTIG ATIODOOTC TWV KTIQIWV

amoteAel amagaltnt) mEovmdOeon yix TV avantvén e pebodoAoyiag
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aELOAGYNONG TEONYHEVNG TEXVIKI)G ATOKQLONG (NTNONG OMWS TEQLYQAPETAL
0TI OLVEXELX.

Ewwotepa, aflomolvtag ta anoteAéopuata g mEWTNS PAons, avantuxOnke
peBodoAoyla yix TNV peAétn kat a&loAdynon g duvatdTTaAC UETATOTILONG
@oQTiov TOL OLOTHUATOS OEQHAVONG, HNXAVIKOU QEQLOHOU, KAIUATIOHOV
(HVAC) tov ktptov Bopnxavikrc xorjong Leaf Lab. H ev Adyw moooéyyion,
oA Tov KaBoplouod ¢ woilag Turg Tov BeQUOCTATN XWEOL ATO HOVTEAO
vevetuoL aAyoptOpov. Ta oevdowx mov avantoxOnkav kat aoAoyrOnrkav
A@POQOVV UETAPANTO avd wea KOOTOG TEOHNOELG NAEKTOIKIG eVEQYELAS TTOV
PaoloOnke oe dedopEVa ATIO TNV AYOQA EVEQYELXG TNG TIEQLOXT]G EVOLAPEQOVTOG.
To povtédo BeAtiotonoinong AapBaver voyn ™ dAKVUAVOT] TOL KOOTOUG
KATOVAAWOTG NAEKTQIKTG eVEQYELAS Kol Tov delktrn Oeouiknc aveong Predicted
Mean Vote (PMV). Me Baon ta anoteAéopata TQOKUTTEL OTNUAVTIKO TteQLOwWQLO
€EOKOVOUNONG EVEQYELAS KAL HEIWOTC TOV EVEQYELAKOV KOOTOUG KATAVAAWOTG
NAEKTOIKT]G EVEQYELAS DLATNOWVTAG T TtiTted OeQUIKTG AveoTnC Kal peTtaBoATg
MG TWUNG TOv OEQUOOTATN XWQEOUL EVTOS TwWV 0QlwV ToL BETOVV Tat OXETIKA
dteOvn) mpodtuTAX.

[TaodAANAa, avamtuxOnke péBodoc Poaxvxeoviag mEOPAePNe (Ue XQOoViko
opoiCovta 24 pec) TWV MNAEKTOKWV Katavadwoewv kabwe Kat g
nAektoomapaywyns evégyewag amd AIIE pe xonon povréAdwv Texvnrwv
Nevowvikwv Awtowv. H pébodoc yxonowomombnre yix tnv e€aywyr) kat
aELOAOYNON ATOTEAEOUATWV TOOO O€ ETUTEDO KTIQIOL 000 KAl O& ETUTIEDO
pkoduktvov. Ta amoteAéopata mov e&NxOnoav eppaviCovv vimAQ emimeda
ovoyétiong (Pearson’s coefficient, MBE, MAPE) peta&0 twv mooPAemopevav Kot
noaymatikwv Twuwv. Ev ovvexela, avamtoxOnke 2-0toXikd HOVTEAO
PeAtiotomoinong I'A yux ) petatomnon goortiov (load shifting) kat petwon tov

KOOTOUG NAEKTOLKNG EVEQYELAG TNG ETIOUEVNG NHEQAS O& ETUTEDO KTIQOL Kat
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ppodwctvov. H mapamavw ocvvdvaotikry péBodog TNAMTA  eAéyxOnxe
EVOEAEXWC KAL XONOLHOTOWONKE ETUTVUXWS YIX TNV EEXYWYN LOOQQOTINEVWV
AVOewV UElWOTG TOU KOOTOUG NAEKTOLKI)G EVEQYELAG KAL TNG UETATOTIONG

OQTIWV O¢ eTUTEDO OUADAG KTIQIWV KAl LKQODLKTVOV.



Abstract

This Ph.D. thesis focuses on the development and evaluation of advanced demand

response techniques for Near-Zero Energy Buildings (NZEB) and microgrids.

In this context, the energy performance of a residential and an industrial (/office)
NZEB was investigated and analysed. The Leaf House (residential) and Leaf Lab
(industrial/office) buildings are characterised as NZEB as they effectively integrate
energy management systems with a wide range of automation, renewable energy
sources, and energy storage. For the evaluation of the energy performance of these
buildings, a method was developed and deployed which involved the collection
and exploitation of measurements concerning the indoor and outdoor
environment, energy consumption and renewable energy production. In addition,
dynamic Open Studio / EnergyPlus models of the energy performance of buildings
were created and subsequently validated with the aid of the aforementioned
measurements and data. The analysis highlighted the importance of evaluating the
“performance gap” of buildings as the actual energy performance of buildings can
significantly deviate from the “theoretical” values typically used when designing

or renovating a building.

Creating validated and dynamic building energy models was a prerequisite for the
development and testing of the advanced HVAC demand response methodology

described hereafter.

In this context, a novel methodology, for investigating and evaluating the potential
HVAC load shifting based on temperature setpoint adjustment, was developed and
deployed for the industrial building (Leaf Lab). This approach concerns the
determination of the hourly temperature set point by a Genetic Algorithm

optimisation model. The scenarios that were developed for testing the GA model
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take into account variable hourly electrical energy prices based on real data by the
Day-Ahead market of the building’s region. The optimisation model takes into
account variation of the cost of the HVAC’s electrical energy consumption and the
Predicted Mean Vote (PMV) index of thermal comfort. Results revealed significant
margins of energy and cost savings while comfort levels and temperature setpoint
drift are kept in line with regulations defined by well-established international

standards.

In parallel, a method for short-term (24 hours ahead) prediction of the electrical
consumption and Renewable Energy Sources’ production was developed based on
Artificial Neural Network models. The method was effectively tested using various
datasets to produce results of a high correlation between the real and predicted
values, both at building and at the microgrid level, as justified by various indicators
(Pearson’s coefficient, MBE, MAPE). Furthermore, a double goal Genetic Algorithm
optimisation model of the electrical energy cost and load shifting for the day ahead
was developed and thoroughly tested. Day-ahead ANN-based predicted data are
used as input for the GA optimisation model to produce balanced solutions for cost

savings and load shifting at both building and microgrid level.
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Nomenclature

Acronyms

AC Alternating Current

AMI Advanced Metering Infrastructure
ANN Artificial Neural Network

ARC Aggregators or Retail Customers

ANN Artificial Neural Network

AS Ancillary Services

BEMS Building Energy Management System
biPV Building Integrated Photovoltaic

CHP Cogeneration of Heat and Power
CO2-eq Carbon Dioxide equivalent emissions
COP Coefficient of Performance

CSP Curtailment Service Provider

Cv Coefficient of Variance

CPP Critical Peak Pricing

DA Day-Ahead

DARTP Day-Ahead Real Time Pricing

DC Direct Current

DEMS District Energy Management Systems
DER Distributed Energy Resources

DG Diesel Generator

DHW Domestic Hot Water

DR Demand Response

DRP Demand Response Providers

DSM Demand Side Management

DSO Distribution System Operator

EED Energy Efficiency Directive

EER Energy Efficiency Ration

EMS Energy Management System

ESCO Energy Service Company

FC Fuel Cell

GA Genetic Algorithm

HVAC Heating Ventilation Air Conditioning
HRES Hybrid Renewable Energy System

ID Integrated Design

IoT Internet of Things

IPMVP International Performance
Measurement and Verification Protocol

MAPE Mean Average Percentage Error

MBE Mean Bias Error

MILP Mixed Integer Linear Programming
MINLP Mixed Integer Non-Linear
Programming

MIP Mixed Integer Programming

MPPT Maximum Power Tracking

MT Micro-Turbine

NARX Nonlinear Autoregressive ANN with
Exogenous Input

NIST National Institute of Standards and
Technology

NZEB Near Zero Energy Building

OpenADR Open Automated Demand Response
PSO Particle Swarm Optimisation

RES Renewable Energy Sources

RTO Regional Transmission Operator

RTP Real Time Pricing
PMV Predicted Mean Vote
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PPD Percentage of People Dissatisfied
PV Photovoltaic

R Pearson’s coefficient

RH Relative Humidity

RMSE Room Mean Squared Error

SaaS Software as a Service

SDG Sustainable Development Goal
ToU Time of Use

VEN Virtual End Node

VTN Virtual Transfer Node

WT Wind Turbine

ZEB Zero Energy Buildings

Symbols

C; day ahead price per hour for hours 1 to
24

Cr Total energy bill (€)

Cg Total energy charges (€)

C# unit is the day-ahead hourly unit cost of
energy in each building (€/kWh)

Cr Total tax charges (€)

Cs Energy procurement cost (€)

Cy Network services cost (€)

Cs rEnergy procurement fixed cost
component (€/kWh)

Cgpp Daily excise duty on electricity and
taxes (€)

C,, Various costs normalized per kWh
(€/Wh)

Cr Fixed cost component (€)
CpmaxMaximum power cost component
(€/kW)

Cur Active energy cost component
(€/kWh)

C4—yc Fixed cost for up to 4GWh per
month (€/kWh)

Cgpy Excise duty per kWh (€/kWh)

Cpaq Parameter to account for F, AT and
A-UC components (€/kWh)

Cpmax,r Maximum power fixed cost
component (€/kW)

Icl Clothing insulation in (m2K/W);

IVA Value added tax (€)
Loadgpg, is the daily load shift (kWh)

M Metabolic rate in W/m?

P;is hourly average power consumption of
the HVAC in kW (equivalent to kWh)
Tsfjlhourly temperature set points of the
HVAC system the next day

Costg is the daily energy operating costs (€)
Costg 14 is the daily energy operating costs
of Leaf Lab (L4) building (€)

Costg symma is the daily energy operating
costs of Summa (L2) building (€)

Costg_gite is the daily energy operating costs
of Kite (L5) building (€)

DA}, Day-ahead market prices (€/kWh)

DAy ;, DA price flexible factor per hour h
(€/kWh)

RH Relative humidity (%).

Tair Air temperature (Tair) in (°C);

Tr Mean radiant temperature (Tr) in (°C);
Vair Relative air velocity in (m/s);

W Effective mechanical power in W/m?;

w, weighting coefficient for the daily
operational cost of energy for the HVAC
Wymy Weighting coefficient for the daily
thermal comfort

X} is the hourly value of total energy
consumption in each building (kWh)
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X gop . is the GA optimised hourly electrical

energy (kWh) at building or building
group level

h
Ebaseline

energy (kWh) based on day-ahead Neural
Network predictions

is the Baseline hourly electrical




1. Introduction and state of the art

In broad terms, DR refers to retail customers participating in electricity markets by
responding to varying prices over time [1]. Demand Response (DR) is otherwise
defined as “changes in electric usage by end-use customers from their normal
consumption patterns in response to changes in the price of electricity over time, or
to incentive payments designed to induce lower electricity use at times of high
wholesale market prices or when system reliability is jeopardized”[2]. On the other
hand, DR is inextricably linked with smart grids since an optimum response to real-
time signals or any kind of dynamic information requires interoperability,
embedded intelligence and advanced controls working harmonically in the same

direction.

In parallel, energy consumption in the building sector calls for innovations,
effective policies and regulations to enable a new technological paradigm for new
and renovated dwellings. In particular, the design and construction of smart and
zero energy buildings as well as smart communities is a primary objective that
needs to be met as part of the smart grid evolution. Aggregating energy
consumption in buildings may, under certain conditions, provide a valuable

resource allowing indirect participation in energy markets.

Smart communities can be formed in various physical configurations. Connecting
building facilities together to form semi-independent small subdivisions of the
main electrical distribution grid offers significant advantages i.e. exploiting on-site
energy generation by applying advanced control, intelligence and storage at the
local level. The microgrid paradigm fits well with the smart community concept
especially with respect to the basic local interconnecting infrastructure and the

overall management of energy consumption, renewable energy production and
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storage. In specific, the microgrid concept is bound to the necessary operations for
monitoring, storing and controlling energy flows between smart buildings and

other facilities i.e. storage so that renewable energy is optimally deployed.

In this framework, the state of the art in the fields of smart and zero energy
buildings is presented first. Recent advances in DR at building and district level are

explored with a specific focus of DR in microgrids.

1.1 Smart and Zero Energy Buildings

The smart building is a fundamental entity of the smart grid concept. Nonetheless,
providing demand flexibility and operational responsiveness in a smart building
remains a challenge since it requires a high level of intelligence along with the
integration and optimisation of users” actions and decisions. The smart building
combines advanced energy management systems overseeing the operation of a
range of elegant and multifunctional intelligent equipment to control various
building systems such as HVAC, lighting and shading. The smart building user is
informed of the building’s energy flows and provided with the tools for the
dynamic management of systems installed e.g. to adjust indoor environment
conditions according to his/r preferences or specific needs, control devices remotely
etc. Furthermore, tools assisting users to optimise the energy performance of a
smart building and at the same time minimise the cost of the energy bills are

envisioned.

In this context, the goal of the efficient exchange of energy and information between
the building and the grid in a way that is mutually beneficial must be facilitated.
At the distribution level, the energy demand in buildings forms an important asset

in terms of the collective power flexibility potential.
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Aligned with the smart building, the (Near-) Zero Energy Building concept
constitutes a technological paradigm of unquestionable importance since it
incorporates the necessary measures for minimising the net energy inflow from the
main grid. The NZEB is inherently associated with Integrated Design (ID), high-
end energy conservation measures, advanced controls as well as on-site renewable
energy generation and exploitation. The NZEB concept resembles the evolution of
building design and construction in a holistic way to ensure the true and actual

sustainable levels of energy performance.

The concepts of Smart and Zero Energy Buildings have attracted the interest of the
scientific community, policy organisations and the industry worldwide. Special
attention is paid to coupling integrated design, energy efficiency and renewable
energy in new and renovated buildings. From a policy perspective, this is being
pursued via strategic energy and environmental objectives, policy initiatives,
regulatory reforms and financial incentives. In this regard, the EU has placed a
special weight on the reduction of the high energy consumption in the building
sector using various policy tools and directives including, among other, the EU
2020 targets, the Energy Performance Building Directive (EPBD), the climate
change adaptation and mitigation strategies and the low carbon economy roadmap

2050 [3], [4].

EPBD Recast (2010), imposed member states to ensure all public buildings (or
buildings used by public organisations), as well as new buildings, comply with
near-zero energy consumption since 2018 and by 2020 respectively. Under this
legislative framework, Member States are responsible to report on the detailed
progress with respect to Near-Zero Energy Buildings” (NZEBs) agenda
implementation in practice so as it needs to be adjusted to reflect national, regional

or local conditions.
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The NZEB is conceptualised in the EPBD and characterised by a very high energy
performance, a very low amount of required energy and a very significant
contribution of RES to cover the remaining energy use. Very high energy
performance is translated into buildings integrating passive and active systems and

falling into the top categories of the energy certification process.

A clear universal definition of a Zero Energy Building is, however, somewhat of a
challenge and usually linked to the framework of the analysis i.e. whether carried
out for new construction, energy efficiency evaluation or classification, specific
research, development of policy tools or another purpose. Definitions may vary
according to the metric and period of balance, type of energy use and balance,
renewable supply options, connectivity with the grid, requirements, etc. [5]. Apart
from the EPBD, linking energy performance to annual normalised primary energy
consumption (in kWh/m?/year), various definitions have been proposed including
net zero site energy, net zero source energy, net zero energy cost and net zero
energy emissions depending on the metric (energy, cost, COzq emissions) and
domain (site or source). Where applicable, a net-zero site energy benchmark is
considered most appropriate as it is fully verifiable through on-site measurements
and cannot be affected by external factors (i.e. related to the operation of the main
grid or the energy market) which may vary according to the dimensions of time,

space and territory.

It is noteworthy that quantitative targets linked to zero or near-zero energy
performance are dispersed between 0-270 kWh/m?/year of primary energy
consumption. Higher figures in this range are associated with hospitals or non-
residential buildings [6]. For NZE residential buildings the average targets vary
from 33kWh/m?/year in Croatia and 45-50 kWh/m?/year for the many EU member

states (Belgium, Estonia, France, Ireland ) while some countries use non-
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dimensional values or an energy performance class (e.g. A++ in Lithuania) [7]. In
Italy, the regulation for new dwellings requires a minimum energy efficiency of 65-
70kWh/m? [8]. In Cyprus, the threshold for NZEB is 100 kWh/m?/year of primary
energy for new and existing residential buildings and 125 kWh/m?/year of primary

energy for non-residential buildings [6].

ZEB or NZEB currently in operation or even those in development stages primarily
use fossil fuel based energy sources coupled with renewables such as solar, wind,
geothermal or biomass to attain “nearly-zero energy” behaviour[7],[9]. The
transition to smart ZEBs from an industrial point of view, depends to some extend
on the adoption of common communication protocols, standards and interfaces to
enable interoperability of systems, subsystems and the bi-directional flow of energy
and information [10]. Coupling existing building energy systems with modern
monitoring and control equipment is often a barrier for renovating the existing

building infrastructure.

Discussions in this direction expand towards the challenges of NZEB integration in
smart grids with the aid of evolving technologies [11], [12]. Various efforts have
dealt with optimising the design and operation of building integrated renewables,
thermal or electrical storage and holistic energy management using a broad range
of techniques. Attention has also been drawn in developing tools for user/customer
engagement, increasing transparency of grid operations with the aid of Advanced
Monitoring Infrastructure (AMI) and enabling Demand Response (DR) within the

Internet of Things (IoT) applications [13].

In many occasions, the actual operating performance of buildings significantly
deviates from the designed target. This “performance gap’ is associated to a) the
design and construction processes of the building envelope and systems otherwise

referred to as the ‘design and construction phase ‘or b) the management of the
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building and its facilities or the “operational phase’. In the design and construction
phase, the performance gap is often related to the assumptions / inputs or misuse
of calculation methodologies and tools utilised. Furthermore, the performance gap
may be linked to the lack of consideration or expertise about the deployment of
Integrated Design (ID) principles impacting energy consumption, indoor comfort
and health conditions. Performance gap issues are also evident during the
construction phase due to improper installation of building envelope components
(i.e. insulation, glazing etc.) which may be a result of inadequate training, time
limitations, cost-cutting constraints or barriers related with resistance to change
[14], [15]. Such phenomena may have as a consequence the occurrence of thermal
bridges and high infiltration rates eventually leading to energy losses, high total
energy consumption and unhealthy or uncomfortable indoor conditions. Last but
not least, energy management and operational inefficiencies are critical to the
observed gap in buildings” energy performance, depending on the specificities of
each case. This may be due to lack of appropriate maintenance and service, misuse
of energy systems’ operation or suboptimum performance in systems’ integration.
However, often there is a wvalid potential for bridging the ‘gap’ of
underperformance in the buildings” operational phase which can be effectively

addressed via a mixture of technological, organisational and training actions.

