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Abstract

In recent years, an increasing number of countries are attempting to reduce their

reliance on fossil fuels and enhance the contribution of renewable energy sources

in their energy production plans. Renewable energy sources include wind, sun,

geothermal sources and tidal energy. Wind is the most common renewable energy

source, both for domestic and industrial use. Hence, the prediction of wind speed

and aeolian energy potential is an important topic of research.

This thesis focuses on the investigation of the variability of aeolian energy production

in the Netherlands. Spatial and temporal models for aeolian energy are defined

and estimated using geostatistical and time-series forecasting methods respectively.

The available data are average daily measurements of aeolian power produced by

46 stations distributed across the Netherlands. The data are recorded during the

six-year time time period from 2001 until 2006. Most of the available studies in

the literature analyse wind speed data. In this approach, the wind speed is first

predicted at unmeasured points in space or time. Then, the respective aeolian power

is estimated using a standard “power curve”, which relates the wind speed to power

production. In contrast, the models investigated herein (both the geostatistical

models for spatial prediction and the time series models for forecasting) are directly

based on data of aeolian power production.

Wind speed typically depends on altitude. However, in the spatial model used herein

a topographic trend is not necessary, due to the flat topography of the Netherlands.

In order to investigate the spatial variability of aeolian power production, the empir-

ical variogram is calculated from the annual mean installed power production. Then,

the empirical variogram is fitted to three theoretical models (Gaussian, exponential,

and spherical). The spherical variogram is selected as the optimal model because

it produces the minimum sum of weighted squared errors. Ordinary kriging is then

applied to the aeolian power production data, in order to generate an interpolated



map of aeolian power potential over the entire country and a respective variance

map for each year studied. To validate the performance of the spatial model, the

method of leave-one-out cross-validation is used. The spatial model performs well, as

evidenced by the high values of Pearson’s correlation coefficient (85%) between the

data and the predictions. The kriging-generated map gives a visual representation

of aeolian power potential and its uncertainty over the Netherlands. The highest

wind power predictions are in the West area of Netherlands (near the North Sea),

while the lowest power estimates are in the Eastern part of the country. In addition,

the uncertainty of the predictions is lower in the West and higher in the East. These

spatial patterns are consistently observed for all the years (2001–2006) in the study.

In the temporal analysis we focus on the time series of average monthly wind power

production at each station. The methodology is illustrated for two stations, one

onshore and one in the North Sea, off the Netherlands’ coast. The temporal variation

of wind power production exhibits seasonal behavior with an annual cycle. We follow

two different modeling approaches: In the first approach, we fit an explicit periodic

function to the data and then apply a SARIMA time series model to the stochastic

residuals. In the second approach, a SARIMA model is directly fitted to the average

monthly wind power data. The optimal parameters are used to predict wind power

production for the following 12 months. Thus, the prediction involves the monthly

average power production for the year 2007. To validate the performance of the

models, cross-validation using the method of one-step-ahead forecast is used. The

temporal models show good performance with respect to the root mean square error

(RMSE)—the RMSE is in the range 0.04–0.22 MW (about 21%–43% of the average

monthly wind power) at each station.
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Περίληψη

Τα τελευταία χρόνια πολλές χώρες προσπαθούν να μειώσουν την εξάρτησή τους από

τα ορυκτά καύσιμα και να ενισχύσουν την συμβολή των ανανεώσιμων πηγών στην

παραγωγή ενέργειας. Οι ανανεώσιμες πηγές ενέργειας περιλαμβάνουν τον άνεμο, τον

ήλιο, τις γεωθερμικές πηγές και την κυματική ενέργεια. Ο άνεμος είναι η πλέον συνήθης

πηγή ανανεώσιμης ενέργειας, τόσο για οικιακή όσο και για βιομηχανική χρήση. Ως εκ

τούτου, η ανάλυση της μεταβλητότητας και η πρόβλεψη της ταχύτητας του ανέμου

καθώς και της δυνητικής παραγωγής ισχύος είναι σημαντικά ερευνητικά θέματα.

Η συγκεκριμένη μεταπτυχιακή εργασία διερευνά την μεταβλητότητα της παραγόμενης

αιολικής ενέργειας στην Ολλανδία. Για την εκτίμηση των χωρικών και των χρονι-

κών μοντέλων χρησιμοποιούνται γεωστατιστικές μέθοδοι και μέθοδοι χρονοσειρών

αντίστοιχα. Τα διαθέσιμα δεδομένα είναι οι μέσες ημερήσιες μετρήσεις της παραγωγής

ενέργειας από 46 σταθμούς στην Ολλανδία. Τα δεδομένα καταγράφονται κατά την

εξαετή χρονική περίοδο από το 2001 έως το 2006. Οι περισσότερες διαθέσιμες έρευνες

στη βιβλιογραφία αναλύουν δεδομένα που αφορούν την ταχύτητα του ανέμου. Σε αυτήν

την περίπτωση, γίνεται εκτίμηση αρχικά της ταχύτητας του ανέμου στον χώρο ή στον

χρόνο. Στη συνέχεια εκτιμάται η αντίστοιχη αιολική ενέργεια, χρησιμοποιώντας μία

τυπική ‘καμπύλη ενέργειας’, η οποία συσχετίζει την ταχύτητα του ανέμου με την πα-

ραγόμενη ισχύ. Σε αντίθεση, τα μοντέλα που ερευνήθηκαν στη συγκεκριμένη εργασία

(τόσο τα γεωστατιστικά μοντέλα για την χωρική εκτίμηση, όσο και τα χρονικά μοντέλα

για την πρόβλεψη στο χρόνο) βασίζονται άμεσα σε δεδομένα παραγόμενης ισχύος.

Η ταχύτητα του ανέμου συνήθως εξαρτάται από το υψόμετρο. Ωστόσο, λόγω της

επίπεδης τοπογραφίας της Ολλανδίας, δεν είναι απαραίτητο να ληφθεί υπόψη κάποια

τοπογραφική τάση στο χωρικό μοντέλο. Προκειμένου να διερευνηθεί η χωρική μετα-

βλητότητα της αιολικής ισχύος, υπολογίζεται το εμπειρικό βαριόγραμμα παραγόμενης

ισχύος από τα ενεργειακά δεδομένα. Στη συνέχεια το εμπειρικό βαριόγραμμα προ-

σαρμόζεται σε τρία θεωρητικά μοντέλα (Γκαουσσιανό, Εκθετικό και Σφαιρικό). Το

σφαιρικό μοντέλο βαριογραμμάτος επιλέγεται ως το βέλτιστο, βάσει του ελάχιστου α-

θροίσματος των σταθμισμένων τετραγωνικών σφαλμάτων. Στη συνέχεια το Κανονικό

Kriging εφαρμόζεται στα δεδομένα με σκοπό τη δημιουργία των χαρτών παρεμβολής για

το αιολικό ενεργειακό δυναμικό σε όλη την έκταση της χώρας, και την κατασκευή των

αντίστοιχω χαρτών αβεβαιότητας. Για να εξεταστεί η απόδοση του χωρικού μοντέλου,

χρησιμοποιήθηκε η μέθοδος της διασταυρωτικής επιβεβαίωσης και συγκεκριμένα της

αφαίρεσης ενός σημείου εκ περιτροπής (leave-one-out cross-validation). Σύμφωνα με
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το συντελεστή συσχέτισης του Pearson, ο οποίος είναι ίσος με 85% τα χωρικά μοντέλα

παρουσιάζουν μια αρκετά καλή απόδοση. Οι παραγόμενοι χάρτες βάσει του kriging,

απεικοινίζουν το αιολικό ενεργειακό δυναμικό και την αβεβαιότητά του. Οι υψηλότερες

τιμές της εκτιμώμενης αιολικής ισχύος παρατηρούνται στη Δυτική περιοχή της χώρας

(δίπλα στη Βόρεια Θάλασσα (North Sea», ενώ οι χαμηλότερες στην Ανατολή. Σε

αντίθεση, η αβεβαιότητα είναι χαμηλή στη Δύση και υψηλή στην Ανατολή. Το ίδιο

σταθερό μοτίβο παρατηρείται για όλα τα χρόνια της μελέτης (2001–2006).

Στη χρονική ανάλυση, χρησιμοποιούμε τη μέση μηνιαία ισχύ ανά σταθμό. Η εφαρ-

μογή της μεθοδολογίας παρουσιάζεται για έναν χερσαίο και έναν υπεράκτιο σταθμό

στη Βόρεια Θάλασσα. Τα δεδομένα εμφανίζουν μία εποχικότητα με ετήσιο κύκλο. Για

την μοντελοποίηση των δεδομένων, χρησιμοποιήθηκαν δύο διαφορετικές προσεγγίσεις.

Στην πρώτη προσέγγιση, προσαρμόζουμε ενα αιτιοκρατικό περιοδικό μοντέλο, και στη

συνέχεια εφαρμόζουμε ένα μοντέλο SARIMA στα στοχαστικά υπόλοιπα. Στη δεύτε-

ρη προσέγγιση, εφαρμόζουμε τα μοντέλα SARIMA απευθείας στους μηνιαίους μέσους

όρους της αιολικής ισχύος. Στη συνέχεια, γίνεται εκτίμηση των παραμέτρων του μο-

ντέλου βάσει των υπαρχόντων χρονοσειρών. Οι βέλτιστες παράμετροι, χρηισμοποιο-

ύνται για να γίνει πρόβλεψη τους επόμενους 12 μήνες. ΄Ετσι η πρόβλεψη αποτελείται

από μηνιαίους μέσους όρους αιολικής ισχύος για το έτος 2007. Για να εξεταστεί η απο-

δοτικότητα του μοντέλου, χρησιμοποιούμε τη μέθοδο της διασταυρωτικής επιβεβαίωσης

βασισμένη στην πρόβλεψη της επόμενης χρονικής στιγμής (one-step-ahead forecast).

Σύμφωνα με τη ρίζα του μέσου τετραγωνικού σφάλματος (RMSE), (το RMSE έχει

εύρος 0.04–0.22 MW, δηλαδή ανέρχεται στο 21%–43% της μέσης τιμής των μηνια-

ίων μέσων όρων σε κάθε σταθμό), τα μοντέλα SARIMA παρουσιάζουν σχετικά καλή

απόδοση.

viii



Contents

1 Introduction 1

1.1 Renewable Energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Wind Energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2.1 Wind Energy Capacity . . . . . . . . . . . . . . . . . . . . . . 4

1.2.2 Wind Power Forecasting . . . . . . . . . . . . . . . . . . . . . 5

1.3 Wind Resource and Energy Yield Assessment . . . . . . . . . . . . . 8

1.4 Probabilistic Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.4.1 General Form of Weibull Distribution . . . . . . . . . . . . . . 10

1.4.2 Weibull Distribution for Wind Data . . . . . . . . . . . . . . . 11

2 Geostatistical Methods 13

2.1 Randomness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2 Random Variable-Random Field . . . . . . . . . . . . . . . . . . . . . 14

2.3 Probability Density Function . . . . . . . . . . . . . . . . . . . . . . . 15

2.4 Statistical Homogeneity . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.5 Statistical Isotropy . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.6 Spatial Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.6.1 Moments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.6.2 Covariance Function . . . . . . . . . . . . . . . . . . . . . . . 18

2.6.3 Variogram Function . . . . . . . . . . . . . . . . . . . . . . . . 20

2.6.4 Spatial Estimation . . . . . . . . . . . . . . . . . . . . . . . . 22

2.6.5 Simple kriging . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.6.6 Ordinary Kriging . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.7 Spatial Model Validation . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.7.1 Cross-Validation Measures . . . . . . . . . . . . . . . . . . . . 27

3 Time Series Analysis 31



Contents

3.1 Moments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.2 Trend and Seasonality . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.3 Stationarity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.4 Decomposition of Time Series . . . . . . . . . . . . . . . . . . . . . . 35

3.4.1 Trend estimation . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.4.2 Estimation of Seasonal Effects . . . . . . . . . . . . . . . . . . 36

3.5 Time Series Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.5.1 Autoregressive Model (AR) . . . . . . . . . . . . . . . . . . . 38

3.5.2 Moving Average Model (MA) . . . . . . . . . . . . . . . . . . 39

3.5.3 Autoregression-Moving Average Model (ARMA) . . . . . . . . 40

3.5.4 The Autoregressive Integrated Moving Average (ARIMA) Model 41

3.5.5 Seasonal Autoregressive Model (SAR) . . . . . . . . . . . . . . 41

3.5.6 Seasonal Moving Average Model (SMA) . . . . . . . . . . . . 42

3.5.7 Seasonal ARIMA models (SARIMA) . . . . . . . . . . . . . . 43

3.6 Model Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.7 Forecasting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.7.1 Forecasting AR(p) . . . . . . . . . . . . . . . . . . . . . . . . 46

3.7.2 Forecasting MA(q) . . . . . . . . . . . . . . . . . . . . . . . . 47

3.7.3 Forecasting ARMA(p,q) . . . . . . . . . . . . . . . . . . . . . 48

3.7.4 Forecasting ARIMA(p,d,q) . . . . . . . . . . . . . . . . . . . . 48

3.7.5 Forecasting SARIMA(p,d,q)(P,D,Q)S . . . . . . . . . . . . . . 49

4 Data Analysis 51

4.1 Study Area . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.2 Temporal Analysis of Wind Power at Onshore Station . . . . . . . . . 53

4.2.1 Seasonal Decomposition . . . . . . . . . . . . . . . . . . . . . 56

4.2.2 Estimation of SARIMA Model . . . . . . . . . . . . . . . . . . 59

4.2.3 Power Production Forecasting . . . . . . . . . . . . . . . . . . 61

4.2.4 Assessment of Model Performance . . . . . . . . . . . . . . . . 64

4.3 Temporal Analysis of Wind Power at Offshore Station . . . . . . . . . 65

4.3.1 Seasonal Decomposition . . . . . . . . . . . . . . . . . . . . . 68

4.3.2 Estimation of SARIMA Model . . . . . . . . . . . . . . . . . . 70

4.3.3 Power Production Forecasting . . . . . . . . . . . . . . . . . . 73

4.3.4 Assessment of Model Performance . . . . . . . . . . . . . . . . 74

4.4 Comparison of the two Stations . . . . . . . . . . . . . . . . . . . . . 75

4.5 Spatial Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

x



Contents

4.5.1 Variogram Analysis . . . . . . . . . . . . . . . . . . . . . . . . 79

4.5.2 Ordinary Kriging . . . . . . . . . . . . . . . . . . . . . . . . . 81

4.5.3 Cross-Validation Analysis . . . . . . . . . . . . . . . . . . . . 83

5 Conclusions 87

Appendices 91

A Figures for Spatial Analysis 93

B Figures for Temporal Analysis 99

C Figures for Times Series Forecasting 145

D Tables with Cross-Validation Measures and Parameters of SARIMA

models and Distribution fit 169

xi



Contents

xii



List of Figures

1.1 Schematic representation of different forms of renewable energy sources.

The schematic in this figure is taken from [9]. . . . . . . . . . . . . . 3

1.2 Evolution of the global annual wind power cumulative capacity (GW)

for the period 1996–2018. The figure is from [64]. . . . . . . . . . . . 5

1.3 A typical wind turbine power curve. The x axis is the steady wind

speed in m/s and in y axis is the output power in Kw. (Figure from

[1]) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.4 Probability density function (Figure 1.4a) and cumulative distribution

function (Figure 1.4b) of the Weibull distribution for different values

of the shape k and scale λ parameters. . . . . . . . . . . . . . . . . . 11

4.1 Map of the Netherlands showing the locations of the 46 wind power

stations both onshore and offshore (black circles). . . . . . . . . . . . 52

4.2 Time series of average monthly power production. The horizontal

axis represents time (years: 2001–2006) and the vertical axis shows

the installed power in MW. . . . . . . . . . . . . . . . . . . . . . . . 53

4.3 Top left: empirical probability density histogram fitted to the theoret-

ical Weibull distribution. Top right: Q-Q plot of the the theoretical

versus the empirical values. Lower left: empirical and theoretical cu-

mulative distribution functions. Lower right: Probability (P-P) plot.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.4 The autocorrelation function (ACF) for the average monthly wind

power production at Onshore Station. The horizontal axis represents

the time lag, while the vertical axis measures the autocorrelations. . . 56

4.5 Periodogram of monthly average wind power at Onshore Station. The

horizontal axis represents the frequency and the vertical axis the value

of the periodogram. . . . . . . . . . . . . . . . . . . . . . . . . . . . 57



List of Figures

4.6 Box-plot of the squared instant wind power production. The horizon-

tal axis represents the time in months. The vertical axis represents

the squared instant wind power production. . . . . . . . . . . . . . . 58

4.7 SARIMA fitted model for installed power production. In Figure 4.7a

is the time series of residuals of installed power production, in Fig-

ure 4.7b is the autocorreltation function, in Figure 4.7c is the normal

distribution plot, and in Figure 4.7d are the p-values for the Ljung-

Box statistic for the autocorrelation test. . . . . . . . . . . . . . . . . 61

4.8 Predictions of monthly average wind power production for 2007 based

on the data for the period 2001–2006. The blue line represents the

original data, and the red line represents the SARIMA predictions.

The green lines represent the interval of two standard deviations

around the prediction (95.45% confidence interval), while the black

lines represent the 68.27% confidence interval (based on one standard

deviation and the normal probability assumption). . . . . . . . . . . . 63

4.9 Histogram of the prediction error based on one-step ahead forecast

cross-validation for Onshore Station. . . . . . . . . . . . . . . . . . . 65

4.10 Time series of average monthly power production. The horizontal

axis represents time (years: 2001–2006), and the vertical axis shows

the installed power in MW. . . . . . . . . . . . . . . . . . . . . . . . 66

4.11 Top left: empirical probability density histogram fitted to the theoret-

ical Weibull distribution. Top right: Q-Q plot of the the theoretical

versus the empirical values. Lower left: empirical and theoretical cu-

mulative distribution functions. Lower right: Probability (P-P) plot.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.12 The autocorrelation function for the average monthly wind power

production of Offshore Station. The horizontal axis represents the

time lag, while the vertical axis measures the autocorrelations. . . . . 68

4.13 Periodogram of monthly average wind power at Offshore Station. The

horizontal axis represents the frequency and the vertical axis the value

of the periodogram. . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.14 Box-plot of the squared instant wind power production. The horizon-

tal axis represents the time in months. The vertical axis represents

the squared instant wind power production. . . . . . . . . . . . . . . 70

xiv



List of Figures

4.15 SARIMA fitted model for average monthly wind power. In Fig-

ure 4.15a is the time series of residuals of installed power production,

in Figure 4.15b is the autocorreltation function, in Figure 4.15c is the

normal distribution plot, and in Figure 4.15d are the p-values for the

Ljung-Box statistic for the autocorrelation test. . . . . . . . . . . . . 72

4.16 Predictions of monthly average wind power production for 2007 based

on the data for the period 2001–2006. The blue line represents the

original data, and the red line represents the SARIMA predictions.

