
TECHNICAL UNIVERSITY OF CRETE

DIPLOMA THESIS

Analysis and Design Methodology
of Convolutional Neural Networks
mapping on Reconfigurable Logic

Author:
Tzanis FOTAKIS

Thesis Committee:
Prof. Apostolos DOLLAS

Prof. Michail LAGOUDAKIS

Prof. Sotirios IOANNIDIS

A thesis submitted in fulfillment of the requirements
for the diploma of Electrical and Computer Engineer

in the

School of Electrical and Computer Engineering

Microprocessor and Hardware Laboratory

October 1, 2020

https://www.tuc.gr/
https://www.linkedin.com/in/fotakistzanis/
https://www.ece.tuc.gr/index.php?id=4531&tx_tuclabspersonnel_list%5Bperson%5D=289&tx_tuclabspersonnel_list%5Baction%5D=person&tx_tuclabspersonnel_list%5Bcontroller%5D=List
https://www.ece.tuc.gr/index.php?id=4531&tx_tuclabspersonnel_list%5Bperson%5D=313&tx_tuclabspersonnel_list%5Baction%5D=person&tx_tuclabspersonnel_list%5Bcontroller%5D=List
https://www.tuc.gr/index.php?id=5639&L=612%27A%3D0&tx_tuclabspersonnel_pi3%5Bpersonid%5D=707
https://www.ece.tuc.gr/
https://www.mhl.tuc.gr/

iii

Abstract
Diploma Thesis

Analysis and Design Methodology of Convolutional Neural Networks
mapping on Reconfigurable Logic

by Tzanis FOTAKIS

Over the last few years, Convolutional Neural Networks have proved their
abilities in several fields of study, with the research community continuing to
surprise the world with new and paradoxical use cases, and even more excit-
ing results. The rise of neural networks in general, and especially CNNs, cre-
ates a necessity for hardware acceleration of such computationally complex
applications to achieve high-performance and energy-efficiency. Due to the
fact that neural networks are highly parallelizable, they can exploit FPGA’s
hardware flexibility. This study presents a hardware platform targeted for
FPGA devices for easy and structured implementation of neural network in-
ference accelerators. It is designed with flexibility and versatility in mind,
capable of being transferred to various FPGA devices. Furthermore, it is scal-
able for multi-FPGA implementations, using platforms such as the FORTH
QFDB, a custom four-FPGA platform. In addition, it is extendable to enable
for easy adding of new layer types and new layer accelerators. Moreover, it
can run various CNN models’ inference, but most importantly, it provides
easy experimentation and development of neural networks hardware accel-
erator architectures. The proposed platform is implemented for accelerating
AlexNet’s inference, an award-winning CNN whose robustness analysis is
carried out to investigate the FPGA’s strengths and weaknesses, studying
the computational workloads, memory access patterns, memory and band-
width reduction, as well as algorithmic optimizations. A comparison in in-
ference performance metrics is presented between the proposed platform, a
CPU, a GPU, and other Xilinx developed neural network accelerator plat-
forms. Although there are no performance benefits of using an FPGA over a
modern GPU, a potential for performance improvements appears with fur-
ther development, focusing on the convolution accelerator, which exploits
the platform’s ease of use, extendability, and expandability.

v

Acknowledgements
First and foremost, I would like to thank my supervisor, Prof. Apostolos
Dollas, for his invaluable support and guidance throughout both the course
of my studies and the work of this thesis, being an inspiration in both pro-
fessional and personal level, generously providing his expertise and experi-
ences. I would also like to thank him for broadening my horizons and giving
me the opportunity to become a part of the research community in the field
of Artificial Intelligence and Hardware Architecture design.

Moreover, I would like to thank my thesis committee, Prof. Michail Lagoudakis,
and Prof. Sotirios Ioannidis, for evaluating my work.

Furthermore, I would like to thank the CARV team in FORTH for their ex-
cellent collaboration and guidance throughout this work, even outside their
working hours, including Dr. Christos Kozanitis and Dr. Aggelos Ioannou
for their hardware design expertise, and Dr. Gregory Tsagkatakis for his
Neural Networks expertise.

In addition, I would like to acknowledge the TUC MHL staff, including but
not limited to Mr. Andreas Brokalakis, Mr. Pavlos Malagonakis, and Mr.
Markos Kimionis, whose support was essential for the completion of this
work.

I would also like to express my thankfulness to my fellow students and
colleagues of TUC MHL, George Pitsis, now a Ph.D. candidate, Charisios
Loukas, and Maria Argyriou for our collaboration.

Last but not least, I would like to express my deepest gratitude to the people
who have always and unquestionably been there for me throughout the years
of my studies, my family, Emmanouil Fotakis, Maria Ntavrani and Voula
Fotaki, friends and colleagues. My sincerest thanks to all of you.

Tzanis Fotakis,
Chania, 2020

vii

Contents

Abstract iii

Acknowledgements v

Contents vii

List of Figures xi

List of Tables xv

List of Algorithms xvii

List of Abbreviations xix

1 Introduction 1
1.1 Motivation . 2
1.2 Scientific Goals and Contributions 5
1.3 Thesis Outline . 6

2 Theoretical Background 7
2.1 Machine Learning . 7
2.2 Artificial Neural Networks . 9

2.2.1 ANNs Basic components 10
Neuron . 10
Connections and Weights 10
Propagation Function 10
Activation Function . 11

2.2.2 Organization . 12
2.2.3 ANN Architectures . 12

Feedforward Networks 12
Recurrent Networks . 13

2.3 Convolutional Neural Networks 14
2.3.1 Structure . 14

viii

Convolutional Layer . 16
Pooling Layer . 18
Fully-Connected Layer 20
Activation Layer . 21

2.4 Theoretical knowledge sources 21

3 Related Work 23
3.1 CNN Architectures . 23

3.1.1 LeNet-5 . 24
3.1.2 AlexNet . 24
3.1.3 ZFNet . 25
3.1.4 GoogLeNet / Inception 25
3.1.5 VGGNet . 26
3.1.6 ResNet . 27
3.1.7 Summary . 28

3.2 Deep Learning Software Frameworks 28
3.2.1 Keras . 28
3.2.2 CAFFE . 29
3.2.3 PyTorch . 29
3.2.4 TensorFlow . 29

3.3 Hardware Solutions . 29
3.3.1 CPUs . 30
3.3.2 GPUs . 30
3.3.3 Tensor Processing Units (TPU) 31
3.3.4 FPGAs . 34

3.4 Quantization . 35
3.5 The FPGA Perspective . 35

3.5.1 Xilinx CHaiDNN . 35
3.5.2 Xilinx Deep Learning Processing Unit (DPU) 36
3.5.3 NVIDIA NVDLA . 39

3.6 Thesis Approach . 41

4 Theoretical Modeling and Robustness Analysis 43
4.1 PyTorch and C/C++ implementations 43

4.1.1 Algorithms . 44
Convolution . 44
MaxPool . 46
Fully-Connected . 47
ReLU . 48

ix

SoftMax . 49
4.2 Memory Footprint . 50
4.3 Data Types . 51

4.3.1 Evaluation . 52
4.3.2 Floating Point . 52
4.3.3 Fixed Point . 53
4.3.4 Fixed Point Activations 63

4.4 Weight Pruning . 65

5 Architecture Design 73
5.1 Non-Volatile Memory . 74
5.2 Volatile Memory . 75
5.3 Compute Engine . 76
5.4 I/O . 77

5.4.1 AMBA AXI4 Interface Protocol 80
5.5 Software . 81
5.6 Scheduler Strategies . 83

5.6.1 Serial Strategy . 84
5.6.2 Layer-Pipelining Strategy 85
5.6.3 Multi-Inference Strategy 89
5.6.4 Image-Pipelining Strategy 90

5.7 Amdahl’s Law . 90
5.8 Platform Accelerator Architectures 91

5.8.1 Convolution Accelerator 91
5.8.2 Max-Pooling Accelerator 95
5.8.3 Fully-Connected Accelerator 98

6 FPGA Implementation 101
6.1 Tools Used . 101

6.1.1 Vivado IDE . 101
6.1.2 Vivado High-Level Synthesis (HLS) 102

Synthesis Report . 103
Optimization Directives 103

6.1.3 Xilinx SDK and Xilinx Vitis IDE 105

7 Results 107
7.1 Specifications of the Compared Platforms 107

7.1.1 Intel i7 4710MQ . 107
7.1.2 NVIDIA RTX-2060 Super 8GB 108

x

7.1.3 Xilinx CHaiDNN . 108
7.2 Proposed Platform . 108
7.3 Performance Metrics . 109

7.3.1 Throughput . 109
7.3.2 Latency . 109
7.3.3 Power Consumption . 109
7.3.4 Energy Consumption 110

7.4 CPU and GPU Performance . 110
7.5 Final Performance . 112

8 Conclusions and Future Work 117
8.1 Conclusions . 117
8.2 Future Work . 118

References 121

xi

List of Figures

1.1 AMD Epyc 7002 series chip . 2
1.2 NVIDIA Titan RTX card . 3
1.3 Google’s TPU v3 . 4
1.4 FORTH QFDB . 4

2.1 Standard structure of a biological neuron 9
2.2 Activation Function Graphs . 10
2.3 Activation Function Graphs . 12
2.4 Typical CNN Architecture . 15
2.5 Convolution Operation . 18
2.6 Max-Pooling Operation . 20

3.1 LeNet-5 architecture . 24
3.2 AlexNet architecture . 25
3.3 ZFNet architecture . 25
3.4 GoogLeNet/Inception v1 architecture 26
3.5 VGGNet architectures . 27
3.6 ResNet architecture . 28
3.7 Google Cloud TPU v1 Architecture Block Diagram 32
3.8 Google Cloud TPU Matrix Multiplier Unit (MXU) 33
3.9 Google Cloud TPU v3 Pods . 33
3.10 Xilinx DPU Architecture . 37
3.11 Xilinx DPU-V1 Architecture . 37
3.12 Xilinx DPU-V2 Architecture . 38
3.13 Xilinx DPU-V3 Architecture . 38
3.14 Xilinx Vitis AI Stack . 39
3.15 NVIDIA NVDLA Hardware Architecture 40

4.1 Second Convolution layer’s weights distribution comparison
between single-precision floating-point and 8-bit fixed-point
representations . 55

xii

4.2 Fifth Convolution layer’s weights distribution comparison be-
tween single-precision floating-point and 8-bit fixed-point rep-
resentations . 56

4.3 First Fully-Connected layer’s weights distribution comparison
between single-precision floating-point and 8-bit fixed-point
representations . 57

4.4 Second Convolution layer’s weights distribution comparison
between single-precision floating-point and 8-bit fixed-point
representations using MQE . 59

4.5 Fifth Convolution layer’s weights distribution comparison be-
tween single-precision floating-point and 8-bit fixed-point rep-
resentations using MQE . 60

4.6 First Fully-Connected layer’s weights distribution comparison
between single-precision floating-point and 8-bit fixed-point
representations using MQE . 61

4.7 All data types tested accuracy 62
4.8 All layer weights distributions 67
4.9 Accuracy per pruning amount 69
4.10 Weight distribution comparison of the original and the pruned

weights of the first convolution layer of test 3 70
4.11 Weight distribution comparison of the original and the pruned

weights of the first convolution layer of test 1 71
4.12 Weight distribution comparison of the original and the pruned

weights of the first Fully-Connected layer of test 1 72

5.1 The platform’s block diagram 74
5.2 The platform’s flowchart . 83
5.3 AlexNet serial execution . 85
5.4 AlexNet layer-pipelined execution 86
5.5 Convolutional and Max-Pooling layer output order for layer-

pipelining . 87
5.6 Convolutional and Max-Pooling layer input pixel usage fre-

quency using a stride of one . 88
5.7 Convolutional and Max-Pooling layer input pixel usage fre-

quency using a stride of four 89
5.8 Convolutional layer serial accelerator 92
5.9 Accumulator component . 93
5.10 ReLU component . 93
5.11 Convolutional layer kernel-row-parallel accelerator 94

xiii

5.12 Max-Pooling layer serial accelerator 95
5.13 Max component . 96
5.14 Max-Pooling layer kernel-parallel accelerator 97
5.15 MaxTree component . 97
5.16 Fully-Connected layer serial accelerator 99
5.17 Fully-Connected layer accelerator with partial outputs 99

7.1 CPU vs GPU Inference Latency 111
7.2 CPU vs GPU Inference Throughput 112
7.3 Final Results Charts . 114

xv

List of Tables

4.1 AlexNet Parameters Memory Footprint 50
4.2 AlexNet Data Stages Memory Footprint. 51
4.3 Top-1 error rate of every floating-point tested data type. 53
4.4 Top-1 error rate of every fixed-point tested data type. 54
4.5 Top-1 error rate of fixed-point data types using Mean Quarted

Error equation 4.3. 62
4.6 Theoretical and Practical activations’ bit-widths 64
4.7 Scale Factor per layer . 65
4.8 All pruning amount configurations tested and their accuracy. 68

5.1 MMIO vs Stream . 79

7.1 Intel i7 4710MQ processor specifications 107
7.2 NVIDIA RTX 2060 Super specifications 108
7.3 Xilinx CHaiDNN resource usage 108
7.4 Proposed platform resource usage 109
7.5 Performance results . 113

xvii

List of Algorithms

1 Convolution Layer . 45
2 Convolution Layer with ReLU 46
3 MaxPool Layer . 47
4 Fully-Connected Layer . 48
5 Fully-Connected Layer with ReLU 48
6 ReLU (1-D) . 49
7 ReLU (3-D) . 49
8 SoftMax . 49

xix

List of Abbreviations

AI Artificial Intelligence
ALU Arithmetic Logic Unit
ANN Artificial Neural Network
ASIC Application Specific Integrated Circuit
AXI Advanced eXtensible Interface
BRAM Block Random Access Memory
BSP Board Support Package
CNN Convolutional Neural Network
CPU Central Processor Unit
CS Computer Science
CUDA Compute Unified Device Architecture
cuDNN CUDA Deep Neural Network library
DDR4 Double Data Rate type texbf4 memory
DRAM Dynamic Random Access Memory
DNN Deep Neural Network
DPU Deep Learning Processing Unit
DSP Digital Signal Processor
FC Fully Connected
FF Flip Flop
FPGA Field Programmable Gate Array
FORTH Fundation of Research and Technology Hellas
FSBL First Stage Boot Loader
GDDR6 Graphics Double Data Rate type 6 memory
GPU Graphic Processor Unit
HBM High Bandwidth Memory
HDL Hardware Description Language
HLS High Level Synthesis
HPC Hight Performance Computing
ILA Integrated Logic Analyzer
ILSVRC ImageNet Large Scale Visual Recognition Challenge
LUT Look Up Table

xx

ML Machine Learning
MLP Multi-Layer Perceptron
MMIO Memory-Mapped I/O
MPSoC Multi Processor System on Chip
MXU Matrix Mutliplier Unit
PE Processing Element
PL Programmable Logic
PS Processing System
QFDB Quad FPGA Daughter Board
RAM Random Access Memory
ReLU Rectified Linear Unit
SDK Software Development Kit
SIMD Single Instruction Multiple Data
SM Streaming Multiprocessor
SLC Second Level Codebook
SSE Streaming SIMD Extensions
SSD Solid State Drive
TDP Thermal Design Power
TPU Tensor Processor Unit
URAM Ultra Random Access Memory
USD United States Dollar

xxi

Dedicated to my family and friends. . .

1

Chapter 1

Introduction

Since the invention of the first computer, humankind is rapidly solving prob-
lems that are intellectually difficult for human beings but relatively easy for
computers, as such problems can be described in detail with a formal list of
mathematical rules. However, problems that are easy for humans, that are
solved intuitively, like distinguishing the difference between a car and a per-
son, or a spoken word and a bird’s chirp, is a real challenge for computers
and engineers [1]. Those problems cannot be described, at the time of writ-
ing, with sharply defined mathematical rules. Artificial Intelligence (AI) and
Machine Learning (ML) study those types of problems, with many successes
in the cost of highly computationally complex algorithms.

It is estimated that by the year 2025, the total amount of data created world-
wide will rise to 163 ZettaBytes, while every minute of the year 2019, Ameri-
cans used more than 4.4 PetaBytes of data [2]. It is evident that data manage-
ment systems and knowledge extraction from them, also called Data Analy-
sis, are urgent. Although such problems can be tackled using Artificial Intel-
ligence and Machine Learning, it is extremely computationally intensive, if
not even non-feasible, in a reasonable amount of time.

Fortunately, most of the algorithms used to tackle such problems come with
high parallelism. Therefore, they can be expanded in the space domain, in
other words, they can utilize more hardware resources to cut down on needs
from the time domain. Of course, there are many different types of hardware
resources, each with their advantages and disadvantages, from parallelism
capabilities and energy efficiency to cost of production, reconfigurability, and
reusability.

2 Chapter 1. Introduction

1.1 Motivation

Nowadays, the computational complexity of the aforementioned algorithms
makes hardware acceleration a necessity, since running them on Central Pro-
cessing Units (CPUs) is, while possible, the least efficient and fast solution.
Although writing software for CPUs may be fast and easy, its running speed
due to low parallelism and high power consumption, as a general propose
piece of hardware, are far from ideal. For reference, at the time of writing, a
top-grade server CPU, AMD EPYC 7002 Series (Figure 1.1), can provide up
to 64 cores and 128 threads, at up to 2.25GHz base clock and 3.4GHz boost
clock, with a rated Thermal Design Power (TDP) of 225Watts, and a list price
of 4,425 USD [3].

FIGURE 1.1: AMD Epyc 7002 series chip: URL

Graphics Processing Units (GPUs), on the other hand, provide much higher
parallelism, while still being relatively easy for their software to be written.
However, they can be costly to scale up, and their power consumption can
be really high. For reference, at the time of writing, a top-grade GPU for ML,
NVIDIA Titan RTX (Figure 1.2), provides up to 72 Streaming Multiproces-
sors, up to 4,608 CUDA Cores and up to 576 Tensor cores, with a rated base
clock of 1,350 MHz and boost clock of 1,770 MHz, 24 GB of Graphics Dou-
ble Data Rate (GDDR6) Memory and a power consumption of 280 Watts for
2,500 USD [4].

https://www.amd.com/en/processors/epyc-7002-series

1.1. Motivation 3

FIGURE 1.2: NVIDIA Titan RTX card: URL

Moreover, there are Application Specific Integrated Circuits (ASICs), which
can provide the best parallelism capabilities and the lowest power consump-
tion for a particular application. Unfortunately, they are very expensive to
develop and produce, and they can only serve a single purpose, a single
application. An example of such an ASIC is the Google Cloud Tensor Pro-
cessing Unit (TPU) (Figure 1.3), which, for the third version (v3), in a single
chip there are two TPU cores, each of which contains two scalar, vector, and
matrix units (MXUs), and 16 GB of High Bandwidth Memory (HBM) [5].

https://www.nvidia.com/en-us/deep-learning-ai/products/titan-rtx/

4 Chapter 1. Introduction

FIGURE 1.3: Google’s TPU v3 - 4 chips, 2 cores per chip: URL

On the contrary, Field Programmable Gate Arrays (FPGAs) are bridging the
gap between the GPUs’ flexibility and the ASICs’ performance and power
consumption. An example FPGA Hardware targeted for High-Performance
Computing (HPC) is the Quad-FPGA Daughter Board (QFDB) (Figure 1.4)
[6], developed by the Foundation of Research and Technology Hellas (FORTH)
[7], combines four interconnected Xilinx Zynq Ultrascale+ Multi-Processor
Systems on Chip (MPSoCs), with 16GB of DDR4 memory and an M.2 Solid
State Drive (SSD).

FIGURE 1.4: FORTH QFDB, top-view (left) and bottom-view
(right): URL

In this work, the FPGAs’ benefits are being utilized to create a hardware ac-
celerator that can speed up the inference of Convolutional Neural Networks
(CNNs), a branch of Deep Neural Networks (DNNs), which is a subfield
of Machine Learning. FPGA based CNN inference accelerators are not only

https://cloud.google.com/tpu/docs/system-architecture
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8945720

1.2. Scientific Goals and Contributions 5

targeting High-Performance Computing (HPC) systems like data-centers [8],
but also embedded systems [9] like mobile phones and aerospace, where low-
power, low-energy and low-latency are of great interest.

1.2 Scientific Goals and Contributions

Initially, this diploma thesis’s goal was to design and implement a CNN in-
ference FPGA accelerator, specifically for AlexNet, an award-winning CNN,
and create a performance benefit over CPUs and GPUs. However, AlexNet,
VGG, and many other CNNs use the same neural network layers, with dif-
ferences in layer organization and hyper-parameter configuration. There-
fore, a generalized CNN inference FPGA accelerator was designed and im-
plemented to run any network that uses convolution, max-pooling, ReLU,
and fully-connected layers. AlexNet is used as a reference for CNNs with
similar characteristics, and as a benchmark for this thesis proposed platform.

This study presents a hardware platform targeted for FPGA devices for easy
and structured implementation of neural network inference accelerators. It
is designed with flexibility and versatility in mind, capable of being trans-
ferred to various FPGA devices. Furthermore, it is scalable for multi-FPGA
implementations, using platforms such as the FORTH QFDB, a custom four-
FPGA platform. In addition, it is extendable to enable for easy adding of new
layer types and new layer accelerators, but most importantly, it provides easy
experimentation and development of neural networks hardware accelerator
architectures.