In terms of the technological progress, indoor environmental quality control and
Building Energy Management Systems (BEMS) have evolved considerably in the
last decades, in parallel with the growing concern about energy efficiency
requirements and the demand for environment friendly buildings. Modern
customised building energy management solutions can be exploited to enable
better visual, thermal comfort and air quality control. Research efforts in this

direction focus on advanced BEMS which can implement sophisticated algorithms
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capable of predicting and evaluating a range of alternatives in the way buildings
exchange energy with the ambient environment and the grid. State of the art BEMS
techniques nowadays offer the potential for applying predictive control which may
contribute to 20-30% in the reduction of energy consumption [16]-[18] and
equivalent operational cost savings. Prediction of energy demand is becoming
increasingly effective as part of an overall energy management optimisation
process which could be deployed in the near future [16], [17]. Simultaneously,
researchers are providing new scientific evidence on how the prediction of
renewable energy production can increase its utilisability in building integrated
applications and deal with the volatility of Decentralised Energy Resources (DER)

and the future microgrids.

Furthermore, smart metering, data processing and interpretation provide useful
steps for going deeper into understanding buildings energy behaviour [19]. This is
especially important when such knowledge can be developed to inform decisions
about the systems’ operational strategies based on scientifically sound
methodologies and technologically robust processes. In this direction, Demand
Response (DR) techniques have been applied in various settings to optimise the
operation of building energy systems (i.e. HVAC), to perform active load
management and to minimise energy from the grid as well as the respective costs
on the demand side [20], [21]. Accordingly, data monitoring i.e. the provision of
meaningful information along with practical tools for managing energy
consumption, combined with specific incentives provide the fundamentals for
actively engaging users in realising the potential of DR wide scale environmental
and social benefits. This transition requires targeted investments both in grid

infrastructure and at the users” side as well as a transparent, open and attractive
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regulatory framework to create the supporting framework for innovations which

will transform the market in this field.

With respect to renewables, advanced solutions such as concentrating solar thermal
technologies have emerged to offer attractive options in meeting the cooling
demand during the summer season and reduce heating demand from the grid
during winter time. The real challenge with such systems concerns the design of a
suitable and cost efficient solution utilizing maximum heat from the sun to fulfil

the required energy demand [22].

Other commercially available solutions include building-integrated Photovoltaics
(biPV) and small wind turbine systems offering a broad range of designs and
technical attributes. Such systems are coupled with inverters normally equipped
with Maximum Power Point Tracking (MPPT) and controls for providing energy
to the power grid, microgrid or autonomous installations [23]-[25]. Recently,
building integrated combined Solar and Wind driven energy systems have entered

the market promising to be a cost viable breakthrough technology.

1.2 Demand Response and Smart Grids

Storage of electricity is subjected to technical and economic barriers making
absorption of excess electricity by renewable energy sources feasible through a
demand following generation concept [26]. Demand response (DR) refers to ways
of altering the power consumption of buildings, settlements, or other facilities,
within a specific time frame, for economic return [27]. It implies regulatory,
technological, and market changes affecting the way energy is transacted and
exploited. DR is strongly interlinked with the smart grid technological paradigm.
By definition, in DR, consumers are able to adjust their power purchasing patterns

according to the dynamic exchange of information, incentives, and disincentives
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[28]. In the case of a power system integrating multiple energy carriers the concept
of Integrated Demand Response (IDR) is used along with the Energy Internet (EI)
to provide a wider framework of DR features and complementarity between the

various energy sources [29].

gl
=

v
Service
Provider

Secure C
ﬂﬂﬂﬂﬂ Electrical Flows

Generation
Domain N

Figure 1: Smart Grid NIST conceptual model
The smart grid is defined by the National Institute of Standards and Technology of

the U.S. Department of Commerce to be comprised of seven domains as shown in
Figure 1. In the market domain, trading of grid assets and resources such as
electricity, CO: allowances, gas, coal, etc. takes place while the operations domain
concerns the overseeing of energy management and the smooth control of the
power grid transmission and distribution networks by regulating authorities. The
Service Provider domain is linked to the business functions between power system
producers, DSOs and customers such as billing and customer account management
but also hosts more advanced services supporting energy management and

generation. Furthermore, the Generation domain is associated with the conversion
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and supply of electricity from various energy carriers such as gas, coal, pumped
hydro, wind, solar, geothermal etc. New requirements include greenhouse
emissions control, an increase of RES and provision of storage to deal with RES
intermittency. The Transmission domain is dealing with the reliable transfer of
electrical power from generation to distribution substations. The Distribution
domain, refers to the link between the Customer and the Transmission domains
which takes place through various network configurations (radial, looped,
meshed). Finally, the Customer domain is segmented to differentiate between
homes, commercial buildings and industrial facilities. The energy services interface
is part of the customer domain for establishing remote communication and

applications control.

On the other hand, demand response is linked to sustainable development goal
(SDG) 7 for ensuring access to affordable, reliable, sustainable, and modern energy
for all [30]. DR is directly linked to targets for increasing the share of renewables
and improving energy efficiency in smart grids. In addition, the wide
implementation of DR is expected to be complementary to SDG 13 as part of the
efforts to keep global warming to well below 2 °C above pre-industrial levels.

In this context, Distributed Energy Resources (DER) and Demand Response (DR)
(sometimes the term Demand Side Management are used interchangeably) are
gradually gaining ground with respect to their potential applications in (a) the
reduction of peak loads, (b) grid balancing and (c) dealing with the volatility of
renewable energy sources (RES). Maintaining grid balance is a primary ancillary
service and a prerequisite for the provision of high-quality power utility services
affecting everyday life, as well as social and economic progress.

According to Reference [31], demand-side management (DSM) measures can be

categorized based on the timing and the impact of the measure into energy
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efficiency, time of use, demand response, and spinning reserve. Another definition

of DSM measures is given in [32] as a way to induce a load shape change to obtain

short and long term benefits (Figure 2).

Strategic load
growth

Peak clipping ‘ %

DEMAND A
Valley filling  §x—f N\ = rreereeee SIDE Strategic
e W /\ conservation
MANAGEMENT

Flexible load
shape

Load shifting ﬂ

Figure 2: DSM power profile change objectives [32]

The following list provides a brief explanation of power profile change objectives

presented in Figure 2 to be pursued in DSM:

Peak clipping refers to the reduction of system peak load using direct load
control.

Valley filling concerns the exploitation of energy during low utilization
periods to improve the ratio between the peak and minimum load of the
system.

Load shifting is related to rewarding end users for time shifting their
consumption in order to reduce system peak levels.

Strategic load growth is connected to establishing objectives that will lead
to higher electrical energy consumption such as providing tax incentives
for e-mobility.

Strategic conservation is associated with total lower energy consumption

due to higher overall efficiency.
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¢ Flexible load shape is linked to the activation of loads” flexibility in real

time to optimise demand and supply.

Demand response is otherwise classified into (i) incentive-based, including direct
load control, interruptible/curtailable rates, emergency DR, capacity market
programs, and demand bidding programs, and (ii) time-based, such as time of use
(ToU) rates, critical peak pricing (CPP), and real-time pricing (RTP). In CPP, a high
rate is imposed on the customer in the case of critical events of high wholesale
market prices [33]. In RTP, end customers are forwarded wholesale market prices
a day or an hour before energy delivery. One of the main challenges in RTP is
associated with the requirement for robust and continuous real-time
communication between the energy provider and customers [34]. Prices in RTP
fluctuate as a consequence of wholesale market price variation and design aspects.
Several RTP structures were assessed by utilities [34]. Other pricing structures such
as Inclined Block Rate whereby tariffs vary based on consumption level thresholds
have been exploited in order to promote energy conservation, load balancing and
reduction of peak load [35].

In this framework, the idea of an open and transparent smart grid accommodating
participants on a fair and inclusive basis is tied with (a) the allocation of actual costs
for the generation, transmission, and distribution to the various stakeholders, and
(b) the transition to a very high share of clean energy resources in the electricity
generation mix. Undoubtedly, the smart grid of the next decade needs to ensure
very high penetration of RES, as well as gradual replacement of fossil fuels and
other power sources associated with high environmental risks. Grid energy
efficiency is currently related, among others, with requirements for significant
levels of spinning reserves and low-efficiency generators compromising

environmental sustainability. In DR, consumers are incentivized to control their
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consumption in time to follow high RES production, contribute to the decrease of
demand peaks and lead to improved overall energy efficiency at the grid level.
The potential benefits of DR for customers, system operation, market efficiency,
and reliability of the power system were critically evaluated based on different
innovative technologies, real case studies, and research projects [28], [36], [37]. The
long term impact of DR in the Portuguese electric system is investigated in [38]. In
all of the scenarios studied DR was found to lead in reduction of the total costs and
of the total capacity as well as an increase of RES penetration. Also, high variable
RES power generation is reflected to changes in models dealing with optimisation
of the power system [39]. In this context, short-term operations become increasingly
important with respect to integrating renewables, power generation flexibility,
interregional transmission of energy, energy storage and DR.

On the contrary, several factors are slowing down the widespread implementation
of DR such as human intrinsic, economic, social, technological, and regulatory
aspects as discussed in References [40]-[42]. In terms of the infrastructure
modernization necessary for DR to take place, smart meters and advanced metering
infrastructure (AMI) have a fundamental role to play. Advanced metering
infrastructure, such as smart meters, is an essential part of the smart grid for utilities
to be able to monitor and control any point of energy consumption/production or
distribution in the grid. AMI and smart meters are also essential for consumers to
be able to monitor their consumption and react to information about prices or DR
events in real time. Moreover, AMI constitutes the necessary infrastructure for
collection of load profiles which can be exploited by utilities or aggregators using
clustering to identify common patterns of energy consumption, design appropriate
tariffs and target groups of customers for participating in DRP [43].

Various forms of possible DR program types and interactions between stakeholders

involved such as utilities, aggregators, and resources are defined in the Open ADR
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standard [44]. In specific, DR program types of Critical Peak Pricing, Capacity
Bidding, Thermostat / Direct Load Control, Fast DR Dispatch / Ancillary Services,
Electric Vehicles and DER are defined. According to the OpenADR 2.0, a resource
for a utility in a DR program can be anything from a single customer load or an

aggregator down to as specific as a thermostat.

DR Program Party Resource Party DR Program Party Resource Party

—_— AT .

/ Resource

Demand Side Infrastructure

Grid Infrastructure Demand Side Infrastructure Grid Infrastructure

in Direct 1, the Vien is 3 stand-alane entity cemmunicating
the load controller

Direct 1 Direct 2

Figure 3: Open ADR 2.0 simple DR deployment scenario (Direct 1&2, [44])

In Figure 3, two simple DR deployment scenarios are presented. When a resource
is enrolled in a DR program, the utility may dispatch an ‘EiEvent’ message to the
Virtual End Node (VEN), serving as mean of communication for the resource,
specifying the resource to be targeted. If such a target qualifier is not included then
all resources behind a VEN are specified. In this case, the relationship between the
DR Program Party and the Resource Party is direct. The Direct 1 scenario applies
to commercial and industrial buildings with a VEN gateway translating the
incoming signal to a load controller based on a specific protocol. In the Direct 2
scenario, the VEN is part of a BMS and the resource is composed of large building

facilities such as HVAC, lighting, industrial processes etc.
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Figure 4: Open ADR 2.0 facilitator and aggregator DR deployment scenarios (Facilitator
1, Aggregator 1, [44])

In Figure 4, two more complicated scenarios, employing a facilitator (left) and an
aggregator (right), are presented. The facilitator is an intermediary assisting asset
parties in managing their resources. Resources are directly enrolled in DR
programs and remain in direct communication with the DR Program Party. The
VEN, in this case, sometimes offered as a cloud based Software as a Service (SaaS),
resides within the Facilitator who is acting as a gateway for OpenADR actions.
When a DR signal is sent by the DR Program Party (VIN) to the Facilitator (VEN),
it is forwarded to a specific resource for some DR logic to take place or converted
to load control commands for several load controllers. A company managing the
facilities of a large commercial or industrial company, Energy Service Companies
(ESCOs) or cloud based equipment management i.e. smart thermostat services are
different example applications which fall in this category. In the second scenario of
Figure 4, the Resources are not directly engaged with the DR Program Party but
with the Aggregator instead. The aggregator enrolls resources forming various

portfolios managed in response to DR signals received by the DR Program Party.
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The DR Party has no knowledge of the resources the Aggregator is managing.
Instead, the Aggregator is the only point of reference for the Resources in this

scenario.

1.2.1 DR and congestion management

One of the challenges related to the smart grid transition is congestion
management. The high penetration of DER in the distribution grids may in some
cases cause congestion issues thus creating the need for new approaches to deal
with such a constraint. DER coordination, flexibility and consumer active demand
are the basis for the next generation efficient and reliable distribution grid [45].
Dynamic pricing can be exploited in this context to relief congestion and reduce
line losses in distribution networks. Such an approach is proposed in [46] to
facilitate the high penetration of electric vehicles. The cost of flexible loads along
with the line losses cost due to the network’s topology form a single objective
function to address the cost of congestion management and yield realistic and

optimal results.

Moreover, in [47] a local flexibility market trial has been implemented under real
conditions and addressed a lot of important issues from the different perspectives
of the stakeholders involved. In particular, the authors in [47] present a thorough
approach for baseline flexibility services and capacity limitation services. In this
framework the DSO creates flexibility requests based on the forecasting of
congestion risk in the distribution network. Long term forecasting in this context
uses load scenarios which do not predict the electric load for each node over time
but provide a probabilistic network evaluation based on historical data and a
decomposition approach. The risk of congestion management is translated into
operational cost (i.e. reduced transformer life cycle, cost of non-provision of

services to customers) and compared to the cost of activating flexibility services
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alleviating this risk. In case the cost of alleviating the risk of congestion is lower
than activating flexibility services, the DSO issues a flexibility services list and the
maximum price for each of the services in the list. The aggregators may respond to
the DSO by sending their bids and ultimately one bid may be accepted to be
activated for each flexibility service in the list. The scope of the local flexibility
market is to operate in parallel and provide complementary services to the
wholesale markets by optimizing the operation of the distribution grid in the

presence of increased DERs.

1.2.2 DR and ancillary services

Although most balancing in the power system takes place through energy
scheduling, real time contingencies such as the loss of a generator or of a major
transmission line requires a different level of response referred to as AS. Ancillary
Services (AS) in the power system include frequency control, voltage control,
spinning reserve, standing reserve, operating reserve, black start capability, remote
generation control, grid loss compensation and emergency control actions [48]. The
value of AS is associated with the capability of the grid to respond in a fast and
reliable way and maintain balance. AS requirements vary from 1% of the load in
wide interconnected systems to 5-7% in smaller systems with wind and solar
generation. DR resources are able to offer significant and in some cases superior AS
to the grid [49]. In fact, curtailing loads can be faster than varying the rotational
speed of large scale equipment such as in conventional power generation plants.
Furthermore, integrating DR resources in AS opens up the controllable reliability
options for system operators and enables greater system flexibility thus allowing
improved penetration of RES such as wind or solar generation.

In particular, activating DR actions in short time has been identified as suitable in

providing contingency and operating reserves. HVAC systems are considered
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controllable loads which can be exploited in this way since a) they are installed in
most residential and commercial buildings and consume a high share of their
electric load, b) their operation is linked with the building’s thermal inertia
therefore allowing a margin for operational control within a range of set-points
which is not directly translated to a deviation from the acceptable thermal comfort
levels of occupants and c) they are coupled with EMSs. Also, Thermostatically
Controlled Loads (TCLs) such as refrigerators and water heaters have been
considered in studies investigating the potential of DR in connection with AS. In
this context, the DR control signal entails a request for resetting the temperature set
point of a TCL, as an action related to frequency regulation or to a change in power
consumption. In organized wholesale markets, transmission providers procure AS
via cost based contracts and AS costs are defined through a regulated process to
include a bid and an opportunity component. AS providers are compensated for
their marginal costs (including maintenance and operational costs i.e. fuel) on the
basis of the bid component and in case of energy sale a lost opportunity cost based
on the difference between the market clearing price and the AS provider energy
market bid. In this context, DR resources can be exploited to provide AS at a
different frequency and duration compared to current DR deployment experience.
For instance, in the case of emergency and economic load shedding, DR is triggered
a limited number of times in a year (10-15) for a duration of 4-8 hours each time.
Instead, AS such as contingency reserve in particular are deployed at a frequency
between once every two days and once every two weeks for a duration of up to 30

minutes each time.

Demand fluctuations is a significant cost factor driving ancillary costs to supplier
higher. This is expected to become more significant as RES penetration rises and

poses certain challenges for the conventional power generation units. In [50], the
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ancillary costs are modelled with respect to demand variability. A dynamic pricing
mechanism is proposed that motivates customers to adjust their energy
consumption while they provide a balanced demand response. Results through a
dynamic game theoretic approach indicate that demand variability and

requirements for peaking plants can ultimately both be significantly reduced.

1.2.3 DR Programs

Adding flexibility in power consumption provides a sound basis for improving the
grid’s environmental performance. Reduction of peak loads at grid level could lead
to a lower level of operation for generation plants of high running cost, low
efficiency, and low environmental performance. DR potential in the United States
(US) alone could lead to peak load reductions of 150 GW, an equivalent of
approximately 2000 peaking plants [51].