The green lines represent the interval of two standard deviations

around the prediction (95.45% confidence interval), while the black

lines represent the 68.27% confidence interval (based on one standard

deviation and the normal probability assumption). . . . . . . . . . . . 73

4.17 Histogram of the prediction errors based on one-step-ahead forecast

cross-validation for Offshore Station. . . . . . . . . . . . . . . . . . . 75

4.18 Top left: Histogram of empirical values and the theoretical Weibull

probability density function are shown. Top right: Q-Q plot of the

theoretical and the empirical values. Bottom left: empirical cumula-

tive distribution function (cdf) and the theoretical Weibull cdf. Lower

right: Weibull probability plot. . . . . . . . . . . . . . . . . . . . . . 78

4.19 Experimental variogram (dashed line), and theoretical Spherical model

(continuous line), using the Equation (2.20). The horizontal axis is

the lag distance r in km, and the vertical distance represents the var-

iogram values for installed power production, for n each lag. The

estimated parameters are nugget c0 = 0.004 MW2, variance σ2 =

0.046 MW2, and correlation length ξ=216.02 km. The extent of the

distance shown in this figure is equal to the correlation length. . . . . 80

4.20 Map of the estimated annual mean installed power production for

2001, based on the spherical variogram model. The horizontal axis

represents the Easting (km), and the vertical axis represents the Nor-

thing (km) coordinates. . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.21 Map of the estimated variance of the mean installed power production

for 2001, based on Spherical variogram model. The horizontal axis

represents the Easting measured in kilometers, and the vertical axis

represents the Northing measured in kilometers. The values are in

MW2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

xv



List of Figures

4.22 Estimated (yellow) and sample (blue) values for the year 2001, using

leave-one-out cross-validation. The horizontal axis shows the number

of station and the vertical axis represents the power production (MW)

for both the original sample values (blue), and the predicted values

(yellow). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

4.23 Estimated (yellow) and sample (blue) values of coastal stations for

year 2001, using one leave-one-out cross-validation. The horizontal

axis shows the number of station and the vertical axis represents the

power production (MW) for both the original sample values (blue),

and the predicted values (yellow). . . . . . . . . . . . . . . . . . . . . 85

A.1 Year 2002 annual power production. The Spherical variogram param-

eters are: nugget=0.0032 (MW2), variance σ2 = 0.0381 (MW2), and

range = 226.36311 km. . . . . . . . . . . . . . . . . . . . . . . . . . . 94

A.2 Year 2003 annual power production. The Spherical variogram param-

eters are: nugget=0.0028 (MW2), variance σ2 = 0.0369 (MW2), and

range = 229.2011 km. . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

A.3 Year 2004 annual power production. The Spherical variogram param-

eters are: nugget=0.0025 (MW2), variance σ2 = 0.0391 (MW2), and

range = 210.5247 km. . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

A.4 Year 2005 annual power production. The Spherical variogram param-

eters are: nugget=0.0040 (MW2), variance σ2 = 0.0493 (MW2), and

range = 247.6334 km. . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

A.5 Year 2006 annual power production. The Spherical variogram param-

eters are: nugget=0.0034 (MW2), variance σ2 = 0.0047 (MW2), and

range = 215.5592 km. . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

B.1 Station 2: The fitted SARIMA model for installed power production

is a SARIMA (1,0,3)(1,0,1)(12). . . . . . . . . . . . . . . . . . . . . 100

B.2 Station 3 : The fitted SARIMA model for installed power production

is a SARIMA (0,0,1)(1,0,0)(12). . . . . . . . . . . . . . . . . . . . . 101

B.3 Station 4: The fitted SARIMA model for installed power production

is a SARIMA (0,0,1)(1,0,1)(12). . . . . . . . . . . . . . . . . . . . . 102

B.4 Station 5 : The fitted SARIMA model for installed power production

is a SARIMA (1,0,0)(1,0,1)(12). . . . . . . . . . . . . . . . . . . . . 103

xvi



List of Figures

B.5 Station 6 : The fitted SARIMA model for installed power production

is a SARIMA (1,0,1)(1,0,0)(12). . . . . . . . . . . . . . . . . . . . . 104

B.6 Station 7: The fitted SARIMA model for installed power production

is a SARIMA (1,0,2)(1,0,1)(12). . . . . . . . . . . . . . . . . . . . . 105

B.7 Station 8: The fitted SARIMA model for installed power production

is a SARIMA (0,0,1)(1,0,1)(12). . . . . . . . . . . . . . . . . . . . . 106

B.8 Station 9: The fitted SARIMA model for installed power production

is a SARIMA (0,0,1)(1,0,0)(12). . . . . . . . . . . . . . . . . . . . . 107

B.9 Station 10: The fitted SARIMA model for installed power production

is a SARIMA (0,0,1)(1,0,1)(12). . . . . . . . . . . . . . . . . . . . . 108

B.10 Station 11: The fitted SARIMA model for installed power production

is a SARIMA (0,0,1)(1,0,1)(12). . . . . . . . . . . . . . . . . . . . . 109

B.11 Station 12: The fitted SARIMA model for installed power production

is a SARIMA (0,0,1)(1,0,0)(12). . . . . . . . . . . . . . . . . . . . . 110

B.12 Station 13: The fitted SARIMA model for installed power production

is a SARIMA (0,0,1)(1,0,1)(12). . . . . . . . . . . . . . . . . . . . . 111

B.13 Station 14: The fitted SARIMA model for installed power production

is a SARIMA (1,0,1)(1,0,0)(12). . . . . . . . . . . . . . . . . . . . . 112

B.14 Station 15: The fitted SARIMA model for installed power production

is a SARIMA (0,0,1)(1,0,1)(12). . . . . . . . . . . . . . . . . . . . . 113

B.15 Station 16: The fitted SARIMA model for installed power production

is a SARIMA (0,0,1)(1,0,1)(12). . . . . . . . . . . . . . . . . . . . . 114

B.16 Station 17: The fitted SARIMA model for installed power production

is a SARIMA (1,0,3)(0,0,1)(12). . . . . . . . . . . . . . . . . . . . . 115

B.17 Station 18: The fitted SARIMA model for installed power production

is a SARIMA (1,0,0)(1,0,1)(12). . . . . . . . . . . . . . . . . . . . . 116

B.18 Station 19: The fitted SARIMA model for installed power production

is a SARIMA (1,0,0)(1,0,1)(12). . . . . . . . . . . . . . . . . . . . . 117

B.19 Station 20: The fitted SARIMA model for installed power production

is a SARIMA (0,0,1)(1,0,1)(12). . . . . . . . . . . . . . . . . . . . . 118

B.20 Station 21: The fitted SARIMA model for installed power production

is a SARIMA (1,0,0)(1,0,2)(12). . . . . . . . . . . . . . . . . . . . . 119

B.21 Station 22: The fitted SARIMA model for installed power production

is a SARIMA (0,0,1)(1,0,0)(12). . . . . . . . . . . . . . . . . . . . . 120

xvii



List of Figures

B.22 Station 23: The fitted SARIMA model for installed power production

is a SARIMA (0,0,1)(1,0,1)(12). . . . . . . . . . . . . . . . . . . . . 121

B.23 Station 24: The fitted SARIMA model for installed power production

is a SARIMA (1,0,0)(1,0,1)(12). . . . . . . . . . . . . . . . . . . . . 122

B.24 Station 25: The fitted SARIMA model for installed power production

is a SARIMA (0,0,0)(1,0,1)(12). . . . . . . . . . . . . . . . . . . . . 123

B.25 Station 26: The fitted SARIMA model for installed power production

is a SARIMA (1,0,0)(1,0,0)(12). . . . . . . . . . . . . . . . . . . . . 124

B.26 Station 27: The fitted SARIMA model for installed power production

is a SARIMA (0,0,1)(1,0,0)(12). . . . . . . . . . . . . . . . . . . . . 125

B.27 Station 28: The fitted SARIMA model for installed power production

is a SARIMA (0,0,1)(1,0,0)(12). . . . . . . . . . . . . . . . . . . . . 126

B.28 Station 29: The fitted SARIMA model for installed power production

is a SARIMA (0,0,1)(1,0,1)(12). . . . . . . . . . . . . . . . . . . . . 127

B.29 Station 30: The fitted SARIMA model for installed power production

is a SARIMA (1,0,0)(1,0,1)(12). . . . . . . . . . . . . . . . . . . . . 128

B.30 Station 32: The fitted SARIMA model for installed power production

is a SARIMA (1,0,0)(1,0,1)(12). . . . . . . . . . . . . . . . . . . . . 129

B.31 Station 33: The fitted SARIMA model for installed power production

is a SARIMA (0,0,1)(1,0,1)(12). . . . . . . . . . . . . . . . . . . . . 130

B.32 Station 34: The fitted SARIMA model for installed power production

is a SARIMA (0,0,1)(1,0,1)(12). . . . . . . . . . . . . . . . . . . . . 131

B.33 Station 35: The fitted SARIMA model for installed power production

is a SARIMA (0,0,1)(1,0,1)(12). . . . . . . . . . . . . . . . . . . . . 132

B.34 Station 36: The fitted SARIMA model for installed power production

is a SARIMA (1,0,0)(1,0,1)(12). . . . . . . . . . . . . . . . . . . . . 133

B.35 Station 37: The fitted SARIMA model for installed power production

is a SARIMA (0,0,1)(1,0,1)(12). . . . . . . . . . . . . . . . . . . . . 134

B.36 Station 38: The fitted SARIMA model for installed power production

is a SARIMA (0,0,1)(2,0,0)(12). . . . . . . . . . . . . . . . . . . . . 135

B.37 Station 39: The fitted SARIMA model for installed power production

is a SARIMA (1,0,0)(1,0,2)(12). . . . . . . . . . . . . . . . . . . . . 136

B.38 Station 40: The fitted SARIMA model for installed power production

is a SARIMA (0,0,1)(0,0,1)(12). . . . . . . . . . . . . . . . . . . . . 137

xviii



List of Figures

B.39 Station 41: The fitted SARIMA model for installed power production

is a SARIMA (1,0,0)(1,0,2)(12). . . . . . . . . . . . . . . . . . . . . 138

B.40 Station 42: The fitted SARIMA model for installed power production

is a SARIMA (0,0,0)(1,0,0)(12). . . . . . . . . . . . . . . . . . . . . 139

B.41 Station 43: The fitted SARIMA model for installed power production

is a SARIMA (0,0,1)(1,0,1)(12). . . . . . . . . . . . . . . . . . . . . 140

B.42 Station 44: The fitted SARIMA model for installed power production

is a SARIMA (2,0,1)(0,0,2)(12). . . . . . . . . . . . . . . . . . . . . 141

B.43 Station 45: The fitted SARIMA model for installed power production

is a SARIMA (1,0,0)(1,0,2)(12). . . . . . . . . . . . . . . . . . . . . 142

B.44 Station 46: The fitted SARIMA model for installed power production

is a SARIMA (1,0,0)(1,0,1)(12). . . . . . . . . . . . . . . . . . . . . 143

C.1 Predictions for Station 2. . . . . . . . . . . . . . . . . . . . . . . . . . 145

C.2 Predictions for Station 3. . . . . . . . . . . . . . . . . . . . . . . . . . 146

C.3 Predictions for Station 4. . . . . . . . . . . . . . . . . . . . . . . . . . 146

C.4 Predictions for Station 5. . . . . . . . . . . . . . . . . . . . . . . . . . 147

C.5 Predictions for Station 6. . . . . . . . . . . . . . . . . . . . . . . . . . 147

C.6 Predictions for Station 7. . . . . . . . . . . . . . . . . . . . . . . . . . 148

C.7 Predictions for Station 8. . . . . . . . . . . . . . . . . . . . . . . . . . 148

C.8 Predictions for Station 9. . . . . . . . . . . . . . . . . . . . . . . . . . 149

C.9 Predictions for Station 10. . . . . . . . . . . . . . . . . . . . . . . . . 149

C.10 Predictions for Station 11. . . . . . . . . . . . . . . . . . . . . . . . . 150

C.11 Predictions for Station 12. . . . . . . . . . . . . . . . . . . . . . . . . 150

C.12 Predictions for Station 13. . . . . . . . . . . . . . . . . . . . . . . . . 151

C.13 Predictions for Station 14. . . . . . . . . . . . . . . . . . . . . . . . . 151

C.14 Predictions for Station 15. . . . . . . . . . . . . . . . . . . . . . . . . 152

C.15 Predictions for Station 16. . . . . . . . . . . . . . . . . . . . . . . . . 152

C.16 Predictions for Station 17. . . . . . . . . . . . . . . . . . . . . . . . . 153

C.17 Predictions for Station 18. . . . . . . . . . . . . . . . . . . . . . . . . 153

C.18 Predictions for Station 19. . . . . . . . . . . . . . . . . . . . . . . . . 154

C.19 Predictions for Station 20. . . . . . . . . . . . . . . . . . . . . . . . . 154

C.20 Predictions for Station 21. . . . . . . . . . . . . . . . . . . . . . . . . 155

C.21 Predictions for Station 22. . . . . . . . . . . . . . . . . . . . . . . . . 155

C.22 Predictions for Station 23. . . . . . . . . . . . . . . . . . . . . . . . . 156

C.23 Predictions for Station 24. . . . . . . . . . . . . . . . . . . . . . . . . 156

xix



List of Figures

C.24 Predictions for Station 25. . . . . . . . . . . . . . . . . . . . . . . . . 157

C.25 Predictions for Station 26. . . . . . . . . . . . . . . . . . . . . . . . . 157

C.26 Predictions for Station 27. . . . . . . . . . . . . . . . . . . . . . . . . 158

C.27 Predictions for Station 28. . . . . . . . . . . . . . . . . . . . . . . . . 158

C.28 Predictions for Station 29. . . . . . . . . . . . . . . . . . . . . . . . . 159

C.29 Predictions for Station 30. . . . . . . . . . . . . . . . . . . . . . . . . 159

C.30 Predictions for Station 32. . . . . . . . . . . . . . . . . . . . . . . . . 160

C.31 Predictions for Station 33. . . . . . . . . . . . . . . . . . . . . . . . . 160

C.32 Predictions for Station 34. . . . . . . . . . . . . . . . . . . . . . . . . 161

C.33 Predictions for Station 35. . . . . . . . . . . . . . . . . . . . . . . . . 161

C.34 Predictions for Station 36. . . . . . . . . . . . . . . . . . . . . . . . . 162

C.35 Predictions for Station 37. . . . . . . . . . . . . . . . . . . . . . . . . 162

C.36 Predictions for Station 38. . . . . . . . . . . . . . . . . . . . . . . . . 163

C.37 Predictions for Station 39. . . . . . . . . . . . . . . . . . . . . . . . . 163

C.38 Predictions for Station 40. . . . . . . . . . . . . . . . . . . . . . . . . 164

C.39 Predictions for Station 41. . . . . . . . . . . . . . . . . . . . . . . . . 164

C.40 Predictions for Station 42. . . . . . . . . . . . . . . . . . . . . . . . . 165

C.41 Predictions for Station 43. . . . . . . . . . . . . . . . . . . . . . . . . 165

C.42 Predictions for Station 44. . . . . . . . . . . . . . . . . . . . . . . . . 166

C.43 Predictions for Station 45. . . . . . . . . . . . . . . . . . . . . . . . . 166

C.44 Predictions for Station 46. . . . . . . . . . . . . . . . . . . . . . . . . 167

xx



List of Tables

1.1 Capacity (MW) for ten of the largest offshore wind farms globally.

The table is taken from [63]. . . . . . . . . . . . . . . . . . . . . . . . 4

1.2 Capacity (MW) for ten of the largest onshore wind farms in the world.

The table is taken from [63]. . . . . . . . . . . . . . . . . . . . . . . . 4

4.1 Summary statistics for wind power production at Onshore Station.

“St. dev.” stands for “standard deviation.” All statistics are mea-

sured in MW except for “skewness” which is dimensionless. . . . . . . 53

4.2 Values of different information criteria for three probability distri-

bution models: Weibull, lognormal and normal. AIC: Akaike’s In-

formation Criterion; LL: logarithm of the likelihood; BIC: Bayesian

Information Criterion. The optimal model (Weibull) has the lowest

values of AIC and BIC and the highest value of LL. . . . . . . . . . . 54

4.3 Weibull distribution parameters (shape and scale) and their error es-

timates at onshore station based on maximum likelihood estimates. . 55

4.4 Seasonal model parameters of average monthly wind power at On-

shore Station. The Standard Error (SE) for a given variable is given

by the Residual Standard Error divided by the square root of the sum

of squares for the particular variable. The p-value is used to test the

null hypothesis that the respective coefficient is zero. . . . . . . . . . 59

4.5 Results of information criteria for several SARIMA models (p,d,q)(P,D,Q)(S),

where p is the AR order, d is the difference order, q is the MA order,

P is the Seasonal AR order, D is the seasonal difference, and Q is the

Seasonal MA order. AIC is the Akaike information criterion, AICc is

the AIC with a correction for finite sample sizes, BIC is the Bayesian

information criterion and the value. The best model is the one with

the lowest values for the information criteria. . . . . . . . . . . . . . . 60



List of Tables

4.6 SARIMA model parameters for the residuals of installed power pro-

duction of Onshore Station. The SE is the standard error of the

estimates and the p-value is used in the context of null hypothesis

testing of zero correlation in order to quantify the idea of statistical

significance of evidence. . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.7 Cross validation performance measures calculated through leave-one-

out cross validation for the monthly average wind power of Onshore

Station. ME: mean error; MAE: mean absolute error; RMSE: root

mean squared error; ErrMin: minimum error; ErrMax: maximum error. 64

4.8 Summary statistics for the installed power production of Offshore

Station. “St. dev.” stands for “standard deviation.” All the statistics

are measured in MW except for skewness which is dimensionless. . . . 66

4.9 Values of different information criteria for the three probability dis-

tribution models: Weibull, lognormal, and normal. AIC is Akaike’s

Information Criterion. LL is the logarithm of the likelihood. BIC

is the Bayesian Information Criterion. The optimal model (Weibull)

has the lowest values of AIC and BIC and the highest value of LL. . . 67

4.10 Weibull distribution parameters (shape and scale) and their error es-

timates at Offshore Station based on maximum likelihood estimates. . 68

4.11 Results of information criteria for several SARIMA model (p,d,q)(P,D,Q)(S),

where p is the AR order, d is the difference, q is the MA order, P

is the Seasoanl AR order, D is the seasonal difference, and Q is the

Seasonal MA order. The AIC is the Akaike information criterion, the

AICc is the AIC with a correction for finite sample sizes, and BIC is

the Bayesian information criterion. The best model is the one with

the lowest values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.12 SARIMA model parameters for the residuals of installed power pro-

duction of Offshore Station. The SE is the standard error of the

estimates and the p-value is used in the context of null hypothesis

testing of zero correlation in order to quantify the idea of statistical

significance of evidence. . . . . . . . . . . . . . . . . . . . . . . . . . 72

xxii



List of Tables

4.13 Cross validation performance measures calculated through the leave-

one-out cross validation for the monthly average installed power pro-

duction of the Offshore Station. ME: mean error; MAE: mean abso-

lute error; RMSE: root mean squared error; ErrMin: minimum error;

ErrMax: maximum error. . . . . . . . . . . . . . . . . . . . . . . . . 74

4.14 Summary statistics for annual mean of the installed power production

for the year 2001. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.15 Values of information criteria for the three distributions (Weibull, log-

normal, and normal). The AIC is the Akaike’s Information Criterion,

the LL is the logarithm of the likelihood, and the BIC is the Bayesian

Information Criterion. The optimal model is the one that has the

lowest value of AIC or BIC. Low AIC and BIC values correspond to

LL values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.16 Parameters (shape and scale) of the Weibull distribution, and their

standard error for the time period 2001–2006. The estimation method

is the maximum likelihood. . . . . . . . . . . . . . . . . . . . . . . . . 78

4.17 Sum of squared errors between the empirical and the theoretical var-

iogram models. The total error for each model is equal to the sum

of the squared differences between the values of empirical and the

respective theoretical variogram model. The best fit is the one with

the lowest error. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.18 Parameters of the optimal spherical variogram model for the installed

power production. σ2 is th variance, ξ is the correlation length, and

c0 is the nugget effect. The parameters are estimated by minimizing

the error function given by the Equation 4.2. . . . . . . . . . . . . . . 80

4.19 Cross validation performance measures calculated through the leave-

one-out cross validation for the mean installed power production of

the year 2001. ME: mean error. MAE: mean absolute error. RMSE:

root mean squared error. ρ: Pearson’s correlation coefficient. Er-

rMin: minimum error between the prediction and the sample value.

ErrMax: maximum error between the prediction and sample value.

The validation measures are in MW. . . . . . . . . . . . . . . . . . . 86

D.1 Table for the estimated parameters for Normal Distribution. . . . . . 169

D.2 Table for the estimated parameters for Log-Normal Distribution . . . 170

xxiii



List of Tables

D.4 SARIMA model parameters for the residuals of installed power pro-

duction. The SE is the standard error of the estimates and the p-value

is used in the context of null hypothesis testing of zero correlation in

order to quantify the idea of statistical significance of evidence. . . . . 170

D.5 Cross validation performance measures calculated through the leave-

one-out cross validation for the monthly average installed power pro-

duction of the station 31. ME: mean error; MAE: mean absolute

error; RMSE: root mean squared error. . . . . . . . . . . . . . . . . . 174

D.3 Table of the estimated parameter for the Weibull distribution in each

station. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176

D.6 Seasonal model parameters of average monthly wind power. The

Standard Error (SE) for a given variable is given by the Residual

Standard Error divided by the square root of the sum of squares for

the particular variable. The p-value is used to test the null hypothesis

that the respective coefficient is zero. . . . . . . . . . . . . . . . . . . 177

xxiv



Chapter 1

Introduction

In the last decades, geostatistics has many applications in the environmental sci-

ences. Hence, it is important to test the spatial and temporal properties of them.

Geostatistics is a solution to these problems because it develops appropriate models

that can produce accurate spatial and temporal predictions, and estimate the un-

certainty of the results. The common case in climate studies is the prediction of the

installed power capacity of renewable energy sources. Specifically, the spatial and

temporal analysis in different time scales is a problem for many studies.

This thesis is motivated by the need for models that can accurately capture the

spatiotemporal variability of wind power. As such, spatial methods are used to map

the mean annual power capacity from offshore and onshore wind turbines. Ordinary

kriging is used for the predictions. For forecasting of the future annual mean power

production was used.

1.1 Renewable Energy

During the recent decades more and more countries have been using renewable en-

ergy, both for domestic and industrial use. This kind of energy covers forms such

as wind, sun, geothermal, tidal [48]. According to recent research, renewable energy

accounts for 24.5% of global electricity production.

The global investment in renewable technologies amounts to 286 billion dollars in

2015 [53]. Also, there are 7.7 million employees working in renewable energy. The re-

newable energy production systems constantly become more productive and cheaper,

and total energy consumption is increasing. Since 2019, more than 2/3 of installed



Renewable Energy

electricity capacity is renewable energy production facilities.

The rapid increase of renewable energy technologies, contributes to decrease of en-

vironmental pollution [58], and financial growth. In 30 countries, renewable energy

contributes to 20% of energy supply. Hence, the use of renewable energy is expected

to increase in the following years [54]. Renewable sources can be used in many

areas across the world, in contrast with fossil fuels, whose reserves are limited and

strategically located.

The most important renewable energy resources are wind, solar, geothermal, hydro-

power, and bio-energy/bio-mass [48].

• Wind Energy becomes from wind turbines, which convert the wind’s kinetic

energy to electric. The ideal areas to install wind farms are offshore areas,

which have constant and strong winds, and high elevation.

• Solar Energy becomes through the transformation of solar energy to electric,

either directly from photo-voltaic panels, or through solar panels which collect

sun’s rays to achieve high temperatures and utilize these temperatures for

energy production.

• Geothermal energy becomes from energy which is stored inside the earth.

The geothermal gradient (the difference in temperature based on depth inside

the crust), is utilized for continuous conduction of thermal energy in the form

of heat from the depths of the earth to the surface.

• Hydropower Energy has two forms a) wave energy and b)tidal energy. Wave

energy exploits the kinetic energy of sea or ocean surface waves. Tidal energy,

exploits the energy of tidal waves (the interaction of moon’s gravity on the sea

level). As the water moves, it is forced to pass through a turbine producing

energy.