The theoretical modeling and robustness analysis has been conducted using
AlexNet as a reference to investigate the FPGA’s strengths and weaknesses,
study the computational workloads, memory access patterns, and investi-
gate and develop memory and bandwidth reduction techniques, including
double, single, and half floating-points, and fixed-points with various bit-
widths representations for both activations and parameters, as well as algo-
rithmic optimizations.

A comparison in inference performance metrics is presented between the
proposed platform, a CPU, a GPU, and other Xilinx developed neural net-
work accelerator platforms. Although there were no performance benefits

6 Chapter 1. Introduction

using an FPGA over a modern GPU, a potential for performance improve-
ments appears with further development, focusing on the convolution accel-
erator, which exploits the platform’s ease of use, extendability, and expand-
ability.

1.3 Thesis Outline

• Chapter 2 - Theoretical Background: The theoretical background of
Machine Learning, with emphasis on Convolutional Neural Networks,
is described.

• Chapter 3 - Related Work: The related work on the field of Convo-
lutional Neural Networks and their hardware implementations is de-
scribed.

• Chapter 4 - Theoretical Modeling and Robustness Analysis: AlexNet’s
characteristics and sensitivity are studied using this work’s theoretical
modeling on PyTorch, C/C++ and Matlab. Also, techniques on mem-
ory footprint and computation complexity reduction are described.

• Chapter 5 - FPGA Implementation: This work’s CNN inference FPGA
platform is being described.

• Chapter 6 - Results: Metrics, such as the throughput, latency, power
and energy consumption, are compared between the various available
technologies and platforms, including an Intel i7 4710MQ CPU, an NVIDIA
RTX 2060 Super 8GB GPU, a Xilinx CHaiDNN FPGA accelerator, a Xil-
inx DPU FPGA accelerator, and this work’s platform.

• Chapter 7 - Conclusions and Future Work: This work is being con-
cluded, and directions for future work and possible extensions are given.

7

Chapter 2

Theoretical Background

The theoretical background of Machine Learning and Convolutional Neural
Networks is being described below.

2.1 Machine Learning

Machine Learning, the name of which was first proposed in 1959 by Arthur
Samuel [10], is a subset of Artificial Intelligence, a Computer Science (CS)
field that studies algorithms and statistical models capable of performing
specific tasks, such as prediction or decision making, without being explicitly
programmed. Instead, sample data are used, also known as "training data",
for the machine to "learn" to distinguish useful patterns on the input data
capable of creating the needed output, e.g., decision or prediction. There are
numerous approaches [11] on the learning algorithms types, as well as on the
model types used to get trained.

Such algorithm types, at the time of writing, include, but are not limited to:

• Supervised Learning: Algorithms that learn by using "labeled" sample
data, " containing both the inputs and their desired outputs for classifi-
cation and regression.

• Unsupervised Learning: In contrast with the Supervised Learning, un-
labeled sample data are used to discover structures that could group or
cluster them.

• Reinforcement Learning: Algorithms responsible for taking actions in
an environment, often also described as software agents, maximize a
specific metric, many of which use dynamic programming techniques.

8 Chapter 2. Theoretical Background

• Feature Learning: Algorithms that by combining or even discarding
features from the input samples, try to create a new, more useful set of
features. One of the most popular algorithms of this category is Princi-
pal Components Analysis (PCA).

• Anomaly Detection: Algorithms that try to identify outlier samples,
which are characterized by their significant difference compared to the
majority of the data used. Such algorithms are often used in noise re-
duction, data mining, and even security and defense systems.

• Association Rule Learning: Algorithms that aim to discover strong re-
lationships between features.

Such model types, at the time of writing, include, but are not limited to:

• Artificial Neural Networks (ANN): Also known as Connectionist Sys-
tems, imitate the biological brain’s neural networks.

• Decision Trees: Make assumptions about the input items’ target value
(the decision tree’s leaves) via its observations (the decision tree’s branches).
When the target takes continuous values, the Decision Tree is called a
Regression Tree.

• Support Vector Machines (SVM): Used for classification and regres-
sion, mostly famous as non-probabilistic, binary, linear classifiers. They
can also be used for non-linear classification using the kernel trick.

• Bayesian Networks: Represented as directed acyclic graphs, they can
include probabilistic relationships.

Nowadays, most industries have already used Machine Learning in some
sort, indicating the significance and variety of its capabilities. It is estimated
[12] that by the year 2021, AI and ML spending will reach 57.6 Billion USD. Its
applications include but are not limited to [13] [14], web page ranking, image
recognition, email filtering, and spam detection, database mining, handwrit-
ing recognition, speech recognition, natural language processing, computer
vision, image/video/text/speech generation, personalized marketing, trav-
eling, dynamic pricing, healthcare, facial and fingerprint recognition and in-
trusion detection.

2.2. Artificial Neural Networks 9

2.2 Artificial Neural Networks

It is widely accepted that the brain’s most exceptional ability is pattern recog-
nition, which is used to combine "data" from the organism’s senses in a way
to better understand its environment. Artificial Neural Networks (ANN),
a highly popular sub-field of Machine Learning, try to imitate the brain’s
structure to solve such problems, a structure that has been developing and
proving its capabilities for thousands of years.

While ANNs are inspired by biological neural networks, they are not iden-
tical. A neural network is a collection of connected neurons, through which
electrical signals from sensor organs or other neurons are passed and pro-
cessed. A biological neuron comprises four main parts; Dendrites, Cell body,
Axon, and Synaptic terminals (Figure 2.1). A Dendrite and its Dendritic
branches are used as the neuron’s input, where sensors or other neurons get
connected. A neuron can have multiple Dendrites. The neuron’s cell body
collects all the input signals and applies an "activation" function to create
the output signal. Afterward, the output signal is transported through the
Axon and distributed to the next neurons through the Synaptic terminals.
The Synaptic terminals to Dendrites connections are called Synapses.

FIGURE 2.1: Standard structure of a biological neuron: URL

https://nurseslabs.com/nervous-system/

10 Chapter 2. Theoretical Background

2.2.1 ANNs Basic components

Similarly to the biological neural networks, an ANN can be represented as a
directed, weighted graph (Figure 2.2), whose vertices represent the biologi-
cal neurons’ cell bodies and its edges the biological synapses. The electrical
signal used in biological neurons can be represented as a real number, and
their outputs can be calculated by some non-linear function of the inputs’
weighted sum. Each edge typically can have a weight, set during the train-
ing process, which amplifies or weakens the vertex’s signal.

FIGURE 2.2: Simplified Neural Network Graph: URL

Neuron

A neuron receives real numbers as inputs, which are combined with their
internal state, also known as activation, using an activation function and an
optional threshold to produce the neuron’s output.

Connections and Weights

Each neuron can be connected with multiple other neurons to be used as
inputs and to feed them with its output. Each connection is characterized by
its weight, which represents its relative importance.

Propagation Function

The propagation function calculates the weighted sum of each neuron’s in-
puts and adds a bias term.

https://en.wikipedia.org/wiki/Artificial_neural_network

2.2. Artificial Neural Networks 11

Activation Function

The activation function receives the propagation function’s result and applies
a transformation, which creates the neuron’s final output. There are a lot
of different activation functions, with specific characteristics for the training
and inference process. However, they all provide a smooth and differentiable
transition as the input values change. The most commonly used ones are
shown below [15].

• Identity: f (x) = x
No transformation is applied.

• Binary Step: f (x) =

0 x ≤ 0

1 x > 0
While being the original activation function developed when neural
networks were invented, it is no longer used as it is incompatible with
backpropagation. Backpropagation is the process of updating the weights
during the training phase using the gradient descent algorithm. The bi-
nary step function is not convex; hence, gradient descent is unable to
find a local minimum.

• Logistic (Sigmoid or Soft step): f (x) = σ(x) = 1
1+e−x

Often used, however, in real-world neural networks, it is avoided due
to the vanishing gradient problem [16].

• TanH: f (x) = tanh(x) = ex−e−x

ex−e−x

Same as Logistic.

• Rectified Linear Unit (ReLU): f (x) =

0 x < 0

x x > 0
The most popular activation function, due to its fast backpropagation
speeds, its low penalty on generalization accuracy, and its resistance to
saturation conditions [17].

• Softmax: fi(x) = exi

∑J
j=1 exj , for i = 1, ..., J

Commonly used as a final output activation function for multiclass
classification. It normalizes the output to [0, 1], and makes its sum
equal to 1. After this transformation, the i-th output’s value designates
the input’s probability to be the class i.

12 Chapter 2. Theoretical Background

FIGURE 2.3: Activation Function Graphs

2.2.2 Organization

An ANN’s neurons are typically organized into groups, called layers, in
which each neuron has the same distance from the inputs as all the other
neurons of its group. The input layer is the layer that gets as inputs the ex-
ternal data, and the output layer, the last layer in the graph, is the one that
produces the final output results. Any in-between layer is called a hidden
layer. An ANN is called a Deep Neural Network (DNN), when, by conven-
tion, it has three or more hidden layers.

2.2.3 ANN Architectures

There are many ANN architectures, each one serving different use cases.
They are separated into two main groups, Feedforward networks and Re-
current networks [18].

Feedforward Networks

The basic idea with the feedforward networks is that the data flows from the
input layer through the hidden layers to the output layer without any cycles,
so they can be represented as directed, acyclic graphs. Some architectures of
this group are:

• Multiclass Perceptron

• Group method of data handling

• Autoencoder

2.2. Artificial Neural Networks 13

• Probabilistic

• Time delay

• Convolutional

• Deep stacking network

Recurrent Networks

Recurrent Neural Networks (RNN), similarly to the Feedforward networks,
data flows from the input layer through the hidden layers to the output layer.
However, they allow for data cycles, in other words, outputs of the layern can
be fed to the inputs of the layern−1, so they can be represented as directed,
cyclic graphs. Some architectures of this group are:

• Fully recurrent

• Simple recurrent

• Reservoir computing

• Long short-term memory

• Bi-directional

• Hierarchical

• Stochastic

• Genetic Scale

For every ANN Architecture, there are specific types of layers that apply dif-
ferent kinds of mathematical operations on their input data. Each layer type
has characteristics on the way its mathematical operations are applied to its
input. Those characteristics are generally called hyperparameters. For exam-
ple, in a Fully-Connected layer, a hyperparameter is its number of outputs.
Hyperparameters are set by the engineers during the training phase, which
are fine-tuned, concerning the application’s input data.

This work is focused on the Convolutional Neural Networks (CNN), which
are described in detail below.

14 Chapter 2. Theoretical Background

2.3 Convolutional Neural Networks

Convolutional Neural Networks (CNNs) are deep feedforward neural net-
works that specialize in processing data with grid-like topologies and are
typically used in visual imagery analysis. They are simple neural networks
that, for at least one of their layers, use the convolution mathematical opera-
tion instead of the general matrix multiplication [1].

CNNs imitate the brain’s visual cortex, which is the area responsible for the
visual processes. Cortical neurons cover small areas of the visual field, with
partial overlaps resulting in full visual field coverage.

CNNs most significant advantage over other image classification algorithms
is their little need for pre-processing, meaning that their filters are learned
during the training phase while using traditional algorithms, they have to be
hand-engineered.

Some of their applications are image and video recognition, image classifi-
cation, object detection, recommendation systems, medical image analysis,
natural language processing, and financial time series [19] (e.g. [20], [21],
[22], [23], [24], [25]).

2.3.1 Structure

A typical CNN consists of two parts. The first part includes multiple convo-
lutional and pooling layers, which extract features from the given input. The
second part, also known as the classifier, includes multiple fully connected
layers, which classify the given input using the features extracted from the
first part (Figure 2.4).

2.3. Convolutional Neural Networks 15

FIGURE 2.4: Typical CNN Architecture - First five layers (Con-
volution + Max Pooling layers) used for feature extraction,
last three layers (Fully-Connected) used for classification, also

called the classifier: URL

The input data is typically structured as multidimensional arrays, also known
as tensors. For example, if the input data are RGB images, then the input ten-
sor’s shape is (number of images) x (image width) x (image height) x (image
depth), where image depth is called the image’s color channels, in this ex-
ample 3 channels. Moreover, the input data can also be grayscale images or
even hyperspectral images. Hyperspectral images have multiple color chan-
nels, even in the non-visible for the human eye spectrum, with applications
including the medical and space fields. There are also implementations such
as 1D and 3D CNNs, but this work examines 2D CNNs only.

The trainable parameters (weights and biases) needed for the computation
are initially assigned random values [26], rendering the network useless.
However, during the training phase, using the backpropagation process [27],
those weights are being optimized to form features from the training set. The
trainable parameters are also considered to be shared [28], meaning that the
same parameters are to be used in the entirety of the input data, dramatically
decreasing their number and consequently their memory footprint and also
increasing the network robustness against overfitting.

As stated above, there are three types of layers in 2D CNNs; Convolutional,
Pooling, and Fully-Connected layers. Each layer is being described below.

https://www.kaggle.com/mauddib/digit-recogniser-tutorial-using-a-cnn-tensorflow

16 Chapter 2. Theoretical Background

Convolutional Layer

A convolutional layer creates and outputs a similarity map between the input
data and the convolution’s filters, also known as kernels. More specifically,
every filter is convolved across the input’s width and height, producing their
dot product. The result is multiple two-dimensional arrays, whose each cell
holds the similarity of each filter to some spatial position in the input.

Each filter is a specific type of feature, depending on the training set. For
example, in image classification, a filter can be a rough shape of cats’ mus-
taches, so that after the convolution, it can be indicated if they are contained
somewhere in the input image. If they are, then, to some probability defined
during the training phase, there might be a cat in the input image.

Each convolutional layer is defined by its hyperparameters. Those are:

• Kernel size: The width and height of the kernels’ (filters’) size, typi-
cally, smaller than the given input.

• Output channels: The number of feature maps to be created as outputs.
Consequently, the number of kernels used in this operation also equals
the output channels number.

• Stride: The number of pixels to be skipped horizontally and vertically
in each partial convolution. Typically, this number does not differ be-
tween the two dimensions.

• Zero padding: There might be a need for zero-padding the input to
include as much data as possible in the final computation. There are
three different ways of padding:

– Valid: No padding is applied; some data may not be included in
the computation.

– Same: Applies the amount of padding needed to result in the same
width and height as the input.

– Full: Applies padding on the input’s edges with a specified num-
ber of pixels per dimension.

The mathematical expression of the convolution operation is defined bellow
(Equation 2.4) and visualized on Figure 2.5.

Let I be the input with C channels, H height and W width, and let K be the
kernels with N number of kernels, C channels, KH height and KW width.

2.3. Convolutional Neural Networks 17

Also, let B be the bias with K values, and let S be the stride size and P be the
padding size. So the convolution operation’s output, Out, is defined as:

Ipadded(c, i, j) =

0, i ∈ [1, P], j ∈ [1, P]

I(c, i− P, j− P), i ∈ [P + 1, P + 1 + H], j ∈ [P + 1, P + 1 + W]

0, i ∈ [H + 1, H + 1 + P], j ∈ [W + 1, W + 1 + P]
(2.1)

OH =
H + 2P− KH

S
+ 1 (2.2)

OW =
W + 2P− KW

S
+ 1 (2.3)

Out(k, i, j) = B(k) +
C

∑
c=1

KH

∑
kh=1

KW

∑
kw=1

Ipadded(c, kh + (i− 1) ∗ S, kw + (j− 1) ∗ S)K(k, c, kh, kw),

for k = 1, 2, ..., C,

for i = 1, 2, ..., OH,

for j = 1, 2, ..., OW

(2.4)

18 Chapter 2. Theoretical Background

FIGURE 2.5: Convolution Operation - A 2x2 Kernel filter is ap-
plied on the 4x3 example input matrix with stride 1 and valid

padding. Figure from [1].

Nowadays, most applications might require multiple Convolutional layers
to extract useful features from their complex inputs. Deeper architectures, in
general, create more detailed characteristics. Furthermore, activation func-
tions can be interjected between adjacent Convolutional layers to enhance the
network’s non-linearity. Activation functions can make the network function
as a universal function approximator [29].

Pooling Layer

A pooling layer sub-samples its input to decrease the computation footprint
needed for the next layers and make the network more prone to over-fitting.
It reduces the input dimensions by combining multiple neurons into a sin-
gle neuron. Max-Pooling layers combine groups of neurons by outputting
their maximum value. Average-Pooling layers combine groups of neurons
by outputting their average value.

Similarly to the convolutional layer, a pooling layer slides a window of some
size, called kernel size, across the input data. The data to be combined are

2.3. Convolutional Neural Networks 19

those that the sliding window has selected. In 2D CNNs, the pooling layers
have 2D windows; the channels are not combined.

A pooling layer can be local, combining small groups of neurons, which
means that the layer’s kernel size is small compared to the input size. It
can also be global, combining the whole input to a single neuron.

Each pooling layer is defined by its hyperparameters. Those are:

• Kernel size: The kernel’s (sliding window’s) width and height.

• Stride: The number of pixels to be skipped horizontally and vertically
in each slide. Typically, this number does not differ between the two
dimensions.

The mathematical expression of the average-pooling operation (Equation 2.7)
and max-pooling operation (Equation 2.8) is defined and visualized (Figure
2.6) bellow.

Let I be the input with C channels, H height and W width, let KH be the
kernel’s height, let KW be the kernel’s width, and let S be the stride size. So
the pooling operations are defined as:

OH =
H − KH

S
+ 1 (2.5)

OW =
W − KW

S
+ 1 (2.6)

AvgPool(c, i, j) = ∑KH
kh=1 ∑KW

kw=1 I(c, kh + i ∗ KH, kw + j ∗ KW)

KH ∗ KW
,

for c = 1, 2, ..., C,

for i = 1, 2, ..., OH,

for j = 1, 2, ..., OW

(2.7)

MaxPool(c, i, j) = max
1≤kh≤KH,1≤kw≤KW

I(c, kh + i ∗ KH, kw + j ∗ KW),

for c = 1, 2, ..., C,

for i = 1, 2, ..., OH,

for j = 1, 2, ..., OW

(2.8)

20 Chapter 2. Theoretical Background

FIGURE 2.6: Max-Pooling Operation - A max operation is ap-
plied with a 2x2 Kernel on the 4x4 example input matrix with

stride 2. Figure from [1].

Fully-Connected Layer

The CNNs classifier part comprises several Fully-Connected layers, which
serve as the high-level reasoning. It is the part that finally classifies the given
input.

A Fully-Connected layer is the simplest type of layer, as it is the one used in
Multi-Layer Perceptron (MLP) neural networks. More specifically, it receives
input, with which it computes a weighted sum for each of its output values.
This input is derived from the flattened output of several convolutional and
pooling layers.

Each Fully-Connected layer is defined by its hyperparameters. Those are:

• Output Features: The number of features to output. Consequently,
this also configures the number of weights needed for the computation,

2.4. Theoretical knowledge sources 21

hence, its memory and computation footprint.

The mathematical expression of the Fully-Connected layer’s operation (Equa-
tion 2.9) is defined bellow.

Let I be the input with N input features, let W be the layers weights, let B
be the layer’s bias, and let M be the layer’s output features. So the Fully-
Connected layer’s output, Out, is defined as:

Out(i) = B(i) +
N

∑
j=1

I(j)W(i, j), for i = 1, 2, ..., M (2.9)

The parameters’ reuse of Fully-Connected layers from a specific application
to another cannot be done since they are strictly bonded to the classes and
high-level features of the particular Convolutional neural network.

The final Fully-Connected layers is typically followed by a Softmax activa-
tion layer, which, as stated on section 2.2.1, it calculates the probability of the
input being a certain class. The use of Softmax enables the confidence quan-
tification for every estimation, and easy troubleshooting when the input it
misclassified.

Activation Layer

There can be an activation layer after each Convolutional and Fully-Connected
layer, which applies an activation function on the output of its previous layer.
An activation layer increases the network’s non-linearity without affecting
the convolutional layers’ receptive fields. The activation function can be one
of those presented in section 2.2.1, but ReLU is generally preferred, due to its
fast training characteristics and its low penalty on generalization accuracy.

2.4 Theoretical knowledge sources

The aforementioned theoretical background was mostly obtained from the
Statistical Modeling and Pattern Recognition course of Electrical and Com-
puter Engineering school at the Technical University of Crete. In addition,
the book Deep Learning [1] was used when finer details were needed. More-
over, the Udacity course Intro to Deep Learning with PyTorch by Facebook
AI [30] was used for a more hands-on approach, focusing on PyTorch and

22 Chapter 2. Theoretical Background

Python in general. Last but not least, a great resource has been all the papers
mentioned above.

23

Chapter 3

Related Work

3.1 CNN Architectures

The essential part of every machine learning application is its dataset. A
dataset is the collection of data that a machine learning application can be
based on; for a neural network application, a dataset is the collection of
data that the network is trained and tested. Nowadays, there are numerous
datasets for visual recognition applications, with various sizes and qualities.
The size of a dataset defines the number of data per class, and its quality can
define many aspects of the data, such as their noise characteristics and their
factual correctness of assigned labels (the creators of the dataset may wrongly
label data). Some of the most popular datasets are MNIST with grayscale im-
ages of handwritten digits [31] [32], Fashion-MNIST with grayscale images
of various pieces of clothing [33] [34], CIFAR-10 & CIFAR-100 with color im-
ages of 10 and 100 classes, respectively, of everyday items [35] [36], Microsoft
COCO with color images for object recognition / detection of everyday items
[37] [38] and ImageNet with high resolution color images of 22000 classes of
everyday items [39] [40].