A thorough review of existing DR programs available to US commercial and
residential customers by numerous independent system operators (ISOs) and
regional transmission organizations (RTOs) was provided in Reference [52]. Such
programs include real-time demand, real-time price (RT-Price), day-ahead load
response (DALRP), day-ahead demand response program (DADRP), and more. In
RT-Price programs, consumers can choose to reduce their load in real time as a
response to prices exceeding a certain value. A detailed classification and survey of
DR programs in smart grids with respect to pricing and optimization algorithms is
available in Reference [53]. In day-ahead real-time pricing (DARTP) programs, the
predicted next day’s real-time prices are announced to customers and used for
billing their consumption. DARTP is reported as one of the solutions which was
tested and found effective in achieving flatter demand, reduction of losses, shorter

peak-to-peak distance, and a higher load factor.
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1.2.3 Building level Demand Response

In DR, the consumer becomes a prosumer with an important active role in the
transaction of energy on a day-to-day basis. This transition calls for higher
environmental and social awareness as well as new tools and services to allow for
dynamic interoperable bidirectional flow of data. Hence, DR is identified as an
important field for technological and market innovations aligned with climate
change mitigation policies and the transition to sustainable smart grids in the near
future.

In this direction, a wide range of demand response techniques was applied and
documented according to the type of the loads and the installed facility equipment
[54], [55]. Customers can change their electricity pattern and participate in DR by
reducing their use of electricity, by shifting consumption to another time period,
and by self-generating electricity [56]. In this context, at the building level, the
adjustment of the heating, ventilation, and air conditioning (HVAC) temperature
set points is reported as an effective way to exploit the thermal mass of the building
in order to reduce peaks or shift loads. Changing thermostat settings or reducing
the operational time of HVAC systems as well as decreasing artificial lighting levels
are some of the main load curtailment techniques [54], [56].

HVAC is among the major energy loads of the building sector [57]. The
performance of the HVAC system is of great importance with respect to the energy
efficiency of a building overall. HVAC efficiency depends on the technical
attributes of the technology employed and on the way systems are controlled, i.e.,
settings and embedded intelligence, which in turn define its actual operational
performance and indoor comfort conditions. Many researchers investigated the
potential of applying advanced controls and optimization techniques to improve
energy HVAC efficiency [16], [58]-[64]. In [65], the case of CHP combined with

thermal and electrical storage is explored in an RTP DR setting for a 12-storey large
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office building equipped with two 1,300kW water cooled chillers and a gas boiler
for cooling and heating (including DHW) respectively. Savings of 7% are
established due to the operation of the thermal storage. Despite the fact that the
RTP scheme can be exploited using the EES to store energy during off-peak periods
and reduce consumption during peak periods, the high investment cost associated
with it is a barrier for its adoption. Furthermore, a multi-objective optimisation
approach is utilized to investigate the trade-off between the aggregator and smart
apartment residents offered RTP in Japan [66]. A total of 100 smart apartments
equipped with PV and batteries used for storage, heat pumps (flexible loads)
assisted by solar thermal collectors and EVs are used as an aggregator’s portfolio
for indirect optimisation through the identification of real time pricing profiles to
promote load curtailment and load shifting. Optimum results of leveled profits for
the aggregator and the apartment residents were obtained and analysed.

A mixed-integer linear problem (MILP) for real-time cost optimization of HVAC
operation at building level was proposed by Risbeck et al. [67]. This study focuses
on the optimization of equipment usage in HVAC commercial systems. In their
study, building temperature dynamics were either considered linear and used to
estimate cooling or heating loads, or assumed to be available as a forecast of hot
and cold water demand. Pompeiro et al. applied dynamic programming and
genetic algorithm (GA) optimization to maximize thermal comfort and minimize
the HVAC cost with photovoltaic (PV) production and storage in an experimental
facility [68]. Their approach concentrated mainly on the exploitation of energy from
PV and storage. The operation of the HVAC was controlled based on indoor
temperature measurements and its performance was restricted in low, medium and
high levels. A Time of Use (ToU) pricing scheme of three tariffs was used in the
optimization of a small experimental room. An experimental evaluation of an

HVAC system under variable pricing was conducted in Reference [69]. A linear
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model of temperature evolution was developed by correlating past values of
temperature with HVAC modules turned on/off at any instance in time. The
approach was validated in an experimental facility, demonstrating reduced cost
with respect to a normal thermostat in two different ToU pricing schemes. In
Reference [70], a MIP configuration was proposed to optimize HVAC operation
based on a comfort/cost trade-off. The approach determined when each one out of
a set of many HVAC units was turned on and off based on common goals. Cost
reductions of 4.73%, 4.5%, 11.2%, and 8.5% in two different scenarios were
achieved. In Reference [71], direct load control and set point regulation of
aggregated HVAC systems for frequency regulation in smart grids were
investigated. A simplified HVAC model was used to evaluate temperature
evolution and power consumption. Results demonstrated acceptable variations of
temperature and on/off operations associated with smaller tracking errors
compared to direct load controls and sliding-mode control strategies. In Reference
[72], a model predictive control framework, was proposed, to determine optimal
control profiles of HVAC systems in a demand response context. This approach
used a non-linear autoregressive neural network configuration to model the
thermal behaviour of the building zone and to simulate HVAC control strategies as
a response to a demand response signal. The optimal control problem was formed
as a mixed-integer non-linear problem (MINLP), taking into account on-site energy
storage and energy generation systems with night set-up, demand-limiting and
pre-cooling HVAC control strategies. Results for a day in August indicated reliable
prediction levels for zone temperature and power. Cost savings, in the case of a
varying pricing signal, of 14.25% to 15.26% for demand-limiting and optimal
control without energy generation and storage were achieved. In the case of
optimal control combined with energy generation and storage, cost savings of

30.95% were obtained. Particle swarm optimization was used in Reference [73] to
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optimize the operation of residential HVAC systems based on a multi-objective
scheduling problem taking into account day-ahead (DA) electricity price, outdoor
temperature forecast and user preferences. A cooling scenario with DA pricing was
demonstrated where a decrease in HVAC energy consumption of 6.54% and a

reduction of 18.71% in electricity cost were achieved.

Furthermore, a bi-level optimisation approach is proposed in [74] with respect to
energy management in a residential setting to determine the day ahead energy
quantity bid at the upper level by minimising energy uncertainty cost while
ensuring optimal operation of building loads, DERs and storage. According to the
authors, the proposed approach outperforms non-optimal inflexible scheduling

methods by up to 51% and deterministic optimization based methods by 22%.

1.2.4 District level Demand Response and Microgrids

Hybrid Renewable Energy Systems (HRES) have been implemented in various
configurations to combine two or more renewable and non-renewable sources in
order to deal with the intermittency of renewable energy sources, such as solar or
wind. HRES have important attributes which make them increasingly attractive as
alternatives to conventional fossil fuel energy sources in numerous applications
[75]-[79]. Microgrid optimal energy management can be highly complex and
challenging especially in the case of hybrid systems combining a wide range of
renewable and non-renewable technologies. In [80] optimal dispatch strategy of a
hybrid microgrid connecting PV, WT, FC, MT, DG and batteries operating both in
standalone and grid-connected operation is investigated through a multi-objective
mixed integer linear programming approach for a particular Demand Response
program. Results show a 51.6% reduction of CO2 emissions in standalone
operation. In [81] stability in MGs in the case of communication interruption is dealt

by a hybrid prediction-based DR energy management approach. PSO is used to
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optimize microgrid operation including a WT, a PV, a MT, ES, FC, interruptible,
flexible and fixed loads. Results demonstrate cost reductions of up to 57.89%.
Aligned with HRES, the concept of the microgrid as a semi-autonomous
system of increased flexibility and manageable energy resources, including
renewable energy generation, storage, backup systems and flexible demand, is of
particular importance when it comes to supporting grid stability and decentralized
control [82]. A comprehensive critical review on the energy management systems

of microgrids, connected to the level of maturity of real world applications, is

Cl

conducted by Zia et al. [83].
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Communication issues, control technologies and architectures, deployment
costs, energy management strategies, optimisation, objectives and limitations, are
addressed. An auto-configuration function using a multi-agent approach is
proposed by Bui et. al. [84] to establish automatic connection or disconnection of
DER at microgrid level, capable of dealing with system faults and re-optimising the

new configuration as necessary. Unsymmetrical and ground faults analysis in
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microgrids distribution systems is proposed by Ou in [85], [86]. Hirsch et al. in [87]
surveyed technologies and key drivers of microgrid implementation and research,
at the international level. Reported drivers in this context include extreme weather
related concerns, cascading outages, cyber and physical attacks, deferral of
infrastructure expansion costs, reduced line losses, efficiency improvements,
savings, responsiveness, balancing loads, RE generation, etc. In [88], the authors
present a residential microgrid day-ahead planning approach to accommodate
appliance scheduling by modelling, among other aspects, inter-phase delay
duration and time preference, in order to take advantage of shiftable loads and
energy storage charging/discharging time. In [89], multi-microgrid configurations
are presented and analyzed by means of the power line technology (AC, DC),
layout (series, parallel, mixed), and interconnection technology (transformer,
converter). A comparison of architectures based on cost, scalability, protection,
reliability, stability, communications and business models is performed. Energy
management and DR of multi-microgrids based on a hierarchical multi-agent
approach by introducing adjustable power is proposed by Bui et al. [90]. Different
operation modes are evaluated according to a two-level management cooperative
multi-microgrid MILP-based model for day-ahead scheduling. In [91] MILP is used
to formulate a cooperative market mechanism for energy transactions in a multi-
microgrid setting. A RTP DR program is considered and each MG interconnects
DGs, WTs, PVs, flexible and critical loads as well as ESS. Scenarios are generated in
a stochastic way to account for market uncertainty and renewable energy
generation. Various scenarios are investigated to include grid-connected operation,
island mode and different connection levels between participating MGs. Results
showed the effectiveness of this approach in lowering market prices and enhancing
reliability in the case of increased power transaction capacity. Towards the

application of state of the art, a microgrid energy management a Genetic Algorithm
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(GA) approach is applied in [92] to optimize cost strategies for scheduling
distributed energy resources. A quasi-static artificial bee colony approach is used
to optimize a multi-objective DR problem, based on the cost of energy and peak
demand at the building level [93], including PV, Combined Heat and Power (CHP),
batteries, electrical energy from the grid, and natural gas. Particle swarm
optimisation is used in [94] to solve a bi-level problem modelling the interaction
between the retailer and consumers. The energy hub is explored in [95] to develop
a multi-carrier Demand-Side Management Time of Use (DSM ToU) optimization
balancing energy import, conversion, and storage. A multicarrier energy system of
thermal, electrical and hydrogen loads is optimised using a fully decentralized
multi-agent approach [96]. Comparing a case of responsive loads to a case without
responsive loads via simulations led to the observation that DR could provide
added value to the social welfare of the system and individual profit of agents.

Furthermore, a GA approach using present and day-ahead data was tested by
Ferrari et al. [97] with respect to the management of loads of an experimental plant
case study in Italy. The analysis involves PV, wind generation, a micro-CHP with
a gas boiler, and an absorption chiller coupled with thermal storage.

In addition, game theory is widely explored in formulating the interaction
between consumers and utilities in DR. In [98], this interaction is formed as a
Bayesian game where the Bayesian Nash Equilibrium is changed according to the
regulation price set by the utility. Results indicate that this approach is effective in
balancing energy and demand. Gong et al [99] developed a game-theoretic
approach to test a distributed control strategy for large scale DR consisting of high
populations of EVs and storage devices. These flexible loads react to prices by
optimizing their own objective functions in an agent-based framework. Prices are
settled by solving a power flow dispatch optimisation problem and results are

presented to demonstrate optimality of each individual’s objective function and of
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social welfare for the system overall. According to this approach full control is
maintained at customer side since it does not need to be transferred to the
aggregator’s side.

Abuelnasr et. al. used a GA approach to evaluate the impact of different
microgrid topologies on EMS operations considering energy losses, energy from
the main grid and CO:z emissions [100]. Microgrid topologies consisted of networks,
loads, biomass generation, PV and storages. More specifically a GA optimisation
model is used to examine the influence of different microgrid topologies in energy
management from the perspective of objective functions of energy loss, energy
import and CO2 emissions minimized individually. The participating microgrids
are comprised of 26 load points, ten PV DGs half of which of 200kW and half of
500kW and a storage unit of 250kW and 1000kWh as well as biomass DGs. Eleven
controls are employed in the energy management optimisation including four DR
controls for loads above 50kW, two 3-phase dispatchable DGs, output power
controls, three single phase shunt capacitors control switches, one 3-phase
capacitor control switch and storage control. Three different configurations were
investigated to identify optimal decisions and demonstrate the effectiveness of the
proposed approach. A regional integrated energy system is modelled to optimise
the operation of a system comprising of wind power, concentrating solar power,
gas power generation, thermal and electric power storage while meeting electric
and thermal loads on the demand side [101]. The optimisation model addresses a)
the total operational costs, b) the system environmental cost and c) the system
economic benefits due to participation in DR. The impact of different DR modes
on system operation are considered using simulation. Results indicate that
Integrated Demand Response can lead to a cost saving of 7.86% and a reduction of
pollutants emissions of 18.37%. Furthermore, Alharbi and Kankar [102] present a

stochastic EMS model to investigate several short term dispatch probabilistic
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scenarios for isolated microgrids integrating wind and solar generation with EVs

and DR.

1.2.5 ANN based short term power forecasting

ANN models are designed to imitate biological nervous system information
processing and evolution. They have been used for years in different areas of
engineering, science, and business to deal with highly complex and nonlinear data
sets. The ANN models assimilate the natural bonds of neurons and their high level
interconnection to model complex systems. Artificial Neural Networks (ANN)-
based short term power forecasting is practiced to estimate day-ahead loads and
renewable energy production.

In the case of short-term predictions, the ANN models can be more effective
compared to statistical, linear, or non-linear programming techniques. They
encompass capabilities such as adaptive learning, self-organization, real time
operation, fault tolerance, and the approximation of complex nonlinear functions.
Kalaitzakis et al. in [103] tested advanced neural network short-term load
forecasting using data from the electric power grid of the island of Crete in Greece.
Various structures and configurations were assessed in their study and a parallel
processing approach for a 24 h-ahead prediction was demonstrated to be the most
effective. ANN architectures for forecasting demand in electric power systems are
presented in [104] by Tsekouras et al. A case study of the Greek electric power grid
is used to explore the performance of different ANN configurations and factors,
including period length and inputs for training, confidence interval, and more.
Moreover, short term power forecasting is of particular value for prosumers to
model, understand, and predict their consumption profiles, as well as to apply
effective scheduling and control. A framework for district-level energy

management and ANN forecasting at the building level was investigated by Hu et
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al. in [105], evaluating the performance for 6 buildings of different occupancy
routines. Hybrid Short Term Load Forecasting ANN combined with techniques
such as Fuzzy Logic, GA, and Particle Swarm Optimisation are briefly discussed in
[106]. Furthermore, a 24h ahead prediction of excess power at microgrid level is
proposed by Mavrigiannaki et al. [107], testing 3 different configurations, as a
fundamental part of an advanced microgrid energy management strategy. Finally,
an overview of load forecasting, dynamic pricing, and demand side management
techniques in smart grid research applications reveals their potential for

operational cost reductions between 5-25% [108].

1.3 Problem statement & innovation of the research
Following the description of the state of the art, the problem statement and

innovativeness of the research of the present PhD thesis is analysed below.

e A comprehensive approach for evaluating the performance gap of Smart /
Near-Zero Energy buildings including industrial and residential case
studies is developed. Dynamic energy models are developed, validated
upon real data and exploited to explore key aspects of the operational
behaviour of buildings and systems. The developed approach provides an
innovative, complete and transparent framework for analysing the energy

efficiency of buildings during their operational phase.

e At the building level, a novel demand response GA based HVAC
optimization scheme is developed. According to this scheme an
optimisation problem is formed to include the cost of energy and predicted
mean vote (PMV) as the two criteria merged into one objective function.
HVAC hourly set points are used as the variables of the optimization. A
Genetic Algorithm is used to identifty dominant HVAC set point patterns

based on dynamic energy prices, actual weather conditions and preferences
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with regard to indoor conditions. The developed approach constitutes a
powerful assessment and decision tool which can be used to identify and
ultimately apply dominant HVAC set point patterns based on dynamic
conditions. The GA optimization algorithm is coupled with the validated
dynamic thermal model of the building enabling the assessment of energy
cost, energy savings, and thermal comfort for a wide range of temperature
set point patterns and RTP schemes. The developed approach is explored to
assess RTP schemes based on real DA market information on the basis of
price fluctuations reflecting current market operations. This approach
constitutes a significant contribution to the literature of HVAC energy
management based on a demand response perspective. According to the
best of the author’s knowledge, previous attempts to investigate this
problem are limited to oversimplified mathematic models of the building
HVAC operation. In addition, the innovation of the developed approach is
justified by the fact that solutions are assessed against dynamic pricing
profiles which have been constructed based on real market data.

At the district level, a DR energy management GA-based optimisation
approach based on day ahead ANN generated prediction models is
proposed. The developed GA algorithm incorporates load shifting for the
day ahead (24 h period) and evaluates possible alternatives based on cost
and assumptions related to the practicality of the obtained solutions. The
practical benefits of the proposed approach are linked to the development
of a valuable tool for the evaluation of the potential rewards and risks of
engagement in DR.

The contribution of this work, at the district level, is related to linking ANN
short-term electric forecasting and GA multi-objective optimization as a tool

for generating and evaluating alternative day-ahead load shifting solutions.
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In the case studies that follow, Time of Use and DA Real Time pricing

schemes are assessed.

1.4 Thesis outline and objectives

The thesis structure and objectives are outlined below. In the second chapter, the
description of the facilities under investigation is provided. At the building level,
these include Leaf House and Leaf Lab, a residential and an industrial smart and
zero energy buildings respectively. At the district level, the Leaf community, a
microgrid which includes several buildings (including the Leaf Lab), various
renewable energy systems as well as thermal and electrical storage. In the third
chapter, a thorough analysis of the performance gap in one residential and one
industrial smart near zero energy buildings is conducted. The analysis is based on
the comparison of actual measured energy consumption during a full year period,
with the energy performance according to the initial design considerations and a
new developed dynamic simulation model. The model is developed based on the
— as built — plans and a detailed building/systems audit. Subsequently, in situ
measurements were obtained to record indoor temperature in representative
thermal zones and use them in validating the building energy model. In the fourth
chapter, the validated building energy model of Leaf Lab was exploited in a novel
DR HVAC GA optimisation scheme. The optimisation approach entailed the
hourly temperature set point as a chromosome (decision variable) for the GA. The
goal of the developed optimisation model is to minimize daily HVAC energy cost
while adhering to comfort standards. Day ahead real time pricing profiles were
created based on DA market information and results demonstrated significant
margins of energy and cost savings throughout the year especially when the daily
variation of the pricing profiles allowed for adequate levels of load shifting between
adjacent working hours. In Chapter 5, a new method for assessing DR energy

management potential at district levels is presented. The method was developed
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and successfully tested to predict energy demand and optimize load shifting
options to evaluate cost savings for the same energy consumption levels. ANN
based algorithm is used for predicting day ahead consumption and a GA approach

was implemented to provide balanced and cost optimum load shifting solutions.