• Bio-Energy is the energy that comes from alive or recently alive organisms.

It often refers to all plants, but wood remains the largest source of bio-energy.

To produce Bioenergy, biomass is transformed to bio-fuel through thermal or

chemical procedures.

2
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Figure 1.1: Schematic representation of different forms of renewable energy sources.
The schematic in this figure is taken from [9].

1.2 Wind Energy

Wind energy is generated from wind turbines, in wind farms. These turbines convert

wind kinetic energy to electricity. A group of wind turbines in the same location

is considered a wind farm. Large wind farms may consist of hundreds of turbines,

covering a large area of hundreds squares miles, using the intermediate land for

agricultural or other purposes. If this wind farm is inland, the farm is called onshore

wind farm. In contrast, the wind farms which are located in the sea are named as

offshore wind farms.

Onshore wind farms may not have any effects in environment, but they affect the

landscape of area where they are installed due to the large space they occupy. The

largest offshore and onshore wind farms in the world are shown in Tables (1.1) and

(1.2) [63] .

The wind conditions of the area, easy access to electricity network for transportation

of electricity and the local prices are some of the conditions that need to be consid-

ered to create a wind farm. Wind speed is a parameter which is related to power

production. This means that the higher the average wind speed, the higher the

energy generated by the wind turbine. Hence, stronger winds have economic bene-

fits for the wind farm development. To avoid damages from strong winds and high

turbulence, more durable wind turbines need to be used. However, the mean power

3
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Table 1.1: Capacity (MW) for ten of the largest offshore wind farms globally. The
table is taken from [63].

Wind Farm Country Capacity (MW)

Wanley Extension United Kingdom 659

London Array United Kingdom 630

Gemini Wind Farm Netherlands 600

Gode Wind (phases 1 and 2) Germany 582

Gwynt y Mor United Kingdom 576

Race Bank United Kingdom 573

Greater Cabbard United Kingdom 504

Dudgeon United Kingdom 402

Veja Mate Germany 402

Table 1.2: Capacity (MW) for ten of the largest onshore wind farms in the world.
The table is taken from [63].

Wind Farms Country Capacity (MW)

Gansu Wind Farm China 7965

Alta Wind Energy Center United States 1548

Muppandal Wind Farm India 1500

Jaisalmer Wind Park India 1064

Los Vientos Wind Farm United States 912

Shepherds Flat Wind Farm United States 845

Meadow Lake Wind Farm United States 801

Roscoe Wind Farm United States 781.5

Horse Hollow Wind Energy Center United States 735.5

is not analogous to mean wind speed. As such, ideal wind conditions are strong and

constant winds with low turbulence and same direction. Hence the ideal land to

install a wind farm is the mountain passes, which work like a channel directing the

wind.

1.2.1 Wind Energy Capacity

The wind power production was at 100 GWatt in the European Union in 2012

while the respective figure in the USA was 75 Gwatt in 2015. In 2018, the global

wind power capacity increased by 51Gwatt to 591 GWatt. In several countries, the

installed power production has been in high levels. In 2018, Denmark had the highest

4
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wind energy production at 41,4%, followed by 28% in Ireland, 24% in Portugal, 21%

in Germany, and 19% in Spain [33]. In the Netherlands, the installed power capacity

was at 4.341MW at the end of 2017. Figure 1.2 shows the annual growth of wind

power capacity globally.

Figure 1.2: Evolution of the global annual wind power cumulative capacity (GW)
for the period 1996–2018. The figure is from [64].

1.2.2 Wind Power Forecasting

The prediction of wind power and speed is necessary, due to the development of wind

farms, and the increase of global consumption of wind energy. Spatial, temporal, and

spatio-temporal models have been created to predict these variables. The predic-

tion could be implemented either with physical or statistical methods. Numerical

Weather Prediction (NWP), is a physical method, which combines mathematical

and physics equations to predict the wind variables (power and speed) [35, 60]. The

main feature of this method is the short-term forecast in large-areas. The needed

meteorological variables for this method are wind speed, temperature, direction,

humidity, and pressure. Models of NWP are the following [60]:

• Uk Meteorological Office mesoscale (MESO) model.

• Danish Meteorological HIRLAM model.

5
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• Regional Atmospheric Modeling System (RAMS) model.

• Weather Research and Forecasting Model (WRF).

In statistical methods, there are two types for spatial interpolation: deterministic

and stochastic or geostatistical methods. Interpolation methods (stochastic or de-

terministic) create surfaces which fill gaps using the whole data set or neighborhoods

in data set. Deterministic methods use models that produce the same output from

a given starting condition. Some of these models are inverse distance weighting,

polynomial regression, triangular irregular network, nearest neighbor. Stochastic

methods estimate the correlation between the measurements and the spatial struc-

ture of data. Some of the best known stochastic methods are the kriging family

of methods (universal, simple, ordinary, and co-kriging). Other stochastic methods

include the Stochastic Local Interaction models (SLI) [28]. Stochastic methods for

time series forecasting include methods that create models (AR, MA, ARMA, etc)

to predict the next time scale, and artificial neural networks (ANN) (radial basis

function, Multilayer Perception, Feed-forward) [39].

Related studies have been presented by Amanda Lenzi et al [42] which produce

a spatial model to estimate power production at two different time scales. Also,

Alexiadis M.C. et al [5] presents a technique to forecast the wind speed and power,

based on cross-correlation at neighboring sites. Kariniotakis et al [39] use ANN

modeling to forecast the wind power of a wind farm study area.

In modeling wind power generation data there are some factors that should be con-

sidered. Hourly time series at multiple heights with relevant variables, corrected for

site characteristics, can be used as long term references (reanalysis, meteorological

stations). Land cover classification maps for the selected area and period at high

resolution (i.e. 10m) should be consulted when modeling wind data. Other useful

factors are constraints (exclusion zones, grid connection, roads etc), elevation, and

topography (especially roughness).

Probabilistic Forecasting

Wind energy forecasts can be made with deterministic methods or stochastic inter-

polation methods. To make such forecasts, temporal analysis of time series is used

often in combination with spatial analysis. Probabilistic forecasting is the recom-

mended approach for wind energy forecasting. Also using a probabilistic forecast

model, the energy management would improve resulting in a decrease of fossil fuel

6
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dependency [37].The power output is affected by several environmental factors, such

as wind direction, wind speed, air density, humidity, turbulence intensity, and wind

shears. Several methods use the power curve, which relates wind power to wind

speed [22].

Power Curve

The power curve is a way to relate the power output with all the factors mentioned

in the previous section. However, most of power curve models relate only the wind

speed (and sometimes with direction) with wind power. The wind power industry

uses the power curve for several reasons. The main purpose is to forecast the wind

power in two steps: firstly the wind speeds are forecast and then through the power

curve the wind power is estimated. Another purpose of the power curve is for wind

turbine performance assessment and another one health monitoring. The behavior

of the power curve could be different when the wind speed changes [23].

Each wind turbine has a unique power performance curve because the output power

of a wind turbine varies even with the same wind speed. The power curve includes

a)”cut-in-speed”, in which turbine blades begin to rotate, b) ”a rated speed”, which

is the lowest speed at which the maximum power output of turbine is generated,

and c) ”cut-out-speed”, in which the turbine is shut down to prevent damage. The

output power is captured by the power curve as a function of the hub height wind

speed, and is defined as:

P =
1

2
ρπR2C

P
u3, (1.1)

where ρ is the air density, R is the radius of the rotor, CP is the power coefficient

(is the percentage of power captured by the turbine), and the u is the wind speed

[43]. The power curve is depended from the wind speed and the power coefficient,

as the air density remains constant at hub height. The power coefficient depends

on the tip speed ratio (λ) and the blade-pitch angle (β). The tip-speed ratio λ for

wind turbines is the ratio between the actual speed of the wind u, and the tangential

speed of the tip of a blade [55]. A typical power curve is presented at the following

figure:

For their study, Jooyoung Leon and James W. Taylor [37] use a bivariate vector

autoregressive moving average-generalized autoregressive conditional heteroscedastic
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Figure 1.3: A typical wind turbine power curve. The x axis is the steady wind speed
in m/s and in y axis is the output power in Kw. (Figure from [1])

(VARMA-GARCH) model, which improves wind speed prediction through the joint

modeling of wind speed and direction. The investigators convert these predictions to

wind power density predictions. Towards that purpose, Monte Carlo simulations are

used, along with conditional kernel density estimation. The suggested method was

able to outperform simpler models based on the deterministic power curve as well

as simple benchmark methods. Also, Giwhyun Lee et al [22], provide an additive

multivariate kernel (AMK) method to model the power curve with the possibility

to include more environmental factors to create a new power curve model. This

model can describe the nonlinear relationships between the power output and the

multitude of environmental factors, and the high interaction effects. Their model

performs better (based on their validation measures) than other methods such as

Bayesian additive regression trees and smoothing spline analysis of variance. As

such, it would give a better estimation of power production. Also, the AMK model

is faster than the other methods.

1.3 Wind Resource and Energy Yield Assessment

An important part in wind data analysis is the wind resource assessment (WRA).

The WRA is useful to map the wind resources and to define the financial feasibility

for a wind project in order to be acceptable by banks and investors[10]. Nevertheless,

some energy markets do not follow the requirements of the international standards

(as IEC 61400–12–1)[6]. These standards refer to a credible estimate of losses and
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uncertainties, auditable data acquisition, processing, and archiving, rigorous mod-

elling of flow based on a linear model for simple terrain and a computational fluid

dynamics model for complex terrain, and a on-site wind measurement with tall tow-

ers and high-quality machines for at least one year. If a project does not conform

to international standards, it could lead to higher risks and uncertainties. Thus, the

investors often request a higher share of equity capital and higher interest rates [6].

The average annual energy production (AEP), represents the output of a bankable

WRA. In any kind of financial analysis for the project both AEP and WRA are used.

Uncertainty analysis is the most important part of the analysis. It is important to

estimate the uncertainty of different levels of confidence. Certain levels of confidence

(notated as P50, P90) have been identified as the most important for the financial

evaluation of the project and risk assessment [7].

Specifically the P50 level confidence is used as reference for the annual average

production. P50 indicates that the probability of predicted value to be overestimated

or underestimated is 50% on long term. So P50 is also called as AEP . P90 is the

energy production that will be generated at 90% probability [6]. There is a 90%

probability to generate P90 electrical energy or more in a given year, and only 10%

to generate less [10]. A probability of 10% is an acceptable risk for the investors and

the banks. These probabilities are estimated from the dataset’s (or the simulated

data) cumulative distribution function (CDF). The difference between the P90 and

P50 level of energy production is affected by the level of uncertainty[7].

In order to attract financing, the project must have low uncertainties. Thus, to

minimize uncertainties due to measurement, modelling, and other factors, it is im-

portant to make a through investigation during the study. The AEP, which is the

primary output of the WRA, influences directly the revenue of the project. Hence,

the revenue is low when the AEP is low. The second most important output is the

uncertainty associated with AEP, which directly influences the risk of the project

[10].

1.4 Probabilistic Analysis

It is easy to observe that the wind speed has high variability. To determine the

annual production of power from a turbine, it is necessary to know the long-term

mean wind speed because power is a non-linear function of wind speed. The most
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commonly used probability distribution function for wind data is the Weibull dis-

tribution.

1.4.1 General Form of Weibull Distribution

The general form the probability density function of Weibull distribution is written

as:

f(x;λ, k) =

{
k
λ

(
x
λ

)k−1
e−(x/λ)k x ≥ 0

0 x < 0.
(1.2)

The parameter k is the shape parameter and the λ is the scale parameter. The

Weibull distribution interpolates between the exponential distribution if k=1, and

the Rayleigh distribution if k=2.

The cumulative distribution function for the Weibull distribution is written as:

F (x; k, λ) = 1− e−(x/λ)k , x ≥ 0. (1.3)

Figure (1.4) presents the probability function and the cumulative density function

for different values of shape and scale for the Weibull distribution [34].

Moments of the Weibull Distribution

Mean Value

µ = λΓ

(
1 +

1

k

)
. (1.4)

Variance

σ2 = λ2

[
Γ

(
1 +

2

k

)
−
(

Γ

(
1 +

1

k

))2
]
. (1.5)

Skewness

Γ(1 + 3/k)λ3 − 3µσ2 − µ3

σ3
. (1.6)
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(a)

(b)

Figure 1.4: Probability density function (Figure 1.4a) and cumulative distribution
function (Figure 1.4b) of the Weibull distribution for different values of the shape k
and scale λ parameters.

1.4.2 Weibull Distribution for Wind Data

To estimate the mean power from a wind turbine over a range of (mean) wind speeds,

the following non-dimensional form of the probability density for the wind data is

used [57]:

p
( u
U

)
= kΓ

(
1 +

1

k

){
u

U
Γ

(
1 +

1

k

)}k−1

e
−
{ u
U

Γ(1+k−1)
}k
, (1.7)

where u is the fluctuating wind speed component, U is the mean value of the

wind speed, p( u
U

) is the non-dimensional probability density function (pdf), k is
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the Weibull shape factor, and Γ (1 + k−1) denotes the gamma function with argu-

ment 1 + k−1.

The standard deviation of the wind speed which corresponds to the above pdf is

given by:

σ = U

√√√√√√√√
Γ

(
1 +

2

k

)
[
Γ

(
1 +

1

k

)]2 − 1. (1.8)

Weibull parameters are estimating using several estimation methods, such as max-

imum likelihood. Camilo Carillo et.al, present a different method to estimate the

Weibull parameters for wind energy analysis [12].
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Chapter 2

Geostatistical Methods

Earth science data are distributed over space and time. The analysis and prediction

of spatial properties, such as porosity, pollutant concentrations, is carried out using

geostatistical methods [16, 24]. Geostatistics includes methods that can be used to

characterize spatial properties based on the theory of random fields. Random fields

are considered a good numerical framework for spatial data analysis similar to how

time series analysis is used for temporal data. The number of variables required to

represent a spatial or a temporal process is infinite, even for areas of finite size, due

to the constant variation of geographical location [47].

Geostatistical methods are applied to studies such as meteorology [2], topographic

analysis, prospecting [38], mapping and mapping of pollutant concentrations in vari-

ous environmental media (air, subsurface, surface aquifers) [24], and coal mining [50].

Time series are applied to studies such as economics[2], meteorology(precipitation

and wind) [2, 30], in order to forecast the variable which shows the progress of a

process.

2.1 Randomness

Randomness characterizes phenomena for which the value cannot be known with

absolute precision. The reasons that may contribute to this are either intrinsic

(strong spatial and temporal variability of the phenomenon), or come from the

experimental process (random errors, limited resolution), or from environmental

changes (variations in temperature and humidity) [27].



Random Variable-Random Field

2.2 Random Variable-Random Field

A random variable X can take values from a set of possible values. A random

variable is called discrete if it takes xi values, where i = 1, . . . , N , in an integer

set, i.e. the frequency of occurrence of each value is determined by a probability

function. A random variable is constant when it takes values from a continuous set.

The probability the variable X could take values from a very small interval around

x is determined by the probability density function [49, 17]. The expected value

E[X] of a random variable X is the average of the random variable for all states.

If the probability distribution of X follows a probability density function (pdf) f(x),

then the expected value is

E[X] =

∫ +∞

−∞
x f(x) dx. (2.1)

A stochastic process is a collection of random variables, which represent the evolution

of a system of random values through the time. In such a process there are many

directions in which this process can evolve. A random field X(s) is a collection of

random values that are distributed in space with the vector s corresponding to the

location of each point in the study area. When the random field is discrete, then

it consists of a list of random numbers where their pointers are mapped to an n

-dimensional space.

If the random variables are distributed in space, then the mathematical properties

from which the random variables are described are extended. A random field con-

sists of a set of random variables that describe spatial change in at least one of

its mathematical properties. Thus a random field can be considered as a multidi-

mensional random variable. Random fields have unique mathematical properties,

which sets them apart from a set of independent random variables, because of the

interdependence of physical sizes at different locations in space[27, 62].

Fluctuations are the stochastic component around the field’s expectation, and is

defined by:

X ′(s) = X(s)− E[X(s)]. (2.2)
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2.3 Probability Density Function

The probability density function (pdf) of a random field is indicated fX [x(s)], where

the integer denotes the field , and the function argument is the values of state x(s).

For a single random variable, the pdf fX represents a point. In contrast the pdf of a

random field contains values throughout the space, where the field is defined. This

means that the joint pdf for any number of points in the field is described by the

pdf fX . Therefore the pdf of a random field contains more information than the pdf

of a single variable.

The one-dimensional pdf of a field at point s1 is defined as fX(x1; s1) and expresses

the possible states of a field at the point s1. Accordingly, the two-dimensional

pdf of the field is defined as fX(x1, x2; s1, s2), and expresses the interdependence

of possible states in two points. Similarly defined is the multidimensional pdf

fX(x1, . . . , xN ; s1, . . . , sN), which describes the interdependence of possible states

for a set of N points.

2.4 Statistical Homogeneity

Some assumptions that limit the properties of a random field can lead to a more

effective geostatistical analysis. The most widely used simplistic assumption is sta-

tistical homogeneity, which is an extension of the classical definition of homogeneity.

A property is homogeneous if the corresponding variable has a constant value in

space. Therefore, one random field X(s) is statistical homogeneous if the mean is

constant, m
X

(s) = m
X

, the coefficient function is solely defined and dependent on

the vector of the distance r = s1 − s2 between the two points and not from their

position, c
X

(s1, s2) = c
X

(r), and the variance of a statistically homogeneous field is

constant.

The above conditions define statistical homogeneity in the weak sense. A ran-

dom field described by strong statistically homogeneous, when the multidimensional

Probability Density Function for N points (where N is a positive integer) remains

constant when the distance between the points does not change, although any trans-

formation could change the position of them. Therefore, the concept of statistical

homogeneity exists when the statistical properties of a random field are not depen-

dent on the spatial coordinates of the points, so they are independent of the reference

system. In practice, statistical homogeneity assumes that there are no systematic
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trends, and thus the variation of field values can be attributed to fluctuations around

a constant level equal to the mean value [50].

2.5 Statistical Isotropy

Statistical isotropy is a useful tool in a geostatistical analysis. A field is statistically

isotropic only if is statistically homogeneous and the covariance function depends

only on the Euclidean distance and not on the direction of the distance vector r. If

a covariance function is statistically isotropic is by definition statistically homoge-

neous, but not conversely.

In contrast, if the spatial variability depends on the direction, then the random field

is defined by anisotropy. The covariance of an anisotropic random field depends on

both the distance r and the direction of the vector r. A random field is anisotropic

when the directional covariance functions have different values either in the variance

or the correlation length [47, 50]. The variance is a measure of the amplitude of

the fluctuations in the field. The correlation length defines the interval within there

is interdependence, i.e. defines the distance within which a value of a point affects

the value at another point, in the field. In the case of statistically isotropic fields

the two most important parameters are the variance σ2
X

= c
X

(0) and the correlation

length ξ.

2.6 Spatial Analysis

2.6.1 Moments

Statistical moments are deterministic functions, which represent mean values, for all

possible field states, of different combinations of field values at one or more locations.

The mean value of a quantity A(X)is denoted by E[A(X)]. For a multidimensional

moment E[Xk1(s1) . . . Xk
N (s

N
)], where k1 + . . . + k

N
= K, given by the following

k-dimensional integral

E[Xk1(s1) . . . Xk
N (s

N
)] =

∫
dx1

∫
dx

N
f
X

(x1, . . . , xN ; s1, . . . , sN) x1
k1 . . .x

N

kN .

(2.3)
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Mean Value

Mean value is similar to the arithmetic average of the data values in a sample, and

it defined as

m
X

(s) = E[X(s)]. (2.4)

where X(s) is the random field and E[] is the expectation, calculated over all the

states of the field, i.e.

E[X(s)] =

∫
dx f

X
(x; s) x, (2.5)

where x are the values that correspond to a given state. Integral limits depend from

the space wherein the field is defined.

In Equation (2.5), the mean value may depend on the location s, which derives from

a possible dependence of the one-dimensional probability density function on the

position. In practice, the probability density function is not known, and therefore

the mean must be calculated from the data by statistical methods. The same applies

to the other parameters of the pdf.

Variance

The variance of a random field is estimated by the mean value of the squared fluc-

tuation, according to the following equation:

σ2
x(s) = E[{X(s)−mx(s)}2] = E[X ′

2
(s)]. (2.6)

The variance can vary from point to point. If the field is statistically homogeneous,

the variance is constant at all points.

Errors

In the fields of science, engineering and statistics, measurement accuracy is the

degree of proximity of measurements to their true value. While the accuracy of

the measurement related to repeatability is the degree to which the repetitions of

measurements made under the same conditions produce the same result (error). Sta-

tistical bias is a characteristic of statistics, according to which the expected value of
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the results differs from the actual value of the parameter being estimated. The errors

can be systematic or random . Systematic errors are introduced from method or in-

strument flaws, so the resulting measurements are inaccurate and biased. Random

errors are caused by uncontrolled fluctuations and affect the measurements ran-

domly. In this case, the inaccuracy is due to random fluctuations and not method

flaws [27].

Standard Error

The standard error (SE) is the variance of the estimated parameter’s distribution.

The SE is calculated as:

SE =

√
σ2
X

n
, (2.7)

where the σ2
X

is the variance, and n is the size of sample.

2.6.2 Covariance Function

The covariance function c
X

(s1, s2) of a random field Xs, expresses the influence of

the value at s1 on the fluctuation of the value at s2.