ImageNet is one of the biggest datasets, containing more than 14 million
hand-annotated images and more than 1 million bounding boxes for those
images. Since 2010, the ImageNet Large Scale Visual Recognition Challenge
(ILSVRC) is organized annually by the ImageNet project, where software
programs compete in the classification of a trimmed list of one thousand
non-overlapping classes. The contestant softwares have been of many differ-
ent types throughout the years; however, from the ILSVRC 2012 and then on,
Convolutional Neural Networks have dominated the challenge, achieving
near human-like accuracy. A CNN called AlexNet [41] managed to achieve
a top-5 error of 15.3% in the ILSVRC 2012, where the top-5 error rate is the

24 Chapter 3. Related Work

fraction of test data for which the correct label is not among the five most
probable labels.

Many CNN architectures have been created using the aforementioned data-
sets. Some of the most important ones are being described below.

3.1.1 LeNet-5

LeNet-5 [42] (Figure 3.1), created by LeCun et al in 1998, was, at the time, a pi-
oneering 7-layer convolutional neural network designed to recognize simple
32x32 grayscale digit images, similar to those on the MNIST dataset. It uses
two convolutional layers, two pooling layers, and three fully-connected lay-
ers. However, it can only support low-resolution images and few classes, due
to its low learning capacity. For higher resolution images, deeper networks
are required, which was not feasible back then because of limited hardware
performance. LeNet-5 was the first success for CNNs.

FIGURE 3.1: LeNet-5 architecture

3.1.2 AlexNet

AlexNet [41] (Figure 3.2), created by Alex Krizhevsky et al in 2012, outper-
formed all prior contestants of the ILSVRC by almost twice increase in ac-
curacy, reducing the top-5 error rate from 26.2% to 15.3%. It takes as input
RGB 224x224 images. This is achieved by using the same types of layers as
LeNet-5, but more of them, making it is deeper and with more filters per
layer. Using such deep networks was made feasible due to the utilization of
GPUs during the training phase, whose performance had been significantly
increased. AlexNet was, also, designed to run on two GPUs simultaneously,
further exploiting the CNNs’ parallelism characteristics. It needed six days
in time for successful training on two NVIDIA GTX 580 GPUs.

3.1. CNN Architectures 25

FIGURE 3.2: AlexNet architecture

Since AlexNet, most, if not all, CNNs are at least as deep, to achieve high
learning capacity and accuracy.

Nowadays, AlexNet is one of the most well-known CNNs and is often used
as a benchmark for various hardware solutions, due to its high complexity
and number of parameters needed. In total, it uses more than 61 million
parameters, which results in about 250MB.

3.1.3 ZFNet

ZFNet [43] (Figure 3.3) is a fine-tuned version of AlexNet by Matthew Zeiler
and Rob Fergus, which won the ILSVRC 2013, achieving a top-5 error rate of
14.8%.

FIGURE 3.3: ZFNet architecture

3.1.4 GoogLeNet / Inception

GoogLeNet [20] (Figure 3.4), also known as Inception v1, designed by Google,
won the ILSVRC 2014 with a top-5 error rate of 6.67%. Provided that GoogLe-
Net’s top-5 error rate was near to the human level, organizers had to evaluate

26 Chapter 3. Related Work

these results with the help of a human expert, previously trained for a few
days, who achieved a top-5 error rate of 5.1% for a single model and 3.6% for
the ensemble. This architecture, inspired by LeNet-5, consists of 22 layers but
reduces the number of parameters compared to AlexNet from 61 million to
only 4 million. The parameter reduction was achieved using a special mod-
ule called Inception, which is based on several very small convolutions. To
further improve the accuracy, techniques such as batch normalization, image
distortions, and RMSProp were used. Note that the auxiliary classifiers, Soft-
max0 and Softmax1, are only used during the training phase to combat the
vanishing gradient problem and provide regularization.

FIGURE 3.4: GoogLeNet/Inception v1 architecture

3.1.5 VGGNet

VGGNet [44] (Figure 3.5), designed by Simonyan and Zisserman, was the
runner-up ate the ILSVRC 2014. The original architecture consists of 16 lay-
ers, but there are other variants with more or fewer layers. Compared to
AlexNet, it uses more filters, and it was trained with 4 GPUs for up to 3
weeks. Nowadays, it is the most preferred network for image feature extrac-
tion; however, it can be very challenging, due to its 138 million parameters.

3.1. CNN Architectures 27

FIGURE 3.5: VGGNet architectures: URL

3.1.6 ResNet

ResNet [45] (Figure 3.6), designed by Microsoft, won the ILSVRC 2015 with
an outstanding top-5 error rate of 3.57%, beating the human-level perfor-
mance. This was achieved with the use of 152 layers. Although the layers’
number may be high, its complexity is lower than the VGGNet due to its ar-
chitecture called Residual Neural Network. It uses gated (recurrent) units, a
module inspired by the recent successful elements used in RNNs, which, in
a sense, skips connections. In addition, heavy batch normalizations are also
used.

https://medium.com/coinmonks/paper-review-of-vggnet-1st-runner-up-of-ilsvlc-2014-image-classification-d02355543a11

28 Chapter 3. Related Work

FIGURE 3.6: ResNet architecture - Bottom: the VGG-19 model
(19.6 GFLOPs) as a reference. Middle: a plain network with 34
parameter layers (3.6 GFLOPs). Top: a residual network with 34
parameter layers (3.6 GFLOPs). The dotted shortcuts increase

dimensions.

3.1.7 Summary

One can observe that all the aforementioned architectures use the same types
of layers found on classical CNNs. They only differ in some training tech-
niques, their depths, and hyperparameters. In this work, AlexNet is the pri-
mary benchmark used to test the various hardware architectures, because of
its simplicity and its high complexity.

3.2 Deep Learning Software Frameworks

There are many software frameworks available for developers to use for their
deep learning applications. Their differences, apart from their syntax, are
found in the amount of abstraction, portability, and environment. Some of
the most popular ones are described below.

3.2.1 Keras

Keras [46] [47] is a high-level library for Python, built on top of other lower-
level frameworks such as TensorFlow, Theano and CNTK. While the high-
level approach reduces the creation of massive deep learning models to single-
line functions, it also makes the library’s environment less configurable. It is

3.3. Hardware Solutions 29

best suited for learning and prototyping, with the abstraction of the mathe-
matical operations applied.

3.2.2 CAFFE

CAFFE (Convolutional Architecture for Fast Feature Embedding) [48] [49]
[50] is a deep learning framework written in C++, with a Python interface,
originally developed at University of California, Berkley. It supports CNN,
RCNN, LSTM, and Fully-Connected neural network models, with CPU and
GPU acceleration. Its successor, CAFFE2, also supports RNNs. CAFFE2 is
now merged into PyTorch.

3.2.3 PyTorch

PyTorch [51] [52] developed by Facebook, is a lower-level framework based
on Torch, which supports any kind of neural networks. It contains many
pre-trained models, most of those in section 3.1, and can also utilize GPU
acceleration. It operates with a dynamically updated graph, which allows for
changes to the architecture in the process. It is best suited for small projects,
prototyping, and research purposes.

3.2.4 TensorFlow

TensorFlow [53] [54] [55] is the most popular deep learning framework nowa-
days, released on November of 2015 [56]. Developed by Google, it has inter-
faces for Python, Javascript, C++, C#, Java, Go, and Julia. It is the most used
framework for production, with CPU, GPU, and TPU acceleration support.
It can, not only, run on powerful computing clusters, but also, on mobile
platforms and embedded systems. While it is a lower-level framework and
needs much coding, it provides high configurability. In contrast to PyTorch, it
operates with a static computation graph, which enhances its efficiency but
sacrifices the ease of model modifications; for every modification, a model
retrain is needed.

3.3 Hardware Solutions

The most considerable portion of the computation needed in CNNs comes
from the Multiply-Accumulate (MAC) operations on floating-point numbers.

30 Chapter 3. Related Work

Usually, networks are trained on GPUs, because they can fulfill the high par-
allelism needs. For even more exceptional performance on training, TPUs
can be used. However, the training phase is considered, most of the time,
to be a one-time procedure. Hence, the research community is more focused
on accelerating the inference phase. While being a much less computation-
ally intensive procedure compared to training, the inference phase can still
be intensive enough to achieve real-time or even faster applications.

Neural networks’ inference can be run on CPUs, GPUs, ASICs such as the
TPU, and FPGAs. A brief description of each platform’s advantages and
limitations is given below.

3.3.1 CPUs

CPUs are multi-purpose processors that can be very flexible in the opera-
tions they can execute while being very easy to program. They can also
execute Single Instruction Multiple Data (SIMD) instructions using the Ad-
vanced Vector Extensions (AVX) [57] and Streaming SIMD Extensions (SSE)
[58], and utilize multiple cores. Even though CPUs run at clock speeds in the
gigahertz range, they lack the vast amount of computation power compared
to other solutions, and they can have high power consumption.

3.3.2 GPUs

Most of the aforementioned deep learning frameworks support GPU accel-
eration. GPUs can have hundreds or even thousands of more cores than
CPUs, with even specialized ones called Tensor cores for tensor operations,
which makes them ideal for executing algorithms with high parallelism char-
acteristics, such as those used in deep learning. Vector processing creates the
bulk of the GPUs’ compute power with which the same operation is applied
to a large amount of data simultaneously. This is achieved by using many
Streaming Multiprocessors (SMs) on a single GPU die, which are vector pro-
cessors that can process up to thousands of operations in a single clock cycle.
In addition, due to the massive amounts of data that deep learning algo-
rithms need to handle, High Bandwidth Memory (HBM) can be a perfect fit
providing up to 750 GB/s compared to only 50 GB/s offered by traditional
CPUs. Moreover, multiple GPUs in a single system can be utilized to further
expand its parallelism capabilities.

3.3. Hardware Solutions 31

As of right now, only NVIDIA GPUs are widely supported by most frame-
works. NVIDIA’s GPUs are optimized for deep learning frameworks with
compatibility for Compute Unified Device Architecture Software Develop-
ment Kit (CUDA SDK) [59], which supports many programming languages
such as C and C++, increasing the GPUs usability. NVIDIA has also de-
veloped the CUDA Deep Neural Network library (cuDNN) [60] [61], de-
signed to accelerate frameworks such as TensorFlow and PyTorch by pro-
viding highly-optimized implementations of routines like forward and back-
ward convolution. Furthermore, NVIDIA’s TensorRT [62] is an SDK for high-
ly optimized inference applications, delivering low latency and high through-
put (compared to CPUs). PyTorch also supports PyCUDA [63], NVIDIA’s
CUDA parallel computation API for Python.

Although GPUs provide very high performance and throughput, they can
be very power inefficient and can introduce high latency per result relative
to other solutions.

3.3.3 Tensor Processing Units (TPU)

Tensor Processing Unit (TPU) [64] is a custom Application Specific Integrated
Circuit (ASIC) that accelerates the inference phase on neural networks de-
signed by Google to improve cost-performance over GPUs. It is deployed
to their datacenters since 2015 to accelerate 95% of their AI needs, and since
2017 Google made its TPU infrastructure available to the public on its Google
Compute Engine. It was estimated that if every Android user began to use
Google’s voice search for three minutes per day, Google had to double their
data centers [65]; instead, they developed their TPU.

The first architecture generation achieves up to 200x speedup compared to
a server-class Intel Haswell CPU and up to 70x speedup compared to an
NVIDIA K80 GPU. Nowadays, they have designed another two generations
of its TPU (latest is TPU v3), and an edge computing solution called Coral
Edge TPU [66], which comes in various form factors, achieving up to 4 TOPS
using only 2 Watts. The first generation of TPUs targeted inference applica-
tions and was designed for high volume computation of as low as 8-bit pre-
cision. However, from the second generation, TPUs support floating-point
arithmetic making them ideal for training accelerators.

Each TPU core provides 2 Matrix Multiplier Units (MXUs) and is provided

32 Chapter 3. Related Work

16GB of HBM (TPUv3) (Figure 3.7). Each MXU is capable of 16k Multiply-
Accumulate (MAC) operation per cycle, which gives the bulk of the compute
power. In contrast to GPUs which operate on vector data, TPUs operate on
matrices providing hundreds of thousands of operations in a single clock cy-
cle. MXU’s architecture (Figure 3.8) is based on systolic arrays to implement
such a large-scale matrix processor. Its systolic mechanism contains a matrix
of 256x256 8-bit Arithmetic Logic Units (ALUs) that multiply-and-add 65536
integers per clock cycle, and because TPUs run at 700MHz, they yield per-
formance of 92 TeraOPs per second each. The systolic array chains multiple
ALUs to use the previous ALU’s result, and reuse inputs by forwarding them
to the next ALUs. In this manner, communication with off-chip memory is
significantly reduced [67].

FIGURE 3.7: Google Cloud TPU v1 Architecture Block Dia-
gram: URL

https://cloud.google.com/blog/products/gcp/an-in-depth-look-at-googles-first-tensor-processing-unit-tpu

3.3. Hardware Solutions 33

FIGURE 3.8: Google Cloud TPU Matrix Multiplier Unit (MXU):
URL

Every TPU v3 board comprises four chips (Figure 1.3), with each chip con-
taining 2 TPU cores. TPU boards are organized into pods (Figure 3.9), with
each pod containing up to 2048 TPU cores and 32TB total memory [5], pro-
viding a total of up to 92 PetaFLOPS of performance [68].

FIGURE 3.9: Google Cloud TPU v3 Pods: URL

The TensorFlow framework is used to run applications on TPUs, with a re-
duced bfloat16 precision. Google created the bfloat16 16-bit floating-point
representation standard to provide better training and model accuracy than
IEEE half-precision representation.

https://cloud.google.com/blog/products/gcp/an-in-depth-look-at-googles-first-tensor-processing-unit-tpu
https://cloud.google.com/tpu/docs/system-architecture

34 Chapter 3. Related Work

In general, TPUs are worth using with very large models, needing weeks or
even months of training, dominated by matrix computations, and no custom
TensorFlow operations inside the main training loop. Otherwise, GPUs or
ever CPUs may be more suitable and cost-effective [69].

ASICs, like Google’s TPUs, are very costly to design and produce. While they
provide the best performance and efficiency, they can become deprecated
fast, due to the speed the AI field is developing.

3.3.4 FPGAs

FPGAs provide high flexibility in hardware architectures, unlike all other
hardware solutions that are limited to their fixed architecture. A custom de-
sign is developed for every application to provide the computation units in
types and volume needed. Computation units are then placed on the so-
called FPGA fabric, the programmable part of the chip, to create systems that
accelerate specific applications.

Often FPGAs integrate numerous Digital Signal Processing (DSP) blocks,
which are hardware elements into the FPGA fabric. DSPs provide optimized
hardware for various common mathematical operations such as multiply-
accumulate (MAC) and division for representations from floating-point to
fixed-point or even integer. DSPs can also be configured as Double-Pumped,
allowing them to be clocked at twice the core clock.

Moreover, FPGAs can come with hard processor cores in the same chip that
can be used for communication, scheduling, and data pre and post-processing.
Such configurations are typically called Multi-Processor System on Chip (MP-
SoC). FPGAs are a perfect match for fields that come with rapid develop-
ment, such as AI and ML. Furthermore, they provide high energy efficiency
and low latency per result due to the design being specific to the application.

Although FPGAs have Block RAM (BRAM) and some even Ultra RAM (URAM),
a high-speed type of memory inside the FPGA fabric, they can be bottle-
necked due to its limited size. Hence, FPGAs are often provided with big
DRAM modules. However, compared to GPUs’, which are provided with
HBM, FPGAs may still face bandwidth limitations. Such limitations can be
overcome the same way ASICs do; by reducing data precision. Reducing
data precision is accomplished by converting them from floating-point to
lower bitwidth numeric representations, such as half-precision floating point
and fixed point. It can also be achieved by data reuse or quantization.

3.4. Quantization 35

3.4 Quantization

In order to compete with GPUs, FPGAs and TPUs have to minimize their
memory bandwidth needs. One of the most effective ways to tackle this
problem is by reducing the parameters’ memory footprint. This process is
called quantization, and it consists of various techniques. While, quantiza-
tion is applied independently of the framework that trains the network and
the hardware that runs its inference, the techniques to be used are selected
explicitly to the network’s environment for best performance optimization.

3.5 The FPGA Perspective

While FPGAs can provide significant advantages over other hardware plat-
forms, as of right now, there is no software framework, like TensorFlow and
PyTorch, that natively supports FPGA acceleration. Hence, third party archi-
tectures have to be used.

3.5.1 Xilinx CHaiDNN

The CHaiDNN [70] is an open-source Deep Neural Network inference accel-
erator library developed by Xilinx for its Ultrascale+ MPSoC devices, mainly
focusing on Convolutional Neural Networks. It was initially released in
February 2018, with its second version been released in June 2018.

The CHaiDNN is designed for maximum compute efficiency at 6-bit fixed-
point data type for both parameters and activations, while also supporting
8-bit fixed-point representations. The data precision can vary even through-
out the layers, claiming that a well-crafted data precision combination can
result in accuracy similar to a floating-point single precision model. To avoid
retraining the network with 6-bit or 8-bit fixed-point representations, Xilinx
has developed two quantization techniques, the Dynamic fixed-point quanti-
zation, and the Xilinx Quantizer, which are both supported by the CHaiDNN.

Moreover, the CHaiDNN provides configurations that can utilize from 128
up to 1024 Double-Pumped DSPs, with some designs achieving up to 700MHz.
For smaller MPSoCs, there is the DietCHai, a miniature version of CHai.
URAM is also supported.

Even though the most commonly used layers in various image classification
and object detection neural networks are supported, unsupported layers can

36 Chapter 3. Related Work

also be added as software layers and run the network’s inference. For perfor-
mance optimization, some layers, such as the Fully-Connected and Softmax,
are implemented as software layers. However, software layers can decrease
the inference throughput based on their latencies. In order to tackle this prob-
lem, hardware and software layers can be run in parallel, hiding each others’
latencies.

To run the inference using the accelerator, PetaLinux has to be running on
the MPSoC to handle all the layer job scheduling across all CPU cores and
hardware IPs. Network configuration and parameters are given using the
Caffe framework’s standard (.prototxt, .caffemodel, and mean files).

3.5.2 Xilinx Deep Learning Processing Unit (DPU)

Xilinx Deep Learning Processing Unit (DPU) [71] is a configurable Convolu-
tional Neural Network 8-bit integer inference accelerator developed by Xil-
inx for its Zynq-7000 SoCs and Zynq Ultrascale+ MPSoCs. It supports most
CNNs and can be configured appropriately according to parallelism needs
and resource constraints. It was initially released in February 2019, with its
latest version 3.2 been released in March 2020.

The DPU IP is implemented in the Programmable Logic (PL) part with direct
connections to the Processing System (PS). Instructions are sent from the pro-
gram running on the Application Processing Unit (APU) to the correspond-
ing DPU core with memory addresses of input images and temporary and
output data. The system’s architecture is shown in Figure 3.10 (Left) with
the APU, High Speed Data Tube, and DPU part all being in the same MP-
SoC, and RAM being the external Random Access Memory. A more detailed
hardware architecture is shown on Figure 3.10 (Right). It is worth noting
that the on-chip memory is utilized as a buffer for input, temporary and out-
put data, increasing throughput, and efficiency by reusing as much data as
possible and reducing external memory communication. The Hybrid Com-
puting Array (Left) or Computing Engine (Right) is consisted of Processing
Elements (PEs), creating a deep pipelined design. A PE is based on the fine-
grained building blocks found in Xilinx devices, such as multipliers, adders,
and accumulators.

3.5. The FPGA Perspective 37

FIGURE 3.10: Xilinx DPU Architecture: Left top-level block di-
agram, Right hardware architecture: URL

DPU-V1, previously known as xDNN, uses a 96x16 DSP Systolic Array as its
main compute unit (Figure 3.11). DPU-V2 uses a Hybrid Computing Array
(Figure 3.12), and DPU-V3E uses multiple instances of Batch Engines in each
DPU core (Figure 3.13).

FIGURE 3.11: Xilinx DPU-V1 Architecture: URL

https://www.xilinx.com/support/documentation/ip_documentation/dpu/v3_2/pg338-dpu.pdf
https://www.xilinx.com/html_docs/vitis_ai/1_1/zlx1571919192500.html

38 Chapter 3. Related Work

FIGURE 3.12: Xilinx DPU-V2 Architecture: URL

FIGURE 3.13: Xilinx DPU-V3 Architecture: URL

In contrast with the CHaiDNN, all layers, including the Fully-Connected and
Softmax layers, are hardware accelerated. Currently, implementing up to
four DPU cores in a single DPU IP is supported, and there is an option of
using Double Data Rate DSPs (Double-Pumped DSPs). Furthermore, there
are architectures for various parallelism needs, starting from 512 operations
per cycle per core up to 4096 operations per cycle per core.

https://www.xilinx.com/html_docs/vitis_ai/1_1/vpt1571919210634.html
https://www.xilinx.com/html_docs/vitis_ai/1_1/xyt1583919665886.html

3.5. The FPGA Perspective 39

The Xilinx Vitis AI development environment [72], released in December
2019, is Xilinx’s development platform for AI inference applications using
its hardware platforms, which provides optimized IPs, tools, and libraries
including the aforementioned Xilinx DPU. The Xilinx Vitis AI stack (Figure
3.14) has to be used to run a network’s inference using the DPU accelera-
tor. The network’s program giving instructions and orchestrating the data
transfers has to run on top of PetaLinux. This program is generated with
substantial instruction optimizations using the Xilinx Vitis AI compiler. This
program has to be regenerated with every network or hardware configura-
tion change. The network’s quantization is done using the Xilinx Vitis AI
Quantizer, generating the appropriate 8-bit integer parameters.