Chapter 6 encompasses a critical reflection on key considerations and the main
conclusions stemming from this thesis. An overview of the limitations and
constraints of the developed approaches is included along with future prospects

recommendation for further work.



2. DR in Smart and Near Zero Energy Buildings: The
Leaf Community

Leaf Community is an industrial settlement owned and managed by Loccioni
Group for conducting research and innovation in the sectors of energy,
environment, automotive, aerospace, robotics and other. The Leaf Community is a
unique blend of inspired qualified personnel where the preservation of the natural
environment, RES, and worldwide R&D meets education, local culture, and society.
Mainly, industrial buildings in the Leaf Community, located in Angeli di Rosora of
Ancona in Italy, are the key loads part of a microgrid interconnecting various
Photovoltaic (PV) installations, electric and thermal storage, micro-hydroelectric
plants and electric vehicles (EV). The climate in Ancona is mediterranean with dry
hot summers and mild winters. The warm season starts in June and lasts till mid-
September with an average high temperature of 29°C and an average low
temperature of 19°C. The cold season starts in November and ends in March with

an average high temperature below 12°C [109].

The Leaf community (Figure 6) consists of 5 industrial buildings (L3-AEA, L4-
Leaf Lab, L5-Kite Lab, L6), one office building (L2-Summa), and a building used
mainly for meetings (Leaf Farm). All buildings (except the Leaf Farm) are equipped
with rooftop photovoltaics (PV) of total power 629.2 kWp, and ground water heat
pumps. In addition, a 2-axis solar tracker of 18 kWp, a 48 kWp micro-hydro plant,
a 224 kWh battery storage, and a 523.25 kWh/K thermal storage are connected to
the microgrid, which also features electric vehicle charging stations. Buildings,
renewable energy systems (PVs, micro-hydro), and storage systems are all coupled
and connected to the main power grid via a single interconnection line (point of

delivery).
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Figure 6. The Leaf Community map.

2.1 The Leaf Lab industrial building, AEA Italy

The Leaf Lab (Figure 7) is an industrial building of rectangular shape and floor area
of approximately 6,000m?located in the Leaf Community [110], one of the very well
established smart microgrids in Europe. The Leaf Lab incorporates the newest
technology making it exceptionally tolerant to external weather conditions. This
reduces to the minimum the amount of energy needed for heating, cooling,
ventilation and lighting. The Leaf Lab is a Near-Zero Energy Building (NZEB)
combining passive systems, energy efficient technologies, integrated monitoring
and control as well as renewable energy production. Renewable energy is exploited
with the use of PV systems, thermal storage and heat pumps. Thermal storage is
exploited to optimize HVAC performance and minimize dependency on energy

imported from the main grid.



53 of 151

Figure 7. The Leaf Lab

The building envelope of Leaf Lab consists of highly insulated external walls with
U-value of 0.226 W/m?K and double glazed windows with U-value between 1.793-
3.194 W/m?K. The HVAC system installed in Leaf Lab is comprised of heat pumps
with a heating COP of 4.8 and cooling EER of 6.2-7. A thermal storage water tank
of 400m?is coupled to the HVAC system of the building to reduce peak power and
improve the efficiency of the HVAC system during heating and cooling periods
throughout the year [26]. This is implemented using energy excess from the PV i.e.
during weekends, holidays etc. to operate the heat pumps and store heating or
cooling energy in the thermal tank. Stored energy is then used to optimise the
HVAC efficiency by reducing peak demand and imported energy consumption
during working hours. The HVAC is controlled with digital thermostats
distributed in the various thermal zones satisfying the set-point limits of the CEN

15251 (20-24°C for heating, 23-26°C for cooling). Set-points for industrial and office
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spaces in heating mode are 21°C and 22°C whereas in cooling more set points are

25°C and 26°C respectively.

[Nluminance sensors, controlling artificial lighting in the indoor spaces of the Leaf
Lab, activate dimmable LED lights when levels due to natural lighting fall below
500 lux. Furthermore, automated shading is installed in the vast majority of the
windows and operated according to the altitude of the sun. This allows for natural
light to be adequately levelled for visual comfort throughout clear sky days while
minimising energy consumption for artificial lighting and avoiding glare. Finally,
as shown in Figure 7, a rooftop photovoltaic system of 236.5 kWp is installed in

Leaf Lab.

The energy efficiency of the Leaf Lab as recorded in the energy certificate was A+
associated with net primary energy consumption of 4.11 kWh/m? (equivalent to

26.91 KWh/m?).

2.2 Leaf House Residential building AEA /Italy

The Leaf House (Figure 8) is a residential building of exceptional bioclimatic design
and smart technologies [111]. It consists of six highly insulated apartments with a
total floor area of approximately 470m? a ventilated roof, solar tubes, smart
monitoring, and controls, building integrated photovoltaics, geothermal air
preconditioning with heat pumps, solar thermal collectors, electrical storage and a
user-friendly energy management system for residents. The number of residents in
Leaf House varies as it accommodates both employees of Loccioni Group [112] and

short term visitors of the Leaf Community [113].
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Figure 8: The Leaf House

The building envelope of the Leaf House is composed of external walls with a U-
value of 0.41 W/m?K and windows of total U-value between 0.73-1.49 W/m?K. The
HVAC system installed in Leaf House is comprised of three heat pumps with
geothermal air preconditioning and heat recovery connected to a radiant floor
distribution system. The heating COP of the heat pumps is in the range from 2.9 to
4.6 while the cooling EER varies between 1.9 and 3.6. Seven solar thermal collectors
of a total area of 19 m? are connected to a 1m? thermal storage boiler of 15kW
electrical power for domestic hot water and space heating. Moreover, 115 PV panels
and a total peak power of 20kWp covering a total area of 150m? are integrated into
the Leaf House’s rooftop as depicted in Figure 8Figure 13. The energy produced by
the photovoltaic system is mainly exploited to power the geothermal heat pumps
and reduce overall power consumption. According to the energy certificate of the
Leaf House, its normalised annual primary energy consumption is 19.66 kWh/m?
corresponding to an energy efficiency class of A+. The apartments in the Leaf House
are equipped with a touch display providing access to an energy management
interface for observing indoor conditions, energy-related data as well as for

managing HVAC, lights, window shutters etc. Also, an extensive database of
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measurements for each apartment in the Leaf House including power related data

is accessible online restricted to authorised use only through MyLeaf platform.



3. Performance Gap in Industrial and Residential

Near-Zero Energy Buildings Demand Response

In this chapter, a comprehensive approach for evaluating the performance of one
industrial and one residential Smart / Near-Zero Energy building is presented.
Initially, the buildings are audited for a detailed investigation of their construction
characteristics, installed systems and controls. Subsequently, holistic data from
advanced metering and sensor equipment is explored for verifying energy demand
and actual performance. Dynamic energy models are developed, validated and
tested to explore key aspects of the operational behaviour of buildings and systems
and draw essential knowledge about their performance. A comparison of measured
data with dynamic modelling results and the initial design energy efficiency
certification study is explored to address the actual performance gap, reflect on the
limitations of each approach and highlight important conclusions stemming from

this work.

3.1 Materials and Methods
The research activities performed and presented hereafter target to the estimation
and evaluation of the performance gap between the design and operational phase

of zero energy buildings.
The steps followed are:

1. Selection of the case study buildings: Two case studies are analysed to cover
industrial and residential building use. The Leaf Lab and Leaf House envisage
unique building designs for minimizing net energy consumption. This is
achieved through a variety of measures including responsive building envelope

applications, efficient HVAC systems coupled with storage, intelligent controls,
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renewable energy systems and integrated energy management. The initial
design target of the two buildings to operate as near-zero energy is established
based on their energy certification process and is used throughout the text as a
working definition serving qualitative assessment purposes.

2. The second step involves an analysis of the buildings and their systems” design,
assessment of power and energy requirements through dynamic thermal
simulation models.

3. The third step is the data collection while the buildings are in operation to test
and evaluate:

a. The performance gap between the developed dynamic simulation
models and actual operation.

b. The performance gap between the initial zero energy targets and
buildings” actual operation.

4. The fourth step includes a comparison of the results of the buildings and the

extraction of useful remarks and conclusions.

In our analysis, a combination of metrics including primary energy consumption
and end-use net consumption (absolute and normalised) as well as COz-<qemissions
is deployed. The period of balance is annual to account for yearly representative
thermal loads and renewable energy production. Renewable supply in the
considered cases is on-site and building integrated. Of the examined cases, the
residential building is directly connected to the power distribution grid and the

industrial one as part of the Leaf Community microgrid.

3.1.1 Energy simulation model
EnergyPlus is the simulation engine software used to conduct an integrated
simulation of the building, system, and plant whereby supply and demand are

matched based on successive iteration substitution following Gauss—Seidel
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updating [114]. Open Studio is used as the API software for developing and
parameterizing the model following the principles outlined by Brackney et al. [115].
Ambient temperature, relative humidity, solar radiation, and wind speed data was
obtained from local meteorological equipment and converted to yearly weather file.
Data of total HVAC energy consumption is exploited for providing the baseline

against which model based results are evaluated.

The simulation model contains, on the one hand, the geometry, construction
components and materials of the building under study. For opaque material
thickness (m), thermal conductivity (W/mK), density (kg/m®), and thermal
absorptance (dimensionless) properties are edited. For transparent materials, such
as glass in windows and sky windows thickness (m), thermal conductivity (W/mK)
and optical properties, such as solar, visible, and infrared transmittance, are
inserted. On the other hand, a model of the HVAC system is designed based on the
installed technologies and adjusted accordingly to the actual key performance heat
pump technical parameters such as Coefficients of Performance (COP), fan
maximum flow power (m?3/s), pressure rise, and efficiency. Other parameters such
as rated total heating/cooling capacity, and rated and maximum air flow rated are
automatically sized based on the software’s calculations. Furthermore, with respect
to the operation of the major installed systems, the simulation model takes into
account the temperature set points of the HVAC system, ventilation, and
infiltration rates (ACH™) and a number of schedules to determine artificial lighting,
electric equipment, and occupancy. Subsequently, an intensive search of the
parameters that affected the daily, monthly, and annual power distribution profiles
is followed to improve the initial results of the model based by minimizing
deviation from HVAC power consumption data. Through the trial and error

various combinations and fine-tuning of the all of the above parameters is carried
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out to reach the optimum results when assessing intra-day, monthly, and annual

deviation levels.

EnergyPlus simulation is based on heat balance calculations solved simultaneously
with the aid of on an integration solution manager, which includes surface heat
balance, air heat balance, and building systems simulation blocks. The heat balance

of outside surfaces is calculated based on the equation:

qgsol + CIl’,’WR + qgonv - q;clo =0 (3.1)
where

Gasor is the absorbed direct and diffuse solar (short wavelength) radiation and heat
flux gy g is the net long wavelength (thermal) radiation flux exchange with the air
and surroundings qcony is the convective flux exchange with the outside air gy, is

the conduction heat flux (q/A) into the wall

Clearly, qgs.; is influenced by parameters such as location, surface angle and tilt,
surface material, and weather conditions. q;yr is determined by radiation
exchange between the surface and the ground, sky and air. It is dependent on the
absorptivity and emissivity of the surface; the temperature of the surface, sky,
ground, and air; and corresponding view factors. Assumptions such that each
surface is at uniform temperature and energy flux leaving a surface is evenly
distributed are considered reasonable for building energy simulation. Using the

Stefan-Boltzmann Law in the above equation yields:
ngR = Eaand (Tg4nd - Tsirf) + EO—Fsky(Tsﬁcy - Tsitrf) + GUFair (T;ir - Ts4urf) (3-2)
where

€ is the long-wave emittance of the surface
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o is the Stefan—-Boltzmann constant

Fyngq is the view factor of wall surface to ground surface temperature
Fsyy is the view factor of wall surface to sky temperature

F,ir is the view factor of wall surface to air temperature

Tsyurr is the outside surface temperature

Tynq is the ground surface temperature

Tsky is the sky temperature

T4ir is the air temperature

The above equation is converted by introducing linear radiative heat transfer

coefficients such that:

CIl’,’WR = hr,gnd (Tgnd - Tsurf) + hr,sky(Tsky - Tsurf) + hr,air(Tair - Tsurf)

(3.3)
where
hr.gna = €0Fgna(Taurs — Tona)/ Tsurr — Tgna)
Ry siey = €0F sy (Toorr = Toey )/ (Tsurg — Tsky)
hyair = €0Fgir (Tavrs — Tatir )/ (Tsurg — Tair)
Exterior convection is modelled using equation:
Geonv = heextA(Tsurs — Tair) (3.4)

where



62 of 151

Qeonv 18 the rate of exterior convective heat transfer

h¢ exe is the exterior convection coefficient A is the surface area

Tsyurr is the surface temperature

T4ir is the outdoor air temperature

Conduction heat fluxes are modelled based on equation:

Qo (t) = ZﬁoXjTo,t—ja - Z;'io YiTii—js (3.5)
where

Qro(t) is the conductive heat flux for the current time step

T is temperature, i indicates the internal element of the building o indicates the

external element of the building X, Y are the response factors

In more detail, Conduction Transfer Functions (CTFs) as shown below are used to
estimate the heat fluxes on either side of the building elements based on previous
temperature values of interior and exterior surfaces as well as previous interior flux

values.

Qi) = =Z, Ty = X721 ZiTip—js + YoTor + X721 ViTo t—js + X721 PiQkie—js  (3.6)
qro®) = =Y, Tie — X521 YTy js + XoTor + X721 XiTop—js + X1 qulclo,t—jts (3.7)
where

X; is the outside CTF coefficient, j=0,1,..nz

Y; is the cross CTF coefficient, j=0,1,..nz

Zj is the inside CTF coefficient,j=0,1,..nz
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@; is the flux CTF coefficient, j=0,1,..nq

T; is the inside surface temperature

T, is the outside surface temperature

Qro is the conduction heat flux on the outside face
qx; is the conduction heat flux on the inside face

In addition, for each thermal zone EnergyPlus simulation is based on an integration

of energy and moisture balance as shown in the equation below:

dTZ s rjfac rfac
Cz dt = ZN l Ql + Z o fa . hiAi(Tsi - z) + Z Py fa < iCp(Tzi - Tz) +
minpr (Too - Tz) + sts (3-8)
where

N
Yis Sll ; is the sum of convective heat transfer from the zone surfaces

N . .
Zi::rf “* h;Ai(Ts; — T,) is the convective heat transfer from the zone surfaces

My Cp(Te, — T) is the heat transfer due to infiltration of outside air

N . . o
Zi:l"f *® m;Cy(Ty; — Ty) is the heat transfer due to interzone air mixing
Qsys is the air systems output

C —~ is the energy stored in zone air

T, is the fluid temperature (K)

and
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Cz = PairCpCr (3.9)
where
Pair is the zone air density
C, zone air specific heat
Cr sensible heat capacity multiplier

Infiltration is outdoor air unintentionally entering the building due to the opening
of doors as well as air leakage through windows and other openings. Infiltrated air
is mixed with air in the various thermal zones of the building. Determining
infiltration (or air tightness) values contains significant uncertainty, as it requires a
complex and elaborate procedure often referred to as blower door test. Infiltrated
air is commonly modelled as the number of air changes per hour (ACH™") and taken
into account in the air heat balance at temperature equal to that of ambient air. In

EnergyPlus, infiltration is modelled based on the equation:

Infiltration = (Idesign)(Fschedule)[A + Bl(Tzone - Todb)l + C(Windspeed) +
D(Windspeed?)] (3.10)

where

Igesign is the user defined infiltration value (ACH™)

T;one is the zone air temperature at current conditions (°C)
T,ap is the outdoor air dry-bulb temperature (°C)

Fscheaue 18 @ user defined schedule value between 0 and 1 A is the constant term

coefficient
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B is the temperature term coefficient
C is the velocity term coefficient
D is the velocity squared coefficient

Similarly, ventilation can be modelled using a schedule, maximum and minimum

values, as well as delta temperature values, and is determined by the equation:

Ventilation = (Vdesign)(Fschedule)[A + B|(Tzone — Toan)|l + C(Windspeed) +
D(Windspeed?)] (3.11)

where

Vaesign is the user defined ventilation value (ACH™)

T,one is the zone air temperature at current conditions (° C)
T,qp is the outdoor air dry-bulb temperature (° C)

Fscheaute 18 @ user defined schedule value between 0 and 1 A is the constant term

coefficient

B is the temperature term coefficient
C is the velocity term coefficient

D is the velocity squared coefficient

Furthermore, the energy provided to each thermal zone by the HVAC system, Qgys

is given by:

sts = msyscp (Tsys -T) (3.12)
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Equations (3.8) and (3.12) can be transformed to yield zone air temperature as

shown in equation (3.12) below.

Ngi -t . t T Nsurfaces N 5 . —
Tt _ Zi=sll Q; +mSySCstupply+(C25_§+Zi=1 f hiAiTsi+Zi=zlones miCpTzi+minprToo)t st
7 =

(3.12)

C Nsurfaces N . . .
STl O RiAi+3; 20T 1 Cp+1it i f Cp 1ty sCp)

3.2 Energy performance analysis

3.2.1 Leaf Lab

The aim of the present section is to analyse Leaf Lab’s energy performance and

compare modelling results with real-time data. Modeling and simulation for the

Figure 9: The model of the Leaf Lab in Google SketchUp

Leaf Lab are carried out using Google SketchUp [116] as the graphical user interface
for 3D modelling, Open Studio plugin and standalone application [117] for editing
the various model parameters and EnergyPlus [118] as the simulation engine. The
model is depicted in Figure 9. Architectural drawings are used to design the

building structure and envelope as well as to convert the several spaces into
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thermal zones. Electro-mechanical and implemented HVAC system designs are
taken into consideration. Moreover, the physical and thermal characteristics of the
external and internal walls, roof, ground floor and ceiling, alongside with similar
information about the external windows are collected. The lights of each space,
approximate number of persons in each space as well as equipment information
are recorded for the estimation of the internal thermal gains and electrical energy

consumption.