The centered covariance function is defined by the following formula:

c
X

(s1, s2) = E[X(s1) ·X(s2)]− E[X(s1)]E[X(s2)]. (2.8)

The random field X ′(s1) = X(s1) − mx(s1), represent the fluctuation of the field

X(s1) around the mean value in the point s1. The mean value of the fluctuation

field is equal to zero,

E[X ′(s1)] = 0. (2.9)

Based on the previous equations, the centered covariance function is defined by

c
X

(s1, s2) = E[X ′(s1)X ′(s2)]. (2.10)

In conclusion, the centered covariance function quantitatively describes the depen-

dence of the fluctuations on two different points [15].
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Covariance and Variance

If two points in the random field coincide, the the value of the covariance function

is equal to the variance of the field at that point:

c
X

(s1, s1) = σ2
X

(s1). (2.11)

Basic Concepts of Covariance Function

In statistically homogeneous and isotropic fields, the two important parameters of

covariance are: 1) the variance σ2
X

= c
X

(0) measures the magnitude of the field

fluctuations, and 2) the correlation length (ξ), which normalizes the distance (in

the covariance function the distance is defined by the ratio r/ξ. The correlation

length defines the distance in which the values are correlated. In case of anisotropic

dependence, there are different correlations lengths over the direction of anisotropy.

Bochner’s Theorem

Not every function can be considered as a covariance function. The permissibility

conditions are defined by the Bochner’s theorem [11], which is defined by the spec-

tral density, given by the Fourier transformation. The Fourier transformation is

given by the following equation:

c̃x(k) =

∫
dr e−ikr cx(r), (2.12)

where r is the distance vector between two points and k is the vector of spatial

frequency (or wave-number).

The inverse transformation estimated by the following integral:

cx(k) =
1

(2π)d

∫
dr eikr c̃x(k). (2.13)

The Bochner’s Theorem mentioned that: A function cX(r) is accepted as a

covariance function if:

1. It admits the Fourier transform c̃x(k).

2. c̃x(k) is non-negative over the entire frequency domain.
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3. The integral of c̃x(k) over the entire frequency domain exists and is bounded.

2.6.3 Variogram Function

The variogram function describes the variance of the difference between the values of

a random field X(s) at locations s1, and s2 and is defined by the following equation

[27]:

γ
X

(s1, s2) =
1

2
V ar[X(s1)−X(s2)]. (2.14)

If the random field has a constant mean value the variogram is defined by means of

the expectation:

γ
X

(s1, s2) =
1

2
E [X(s1)−X(s2)]2. (2.15)

The variogram is defined for a pair of points, using the expectation of the field of

squared differences, which is defined as δX(s1; s2) = X(s1)−X(s2).

If the field is statistically homogeneous, then the variogram is directly connected to

the covariance function by the equation:

γ
X

(r) = σ2
X
− cX(r). (2.16)

Hence the variogram’s upper bound of a random field is the variance of the field i.e.

c0 . Also from the above equation is mentioned that the variogram tends asymptoti-

cally to the variance. For statistically homogeneous fields the variogram contains the

same information as the covariance [15]. The variogram function as it seems from

the Equation (2.15) is a non-negative function, i.e., γ
X
≥ 0, but the reverse does not

apply, i.e., every non-negative function is not necessarily a variogram function. The

conditions of Bochner’s theorem need to apply.

Statistically homogeneous field

In a homogeneous field with isotropic spatial dependence, the variogram is estimated

from two parameters: the sill (upper bound of variogram) and the correlation length.

Specifically the value of the variogram, for long distances r tend asymptotically to

an upper bound, equal to variance σ2
X

, of the field. This property is based on the
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fact that covariance function is zero for long distances and on the relation γ
X

(r) =

σ2
X
−c

X
(r). The correlation length defines the time in where the variogram approaches

the sill, and the range within that two points are correlated.

If correlations characteristics differ with different directions in space, the dependence

is anisotropic. In geometrical anisotropy, the sill is independent of the direction, but

the speed of approach to the sill depends on the direction. In this case the variogram

defined as function γ
X

(
r1

ξ1

, . . . ,
rd
ξd

)
of dimensionless distances

r1

ξ1

, . . . ,
rd
ξd

, where the

ξ1, ..., ξd are the correlation lengths in corresponding directions.

In the case of zone anisotropy, the upper bound depends from the spatial direction.

Then the variogram function can be expressed as:

γ
X

(r) = γX,1(r) + γX,2(r̂), (2.17)

where the γX,1(r) represents the isotropic dependence and the γX,2(r̂) the anisotropic

dependence of the sill in the direction of the unit vector r̂.

Variogram Models

To estimate the variogram at any distance, a theoretical variogram model should

be fitted in the experimental. The commonly used theoretical variogram model

are exponential, gaussian, spherical, and power-law. In functions σ2
X

represents the

variance of the spatial field, ‖r‖ is the Euclidean norm of the lag vector r, and ξ is

the correlation length [8, 46].

1. Exponential

γ
X

(r) = σ2
X

[
1− exp

(
−‖r‖

ξ

)]
(2.18)

2. Gaussian

γ
X

(r) = σ2
X

[
1− exp

(
−‖r‖

2

ξ2

)]
(2.19)

3. Spherical

γ
X

(r) =

{ σ2
X

[
1.5
(
‖r‖
ξ

)
− 0.5

(
‖r‖
ξ

)3
]

‖r‖ ≤ ξ

σ2
X

‖r‖ ≥ ξ

(2.20)
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4. Power-law

γ
X

(‖r‖) = α‖r‖2H , 0 < H < 1, α > 0 (2.21)

A theoretical variogram model is accepted as variogram function if it is conditionally

negative definite function. This means that for any linear coefficient λα, which

satisfies the following condition

n∑
α=1

λα = 0, (2.22)

must satisfy the following inequality:

−
n∑

α=1

n∑
β=1

λαλβγX (sα − sβ) ≥ 0. (2.23)

In practice, inequality control is not feasible for every possible combination of coeffi-

cients λα, so the acceptance criterion is expressed with Bochner theorem. According

to Bochner theorem, the function γ
X

(r) is admissible as variogram function in d

dimensions if the following is applied [27]:

1. γ
X

(0) = 0,

2. the generalized Fourier trasformation γ̃
X

(k), exists,

3. γ̃
X

(k) satisfies the inequality: −k2γ̃
X

(k) ≥ 0 and

4. lim γ
X

(r)/r2 = 0 r →∞.

If the random field is statistically homogeneous, is easy to test the acceptance of a

theoretical variogram, using the covariance σ2
X
− γ

X
(r). If the function γ

X
(r) repre-

sents an acceptable variogram, then the function c
X

(r) = σ2
X
− γ

X
(r) is permissible

covariance function and vice versa [16].

2.6.4 Spatial Estimation

A significant problem in geostastics is the estimation of a variable of interest over an

entire area on the basis of values observed at a limited number of points. Estimation

aims to provide information about points in space where no measurements are avail-

able. From a deterministic viewpoint, this is an interpolation problem. The variable

is estimated by a parametric function, either explicitly or implicitly. The estimation
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of the variable can be either local, if it refers to a specific point , or globally if it

refers to the calculation of a characteristic value for an entire area. The estimation

of the field, requires a model containing the spatial dependence,so it is possible to

estimate points, where there no measurements, using the neighboring measured field

values. The common used methods which is based on the minimization of the square

error of estimate, and the linear interpolation are known as ”kriging” [40].

The problem of local estimation is described as follows: In a data set X(si), at points

si (i = 1, . . . , N), which are located in a region Ω define the value of the field at the

estimation point u ∈ Ω, which does not coincide with any of the si. The estimate at

the point u is denoted as X̂(u). The estimation process is repeated at every node

of the grid, which is defined from the particular application.

To reduce computing intensity in kriging methods a neighborhood ω(u) around

the point u is often determined. This neighborhood includes n(u) 6 N points

at si, (i = 1, . . . , N). The size of the neighborhood defined from the correlation

length. In linear interpolation methods, the field fluctuation at the estimate point

is expressed by the following linear combination:

X̂(u)−m
X

(u) =

n(u)∑
α=1

λα[X(sα)−m
X

(sα)]. (2.24)

The coefficients λα, represents the linear weights. Hence the Equation (2.24), esti-

mates the fluctuation at the prediction point.

The estimate of the field is given by the following equation:

X̂(u) = m
X

(u) +

n(u)∑
α=1

λα[X(sα)−m
X

(sα)]. (2.25)

In stochastic methods, the estimator X̂(u) is a random variable as is the estimation

error ε(u) = X̂(u)−X(u). Kriging methods estimate the optimal value X(u), using

the weight, which minimize the variance of estimate error. Kriging is the best linear

unbiased estimator since it minimizes the square of the prediction error.

The common used kriging methods are described below.
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2.6.5 Simple kriging

Simple kriging is used when the mean value m
X

of the random field is known and

constant throughout the entire field. In this case, the kriging estimator X̂(u) is

determined by the equation:

X̂(u) =

n(u)∑
α=1

λαX(sα)−m
X

n(u)∑
α=1

λαX(sα)− 1

 . (2.26)

The linear weights, λα are estimated by minimizing the error variance, given by the

equation:

σ2
E,SK(u) = V ar[X(u)− X̂(u)] = V ar[X̂(u)−m

X
−X ′(u)]. (2.27)

The equation of the estimator X̂(u) leads to the following relation for the fluctuation

of the random variable X̂(u):

X̂(u)−m
X

=

n(u)∑
α=1

λα[X(sα)−m
X

=

n(u)∑
α=1

λαX
′(sα). (2.28)

The linear function
∑n(u)

β=1 λβcX (sα − sβ) = c
X

(sα − u), α = 1, ..., n(u), can be

expressed as

Cα,βλβ = Cα,u, (2.29)

where the matrix Cα,β represents the covariance matrix, with elements Cα,β =

cX(sα−sβ). The vector Cα,u represents the values of the covariance function between

the sample points and the estimation points Cα,u = c
X

(sα − u).

Considering the equation c
X

(0) = σ2
X

, the linear system is written in the form of

matrices as follows:


σ2
X

. . . . . . c
X

(s1 − sn)

c
X

(s2 − s1) . . . . . . c
X

(s2 − sn)
...

...
...

...

c
X

(sn − s1) . . . . . . σ2
X




λ1

λ2

...

λn

 =


c
X

(s1 − u)

c
X

(s2 − u)
...

c
X

(sn − u)

 (2.30)
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The solution of the linear system is given by the following equation:

λβ = C−1
β,αCα,u,∀β = 1, ..., n(u). (2.31)

In the case of stationarity, variogram and covariance are connected through the

following equation

c
X

(sα, sβ) = σ2
X
− γ

X
(sα, sβ). (2.32)

Solving the above linear system, gives the λα coefficient values, if the covariance

function is permissible and each point has a unique value. The values of the lin-

ear weights are independent from the sill of variogram, but they depend from the

correlation length. Kriging is an exact interpolator, i.e. at every point where a

measurements is available, the krigng estimate coincides with the sample value.

The uncertainty of the estimation is determined by the squared root of the variance

of the estimation error. The variance σ2
E,SK(u) is defined by the following equation:

σ2
E,SK(u) = σ2

X
−

n(u)∑
α=1

n(u)∑
β=1

Cu,αC
−1
α,βCβ,u. (2.33)

According to the Equation (2.33), the error variance increases proportionally to the

random field variance σ2
X

. The error increases as the distance ‖u− sα‖ between the

estimation point and the data points [15, 24].

2.6.6 Ordinary Kriging

In ordinary kriging, the mean value is considered constant inside the local neigh-

borhood, but may vary from neighborhood to neighborhood. The mean value is not

necessarily known. In this case, the mean value is not calculated from the average of

the sample values, but is calculated providing that the coefficient function is known.

The estimate is calculated from the following equations:

X̂(u) =

n(u)∑
α=1

λαX(sα), (2.34)
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and

n(u)∑
α=1

λα = 1. (2.35)

The Equation (2.35) represents the non-bias condition. In ordinary kriging minimum

mean square error should be calculated using the restriction imposed by the non-

bias constraint. The minimization of the error variance under the non-bias condition∑n(u)
α=1 λα = 1 uses the Lagrange multipliers method for constrained minimization.

To calculate the linear weights following equation is used:

n(u)∑
β=1

λβcX (sα − sβ) + µ = c
X

(sα − u), α = 1, ..., n(u), (2.36)

where µ is the Lagrange coefficient, and

n(u)∑
α=1

λα = 1. (2.37)

The linear system of Equations (2.36), and (2.37), is possible to be written in the

form of matrices as follows:



σ2
X

cX (s1 − s2) . . . cX (s1 − sn) 1

cX (s2 − s1) σ2
X

. . . cX (s2 − sn) 1
...

...
...

...
...

cX (sn − s1) cX (sn − s2) . . . σ2
X

1

1 1 . . . 1 0





λ1

λ2

...

λn

µ


=



cX (s1 − u)

cX (s2 − u)
...

cX (sn − u)

1


(2.38)

The solution of the linear system is given by the following equation:

λβ = C−1
β,αCα,u, ∀β = 1, . . . , n(u). (2.39)

The optimal estimate of the kriging error variance is respectively given by the equa-

tion:
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σ2
E,OK(u) = σ2

X
−

n(u)∑
α=1

λαcX (u, sα)− µ, (2.40)

where the Lagrange multiplier takes values µ < 0.

2.7 Spatial Model Validation

For assessing the performance of a different parameters for the same model or to

compare the performance of different models, validations methods are used. Meth-

ods like likelihood maximization, empirical contrast minimization, and least squares

quantify the fit of the data to spatial models. Validation includes methods that

estimate the predictive performance of the model based on the sample data. The

most used validation method is Cross-Validation (CV).

CV methods separate the data, once or several times, to estimate the reliability and

the accuracy of the model based on the subsets. The data is first split in a training

set, and a validation set. The validation set is used to estimate the predictive

performance of the model. The optimal model is the one with the best validation

measures as chosen by the investigator.

The most commonly used cross-validation methods are leave-p-out cross vali-

dation, and leave-one-out cross validation. In leave-p-out cross validation

(LPO CV), the original data are split in training set with N-p sample points (N

refers to the number of original data), and the validation set with p remaining sam-

ple points. Afterwards the spatial model is tested based on the training set, and the

predictions are compared with the validation set. This process can be repeated as

many times as the possible partition of the set of N into two sets. Leave-one-out

cross validation (LOOV CV), is a specific case of LPO CV where p=1, i.e the

training set contains N-1 points in each iteration, and the validation set is a single

point. The process is implemented N times, and the CV measure is calculated as

the average of N cases [27].

2.7.1 Cross-Validation Measures

Assume a random field Xs with known values at locations si, i = 1, . . . , N . The

statistical measures are evaluated, in order to asses the model performance. These

measures include: the mean error (bias) (ME), the mean absolutely error (MAE),
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the root mean square error (RMSE), and Pearson’s linear correlation coefficient (ρ).

For the following measures, x̂(si) and x(si) are the estimated and true value of the

field at point si, x(si) is the spatial average value of the data, x̂(si) is the spatial

average of the estimates, and N is the number of the observation.

Mean Error (bias)

The mean error is estimated as follows:

ME =
1

N

N∑
i=1

[x̂(si)− x(si)] . (2.41)

High and positive or negative values of mean error denotes bias.

Mean Absolute Error (MAE)

The mean absolute error is estimated as follows:

MAE =
1

N

N∑
i=1

|x̂(si)− x(si)|. (2.42)

The mean absolute error estimates the accuracy and the precision of the estimation.

Root Mean Square Error (RMSE)

The root mean square error is estimated as follows:

RMSE =

√√√√ 1

N

N∑
i=1

[x̂(si)− x(si)]
2. (2.43)

The root mean square error calculates the accuracy and the precision of the esti-

mation as mean error. Also, because of the squaring the errors, RMSE gives higher

weights on large deviations.

Pearson’s Correlation Coefficient (ρ)

The Correlation Coefficient is the most commonly used to measure the relationship

between the data and the estimates, and is calculated as follows:
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%̄X,X̂ =

∑N
i=1

[
x(si)− x(si)

] [
x̂(si)− x̂(si)

]
√∑N

i=1

[
x(si)− x(si)

]2
√∑N

i=1

[
x̂(si)− x̂(si)

]2
. (2.44)

Pearson’s Correlation Coefficient estimates the linear relationship between two vari-

ables. The coefficient can be described by a scatterplot. If ρ = +1 or ρ = −1 the

scatterplot is a straight line with positive or negative slop respectively. If | ρ |< 1

the values appear as a cloud of points, which becomes more diffuse as | ρ | decreases

from 1 to 0 [32].
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Chapter 3

Time Series Analysis

Time series is a data set which is collected over time and expresses the evolution of

a variable’s values over time. Specifically, time series include a set of observations

which they are usually collected using a set time step. Time series is a stochastic

process, because the values are affected from random factors, although the value of

each step is random variable. So time series is a collection of random variables i.e.

Xt, t ∈ T , where T is a set of time observations [59]. To investigate the behavior

of the variable, only values from previous time periods are needed. Forecasting is

implemented based on such values to predict the values in the following time peri-

ods. The random variables Xt are distributed according to a univariate cumulative

distribution function Ft and a respective probability density function ft.

Methods of time series analysis have many applications in different disciplines. For

example, such methods are used in economics [25], climate studies (related to global

warming) [26], and earthquakes [19].

White noise: The simplest case of a time series model is white noise, which is

a collection of independent and identically distributed (iid) random variables, Wt,

with zero mean value and variance σ2
W . If the noise values follow the Gaussian

distribution, i.e., εt ∼ N(0, σ2
ε ), it is known as Gaussian White Noise (GWN).



Moments

3.1 Moments

Mean value

The mean value (expected value) of a time series at time t is defined by the following

equation:

µx(t) = E[Xt] =

∫ ∞
−∞

xft(x)dx, (3.1)

where E[·] denotes the expectation and is calculated over all the possible states of

X.

Autocovariance Function

The autocovariance function constitutes the second moment product and is defined

as:

γX = cov(xi, xj) = E[(Xi − µi)(Xj − µj)], (3.2)

for all i and j 1. If there is no reference in which time series refers to, is possible to

write γ
X

(i, j) as γ(i, j). Note that γ
X

(i, j) = γ
X

(i, j), for all time points ti and tj [14].

The autocovariance function defines the linear dependence between two points on

the same series at different times. If the autocovariance γ
X

(i, j) = 0, then there is no

linear correlation between Xi and Xj, but there may be some dependence structure

between them. From the Equation (3.2), it transpires that the autocovariance is the

same as the variance for i = j,

γ
X

(i, i) = E[(Xi − µi)2] = var(Xi). (3.3)

Covariance for Linear Combinations

If two random variables U, V are a linear combination of random variables of {Xj},
and {Uk}, i.e.

1Note that in time series analysis the symbol γ is used for the covariance function, while in
geostatistics it is used for the variogram function.
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U =
m∑
j=1

αjXj (3.4)

and

V =
r∑

k=1

βkYk, (3.5)

then the covariance function is defined as

cov(U, V ) =
m∑
j=1

r∑
k=1

αjβk cov(Xj, Yj). (3.6)

Autocorrelation Function (ACF)

The autocorrelation is a useful tool in time series analysis, for defining repeated

patterns. Also autocorrelation assess dependence between the observations, consid-

ered that the time series is stationary [59]. The autocorrelation Function (ACF)

measures the linear predictability of the series at time t and is estimated by the

following equation:

ρ(s, t) =
γ(s, t)√

γ(s, s)γ(t, t)
(3.7)

From the above equation it follows that −1 ≤ ρ(s, t) ≤ 1. If Xt can be perfectly

predicted from Xs through a linear relationship Xt = β0 + βzXs, then the ACF will

be +1, when β1 > 0, and −1 when β1 < 0 [45].

3.2 Trend and Seasonality

Trend

The trend can be considered as a long–term change in the mean value of the time

series. It can be increasing, decreasing or constant over a time period. The trend

can be determined as a linear trend, an exponential trend, harmonic, etc. It should

be mentioned that to observe a trend in a time series, there must be a satisfactory

number of the observations. The trend must be removed from the time series to

ensure stationarity and to proceed with further stochastic analysis [51].
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Seasonality

Some time series present a repeated pattern. These patterns may be directly visible

from the time series, or can be observed only after inspecting the periodogram. The

periodgram is a useful tool to identify periodicity in time series. In a periodogram

plot the spectral density is presented. The spectral density is calculated using the

Fourier transformation on the Time Series after the trend is removed. Seasonality

shows up as high spectral power in the periodogram [59].

3.3 Stationarity

A time series is defined as stationary if the mean value and variance are constant in

the entire time, and the periodic variations have been removed. Also the autocovari-

ance γ(s, t) = cov(xs, xt) = E[(xs − µs)(xt − µt)] depends on s and t only through

their difference |s− t|. There are two forms of stationary: the strict stationarity and

the second-order (weak) [14, 59] stationarity (see section 2.4).

The autocovariance function for stationary time series is estimated as follows:

γ(h) = cov(Xt+h, Xt) = E[(Xt+h − µ)(Xt − µt)], (3.8)

and the autocorrelation (ACF) is expressed as

ρ(h) =
γ(t+ h, t)√

γ(t+ h, t+ h)γ(t, t)
=
γ(h)

γ(0)
. (3.9)

Testing Stationarity

There are several ways to test the time series stationarity. A simple test is to

examine the mean value of the sample. Mean value is calculated in different ranges

over the entire time series, and the result must be the same or similar in all the

ranges tested. Also the stationarity can be observed from the autocorrelation and

partial autocorrelation graph. If the autocorrelation tends to zero after some lags,

it is an indication that the time series is stationary.