FIGURE 3.14: Xilinx Vitis AI Stack: URL

3.5.3 NVIDIA NVDLA

NVIDIA’s Deep Learning Accelerator (NVDLA) [73], initially released in Q3
2017, is a free and open architecture project seeking to standardize the design
of deep learning inference accelerators.

There are two main system implementations; the headless and the headed.
The headless implementation expects the main system’s processor to man-
age the accelerator, while the headed implementation expects a companion
microcontroller, tightly coupled to the NVDLA sub-system, to do the man-
agement.

NVDLA comprises five components, Convolution core, Single Data proces-
sor, Planar Data processor, Channel Data processor, Dedicated Memory, and
Data Reshape Engine, which are separate and independently configurable.
Each block’s input and output data transfers can be performed either in memory-
to-memory using the Independent operation mode, or by passing through

https://www.xilinx.com/support/documentation/ip_documentation/dpu/v3_2/pg338-dpu.pdf

40 Chapter 3. Related Work

some internal results to next blocks using the Fused operation mode (Fig-
ure 3.15). Furthermore, NVDLA supports a wide range of data types, from
binary and 4-bit integer up to 64-bit floating-point.

FIGURE 3.15: NVIDIA NVDLA Hardware Architecture in
Fused operation mode: URL

The convolution core supports sparse weight compression to reduce memory
bandwidth, as well as Winograd for computing efficiency for specific kernel
sizes. Batch convolution is also supported to reduce memory bandwidth. In
addition, a convolution buffer is added as internal RAM to avoid communi-
cation with external system memory.

The Single Data Point processor implements the various linear and non-
linear activation functions used in CNNs. For the non-linear functions, a
lookup table is used, while for the linear functions, a simple bias and scale
are used.

The Planar Data processor supports minimum, maximum, and average pool-
ing operations, with kernel sizes configurable during runtime.

The Cross-channel Data processor implements the local response normaliza-
tion.

The Data Reshape engine performs data format transformations for opera-
tions such as slice and reshape-transpose.

http://nvdla.org/primer.html

3.6. Thesis Approach 41

In general, NVDLA is a highly customizable and modular architecture, with
various configurations suitable for both FPGAs and ASICs.

3.6 Thesis Approach

This thesis aims to develop a hardware platform architecture targeted for
FPGA devices, to run neural networks’ inference, focusing on CNNs. The
platform’s goal is being flexible and versatile for easy design transferring,
extendable to enable for easy adding of new layer types and new layer ac-
celerators, able to run various CNNs, but most importantly, to provide easy
experimentation and development of neural networks hardware accelerator
architectures. Robustness analysis is carried out to investigate the FPGA’s
strengths and weaknesses, studying the computational workloads, memory
access patterns, memory and bandwidth reduction, as well as algorithmic
optimizations.

43

Chapter 4

Theoretical Modeling and
Robustness Analysis

In this chapter, a model of CNNs structure, execution and characteristics is
being created using MATLAB [74]. For a better understanding of the under-
lining algorithms, a C/C++ library was created to replicate PyTorch’s [51]
functionality, from image and parameter importing and formatting, to ev-
ery CNN layer type needed for the network’s inference. The library’s results
were evaluated using PyTorch’s results. AlexNet [41] is used as a reference
network for this analysis, with the parameters provided by the PyTorch’s
prebuilt and pre-trained model.

A Sensitivity Analysis was also performed to explore hardware implementa-
tion opportunities. Furthermore, various quantization techniques and algo-
rithmic optimizations have been studied and tested to reduce memory foot-
print and better utilize hardware resources. Lastly, several implementation
techniques and tools on the same functionality have been studied to mini-
mize hardware resources and latency.

4.1 PyTorch and C/C++ implementations

Since PyTorch is a high abstraction framework, the recreation of its func-
tionality to a lower abstraction level language, like C/C++, is a necessity
for a complete understanding of the neural network’s operation mechanism.
Hence, after creating a C/C++ library capable of implementing most CNNs,
it was evaluated for its correctness using PyTorch as a baseline. Its evaluation
was conducted by implementing AlexNet as an example network, using both
PyTorch and the C/C++ library, and then running the network’s inference on

44 Chapter 4. Theoretical Modeling and Robustness Analysis

both implementations. A subset of the ImageNet’s database was used as in-
put images, provided by Kaggle [75], which included 1250 images of cats and
another 1250 images of dogs.

Afterward, the results, taken from the last FC layer of both implementations,
were compared to create an error rate for each input. The library is designed
in a way that it can use any data type for weights and activations to enable
further experimentations. This evaluation experiment was conducted two
times, one for using double-precision and another for using single-precision
floating-point data type (IEEE standard). The error rate of both experiments
was almost zero, with some minor inconsistencies between the floating-point
representations of C/C++ and Python. Thus, both implementations’ classifi-
cations were fully matched, and the library can be characterized as correct.

4.1.1 Algorithms

The main building blocks of a typical 2-D CNN are presented below. Every
algorithm in this section is part of this work’s aforementioned C/C++ library.

Convolution

Algorithm 1 performs a 2-D Convolution on 3-D array inputs, like images.
The input is characterized by its height, its width, and its number of chan-
nels. In other words, the number of its parallel matrices; for an RGB image,
there are three channels, one for every color. The kernelSize, stride and padding
are the hyper-parameters of convolution layers, and because they differ for
every layer and network, they have to be included in the procedure’s param-
eters. Last but not least, weights and bias are the networks parameters. This
algorithm outputs a 3-D array with the convolution’s results.

4.1. PyTorch and C/C++ implementations 45

Algorithm 1 Convolution Layer

1: procedure CONVOLUTION LAYER(input, kernelSize, stride, padding,
weights, bias)

2: hOut← (input.height + 2 ∗ padding− kernelSize)/stride + 1
3: wOut← (input.width + 2 ∗ padding− kernelSize)/stride + 1
4: for i:=1 to input.channels do
5: for j:=1 to input.height + 2 * padding do
6: for k:=1 to input.width + 2 * padding do
7: if j <= padding || k <= padding || j > image.height +

padding || k > image.width + padding then
8: arr(i, j, k)← 0
9: else

10: arr(i, j, k)← input(i, j− padding, k− padding)

11: for oc:=1 to size(weights, 1) do . #Output channels
12: for oh:=1 to hOut do
13: imgStartH ← oh ∗ stride
14: imgEndH ← imgStartH + kernelSize
15: for ow:=1 to wOut do
16: imgStartW ← ow ∗ stride
17: imgEndW ← imgStartW + kernelSize
18: pixel ← 0
19: for ic:=1 to input.channels do
20: for i:=1 to kernelSize do
21: for j:=1 to kernelSize do
22: pixel ← pixel + arr(ic, i + imgStartH, j +

imgStartW) ∗ weights(oc, ic, i, j)

23: output(oc, oh, ow)← pixel + bias(oc)

24: return output

Algorithm 2 is a slightly more optimized version of algorithm 1. Since padding
creates areas of the input that are zeroed out, convolution on those areas
results in zero. Therefore, the for-loops’ indices are carefully calculated to
avoid iterations on the padded areas. Furthermore, the creation of the "padded"
input is also omitted.

Moreover, a small optimization is injecting the ReLU activation function into
this algorithm. Provided that ReLU is used almost after every convolution
layer, this optimization avoids rereading the whole input from memory to

46 Chapter 4. Theoretical Modeling and Robustness Analysis

make a simple decision. The procedure’s doRelu parameter configures if the
ReLU activation is used.

Algorithm 2 Convolution Layer with ReLU

1: procedure CONVOLUTION LAYER WITH RELU(input, kernelSize, stride,
padding, weights, bias, doRelu)

2: hOut← (input.height + 2 ∗ padding− kernelSize)/stride + 1
3: wOut← (input.width + 2 ∗ padding− kernelSize)/stride + 1
4: for oc:=1 to size(weights, 1) do . #Output channels
5: for oh:=1 to hOut do
6: imgStartH ← oh ∗ stride− padding
7: iStart← imgStartH < 0?padding : 0
8: if imgStartH + kernelSize ≥ input.height then
9: iEnd ← kernelSize − (imgStartH + kernelSize −

input.height)
10: else
11: iEnd← kernelSize
12: for ow:=1 to wOut do
13: imgStartW ← ow ∗ stride− padding
14: jStart← imgStartW < 0?padding : 0
15: if imgStartW + kernelSize ≥ input.height then
16: jEnd ← kernelSize − (imgStartW + kernelSize −

input.height)
17: else
18: jEnd← kernelSize

19: pixel ← bias(oc)
20: for ic:=1 to input.channels do
21: for i:=iStart to iEnd do
22: for j:=jStart to jEnd do
23: pixel ← pixel + input(ic, i + imgStartH, j +

imgStartW) ∗ weights(oc, ic, i, j)

24: output(oc, oh, ow)← doRelu&&pixel < 0?0 : pixel

25: return output

MaxPool

Algorithm 3 performs a 2-D max-pooling operation on 3-D array inputs.
Likewise to the convolution algorithm’s input, it is characterized by its height,

4.1. PyTorch and C/C++ implementations 47

width, and channel number. Also the kernelSize and stride hyper-parameters
are present, in contrast to padding, which is not used, so it is omitted. This
algorithm outputs a 3-D array with the max-pooling operation’s results.

Algorithm 3 MaxPool Layer

1: procedure MAXPOOL LAYER(input, kernelSize, stride)
2: hOut← (input.height− kernelSize)/stride + 1
3: wOut← (input.width− kernelSize)/stride + 1
4: for i:=1 to input.channels do
5: for j:=1 to hOut do
6: for k:=1 to wOut do
7: max ← − 8

8: for l:=1 to kernelSize do
9: for m:=1 to kernelSize do

10: curHeight← j ∗ stride + l
11: curWidth← k ∗ stride + l
12: curPixel ← input(i, curHeight, curWidth)
13: if max < curPixel then
14: max ← curPixel
15: output(i, j, k)← max

16: return output

Fully-Connected

Algorithm 4 performs a matrix multiplication on the input and weights. The
input is a vector, either coming from the previous FC layer’s output or the
flattening of the previous convolution or max-pooling layer’s results. After
the matrix multiplication a bias is accumulated. This algorithm outputs a
vector with the results of the matrix multiplication.

48 Chapter 4. Theoretical Modeling and Robustness Analysis

Algorithm 4 Fully-Connected Layer

1: procedure FULLY-CONNECTED LAYER(input, weights, bias)
2: inputSize← size(input)
3: outputSize← size(weights, 1)
4: for i:=1 to outputSize do
5: output(i)← bias(i)
6: for j:=1 to inputSize do
7: output(i)← output(i) + input(j) ∗ weights(i, j)

8: if doRelu && output(i) < 0 then
9: output(i)← 0

10: return output

Algorithm 5 is a slightly more optimized version of algorithm 4. Likewise
to the convolution algorithm 2, the ReLU activation is injected and can be
configured through the doReLU parameter.

Algorithm 5 Fully-Connected Layer with ReLU

1: procedure FULLY-CONNECTED LAYER WITH RELU(input, weights, bias,
doReLU)

2: inputSize← size(input)
3: outputSize← size(weights, 1)
4: for i:=1 to outputSize do
5: output(i)← bias(i)
6: for j:=1 to inputSize do
7: output(i)← output(i) + input(j) ∗ weights(i, j)

8: if doRelu && output(i) < 0 then
9: output(i)← 0

10: return output

ReLU

While ReLU activation function is already injected to the convolution 2 and
FC 5 algorithms, its algorithms are shown below for completeness. Algo-
rithm 6 performs the ReLU activation on vector inputs, suitable for use after
FC layers. Algorithm 7 performs the ReLU activation on 3-D data inputs,
suitable for use after convolution and max pooling layers.

4.1. PyTorch and C/C++ implementations 49

Algorithm 6 ReLU (1-D)

1: procedure RELU (1-D)(input)
2: for i:=1 to size(input) do
3: if input(i) > 0 then
4: output(i)← input(i)
5: else
6: output(i)← 0

7: return output

Algorithm 7 ReLU (3-D)

1: procedure RELU (3-D)(input)
2: for i:=1 to size(input, 1) do
3: for j:=1 to size(input, 2) do
4: for k:=1 to size(input, 3) do
5: if input(i, j, k) > 0 then
6: output(i, j, k)← input(i, j, k)
7: else
8: output(i, j, k)← 0

9: return output

SoftMax

Algorithm 8 performs a SoftMax activation function on vector inputs. This
operation is applied after the last FC layer and outputs the probability distri-
bution of each target class.

Algorithm 8 SoftMax

1: procedure SOFTMAX(input)
2: sum← 0
3: for i:=1 to size(input) do
4: sum← sum + einput(i)

5: for i:=1 to size(input) do
6: output← einput(i)/sum

7: return output

50 Chapter 4. Theoretical Modeling and Robustness Analysis

4.2 Memory Footprint

Memory footprint plays a considerable role in neural network applications
based on FPGA or ASIC systems. While neural networks are compute-bound
on classic hardware architectures, on FPGAs’ and ASICs’, they can become
memory bound due to their high parallelism capabilities but low memory
bandwidth. In general, an application can fully benefit from an FPGA when
its memory requirements fit into the FPGA’s internal BRAM. Otherwise, mod-
ern FPGAs support external DRAM modules that can be utilized to fulfill the
application’s memory requirements. However, this introduces latency and
memory I/O stalls to the system.

Consequently, it is of high importance to minimize the network’s memory
footprint in order to make it fit into the internal BRAM, or at least, minimize
the memory bandwidth requirements. It is firstly needed to explore how
the network’s memory requirements are distributed throughout its stages.
Using AlexNet as a reference network, tables 4.1 and 4.2 show AlexNet’s
parameters memory requirements per layer and each layer’s output memory
requirements respectively, using single-precision floating-point numbers.

TABLE 4.1: AlexNet Parameters Memory Footprint

Layer #Parameters Footprint Memory (%)

Conv1 64 ∗ 3 ∗ 11 ∗ 11 = 23232 92.92KB 0.04
Conv2 192 ∗ 64 ∗ 5 ∗ 5 = 307200 1.22MB 0.5
Conv3 384 ∗ 192 ∗ 3 ∗ 3 = 663552 2.65MB 1.09
Conv4 256 ∗ 384 ∗ 3 ∗ 3 = 884736 3.53MB 1.45
Conv5 256 ∗ 256 ∗ 3 ∗ 3 = 589824 2.35MB 0.97
FC1 9216 ∗ 4096 = 37748736 150.99MB 61.79
FC2 4096 ∗ 4096 = 16777216 67.10MB 27.46
FC3 4096 ∗ 1000 = 4096000 16.38MB 6.70

Total 61090496 244.36MB 100

This work focuses on the Xilinx ZCU102 [76] [77] and the QFDB [6] target
boards, which both integrate the same Zynq UltraScale+ MPSoC XCZU9EG-
2FFVB1156E. Unfortunately, this MPSoC provides only 2MBs of BRAM, which,
according to tables 4.1 and 4.2, creates some serious memory constraints.

4.3. Data Types 51

In respect to table 4.1, only the first and the second convolutional layers’
parameters can fit both simultaneously in the MPSoC’s BRAM. Moreover,
not only do all other layers not fit, but they also need up to 75 times more
memory each (see first Fully-Connected layer).

TABLE 4.2: AlexNet Data Stages Memory Footprint.

Layer #Data Footprint Memory (%)

Image 3 ∗ 224 ∗ 224 = 150528 150.52KB 6.07
Conv1 64 ∗ 55 ∗ 55 = 193600 774.40KB 31.22
MaxPool1 64 ∗ 27 ∗ 27 = 46656 186.62KB 7.52
Conv2 192 ∗ 27 ∗ 27 = 139968 559.87KB 22.57
MaxPool2 192 ∗ 13 ∗ 13 = 32448 129.79KB 5.23
Conv3 384 ∗ 13 ∗ 13 = 64896 259.58KB 10.46
Conv4 256 ∗ 13 ∗ 13 = 43264 173.05KB 6.98
Conv5 256 ∗ 13 ∗ 13 = 43264 173.05KB 6.98
MaxPool3 9216 36.86KB 1.49
FC1 4096 16.38KB 0.66
FC2 4096 16.38KB 0.66
FC3 1000 4KB 0.16

Total 682856 2.48MB 100

In respect to table 4.2, all layers’ outputs can fit individually into the MPSoC’s
BRAM; however, they cannot fit all together combined.

Under those circumstances, the exploration of various techniques for mem-
ory footprint reduction, memory footprint partitioning, and caching is an
essential requirement.

4.3 Data Types

As mentioned in the Related Work section, memory bandwidth needs can
become a severe bottleneck to applications like neural networks on FPGAs
and ASICs. Consequently, the investigation of the most suitable data type
for parameters and activations is a necessity. However, decreasing the bit-
width does come with its costs, classification accuracy. This creates a trade-
off between network classification accuracy and inference speed. In general,

52 Chapter 4. Theoretical Modeling and Robustness Analysis

lowering the bit-width increases performance due to both decreasing mem-
ory bandwidth and computation time, but decreases accuracy. The cost of
each bit-width lowering is different for every application, so an application-
specific investigation has to be conducted.

4.3.1 Evaluation

Using AlexNet as a reference, various data types have been tested to achieve
the best performance to accuracy ratio. From double, single, and half-precision
floating-point (IEEE standard) representations to fixed-point from 64 down
to 8-bit representations have been tested. This experiment’s baseline uses a
single-precision floating-point, as it is the pre-trained model’s data type. Af-
ter inferencing 2500 images using every data type, each image classification
Top-1 result was compared to the baseline’s result. The Top-1 error rates for
each data type are presented in tables 4.3 and 4.4.

4.3.2 Floating Point

It is worth noting that a MATLAB implementation of the network had to be
used in this investigation, due to the fact that, at the time of writing, neither
PyTorch nor C/C++ support half-precision floating-point arithmetic. Unfor-
tunately, MATLAB inference was really slow compared to PyTorch, and even
slower when using half-precision (see table 4.3 Avg. inference time column).
The half-precision floating-point slowdown was caused because there is no
hardware acceleration on the test CPU (Intel i7 4710MQ [78]) for such data
type, forcing the mathematical operations to be calculated using software
emulation.

Before every test, the network’s parameters were converted from the given
single-precision floating-point pre-trained model to the corresponding data
type. Also, the same data type was used for the layers’ activations during
inference. While converting single-precision to double-precision does not re-
sult in higher arithmetic accuracy, experiments with doubles were conducted
for completeness, as shown in table 4.3.

4.3. Data Types 53

TABLE 4.3: Top-1 error rate of every floating-point tested data
type.

Tool Data type Top-1 Error rate
(%)

Avg. inference
time (sec)

PyTorch float64 0 0.091
PyTorch float32 0 0.034
MATLAB float64 0 6.624
MATLAB float32 0 8.162
MATLAB float16 0.36 147.480

In respect to the floating-point data types, the Top-1 error-rate for both dou-
ble and single-precision is zero, while for the half-precision, there is a minor
error rate that can be ignored. As a result, the half-precision is the leading
one in the floating-point space due to its excellent performance to accuracy
ratio.

4.3.3 Fixed Point

The usage of fixed-point data types can benefit the application with its lower
memory bandwidth and its more straightforward hardware requirements
and faster arithmetic operations compared to the floating-point data types.
In contrast to the floating-point data types conversion, when converting to
fixed-point data types, it is vital to select the position of the radix point that
most accurately represents the given numbers. In this experiment, the uni-
form conversion technique was used in which given a set of numbers S and
the wanted representation bit width, W, the radix point is selected as shown
on equation 4.1 by minimizing the overall error between the given number
set S and the converted to fixed-point number set.

Position = argminW
i=0[

∑
size(S)
j=1 |Sj − FixPtConvert(Sj, W, i)|

size(S)
] (4.1)

In this experiment, a different radix point position was calculated for every
layer’s parameters and every bit width with respect to each layer parame-
ter’s characteristics. This technique was first introduced by Williamson in
1991 [79], and is called Dynamic Fixed-Point arithmetic. Instead of using a
global scaling factor for all layers (ordinary fixed-point arithmetic), dynamic
fixed-point arithmetic uses a different scaling factor for every layer. On low

54 Chapter 4. Theoretical Modeling and Robustness Analysis

bit-widths, using dynamic fixed-point because it can maintain most of the
weights representation accuracy.

It should be mentioned that MATLAB’s conversion of floating-point to any
bit-width fixed-point data types results in a set of double-precision floating-
point numbers to enable mathematical operations without needing fixed-
point hardware acceleration or software emulation. Consequently, each layer’s
activations had to be converted to fixed-point so that the system’s modeling
was as accurate as possible.