Energy consumption and production data from measurements is collected,
analysed and processed to serve the scope of the analysis. The validation of the
model is then performed using data recorded temperature and relative humidity
sensors installed carefully in selected representative thermal zones of the building
taking into consideration size, orientation, use and contact with the ground or
outdoor air. Additional, data is extracted by MyLeaf [119], a specialised Loccioni
Group proprietary web-based Energy Management System (EMS), providing
reliable and user-friendly representation of any energy related monitored
parameter such as ambient and indoor environment conditions, power
consumption, production and storage over time. The open MyLeaf architecture
allows the integration of advanced energy management and control applications in

building and microgrid (district) level.

Specifically, the collected data from MyLeaf is: (a) Building total and HVAC power

demand and (b) power production by the photovoltaic system.

As it can be observed in Figure 10 and Figure 11, the simulated indoor temperature
versus the measured one is less than 1K at all times. The same applies to the
reception area as well as all the rooms monitored indicating high levels of

agreement between the simulated and measured data.
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Figure 10: 1st Floor East Office measured and simulated indoor temperature
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Figure 11: Ground floor, Leaf Lab reception measured and simulated indoor temperature

A comparison of the measured and simulated energy consumption is tabulated in
Table 1. It is observed that the difference in energy consumption between the
various categories is of 1.4% for artificial lighting, 0.6% for HVAC, 0.4% for

equipment (including industrial processes) and 0.1% in total, demonstrating a



69 of 151

strong correlation between simulation results and the actual behaviour of the

building during its operational phase.

Monitored

data

Simulated

data

Difference

Leaf Lab (Industrial)

Electrical Energy
Consumption (kWh)
Normalised Electrical Energy
Consumption (kWh/m?)
Energy Consumption (%)
Normalised Primary Energy
Consumption (kWh/m?)
Energy Production by the PV
(kWh)
Normalised PV energy
(kWh/m?)

Energy Consumption (kWh)
Normalised Electrical Energy
Consumption (kWh/m?)

Energy Consumption (%)

Energy Consumption (kWh)

Energy Consumption (%)

Table 1: Validation of the Leaf Lab Model based on data from MyLeaf

Industrial /
Artificial
HVAC Office Total
Lighting
Equipment
35,467.3 | 227,176.1 297,366.1 560,009.5
5.9 37.9 49.6 93.3
6.3% 40.6% 53.1% 100.00%
11.0 70.4 92.2 173.6
275,942
46
34,985.5 @ 225,838.3 298,604.2 559,428.0
5.8 37.6 49.8 93.2
6.3% 40.4% 53.4% 100.0%
481.8 1,337.8 -1,238.1 581.5
1.4% 0.6% 0.4% 0.1%
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As indicated, in Table 1, the energy consumption share of the industrial/office
operations in the Leaf Lab is the highest between the categories accounting for
53.1%. This is of particular importance when one considers the energy balance
(especially given the PV electrical energy production of 46 kWh/m?) as it reveals,
HVAC and lighting systems electrical energy consumption being equal to 43.8
kWh/m?2. For the conversion of electrical energy to primary energy consumption, a
factor of 1.86 is used based on internationally reported calculations for the energy
mix and power grid efficiency of Italy [120]. Taking into account energy production
from the PV plant, it is concluded that the Leaf Lab is a Near-zero Energy Industrial
Building with total net electrical energy consumption of 47.3 kWh/m? and

normalized total net primary energy consumption of 127.6 kWh/m?2.

The correlation of the Leaf Lab model and the measured HVAC power demand on
a monthly basis as presented in Figure 12 demonstrates part of the validation
process according to standardized measurement and verification principles [121].
In the examined case, the Coefficient of Variation (Cv) of the Root Mean Square
Error (RMSE) of 14.8% satisfies the International Performance Measurement and

Verfication Protocol (IPMVP) acceptable monthly tolerance levels.
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Figure 12: HVAC system validation based on monthly electrical energy consumption

3.2.2 Leaf House

Modeling and analysis of the Leaf House as in the case of Leaf Lab is carried out
using Google SketchUp [116] as the graphical user interface for 3D modelling,
Open Studio [117] plugin and standalone application for editing the various model
parameters and EnergyPlus [118] as simulation engine. The developed 3D model is
depicted in Figure 13. The thermal zone division is performed with a large attention
to detail to best capture differences in indoor comfort leading to every room being

considered a separate thermal zone.
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Figure 13. The Leaf house and its thermal energy model using Open Studio plugin

Energy performance in Leaf House according to 2015 data from MyLeaf is
summarized in Table 2. In the measurements, it is observed that Leaf House is a
Near-Zero Energy Building since its normalized primary energy consumption is
54.4 KkWh/m?. The PV system energy production accounts for 63.1% of the building
energy demand and COz.¢q emissions reduction of 11.32 t on a yearly basis (Figure

14).

Table 2: Leaf House energy consumption data for 2015 (MyLeaf)

Leaf House Total Total Net
(consumption minus
production)
Annual Electrical Energy Consumption (kWh) 37,196.0 13,746.0
Normalized Annual Electrical Energy Consumption 79.1 29.2

(kWh/m2)
Primary Annual Energy Consumption (kWh) 69,184.6 25,567.6
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Normalized Annual Primary Energy Consumption 147.2 54.4
(kWh/m?)
Annual CO2.¢q emissions (kg) 17965.7 6639.3

Leaf House PV Energy Production
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Figure 14: Leaf House PV System Monthly Energy Production for 2015 (MyLeaf)

3.3 Discussion

In the selected case studies the performance gap is finally assessed by comparing

design and operational primary energy consumption in Table 3:

Table 3: Normalised primary energy consumption in the design and operational phase

Pilot case | Normalised Primary Energy | Normalised Net Primary Energy

study Consumption in Design Phase | Consumption in Operational Phase
(kWh/m?) (kWh/m?)

Leaf Lab 26.9 354

Leaf 19.6 54.4

House
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With regards to the Leaf Lab, the net normalised primary energy in the operational
phase is calculated by deducing energy dissipated for industrial purposes as this is
not taken into consideration in the corresponding design value. According to the
results, there is a relatively low difference of 8.5 kWh/m? in primary energy

consumption which is not considered particularly significant.

In the case of the Leaf House the performance gap is of higher magnitude and in
specific 34.8 kWh/m? of primary energy consumption. A possible explanation for -
at least - part of this performance gap is that the energy classification process in
Italy (as well as in other countries) does not take into account energy for lighting or
other appliances as it depends on residents’ behaviour or other factors that cannot
be standardised and applied as a common assessment framework. One issue that
may also be related to the performance gap, in this case, is associated with the
operation of the hydronic underfloor heating in the Leaf House. The system is
characterised by high thermal inertia which is slow in responding to weather
changes. In this regard, it would be interesting to evaluate alternative advanced
controls (i.e. predictive control) effectiveness in improving energy efficiency and
indoor comfort levels. Another critical consideration with respect to the
performance gap in the Leaf House concerns the engagement of residents in terms
of their capability in controlling building systems, their understanding of the actual
potential in saving energy and their motivation in this direction. Despite the fact
that residents of Leaf Lab enjoy an elaborate monitoring and control interface, it
has not been adequately explored if a performance gap may be linked to a lack of
capability in using the elegant controls provided or a low commitment in
addressing energy savings. An important parameter in this direction is that
residents in the Leaf Lab are often visitors who do not permanently reside in the

building but in an ad-hoc fashion.
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Overall, in the examined cases, the performance gap is either not particularly
significant or it can be possibly addressed by technical improvements or factors
related to human activity. In the case of the Leaf Lab and the Leaf House, this is
largely due to the integrated initial design, involving implementation of state of the
art techniques, technologies and know-how for achieving Near-Zero energy goals.
In the case of the Leaf House, technical measures such as predictive control could
possibly provide a smart solution in avoiding energy waste and improving indoor
conditions. On the other hand training about available controls, behavioural
change and active engagement can be especially important for residents to become
proactive in reducing energy consumption to even lower levels. Behavioural
change can be achieved in a number of ways including raising awareness,
gamification i.e. competitions between apartments or enrolment in rewarding

(future) Demand Response programs.

3.4 Conclusions

In this chapter, the operational performance of industrial and residential buildings
has been investigated, analysed and optimized with the use of dynamic simulation
tools. Energy efficient technologies, renewable energy technologies, storage, as well
as smart monitoring and controls have been audited to evaluate their significance
for smart near-zero energy buildings of different utilization. Various performance
indicators have been used in this analysis including normalized electrical and
primary energy consumption. Smart monitoring and indoor conditions’
measurements have been exploited to allow the extraction of robust results and the
validation of dynamic building energy models. The above analysis reveals the
significance in evaluating the actual performance gap in NZEBs and provide the
basis for decision making and smart adjustments as necessary. In both cases, apart
from the high quality building envelopes, the Near-Zero target is largely pursued

by renewable energy technologies and the implementation of advanced monitoring
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and controls. Furthermore, in the aforementioned cases, there is a systematic and
continuous approach in establishing near-zero energy targets through research and
innovation activities. In this direction, predictive control, behavioural change and
proactive users’ engagement through gamification and enrolment in demand
response programs have been identified as potential areas for addressing energy

efficiency improvements in the future.

4. HVAC Optimisation Genetic Algorithm for
Industrial Near-Zero Energy Building Demand
Response

Demand response offers the possibility of altering the profile of power
consumption of individual buildings or building districts, i.e., microgrids, for
economic return. There is a significant potential for demand response in enabling
flexibility via advanced grid management options, allowing higher renewable
energy penetration and efficient exploitation of resources. Demand response and
dynamic management of distributed energy resources are gradually gaining
importance as valuable assets for managing peak loads, grid balance, renewable
energy source intermittency and energy losses. In this chapter, the potential for
operational optimization of a heating, ventilation and air conditioning (HVAC)
system in a smart near-zero-energy industrial building is investigated with the aid
of a genetic algorithm. The analysis involves the validated building energy model
of Leaf Lab presented in chapter 3, a model of energy cost and an optimization
model for establishing HVAC optimum temperature set points. Optimization aims
at establishing the trade-off between the minimum daily cost of energy and thermal
comfort. The predicted mean vote is integrated into the objective function to ensure

thermal comfort requirements are met.
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The purpose of this chapter is to propose a GA optimisation approach and
investigate its effectiveness in HVAC temperature set point control, based on day-
ahead pricing information, for realizing profits as a reward for exploiting flexibility.
Cost of energy is used as one of the two optimization criteria and is naturally, as
well as in this case, a function of energy consumption over time. Using energy
consumption as the optimization criterion instead, would lead to suboptimum
performance with respect to cost, which is the main incentive behind changes in
power consumption. Most importantly, minimizing on-site energy consumption
measured at the point of consumption does not guarantee optimum environmental
performance, since it does not take into account where, when, and how energy is
generated. On the other hand, having the cost of energy as one criterion in the
objective function provides an indirect way to account for operational aspects of
the power grid, provided that the energy market is transformed to allow the
penetration of demand response resources as well as distributed renewable energy
generation. Reduction of energy on-site consumption is, also in this case, however,
considered as an indirect goal and evaluated, since it is acknowledged as a well-
established measure providing necessary information on the energy efficiency of

buildings and cannot be neglected.

4.1 Methodology

The framework presented hereafter concerns optimization of the HVAC
temperature set point hourly schedule based on a genetic algorithm incorporating
daily operational cost and the mean predicted mean vote (PMV) as the two criteria
of the objective function. Operational cost refers to the cost of energy on the basis
of the given day-ahead hourly pricing profile and the HVAC hourly energy
consumption obtained by the simulation of the building’s validated model. The

building thermal model is validated based on annual HVAC energy consumption
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and measurements of indoor temperature [122]. The validated thermal model of
the building provides a reliable basis for this kind of investigation, as it takes into
consideration the physical aspects of the building (geometry, materials),
operational aspects, and climate conditions in a dynamic way. The baseline
scenario is a reliable benchmark against which the optimized scenario is compared.
Therefore, operational effects are kept constant to account for the fact that user
behaviour, natural ventilation, and industrial operations are difficult to model and
are in most cases not monitored. On the other hand, inducing changes in the
temperature set points of the HVAC system makes it imperative to evaluate any
solution on the basis of the building users’ thermal sensation and the heat exchange
of the human body with the surrounding indoor environment. This balance of
energy fluxes is influenced by physical activity, clothing, and the following indoor
conditions; air temperature, mean radiant temperature, air velocity, and relative
humidity (RH). Internal comfort is evaluated in this work using the PMV index as
developed by Fanger in 1972 and adopted by ISO 7730 to account for human heat
generation and exchange with the surrounding environment [123]. PMV is
converted to the Percentage of People Dissatisfied (PPD) to provide an estimate of
the share of people feeling uneasy with certain thermal conditions. Decision
variables in the optimization process are the hourly HVAC temperature set points.
Controlling HVAC temperature set points has, as a consequence, variations in the
operation, power consumption and running cost of the HVAC system. Naturally,
this will impact indoor thermal conditions, thereby imposing the need for including
thermal comfort as a criterion into the optimization process and compliance with

established standards.

The methodology followed is depicted in Figure 15. Firstly, the building (Leaf Lab)

three-dimensional (3D) thermal model was developed in Open Studio based on the
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technical information of the building (i.e., drawings, datasheets of systems
installed) and site audits. Secondly, the model was validated using measurements
of weather conditions, indoor (air temperature, RH) conditions and HVAC power
consumption. Details on the building modelling and validation procedures are
available in Reference [122]. Thirdly, a new weather file was constructed for the
year of interest by merging together weather measurements including dry and wet
bulb temperature (°C), atmospheric pressure (kPa), relative humidity (%), dew
point temperature (°C), global, normal and diffuse solar irradiance (Wh/m?), and
wind speed (m/s). The validated 3D thermal model of the building was set up to
receive an input the temperature setpoints from an external source (Matlab in this
case) when simulating the building’s energy performance and provide HVAC
power demand (Puvac, kW), indoor air temperature (Tar, °C), indoor radiant
temperature (Trad, °C), and relative humidity (RH, %) as an output. Fourthly, day-
ahead pricing information was used to create the DARTP model required for the
optimization. Day-ahead energy prices (€/MWh) for the region of central-northern
Italy were used as the main component for the formulation of the energy pricing
scheme wused in the optimization. Additional costs related to
transmission/distribution, as well as other costs and taxes, were included to define
the final energy pricing profile. Fifthly, a genetic algorithm was constructed to
optimize the objective function composed by (a) the daily sum of the hourly cost of
energy, and (b) the daily average of hourly PMV values for the working hours of
the building and specifically from 9:00 a.m. to 6:00 p.m. In the developed GA
optimization scheme, HVAC temperature set points were used as the discrete
decision variables subject to upper and lower boundaries which differed between
the heating and cooling seasons. Lastly, simulation of the validated building
thermal model was executed in an iterative process using the set points selected by

the GA until convergence criteria were met. Output values of HVAC power
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simulation, indoor air temperature, radiative temperature and relative humidity

were used to evaluate energy cost and the PMV at each iteration.

Measurements (Wea(herdata ( | Energy Pricmgw\
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Figure 15: Genetic algorithm (GA)-based heating, ventilation, and air conditioning
(HVAC) temperature set point optimization scheme

4.2 GA optimisation model
The generic objective function of the GA optimization process is given by equation
4.1 below.

%o, Ci X P, Y, |PMV;|
Ji Wpmv X 57, < 7
Zi=1 Ci x Pibaseline PMVmax X ]

[min]f(TS{=1) =w, X 4.1)

subject to [PMV;| < 1.

P; is the HVAC power obtained as an output by the simulation of the building’s

thermal model and varies according to the building load and temperature set points

(Tel~y)-

PMYV; varies from -3 (cold) to +3 (hot) with zero being the optimum neutral value
according to which internal heat production is equal to the loss of heat to the
environment. PMV is calculated according to ISO 7730 based on the following

parameters:
Metabolic (M) rate in W/m?

Effective mechanical power (W) in W/m?
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Clothing insulation (I;) in (m?K/W);
Air temperature (Tg;,) in (°C);
Mean radiant temperature (T) in (°C);
Relative air velocity (V) in (m/s);

For the calculation of the PMV hourly values (PMV;), air temperature, radiant
temperature and relative humidity were obtained as an output from the simulation
of the building, while certain other parameters such as M, W, f., and p,, were
considered to be constant. In the developed approach, the normalized daily average
of PMV hourly absolute values was used to search for optimal near-zero, positive,
or negative values. Furthermore, the actual values of the PMV are also assessed to
reject solutions associated with extreme changes in thermal comfort from one hour
to another. This is also prevented based on standards’ constraints for set point

temperatures drift as explained later in this chapter.

The genetic algorithm developed to optimize the objective function as expressed in
Equation (4.1) was based on chromosomes of 24 discrete values (genes) each,
corresponding to the temperature set points of the HVAC for hours 1-24 of the day.
Chromosome values were subjected to upper and lower constraints depending on

the season of the year. In heating season, genes T i?:s during the working hours of

the building (9:00 a.m. to 6:00 p.m.) had a lower boundary of 18 °C and an upper

boundary of 24 °C. In cooling season, genes Ty; ", during working hours of the
building had a low boundary of 20 °C and an upper boundary of 26 °C. This is
mathematically expressed in the following constraints:
18
18<T,}°, <24

20 < T}, <26
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For the two hours prior to the working hours of the building and the two hours
after, the following constraints were applied to consider preheating and the impact

of the extended operation of the HVAC system:

17 < T _, < 24;

17 S Top g < 24;

For two hours prior to the working hours of the building and two hours after, the
following constraints were applied to consider precooling and the impact of the

extended operation of the HVAC system:

20< T _, <27

20 < T}, <27

4.3 Model of energy cost

According to the utility bills of the Leaf Community in 2018, the average unit cost
of energy varied monthly between 0.1507 €/kWh and 0.1749 €/kWh, as shown in
Figure 16. Furthermore, it is evident from the graph that the energy consumed
outside the peak hours is significant and equal to 35.8%. The two-zone (peak/off-
peak) ToU pricing scheme, however, offers low incentives for managing loads

during daytime mainly as a consequence of monthly peak power charges.
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Figure 16: Leaf Community electrical energy consumption and unit cost of energy in 2018.