Also the stationarity can be defined by the Kwiatkowski–Philips–Schmidt–Shin tests

(KPSS) [41]. KPSS tests the null hypothesis (i.e. the time series is stationary

around a determenistic trend) against the alternative. So small p–values suggest
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that the time series is not stationary and other approaches should be considered (i.e

differencing, decomposition etc). Finally, to check the stationarity, the Augmented–

Dickey–Fuller test (ADF) can be used. For ADF test the null hypothesis is that the

time series contains a deterministic component [21].

3.4 Decomposition of Time Series

In time series analysis, it is useful to plot the data set, to check if there is any

discontinuities in the time series, such as a sudden change of the value. To analyze

these cases it is important to separate the time series into homogeneous segments. If

outliers exist in the time series, it should be tested whether they must be removed.

Moreover, the time series should be checked for trend and seasonality [45]. So, the

typical decomposition model is defined by the following equation:

Xt = mt + st +Rt. (3.10)

In Equation (3.11), mt represents the trend component, st is the seasonal component

with known period d, and Rt is the stationary remainder.

If the trend and the seasonal component change within the time series, transfor-

mation of the data can be implemented so that the transformed data are more

compatible with the Equation (3.11).

The aim of estimating the deterministic components mt and st is to provide residuals

or noise component, which should be stationary [21].

3.4.1 Trend estimation

If the seasonal component is missing, then the model of Equation (3.11), becomes:

Xt = mt +Rt, (3.11)

There are two approaches to estimate the trend model. The first is to fit a polynomial

trend model, then to subtract the trend from the data, and create a time series of

the residuals, which should be stationary. The second approach is to estimate the

trend by differencing the time series, and find an appropriate stationary time series

[59].
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Trend Estimation by Fitting a Polynomial

For the first method a trend polynomial such as mt = α0 + α1t+ α2t
2 can be fitted

to the data X1, . . . , Xt. The parameters of the trend model α0, α1, α2 are estimated

by minimizing the sum of error squares
∑n

t=1(Xt −mt) using regression. The least

squares method can also for high order polynomial trend [21].

Trend Estimation with Differencing

To estimate the trend by differencing, the lag-1 difference operator ∇ to estimate

the trend is defined:

∇Xt = Xt −Xt−1 = (1−B)Xt, (3.12)

where B is the backward shift operator, BXt = Xt−1.

The powers of the parameters B and ∇ are defined by Bj(Xt) = Xt−j and ∇j(Xj) =

∇ [∇j−1(Xt)] , j ≥ 1, with ∇0(Xt) = Xt.

If the operator ∇ is used on a linear trend function like mt = c0 + c1t, then function

becomes ∇mt = mt − mt−1 = c0 + c1t − [c0 + c1(t − 1)] = c1 which is a simple

constant. In the same way, any polynomial trend of degree k, can be expressed as a

constant, with the operator ∇k.

3.4.2 Estimation of Seasonal Effects

To estimate the seasonal component in the Equation (3.11), it is assumed that the

seasonal is equal to st = st+d and
∑d

j=1 sj = 0, where d is the periodicity. There are

several methods to estimate the seasonal component. One of them is to estimate

the seasonality by differencing the time series, as in trend component (see Section

3.4.1). Also the smoothing approach is used, estimating the trend component first

and then the seasonal component after removal the trend. Another approach is to

fit a harmonic model to the time series (parametric approach) [21].

Smoothing Filter

In a set of observations x1, . . . , xn, the trend is estimated first. In order to eliminate

the seasonal component, the smoothing filter is used. It is obtained a time series

m̂t, representing the trend component as follows:
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m̂t =

q∑
i=−p

αiXt−i, (3.13)

where αi = 1
2p+1

represents the weights, p and q define the window.

In order the sum is defined in the entire time series, the Equation (3.13) is expressed

as follows:

m̂t =
0.5Xt−q +Xt−q+1 + . . .+Xt−q + 0.5Xt+q

d
, q < t ≤ n− q, (3.14)

where d is the periodicity.

As such, the the seasonal component st is defined by:

ŝt = Xt − m̂t (3.15)

Finally, the seasonal component is subtracted from the original data. Afterwards,

the residuals used for prediction and estimation are given by R̂t = Xt − m̂t − ŝt.

Parsimonious Decomposition

In this method a linear trend model, a harmonic model and a remainder term are

used to decompose the time series [21]:

Xt = β0 + β1t+ β2 sin(2πt) + β2 cos(2πt) +Rt. (3.16)

The above model has four unknowns that can be estimated with the least squares

method, or robust fitting methods.

3.5 Time Series Models

Models of time series represent different stochastic methods and can be used to

forecast future values in time series. The common models are Autoregressive (AR)

model, the Moving Average model (MA), their combination, i.e., the Autoregressive

Moving Average model (ARMA), the Autoregressive Integrated Moving Average
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(ARIMA) Model and the Seasonal Autoregressive Integrated Moving Average mod-

els (SARIMA).

3.5.1 Autoregressive Model (AR)

Autoregressive model (AR) is a stochastic process, in which a value of the series,

Xt can expressed as a function of p past values, Xt−1, . . . , Xt−p. The order of the

model is p, i.e the lagged values required to forecast the current value [51]. An

autoregressive model of order p, AR(p) is expressed as

Xt = φ1Xt−1 + φ2Xt−2 + . . .+ φpXt−p + εt, (3.17)

where Xt is a series, εt is white noise with variance σ2
ε , and φ1, φ2, . . . , φp are con-

stants.

In Equation (3.17) E[Xt] is considered as E[Xt] = 0, but if the mean value is not

zero, the above equation is expressed as:

Xt = α + φ1Xt−1 + φ2Xt−2 + . . .+ φpXt−p + εt, (3.18)

where α = µ(1− φ1 − . . .− φp). Also the AR(p) can be written using the backshift

operator B, so the Equation (3.17) is expressed as

(1− φ1B − φ2B
2 − . . .− φpBp)Xt = εt, (3.19)

or concisely φ(B)Xt = εt, where the φ(B) is the autoregressive operator. This

polynomial is used to check the stationarity of the time series Xt. If the polynomial’s

roots lie outside of the unit circle, the AR(p) time series is stationary.

The AR(1) Model

If the order of the autoregression model is equal to one, the Equation 3.17 is expressed

as Xt = φXt−1 + εt. Also an AR(1) model can be expressed as a linear process as

follows

Xt =
∞∑
j=0

φjεt−j. (3.20)
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The AR(1) is stationary with zero mean value, i.e.,

E(Xt) =
∞∑
j=0

φj E(εt−j) = 0. (3.21)

The autocovariance function is given by

γ(h) =
σ2
εφ

h

1− φ2
, h ≥ 0, (3.22)

where the depedence between the observations decreases when the lag increases,

when |φ| < 1.

The autocorrelation the function by means of

ρ(h) =
γ(h)

γ(0)
= φh, h ≥ 0. (3.23)

3.5.2 Moving Average Model (MA)

Moving Average model(MA), is a linear combination of the current innovation term

ε, plus the q most recent ones εt−1, . . . , εt−q [45]. The moving average model of order

q, i.e., MA(q), is defined as follows:

Xt = εt + θ1εt−1 + θ2εt−2 + . . .+ θqεt−q, (3.24)

where εt ∼ εn(0, σ2
ε ), and θ1, θ2, . . . , θq, (θq 6= 0) are parameters.

The moving average model could also be written using the backshift operator B as:

θ(B) = 1 + θ1B + θ2B
2 + . . .+ θqB

q. (3.25)

The MA model is always stationary, because it depends only on the parameters θ

and the term εt, which represents the white noise.

The MA(1) model

The MA first order is defined as Xt = εt + θεt−1, with mean value E(Xt) = 0. The

autocovariance is expressed as:
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γ(h) =

{ (1 + θ2)σε
2, h = 0,

θσ2
ε , h = 1,

0, h > 1,

(3.26)

and the autocorrelation function is expressed as:

ρ(h) =

{
θ

(1+θ2)
, h = 1,

0, h > 1.
(3.27)

3.5.3 Autoregression-Moving Average Model (ARMA)

These models are a combination of the autoregressive and the moving average mod-

els, for stationary time series [59]. An ARMA (p,q) model is defined as:

Xt = φ1Xt−1 + . . .+ φpXt−p + εt + θ1εt−1 + . . .+ θqεt−q, (3.28)

where φp 6= 0, θq 6= 0, and σ2
w > 0. The order of model is defined by the order of

autoregressive model and moving average model, p and q respectively.

If Xt has E[Xt] = µ 6= 0, then α = µ(1 − φ1 − . . . − φp) , and the ARMA model is

expressed as:

Xt = α + φ1Xt−1 + . . .+ φpXt−p + εt + θ1εt−1 + . . .+ θqεt−q, (3.29)

where εt ∼ εn(0, σ2
ε ).

The ARMA models can also be written using the AR operator, and the MA oper-

ator, so it is easier to investigate them. So the ARMA(p,q) model is expressed as

φ(B)Xt = θ(B)εt.

As the AR models, ARMA models can also expressed as a one–sided linear process,

such as:

Xt =
∞∑
j=0

ψεt−j = ψ(B)εt, (3.30)

where ψ(B) =
∑∞

j=0 ψjB
j, and

∑∞
j=0 |ψj| <∞.
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The ARMA(1,1) Model

The ARMA(1,1) model is defined as: Xt = φXt−1 + θεt−1 + εt, with mean value,

with mean value E[Xt] = 0.

The autocovariance function is expressed as:

γ(h) = cφh, h = 1, 2, . . . , (3.31)

and the autocorrelation function is defined as:

ρ(h) =
γ(h)

γ(0)
=

(1 + θφ)(φ+ θ)

1 + 2θφ+ θ2
φh−1, h > 1. (3.32)

3.5.4 The Autoregressive Integrated Moving Average (ARIMA)

Model

ARIMA models are used to describe series with a trend, which can be removed by

differencing. These differences can be described with an ARMA (p,q). So if the

dth order difference of a Xt is an ARMA(p,q) model, then it can described by an

ARIMA(p,q,d) model [45]. An ARIMA(p,q,d) model is described with the backshift

operator B as:

Φ(B)(1−B)dXt = Θ(B)εt. (3.33)

3.5.5 Seasonal Autoregressive Model (SAR)

A Seasonal Autoregressive model (SAR), of order p is defined as:

Xt = Φ1Xt−1 − Φ2Xt−2 − . . .− ΦpXt−p + εt, (3.34)

where εt ∼ εn(0, σ2
ε ), and Φ1,Φ2, . . . ,Φt−p are constants.

The SAR model is stationary process, if the solutions of the seasonal characteristic

equation is equal to 1 in absolute value. SAR is a specific case of an AR model of

order p = Ps. In this case all φ coefficients are equal to zero, except at the seasonal

lags s, 2s, . . . , Ps.
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The SAR(1) model

The first order seasonal autoregressive with annual seasonal period (s=12 months)

is defined as:

Xt = ΦXt−12 + εt, or (1− ΦB12)Xt = εt. (3.35)

For the SAR(1) model, using the techniques of seasonal AR(1), so the autocovariance

is defined as:

{ γ(0) = σε
1−Φ2

γ(±12h) = σ2
εΦh

1−Φ2 , h = 0, 1, 2, . . . ,

γ(h) = 0, otherwise.

(3.36)

The autocorrelation is estimated as:

ρ(±12h) = Φh. (3.37)

3.5.6 Seasonal Moving Average Model (SMA)

In general a Seasonal Moving Average model (SMA), of order Q with seasonal period

is defined as:

Xt = εt + Θ1εt−1 −Θ2εt−2 − . . .−Θqεt−q, (3.38)

where εt ∼ εn(0, σ2
ε ), and Θ1,Θ2, . . . ,Θt−q are constants.

SMA is a stationary process with an autocorrelation function, that is not nonzero

only at the seasonal lags s, 2s, . . . , Qs. The SMA is a specific case of an MA model

of order q = Qs, in which all θ coefficients are equal to zero, except at the seasonal

lags s, 2s, . . . , QS.

The SMA(1) model

The first order seasonal moving average model with annual seasonal period (s=12

months) is defined as:
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Xt = εt + Θεt−12. (3.39)

For the SMA(1) model, using the techniques of seasonal MA(1), so the autocovari-

ance is defined as:

{ γ(0) = (1 + Θ2)σ2
ε

γ(±12h) = Θσ2
ε , h = 0, 1, 2, . . . ,

γ(h) = 0, otherwise.

(3.40)

The autocorrelation is estimated as:

ρ(±12h) =
Θ

1 + Θ2
. (3.41)

3.5.7 Seasonal ARIMA models (SARIMA)

In time series like environmental data seasonal fluctuations are often encountered.

As such, it is necessary to introduce autoregressive and moving average models

which determined with seasonal reoccurence (seasonal lags) [51, 59]. These models

are known as pure seasonal autoregressive and moving average model ARMA(P,Q)S,

are expressed as:

ΦP (BS)Xt = ΘQ(BS)εt, (3.42)

where the operators ΦP (BS) and ΘQ(BS) are the seasonal autoregressive and sea-

sonal moving average operators for orders P,Q, respectively, with seasonal period

S, and they are expressed as:

ΦP (BS) = 1− Φ1(BS)− Φ2(B2S)− . . .− ΦP (BPS), (3.43a)

ΘQ(BS) = 1−Θ1(BS)−Θ2(B2S)− . . .−ΘQ(BQS). (3.43b)

Usually the seasonal and non–seasonal operators combined in a multiplicative sea-

sonal autoregressive moving average model defined as ARMA (p, q) × (P,Q)S and

expressed as:
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ΦP (BS)φ(B)Xt = θQ(BS)θ(B)εt. (3.44)

The multiplicative seasonal autorgressive integrated moving average model (SARIMA)

is defined as:

ΦP (BS)φ(B)∇D
S∇dXt = δ + ΘQ(BS)θ(B)εt, (3.45)

where εt is the Gaussian white noise. The general form is defined as ARIMA

(p, d, q)× (P,D,Q)S. The polynomials φ(B), and θ(B) represent the autoregressive

and moving average components of orders p, q respectively. The polynomials Φ(B),

and Θ(B) are the seasonal autoregressive and seasonal moving average component

with orders P,Q respectively. The ordinary difference component is ∇d = (1−B)d,

and the seasonal difference component is given by ∇D
S = (1−BS)D.

The SARIMA (0, 0, 1)× (1, 0, 0)12 model

A SARIMA model (0, 0, 1)× (1, 0, 0)12 is denoted as:

Xt = εt + εt−1θt−1 + ΦXt−12, (3.46)

where | θ |< 1 , and | Φ |< 1.

The autocovariance is calculated as:

γ(0) =
1 + θ2

1− Φ2
σ2
ε , (3.47)

and the autocorrelation as:

{ ρ(12h) = Φh, h = 1, 2, . . . ,

ρ(12h− 1) = ρ(12h+ 1) = θ
1+θ2

Φh, h = 0, 1, 2, . . . ,

ρ(h) = 0, otherwise.

(3.48)

3.6 Model Selection

The optimal time series model is usually chosen based on Akaike’s Information

Criterion, Akaike’s Bias Corrected Information Criterion, and Bayesian Information
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Criterion. These criteria measure the adequacy of the fit by balancing against the

number of the parameters in the model [59].

Akaike’s Information Criterion (AIC)

The Akaike’s Information Criterion is estimated as follows:

AIC = 2k − 2 log(L̂), (3.49)

where L̂ is the maximum likelihood estimator, and k is the number of the model’s

parameters [3].

The minimum AIC identifies the optimal model, yielding by the k. The selection of

the model is implemented by minimizing the L̂. The L̂ decreases as the k increases.

Akaike’s Bias Corrected Information Criterion (AICc)

The Akaike’s Bias Corrected Information Criterion (AICc) is estimated as follows :

AICc = AIC +
2k2 + 2k

n− k − 1
(3.50)

where k is the number of the model’s parameters, and n is the number of the

observations [13].

The AICc is a corrected form of Equation (3.49), based on small distributional

results or the linear regression.

Bayesian Information Criterion (BIC)

The Bayesian Information Criterion (BIC) is estimated as:

BIC = k log(n)− 2 log(L̂), (3.51)

where n is the number of the observations, k is the number of the parameters, and L̂

is the maximum likelihood [56]. The BIC is usually larger than AIC, therefore tends

to choose models with small orders. In large samples the BIC choose the optimal

order, while AICc choose the highest order in small samples.
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3.7 Forecasting

The main goal of time series analysis is to predict the future evolution of the data,

i.e the values Xn+m. The forecasting is implemented based on the known values of

a time series X1:n = X1, X2, . . . , Xn. The above models are using to implemented

the forecasts. For this section is though that the time series is stationary, and

the parameters of the above models are known [51]. The conditional expectation

E[Xn+m − g(X1:n)]2, where g(X1:n) is a function of the observations, minimizes the

mean square error predictor of Xn+m, which is expressed as:

X t
n+m = E[Xn+m|X1:n]. (3.52)

3.7.1 Forecasting AR(p)

Considering a AR(p) as in Equation (3.17) the expectation for forecast is expressed

as follows:

E[Xn+k|X1, . . . , Xn], (3.53)

and the variance as:

Var[Xn+k|X1, . . . , Xn], (3.54)

where k is the step forecast.

The first step forecast is estimated as:

X̂n+1;n = φ1xn + . . .+ φpxn+1−p, (3.55)

and the k–step forecast is estimated as:

X̂n+k;n = φ1X̂n+k−1;1:n + . . .+ φpX̂n+k−p;1:n. (3.56)
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Forecasting AR(1)

It is assumed a stationary autoregressive model first order AR(1), Xt = φXt−1 + εt,

where εt ∼ εn(0, σ2
t ). The conditional expectation at time n+ 1 is given by:

E[Xn+1|X1, . . . , Xn] = φ1xn. (3.57)

So the predictor is denoted as:

X̂n+1;1:n = E[Xn+1|X1, . . . , Xn]

= E[φXn+k−1 + εn+k|X1, . . . , Xn]

= E[φXn+k−1|X1, . . . , Xn]

= . . .

= φk1xn.

(3.58)

As it is observed the predictor is depended on the last observation and it tend to

zero exponentially.

The confidence interval is based on:

V ar[Xn+k|X1, . . . , Xn] =

(
1 +

k−1∑
j=1

φ2j
1

)
σ2
ε . (3.59)

It should be noticed that as k tends to infinity, the forecast converges to zero and

the conditional variance to σ2
X .

3.7.2 Forecasting MA(q)

For simplicity is considered a MA(1), i.e. Xt = εt + θεt−1. The conditional expecta-

tion is E[Xn+k;1:n|X1, . . . , Xn] [21]. From the expectation is noticed that for k > 2

the predictor is equal to zero. So it is necessary the MA model to be expressed as

AR(∞), i.e.:

En =
∞∑
j=0

(−β1)jXn−j. (3.60)

The predictor is estimated as:
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X̂n+1;1:n =
∞∑
j=0

β̂1(−β̂1)jXn−j. (3.61)

In general in MA(q) models, all the forecast for k > q, except the case k 6 q, will

be equal to zero.

3.7.3 Forecasting ARMA(p,q)

In ARMA(p,q) models there is the same issue as in MA(q), so the predictor is

estimated as:

X̂n+k;n

p∑
i=1

φi E[Xn+k−i|Xn
−∞] +

q∑
j=1

θi E[εn+k−j|Xn
−∞], (3.62)

where the AR and MA conditional expectations are:

E[Xt|Xn
−∞] =

{
xt t 6 n

X̂t;1:n, t > n,
(3.63)

E[εt|Xn
−∞] =

{
εt 0 < t 6 n

0, t > n.
(3.64)

3.7.4 Forecasting ARIMA(p,d,q)

It is assumed a times series Xt which is fitted with an ARIMA(p,1,q). The differences

which are taken is first order, and the remainder is Yt = Xt −Xt−1. The remainder

follows as ARMA(p,q). Hence, the predictors are obtained as Ŷn+1;1:n, . . . , Ŷn+k;1:n.

[14]. The k–step forecast for the initial time series has a trend, based on X̂n+1;1:n =

Ŷn+1;1:n +Xn. The predictors X̂n+1;1:n has to be integrated as:

X̂n+1;1:n = Ŷn+1;1:n +Xn,

X̂n+1;1:n = Ŷn+2;1:n + X̂n+1;1:n = Xn + Ŷn+1;1:n + Ŷn+2;1:n,
...

X̂n+k;1:n = Xn + Ŷn+1;1:n + . . .+ Ŷn+k;1:n.

(3.65)

As it noticed from the Equation 3.65, the k–step forecast for the initial data is

the cumulative sum of the predicted terms of the differenced data. The prediction
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interval is increasing indefinitely in respect of increasing horizon k.

3.7.5 Forecasting SARIMA(p,d,q)(P,D,Q)S

In order to forecast a SARIMA model is necessary for the trend and the seasonal

component to be removed. The trend and the seasonal components can be forecasted

with the methods described above, based on the last observations. The remainder of

the time series can be fitted with an ARMA model, and the forecast is implemented,

as mentioned above. In forecasts must be added the predictors of the trend, and the

seasonal component.
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Chapter 4

Data Analysis

4.1 Study Area

The study area is the country of Netherlands, which is located in Northwestern

Europe. The country comprises 12 provinces that border with Germany to the

east, to Belgium to the south and the North Sea to the northwest, with maritime

borders in the North Sea with Belgium, Germany, and the United Kingdom. The

three islands of Caribbean Sea (Saint Eustatius, Saba, and Bonaire), along with

Netherlands, consists a constituent country of the Kingdom of the Netherlands. The

Caribbean islands are not considered in this study. The largest cities are Amsterdam

(the capital city), Rotterdam, The Hague, Utrecht, and Eindhoven.