Unfortunately, only the 64 and 32-bit tests resulted in no Top-1 error-rate, as
shown in table 4.4. Even the 16-bit test resulted in a very high error-rate, ren-
dering this data type unusable for this application. However, the high error-
rate can be explained after visualizing the weights’ distributions before and
after the conversion, with its three side effects. The following figures were
selected because of their dramatic transformation caused by this conversion
to demonstrate its side effects.

TABLE 4.4: Top-1 error rate of every fixed-point tested data
type.

Tool Data type Top-1 Error rate
(%)

Avg. inference
time (sec)

MATLAB fixed64 0 7.318
MATLAB fixed32 0 7.692
MATLAB fixed16 22 6.650
MATLAB fixed14 28.44 6.813
MATLAB fixed12 36.24 6.797
MATLAB fixed10 77.07 6.929
MATLAB fixed8 100 6.312

First of all, figure 4.1 depicts the second convolution layer’s weights distri-
butions of both their original single-precision floating-point and their 8-bit
fixed-point converted representations. It is evident that the right histogram’s
limits have been significantly altered, with the weights Wε(− 8,−0.5)∪ (0.5, 8)
been suppressed to the (−0.5, 0.5) range.

4.3. Data Types 55

FIGURE 4.1: Second Convolution layer’s weights distribution
comparison between single-precision floating-point and 8-bit
fixed-point representations: right histogram’s limits are signifi-

cantly altered.

This suppression is caused by the nature of the 8-bit fixed-point data type,
which only allows 256 different values to be represented. Equation’s 4.1
result is position 8, which means that the representation’s step is 1/28 =

0.00390625, hence its limits are −27/28 = −0.5 and 27/28 = 0.5 (the most
significant bit is used for the sign). Although there are some weights in the
range of (−2,−0.5)∪ (0.5, 2), their summed conversion accuracy error is less
than the sum of accuracy errors of the smaller numbers, which are orders of
magnitude more in count, when another radix-point position is selected. In
other words, the sum of a lot of small errors is greater than the sum of a few
big errors, causing the big errors the be ignored.

Second of all, figure 4.2 depicts the fifth convolution layer’s weights distri-
butions of both their original single-precision floating-point and their 8-bit
fixed-point converted representations. While this layer’s weights distribu-
tion limits are not altered, various spikes on the right histogram can be ob-
served.

56 Chapter 4. Theoretical Modeling and Robustness Analysis

FIGURE 4.2: Fifth Convolution layer’s weights distribution
comparison between single-precision floating-point and 8-bit
fixed-point representations: various spikes can be observed on

the right histogram.

Those spikes are caused by the fixed-point’s inability to represent all real
numbers. It is the same reason the floating-point data type exists. The fifth
convolution layer’s radix-point is positioned on the 8th bit, which results in
a representation step of 1/28 = 0.00390625. This means that any weight with
value (i/8, (i + 1)/8), with i = −27,−27 + 1, ..., 27, is rounded to the nearest
fixed-point number available. Therefore, many weights are rounded to their
nearest fixed-point representation, creating those spikes, which is expected.

Last but not least, figure 4.3 depicts the first Fully-Connected layer’s weights
distributions of both their original single-precision floating-point and their
8-bit fixed-point converted representations. In this figure’s right histogram,
a high amount of subsampling can be observed compared to the left one.

4.3. Data Types 57

FIGURE 4.3: First Fully-Connected layer’s weights distribu-
tion comparison between single-precision floating-point and 8-
bit fixed-point representations: significant subsampling on the

right histogram.

Again, this subsampling can be explained by the fixed-point’s inability to
represent all weights accurately, resulting in jumps. In this layer, equation
4.1 positioned the radix-point on the 8th bit, which, again, means a step of
1/28 = 0.00390625.

To tackle with the suppression and subsampling side effects, an enhanced
version of this technique was used. More specifically, instead of merely mea-
suring the representation error of each weight and the summing it up with
all other errors, as equation 4.1 does, it is essential to further amplify signifi-
cant errors in order for them to stand out compared to the big count of small
errors. This amplification can be done by adding non-linearity to the error’s
computation. The Mean Squared Error (MSE) can be used for this purpose,
as shown in equation 4.2.

After observing the weights’ distributions, it is clear that some distributions
need a more accurate representation step. This is given by the radix point’s
position. So, instead of searching for a position on the given bit width, the

58 Chapter 4. Theoretical Modeling and Robustness Analysis

radix-point should be allowed to exceed the number’s bit-width. Therefore,
the maximum radix-point was selected greedily to be 32.

Position = argmin32
i=0[

∑
size(S)
j=1 |Sj − FixPtConvert(Sj, W, i)|2

size(S)
] (4.2)

Although equation 4.2 resulted in better inference accuracy, after some ex-
perimentation, more amplification was needed to achieve the best accuracy
possible with this technique. For AlexNet, the Mean Quarted Error (MQE),
shown on equation 4.3, yields the best results, and no further amplification
is needed.

Position = argmin32
i=0[

∑
size(S)
j=1 |Sj − FixPtConvert(Sj, W, i)|4

size(S)
] (4.3)

As shown on figures 4.4, 4.5 and 4.6, the suppression and the subsampling
side effects are eliminated. There is still some spiking; however, it is ex-
pected behavior due to the lack of representation accuracy with fixed-point
data types.

4.3. Data Types 59

FIGURE 4.4: Second Convolution layer’s weights distribution
comparison between single-precision floating-point and 8-bit
fixed-point representations using MQE: right histogram’s limits

are identical.

Using MQE, equation 4.3 resulted in the 5th radix-point position for the sec-
ond convolution layer’s weights. This results in a representation step of
1/25 = 0.03125, hence its limits are −27/25 = −4 and 27/25 = 4. Conse-
quently, the whole weights range can be represented, removing the suppres-
sion problem.

60 Chapter 4. Theoretical Modeling and Robustness Analysis

FIGURE 4.5: Fifth Convolution layer’s weights distribution
comparison between single-precision floating-point and 8-bit
fixed-point representations using MQE: various spikes can still

be observed on the right histogram.

Using MQE, equation 4.3 resulted in the 9th radix-point position for the
fifth convolution layer’s weights. This results in a representation step of
1/29 = 0.001953125, hence its limits are −27/29 = −0.25 and 27/29 = 0.25.
Although, the spikes are not removed, there is a slight improvement in the
weights representation accuracy.

4.3. Data Types 61

FIGURE 4.6: First Fully-Connected layer’s weights distribution
comparison between single-precision floating-point and 8-bit
fixed-point representations using MQE: no subsampling on the

right histogram.

Using MQE, equation 4.3 resulted in the 10th radix-point position for the
first Fully-Connected layer’s weights. This results in a representation step of
1/210 = 0.0009765625, hence its limits are −27/210 = −0.125 and 27/210 =

0.125. The added representation accuracy fully eliminates the subsampling
problem, though some spiking is introduced as expected.

Table 4.5 shows the Top-1 error-rate of fixed-point data types using the Mean
Quarted Error equation 4.3. While 8, 10, and 12 bit width fixed-point data
types are still unusable, the 14 and 16 bit width representations have im-
proved significantly.

62 Chapter 4. Theoretical Modeling and Robustness Analysis

TABLE 4.5: Top-1 error rate of fixed-point data types using
Mean Quarted Error equation 4.3.

Tool Data type Top-1 Error rate (%)

MATLAB fixed64 0
MATLAB fixed32 0
MATLAB fixed16 4.42
MATLAB fixed14 17.59
MATLAB fixed12 48.11
MATLAB fixed10 86.91
MATLAB fixed8 99.3

For better clarity on the results, figure 4.7 depicts all tested data types and
their Top-1 accuracy.

FIGURE 4.7: All data types tested accuracy.

After some experimentation, dynamically assigning different bit-widths on
each layer, according to its accuracy needs, rather than a single bit-width for
the whole network, can yield even better results. However, further investi-
gation has to be conducted.

4.3. Data Types 63

4.3.4 Fixed Point Activations

Since floating-point arithmetic handles scaling automatically, the network
does not face any overflow defects on its activations. However, when us-
ing fixed-point arithmetic, activations overflow is a severe problem. For in-
stance, when multiplying 8-bit fixed point activations and weights, a new
activation is generated with at most 16-bit width. Furthermore, adding two
16-bit activations can generate a new activation of 17-bit width. Therefore, if
activations are not quantized between each layer, there will be a very wide
output at the end of the network, wasting resources and performance when
implemented in FPGAs.

Hence, between every layer, the activations should be quantized from their
high-detail, large bit-width representations, back to some low bit wide rep-
resentation. A question arises on how to quantize them in order to keep the
most detail available. This work tries to keep the upper n bits from the first
one. For example, let an activation implementation be 32-bit wide, its most
significant one be on the 17th bit, and the new, low-detail representation be
8-bit wide. Then, if the upper 8 bits are kept, from the 31st bit down to the
24th bit, they will all be zeros, and as a result, its value will be lost. However,
if the 8 bits from the first upper one are kept, from the 17th bit down to the
10th bit, the most significant detail is retained.

On the contrary, finding the most significant one on every activation in a sin-
gle layer is not only computationally intensive but also requires that every
activation has its own scale factor, rendering the fixed-point’s benefits ob-
solete. All activations in a single layer should have the same scale factor,
simplifying their arithmetic operations and minimizing required I/O.

Hence, an experiment was conducted to find each layer’s optimal activa-
tion scale factor, whose results are depicted in table 4.6, using AlexNet as a
reference. The theoretical bit-width represents the maximum bits needed to
represent the layer’s output adequately and can be calculated using equation
4.4.

TheoreticalbitWidth = inputbitWidth + weightbitWidth + dlog2 #Additionse (4.4)

However, equation 4.4 calculates the maximum bit-width that could be gen-
erated after all operations, when all numbers are of max value, which is not

64 Chapter 4. Theoretical Modeling and Robustness Analysis

the case. Therefore, the experiment includes a practical study of the maxi-
mum incurring bit-width, conducted by inferencing 2000 images and finding
the maximum valued activation on each layer. Results of this experiment are
depicted on column Practical bit-width of table 4.6.

TABLE 4.6: Theoretical and Practical activations’ bit-widths

Layer Theoretical bit-width Practical bit-width

Input 8 8
Conv1 8 + 8 + dlog2 3 ∗ 11 ∗ 11e = 25 17
Conv2 8 + 8 + dlog2 64 ∗ 5 ∗ 5e = 27 14
Conv3 8 + 8 + dlog2 192 ∗ 3 ∗ 3e = 27 15
Conv4 8 + 8 + dlog2 384 ∗ 3 ∗ 3e = 28 15
Conv5 8 + 8 + dlog2 256 ∗ 3 ∗ 3e = 28 17
FC1 8 + 8 + dlog2 9216e = 30 17
FC2 8 + 8 + dlog2 4096e = 28 17
FC3 8 + 8 + dlog2 4096e = 28 17

As of table 4.6, the theoretical and practical bit-widths appear significant
differences. Fortunately, the maximum theoretical bit-width is 30 bits, and
consequently, all layers’ activations can fit in 32-bit integer representations,
before quantizing them.

The scale factor after the quantization of the layer’s activations can be calcu-
lated using equation 4.5, where PracticalbitWidth is the activations’ maximum
practical bit-width as shown in table 4.6 and RepBits is the bit-width of the
representation after the quantization.

ScaleFactor = PracticalbitWidth− (#RepBits− 1)+ inputscaleFactor +weightscaleFactor

(4.5)

Table 4.7 depicts the optimal scale factor for each layer’s weights after their
conversion from floating-point to 8-bit fixed-point as instructed by section
4.3.3, and the scale factor of each layer’s outputs.

4.4. Weight Pruning 65

TABLE 4.7: Scale Factor per layer

Layer Weights Bias Output

Input -7 - -
Conv1 -7 -5 -2
Conv2 -5 -7 0
Conv3 -7 -7 3
Conv4 -8 -6 5
Conv5 -9 -5 10
FC1 -10 -10 15
FC2 -10 -9 19
FC3 -9 -9 23

4.4 Weight Pruning

Synaptic pruning is the biological brain’s phase [80], during which both ax-
ons and dendrites of mammals brains decay and die off, typically occurring
from the time of birth until the mid-20s on humans. Inspired by the Synaptic
Pruning, Weight Pruning is a technique for artificial neural network com-
pression, leading to smaller in size networks, higher memory and power ef-
ficiency, and faster inference times.

During the weight pruning procedure, the weights that contribute little or
even nothing to the network’s knowledge are getting pruned, or in other
words, are getting zeroed out. This zeroing means that any activation mul-
tiplied by a zero weight also results in a zero. Hence, hardware accelerators
can ignore zero weights and skip calculations, speeding up the overall in-
ference procedure. In addition, more zeros also means higher compression
rates of a layer’s weights, and consequently, lower memory bandwidth re-
quirements. However, similar to data type selection, weight pruning creates
a tradeoff between inference performance and classification accuracy.

Also similar to the data type selection, the best weight pruning amount varies
according to the network in question. Therefore, a specific investigation has
to be conducted per network. For this work’s reference network, AlexNet, a
specific investigation has been conducted, whose results are shown on table
4.8 and figure 4.9, the process of which is described below.

66 Chapter 4. Theoretical Modeling and Robustness Analysis

The weight pruning process requires a pruning factor f, which will zero out
every weight wε[− f , f]. Its selection is essential as it controls the pruning
amount and the network’s post-pruning accuracy. If the factor is too big,
there might be a significant impact on accuracy, while if the factor is too
small, then the compression might be ineffective.

A strategy for selecting the best pruning factor might be to use the same
factor on all layers and measure the post-pruning accuracy. However, such
a strategy leads to low accuracy on AlexNet. Since each AlexNet’s layer
weights distribution differs in variance, significant weights are valued dif-
ferently. Figure 4.8 shows each AlexNet’s layer weights distribution, mak-
ing it clear that a global pruning factor cannot be used for high-performance
rates; every layer has different limits on its weight distribution and different
concentrations per weight value range.

A more suitable strategy would be to investigate a pruning factor for each
layer. Starting from the first layer, prune its weights by some factor f1, test
the network for its accuracy. If accuracy results are not acceptable, repeat
this step by selecting another value for f1. If the accuracy is acceptable,
continue to the second layer by selecting a new factor f2. Test the network
for classification accuracy with only the second layer’s weight pruned by
f2. This process continues until the last layer, which in this work’s network,
AlexNet, is the third Fully-Connected layer. Finally, there will be the array
F = [f1, f2, ..., f8] (for AlexNet), which includes all pruning factors, one per
layer.

4.4. Weight Pruning 67

FIGURE 4.8: All layer weights distributions.

68 Chapter 4. Theoretical Modeling and Robustness Analysis

Table 4.8 shows the weight pruning percentage per layer and all-layer total,
with the classification accuracy yielded by each test. Seven tests are depicted,
with different configurations each. Tests 1-4 use pruning on all layers, while
tests 5-7 use pruning only on the Fully-Connected layers due to their enor-
mous size (see table 4.1).

Tests explanation:

• Test 1: Low pruning amount on convolution layers, low pruning amount
on Fully-Connected layers.

• Test 2: Medium pruning amount on convolution layers, low pruning
amount on Fully-Connected layers.

• Test 3: High pruning amount on convolution layers, low pruning amount
on Fully-Connected layers.

• Test 4: High pruning amount on convolution layers, high pruning amount
on Fully-Connected layers.

• Test 5: No pruning on convolution layers, low pruning amount on
Fully-Connected layers.

• Test 6: No pruning on convolution layers, medium pruning amount on
Fully-Connected layers.

• Test 7: No pruning on convolution layers, high pruning amount on
Fully-Connected layers.

TABLE 4.8: All pruning amount configurations tested and their
accuracy.

Layer Test 1 Test 2 Test 3 Test 4 Test 5 Test 6 Test 7

Conv1 (%) 7.15 13.66 91.3 91.3 0 0 0
Conv2 (%) 13.82 26.9 95.83 95.83 0 0 0
Conv3 (%) 13.54 26.63 98.62 98.62 0 0 0
Conv4 (%) 15.32 29.99 93.14 93.14 0 0 0
Conv5 (%) 15.55 30.53 94.02 94.02 0 0 0
FC1 (%) 41.23 41.23 41.23 94.48 41.23 71.89 96.61
FC2 (%) 36.69 36.69 36.69 90.61 36.69 62.52 90.61
FC3 (%) 27.27 27.27 27.27 89.68 27.27 47.74 75.56

Total (%) 37.97 38.54 41.22 93.11 37.38 64.79 89.65

Accuracy (%) 91.74 80.8 0 0 90.87 71.77 15.06

4.4. Weight Pruning 69

From table 4.8, it is evident that increasing the pruning amount leads to
lower accuracy. Test 1, which has the lowest pruning amount overall, yielded
the best results. Similarly, concerning the tests 5-7, where only the Fully-
Connected layers have been pruned, the test with the least amount of prun-
ing, Test 5, resulted in the best accuracy. From the tests 1-4, one could argue
that the convolution layers are more prone to error when increasing their
pruning amount compared to Fully-Connected layers.

Tests 1 and 5 have identical pruning amount on the Fully-Connected layers;
however, test 1 also uses pruning on convolution layers. While test 5 uses
less pruning overall, it yields slightly lower accuracy compared to test 1. This
could be explained because of the denoising characteristics that the weight
pruning provides to the systems. Low and non-important weights could be
characterized as noise, originating from the training procedure. Hence, cut-
ting off the "noisy" weights could lead to higher accuracy, which is the case
with tests 1 and 5.

Figure 4.9 shows the two test groups’ classification accuracy to total pruning
amount. The first test group, tests 1-4, depicted with blue, is the one that all
layers are getting pruned, while the second test group, test 5-7, depicted with
red, is the one that only the Fully-Connected layers are getting pruned.

FIGURE 4.9: Accuracy per pruning amount.

70 Chapter 4. Theoretical Modeling and Robustness Analysis

It is obvious that pruning only the Fully-Connected layers has much poten-
tial and can lead to both high pruning amount and high classification ac-
curacy. However, further investigation has to be conducted for the optimal
pruning amount per layer on the whole network.

The effect of weight pruning can be clearly observed in figure 4.10, which
shows the original weight distribution of the first convolution layer (left)
compared to the pruned weights distribution (right) of test 3.

FIGURE 4.10: Weight distribution comparison of the original
and the pruned weights of the first convolution layer of test 3:
A high concentration of zero valued weights can be observed
on the pruned weights histogram (right), with a severe absence

of near-to-zero valued weights.

A high concentration of zeros can be seen on the right histogram, combined
with the absence of the near-to-zero valued weights ranging from -0.2 and
0.2. Similar are all layer’s weight distributions of test 3, which uses aggres-
sive pruning, creating severe alterations. The weights distributions disconti-
nuity is responsible for the low classification accuracy.

4.4. Weight Pruning 71

Figures 4.11 and 4.12 demonstrate weight distributions of test 1, which yielded
the best classifications overall tests. Those figures are an example of how a
pruned distribution should look like to result in relatively high classification
accuracy.

Figure 4.11 shows the weight distributions of the first convolution layer with
the original and the pruned weights. No discontinuation can be observed
on the pruned distribution, and similar to the original concentration of zero-
valued weights.

FIGURE 4.11: Weight distribution comparison of the original
and the pruned weights of the first convolution layer of test 1:
Similar concentration of zero valued weights can be observed
on the pruned histogram (right), with almost no absence of

near-to-zero valued weights.

Figure 4.12 shows the weight distributions of the first Fully-Connected layer
with the original and the pruned weights. Slight discontinuation can be
observed on the pruned distribution, with a higher concentration of zero-
valued weights. It is vital that the discontinuation is kept really small.

72 Chapter 4. Theoretical Modeling and Robustness Analysis

FIGURE 4.12: Weight distribution comparison of the original
and the pruned weights of the first Fully-Connected layer of
test 1: A high concentration of zero valued weights can be ob-
served on the pruned weights histogram (right), with a slight

absence of near-to-zero valued weights.

73

Chapter 5

Architecture Design

For this work, a platform was created capable of CNN inference on FPGA de-
vices. This platform had to be created with flexibility and versatility in mind
to be able to be transferred to other FPGA devices while being based on the
Xilinx ZCU102, which was available in the lab. It should also be scalable to
enable multi-FPGA implementations, and it should be extendable to enable
for easy adding of new layer types and new layer accelerators. Furthermore,
it should be able to run various CNN models’ inference, but most impor-
tantly, it should provide easy experimentation and development of hardware
accelerator architectures.

The basic building blocks of this platform consists of its volatile and non-
volatile memory, and its compute engine. Figure 5.1 depicts the platform’s
block diagram, whose functionality is explained below. It should be noted
that everything described below is implemented on the aforementioned Xil-
inx ZCU102 Evaluation Kit.

74 Chapter 5. Architecture Design

FIGURE 5.1: The platform’s block diagram.

5.1 Non-Volatile Memory

This platform’s non-volatile memory serves as a storage medium for all the
data that networks require for their inference, which include the initialization
data (network model configurations, parameters (weights and biases), class
labels), and the input data (e.g., images). An SD-card is used as the non-
volatile memory for this platform (also depicted as an SD-card in Figure 5.1).
However, with some software extensions, other storage devices can also be
used, such as SATA hard drives or even M.2 SSDs (on other FPGA platforms,
e.g., QFDB). Moreover, external storage devices can also be utilized, via the
Ethernet port through local-network/Internet, or via the JTAG port to avoid
copying files over and over again on the platform’s primary storage device
but also to enable the single-source access for multiple FPGA devices.