The cost of energy model of the Leaf Community was developed in Matlab as
described below. Based on current charges related to energy consumption as
identified through energy bills for 2018, basic components were adjusted to
incorporate day-ahead hourly price fluctuations in a DARTP scheme and to
formulate the case study for dynamic HVAC energy management. Overall, the
developed hourly pricing scheme contains costs related to the consumption of
energy, maximum power, grid services, taxes and levies. Due to the fact that, in the
current pricing scheme, a high share of the costs are determined by fixed charges,
these costs were allocated a dynamic parameter to account for network flexibility
and stability. The mathematical model of the energy cost is presented in the

equations below.
CT = CE,T X (1 + IVA); (4:.2)

CE,T = CS + CN + CEDD; (4:.3)
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]
Cs = ) Envacn X (DAy + Csp); (44)
h=0
Cn = Cp + Cpmax + Car + Ca—ycs (4.5)
]
Cr+ Car + C4_yc = Z Envach X DAy X Cran (4.6)
h=0
Cpmax = maX(thac,h) X CPmax,F; 4.7)
]
Cepp = Envach X DAy p X Cgpy- (4.8)
h=0

4.4 Results and discussion

The generic GA optimization scheme analysed in the previous section was applied
to include working hours (9:00 a.m. to 6:00 p.m.) plus two hours before (7:00-9:00
a.m.) and two hours after (6:00-8:00 p.m.). This is considered essential in order to
study the effects of preheating or precooling of the building and to maintain
internal conditions at comfortable limits for some time after working hours to
account for the fact that some people may still occupy the building. Optimization
was conducted for the main industrial thermal zone of the building, which occupies
a total area of 1,327 m? and a height of 8 m surrounded by various other spaces
including offices, meeting rooms and other facilities on two floors. Following a
number of trials, the population size of the GA was set to 50, the crossover fraction
was set to 0.8 and the maximum number of iterations was set to 4,600 in order to
examine a wide range of different solutions. All solutions obtained during the
optimisation are stored and the top solutions are filtered to assess the set point
patterns associated with optimum levels of energy and cost savings, as well as
compliance with well-established standards of thermal comfort and temperature

set point drift. The approach is designed to evaluate energy cost on a 24-h time
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frame. Representative results for four winter days, two days for autumn, one for
summer and one for spring are presented to account for different seasonal climatic

conditions, heating and cooling modes as well as DA pricing profiles.
Scenario 1: 25 January 2018 (winter)

Results from the GA HVAC optimization on 25 January 2018 are presented in
Figure 17 below. In the optimized scenario of this case, set points during working
hours were selected, on an hourly basis, to be between 18 °C and 22 °C, as shown
in Figure 17a, and the energy of the HVAC was reduced from 759.88 kWh to 570.13
kWHh, a reduction of 25% (Figure 17c). Energy cost (Figure 17d) was decreased from
€159.3 to €121.03, which is equal to 25.0% savings. The HVAC power was kept
lower in the optimized scenario, except during hours 6:00 and 8:00 p.m. At the
baseline scenario, the PMV varied from -0.36 to 0.13, while, at the optimized
scenario, from -0.78 to —0.05 (Figure 17b). The average PMV varied from -0.14 to
—0.38, which corresponds to a PPD increase from 6.28% to 9.13% between the
baseline and optimized scenario. In this case, a trade-off between thermal comfort
and energy consumption was found to be associated with significant cost savings

at times of high pricing rates but also during low pricing zones.
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Figure 17: GA HVAC optimization results for 25 January 2018 (winter).



Scenario 2: 27 March 2018 (spring)

Results from the GA HVAC optimization on 27 March 2018 are presented in Figure
18 below. In the optimized scenario of this case, set points were dynamically altered
between 19 °C and 22 °C within working hours (Figure 18a), and the energy of the
HVAC was reduced from 610.91 kWh to 463.43 kWh (Figure 18c), a reduction of
24.1%. Energy cost (Figure 18d) was decreased from €121.02 to €94.05, which is
equal to 22.3% savings. The HVAC power was lower in the optimized scenario,
except during hours 10:00 a.m. and 8:00 p.m. (outside working hours). At the
baseline scenario, the PMV varied from -0.39 to -0.02, while, at the optimized
scenario, PMV varied from —0.65 to —0.18 (Figure 18b). The average PMV varied
from -0.2 to -0.41, which corresponds to a PPD increase from 6.47% to 9.28%
between the baseline and optimized scenario. Similarly, in this case, cost savings
occurred mostly early in the morning and late in the evening when prices were
relatively high. Some savings were also observed around 12:00-1:00 p.m. just before

prices got to the lowest level of that particular day.
Scenario 3: 15 August 2018 (summer)

Results from the GA HVAC optimization on 15 August 2018 are presented in Figure
19 below. In the optimized scenario, temperature set points varied, on an hourly
basis, from 26 °C to 24 °C, within working hours (Figure 19a), whereas the energy
of the HVAC (Figure 19c) was reduced from 1447.83 kWh to 1175.93 kWh, a
reduction of 18.8%. Energy cost (Figure 19d) was decreased from €295.26 to €238.57,
which is equal to 19.2% savings. The mean PMV for working hours was improved
from -0.2 to -0.007, and the PPD was decreased from 6.42% to 5.03%. In the
optimized solution, HVAC power was lower during all hours except 2:00, 5:00, and

6:00 p.m. following the set points changing from higher to lower values down to 24
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Figure 18: GA HVAC optimization results for 27 March 2018 (spring).
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Figure 19: GA HVAC optimization results for 15 August 2018 (summer)




°C. In this scenario, cost savings occurred throughout the day, while they were
more evident during hours of high prices compared to neighbour regions. The
PMV was improved as the fixed cooling set point caused thermal discomfort and
unnecessary high energy consumption levels for most hours during the day (Figure

19b).
Scenario 4: 10 September 2018 (autumn)

Scenario 4 results from the GA HVAC optimization on 10 September 2018 are
presented in Figure 20 below. In this case, the energy of the HVAC (Figure 20c) was
reduced from 1268.47 kWh to 1136.29 kWh, a reduction of 10.4%, while energy cost
(Figure 20d) was decreased from €311.59 to €280.68, a reduction of 9.9%. The slight
difference in the mean PMV for working hours from -0.144 to —0.073 corresponds
to a PPD decrease by 1.1%. The PMV at the baseline scenario varied from —0.56 up
to 0.11, while, in the optimized scenario, PMV varied from -0.39 to 0.06 (Figure
20b). HVAC power values (Figure 20c) in the optimized scenario exceeded their
respective values in the baseline scenario at times of low prices with respect to the
neighbouring regions and specifically from 12:00-3:00 p.m. Baseline energy
consumption was unnecessarily high during morning hours as it coincided with
significant negative PMV levels, while efficient performance was observed in the
optimized scenario where the set point was kept at the highest allowed level.
Indoor temperature (Figure 20a) deviated from the set point temperature for both
the baseline and the optimized scenario between 9:00 and 10:00 a.m. In the
optimized scenario, the HVAC energy consumption remained at low levels due to
the negative PMV levels during the same time period. Another interesting
observation was that the PMV in the baseline scenario significantly increased over
time during the day, despite the fact that the indoor temperature was kept constant,

which was mainly due to the effect of radiative temperature on thermal comfort.
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Figure 20: GA HVAC optimization results for 10 September 2018 (autumn)



Scenario 5: 21 September 2018 (autumn)

Results from the GA HVAC optimization on 21 September 2018 are presented in
Figure 21 below. In the optimized scenario, set points within working hours
fluctuated between 26 °C and 24 °C (Figure 21a), while the energy of the HVAC
was reduced from 1248.69 kWh to 1078.16 kWh (Figure 21c), a reduction of 13.7%.
Energy cost (Figure 21d) was decreased from €298.07 to €253.79, which is equal to
savings of 14.9%. The mean PMV for working hours was improved from -0.172 to
—0.056, and the respective PPD was decreased from 6.4% to 5.4%. In this case, the
optimized PMV (Figure 21b) reflected improved thermal conditions, since it
oscillated in the region —0.40 to 0.05 in the optimized scenario, while, in the baseline
scenario, it varied between —0.56 and 0.05. Energy savings were achieved by
keeping the temperature set points at higher levels, while the PMV was at negative
levels during early morning and late afternoon working hours. Slightly higher
HVAC power levels (Figure 21c) were observed during hours 12:00-3:00 p.m.,

coinciding with the lowest energy prices during the day.
Scenario 6: 20 November 2018 (winter)

Results from the GA HVAC optimization on 20 November 2018 are presented in
Figure 22 below. Temperature set points in the optimized scenario were
dynamically controlled from 17 °C to 23 °C (18 °C to 22 °C within working hours;
Figure 22a). In the optimized scenario, the energy of the HVAC was reduced from
923.75 kWh to 756.67 kWh, a reduction of 18.1% (Figure 22c). Energy cost, shown
in Figure 22d, was decreased from €217.33 to €177.66, which is equal to savings of
17.4%. PMV in the optimized scenario varied from —0.50 to —0.10, whereas, in the
baseline scenario, it varied between —0.07 and -0.05 (Figure 22b). The mean PMV

for working hours was increased from —0.055 to -0.276, and the respective PPD was
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Figure 21: GA HVAC optimization results for 21 September 2018 (autumn)
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Figure 22: GA HVAC optimization results for 20 November 2018 (winter)



increased by 1.4%. PMV was kept at small negative values and above —0.3 for most
hours, except for 2:00 and 3:00 p.m., where PMV was —0.49 and -0.35, respectively.
HVAC power in the optimized scenario was kept at lower levels compared to the

baseline for all working hours (except early morning hours).
Scenario 7: 22 November 2018 (winter)

Results from the GA HVAC optimization on 22 November 2018 are presented in
Figure 23 below. Optimized temperature set points, as presented in Figure 23a,
varied from 19 °C to 22 °C. In the optimized scenario, the energy of the HVAC was
reduced from 717.77 kWh to 631.61 kWh, a reduction of 12.0% (Figure 23c). Energy
cost (Figure 23d) was decreased from €179.59 to €159.01, which is equal to savings
of 11.5%. PMV in the optimized scenario (Figure 23b) varied between —-0.25 and
—0.01 and, in the baseline scenario, PMV varied between —0.03 and —0.01. The mean
PMV for working hours was increased from —0.016 to —0.110, and the respective
PPD was increased by 0.4%. Significant energy savings occurred during hours of
high prices, corresponding to hours 9:00 a.m., 1:00 p.m., and 3:00-6:00 p.m., while

the PMV was kept at small negative levels down to —0.25.
Scenario 8: 25 November 2018 (winter)

Optimization results for HVAC optimization on 25 November 2018 are available in
Figure 24. Temperature set points varied from 18 °C to 22 °C in the optimized
solution (Figure 24a). In this scenario, HVAC energy consumption (Figure 24c) was
reduced from 944.85 kWh to 776.17 kWh, a decrease of 17.9% compared to the
baseline. Daily cost (Figure 24d) was reduced from €199.52 to €164.26, a reduction
of 17.7%. The mean PMV was decreased from —0.244 in the baseline scenario to

—0.478, which is equivalent to a PPD increase of 4.2% (Figure 24b). HVAC



°C (a) Temperature Setpoints / Indoor air pMVv (b) Thermal Comfort - Predicted Mean Vote

temperature 0.05
23 0
22 .
21 -0.05
20 -0.1
19
-0.15
18
17 -0.2
7.00 9.00 13.00 15.00 . 17.00 19.00
—O—Base ine Temperature Setpoints [ °C] -0.25
—@— Optimised temperature setpoints [ °C]
—@— Baseline Indoor Temperature [ °C] -0.3 ) o
—@— Optimised Indoor Temperature [ °C] —®—PMV Baseline  —®—PMV Optimised
. o .
10(I)(Wel (c) HVAC Electric Power C1! € (d) Electric Energy Cost €/kWh
25 0.
O — —
7.00 2.0 11.00 13.00 15.00 17.00 19.00 7.00 9.00 11.00 13.00 15.00 17.00 19.00
s Baseline HVAC Electric Power [kW] —8—Baseline Cost [€] —®— Optimised Cost [€]
mmmm Optimised HVAC Electric Power [kW]
Ambient Temperature (deg C) ® Price of energy

Figure 23: GA HVAC optimization results for 22 November 2018 (winter)
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Figure 24: GA HVAC optimization results for 25 November 2018 (winter)



consumption in the optimized scenario exceeded the baseline levels slightly during
hours 8:00 a.m., and 5:00 and 6:00 p.m. A compromise between maintaining

comfort within tolerable levels while maximizing cost savings was reached.

4.5 Conclusions and future steps

The developed approach provides an optimization assessment framework for
HVAC energy management in day-ahead real-time pricing demand response
programs. In this framework, a GA-based approach was developed to investigate
DR implementation for a near-zero-energy industrial building located in the region
of Marche in Italy. Results indicate that there is significant potential for energy and
cost savings by controlling indoor conditions within acceptable levels of thermal
comfort as evaluated according to predicted mean vote. Several scenarios were
analyzed to demonstrate a realistic potential of cost of energy reductions in the
range between 9.9% and 25%, whereas the reduction of HVAC energy consumption
varied between 10.4% and 25%. Presented solutions within established standard
requirements for indoor comfort and indoor temperature drift rate were selected
for evaluation from a wide range of available solutions. The proposed demand
response approach is applicable in a wide range of building energy optimization
assessment schemes due to the fact that it deploys temperature set point levels for
HVAC control. It can be applied to establish optimal control of thermal zones in
buildings of various uses and sizes controlled by single or distributed thermostatic
controls. Results demonstrate that there is an unexplored potential for HVAC
dynamic control associated with demand response RTP schemes which could
intelligently be embedded in the operation of such systems in the years to come.
The computational cost of the proposed approach was significant, as, at this stage
of the research, a high number of iterations (4,600) were performed to ensure the

search was as extensive and deep as possible. However, based on the results
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obtained, there is great potential for reducing the time for GA convergence, since
satisfactory near-optimal results were, in most cases, obtained in the first day of the
run (total average time for a conventional personal computer (PC) was
approximately two days). Furthermore, a careful adjustment of optimization
parameters and constraints combined with weather predictions, along with the
evolution of computer resources and microprocessor capabilities, can make the
proposed approach real time deployable in the near future. In addition, future
research could involve the investigation of a typology of HVAC near-optimal set
point configurations in response to patterns in ambient conditions. Experimental
research could entail the testing of optimal set point patterns in real conditions as

a next step toward the actual implementation of the developed methodology.
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5 Smart grid / community load shifting GA
optimization based on day-ahead ANN Power
Predictions

Preparation for the transition from conventional power grids to next
generation, so-called “smart” grids, is a worldwide trend nowadays. The goal for
stakeholders in the domains of operations, generation, transmission, distribution,
and service provision [124] is to offer more and higher quality services while
improving operational capabilities, flexibility, and energy efficiency. In this
context, a higher-level utilisation of smart grid resources is targeted by grid
modernisation and enhanced dispersed dynamic measurements at local, regional,
and wider levels. Various forms of communication equipment and protocols allow
smart metering, monitoring, and controls in an interoperable unified system often
described as Advanced Metering Infrastructure (AMI). Several architectures and
network topologies have been proposed to accommodate a reliable and efficient
exchange of bidirectional flow of energy and information. In [125] consumer
demand is prioritized and DR data throughput is optimized enabling a faster
reaction.

Smart metering and AMI are widely recognized as a necessity for the reliable
and fast exchange of data in smart grids [126]. It is expected that nodal analysis of
power measurements in the power grid will provide valuable information for
utilities to control multi-directional flows of energy and improve dispatching,
addressing vulnerabilities and constraints. In this sense, it is foreseen that a variety
of technological solutions will emerge to balance the high volatility and power
quality issues of the miscellaneous intermittent loads and renewable energy

sources.
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On the market side, reforms are required to leverage innovation in services and
new business models which will upgrade existing operations. In this context,
Demand Response constitutes a variety of services which have transformed the
electric grid and energy markets operations during the past decades. Significant
progress has been made in the US, where DR programs have been designed and
implemented for years, and span across the full range of dispatchable (reliability,
economic) and non-dispatchable (time sensitive pricing; ToU, CPP, RTP) demand
side management options [127]. Demand side management is a valuable prospect
for consumers and utilities—if used properly —for the use of assets to decrease
losses in transmission and distribution as well as to reduce avoidable costs. In this
context, DR, along with the demand-side management of distributed energy
resources, expand the boundaries for near future scientific and technological
advances.

In the European Union, the Energy Efficiency Directive (EED), 2012/27/EU
foresees the elimination of barriers for Demand Response (DR) in balancing and
ancillary services markets [128]. Among the EU Member States (MS), considering
the progress in DR, Belgium, France, Ireland, and the UK, are in the leading group.
Significant steps have also been taken in this direction by Germany, the Nordic
countries, the Netherlands, and Austria. Generally, DR programs are differentiated
(a) explicitly, i.e.,, where DR participants transact directly in the energy market, and
(b) implicitly, i.e., where participation through a third party is facilitated [129].

The overall framework of smart grids with regards to DR is presented and
analyzed by Siano in [130]. Important aspects are defined, and a description of the
possibilities created by DR for utilities and customers are analyzed. Load
curtailment, shifting energy consumption, and using onsite energy generation, thus
reducing the dependence on the main grid, are the main mechanisms for customers

to participate in DR. Customer participation in wholesale markets via
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intermediaries, such as curtailment service providers (CSP), aggregators, or retail
customers (ARC), demand response providers (DRPs), or local distribution
companies, is documented in [130]. Moreover, a review of DR and smart grids with
respect to the potential benefits and enabling technologies is provided. Considering
system operation, contingency issues can be dealt with through DR
implementation, resulting in a reduction of electrical consumption at critical hours,
and avoiding serious impacts due to failure of power services provision.
Considering energy efficiency, it is ascertained that effective management of
aggregated loads can lead to a reduction of the overall cost of energy, due to the
reduction and operating-time-shortening of conventional power generation
equipment. Avoiding network upgrades at the local level, or postponing
investments in new capacity, reserves or peaking units at the system level is another
important potential benefit linked to high level implementation of DR. Modelling
of incentive-based DR focusing on interruptible/curtailable service and capacity
market programs is investigated by Aalami et al. in [131]. Price elasticity of
demand, and a customer benefit function, are used to develop an economic model.
Several scenarios are simulated and evaluated according to different strategies,
improvement of the load curve (peak reduction, load factor, peak to valley), the
benefit of customers, and reduction of energy consumption.