Netherlands is also known as one of the “Low Countries”, because of the low elevation

and flat topography. Only 50% of its land is higher than 1 meter above the sea level

while 17% is below the sea level. The country extends over a surface area of 41543

km2, with a population 17.30 million people as of November 2019. Netherlands

is one of the most densely populated countries in the world, ranked as the 30th

most densely populated country and the one of the largest exporters of food and

agricultural products, due to fertile soil, mild climate, and intensive agriculture [48].

The land covers 33893 km2, of the total area of the country while the rest (i.e. 7650

km2) is covered by water. The lowest point of the Netherlands is Zuidplaspolder (at

−7 m below sea level), and the highest point on European mainland is Vaalserberg

(322.7 m above the sea level); including the Caribbean sea colonies, the highest point

is the Mount Scenery on Saba (887 m above the sea level).



Study Area

The data set implied measurements of potential wind generating capacity from 46

locations around the Netherlands. That is how a 1KW wind turbine woul produce

over an hourly time interval. Raw data were wind speeds at 80-m elevation equal

to the height of the GE wind turbine model. From wind speeds, the equivalent

hourly wind power generation assuming a sigmoid power curve is estimated [61].

The geographical distribution of the stations is shown in Figure 4.1. Some of the

stations are located offshore. The available data span the six-year period 2001–

2006, ignoring the leap days. There are no gaps (missing points) in the dataset [61].

This study focuses on the analysis of the spatial and temporal features the average

monthly wind power based on the installed power data.

For the temporal analysis, the monthly average power production in each location

is calculated. Thus, a coarse-grained time series with 72 time instants (6 years

× 12 months) is generated. In this study two locations for study are presented,

specifically: the onshore station 1 , and offshore station 31. For the spatial analysis,

the mean annual power production in each station is calculated.

Figure 4.1: Map of the Netherlands showing the locations of the 46 wind power
stations both onshore and offshore (black circles).
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4.2 Temporal Analysis of Wind Power at Onshore

Station

The time series of onshore station is shown in Figure 4.2, and its moments in Ta-

ble 4.1. In Figure 4.2 it can be seen that the highest installed power production is

observed in the latter months of the year. Hence the time series present an annual

seasonality, which is described below.

Figure 4.2: Time series of average monthly power production. The horizontal axis
represents time (years: 2001–2006) and the vertical axis shows the installed power
in MW.

Table 4.1: Summary statistics for wind power production at Onshore Station. “St.
dev.” stands for “standard deviation.” All statistics are measured in MW except
for “skewness” which is dimensionless.

Onshore Station Mean Min Max Median St.dev. Skeweness

Power produced 0.51 0.16 1.22 0.50 0.19 0.74

In order to determine the best probability distribution function to model the time

series, the Weibull, lognormal, and normal models are tested. The best model is

chosen using the maximum likelihood, which consists of finding the parameters that
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maximize the log-likelihood, Akaike’s information criterion (AIC), and Bayesian

information criterion (BIC). The results for onshore station are shown in Table 4.2.

The Weibull distribution fits well the time series of 31 stations. The lognormal

distribution provides a better fit for 11 stations, while the normal distribution is

the best fit for 4 stations. The time series which are fitted with the lognormal

distribution are transformed by calculating the logarithm of the values. For the

time series that follow the Weibull distribution, we decided to not transform the

data because the empirical distribution was already close to the normal distribution.

Table 4.2: Values of different information criteria for three probability distribution
models: Weibull, lognormal and normal. AIC: Akaike’s Information Criterion; LL:
logarithm of the likelihood; BIC: Bayesian Information Criterion. The optimal model
(Weibull) has the lowest values of AIC and BIC and the highest value of LL.

Distribution AIC LL BIC

Weibull −34.29 19.14 −29.73

lognormal −33.51 18.75 −28.96

Normal −33.01 18.51 −28.46

Figure 4.3 displays the probability density histogram with the theoretical Weibull

pdf (top left), the Q-Q plot between the empirical data and the model (top right),

the theoretical and empirical cumulative distribution functions (bottom left), and

the respective probability (P-P) plot (bottom right). As is evidenced in the plots,

the density plot of Weibull is close to the Normal distribution. Hence, we decided

to not implement a transformation of the wind power data. The same approach is

applied to the other stations of our study as well. The parameters of the Weibull

distribution are presented in the Table 4.3.
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Figure 4.3: Top left: empirical probability density histogram fitted to the theoretical
Weibull distribution. Top right: Q-Q plot of the the theoretical versus the empiri-
cal values. Lower left: empirical and theoretical cumulative distribution functions.
Lower right: Probability (P-P) plot.

Table 4.3: Weibull distribution parameters (shape and scale) and their error esti-
mates at onshore station based on maximum likelihood estimates.

Shape Scale

Onshore Station 2.86± 0.26 0.57± 0.02

The wind power time series at Onshore Station seems to be stationary, because

the mean value does not vary in the entire time period. This was tested with the

Augmented Dickey-Fuller test (see Section 3.3). The ADF test for the data admits

the alternative hypothesis, i.e., that the time series is stationary. In Figure 4.4, it is

shown that the wind power generation is autoregressive, due to the spike at order 1

and a cycling evolution of autocorrelations.
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Figure 4.4: The autocorrelation function (ACF) for the average monthly wind power
production at Onshore Station. The horizontal axis represents the time lag, while
the vertical axis measures the autocorrelations.

4.2.1 Seasonal Decomposition

In order to find if the time series contains a seasonality component, the periodogram

is calculated. Each step of the time series represents a month, so an annual period-

icity corresponds to a period of 12 in the current data set. The frequency and the

time period are reciprocals of each other, so a period of 12 months corresponds a

frequency of 1/12 (or 0.083). As evidenced in the periodogram plot in Figure 4.5,

the data exhibit annual seasonality.
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Figure 4.5: Periodogram of monthly average wind power at Onshore Station. The
horizontal axis represents the frequency and the vertical axis the value of the peri-
odogram.

The volatility of the data for seasonal variation is defined by estimating the box-plot

of the squared instant wind power production in Onshore production. In Figure 4.6

each box represents the squared wind power for each month for the six years. As it

is shown in Figure 4.6, some outliers are existed, especially in the winter months.

Hence, we can conclude that some volatility is indeed present. The same pattern is

observed in the other stations.
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Figure 4.6: Box-plot of the squared instant wind power production. The horizontal
axis represents the time in months. The vertical axis represents the squared instant
wind power production.

For the prediction of average monthly power production in subsequent times it is

necessary to model the seasonality inherent in the data. It is important to make a

distinction between two conceptually- different types of seasonality, i.e deterministic

and stochastic. In this study two approaches are used for this purpose. In the first

approach, a SARIMA model is fitted to the original data (or to their logarithms

for the lognormally distributed data) and is used to implement the prediction. In

the second approach, a seasonal harmonic model [see Equation (4.1)] is estimated

and extracted from the data, in order to remove the deterministc seasonality and

then the residuals are fitted to a SARIMA model, for the sthochastic seasonality.

This approach is implemented because SARIMA models cannot explicitly identify

the deterministic process of seasonality. The second approach is used for onshore

station.

st = µ+ A sin

(
2πt

T

)
+B cos

(
2πt

T

)
, (4.1)

where µ, A,B are constants, T is the period (one year), and t is the time. The
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estimates for the seasonal model parameters of the average monthly power of on-

shore station are presented in Table 4.4. Based on these results, the cosine term is

statistically significant at the 5% level while the sine term is not.

Table 4.4: Seasonal model parameters of average monthly wind power at Onshore
Station. The Standard Error (SE) for a given variable is given by the Residual
Standard Error divided by the square root of the sum of squares for the particular
variable. The p-value is used to test the null hypothesis that the respective coefficient
is zero.

coefficient estimate p-value SE

µ 0.51 2 ×10−16 0.02

A 0.04 0.09 0.03

B 0.14 2.81 ×10−7 0.03

4.2.2 Estimation of SARIMA Model

In order to predict the average monthly wind power in the 12 months (Jan-2007 to

Dec-2007) following the study period, a SARIMA model (p,d,q)(P,D,Q)(S) and the

harmonic model determined by Equation (4.1) are used. Several SARIMA models

were tested, including models with d=1, or D=1, but it is observed that there were

remaining autocorrelations, and in some cases the Normal distribution didn’t fit the

residuals. Also the best model was chosen based on AIC. SARIMA models with

d=1 or D=1 had higher AIC than the chosen models. As such, our model selection

is confined within the SARMA family.

First, the harmonic model is subtracted from the data. Then, several SARIMA

models are tested on the residuals. The best SARIMA model was chosen based

on the Akaike information criterion (AIC) and the Bayesian information criterion

(BIC). The values of the information criteria for models of different orders are shown

in Table 4.5. The optimal model is a SARIMA (0,0,0)(0,0,1)(12). The combination

of the SARIMA model for the residuals and the harmonic model for the periodicity

will be used for forecasting.

As shown in Figure 4.7a, there is no remaining correlation in the residuals, after

the harmonic and the SARIMA model are fitted. In Figure 4.7b the values of

autocorrelations are within the boundaries (blue lines), i.e., in the region where the

autocorrelation is considered negligible (statisticallly insignificant). The absence of

autocorrelation in the residuals is also shown in Figure 4.7d with p-values in Ljung-
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Table 4.5: Results of information criteria for several SARIMA models
(p,d,q)(P,D,Q)(S), where p is the AR order, d is the difference order, q is the MA
order, P is the Seasonal AR order, D is the seasonal difference, and Q is the Sea-
sonal MA order. AIC is the Akaike information criterion, AICc is the AIC with a
correction for finite sample sizes, BIC is the Bayesian information criterion and the
value. The best model is the one with the lowest values for the information criteria.

model AIC AICc BIC

(0,0,0) (0,0,1) (12) −0.87 −0.87 −0.74

(0,0,1)(1,0,2) (12) −0.82 −0.81 −0.63

(1,0,1)(1,0,2)(12) −0.80 −0.79 −0.58

(1,0,2)(2,0,2)(12) −0.75 −0.75 −0.50

Box, in which they are above the critical threshold of 0.05. Also the residuals are

close to the Gaussian distribution, according to the normal distribution plot. The

estimated parameters for the SARIMA model are presented in Table 4.6.
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(a) (b)

(c) (d)

Figure 4.7: SARIMA fitted model for installed power production. In Figure 4.7a
is the time series of residuals of installed power production, in Figure 4.7b is the
autocorreltation function, in Figure 4.7c is the normal distribution plot, and in
Figure 4.7d are the p-values for the Ljung-Box statistic for the autocorrelation test.

Table 4.6: SARIMA model parameters for the residuals of installed power production
of Onshore Station. The SE is the standard error of the estimates and the p-value is
used in the context of null hypothesis testing of zero correlation in order to quantify
the idea of statistical significance of evidence.

model Estimated coefficient SE p-value

SMA(1) −0.25 0.13 0.05

4.2.3 Power Production Forecasting

Using the fitted SARIMA model, the monthly average wind power production for

the year (2007) following the study’s period is predicted. The harmonic model,
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which is removed from the initial time series, is added to the SARIMA predictions.

In Figure 4.8 the original data (blue line) and the predictions (red line) are shown.

Generally, in SARIMA models, the confidence intervals are estimated based on the

normal distribution. In this thesis, although most of the stations are fitted to the

Weibull distribution, the distributions are close to the normal. So for this thesis,

the confidence intervals are calculated from the data’s distribution. Thus, in Figure

4.8 the green lines represent the interval of two standard deviations around the

prediction (95.45% confidence interval), while the black lines represent the 68.27%

confidence interval (based on one standard deviation and the normal probability

assumption).
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Figure 4.8: Predictions of monthly average wind power production for 2007 based
on the data for the period 2001–2006. The blue line represents the original data,
and the red line represents the SARIMA predictions. The green lines represent
the interval of two standard deviations around the prediction (95.45% confidence
interval), while the black lines represent the 68.27% confidence interval (based on
one standard deviation and the normal probability assumption).

In Figure 4.8 is observed that after the three first predictions, the rest of the predic-

tions tend to the harmonic model of the installed power production. This behavior

is expected, due to the fitted model being a seasonal moving average model. The

first prediction (January 2007) is much lower than the last data value (December

2006). Such behavior is observed for the entire time period (2001-2006), i.e for each

year, the monthly power production increases during the later months of the year

and sharply decreases in the first months of the year. In the last few months of the

predictions this change is not captured sufficiently because the model trends to the

mean.
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4.2.4 Assessment of Model Performance

The method of cross-validation is used for the assessment of the temporal model’s

performance. One-step ahead forecast is used to validate the model’s performance.

Specifically, the first half of the time series (36 values) is chosen for the initial training

set and then one-step ahead forecasting is used to predict the power production

in the following month. This prediction uses the seasonal harmonic model and

the SARIMA model chosen before. The coefficients of the SARIMA model are

estimated from the training set. The prediction error is estimated as the deviation

of the original series and the predictions from the cross-validation. The validation

measures are presented in Table 4.7.

Table 4.7: Cross validation performance measures calculated through leave-one-
out cross validation for the monthly average wind power of Onshore Station. ME:
mean error; MAE: mean absolute error; RMSE: root mean squared error; ErrMin:
minimum error; ErrMax: maximum error.

ME (MW) MAE (MW) RMSE (MW) ErrMin(MW) ErrMax(MW)

−0.006 0.12 0.14 −0.24 0.34

The low value of the mean error indicates the absence of bias. The root mean square

error is 27% of the average monthly wind power in Onshore Station.

The prediction error for the 36 values (January 2004–December 2006) was calcu-

lated and the histogram is shown in Figure 4.9. In this station the errors follows the

bimodal distribution, because there are two peaks in the histogram. This indicates

that there are two groups of errors, which could mean that some predictions are over-

estimated or underestimated. As it shown in Figure 4.9 errors in the range between

−0.2 MW and −0.1 MW have the highest frequency, thus we have underestimation.
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Figure 4.9: Histogram of the prediction error based on one-step ahead forecast cross-
validation for Onshore Station.

4.3 Temporal Analysis of Wind Power at Offshore

Station

The time series of station 31 (offshore station) is shown in Figure 4.10, and its

moments in Table 4.8. In Figure 4.10 it can be seen that the highest installed power

production is observed in the latter months of the year. Hence the time series present

an annual seasonality, which is described below.
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Figure 4.10: Time series of average monthly power production. The horizontal axis
represents time (years: 2001–2006), and the vertical axis shows the installed power
in MW.

Table 4.8: Summary statistics for the installed power production of Offshore Station.
“St. dev.” stands for “standard deviation.” All the statistics are measured in MW
except for skewness which is dimensionless.

Offshore Station Mean Min Max Median St.dev. Skewness

Installed Power

Production
0.68 0.25 1.32 0.68 0.22 0.27

In order to determine the best probability distribution function to model the the

time series, the same processes as in Onshore Station is implemented. The Weibull

distribution fits well the time series of Offshore Station. The results of of information

criteria for distribution fitting for Offshore Station are presented in Table 4.9.

Figure 4.11 displays the probability density histogram with the theoretical Weibull

pdf (top left), the Q-Q plot between the empirical data and the model (top right),

the theoretical and empirical cumulative distribution functions (bottom left), and

the respective probability (P-P) plot (bottom right). As is evidenced in the plots,

the density plot of Weibull is close to the normal distribution. Hence we decide

to not implement a transformation of the wind power data. The same routine is
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Table 4.9: Values of different information criteria for the three probability distribu-
tion models: Weibull, lognormal, and normal. AIC is Akaike’s Information Criterion.
LL is the logarithm of the likelihood. BIC is the Bayesian Information Criterion.
The optimal model (Weibull) has the lowest values of AIC and BIC and the highest
value of LL.

Distribution AIC LL BIC

Weibull −10.21 7.10 −5.66

LL −6.21 5.10 −1.65

Normal −9.45 6.72 −4.9

applied to the other years as well. The parameters for the Weibull distribution are

presented in Table 4.10.

Figure 4.11: Top left: empirical probability density histogram fitted to the the-
oretical Weibull distribution. Top right: Q-Q plot of the the theoretical versus
the empirical values. Lower left: empirical and theoretical cumulative distribution
functions. Lower right: Probability (P-P) plot.

The wind power time series at Offshore Station seems to be stationary, because the

mean value does not vary in the entire time period. This was tested with the ADF
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Table 4.10: Weibull distribution parameters (shape and scale) and their error esti-
mates at Offshore Station based on maximum likelihood estimates.

Shape Scale

Offshore Station 3.34± 0.3 0.76± 0.03

test (see section 3.3). The ADF test for the data admits the alternative hypothesis,

i.e., that the time series is stationary. despite to the autocorrelation figure, which it

seems that the autocorrelation is dependent from the lag, as it shown in Figure 4.12

.

Figure 4.12: The autocorrelation function for the average monthly wind power pro-
duction of Offshore Station. The horizontal axis represents the time lag, while the
vertical axis measures the autocorrelations.

4.3.1 Seasonal Decomposition

In order to find if the time series contains a seasonality component, the periodogram

is calculated. Each step of the time series represents a month, so an annual peri-

odicity corresponds to a period of 12 in the current data set. The frequency and

the time period are reciprocals of each other, so a period of 12 months correspond a

frequency of 1/12 (or 0.083). As evidenced in the periodogram plot in Figure 4.13,

the data exhibit annual seasonality.
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Figure 4.13: Periodogram of monthly average wind power at Offshore Station. The
horizontal axis represents the frequency and the vertical axis the value of the peri-
odogram.

The volatility of the data for seasonal variation is defined by estimating the box-plot

of the squared instant wind power production in Offshore production. In Figure 4.14

each box represents the squared wind power for each month for the six years. As it

is shown in Figure 4.14, some outliers are existed, especially in the winter months.

Hence, we can conclude that some volatility is indeed present. The same pattern is

observed in the other stations.
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Figure 4.14: Box-plot of the squared instant wind power production. The horizontal
axis represents the time in months. The vertical axis represents the squared instant
wind power production.

In order to model the seasonality inhernt in the data at Offshore Station, the first

decomposition method is applied as described in Section 4.2.1. As such, the time

series is decomposed simply by fitting a SARIMA model.

4.3.2 Estimation of SARIMA Model

In order to predict the average monthly power in the 12 months (Jan 2007 to Dec

2007), following the study period, a SARIMA model (p,d,q)(P,D,Q)(S) is fitted to

the original data. Several SARIMA models are tested, and the best was chosen

based on the Akaike information criterion, and the Bayesian information criterion.

The values of the information citeria for the models of different orders are shown

in Table 4.11. The optimal model is a SARIMA (0,0,1)(1,0,1)(12). The plot of the

model is shown in Figure 4.15.

As it shown in Figure 4.15a there is no remaining correlation in residuals, after the

SARIMA model is fitted. In Figure 4.15b the values of autocorrelations are within

the boundaries (blue lines), i.e in the region where the autocorrelation is considered
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Table 4.11: Results of information criteria for several SARIMA model
(p,d,q)(P,D,Q)(S), where p is the AR order, d is the difference, q is the MA or-
der, P is the Seasoanl AR order, D is the seasonal difference, and Q is the Seasonal
MA order. The AIC is the Akaike information criterion, the AICc is the AIC with
a correction for finite sample sizes, and BIC is the Bayesian information criterion.
The best model is the one with the lowest values.

Model AIC AICc BIC

(1,0,0) (1,0,1) (12) −0.37 −0.37 −0.25

(0,0,1)(1,0,1) (12) −0.47 −0.46 −0.31

(1,0,0)(2,0,0)(12) −0.46 −0.46 −0.31

(1,0,2)(2,0,2)(12) −0.41 −0.38 −0.18

negligible. The absence of autocorrelations in residuals is also shown in Figure 4.15d

with p-values in Ljung-Box, in which they are above the critical threshold of 0.05.

Also the residuals are close to the normal distribution, according to the normal

distribution plot. Hence is thought that the chosen SARIMA model is appropriate

for forecasting. The estimated parameters for the SARIMA model are presented in

Table 4.12.
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(a) (b)

(c) (d)

Figure 4.15: SARIMA fitted model for average monthly wind power. In Figure 4.15a
is the time series of residuals of installed power production, in Figure 4.15b is the
autocorreltation function, in Figure 4.15c is the normal distribution plot, and in
Figure 4.15d are the p-values for the Ljung-Box statistic for the autocorrelation
test.

Table 4.12: SARIMA model parameters for the residuals of installed power produc-
tion of Offshore Station. The SE is the standard error of the estimates and the
p-value is used in the context of null hypothesis testing of zero correlation in order
to quantify the idea of statistical significance of evidence.

Model Estimated coefficient SE p-value

MA(1) 0.28 0.13 0.03

SAR(1) 0.94 0.13 0.00

SMA(1) −0.73 0.30 0.02
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4.3.3 Power Production Forecasting

Using the fitted SARIMA model, the monthly average wind power production for

the year (2007) following the study’s period is predicted. In Figure 4.16 the original

data (blue line) and the predictions (red line) are shown. The green and black

lines in the graph represents the confidence intervals which correspond to a range of

one and two standard deviations respectively. Generally, in SARIMA models, the

confidence intervals are estimated based on the normal distribution. In this thesis,

although most of the stations are fitted to the Weibull distribution, the distributions

are close to the normal. So, the confidence intervals are calculated from the data’s

distribution.

Figure 4.16: Predictions of monthly average wind power production for 2007 based
on the data for the period 2001–2006. The blue line represents the original data,
and the red line represents the SARIMA predictions. The green lines represent
the interval of two standard deviations around the prediction (95.45% confidence
interval), while the black lines represent the 68.27% confidence interval (based on
one standard deviation and the normal probability assumption).