While SD-cards have little bandwidth than other storage devices like SATA
drives and M.2 SSDs, the non-volatile memory’s purpose is to initialize the
platform, which is a one time cost, and feed it with input data. When the
platform is on its initialization phase, the initialization data from its non-
volatile memory are transferred to its volatile memory to get later used from

5.2. Volatile Memory 75

the compute engine. Because most, if not all, networks’ initialization data
fit in the volatile memory, leaving a lot of empty memory space, input data
are also transferred, filling as much space as possible to utilize the volatile
memory’s high bandwidth for input data consumption. Consequently, the
SD-card’s low bandwidth can be safely ignored.

If the input data are large enough to not completely fit in the volatile memory
and their consumption is faster than their feed through the SD-card, a faster
storage device should be used. However, in this work’s experiments, this has
never been the case.

5.2 Volatile Memory

The platform’s volatile memory consists of two types of memory devices, the
DDR4 modules found on the ZCU102 and the on-chip BRAM. The ZCU102
also provides a separate DDR4 component accessible from the FPGA’s PL
part, however for simplicity and generality (it is not provided on all FPGA
platforms) purposes, and because it provides lower bandwidth compared to
the DDR4 modules, it is not utilized on this platform.

The platform’s primary memory medium is the DDR4 memory modules
(also depicted as a DDR4 module in Figure 5.1) connected to both the PS
and PL parts of the device. As mentioned before, it stores and serves all the
required data for the platform to run. Those data are read from various files
found on the non-volatile memory, in this case, the SD-card, using the ARM
cores found on the PS part, and are then stored onto the DDR.

The DDR has to feed the PL part with data in chunks because, as explained in
section 4.2, the integrated BRAM cannot store the whole network’s parame-
ters and activations. Consequently, every network’s layer has to know where
to find and how to access every piece of data it requires, information that is
found on the platform’s software structures and passed to the layers using
the ARM cores during the setup phase.

On this platform, there is no central BRAM component that every accelerator
accesses. Instead, every accelerator should implement its own BRAM, with-
out permitting access to others. It should be the only one to know how to
manage its storage. Of course, to fulfill the accelerator’s needs in bandwidth,
read and write ports, and latency, it can implement its BRAM as it requires,
and utilize individual registers.

76 Chapter 5. Architecture Design

5.3 Compute Engine

The compute engine consists of both the PS and PL part of the FPGA de-
vice, which includes the ARM cores and the FPGA accelerators, respectively.
While the bulk of the computation is handled by the PL part, the PS part
handles the more sophisticated computations, such as the input data pre-
processing and the accelerator configuration and scheduling.

In this platform, a network can be run only if its layers are supported by ei-
ther software or hardware implementations. Software implementations are
running on the ARM cores, and hardware implementations are the FPGA ac-
celerators. By allowing both types of implementations, this platform expands
its flexibility. This can not only help the development stage of FPGA accel-
erators by comparing their outputs with the ones generated by the software
implementation, but it can also help to fully utilize the device’s resources by
running parts of even whole layers on the ARM cores in parallel to the hard-
ware accelerators. Furthermore, layers that have not yet been implemented
in hardware can easily be implemented in software for experimentation pur-
poses, such as the Depth Concat layer found on the GoogLeNet (Figure 3.4).

As shown in Figure 5.1, in this work, three layer types have been imple-
mented in hardware; the Convolutional (Conv) layer, the Max-Pooling (Max-
Pool) layer and the Fully-Connected (Linear) layer. In addition, multiple in-
stances of the same layer type can also be added in the platform to enable for
either parallel execution of different inferences with different inputs or even
different network models, or better pipelining in a single inference. This is
discussed in detail in section 5.6.

In this work, every accelerator implements a layer type, and, therefore, the
platform assumes that every accelerator can handle and compute a whole
layer type’s computation. Every accelerator comes with its driver, which is
integrated into the platform’s software. The driver is responsible for setting
up its accelerator, which includes setting the layer’s hyperparameters and
passing the information of where to find its parameters (weights and biases),
its input data, and where to send its output data. Also, the driver handles
the accelerator’s interrupts, which, in this work, only includes the accelerator
completion interrupt.

The assumption that every accelerator implements a whole layer type simpli-
fies the accelerator’s driver. As a result, the driver does not have to know its
accelerator’s inner workings and architecture, except for its aforementioned

5.4. I/O 77

settings, treating it as a black box with inputs and outputs. However, those
settings are the same for every implementation of the same layer type; hence,
experimenting with different architectures is made easy without developing
a different driver for every single architecture. The driver can be reused on
the same layer type accelerators, letting the engineer focus their efforts on
the accelerator’s architecture. Of course, every different layer type needs dif-
ferent settings; therefore, different drivers.

It is worth mentioning that every accelerator has an AXI4-Lite [81] slave port
through which it can get configured. All accelerators’ AXI4-Lite slave ports
are connected to a Xilinx AXI SmartConnect IP [82], onto its master ports.
The AXI SmartConnect, a replacement of the AXI Interconnect IP, acts as a
router, providing a single slave port that is finally connected to the Zynq’s
(ARM cores) master port. AXI SmartConnect automatically detects the port’s
protocol, in this case, AXI4-Lite, and adjusts its ports accordingly. This cre-
ates a hardware connection so that the software can access and configure the
platform’s accelerators. Details on the AXI protocol are given in section 5.4.1.

5.4 I/O

As explained in previous sections, the I/O bandwidth provided to any hard-
ware platform plays an essential role in its performance due to the CNNs’
high bandwidth requirements. Hence, the platform should implement a net-
work for its accelerators to enable the communication between them, the PS
part, the DDR, and each other. There are three ways for high bandwidth
communication, which are discussed below.

• Memory-Mapped I/O (MMIO): In this method, the PS communicates
with its PL part’s accelerators using a global address space for both
its main memory (DDR) and the accelerators’ I/O extensions, mapping
every memory component, such as the DDR, BRAM, and registers, onto
its own address range. While it is straightforward to implement, it can
create a bottleneck on random memory accesses onto the DDR, with
each request costing up to 50 clock cycles for the DDR’s initialization.
Fortunately, this is not the case with burst accesses, which request only
once a range of addresses so that there is only one initialization cost for
a big transfer of data.

78 Chapter 5. Architecture Design

• Streaming (AXI4-Stream): Using streaming interfaces, such as the AXI4-
Stream, continuous communication can be established between com-
ponents in a FIFO manner. Every streaming connection creates a chan-
nel between the two components with a predefined FIFO size, with a
producer-consumer behavior. Communication between hardware ac-
celerators and the DDR can be established using the Xilinx AXI DMA
IP [83], which hides the DDR’s initialization costs. However, AXI DMA
requires knowledge of the data flow, and its function is instructed by
the PS part for every transfer, increasing the system’s complexity.

• BRAM: This method is an MMIO variation, which uses BRAM IPs to
store the required data on-chip, taking advantage of the BRAM’s high
bandwidth. Data are transferred from the DDR to the BRAM in bursts
using a Xilinx CDMA IP [84] connected to a Xilinx BRAM Controller IP
[85] and its Xilinx Block Memory Generator IP [86]. Though, a major
constraint is that the data have to be small enough to fit into the chip’s
BRAM, which is in the order of a few MBs in size.

As explained in section 4.2, the integrated BRAM cannot store the parame-
ters for most layers. There is the case that parameters can be transferred in
chunks to the central Block Memory IP; however, this creates further com-
plexity and bandwidth bottleneck due to the low number of read and write
ports. Therefore, the BRAM method described above cannot be used in this
platform.

Hence, the question that arises is which method is more suitable for this plat-
form, the MMIO or the Streaming one. To answer it, a test system was cre-
ated, integrating a simple IP, created using Vivado HLS, that adds a specific
value to its input data, and then returns its output data. The input data are
generated on the PS part and are stored on the system’s DDR. The IP’s out-
put is returned to the PS part and stored on its DDR. Then the PS validates
the outputs to ensure their correctness. The IP’s input and output ports are
implemented both as streams and as MMIO.

The test measures the average number of clock cycles it takes for both imple-
mentations to process 40MB of data in chunks of 40kB. The chunk’s size was
selected greedily, because most, if not all, accelerators’ requests need to be at
least 40kB. The time measurement includes the input data transfer from the
DDR to the IP’s BRAM, the input data processing, and the output data trans-
fer from the IP’s BRAM to the system’s DDR. Both implementations were

5.4. I/O 79

tested with 32 and 128 input and output ports bit-width. The test’s results
are shown on table 5.1.

TABLE 5.1: MMIO vs Stream: Processing 40MB data of 40KB
bursts, showing a slight advantage over the MMIO method.

Port bit-width MMIO avg. cycles Streaming avg. cycles

32-bit 62700922 65611580
128-bit 15761270 16201797

Both implementations for both port bit-widths show similar results, with a
slight advantage over the MMIO implementation. Selecting MMIO for the
primary method of data feeding the accelerators benefits the platform not
only in terms of bandwidth, according to the slight advantage depicted on
table 5.1, but also in terms of simplicity of both software and hardware im-
plementation and efficiency of hardware resources.

Consequently, the connection between the accelerators and the PS part and
its DDR is established using the MMIO method, as shown on the platform’s
block diagram (Figure 5.1). Every accelerator has an AXI4-Full [81] master
port, which is connected to a Xilinx AXI SmartConnect IP, onto its slave ports.
The SmartConnect’s master port then gets connected onto the Zynq’s slave
port. Communication to the DDR is established via the Zynq’s slave port,
and an integrated DMA found on the PS part.

However, the streaming method cannot be dismissed entirely, as it is perfect
for communication between accelerators. Passing a layer’s activations to its
next layer, in terms of hardware means passing the accelerator’s output data
to the next accelerator as input data. Implementing this data transfer in a
streaming manner avoids transferring data from the FPGA to the DDR and
then transferring them back to the FPGA using the MMIO method, which can
be a significant bottleneck. As a result, every accelerator can optionally have
additional input stream and output stream ports. The accelerators driver
configures it to either use the MMIO or the streaming method.

It is vital that every accelerator implements at least the MMIO method, to
avoid running into deadlocks. For example, let there be a system with one in-
stance of a layer type’s accelerator, and the accelerator’s output stream needs
to get connected back to the same accelerator’s input stream. A deadlock oc-
curs when the output stream is full while the accelerator has not finished its

80 Chapter 5. Architecture Design

execution. In this case, the accelerator hangs, waiting for the stream to accept
more data, while the stream hangs, waiting for its data to get consumed. This
problem can easily be tackled by simply sending the accelerator’s outputs to
the DDR using the MMIO method, and when its execution is complete, it can
then read them back again from the DDR.

A Xilinx AXI4-Stream Switch IP [87] is used to create a star topology [88]
stream network, connecting every accelerator’s stream ports, as shown on
the platform’s block diagram (Figure 5.1). Every connection is assigned an
address in the AXI4-Stream Switch IP before synthesis so that the TDEST
signal of the AXI4-Stream protocol can be set accordingly by the sender ac-
celerator. The AXI4-Stream Switch IP was preferred to the AXI4-Stream In-
terconnect IP because the latter is the same as the Switch, but it also allows
connections of streams with different characteristics in the cost of some hard-
ware resources. However, all accelerators are implemented with the same
stream characteristics, so the Interconnect’s use is redundant.

5.4.1 AMBA AXI4 Interface Protocol

The AMBA AXI4 (Advanced eXtensible Interface 4) [81] is the AMBA inter-
face specification from ARM, which is integrated into the Xilinx Design Suite
tools to offer a single standard interface and simplify the IP integration. All
Xilinx IPs that require any configuration or large amounts of data implement
at least one of the AXI4’s variation. The AXI4 protocol has three variations
for different use cases.

• AXI4-Full: Used for high-performance memory-mapped applications,
supporting bursts of up to 256 beats.

• AXI4-Lite: The simplest of all three variations, with the least hard-
ware resources requirements. It is used for low-throughput memory-
mapped applications, usually for accessing control registers, with every
transaction having a burst length of one

• AXI4-Stream: Used for high-speed streaming unidirectional data trans-
fers from master to slave, supporting multiple data streams using the
same set of shared wires, and multiple data widths withing the same
interconnect.

5.5. Software 81

This platform makes usage of all three variations for different purposes, as
shown on its block diagram (Figure 5.1). The AXI4-Lite is used for config-
uring the accelerators; the AXI4-Full is used to implement the accelerators’
MMIO, as described in section 5.4, and the AXI4-Stream is used to create the
star topology network between the accelerators.

5.5 Software

The platform’s software was developed using the Xilinx Vitis IDE, previ-
ously known as Xilinx SDK. Xilinx Vitis provides the necessary compilation
toolchain, and the ability to program the FPGA and run software on the ARM
cores. This platform cannot function without its software. It should be clar-
ified that everything that is considered a software part runs on the device’s
processor (ARM cores). The software consists of the accelerators’ drivers, the
scheduler, the application logic, and the user interface.

The drivers are responsible for the communication between the software and
hardware of this platform. They are used to handle the initialization, config-
uration, and use of each hardware component. They also handle the accelera-
tors’ various interrupt events, affecting the software’s execution. Every accel-
erator’s driver has to implement several functions with specific functionality
and naming scheme, creating an abstraction layer between the drivers and
the rest of the software. This makes integrating a new accelerator into the
platform easier because the other software parts "know" how to use the new
driver, expanding the platform’s modularity. Moreover, it is essential that the
interrupt service routines are kept as small as possible to avoid missing any
other interrupt events while executing them.

The application logic is responsible for configuring the platform depending
on the user’s input. It handles the parsing of the network model configu-
ration files, the loading of the network’s initialization data (parameters and
labels), the input data preprocessing, and the accelerator execution according
to the scheduler’s instructions. It is designed with data arbitration in mind,
in order to easily experiment with different data types used in the network’s
parameters and activations. The application logic’s data type is the same
with the one used in the accelerators’ architecture, and when set, it propa-
gates to the whole software.

For the sake of simplicity, a command-line interface implements the user in-
terface. Most FPGA platforms have a UART port that can be used to print

82 Chapter 5. Architecture Design

messages, accept user input, and debugging. Therefore, this platform uti-
lizes the UART port for its user input requirements. From the application’s
menus, the user can select several functions, among which there is a self-test
routine that tests the platform’s integrity, a network model selection with its
corresponding parameters, an image count selection, and an option to run
both software and hardware implementations of every layer for output data
checking. While not implemented, the user interface can be expanded to a
graphical user interface using a standalone program or server, running on a
host PC that reads and writes the aforementioned UART port.

The scheduler is the last but not least, part of the platform’s software. It is
responsible for scheduling all the necessary tasks for the network’s inference
to execute. A task can be executing a layer or a group of layers either in
software or using the hardware accelerators. The scheduler is also responsi-
ble for scheduling the input and output methods of each accelerator (MMIO
and Streaming), the input source and output destination. Per platform im-
plementation, there might be needed a different scheduler strategy. For ex-
ample, there is a different strategy for a platform with only one instance per
accelerator type, and a different one when there are multiple, or when the
accelerators’ execution can be pipelined. For more information on the plat-
form’s scheduler strategies see section 5.6

A simplified flowchart of the platform’s software execution can be seen in
figure 5.2. On system boot-up, the drivers are discovering and initializing
all peripheral devices, such as the SD-card and the UART ports. Afterward,
they discover and initialize every accelerator existing in the FPGA’s PL part.
During this step, the interrupt handlers are also getting set. Next, the user
interface asks the user for which network from the available it should run its
inference and all the aforementioned running options. Given the user’s in-
put, the application logic reads the network model file, parses it, and loads it
to the platform’s memory. It also loads the network’s parameters, labels, and
input data. Then, for each input data, the scheduler adds the tasks into a list
to be run whenever possible. Then, for every task, the corresponding accel-
erator is set up and triggered to run using its drivers. The platform finishes
when there are no more tasks to be run and input data to get processed.

5.6. Scheduler Strategies 83

FIGURE 5.2: The platform’s flowchart.

5.6 Scheduler Strategies

Scheduling can play a significant role in the platform’s performance. As men-
tioned in the previous section, the scheduling strategy is dependent on the
platform’s implementation and goals. The number of same-type accelerator
instances and whether the platform is throughput or latency optimized, all
affect the strategy selection. To study and demonstrate the various strategies,
a MATLAB model of a CNN network’s inference execution was created that
can compute the execution characteristics of any CNN network model. This
work’s main CNN network is AlexNet, on which all experiments below are
based.

The MATLAB model creates a timed schedule of a CNN inference depending
on its hyperparameters. It computes the number of clock cycles a layer re-
quires for its full execution, and depending on the strategy selected, it places
the layer’s execution start and finish timestamps. The clock cycles required

84 Chapter 5. Architecture Design

for every full execution is equal to the sum of the clock cycles needed per
assembly instruction to be executed. The number of clock cycles required
for every assembly instruction can be set on the MATLAB model’s parame-
ters. However, for simplicity, all instructions are considered to run in a single
clock cycle.

The following figures show the starting clock cycle, the ending clock cycle,
and the duration of every layer, wherever there are colored boxes. Every
colored box has its label, defining the layer that it represents. The label is
coded as the layer’s type and its serial number; Conv for convolutional lay-
ers, MaxPool for max-pooling layers, and Linear for fully-connected layers.
It should be noted that the ReLU activation function is embedded into the
convolutional and fully-connected layers, as shown on algorithms 2 and 5.

5.6.1 Serial Strategy

A baseline schedule was created using a serial execution strategy, as shown
in figure 5.3. In this strategy, every layer starts when the previous layer has
finished generating all its outputs. This strategy can be used when there
is only one accelerator instance per layer type, and the accelerators do not
support layer pipelining. It is also an excellent strategy for debugging and
validating the platform and its accelerators because of its simplicity.

5.6. Scheduler Strategies 85

FIGURE 5.3: AlexNet serial execution: Convolution layers con-
sume 90% of total clock cycles needed for a full inference.

It can be observed that using the serial execution strategy, around 90% of
the total clock cycles is consumed from the convolutional layers, and almost
0% is consumed from the max-pooling layers. Hence, according to Amdahl’s
law, see section 5.7, the convolutional layers should get the most hardware re-
sources for their accelerators to create as much parallelism as possible, while
fully-connected layers come next, and max-pooling layers come last.

5.6.2 Layer-Pipelining Strategy

Another scheduling strategy is applying pipelining within the layers. In this
strategy, a layer is fed with input data as soon as the previous layer gener-
ates a single output. This hides the next layer’s latency as much as possi-
ble by computing outputs in parallel with the computation of its next-to-be-
processed inputs. A schedule using the layer-pipelined strategy is shown in
figure 5.4. To produce such a schedule using this strategy, it is considered to
exist as many accelerators per layer type as needed. In this schedule, there

86 Chapter 5. Architecture Design

are needed five instances of a convolutional accelerator, three instances of a
max-pooling accelerator, and three instances of a fully-connected accelerator.

FIGURE 5.4: AlexNet layer-pipelined execution: There is a
speedup of almost 3 times compared to the serial strategy.

The first four layers, Conv1, MaxPool1, Conv2, and MaxPool2 seem to start
their execution immediately; however, this is not the case. In fact, they all
start on different timestamps, each later from its previous one, but it just
cannot be shown in figure 5.4 due to the x-axis’ scale. Conv1, MaxPool1, and
Conv2 generate their first outputs in a few clock cycles compared to the x-axis
scale. The same artifact appears on the finishing timestamps of the first two
layers, Conv1 and MaxPool1, and the next six layers, Conv2 to MaxPool3.

From figure 5.4, it can be seen that the whole execution has significantly been
reduced compared to the serial strategy shown in figure 5.3, speeding it up
almost three times.

However, to use the layer-pipelined strategy, the accelerators have to support
it. This means that they need to process their inputs as soon as possible to
generate their outputs. Because convolutional and max-pooling layers pro-
cess their inputs in the 3D and 2D space, they have different implementation

5.6. Scheduler Strategies 87

requirements to support layer-pipelining, compared to the fully-connected
layers that compute their inputs in the 1D space.

Convolutional and max-pooling layers need to process their inputs in a way
that they can generate outputs in a specific order. The optimal output order
is the one that the next layer wants its inputs to be in, to also produce use-
ful outputs for its next layer. The convolutional and the max-pooling layers
produce outputs using cubes or squares of inputs, respectively, starting from
the top left input of the grid. Those inputs are created from the previous
layer, which also generated them using cubes or squares of inputs. Hence,
the deeper the layer, the bigger the required cube or square of the first layer’s
inputs. Consequently, the optimal order of generating outputs starts from
the top left and moving downwards and right in zones, always creating big-
ger and bigger cubes or squares. Figure 5.5 depicts the order a convolutional
or a max-pooling layer generates its outputs. It should be noted that the con-
volutional layers generate their outputs for all of their output channels, and
then they move onto the next output.

FIGURE 5.5: Convolutional and Max-Pooling layer output or-
der for layer-pipelining: Outputs colored in blue are generated

before the red ones.