Wholesale electricity market design considerations with regards to major
challenges, aiming at increasing renewable energy penetration, are explored in
[132]. Various dynamic energy pricing models have been proposed to compensate
for market uncertainty and risks [133], [134]. A residential DR based on adaptive
consumption pricing is proposed by Haider [135], allowing utilities to manage
aggregate load, and customers to lower their energy consumption. The proposed
pricing scheme adapts energy costs to customers’ consumption levels, thus

encouraging active enrolment in the DR program. Cost and comfort optimisation
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of load scheduling under different pricing schemes has been investigated using
various techniques including linear, convex, PSO, MINLP [136]. Furthermore,
technology readiness, opportunities, and requirements for the deployment of DR
in buildings and blocks of buildings are addressed by Crosbie et al. in [137], [138].
On the other hand, buildings worldwide are responsible for over 40% of total
energy consumption, gas emissions, and global warming [139]. The role of smart
grids for near- and zero-energy building communities is investigated by
researchers to test new approaches, identify critical aspects, and tackle challenges
emerging when dealing with design and operational problems [19], [140]. On the
demand side, a wide variety of developed scientific tools influence the dynamics of
advances in energy performance and energy management in buildings [17], [122],
[141], [142]. Such tools are embedded in data monitoring applications, such as
innovative web-based energy management platforms [10], [143] to enable
improved analysis, decision making, and dynamic controls. Moving from Building
Energy Management Systems (BEMS) [144], [145] to District Energy Management
Systems (DEMS) [146] entails the dynamic exchange and hierarchical processing of
data streams between various components and systems, as in the Internet of Things
(IoT) paradigm [147], [148]. Various techniques and tools have been investigated
for dealing with challenges in various fields pertaining to smart grids: smart
metering data analysis and dynamic processing [149], power demand forecasting
[106], [150], Distributed Energy Resources (DER) management optimisation [78],
users’ engagement [151], etc.
Demand Response (DR) is a fundamental aspect of the smart grid concept as it
refers to the necessary open and transparent market framework linking energy
costs to the actual grid operations. DR allows consumers to directly or indirectly
participate in the markets where energy is being exchanged. One of the main

challenges for engaging in DR is associated with the initial assessment of the
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potential rewards and risks under a given pricing scheme. In this chapter, a Genetic
Algorithm (GA) optimisation model, using Artificial Neural Network (ANN)
power predictions for day ahead energy management at building and district level,
is proposed. Individual building and building group analysis are conducted to
evaluate ANN predictions and GA generated solutions. ANN based short term
electric power forecasting is exploited in predicting day ahead demand and form a
baseline scenario. GA optimisation is conducted to provide balanced load shifting
and cost of energy solutions based on alternative pricing schemes. Results
demonstrate the effectiveness of this approach for assessing DR load shifting
options based on Time of Use and DARTP pricing schemes. Through the analysis
of the results, the practical benefits and limitations of the proposed approach are

addressed.

The chapter is organised as follows. In section 5.1, the infrastructure and the
applied methodology are presented. The proposed day-ahead GA approach for the
cost of energy and load shifting optimization based on ANN hourly power
predictions is analysed in section 5.2. Results of ANN power predictions and GA
load shifting optimisation based on a ToU pricing scheme are presented in section
5.3 while results of ANN power predictions and GA load shifting optimisation
based on a DARTP scheme are provided in section 5.4. Further discussion on ANN
power predictions and GA based obtained solutions are provided in section 5.5.
Finally, in section 5.6, conclusions and recommendations for future work are

summarised.

5.1 Infrastructure and methods

The proposed novel approach was developed and tested on the basis of data
available from the MyLeaf platform which monitors and controls the Leaf

Community buildings. The buildings in the Leaf Community are highly thermally
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insulated and are equipped with automations for controlling the HVAC system:s,
as well as the natural and artificial lighting by means of adjustable external louvers
and luminance sensors. The primary annual energy consumption for the Leaf Lab
is rated at 35.4 kWh/m? (including the PV power production and subtracting
industrial consumption) [122] based on year round measurements while the L6 is
estimated at 46.85 kWh/m?2. Table 4 summarises the basic components of the
building envelopes and systems installed at the Leaf Community buildings under

consideration. A detailed description of the Leaf Community is provided in section

2.
Table 4. Pilot buildings in the Leaf Community
1< 0
2 g |8 B = —
o = 0| Q = o » =) © O
Pilot Case Studies b gg § g ‘g a g% g E z R
S S g|=8 & O °© =| o § T B
= 58|88z 7| GER|F|ES |24
5 < = 2 2 =
0 = o=
L2: Summa -
Offices/Warehouse . . . . .
(1,037m2)
L4: Leaf Lab -
[ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ]
Industrial (6,000m?2)
L5: Kite Lab
(3,514m2) - Offices, o . . o . .
Laboratories

The methodology developed comprises of several steps, as shown in Figure 25.



106 of 151

c - 7\‘

Data collection Definition of NN Training, testing
from MylLeaf E> in;:l:ul‘rlloufpuf |::> and validation of
platform parameters NN ‘

S ~

. S

g
A | 1
. . Development of
. N — | Testing of‘Genehc / Genetic Algorithm
Sensitivity analysis Algorithm optimization
NT optimization N gpproqch
7 4
\\/"
Conclusions and
Results E> Future Prospects

S ~

Figure 25. Methodological framework

1. Collection of data: All data from measuring equipment, sensors and actuators in
Leaf Community is collected, organised and made remotely available through the
MyLeaf platform [33]. In this case, the MyLeaf platform is used to collect data of
ambient temperature, irradiance and power demand of the buildings considered in
the analysis.

2. Development and testing of ANN models: ANN models are developed and
exploited to perform day-ahead predictions of consumption power using Matlab.
For the 24h ahead prediction of consumption power, the day of the week, the time,
irradiance and the external temperature are used as inputs, while the 24 hours
ahead net electrical power is used as the target. Trial of various combinations for
the ANN model parameterisation is performed, considering the structure, the
algorithm, the number of hidden layers and the delays. A Lavemberg-Marquardt
algorithm was deployed in a Nonlinear Autoregressive ANN structure with
Exogenous Input (NARX), with 3 hidden layers and a delay of 1.

3. GA load shifting approach: A genetic algorithm (GA) optimisation scheme was
developed and tested in Matlab, in order to provide alternative solutions for load
shifting. The GA optimisation scheme is based on the developed mathematical
model analysed in section 5.2. The objective function encounters of the criteria of

energy and load shifting. Market information is used to construct the hourly pricing
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profiles used in the optimisation process. Weighting coefficients are applied to
both normalized criteria to enable consideration of several alternatives, depending
on several priorities and energy management capabilities. Weighting coefficients
are used to provide a trade-off between cost and load shift. The role of weighting
coefficients is to allow a decision maker to investigate a set of solutions and obtain
solutions which better match his/r preferences. Preferences differ based on the
decision maker’s knowledge and understanding but may also be influenced by
other factors priorities during various time periods. For example, cost savings
could be considered to be the “default” priority but during certain periods
minimisation of load shifting could be upgraded to become the dominant factor in
the optimisation process.

4. Sensitivity analysis and evaluation of results: Sensitivity analysis is performed
by changing the GA parameters, such as crossover, population size, mutation rate,
tolerance etc. Furthermore, since load shifting is related to changes in the operation
of building systems (HVAC, lighting, etc.) and operations (industrial, office), it
needs to be also minimized, in order to avoid significant intervention in the
buildings” use. On the other hand, the cost of energy is minimized when load
shifting occurs from hours of high prices to hours of low prices. The solutions are
hence evaluated considering the hourly/daily cost of energy and load shifting
preferences.

The developed approach is illustrated with the aid of the flowchart of Figure 26.

Energy Pricing

a S( I“‘ i

Building power consumplion

/ External temperature

v

: Data ANN GA Evaluation of
Start > > > > > End
Processing Prediction Optimisation DR solutions

Figure 26. Flowchart of the developed approach
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5.2 Day-ahead GA cost of energy/load shifting optimization

based on ANN hourly power predictions

The GA optimisation scheme is based on the developed mathematical model
presented hereafter. The two criteria, namely the normalised cost of energy and

load shifting, form the objective function as shown in eq. 5:

Costg Loadgp;fe )
+ w,
Costg, Loadspift max

f = min <W1 (5)

At the building group level, the cost term of the objective function in eq. 5, is

given by equation 5.1.

B
Costy = Z Cost? (5.1)
b

where
b is used to denote each building which belongs to the group.
The energy cost of each building in eq. 5.1 is calculated based on equation 5.1.1 as

shown below:
h h
COSt’lE7 = Zgzl XE_b X CE_unit (511)

Whether the optimisation concerns a building, or a building group analysis,
for the evaluation of the GA based results, a comparison to baseline
consumption, as obtained by the Artificial Neural Network day ahead
prediction, is conducted. The cost linked to the genetic algorithm optimised

solution is compared to the cost of the baseline scenario, is given by the generic

equations 51.2 and 51.3 respectively:
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H
Costy ope = Z(Xgopt xCh Y (5.1.2)
h=1
H
COStE_baseline = Z(ngaseline X Cl?um-t) (513)
h=1

At the building group level, the load shifting term of the objective function in eq. 5

is calculated by equations 5.2 and 5.2.1 as shown below:
B
Loadspipe = ) Load@yr, (5.2)
2

where:

H
Loadgy, = Z Xz, — X& (5.2.1)

Ebbaseline
h=1

The constraint in equations 5.2.2 is applied to ensure there is no deviation
between the total daily energy consumed between baseline and optimized

solutions for each building;:

H

H

o h _
Zbe Zbebaselme 0 (5.2.2)
h=1

h=1

Finally, constraints on the hourly energy consumption of the optimised solution
are applied to enable preferences or limitations in shifting loads from one time

period within the day to another as shown in eq. 5.2.3.

Xl?minb < ng < Xgmaxb (5.2.3)
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5.3 Application in Time of Use pricing scheme

5.3.1 ANN based predictions

The results of ANN based net electrical power predictions for the period from
1/2/2017 to 28/4/2017 (1% period), from 2/5/2017 to 1/8/2017 (2¢ period) and from
2/8/2017 to 29/11/2017 (3¢ period) for L2 (Summa), L4 (Leaf Lab) and L5 (Kite Lab),
are presented in Figure 27, Figure 27 and Figure 28 respectively. The day ahead
predicted values correspond to a Pearson’s correlation for L2 ranging from 0.91-
0.97, L4 close to 0.4 and L5 between 0.97-0.98 for training, validation, testing and
overall. Furthermore, the ANN based predictions of net electrical energy
consumption of the buildings under study versus the actual measured values for a
working week in the summer from 24/7/17-28/7/17 (left) and a working week in the
winter from 20/11/17 to 24/11/17 (right) are illustrated in Figure 30. It is observed
that predicted obtained time series largely coincide with measured (actual) values

for both periods and all three buildings under investigation.
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Figure 27. Prediction of net electrical power consumption power of L2, L4 and L5 for the 1% period of 2017
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Figure 30. Prediction of net electrical power consumption for L2, L4 and L5 from 24/7/2017 to 28/7/2017 (left) and from 20/11/2017 to 24/11/2017 (right)



115 of 151

Mean Bias Error (MBE) and Mean Absolute Percentage Error (MAPE) values for
the ANN predicted versus actual values for the periods from 24/7/2017 to 28/7/2017
and from 20/11/2017 to 24/11/2017 for Summa, Leaf Lab and Kite Lab are presented
in Table 5. MAPE values in Table 5 are notably increased by a range of ratios of

actually low numerator differences divided by denominators which approximate

to zero.
Table 5. MBE and MAPE for ANN predictions
ANN 24/7/2017 to 28/7/2017 20/11/2017 to 24/11/2017
prediction MBE MAPE (%) | MBE MAPE (%)
L2: Summa 0.21 32.62 -0.52 12
L4: Leaf Lab -3 29 -0.40 20.73
L5: Kite Lab -0.94 35.32 -0.01 11

5.3.2 Genetic Algorithm optimization results

In this section, GA optimisation results for 24/7/2017 and 20/11/2017 are
presented and analysed for the weighting coefficient values w; = w, = 0.5. For the
baseline scenario, a flat tariff at 0.28 €/kWh is used (Flat 1, Figure 31). The optimized
scenario is calculated taking into account a 2-zone tariff ToU pricing scheme of 0.2
€/kWh from 8 a.m. to 6 p.m. and 0.30 €/kWh from 6 p.m. to 8 am. (ToUl, Figure
31).
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In Figure 32, the results of the developed GA optimisation approach are
presented. The charts on the left columns of these figures illustrate the ANN based
power forecast as the baseline scenario. In the same charts, the GA optimised power
profiles demonstrate load shifting solutions. The related costs are depicted in the
right columns of the Figures. The baseline costs are calculated based on the flat
tariff of Figure 31, while the GA optimised costs are based on the 2-zone tariff of
the same figure.

With respect to the net electrical consumption of the L2 building, it is observed
in Figure 32 that load shifting occurs from the high price to low price hours. This is
also reflected, in terms of the cost profile, to the day which accounts for a reduction
of 15.08% from € 173.49 to €147.32. Likewise, the net electrical consumption in L4 is
shifted outside the high price region, with the baseline daily cost of €515.71 being
decreased down to €420.06, a reduction of 13.73%. Similarly, shifting of net
electrical energy consumption in L5 occurs from the high tariff zone towards the
early morning and the evening hours, without a reduction in total energy
consumption. In this case, the baseline cost is €321.29 and the optimized total cost
is €271.74 which is equal to a reduction of 15.42%.

The analysis of the winter results is displayed in Figure 33. The shift for the L2
net electrical power profile leads to a cost reduction of 17.3% from €123.26 in the
baseline scenario down to €101.92.

Load shifting throughout the 24h occurs in L4 in a way that changes the overall
power profile especially with respect to the early hours of the day. This transition
of loads, corresponds to 18.09% of costs savings, reflecting also the differences
between the flat and the 2-zone tariff pricing scheme.

With respect to the daily power in L5 during the winter, changes between

baseline and optimised scenarios appear to take place in a harmonic way from high
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to low price hours. In this case, a 17.55% cost saving is achieved, since the baseline

daily cost is €331.53 compared to the optimized daily cost of €273.33.
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Figure 33. GA optimisation power and cost results for the Leaf Lab, the Summa and the Kite Lab during 20/11/2017
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In Figure 34, the total power consumption of the 3 buildings is illustrated. In
the first case, the high power consumption according to the baseline power is
shifted from working hours towards early morning and late evening hours. In
terms of cost, the total baseline cost at the district level is 1009.67 € and the total
optimized cost is €835.55 which corresponds to a reduction of 17.24%.

With respect to the winter period, the hourly district level GA optimised power
values for equal weighting coefficients undergo a significant differentiation with
respect to the baseline. The district level total baseline cost is €814.51 and the total

optimized cost is €683.05, leading to a reduction of 16.13%.
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According to Table 6, regarding the Summa building (L2), the results for each case prove
that the optimization is successful, bearing in mind that the baseline cost is €172.67 and the
optimized values range from €145.79 to €147.23, a maximum operational costs percentage
reduction of 15.56%. For the Leaf Lab (L4), the optimized cost for each pair of weights is lower
than the baseline cost of €515.71 and varies between €414.18 and €422.05. The percentage
reduction, in this case, reaches 19.68% Furthermore, the optimisation for the Kite Lab revealed
that the GA produces better results compared to the baseline cost of €321.29 for all pairs of
weights ranging from €269.85 down to €271.83. The percentage reduction, in this case, is up
t0 16.01%. The last column of the table represents the optimised cost for the group of buildings
which is lower than the baseline cost of €1009.67 for all pairs of weighting coefficients varying

from €835.15 to €841.70. The maximum percentage reduction, in this case, is 15.39%.

Table 6. Results of the optimization on 24/7/2017 during the summer period.

wl: w2: Load Summa (L2) cost | Leaf Lab (L4) Kite Lab (L5) District level
Cost Shifting © cost (€) cost (€) cost (€)
0 1 14659 121.03 269.85 836.16
0.1 0.9 14718 422.05 270.93 836.45
0.2 0.8 14793 420.30 270.35 839.13
03 0.7 14640 121.67 270.45 836.70
04 0.6 146,30 414.18 27183 839.59
05 05 14733 420.06 27175 835.56
0.6 0.4 14700 419.09 270.63 837.96
0.7 0.3 14719 419.03 270.50 840.83
0.8 02 146.69 41824 269.54 839.05
0.9 0.1 14579 418.88 270.73 841.70
1 0 146.51 415.33 270.34 835.15

Table 7, includes the results of optimisation for each pair of weighting coefficients in both,

building and district level, for the winter period. The results for the Summa (L2), depict the




124 of 151

optimized cost for all weights combinations. As it is observed, in all cases, the optimized cost

varies between €100.21 to €101.92 which is lower than the baseline cost of €123.26 in this case

and accounts for a percentage reduction of up to 18.70%. Moreover, the optimisation for the

Leaf Lab (L4) building revealed genetic algorithm solutions with costs from €289.95 to €294.94,

a maximum percentage reduction of 19.39% compared to the baseline cost of €359.71 in this

case. Subsequently, in the Kite Lab, the optimized cost is from €277.66 down to €273.31, equal

to a percentage reduction of up to 17.56% lower than the baseline cost of €331.53. The last

column represents the optimized cost in the group of buildings during the winter, varying

from €684.77 to €682.33 leading to a maximum percentage reduction of 16.22% compared to

the baseline cost of €814.51.

Table 7. Results of the optimization on 20/11/2017 during the winter period.