In Figure 4.16, it can be observed that the periodicity of the original data, also
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exists in the predictions. Same as in the data (2001–2006), in the middle of the

year (2007) the predictions are lower than in early and later months. The estimated

confidence intervals have a high range, so is assumed that some of the prediction

could be underestimating or overestimating the production. This pattern could be

due to the low order of the SARIMA model.

4.3.4 Assessment of Model Performance

The method of cross-validation is used for the assessment of the temporal model’s

performance. One-step ahead forecast is used to validate the model’s performance.

As in Onshore Station the first half of the time series (36 values) is chosen for

the initial training set and then one-step ahead forecasting is used to predict the

power production in the following month (January 2007). This prediction uses

the SARIMA model chosen before. The coefficients of the SARIMA model are

estimated from the training set. The prediction error is estimated as the deviation

of the original series and the predictions from the cross-validation. The validation

measures are presented in Table 4.13.

Table 4.13: Cross validation performance measures calculated through the leave-
one-out cross validation for the monthly average installed power production of the
Offshore Station. ME: mean error; MAE: mean absolute error; RMSE: root mean
squared error; ErrMin: minimum error; ErrMax: maximum error.

ME (MW) MAE (MW) RMSE (MW) ErrMin(MW) ErrMax(MW)

0.014 0.15 0.17 − 0.29 0.40

The low value of mean error ensures the absence of bias. The root mean square is

26% of the average monthly wind power in Offshore Station. The accuracy of the

model is comparable to similar work for short-term predictions using either wind

speed forecasts and the power curve, or wind power forecasts directly. In Figure 4.17

the histogram of the prediction errors of the mean monthly power production for

Offshore Station is presented. Errors in the range between 0.1 MW and 0.2 MW

have the highest frequency, while the highest error values (in the range 0.3–0.4 MW)

are the least frequent.
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Figure 4.17: Histogram of the prediction errors based on one-step-ahead forecast
cross-validation for Offshore Station.

4.4 Comparison of the two Stations

Studying the two stations (Onshore Station , Offshore station ) some differences

are readily apparent. In Onshore station it is necessary to remove a harmonic

model first and then fit the SARIMA model, in order to extract the seasonality. In

contrast, in Offshore Station the SARIMA model is fitted directly to the data which

proves to be enough to remove the seasonality. Furthermore, the SARIMA model

of Offshore Station returns better p-values than Onshore Station. The validation

measures inOnshore Station are better than those of Offshore Station, except the

RMSE. In Onshore Station the RMSE is 0.14 MW or 27% of the mean value and

in Offshore Station is 0.17 MW or 25% of the mean value. Also the prediction in

Onshore Station tends to mean value very fast, due to the simple seasonal moving

average model. Offshore Station is less smooth because the SARIMA model involves

a seasonal autoregresssion. In conclusion the differences may be due to the offshore

station being unaffected by the terrain or the topography of the area. Also, the

implementation of the method (removing a harmonic model before SARIMA for the

onshore station) may also affect the results. The accuracy of the model is comparable

to similar work for short-term predictions using either wind speed forecasts and

the power curve or wind power forecasts directly. Jing Shi et.al. use data from
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the supervisory control and data acquisition (SCADA) system of an offshore wind

turibine, rated at 2 MW. The data are collected during the period of December

2009–February 2010, with time lag of 10 min. Their estimated RMSE is equal

to 0.22 MW [36]. David Barbosa de Alencear, et.al use historical series of the

meteorological variables from national organization system of environmental data

(SONDA) of the National Institute of Space Research (INPE). The measured data

began from 1 January 2004 and ends to 31 May 2017, with time lag 1 minute. They

calculate the wind power from the power curve, in different time scales [4].
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4.5 Spatial Analysis

In this section, spatial analysis is used for the 46 stations. The data used for this

analysis and subsequent interpolation are the annual mean installed power produc-

tion. Only the first year (2001) is presented in this section and the rest are in

the Appendix. Summary statistics of the annual installed power for year 2001 are

presented in Table 4.14.

Table 4.14: Summary statistics for annual mean of the installed power production
for the year 2001.

2001 Mean Min Max Median St.dev. Skewness

Installed Power

Production (MW)
0.50 0.16 0.93 0.47 0.19 0.35

Although data fits well the normal distribution, the best fit is the Weibull distri-

bution. To choose the best model of the distribution, three models were tested:

normal, lognormal, and Weibull. The best fit was chosen using the maximum like-

lihood, which consists of finding the parameters that maximize the log-likelihood

(LL). So, according to the AIC, log maximum likelihood and BIC the best model is

chosen, and the results for each fit are shown in Table 4.15.

Table 4.15: Values of information criteria for the three distributions (Weibull, log-
normal, and normal). The AIC is the Akaike’s Information Criterion, the LL is the
logarithm of the likelihood, and the BIC is the Bayesian Information Criterion. The
optimal model is the one that has the lowest value of AIC or BIC. Low AIC and
BIC values correspond to LL values.

Distribution AIC LL BIC

Weibull −19.84 11.92 −16.19

lognormal −18.70 11.34 −15.04

Normal −17.79 10.90 −14.13

In Figure 4.18 the pdf is shown for the empirical values and theoretical Weibull

distribution, the Q-Q plot with the theoretical and empirical values, the theoretical

and empirical values of the cumulative density function, and the probability plot.

As can be seen from the figures, the density plot of Weibull is close to the Normal

distribution, so it is not necessary to implement a transformation to the data. The

same routine is applied to the other years as well. In Table 4.16 the parameters of

the Weibull distribution are presented for each year.
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Figure 4.18: Top left: Histogram of empirical values and the theoretical Weibull
probability density function are shown. Top right: Q-Q plot of the theoretical and
the empirical values. Bottom left: empirical cumulative distribution function (cdf)
and the theoretical Weibull cdf. Lower right: Weibull probability plot.

Table 4.16: Parameters (shape and scale) of the Weibull distribution, and their stan-
dard error for the time period 2001–2006. The estimation method is the maximum
likelihood.

Year Shape Stand. Error Scale Stand.Error

2001 2.87 0.33 0.57 0.03

2002 3.38 0.39 0.58 0.03

2003 2.78 0.32 0.48 0.03

2004 3.15 0.36 0.56 0.02

2005 2.66 0.31 0.52 0.03

2006 3.02 0.35 0.57 0.03
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4.5.1 Variogram Analysis

In order to construct a spatial model of the installed power production, it is necessary

to model a suitable variogram model to the data. First, the experimental variogram

is estimated, using the Equation (2.15). Afterwards, a suitable theoretical variogram

is fitted to the experimental. Three models were tested: the spherical, exponential

and gaussian models (see section 2.6.3). In order to define the best fit the minimum

sum of weighted squared error was used (Equation (4.2)). As shown in Table 4.17,

the best fit is the spherical model. The spherical model is often preferred in most

studies, in order to implement Ordinary Kriging. The spherical variogram model is

compact (γ(r > h) = σ2), so it is less computationally intensive. Also the spherical

variogram model is used for wind data across a surface, because it accounts for a

progressive decrease in spatial autocorrelation, as characteristic in wind storms [20].

ε2 =
L∑
i=1

{γ(ri)− γ̂(ri)}2wi, (4.2a)

wi =
Ni

r2
i

. (4.2b)

In Equation (4.2) L is the number of the lags of the experimental variogram, wi is

the weight for the lag i = i, . . . , L, ri is the lag vector, ri =| ri | is the Euclidean

distance, and Ni is the number of the point pairs.

Table 4.17: Sum of squared errors between the empirical and the theoretical vari-
ogram models. The total error for each model is equal to the sum of the squared
differences between the values of empirical and the respective theoretical variogram
model. The best fit is the one with the lowest error.

Model Squared Error

Exponential 0.007

Spherical 0.0002

Gaussian 0.03

In Figure 4.19 the experimental variogram with the theoretical spherical model

are presented. The model parameters estimated by minimizing the error in Equa-

tion (4.2) are presented in Table 4.18. As shown in Figure 4.19 the model has good

agreement with the experimental variogram in distances less than 100km. Since the

average minimum distance between stations is 34.5 km, the fit is adequate.
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Table 4.18: Parameters of the optimal spherical variogram model for the installed
power production. σ2 is th variance, ξ is the correlation length, and c0 is the nugget
effect. The parameters are estimated by minimizing the error function given by the
Equation 4.2.

σ2(MW2) ξ(km) c0(MW2)

0.046 216.02 0.004

Figure 4.19: Experimental variogram (dashed line), and theoretical Spherical model
(continuous line), using the Equation (2.20). The horizontal axis is the lag distance
r in km, and the vertical distance represents the variogram values for installed power
production, for n each lag. The estimated parameters are nugget c0 = 0.004 MW2,
variance σ2 = 0.046 MW2, and correlation length ξ=216.02 km. The extent of the
distance shown in this figure is equal to the correlation length.
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4.5.2 Ordinary Kriging

For the visualization of the distribution of the annual mean installed power produc-

tion, ordinary kriging (OK) is used. As shown above, the data are following the

Weibull distribution which is close to the Gaussian distribution in this case. The

interpolation is performed on a grid of 300× 300 cells. The dimensions of each cell

are 1.0 km ×1.1 km. Afterwards, a mask with the boundaries of Netherlands is

applied on the grid for both the kriging predictions map and the kriging variance

maps. The final kriging prediction map is presented in Figure 4.20. For four of the

offshore stations (stations 10, 27, 31, 32), a box of 7×7 is used so that the prediction

around the stations is more easy to discern visually.

As shown in the map, the highest values are observed in the West area of the map,

due to the stations that are near to the sea. In those areas the wind is stronger than

in the Eastern area as such wind power generation is higher. Finally, the mean value

of the predicted installed power production does not differ significantly through the

years, i.e the range varies from 0.43 MW to 0.53 MW. So it is assumed that the

wind’s annual mean velocity is constant over the years, with the resulting constant

production for each station. This is beneficial for a wind park.

In Figure 4.21, the kriging variance is shown. The square root of the variance for

each cell gives the standard deviation around the prediction value which is a measure

for the prediction’s uncertainty. The nugget effect is 0.004 MW2. The variance near

each station is equal to nugget, and is increasing as the distance increases. Since

the configuration of the stations is more sparse further from the shore, the kriging

variance is higher in the East.
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Figure 4.20: Map of the estimated annual mean installed power production for 2001,
based on the spherical variogram model. The horizontal axis represents the Easting
(km), and the vertical axis represents the Northing (km) coordinates.

In Figure 4.21, the kriging variance is shown. The highest variance is observed in

West area, wherein the installed power production is higher than the East. The

highest variance is observed in the west area of map, due to the stations proximity

to the sea. As such, there is higher estimation of the installed power production

there. In close proximity to the stations, kriging variance is very low.
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Figure 4.21: Map of the estimated variance of the mean installed power produc-
tion for 2001, based on Spherical variogram model. The horizontal axis represents
the Easting measured in kilometers, and the vertical axis represents the Northing
measured in kilometers. The values are in MW2.

4.5.3 Cross-Validation Analysis

The leave-one-out cross-validation method is used for the assessment of the model’s

performance. The results of the sample and predicted mean power production values

for year 2001 are presented in the bar-plot of Figure 4.22 for each station. From the

bar-plot, there’s evidence that the model slightly underestimates the wind power

production of stations in the North sea, or on the North Sea Coast. This is further

investigated in the in the bar-plot of Figure 4.23 (North Sea stations: 2–4, 6, 9,

10, 17, 22, 25, 27, 29, 31, 32, 35). The mean error between the predictions and the

sample for the north sea stations is−0.055 MW representing a slight underestimation

by the model. This underestimation could be the result of kriging smoothing.

83



Spatial Analysis

Figure 4.22: Estimated (yellow) and sample (blue) values for the year 2001, using
leave-one-out cross-validation. The horizontal axis shows the number of station and
the vertical axis represents the power production (MW) for both the original sample
values (blue), and the predicted values (yellow).
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4. Data Analysis

Figure 4.23: Estimated (yellow) and sample (blue) values of coastal stations for
year 2001, using one leave-one-out cross-validation. The horizontal axis shows the
number of station and the vertical axis represents the power production (MW) for
both the original sample values (blue), and the predicted values (yellow).
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Spatial Analysis

The validation measures are presented in Table 4.19. The low value of mean error

indicates the absence of bias. The linear correlation between the predicted values and

the sample values (calculated with Pearson’s ρ) is high and the RMSE and MAE are

low. As such the model has a good performance despite the slight underestimation

of the North Sea stations. The accuracy of the model is comparable to similar

work using different methods of kriging such as Augmented Kriging (which is based

on Universal Kriging) [31]. In the study of Jin Hur, et.al. the McCamey area

CREZ data set is used. This data consists of wind farm outputs with 1 minute

time resolution during January to September 2009. They predict weekly outputs for

wind power, and the estimated percentage of average MAE is equal to 5%, which is

lower but comparable to ours. Presence of more stations would be beneficial for the

spatial interpolation. As such, it could help the detection and evaluation of suitable

locations for future wind farm sites [61].

Table 4.19: Cross validation performance measures calculated through the leave-
one-out cross validation for the mean installed power production of the year 2001.
ME: mean error. MAE: mean absolute error. RMSE: root mean squared error. ρ:
Pearson’s correlation coefficient. ErrMin: minimum error between the prediction
and the sample value. ErrMax: maximum error between the prediction and sample
value. The validation measures are in MW.

ME MAE RMSE ρ ErrMin ErrMax

1.83 10−4 0.08 0.10 0.85 −0.22 0.22
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Chapter 5

Conclusions

In this study a spatial and a temporal model for installed power production in

Netherlands (2001–2006) is estimated using geostatistical and forecasting methods.

The goal is to investigate the spatial and temporal variability of wind in this country

and time period and validate the forecast.

The data set consists of average daily measurements of installed power production,

for 46 stations distributed within Netherlands. The available period is for 6 years

2001–2006, ignoring the leap days. For both cases (spatial and temporal analysis)

different temporal discretization of the data were tested, i.e daily, weekly, monthly,

and annual average of installed power production. For the spatial analysis the annual

average was chosen and for temporal analysis the monthly average was used. The

Weibull distribution is fit on the data for spatial analysis. For the temporal analysis,

depending on the data-set, normal, log–normal and Weibull distribution were chosen

as the optimal fit.

In spatial analysis the annual average of installed wind power production is used.

Due to Netherlands being a relatively flat country without rough terrain or signif-

icant altitude changes, it is not necessary to remove a topographic trend from the

data. Also, because the Weibull distribution is close to the normal distribution for

this data set, a transformation from Weibull to normal distribution was not imple-

mented in this study. To investigate the spatial variability, the empirical variogram

was calculated. The Spherical variogram model was found to be the best fit on the

empirical variogram from all models tested, based on the sum of weighted squared

errors. Ordinary Kriging was subsequently used to create an interpolation map that

details the spatial estimation of the installed wind power production in each area of



the country.

Studying the maps of predictions for all six years (2002 to 2006 in the appendix), the

highest predictions are located in the West area of the map, specifically in stations

which are in the sea. The lowest estimators are in the south-east area of map. The

highest values of the predicted power production are explained by the strong winds

which come from the North Sea. This pattern is observed every year, i.e the highest

values are predicted in the west area of the map, and the lowest in the east. Also it

is observed that the mean value of the predicted annual installed power production

does not differ significantly between the years, i.e. the range varies from 0.43 to

0.53. Hence it can be assumed that the velocity and the frequency of winds are

constant over the years, so each station has a constant production every year, which

is beneficial for a wind park.

In comparison between the predicted and the original installed power production,

the model slightly underestimates wind power production in the North Sea, or on

the North Sea Coast. The mean error between the predictions and the sample for

the North Sea stations is −0.055 MW, representing a slight underestimation by the

model. This underestimation could be the result of kriging smoothing. The results

are comparable with similar works, which they use different kriging methods [29, 31].

In temporal analysis the monthly average of installed power production for each

station is calculated. As such, the time series pertaining to each station have 72

steps. The Weibull distribution fits well the time series of 31 stations. log–normal

distribution was fit on 11 time series and the normal distribution was fit in the last

4 time series. The time series which are fit with log–normal distribution, are trans-

formed by calculating the logarithm of the values. For the time series more closely

following Weibull distribution there was no need for any transformation because the

distribution was already close to the normal distribution.

To estimate the annual seasonality, SARIMA models were used. For seven time se-

ries, a harmonic model was subtracted from the data first and SARIMA was used on

the residuals instead of the original data. An autoregressive–moving–average model

is fitted to the data (or the residuals) with annual seasonality. The best SARIMA

model was chosen based on AIC, AICc, and BIC. After estimating the parameters of

the model, a prediction for the following year (2007) was implemented. To validate

the accuracy of the model, cross–validation was used and good performance was

observed in all data sets. Further validation was performed by ensuring that there
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5. Conclusions

is no autocorrelation remaining after applying the optimal SARIMA model.

Studying the two stations (Station 1 onshore, station 31 offshore) some differences

are readily apparent. In Onshore Station it is necessary to remove a harmonic model

first and the fit the SARIMA model, in order to extract the seasonality. In contrast,

in Offshore Station the SARIMA model is fitted directly to the data which proves to

be enough to remove the seasonality. Furthermore, in Onshore Station the RMSE

is 27% of the mean value, and in Offshore Station is 25% of the mean value. In

conclusion the differences may be due to the offshore station being unaffected by

the terrain or the topography of the area. The accuracy of the model is comparable

to similar work for short-term predictions using either wind speed forecasts and the

power curve or wind power forecasts directly [4, 36].

In a future study, different time scales could be used to compare the results. In

a similar study, using different time scales to predict the power production, the

RMSE is increasing as the time scale is increasing (time lags are becoming larger)

[18]. Also, it is necessary to compare current results with other methods, such as us-

ing the power curve. Furthermore, the deterministc seasonal effects(i.e. predictable

periodic changes in the levels of the time series) could be incorporated by augment-

ing the ARIMA model with seasonal dummy variables [44]. Finally, an interesting

evolution of the present study is to connect the results with the industrial standards

for prediction and risk assessment, by estimating the percentages P50, and P90.

Indicatively, these percentages were estimated for the two stations. For Onshore

Station and Offshore Station, 1000 simulations are implemented (using the com-

mand arima.sim [52] in R from stats package), and the respective percentiles (P50

and P90) are estimated. For Onshore Station, P50 is equal to 13.5 GWh (Compara-

ble to the actual 13.4 GWh produced), and P90 is equal to 12.5 GWh for the years

2004–2006. For Offshore Station , P50 is equal to 18.0 GWh (equal to the actual

18.0 GWh), and P90 is equal to 16.8 GWh for the years 2004–2006.
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Appendices





Appendix A

Figures for Spatial Analysis

In Appendix A the figures from 2002 until 2006 for the spatial analysis, i.e the annual

power production are presented. The figures include:

1. Experimental variogram (dashed line), and theoretical Spherical model (con-

tinuous line), using the Equation 2.20. The horizontal axis is the lag distance

r in km, and the vertical distance represents the variogram values for installed

power production, for n each lag. The estimated parameters for the theoretical

model are presented separately on every figure’s caption

2. Kriging-based on leave-one-out cross-validation predictions versus sample val-

ues for power production

3. Map of estimated annual mean installed power production for 2001, based

on Spherical variogram model. The horizontal axis represents the Easting

measured in kilometers, and the vertical axis represents the Northing measured

in kilometers.

4. Map of estimated variance of mean installed power production for 2001, based

on Spherical variogram model. The horizontal axis represents the Easting

measured in kilometers, and the vertical axis represents the Northing measured

in kilometers.



Figure A.1: Year 2002 annual power production. The Spherical variogram pa-
rameters are: nugget=0.0032 (MW2), variance σ2 = 0.0381 (MW2), and range
= 226.36311 km.
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A. Figures for Spatial Analysis

Figure A.2: Year 2003 annual power production. The Spherical variogram pa-
rameters are: nugget=0.0028 (MW2), variance σ2 = 0.0369 (MW2), and range
= 229.2011 km.
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Figure A.3: Year 2004 annual power production. The Spherical variogram pa-
rameters are: nugget=0.0025 (MW2), variance σ2 = 0.0391 (MW2), and range
= 210.5247 km.
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A. Figures for Spatial Analysis

Figure A.4: Year 2005 annual power production. The Spherical variogram pa-
rameters are: nugget=0.0040 (MW2), variance σ2 = 0.0493 (MW2), and range
= 247.6334 km.
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Figure A.5: Year 2006 annual power production. The Spherical variogram pa-
rameters are: nugget=0.0034 (MW2), variance σ2 = 0.0047 (MW2), and range
= 215.5592 km.
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Appendix B

Figures for Temporal Analysis

In Appendix B the figures for the temporal analysis for the monthly average installed

power production are presented. The figures include:

1. Time series of average monthly power production. The horizontal axis repre-

sents time (years: 2001–2006) and the vertical axis shows the installed power

in MW.

2. Periodogram of monthly average wind power at Station 1. The horizontal axis

represents the frequency and the vertical axis the value of the periodogram.

3. Time series of residuals of installed power production.The horizontal axis rep-

resents time (years: 2001–2006) and the vertical axis shows the residuals in

MW.

4. The autocorrelation function (ACF) for the residuals . The horizontal axis

represents the time lag, while the vertical axis measures the autocorrelations.