88 Chapter 5. Architecture Design

In figure 5.5, every pixel is an output of a convolutional or max-pooling layer,
and it is color-coded concerning the time it is generated, with blue and red
colors representing the start and end, respectively, of the generation time.

However, layer-pipelining for convolutional and max-pooling layers signif-
icantly increased the implementation complexity of their accelerators. Also,
caching weights and inputs in the accelerator’s BRAM and registers can be-
come a major obstacle due to their size and access patterns. Figure 5.6 shows
the input usage frequency for a convolutional or a max-pooling layer with a
stride of one.

FIGURE 5.6: Convolutional and Max-Pooling layer input pixel
usage frequency a stride of one: Blue inputs are rarely used,

while red ones are used frequently.

Figure 5.7 depicts the input usage frequency for a convolutional or max-
pooling layer with a stride of four, showing even more complex access pat-
terns.

5.6. Scheduler Strategies 89

FIGURE 5.7: Convolutional and Max-Pooling layer input pixel
usage frequency using a stride of four: Blue inputs are rarely

used, while red ones are used frequently.

On the other hand, fully-connected layers do not require a specific order for
their inputs. However, they need to store partial results for their outputs.
Whenever an input is given to the fully-connected layer, it adds it to the par-
tial result of each output after multiplying it with its corresponding weight
per output. This creates higher memory requirements for the implementa-
tion of the fully-connected accelerator.

Unfortunately, due to the layer-pipelining’s significantly increased complex-
ity, this work does not implement it on its accelerators, and it is only pre-
sented for completeness and ideas for future work.

5.6.3 Multi-Inference Strategy

When multiple accelerators per layer type can be placed into the FPGA de-
vice’s PL part, they can be utilized simultaneously by running multiple infer-
ences in parallel. The multi-inference strategy schedules two or more images
for inference, increasing the platform’s overall throughput.

90 Chapter 5. Architecture Design

5.6.4 Image-Pipelining Strategy

Similar to the multi-inference strategy, when there are multiple accelerators
per layer type, multiple images can be fed into the network in a pipelined
manner. Every accelerator instance represents a single layer of the network.
Hence, the first image can be fed into the first layer. Afterward, when the first
layer has generated its outputs, they are fed to the second layer, and the first
layer is fed with the second image. This continues for all images to be infer-
enced. Therefore, when the pipeline is full, all accelerators process different
input images from each other. This strategy can decrease the platform’s in-
ference latency, and, potentially, the platform’s throughput.

5.7 Amdahl’s Law

Amdahl’s law [89] is a formula that calculates the theoretical speedup in la-
tency of the execution of a fixed workload task, when the system’s resources
are improved or increased. While speedup was firstly used on parallel pro-
cessing, it can also be used after any resource enhancement.

Latency is the time required for a system to compute a single task and is
defines as:

Latency =
1
v
=

T
W

,

v: the task’s execution speed,

T: the task’s execution time,

W: the task’s execution workload

(5.1)

Throughput is the maximum processing rate of a specific task and is defined
as:

Throughput = r ∗ v ∗ A =
r ∗ A ∗W

T
=

r ∗ A
L

,

r: the execution density,

A: the execution capacity

(5.2)

5.8. Platform Accelerator Architectures 91

The speedup is defined for both latency and throughput, as shown in the
equations below:

SLatency =
L1

L2
=

T1 ∗W2

T2 ∗W1
=

1
(1− p) + p

s
,

p: the task’s portion that benefits from the resource enhancements,

s: the speedup of the task’s portion that benefits from the resource enhancements

(5.3)

SThroughput =
Throughput2

Throughput1
(5.4)

The maximum theoretical speedup can also be defined as:

MaxSpeedup = lim
s→ 8

SLatency =
1

1− p
(5.5)

5.8 Platform Accelerator Architectures

In this work, three different accelerators have been developed, one per layer
type used in most CNNs. Those are the convolution, the max-pooling, and
the fully-connected accelerators. Every accelerator has two variations; a sim-
ple one that only processes a single input similar to serial execution for test-
ing purposes, and a performance-oriented one for production/system de-
ployment. Some of the accelerators’ components are being described sepa-
rately to increase the readability of their architecture diagrams.

5.8.1 Convolution Accelerator

The convolution accelerator is the most complex, requiring lots of BRAM
slices and clock cycles to complete. Figure 5.8 depicts the simple version of
the convolution accelerator’s architecture. While it is not meant to be used in
production, it is great for testing purposes and validating the platform’s and
accelerator’s subsystems.

92 Chapter 5. Architecture Design

FIGURE 5.8: Convolutional layer serial accelerator.

The convolution accelerator reaches the platform’s DDR memory for its pa-
rameters through an AXI4-Full port, while its input data are given either
through the same AXI4-Full port or through a dedicated AXI4-Stream port.
The input data source is selected using a MMIO / Stream component, as
instructed by the accelerator’s controller component, and the data are then
stored into a BRAM instance for later use. The layer’s weights are stored
kernel by kernel onto another BRAM instance. This way, the BRAM require-
ments are kept low, compared to storing the whole layer’s weights, which
might also be impossible, due to the BRAM’s limited size. Because every
kernel is convoluted with the entire input, every weight in that kernel and
every input pixel is accessed multiple times. Hence, the inputs and weights
BRAM instances are used as caches. It is also worth noting that each BRAM
instance implements only one read and one write port because only one in-
put and one weight is accessed every clock cycle.

The computation starts when the input data and weights are stored in their
corresponding BRAM instances. Firstly, the accumulator component, whose
architecture is described below, is initialized by the kernel’s bias. Afterward,
the controller asks every BRAM instance for specific data to be sent to the
multiplier component, whose results are then sent to the accumulator. This
operation continues with the controller selecting the appropriate data for a
correct convolution until a single output is ready. Then, it is sent from the
accumulator to the ReLU component, whose architecture is described below.
The controller then instructs the ReLU component to either apply its activa-
tion function or pass it through. Lastly, the ReLU component sends its output

5.8. Platform Accelerator Architectures 93

to another MMIO / Stream component, which either sends it back to the plat-
form’s DDR or a dedicated AXI4-Stream port, also instructed by the controller.
This procedure continues until the full convolution operation is completed,
processing the entire input. The controller’s configuration is handled by an
AXI4-Lite port, accessed by the PS part.

The accumulator component, shown in figure 5.9, is a simple accumulator,
which has an input port that gets added with the register’s output, used to
store the partial result. The adder’s output is connected back to the register’s
input port and the accumulator component’s output port.

FIGURE 5.9: Accumulator component.

The ReLU component, shown in figure 5.10, applies the ReLU activation
function (see section 2.2.1) to the component’s input, when the enable port
is set, otherwise it passes through the input to the output port. It consists of
a simple comparator and two multiplexers.

FIGURE 5.10: ReLU component.

94 Chapter 5. Architecture Design

Figure 5.11 depicts the high performance version of the convolution accel-
erator’s architecture. It is very similar to the simple version, with the main
difference being the number of inputs that can be processed in parallel. This
version uses a multiplier array, an adder tree, and multiple read and write
ports on the input and weights BRAM instances. In this version, the multi-
plier array is fed with data using all BRAM read ports to feed all of its mul-
tiplier components in parallel, and then it passes its results to the adder tree
in order to create a single partial output. The data fed to the multiplier array
consist of a single kernel row of weights and inputs. Then, the partial output
is fed to the accumulator, and a new row of data is given to the multiplier
array. The rows come in the order of top to bottom row of a single channel,
and then the next channel follows. This process continues until every row,
and channel of a specific kernel is convoluted with the corresponding input
area. Afterward, the accumulator passes its output to the ReLU component,
and the process continues similar to the accelerator’s simple version.

FIGURE 5.11: Convolutional layer kernel-row-parallel acceler-
ator.

5.8. Platform Accelerator Architectures 95

The number of multiplier components is set to be at least the maximum kernel
size of every convolutional layer found in the network to be able to process
its whole row at once. Granted that the convolution core also has to support
the smaller kernel sizes found on the network’s convolutional layers, there
are structures that feed the excess multiplier components with zeros to not
affect the computation’s result.

5.8.2 Max-Pooling Accelerator

The max-pooling accelerator is the lightest, requiring little BRAM and exter-
nal I/O. Figure 5.12 depicts the simple version of the accelerator’s architec-
ture. Similar to the convolution accelerator, it is only targeted for testing and
validation purposes. However, it might also be suitable for production to
save resources due to its simplicity. Besides, as shown in the serial schedul-
ing (Figure 5.3), max-pooling layers contribute almost nothing to the over-
all time required for a complete inference, allowing for slower architectures,
saving resources.

FIGURE 5.12: Max-Pooling layer serial accelerator.

The max-pooling accelerator’s I/O is handled by two MMIO / Stream com-
ponents, similar to the convolutional accelerator. The BRAM instance, using
a single read and a single write port, loads a single channel from the whole
input. It then feeds the max component, whose architecture is described be-
low, as instructed by the accelerator’s controller. The max component’s out-
put is fed to the register, which feeds it back to the max component to process
the next input. In other words, this structure finds the maximum value in
a given array of input data. This process continues until a whole kernel of
input data is processed, generating a single output, which is then sent to the

96 Chapter 5. Architecture Design

output MMIO / Stream component. Afterward, the next part of the input
is processed, and when the whole channel is completed, the next one gets
loaded to the BRAM instance. The accelerator finishes when all of the input
channels are processed.

The max component, shown in figure 5.13, outputs the maximum input of
the two it is given. It comprises only two components, a comparator, and a
multiplexer.

FIGURE 5.13: Max component.

The max-pooling accelerator’s high performance version architecture is de-
picted in figure 5.14. The difference between the simple architecture lies upon
the BRAM instance’s read ports number and the max tree component, whose
architecture is described below. Using multiple read ports, multiple inputs
can be inserted to the max tree component in a single clock cycle, which in
turn it outputs the max value of its given input. This architecture processes
the whole kernel, generating a single output in every iteration. On every
iteration, the kernel moves onto the given input, until the channel is fully
processed. Then the next channel gets loaded onto the BRAM instance, and
the process continues.

5.8. Platform Accelerator Architectures 97

FIGURE 5.14: Max-Pooling layer kernel-parallel accelerator.

Like the convolution accelerator, the max-pooling accelerator must support
all kernel sizes found in the network’s max-pooling layer. Hence, the BRAM
read ports number and the max tree component’s input ports number are set
to be the network’s maximum max-pooling kernel size. When a layer with a
smaller kernel size is processed, the max tree component’s excess inputs are
fed with the minimum possible value not to affect the computation.

The max tree component, shown in figure 5.15, is a tree of max components,
capable of finding the max value from the given input. The kernel’s 2D ma-
trix is flattened into a 1D array fed into the max tree component to find the
input area’s maximum value.

FIGURE 5.15: MaxTree component.

98 Chapter 5. Architecture Design

5.8.3 Fully-Connected Accelerator

Unfortunately, the fully-connected accelerator is the most limited in terms
of parallelism capabilities since the fully-connected layer’s weights are used
only once, and therefore, they cannot be cached into an in-accelerator mem-
ory instance (BRAM or registers). Only the input data are used multiple
times, so storing them into a BRAM instance can help avoid I/O with the
platform’s DDR.

Figure 5.16 shows the simple version of the fully-connected accelerator’s ar-
chitecture. Like the other accelerators, the input and output data are handled,
as instructed by the accelerator’s controller, using two MMIO / Stream com-
ponents, connected to their dedicated input and output AXI4-Stream ports
and the AXI4-Full port. Firstly, the input data are loaded onto the BRAM
instance, through the input MMIO / Stream component. Afterward, the ac-
cumulator component is initialized with the appropriate bias, read directly
from the platform’s DDR through the accelerator’s AXI4-Full port. Then, the
controller instructs the BRAM instance to sequentially feed the multiplier with
a single input datum on every iteration. It also instructs the DDR to feed
the multiplier, through the AXI4-Full port, with the corresponding weight on
every iteration. The multiplier component’s output is then forwarded to the
accumulator. When all weights and inputs are multiplied and accumulated, a
single output is generated. It is then sent from the accumulator directly to the
ReLU component, which applies its ReLU activation function if instructed so
by the controller. Lastly, the ReLU component’s result is sent to the output
MMIO / Stream component to write it back to the DDR or to send it to the
next accelerator using its dedicated output stream port. The accelerator fin-
ishes when all inputs and all weights have been processed, generating the
total output.

5.8. Platform Accelerator Architectures 99

FIGURE 5.16: Fully-Connected layer serial accelerator.

Although this version is relatively simple, it uses a lot of BRAM only to ac-
cess a single input, sequentially. Hence, the BRAM instance might be overkill
for this use, wasting resources. Although, it should be noted that this sim-
ple version of the accelerator’s architecture is only targeted for testing and
validation purposes.

A more optimized architecture can be seen in figure 5.17, where a multiplier
array and an adder tree are utilized, the input BRAM instance is replaced
with simple registers, and the weights are given by splitting the 128-bit wide
AXI4-Full port. In a sense, the accelerator processes its input data in parts
creating partial outputs on each iteration.

FIGURE 5.17: Fully-Connected layer accelerator with partial
outputs.

100 Chapter 5. Architecture Design

Like the simple version, the input data are handled by the input MMIO /
Stream component; however, they are then written in parts onto the input reg-
isters. Every register has its own read and write ports so that multiple inputs
can be sent to the multiplier array in parallel. Furthermore, the weights are
still read from the DDR through the accelerator’s AXI4-Full port, taking ad-
vantage of the port’s width. For example, if a single weight is a 32-bit float
and the port is 128-bit wide, every 128-bit word can include four weights.
Hence, the size of the multiplier array depends on the weight’s data type.
Also, there is no need for more input registers than the number of weights
that can fit into a single 128-bit word, so the input data are saved and pro-
cessed in parts throughout the whole output. The process starts by initializ-
ing the output BRAM instance with the biases. The output BRAM instance is
used to store the partial outputs; therefore, every cell is initialized with a sin-
gle bias, corresponding to the output it represents. Starting the computation,
the first input part is multiplied with its corresponding weights, and then the
multiplication’s results are sent to the added tree, generating a partial output
stored into its BRAM cell. Afterward, the same input part is multiplied with
the next set of weights, and a new partial output is generated and stored.
When the first input part has been processed throughout all the partial out-
puts, the second part takes its place, and the process continues, adding the
newly created partial outputs to the already existing ones in the BRAM’s
cells. The process continues until the whole input has been processed, and
the full outputs are generated. Lastly, the full outputs pass through the ReLU
component and are then sent to the MMIO / Stream component.

101

Chapter 6

FPGA Implementation

6.1 Tools Used

This work’s CNN inference accelerator was implemented and optimized for
FPGA platforms using the Xilinx Vivado Design Suite - HL System Edition
2019.2 [90]. Vivado Design Suite is a software suite developed by Xilinx for
its FPGA devices for analysis and synthesis of Hardware Description Lan-
guage (HDL) designs, written in VHDL or Verilog. It is superseding Xilinx
ISE [91], as a complete rewrite, with additional features for System-on-Chip
(SoC) design and High-Level Synthesis (HLS). The tools used in this work
are Xilinx Vivado HLS, Xilinx Vivado IDE, and Xilinx SDK.

6.1.1 Vivado IDE

Xilinx Vivado Integrated Design Environment (IDE), released in 2012, is the
basis for all Xilinx tools. It serves as a GUI front-end for the Vivado Design
Suite. All Vivado Design Suite tools integrate a native TCL interface, which
can be accessed from IDE’s GUI and the TCL console. Vivado IDE can com-
pile, synthesize, implement, place and route FPGA hardware designs written
in high-level languages such as C/C++, and HDLs such as VHDL and Ver-
ilog.

In addition, using the IP Integrator tool, hardware systems can be designed
by graphically connecting IP blocks and configuring them through their GUI,
with no coding involved, hence, accelerating the design process. Integration
automation features such as auto-connecting and auto-configuring blocks
further accelerate the design process. IP blocks can be created using the in-
tegrated IP Packaging functionality for VHDL or Verilog designs and via the
Xilinx HLS tool for C/C++ designs. Xilinx also provides many IP blocks

102 Chapter 6. FPGA Implementation

for free, including but not limited to on and off-chip-network IPs, memory
blocks and memory management IPs, I/O interface IPs, and even various
compute IPs. There are also additional IP’s that can be purchased from Xil-
inx or even other vendors and developers.

After the design process is completed, a bitstream can be created and then
downloaded to the target FPGA device to run as a standalone hardware
device or in combination with firmware running on the FPGA’s integrated
ARM cores. The device’s firmware is developed, compiled, and deployed
using the Xilinx Software Development Kit (SDK) tool.

Designs can be tested on IP level or ever system-wide using the IDE’s inte-
grated simulator or any other RTL simulator. Moreover, Vivado IDE provides
various debug tools that, combined with Integrated Logic Analyzer (ILA)
IPs, can scan, check, and visualize the system’s behavior during runtime.

6.1.2 Vivado High-Level Synthesis (HLS)

Xilinx Vivado High-Level Synthesis (HLS) [92], currently rebranded as Xil-
inx Vitis HLS, is a tool included in the Xilinx Vivado Design Suite, allowing
for a higher level of abstraction design of HDL systems. Vivado HLS syn-
thesizes C/C++, SystemC and OpenCL functions into IP blocks, generating
their VHDL and Verilog HDL designs that can then be implemented into
hardware systems using Vivado and its Block Design tool.

While HLS accepts non-hardware-optimized code, it provides a set of direc-
tives that can instruct the synthesis procedure to implement a specific behav-
ior, optimization, and resource management. Directives are optional and do
not affect the input code’s behavior. Their usage can both benefit the gen-
erated IP’s performance and even hurt it when not used correctly. Further-
more, constraints, like clock period, clock uncertainty, and FPGA target, are
added to the HLS synthesized IP blocks to ensure the desired behavior and
performance.

A C/C++ testbench is used to debug the input code’s behavior prior to syn-
thesis, which should feed the input code with test data and check its out-
put for correctness. Verification of the exported IP block is done using the
C/RTL Cosimulation functionality, which uses the same C/C++ testbench,
but replaces the function’s call with the exported IP block call.

6.1. Tools Used 103

Synthesis Report

A synthesis report is created whenever HLS successfully synthesizes an IP
Block, showing various performance and resource utilization metrics. Using
the synthesis report, the designer can easily find and target the bottleneck
to further optimize their design in terms of both performance and resources.
Since Vitis HLS 2020.1, the report summary also contains the aforementioned
information per loop per module, making the optimization procedure even
more targeted. Some of the metrics are presented and explained below.

• Latency: The number of clock cycles required for a complete run of a
module or loop.

• Iteration Latency: The number of clock cycles required for running a
single iteration of a module or loop.

• Iteration/Initiation Interval (II): The number of clock cycles required
before a module can accept new input or a loop can initiate a new iter-
ation.

• Pipelined: Whether a module or loop is implemented using a pipelined
architecture.

• Area: The number of hardware resources a module requires for its im-
plementation into the target FPGA. The hardware resource types are
Block RAM (BRAM) and Ultra RAM (URAM), Digital Signal Process-
ing (DSP) units, Flip Flops (FF), and Lookup Tables (LUT). A table is
also given on the detailed report, showing the number of hardware re-
sources required for every hardware component type, which include
DSPs, Expressions, First-In-First-Out (FIFO) queues, Instances, Memo-
ries, Multiplexers, and Registers.

Optimization Directives

As mentioned above, HLS provides a set of directives for design optimiza-
tion in terms of latency, throughput, and resource utilization of the exported
IP block. Those directives can be added directly into the input code in the
form of pragmas that the preprocessor can read. Another way of adding di-
rectives is by creating a new solution and automatically adding them to it.
Every solution combines a set of directives and configurations into TCL files,
one TCL file per solution. Multiple solutions can be created, each with dif-
ferent directive combinations and configurations. This way allows for better

104 Chapter 6. FPGA Implementation

experimentation and fine-tuning of the design. Some optimization directives
are presented and explained below.

• Interface: The top-level function’s arguments have to be mapped to
RTL ports to configure the IP block’s functionality. The interface direc-
tive specifies each argument’s port type.

• Stream: By default, the top-level function’s array arguments are imple-
mented as RAM channels. However, when data are being produced
or consumed sequentially, a more efficient data type is to use FIFOs,
which can be specified using the stream directive.

• Pipeline: Given an Initiation Interval (II) parameter, the pipeline direc-
tive reduces the number of clock cycles a function or loop can accept
new inputs, targeting II clock cycles, by allowing the overlapped exe-
cution of operations.

• Unroll: Given a factor, the unroll directive unrolls a loop factor times,
creating multiple instances of the loop body, that can then be scheduled
independently or run in parallel.

• Loop Flatten: Allows perfectly nested loops, loops that no logic is in-
jected between them, to get collapsed into a single loop, reducing la-
tency. Essentially, it handles all the indexing logic of the loop flattening.

• Loop Merge: Merges consecutive loops, often initialization loops, re-
ducing overall latency and resource utilization.

• Resource: Specifies the resource for a variable to get implemented.

• Array Partition: By default, every array is implemented as a set of at
least one BRAM unit with a single read and a single write port. The
array partition directive partitions an array into multiple smaller ar-
rays or assigns each array’s element to its register. This partitioning
increases the read and write ports of the array on the hardware level,
allowing for parallel I/O and computations. In the potential expense
of more memory instances and more register, array partitioning can
improve overall throughput and performance of memory bounded ap-
plications.