Summa (L2) Leaf Lab District level Cost
w1 w2 Kite Lab cost (€)
cost (€) cost (€) ©

0 1 101.46 293.21 276.71 683.95
0.1 0.9 101.53 289.95 276.36 684.77
0.2 0.8 100.85 291.78 275.95 683.48
0.3 0.7 100.88 294.94 277.35 682.33
0.4 0.6 101.50 293.35 277.66 684.50
0.5 0.5 101.92 294.64 273.33 683.06
0.6 0.4 101.65 292.97 276.87 683.47
0.7 0.3 100.45 294.85 277.30 684.69
0.8 0.2 100.99 293.46 275.64 684.56
0.9 0.1 101.35 290.87 273.31 684.34

1 0 100.21 293.68 275.31 683.37
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5.4 Application in DA Real Time Pricing Scheme

5.4.1 ANN based predictions

Artificial Neural Network (ANN) models are conceived on the basis of biological nervous
systems to imitate information processing and evolution. ANNSs assimilate the natural bonds
of neurons and their high level interconnection to model complex systems. In the case of
predictions, ANNs can be more effective compared to statistical, linear or non-linear
programming techniques. ANN models have been used for years in different areas of
engineering, science and business to deal with complexity and nonlinearity of data sets. They
present capabilities such as adaptive learning, self-organisation, real time operation, fault
tolerance and approximation of complex nonlinear functions. The mathematical model of a

neuron is presented in Figure 35 [152].
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Figure 35: Mathematical model of a neuron

Various ANN architectures for forecasting demand in electric power systems are presented
in [104] by Tsekouras et al. A case study of the Greek electric power grid is used to showcase
the performance of different ANN configurations and factors including period length and
inputs for training, confidence interval and more. Hybrid Short Term Load Forecasting ANN
with techniques such as Fuzzy Logic, GA and Particle Swarm Optimisation are briefly
discussed in [106].

For the 24h ahead prediction of consumption power, day, time and external temperature
were used as inputs and electrical power as the target. The 24h prediction of energy produced
by renewable energy sources, day, time and irradiance were used as inputs and electrical
power as the target. The lavemberg-marquardt algorithm was deployed in a Nonlinear
Autoregressive ANN structure with Exogenous Input (NARX).

A summary of ANN predictions Pearson’s correlation coefficient R for a 15-minute timestep

is provided in Table 8 below:
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Table 8: Summary of ANN predictions (Pearson’s correlation coefficient R) for a 15-minute

timestep

2/2/17-29/4/17 Pearson's coefficient R | Training | Validation | Test Overall
L2 consumption 0.96518 0.95361 0.96684 0.96376
L2 production 0.95796 0.9325 0.94017 0.9513
L4 consumption 0.95665 0.9553 0.95135 0.95568
L4 production 0.98507 0.97854 0.97351 0.98236
15mns timestep
L5 consumption 0.98261 0.97911 0.9719 0.98058
L5 production 0.98585 0.97547 0.98528 0.98426
microgrid consumption 0.98529 0.98534 0.98593 0.98539
microgrid production 0.98343 0.97897 0.98202 0.98254
2/5/17-1/8/17 Pearson's coefficient R | Training | Validation | Test Overall
L2 consumption 0.95152 0.95341 0.95072 0.95166
L2 production 0.95546 0.96012 0.95837 0.95656
L4 consumption 0.97811 0.97871 0.97204 0.97729
L4 production 0.98059 0.98496 0.97866 0.98096
15mns timestep
L5 consumption 0.98184 0.97779 0.97659 0.98048
L5 production 0.98196 0.98104 0.9806 0.98162
microgrid consumption 0.98982 0.99138 0.98869 0.98991
microgrid production 0.9815 0.98103 0.98368 0.98177
2/8/17-29/11/17 Pearson's coefficient R | Training | Validation | Test Overall
L2 consumption 0.95181 0.95267 0.95787 0.95281
L2 production 0.95604 0.9486 0.95174 0.95427
L4 consumption 0.97573 0.97283 0.97241 0.9748
L4 production 0.97778 0.97099 0.9759%4 0.97648
15mns timestep
L5 consumption 0.98024 0.98066 0.98115 0.98044
L5 production 0.9768 0.97723 0.97818 0.97707
microgrid consumption 0.98955 0.98862 0.98863 0.98928
microgrid production 0.97814 0.98149 0.98181 0.97918
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Likewise, for timestep of one hour, correlation of training, validation, test and overall

prediction with real values is presented in Table 9.

Table 9: Summary of ANN predictions (Pearson’s correlation coefficient R) for a timestep of one

hour
2/2/17-29/4/17 Pearson's coefficient R | Training | Validation | Test Overall
L2 consumption 0.96129 0.95094 0.9418 0.95685
L2 production 0.95145 0.96731 0.96268 0.95534
L4 consumption 0.94398 0.90304 0.91239 0.9332
L4 production 0.9696 0.95827 0.95994 0.96635
1 hour timestep
L5 consumption 0.97321 0.95967 0.95715 0.96859
L5 production 0.9785 0.96903 0.96748 0.97536
microgrid consumption 0.98456 0.97903 0.97272 0.98185
microgrid production 0.97633 0.96367 0.97019 0.97358
2/5/17-1/8/17 Pearson's coefficient R | Training | Validation | Test Overall
L2 consumption 0.96568 0.95888 0.96533 0.9646
L2 production 0.95845 0.94951 0.9684 0.95848
L4 consumption 0.98329 0.97145 0.97276 0.97991
L4 production 0.97867 0.97159 0.97193 0.97653
1 hour timestep
L5 consumption 0.97935 0.97571 0.97412 0.97791
L5 production 0.97842 0.97549 0.96029 0.97517
microgrid consumption 0.99136 0.98762 0.98968 0.99051
microgrid production 0.97754 0.97458 0.96684 0.97559
2/8/17-30/10/17 Pearson's coefficient R | Training | Validation | Test Overall
L2 consumption 0.95021 0.94759 0.93891 0.94792
L2 production 0.97436 0.96261 0.96707 0.97168
L4 consumption 0.96217 0.96687 0.9598 0.96251
L4 production 0.9754 0.96104 0.98115 0.97429
1 hour timestep
L5 consumption 0.98388 0.98042 0.97804 0.98241
L5 production 0.9725 0.97069 0.97084 0.97193
microgrid consumption 0.98987 0.98547 0.99004 0.98921
microgrid production 0.9771 0.97756 0.97273 0.97643
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2/11/17-30/12/17 Pearson's coefficient R | Training | Validation | Test Overall
L2 consumption 0.95817 0.95945 0.9479 0.95677
L2 production 0.95075 0.9141 0.90309 0.93871
L4 consumption 0.95108 0.94872 0.9343 0.94781
L4 production 0.96894 0.9123 0.92778 0.95574
1 hour timestep
L5 consumption 0.96995 0.95004 0.95726 0.96491
L5 production 0.93863 0.95771 0.93775 0.94213
microgrid consumption 0.98859 0.98068 0.98116 0.98624
microgrid production 0.95557 0.94048 0.93984 0.95111

With respect to the quality of the prediction, one can identify differences due to various
reasons. The timestep seems to be a factor slightly affecting the quality of the prediction
according to R values in Table 8 and Table 9. Even not in all cases a 15 minutes timestep
normally provides better prediction results compared to a timestep of one hour. This can be
attributed to a higher resolution leading to improved training of the ANN model. Another
observation is that power consumption of buildings L4, L5 and the microgrid are more
predictable than L2. This is possibly related to the variability and stochastic nature of loads in
L2. Finally, it is observed that the period of the analysis plays an important role with respect
to the outcome of the prediction. For example in Table 8, the prediction of consumption in L4
during the period from 2/2/17-29/4/17 has an overall R value of 0.95568 whereas the same
building in the period from 2/5/17-1/8/17 has an overall R value of 0.97729. The reason behind
this difference could be the variability of loads linked to a higher variation in weather
conditions. In some cases, quality of data is also an issue and this is not always easy to identify

in R values or correlation plots but may become obvious when plotting time series data.

5.4.2 Combined ANN prediction / Genetic Algorithm optimisation results

DA-RTP Scenario 1: Net microgrid level prediction and optimisation — 20/3/17
In Figure 36 the real versus predicted power for the net electrical power withdrawn by the
microgrid is presented. Daily actual net energy consumption, in this case, is 2875.21 kWh

corresponding to a cost of according to the considered DA scheme €163.75. The equivalent
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predicted values are 2824.64 kWh and €161.94 respectively. The percentage difference
between the predicted and actual energy on the day and between the cost of energy is 1.7%

and 1.1% respectively.

Real vs Predicted net power: 20/03
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Figure 36: Real versus predicted net microgrid electrical power on 20/3/17

In Figure 37, the obtained GA obtained solution shown is associated with significant load
shifting. In detail, load shifting occurs mainly in hours 5-6, 8-11 and 12-21. The daily cost of
energy, in this case, is reduced from €161.75 to €152.73 and equal to a percentage cost

reduction of 5.7%.
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Load Shifting: 20.03.17
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Figure 37: GA obtained load shifting solution for 20.03.17
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Figure 38: Cost of electrical energy based on DA RTP scheme as obtained by the GA for 20.03.17

In Figure 38 the graphical representation of the cost of electrical energy according to the
examined scenario is displayed. It is illustrated that the higher cost savings occur during the

hours of high energy prices and especially from 17:00-20:00.

DA-RTP Scenario 2: Net microgrid level prediction and optimisation — 1/8/17
In Figure 39, the real versus predicted power for the net electrical power withdrawn by the

microgrid for 1/8/17 is presented. Daily actual net energy consumption, in this case, is 5,586.82
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kWh corresponding to a cost of according to the considered DA scheme €389.37. The
equivalent predicted values are 5,555.08 kWh and €387.26 respectively. The percentage
difference between the predicted and actual energy on the day and between the cost of energy

is 0.57% and 0.54% respectively.

Real vs Predicted net power: 1/8
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Figure 39: Real versus predicted net microgrid electrical power on 01/8/17

In Figure 40, the obtained GA obtained solution shown is associated with significant load
shifting. In detail, load shifting occurs mainly in hours 5-8, 12-15, 14-20. The daily cost of
energy, in this case, is reduced from €387.26 to €356.57 and equal to a percentage cost

reduction of 7.9%.
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Figure 40: GA obtained load shifting solution for 01.08.17

In Figure 41, the graphical representation of the cost of electrical energy according to the
examined scenario is displayed. It is illustrated that the higher cost savings occur during the

hours of high energy prices and especially from 16:00-21:00.
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Figure 41: Cost of electrical energy based on DA RTP scheme as obtained by the GA for 01.08.17
DA-RTP Scenario 3a: Net microgrid level prediction and optimisation — 14/11/17
In Figure 42, the real versus predicted power for the net electrical power withdrawn by the
microgrid for 14/11/17 is presented. Daily actual net energy consumption, in this case, is

5,907.70 kWh corresponding to a cost of according to the considered DA scheme €537.59. The
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equivalent predicted values are 5,812.38 kWh and €530.16 respectively. The percentage
difference between the predicted and actual energy on the day and between the cost of energy

is 1.6% and 1.38% respectively.
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Figure 42: Real versus predicted net microgrid electrical power on 14/11/17

In Figure 43, the obtained GA obtained solution shown is associated with significant load
shifting. In detail, load shifting occurs mainly in hours 6-7, 9-13, 18-21. The daily cost of
energy, in this case, is reduced from €530.16 to €500.28 and equal to a percentage cost

reduction of 5.6%.
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Figure 43: GA obtained load shifting solution for 14.11.17
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In Figure 44, the graphical representation of the cost of electrical energy according to the
examined scenario is displayed. It is illustrated that the higher cost savings occur during the

hours of high energy prices and especially from 9:00-10:00 and from 18:00-21:00.
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Figure 44: Cost of electrical energy based on DA RTP scheme as obtained by the GA for 14.11.17

DA-RTP Scenario 3b: Net microgrid level prediction and optimisation — 14/11/17

In Figure 45, the obtained GA obtained solution shown is associated with significant load
shifting. In detail, load shifting occurs in hours 1, 3-5, 7, 11, 13-15, 17-19, 21, 23-24. The daily
cost of energy, in this case, is reduced from €530.16 to €502.83 and equal to a percentage cost

reduction of 5.1%.

KkWe Scenario 3b: 14.11.17 €/kWh
450 0.18
400 0.16
350 0.14

300
250
200

0.12
0.1
0.08

150 0.06

100 0.04

5 i i I 0.02
0 0

123 456 7 8 91011121314151617 18 19 2021 22 23 24

o

mm predicted baseline (net power, kW) B GA optimised === DA price (€/kWh)

Figure 45: GA obtained load shifting solution for 14.11.17
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In Figure 46, the graphical representation of the cost of electrical energy according to the
examined scenario is displayed. It is illustrated that the higher cost savings occur mainly

from 15:00-19:00.
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Figure 46: Cost of electrical energy based on DA RTP scheme as obtained by the GA for 14.11.17

5.5 Limitations of the proposed approach
The proposed approach entails some level of abstraction with respect to the load shift
achievable within the capacity of individual systems and components. Evaluating load shift
in conjunction to a pricing scheme requires deep knowledge and depends on the specificities
of each case study. In this respect, load shift is determined by technical factors i.e. installed
systems technical characteristics, control scheme etc. as well as organisational factors i.e. the
potential shift of the industrial operations within each building. Detailed knowledge of the
operation of each system in a building along with data i.e. power consumption profile is not
available in most cases. This logic can be applied to some extend by using constraints to ensure
that a specific percentage of the power at any time remains unchanged. Consequently,
optimisation can be conducted based on the flexible share of the consumption power for every
hour.

Also, the proposed approach is linked to the accuracy of the prediction which may vary
according to the building under study and other factors i.e. type of loads, industrial
operations, season etc. Therefore it is important to evaluate the risk associated with different

prediction error levels according to the examined pricing scheme.
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5.6 Conclusions

The main contribution of this work is related to linking ANN short term electric
forecasting and GA multi-objective optimisation as a tool for generating and evaluating
alternative day-ahead load shifting solutions. The first step of the proposed approach is
exploiting Artificial Neural Network modelling for the prediction of the net power
consumption in a period of 24 hours ahead. Predictions of net consumption power levels using
the day of the week, time of day, irradiance and external temperature as inputs were obtained
for each of the 3 buildings of Leaf Community (Summa, Leaf Lab and Kite Lab) as well as for
the Leaf Community microgrid total energy consumption. Further predictions using the day
of the week, time of day and irradiance were used to conduct 24h ahead ANN based power
generation prediction at microgrid level. The results proved that a close correlation between
predicted and actual values exists, during the studied summer and winter periods, as
evaluated based on correlation coefficient R for the whole period, as well as Mean Bias Error
(MBE) and Mean Average Predicted Error (MAPE) specific days used in the optimisation
process.

The second step was to create an optimisation function to include energy cost and load
shifting using appropriate variables and constraints. The objective function was minimized
using a Genetic Algorithm to obtain solutions at individual building and building group level.
Results demonstrated the effectiveness of this approach in considering alternative pricing
schemes and load shifting possibilities, as a way to examine cost savings. With respect to the
ToU pricing scheme examined, cost savings of levels between 14.67% and 19.68% at building
level were associated with significant load shifting solutions obtained by the GA scheme in
the two-zone ToU pricing scheme considered. At district level cost savings in the range of
15.92% and 17.24% were obtained. With respect to the DARTP scheme, balanced load shifting
solutions associated with cost savings between 5.1 and 7.9% were obtained.

Future steps in this work may involve: (i) extending research activities to focus more on
renewable energy generation and storage capabilities, (ii) reforming the GA obtained
solutions as to take into consideration actual loads (base, fixed, flexible), renewable energy
production and storage and (iii) exploiting the potential for improvements in power

predictions using ANN models.
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6. Conclusions and recommendations

Targeting near-zero energy performance in buildings involves integrated design, energy
efficiency measures, renewable energy, storage, advanced intelligence and systematic user
engagement. In this thesis, the operational performances of a residential and an industrial
NZEB have been investigated, analyzed and optimized with the use of measurements and
dynamic energy modelling. The role of renewable energy systems, storage, smart monitoring
and controls for the energy performance of NZEB and microgrid integration in smart grids
has been qualitatively and quantitatively assessed. In specific, renewables and storage in
buildings and microgrids are highlighted as of major importance to minimize energy demand
and allow flexibility as a valuable resource asset. Smart monitoring and indoor conditions
measurements have been deeply exploited to evaluate energy efficiency aspects and enable

validation of the dynamic building energy models.

Subsequently, advanced and robust building energy models are used as the basis for real time
energy management solutions to be designed, implemented and tested. In this framework, an
optimization assessment framework for HVAC energy management in day-ahead real-time
pricing demand response programs was developed. Results demonstrate a strong potential
for energy and cost savings based on the provided optimized control of indoor conditions
while indoor thermal comfort remains within prescribed levels. The scenarios examined are
associated with potential levels of cost reductions in the order between 9.9% and 25% and
HVAC energy reduction between 10.4% and 25%. The selected solutions fully comply with
indoor comfort and indoor temperature drift rate standards. The developed approach can be
widely used due to the fact that it deploys temperature set points for HVAC energy efficiency
assessment and control. It allows expandability in establishing optimal control of thermal
zones in buildings of various uses and sizes controlled by single or distributed thermostatic
controls. A major conclusion stemming from this work is that HVAC dynamic control
associated with demand response RTP schemes has high potential if intelligently integrated

and explored along with the operation of smart buildings and smart grids in the near future.
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ANN short term electric forecasting and GA multi-objective optimisation have been combined
to create a tool for generating and evaluating alternative day-ahead load shifting solutions.
Exploiting Artificial Neural Network modelling has been effective for the prediction of power
consumption and production in a period of 24 hours ahead. Predicting hourly consumption,
production and net consumption levels using appropriate input configurations has been
proven effective at building and microgrid level. The results proved that a close correlation
between predicted and actual values exists, as evaluated based on correlation coefficient R for
the whole period, as well as Mean Bias Error (MBE) and Mean Average Predicted Error
(MAPE) for specific days evaluated prior to the load shifting optimisation process.

Furthermore, a GA optimisation model was created to evaluate energy cost and load shifting
of the ANN predicted consumption for several scenarios at building and microgrid levels.
Power consumption and production predictions based on Artificial Neural Network models
and GA optimisation models were tested and proven to be a robust technique for the
implementation of load shifting strategies and evaluation of energy and cost savings. Results
were used to provide thorough considerations regarding the effectiveness and limitations of
this approach when considering alternative pricing schemes and load shifting possibilities in
order to obtain cost savings. Cost savings between 14.67% and 19.68% and in the range of
15.92% and 17.24% were associated with significant load shifting solutions for building and
district level respectively when a specific two-zone ToU scheme was considered. With respect
to the DARTP scheme, cost savings between 5.1 and 7.9% were linked to relatively balanced

net microgrid level optimised solutions.

Overall, the energy and cost optimization of the operational phase of buildings demands deep
knowledge of components and performance over time coupled with intelligent advanced
energy management systems. Throughout this research, a significant space of improvement
in energy management both in terms of exploiting advanced control algorithms and demand

response actions has been identified and demonstrated.
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