5. The normal distribution plot.

6. The p-values for the Ljung-Box statistic for the autocorrelation test.



Figure B.1: Station 2: The fitted SARIMA model for installed power production is
a SARIMA (1,0,3)(1,0,1)(12).
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B. Figures for Temporal Analysis

Figure B.2: Station 3 : The fitted SARIMA model for installed power production is
a SARIMA (0,0,1)(1,0,0)(12).
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Figure B.3: Station 4: The fitted SARIMA model for installed power production is
a SARIMA (0,0,1)(1,0,1)(12).
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B. Figures for Temporal Analysis

Figure B.4: Station 5 : The fitted SARIMA model for installed power production is
a SARIMA (1,0,0)(1,0,1)(12).
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Figure B.5: Station 6 : The fitted SARIMA model for installed power production is
a SARIMA (1,0,1)(1,0,0)(12).
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B. Figures for Temporal Analysis

Figure B.6: Station 7: The fitted SARIMA model for installed power production is
a SARIMA (1,0,2)(1,0,1)(12).

105



Figure B.7: Station 8: The fitted SARIMA model for installed power production is
a SARIMA (0,0,1)(1,0,1)(12).
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B. Figures for Temporal Analysis

Figure B.8: Station 9: The fitted SARIMA model for installed power production is
a SARIMA (0,0,1)(1,0,0)(12).
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Figure B.9: Station 10: The fitted SARIMA model for installed power production
is a SARIMA (0,0,1)(1,0,1)(12).
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B. Figures for Temporal Analysis

Figure B.10: Station 11: The fitted SARIMA model for installed power production
is a SARIMA (0,0,1)(1,0,1)(12).
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Figure B.11: Station 12: The fitted SARIMA model for installed power production
is a SARIMA (0,0,1)(1,0,0)(12).
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B. Figures for Temporal Analysis

Figure B.12: Station 13: The fitted SARIMA model for installed power production
is a SARIMA (0,0,1)(1,0,1)(12).
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Figure B.13: Station 14: The fitted SARIMA model for installed power production
is a SARIMA (1,0,1)(1,0,0)(12).
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B. Figures for Temporal Analysis

Figure B.14: Station 15: The fitted SARIMA model for installed power production
is a SARIMA (0,0,1)(1,0,1)(12).
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Figure B.15: Station 16: The fitted SARIMA model for installed power production
is a SARIMA (0,0,1)(1,0,1)(12).
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B. Figures for Temporal Analysis

Figure B.16: Station 17: The fitted SARIMA model for installed power production
is a SARIMA (1,0,3)(0,0,1)(12).
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Figure B.17: Station 18: The fitted SARIMA model for installed power production
is a SARIMA (1,0,0)(1,0,1)(12).
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B. Figures for Temporal Analysis

Figure B.18: Station 19: The fitted SARIMA model for installed power production
is a SARIMA (1,0,0)(1,0,1)(12).
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Figure B.19: Station 20: The fitted SARIMA model for installed power production
is a SARIMA (0,0,1)(1,0,1)(12).
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B. Figures for Temporal Analysis

Figure B.20: Station 21: The fitted SARIMA model for installed power production
is a SARIMA (1,0,0)(1,0,2)(12).
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Figure B.21: Station 22: The fitted SARIMA model for installed power production
is a SARIMA (0,0,1)(1,0,0)(12).
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B. Figures for Temporal Analysis

Figure B.22: Station 23: The fitted SARIMA model for installed power production
is a SARIMA (0,0,1)(1,0,1)(12).
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Figure B.23: Station 24: The fitted SARIMA model for installed power production
is a SARIMA (1,0,0)(1,0,1)(12).
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B. Figures for Temporal Analysis

Figure B.24: Station 25: The fitted SARIMA model for installed power production
is a SARIMA (0,0,0)(1,0,1)(12).
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Figure B.25: Station 26: The fitted SARIMA model for installed power production
is a SARIMA (1,0,0)(1,0,0)(12).
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B. Figures for Temporal Analysis

Figure B.26: Station 27: The fitted SARIMA model for installed power production
is a SARIMA (0,0,1)(1,0,0)(12).
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Figure B.27: Station 28: The fitted SARIMA model for installed power production
is a SARIMA (0,0,1)(1,0,0)(12).
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B. Figures for Temporal Analysis

Figure B.28: Station 29: The fitted SARIMA model for installed power production
is a SARIMA (0,0,1)(1,0,1)(12).
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Figure B.29: Station 30: The fitted SARIMA model for installed power production
is a SARIMA (1,0,0)(1,0,1)(12).

128



B. Figures for Temporal Analysis

Figure B.30: Station 32: The fitted SARIMA model for installed power production
is a SARIMA (1,0,0)(1,0,1)(12).

129



Figure B.31: Station 33: The fitted SARIMA model for installed power production
is a SARIMA (0,0,1)(1,0,1)(12).
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B. Figures for Temporal Analysis

Figure B.32: Station 34: The fitted SARIMA model for installed power production
is a SARIMA (0,0,1)(1,0,1)(12).
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Figure B.33: Station 35: The fitted SARIMA model for installed power production
is a SARIMA (0,0,1)(1,0,1)(12).
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B. Figures for Temporal Analysis

Figure B.34: Station 36: The fitted SARIMA model for installed power production
is a SARIMA (1,0,0)(1,0,1)(12).
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Figure B.35: Station 37: The fitted SARIMA model for installed power production
is a SARIMA (0,0,1)(1,0,1)(12).
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B. Figures for Temporal Analysis

Figure B.36: Station 38: The fitted SARIMA model for installed power production
is a SARIMA (0,0,1)(2,0,0)(12).
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Figure B.37: Station 39: The fitted SARIMA model for installed power production
is a SARIMA (1,0,0)(1,0,2)(12).
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B. Figures for Temporal Analysis

Figure B.38: Station 40: The fitted SARIMA model for installed power production
is a SARIMA (0,0,1)(0,0,1)(12).
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Figure B.39: Station 41: The fitted SARIMA model for installed power production
is a SARIMA (1,0,0)(1,0,2)(12).
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B. Figures for Temporal Analysis

Figure B.40: Station 42: The fitted SARIMA model for installed power production
is a SARIMA (0,0,0)(1,0,0)(12).
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Figure B.41: Station 43: The fitted SARIMA model for installed power production
is a SARIMA (0,0,1)(1,0,1)(12).
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B. Figures for Temporal Analysis

Figure B.42: Station 44: The fitted SARIMA model for installed power production
is a SARIMA (2,0,1)(0,0,2)(12).
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Figure B.43: Station 45: The fitted SARIMA model for installed power production
is a SARIMA (1,0,0)(1,0,2)(12).
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B. Figures for Temporal Analysis

Figure B.44: Station 46: The fitted SARIMA model for installed power production
is a SARIMA (1,0,0)(1,0,1)(12).
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Appendix C

Figures for Times Series

Forecasting

In Appendix C the predictions of monthly average wind power production for 2007

based on the data for the period 2001–2006. The blue line represents the original

data, and the red line represents the SARIMA predictions. The green lines represent

the interval of two standard deviations around the prediction (95.45% confidence

interval), while the black lines represent the 68.27% confidence interval (based on

one standard deviation and the normal probability assumption).

Figure C.1: Predictions for Station 2.



Figure C.2: Predictions for Station 3.

Figure C.3: Predictions for Station 4.
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C. Figures for Times Series Forecasting

Figure C.4: Predictions for Station 5.

Figure C.5: Predictions for Station 6.
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Figure C.6: Predictions for Station 7.

Figure C.7: Predictions for Station 8.
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C. Figures for Times Series Forecasting

Figure C.8: Predictions for Station 9.

Figure C.9: Predictions for Station 10.
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Figure C.10: Predictions for Station 11.

Figure C.11: Predictions for Station 12.
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C. Figures for Times Series Forecasting

Figure C.12: Predictions for Station 13.

Figure C.13: Predictions for Station 14.
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Figure C.14: Predictions for Station 15.

Figure C.15: Predictions for Station 16.
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C. Figures for Times Series Forecasting

Figure C.16: Predictions for Station 17.

Figure C.17: Predictions for Station 18.
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Figure C.18: Predictions for Station 19.

Figure C.19: Predictions for Station 20.
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C. Figures for Times Series Forecasting

Figure C.20: Predictions for Station 21.

Figure C.21: Predictions for Station 22.

155



Figure C.22: Predictions for Station 23.

Figure C.23: Predictions for Station 24.
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C. Figures for Times Series Forecasting

Figure C.24: Predictions for Station 25.

Figure C.25: Predictions for Station 26.
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Figure C.26: Predictions for Station 27.

Figure C.27: Predictions for Station 28.
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C. Figures for Times Series Forecasting

Figure C.28: Predictions for Station 29.

Figure C.29: Predictions for Station 30.

159



Figure C.30: Predictions for Station 32.

Figure C.31: Predictions for Station 33.
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C. Figures for Times Series Forecasting

Figure C.32: Predictions for Station 34.

Figure C.33: Predictions for Station 35.
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Figure C.34: Predictions for Station 36.

Figure C.35: Predictions for Station 37.
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C. Figures for Times Series Forecasting

Figure C.36: Predictions for Station 38.

Figure C.37: Predictions for Station 39.
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Figure C.38: Predictions for Station 40.

Figure C.39: Predictions for Station 41.
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C. Figures for Times Series Forecasting

Figure C.40: Predictions for Station 42.

Figure C.41: Predictions for Station 43.
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Figure C.42: Predictions for Station 44.

Figure C.43: Predictions for Station 45.
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C. Figures for Times Series Forecasting

Figure C.44: Predictions for Station 46.
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Appendix D

Tables with Cross-Validation

Measures and Parameters of

SARIMA models and Distribution

fit

Table D.1: Table for the estimated parameters for Normal Distribution.

Station Mean Standard deviation

2 0.70 0.19

3 0.81 0.20

4 0.62 0.19

6 0.89 0.18

9 0.73 0.18

12 0.62 0.17

17 0.72 0.16

29 0.58 0.19

34 0.49 0.18

35 0.73 0.19

37 0.61 0.18



Table D.2: Table for the estimated parameters for Log-Normal Distribution

Station Log(Mean) Log(Standard deviation)

16 − 1.26 0.52

22 − 0.41 0.28

25 −0.67 0.33

46 −1.67 0.60

Table D.4: SARIMA model parameters for the residuals of installed power produc-
tion. The SE is the standard error of the estimates and the p-value is used in the
context of null hypothesis testing of zero correlation in order to quantify the idea of
statistical significance of evidence.

Station Model Estimate SE p-values

2: (1,0,3)(1,0,1)(12)

AR1 0.86 0.09 0.00

MA1 −0.86 0.12 0.00

MA2 −0.33 0.14 0.0

MA3 0.52 0.12 0.00

SAR1 0.62 0.15 0.00

SMA1 −1.00 0.25 0.00

3: (0,0,1)(1,0,0)(12)
MA1 0.42 0.14 0.004

SAR1 0.31 0.12 0.01

4: (0,0,1)(1,0,1)(12)

MA1 0.41 0.12 0.00

SAR1 0.98 0.16 0.00

SAR2 −0.91 0.15 0.06

5: (1,0,0)(1,0,1)(12)

AR1 0.32 0.12 0.001

SAR1 0.10 0.02 0.00

SMA1 −0.96 0.18 0.00

6: (1,0,1)(1,0,0)(12)

AR1 −0.62 0.14 0.00

MA1 0.95 0.08 0.00

SAR1 0.32 0.13 0.02

7: (1,0,2)(1,0,1)(12)

AR1 0.87 0.07 0.00

MA1 −0.61 0.12 0.00

MA2 −0.39 0.12 0.00

SAR1 $-0.98 0.09 0.00

SMA1 −0.85 0.4 0.04

8 : (0,0,1)(1,0,1)(12)

MA1 0.36 0.12 0.004
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D. Tables with Cross-Validation Measures and Parameters of SARIMA models
and Distribution fit

Station Model Estimate SE p-values

SAR1 1.00 0.02 0.00

SMA1 −0.96 0.2 0.00

9: (0,0,1)(1,0,0)(12)
MA1 0.54 0.11 0.00

SAR1 0.27 0.12 0.03

10: (0,0,1)(1,0,1)(12)

MA1 0.32 0.14 0.02

SAR1 1.00 0.01 0.00

SMA1 −0.78 0.35 0.03

11: (0,0,1)(1,0,1)(12)

AR1 0.40 0.099 2 10−4

SAR1 1.00 0.002 0.00

SMA1 −0.96 0.21 0.00

12: (0,0,1)(1,0,0)(12)
MA1 0.34 0.12 0.007

SAR1 0.09 0.13 0.5

13:(0,0,1)(1,0,1)(12)

MA1 0.40 .011 8 10−4

SAR1 1.00 0.01 0.00

SMA1 −0.97 0.14 0.00

14:(1,0,1)(1,0,0,)(12)

AR1 0.93 0.06 0.00

MA1 −1.00 0.04 0.00

SAR1 −0.32 0.12 0.009

15: (0,0,1)(1,0,1)(12)

MA1 0.37 0.11 0.02

SAR1 1.00 0.01 0.00

SMA1 −0.97 0.15 0.00

16: (0,0,1)(1,0,1)(12)

MA1 0.50 0.12 0.0001

SAR1 0.98 0.09 0.00

SMA1 −0.87 0.4 0.04

17: (1,0,3)(0,0,1)(12)

AR1 0.78 0.10 0.00

MA1 − 1.08 0.12 0.00

MA2 −0.23 0.15 0.10

MA3 0.69 0.11 0.00

SAR1 −0.59 0.19 0.003

18:(1,0,0)(1,0,1)(12)

AR1 0.37 0.12 0.03

SAR1 0.99 0.03 0.00

SMA1 −0.96 0.21 0.00

19: (1,0,0)(1,0,1)(12)

AR1 0.12 0.34 0.01

SAR1 0.01 0.99 0.00
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Station Model Estimate SE p-values

SMA1 0.17 −0.96 0.00

20: (0,0,1)(10,1)(12)

MA1 0.47 0.11 10−4

SAR1 0.1 0.02 0.00

SMA1 −0.96 0.19 0.00

21: (1,0,0)(1,0,2)(12) AR1 0.33 0.13 0.01

SAR1 −0.74 0.23 0.002

SMA1 −0.73 0.29 0.01

SMA2 0.44 0.22 0.05

22: (0,0,1)(1,0,0)(12) MA1 0.57 0.11 0.00

SAR1 0.23 0.12 0.06

23: (0,0,1)(1,0,1)(12)

MA1 0.50 0.11 0.0001

SAR1 0.99 0.05 0.00

SAR2 −0.93 0.04 0.01

24: (1,0,0)(1,0,1)(12)

AR1 0.39 0.12 0.002

SAR1 0.99 0.08 0.000

SMA1 −0.94 0.3 0.003

25: (0,0,0)(1,0,1)(12)
SAR1 1.00 0.05 0.00

SMA1 −0.95 0.03 0.03

26: (1,0,0)(1,0,0)(12)
AR1 0.45 0.11 0.0001

SAR1 0.17 0.12 0.1

27: (0,0,1)(1,0,0)(12)
AR1 0.27 0.12 0.02

SAR1 0.30 0.12 0.01

28: (0,0,1)(1,0,0)(12)
MA1 0.35 0.11 0.002

SAR1 0.20 0.13 0.1

29: (0,0,1)(1,0,1)(12)

MA1 0.36 0.12 0.005

SAR1 0.87 0.24 0.0004

SMA1 −0.70 0.3 0.045

30: (1,0,0)(1,0,1)(12)

AR1 0.35 0.12 0.005

SAR1 0.1 0.01 0.00

SMA1 −0.94 0.14 0.005

32: (1,0,0)(1,0,1)(12)

AR1 0.25 0.13 0.05

SAR1 0.95 0.08 0.00

SMA1 −0.71 0.2 0.0009

33: (0,0,1)(1,0,1)(12)

MA1 0.36 0.11 0.003
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Station Model Estimate SE p-values

SAR1 0.99 0.09 0.00

SMA1 −0.90 0.14 0.05

34: (0,0,1)(1,0,1)(12)

MA1 0.21 0.12 0.1

SAR1 0.99 0.13 0.00

SMA1 −0.91 0.48 0.00

35: (0,0,1)(1,0,1)(12)

MA1 0.35 0.12 0.008

SAR1 0.80 0.3 0.01

SMA1 −0.63 0.3 0.01

36: (1,0,0)(1,0,1)(12)

AR1 0.34 0.12 0.005

SAR1 1.00 0.01 0.00

SMA1 −0.96 0.14 0.00

37: (0,0,1)(1,0,1)(12)

MA1 0.30 0.12 0.02

SAR1 0.93 0.25 0.001

SMA1 −0.80 0.24 0.07

38: (0,0,1)(2,0,0)(12)

MA1 0.43 1.00 0.001

SAR1 0.13 0.099 0.02

SAR2 0.44 0.12 0.001

39: (1,0,0)(1,0,2)(12)

AR1 0.36 0.12 0.004

SAR1 0.77 0.18 0.000

SMA1 −0.76 0.24 0.002

SMA2 0.40 0.21 0.06

40: (0,0,1)(0,0,2)(12)

MA1 0.38 0.11 0.0007

SMA1 0.21 0.12 0.1

SMA2 0.33 0.15 0.03

41: (1,0,0)(1,0,2)(12) AR1 0.34 0.12 0.006

SAR1 0.68 0.29 0.02

SMA1 −0.65 0.03 0.06

SMA2 0.36 0.19 0.06

42: (0,0,0)(1,0,0)(12) SAR1 −0.21 0.12 0.08

43: (0,0,1)(1,0,1)(12) MA1 0.26 0.11 0.02

SAR1 1.00 0.014 0.00

SMA1 −0.96 0.17 0.00

44: (2,0,1)(0,0,2)(12)

AR1 1.40 0.10 0.00

AR2 −0.52 0.10 0.00
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Station Model Estimate SE p-values

MA1 −1.00 0.04 0.00

SMA1 0.12 0.13 0.04

SMA2 0.37 0.17 0.03

45: (1,0,0)(1,0,2)(12)

AR1 0.37 0.12 0.004

SAR1 0.84 0.20 0.00

SMA1 −0.81 0.27 0.004

SMA2 0.29 0.20 0.015

46: (1,0,0)(1,0,1)(12)

AR1 0.33 0.12 0.007

SAR1 0.99 0.05 0.000

SMA1 −0.93 0.34 0.008

Table D.5: Cross validation performance measures calculated through the leave-
one-out cross validation for the monthly average installed power production of the
station 31. ME: mean error; MAE: mean absolute error; RMSE: root mean squared
error.

Station ME (MW) MAE (MW) RMSE (MW)

2 −0.03 0.14 0.17

3 0.004 0.16 0.19

4 0.02 0.14 0.26

5 0.009 0.12 0.14

6 0.016 0.15 0.19

7 −0,02 0.11 0.24

8 −0.002 0.12 0.14

9 0.01 0.13 0.17

10 0.02 0.14 0.18

11 −0.0097 0.06 0.07

12 0.01 0.14 0.17

13 0.007 0.11 0.14

14 −0.003 0.09 0.12

15 0.007 0.11 0.13

16 −0.002 0.10 0.12

17 0.01 0.08 0.12

18 0.004 0.09 0.11

19 0.006 0.1 0.12

174



D. Tables with Cross-Validation Measures and Parameters of SARIMA models
and Distribution fit

Station ME (MW) MAE (MW) RMSE (MW)

20 0.01 0.11 0.13

21 −0.004 0.096 0.12

22 0.02 0.13 0.17

23 0.02 0.12 0.15

24 0.004 0.10 0.12

25 0.006 0.13 0.16

26 −0.009 0.13 0.14

27 0.01 0.16 0.18

28 0.01 0.15 0.17

29 0.006 0.14 0.16

30 0.004 0.12 0.14

32 0.007 0.14 0.17

33 0.002 0.13 0.14

34 0.01 0.13 0.15

35 −0.002 0.14 0.16

36 −0.006 0.10 0.12

37 0.001 0.14 0.16

38 0.001 0.13 0.15

39 0.003 0.11 0.14

40 0.001 0.10 0.11

41 0.006 0.11 0.14

42 −0.006 0.09 0.11

43 −0.001 0.11 0.13

44 −0.007 0.11 0.13

45 0.0002 0.13 0.15

46 −0.006 0.08 0.0097
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Table D.3: Table of the estimated parameter for the Weibull distribution in each
station.

Station Shape Scale

5 2.82 0.56

7 3.09 0.60

8 2.79 0.55

10 3.38 0.76

11 1.44 0.15

13 2.43 0.46

14 2.71 0.53

15 2.27 0.43

18 1.74 0.27

19 1.74 0.27

20 2.29 0.43

21 1.77 0.29

23 2.06 0.54

24 1.89 0.32

26 2.34 0.46

27 3.97 0.84

28 2.74 0.56

30 3.44 0.75

31 2.09 0.45

32 3.46 0.82

33 2.47 0.52

36 2.08 0.35

38 2.34 0.50

39 2.19 0.43

40 2.05 0.32

42 2.10 0.35

43 1.91 0.33

44 1.74 0.32

45 −1.29 0.52
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Table D.6: Seasonal model parameters of average monthly wind power. The Stan-
dard Error (SE) for a given variable is given by the Residual Standard Error divided
by the square root of the sum of squares for the particular variable. The p-value is
used to test the null hypothesis that the respective coefficient is zero.

Station coefficient estimate SE p-value

2
µ 0.70 0.02 2 ×10−16

sin −0.04 0.03 0.1

cos 0.15 0.03 7.55 ×10−7

14

µ 0.47 0.02 2 ×10−16

sin 0.051 0.02 0.03

cos 0.17 0.02 1.87 ×10−7

17

µ 0.72 0.02 2 ×10−16

sin 0.04 0.02 0.0

cos 0.12 0.02 5.53 ×10−6

42

µ 0.31 0.01 2 ×10−16

sin 0.03 0.02 0.12

cos 0.13 0.02 4.73 ×10−9
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