• Array Map: The array map directive combines multiple small arrays
into a single large one, to avoid BRAM waste on small arrays, which
can occupy a BRAN unit for just a few elements.

6.1. Tools Used 105

• Array Reshape: Reshapes an array of many elements of small bit-width
to an array of fewer elements but of higher bit-width, increasing the
sequential BRAM access speeds.

• Data Pack: Similar to the array reshape directive, the data pack direc-
tive combines struct data fields to a single scalar of higher bit-width.

• Dataflow: Enables parallel execution of functions and loops, increasing
throughput and latency.

• Inline: Similar to C/C++ macro preprocessor functionality, the inline
directive injects a function’s body to each of its calls, reducing latency
and initiation interval due to lower function call overhead.

• Allocation: Limits the number of hardware resources used for imple-
menting the IP block, and may result in hardware sharing and latency
increase.

• Latency: Limits the minimum and maximum latency in clock cycles.

6.1.3 Xilinx SDK and Xilinx Vitis IDE

Xilinx Software Development Kit (SDK) [93], currently unified with SDSoC
and SDAccel into Vitis Unified Software Platform, is an IDE for embedded-
software development Xilinx’s microprocessors. Based on the Eclipse IDE
[94], it includes a C/C++ editor, a compilation toolchain for ARM micro-
processors with automatic Makefile generation, system performance analy-
sis and optimization tools, and several debug and profiling tools. It is used
to create applications that run on the ARM cores either external to the FPGA
die or internal like on the MPSoCs. Often those applications play the role of
the coordinator/master that organizes, schedules, and configures the FPGA
hardware. They often handle the external I/O, like data transfers to and from
storage devices (SD cards, Hard Drives, Flash Memories, etc.) or Ethernet, to
and from volatile memory (RAM, BRAM, etc.). They can also handle the data
pre-processing needed to feed the FPGA hardware. Furthermore, multi-core
processors can be utilized simultaneously using bare-metal applications. If
multi-processing is required with a sophisticated scheduler, Linux applica-
tions can be built and run on Linux operating systems like PetaLinux [95]
and FreeRTOS [96].

Xilinx SDK is strongly coupled with the Xilinx Design Suite and its hardware
designs and bitstreams. After the successful implementation and bitstream

106 Chapter 6. FPGA Implementation

generation of the hardware design from Vivado IDE, Xilinx SDK imports the
project’s hardware wrapper to generate the Board Support Package (BSP)
and various C/C++ libraries useful for communication with and configura-
tion of the FPGA hardware.

Xilinx SDK can create three main types of applications; bare-metal, First
Stage Boot Loader (FSBL), and Linux applications. Their main difference is
on the way the application is loaded onto the system’s processor.

• Baremetal: A bare-metal application is loaded using the SDK’s built-in
functionality that can program the FPGA (PL part) and load it onto the
corresponding ARM core through the JTAG port.

• FSBL: A FSBL application is a set of files generated by the SDK that,
when put on the root folder of the system’s primary storage device,
e.g., SD card, are read during the system’s boot-up, triggering a boot
loader sequence. The system has to be appropriately configured, typ-
ically configuring some jumpers and switches on development boards
to instruct the processor to read the FSBL files. When the bootloader
sequence is triggered, programming of the FPGA and loading the ap-
plication are done using the primary storage device as a source, with
no need for an external computer, and Xilinx SDK or JTAG.

• Linux: A Linux application is similar to the FSBL one, with the only
difference that a Linux operating system is required to be running on
the system’s processor. Similarly, the Linux OS is loaded using the pri-
mary storage device. When Linux is fully loaded, the application can be
started like any other Linux application through the provided console
window to program the FPGA and run it.

A console window is used for input and output functionality using the UART
port in all application types.

Debugging applications is as simple as regular locally running applications
using the built-in System Debugger or other debugging tools like GDB [97].
In addition, Vivado IDE’s Hardware Manager can be used in combination
with SDK’s System Debugger to debug hardware designs and their driver
applications. Vivado IDE’s Hardware Manager connects to the hardware’s
ILA IPs, enabling the monitoring in real-time of the hardware’s state con-
cerning the driver application’s state.

107

Chapter 7

Results

This work’s implementation of the proposed platform is described in sec-
tion 7.2. Its performance metrics, such as its latency, throughput, power, and
energy consumption, are compared to the available alternative technologies
and FPGA architectures. AlexNet is the selected CNN to be used as a bench-
mark for the various technologies compared.

7.1 Specifications of the Compared Platforms

The proposed platform is compared with an Intel i7 4710MQ CPU, an NVIDIA
RTX 2060 Super 8GB GPU, a Xilinx CHaiDNN implementation, and a Xil-
inx DPU implementation. All FPGA implementations, including this work’s
platform, use the Xilinx ZCU102 Evaluation board.

7.1.1 Intel i7 4710MQ

The Intel i7 4710MQ CPU [78], released in 2014, is a mobile processor targeted
for high-performance laptops. Its specifications are presented in table 7.1.

TABLE 7.1: Intel i7 4710MQ processor specifications

Cores / Threads 4/8
Max Turbo Frequency 3.5GHz
TDP 47W
Max Memory Bandwidth 25.6GB/s
Lithography 22nm

108 Chapter 7. Results

7.1.2 NVIDIA RTX-2060 Super 8GB

The NVIDIA RTX-2060 Super [98], released in 2019, is a desktop GPU, and
while targeted for raytraced gaming, it is also suitable for CNN inferencing
due to its large and high-bandwidth memory. Its specifications are presented
in table 7.2.

TABLE 7.2: NVIDIA RTX 2060 Super specifications

CUDA Cores 2176
Tensor Cores 32
GPU Memory 8GB GDDR6
Boost Clock 1650 MHz
Memory Interface 256-bit
Memory Bandwidth 448GB/s
Power Consumption 175W

7.1.3 Xilinx CHaiDNN

The Xilinx CHaiDNN accelerator library, presented in section 3.5.1, was im-
plemented for this work’s comparisons. The resource utilization for its im-
plementation is depicted in table 7.3. It should be noted that Double Pumped
DSPs are used.

TABLE 7.3: Xilinx CHaiDNN resource usage

PL/DSP Clock Frequency 250/500 MHz
LUT Usage 59.1%
FF Usage 27.66%
BRAM Usage 74.12%
DSP Usage 53.65%

7.2 Proposed Platform

This work’s proposed platform can be implemented using several data types
and accelerators. For this comparison, it was implemented based on AlexNet’s
requirements and characteristics, presented in chapter 4. Both parameters
and activations are represented as 8-bit fixed-points; hence, the accelerators
use the same data type. There is a single accelerator instance per layer type,
using their high-performance versions as presented in section 5.8. The serial

7.3. Performance Metrics 109

execution scheduler (see section 5.6) was selected because the implemented
accelerators do not support layer pipelining, and there are not multiple in-
stances per layer type.

The resource utilization for implementing the aforementioned configuration
of the proposed platform is depicted in table 7.4.

TABLE 7.4: Proposed platform resource usage

Clock Frequency (MHz) 300MHz
LUT Usage 7.34%
LUTRAM Usage 2.05%
FF Usage 4.03%
BRAM Usage 7.51%
DSP Usage 1.9%
BUFG (%) 0.25%

7.3 Performance Metrics

7.3.1 Throughput

Throughput, defined in equation 5.2, is the number of tasks that can be ac-
complished in a unit time. It is preferred to be as high as possible to generate
as much work as possible in the unit time.

7.3.2 Latency

Latency, defined in equation 5.1, is the time required for accomplishing a
single task. It is preferred to be as low as possible to finish tasks as quickly
as possible from the time they are issued.

7.3.3 Power Consumption

Power consumption is defined as the energy consumed per unit time for ac-
complishing a specific task, from a chemical reaction and lifting materials
using a crane, to emitting light through a light bulb and inferencing CNNs
on electronic hardware. Average power consumption is always preferred to
be as low as possible to increase the system’s energy efficiency, minimizing
energy losses. In addition, low power consumption leads to simpler system

110 Chapter 7. Results

designs and lower building costs. It is usually measured in Watts (w) or kilo-
Watts (kW).

7.3.4 Energy Consumption

Energy consumption is defined as the energy required for accomplishing a
specific task in a specific time amount. It can be calculated as Energy =

Power ∗ Time, where Power is the required power, and Time is the required
time for accomplishing the task. Energy consumption is also preferred to
be as low as possible while accomplishing the given task within the time
constraints, to minimize the operational costs. It is usually measured in Joule
(J) or kiloJoule (kJ).

7.4 CPU and GPU Performance

PyTorch provides the option to select the appropriate input batch size that
best suits the application’s needs concerning the hardware in use. Every CPU
and GPU has different architecture and configuration, and, consequently, the
best batch size can vary. In general, larger batch sizes increase both inference
throughput and latency. However, very large batch sizes can damage the
application’s throughput. Hence, a low-latency application should use small
batch sizes but expect lower throughput, and high-throughput applications
should use large batch sizes with higher latency costs.

A Python script was created to measure the CPU and GPU inference per-
formance regarding the selected batch size. The script uses the prebuilt and
pre-trained AlexNet model provided by PyTorch and tests the performance
using all the available batch sizes. Figure 7.1 depicts the inference latency on
both platforms in milliseconds per image.

7.4. CPU and GPU Performance 111

FIGURE 7.1: CPU vs GPU Inference Latency: Latency increases
while batch size increases on both platforms.

As expected, the latency increases while the batch size increases. It is remark-
able that the GPU achieves almost two orders of magnitude lower latency
than the CPU on all batch sizes.

Figure 7.2 depicts the inference throughput on both platforms in images per
second. While the CPU’s throughput increases as the batch size increases,
the GPU’s throughput reaches its maximum on 256 batch size, and from then
on, it decreases. Almost two orders of magnitude difference between the two
platforms are also appearing.

112 Chapter 7. Results

FIGURE 7.2: CPU vs GPU Inference Throughput: Throughput
increases while batch size increases on CPU, while the GPU

reaches its maximum throughput on 256 batch size.

It should be noted that PyTorch also can configure the number of workers
to be used for its inference procedure. A worker can be thought of as an
orchestrator, processes that run in parallel to inference images. As a rule of
thumb, which has also been tested but not shown on the previous figures, it
is best to use the same amount of workers as the number of available threads
in a CPU. A single worker should also be used when inferencing with a GPU
because multiple workers can create communication bottlenecks and dam-
age performance. Therefore, the aforementioned tests were conducted using
eight workers when inferencing on the CPU, and a single worker when in-
ferencing on the GPU.

7.5 Final Performance

The comparisons were conducted using the same dataset and AlexNet hyper-
parameters across all technologies. The CPU and GPU use floating-point
arithmetic for their parameters and activations, while CHaiDNN uses 8-bit
quantization, and the proposed platform implementation uses 8-bit fixed-
point arithmetic.

7.5. Final Performance 113

Table 7.5 depicts the comparison results of every technology. It should be
noted that the CPU and GPU use different batch sizes for their throughput
and latency measurements to represent their best performance. In this case,
the CPU uses a batch size of 1024 for throughput and a batch size of 1 for
latency, and the GPU uses a batch size of 256 for throughput and a batch size
of 1 for latency.

The Energy Consumption/Image metric is calculated as shown on equation
7.1.

EnergyConsumption
Image

= min{TotalPower ∗ Latency,
TotalPower
Throughput

} (7.1)

The Images/Joule metric is calculated, as shown in equation 7.2.

../Images
Joule

= max{ 1
TotalPower ∗ Latency

,
Throughput
TotalPower

} (7.2)

The throughput and latency speedups, and the power and energy efficiencies
for every platform are calculated compared to the CPU.

TABLE 7.5: Performance results

CPU GPU CHaiDNN Proposed
Platform

Clock Frequency (MHz) 3500 1650 250/500 300
Throughput (Images/s) 94.84 5784.6 10.07 0.0927
Throughput Speedup 1x 60.9933x 0.1062x 0.001x
Latency (s) 0.0266 0.0009 0.0993 10.783
Latency Speedup 1x 29.5556x 0.2679x 0.0025x
Total On-Chip Power (Watt) 47 175 19.3 4.559
Power Efficiency 1x 0.2686x 2.4352x 10.3093x
Energy Cons./Image (Joule) 1.2502 0.1575 1.9165 49.1597
Energy Efficiency 1x 7.9378x 0.6523x 0.0254x
Images/Joule 2.0179 33.0549 0.5218 0.0203

The final results of the various performance metrics are also depicted using
bar charts in figure 7.3 for better visibility.

114 Chapter 7. Results

FIGURE 7.3: Final Results Charts: While requiring the highest
amount of power, the GPU stands out in every other perfor-

mance metric.

It can be observed that while the GPU in use requires almost four times the
power of its CPU counterpart, it can provide the best performance in every
metric, with an almost 61 times throughput speedup and an almost 30 times
latency speedup. Although the GPU is the most power-hungry device, it
achieves the energy efficiency across all platforms due to its low latency and
high throughput capabilities.

Both tested FPGA platforms, the CHaiDNN and the proposed platform, have
worse results in every metric compared to the CPU and GPU. However,
CHaiDNN and the proposed platform beat their counterparts with more than
2 times and 10 times lower power requirements, respectively. Between the
two FPGA platforms, CHaiDNN performs better in terms of throughput, la-
tency, and energy consumption, but requires more than 4 times the proposed
platform’s power and much more hardware resources, as shown in tables 7.3
and 7.4.

Although the proposed platform’s performance is lower than expected for a
real-world application, this significant difference in resource utilization be-
tween the two platforms creates an opportunity for further development to
achieve better results. The priority for further development should be given
to the Convolution accelerator, which consumed about 98% of the total in-
ference time in the tests. First of all, the Double-Pumped DSPs technique
used by both Xilinx CHaiDNN and Xilinx DPU should also be used by the

7.5. Final Performance 115

proposed platform to create a speedup of up to 2 times. Secondly, the con-
volution algorithm should be further unrolled to convolve in a single clock
cycle the whole kernel, not just row-by-row like the convolution accelera-
tor shown in figure 5.11, or even multiple kernels, striding from left to right.
Furthermore, the Max-Pooling accelerator’s functionality could be integrated
into the Convolution accelerator, applying its operations after creating a sin-
gle output channel and before the ReLU functionality. This way, the ReLU
is also applied to fewer outputs due to the Max-Pooling’s down-sampling
nature. Additionally, communication is decreased because there is no need
for the convolution results to be transferred to the Max-Pooling accelerator,
either by MMIO or stream, since they are passed-through directly from the
same BRAM instances. Finally, other architectures could also be designed,
such as by incorporating a systolic array, and even architectures utilizing
multiple FPGA devices.

It is also noteworthy that the RTX 2060 Super is a fairly new GPU, at the time
of writing, launched in the mid 2019, while the ZCU102’s part, the Xilinx
Zynq Ultrascale+ ZU9, launched in 2015, more than 4 years earlier. Newer
FPGA parts provide better performance out-of-the-box, with lower power
consumption due to better chip lithography, and a lot more hardware re-
sources. Hence, a fairer comparison between a GPU and it corresponding
FPGA should be conducted using a modern FPGA part.

117

Chapter 8

Conclusions and Future Work

In this chapter, this thesis’ work is being summed up and evaluated. Also,
directions for future work, possible extensions, and optimizations are being
given.

8.1 Conclusions

Over the last few years, Convolutional Neural Networks have proved to be
capable of tackling complex image recognition problems and sound recogni-
tion, security, and data mining problems. The research community continues
to surprise the world with new and paradoxical use cases for CNNs, with
even more exciting results. With the rise of neural networks, hardware capa-
ble of handling high computational complexity in a fast and energy-efficient
manner becomes necessary.

This thesis’ purpose was to create an FPGA accelerator for CNN inference,
using AlexNet as the base network and benchmark. However, a whole plat-
form was created for easy and structured implementation of such accelera-
tors not only for CNNs but neural networks in general. The implementa-
tion of this thesis’ proposed platform is used to accelerate AlexNet’s infer-
ence, whose robustness analysis was carried out to investigate the FPGA’s
strengths and weaknesses. Computational workloads, memory access pat-
terns, memory and bandwidth reduction, as well as algorithmic optimiza-
tions, were studied to exploit the FPGA’s parallelism capabilities and strengths.

While the proposed platform’s implementation was based on the Xilinx ZCU102
Evaluation Kit, it can be transferred and scaled accordingly to other FPGA
devices, such as the FORTH QFDB, a custom four-FPGA platform. Although
there were no performance benefits using an FPGA over an NVIDIA RTX-
2060 Super GPU, a potential for performance improvements appears with

118 Chapter 8. Conclusions and Future Work

further development, focusing on the convolution accelerator, which exploits
the platform’s ease of use, extendability, and expandability.

8.2 Future Work

This thesis’ proposed platform is by design easily expandable for future use
and development, creating several opportunities for its expansion and CNN
accelerators’ optimization. Some of them are presented below.

• Quantization techniques for both parameters and activations should be
further investigated to achieve better classification accuracy using 8-bit
or even lower representations. Techniques such as K-Means clustering,
Lloyd’s, Pair and Quad compression, and SLC found in George Pitsis’
thesis [99] could be a great start.

• Similar to integrating the ReLU activation function into the Convolu-
tional and Fully-Connected layers’ accelerators, integrating the pooling
layer into the convolutional layer’s accelerator could be beneficial both
latency and throughput by reducing the network’s overall memory I/O
and avoiding the separate accelerator’s initialization.

• The platform’s scalability should be exploited not only by implement-
ing it in bigger FPGA devices but also in multiple interconnected FP-
GAs using platforms such as the FORTH QFDB or CRDB. Multiple ac-
celerator instances could be incorporated using such platforms, creat-
ing opportunities for higher throughput and lower latency, as well as
new scheduler strategies that might not be presented in the FPGA Im-
plementation chapter.

• Pruning enabled accelerators could bring not only lower latency and
high throughput but also higher energy efficiency since there are less
required operations for a single inference.

• There are works, such as the Xilinx DPU, which use systolic arrays as
their main compute engine. Systolic arrays, while being relatively com-
plicated, could improve latency and memory bandwidth due to their
design. They could be used to implement a matrix multiplier for the
convolutional layer’s operation requirements. Although implementing
variable padding and stride is not an obvious task, it should be feasible
with careful data scheduling. Also, systolic arrays could be designed to

8.2. Future Work 119

implement n-dimensional convolutions to expand the accelerator’s use
cases.

• Monte Carlo Dropout during inference could also be consolidated to in-
crease the confidence of the classification results. Multiple instances of
the same network could be run with the same inputs in parallel, using
multiple accelerator instances and even multiple FPGA devices. Weight
could be zeroed out randomly on each iteration in hardware using a lin-
ear feedback shift register as a random number generator.

• Layer-Pipelining, as presented in section 5.6, could further decrease the
network’s overall latency. While implementing it as presented is a com-
plex task, it could be simplified by implementing a memory address
generator that produces addresses in the specified order.

• During some experimentation with Xilinx’s tools, it was observed that
implementing the same functionality designs using pure VHDL and
Xilinx HLS leads to very different performance and especially resource
utilization. Although implementing a design using pure VHDL re-
quires much more working hours on its development and testing com-
pared to using Xilinx HLS, it could create better performance results
and new opportunities.

• CPU-FPGA partitioning should also be further studied to exploit the
CPU’s higher clock speeds, avoiding wasting FPGA resources for tasks
that CPUs can already handle. In the case of Xilinx ZCU102, all six cores
could be utilized to contribute to the overall network inference.

121

References

[1] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning.
MIT Press, 2016. URL: http://www.deeplearningbook.org.

[6] F. Chaix et al. “Implementation and Impact of an Ultra-Compact Multi-
FPGA Board for Large System Prototyping”. In: IEEE/ACM Interna-
tional Workshop on Heterogeneous High-performance Reconfigurable Com-
puting (H2RC) 3 (2019), pp. 34–41. URL: https://ieeexplore.ieee.
org/document/8945720.

[8] Sasanka Potluri. “CNN based high performance computing for real
time image processing on GPU”. In: (2011). URL: https://ieeexplore.
ieee.org/document/6024781/.

[9] Bo Chen-Dmitry Kalenichenko Weijun Wang Tobias Weyand Marco
Andreetto Hartwig Adam Andrew G. Howard Menglong Zhu. “Mo-
bileNets: Efficient Convolutional Neural Networks for Mobile Vision
Applications”. In: (2011). URL: https://arxiv.org/pdf/1704.04861.

[10] A. L. Samuel. “Some Studies in Machine Learning Using the Game of
Checkers”. In: IBM Journal of Research and Development 3.3 (July 1959),
pp. 210–229. URL: https://ieeexplore.ieee.org/document/5392560.

[16] Sepp Hochreiter. “The Vanishing Gradient Problem During Learning
Recurrent Neural Nets and Problem Solutions”. In: International Jour-
nal of Uncertainty, Fuzziness and Knowledge-Based Systems 6 (Apr. 1998),
pp. 107–116. DOI: 10.1142/S0218488598000094. URL: https://www.
researchgate.net/publication/220355039_The_Vanishing_Gradient_

Problem_During_Learning_Recurrent_Neural_Nets_and_Problem_

Solutions.
[17] Mohammad Rastegari et al. “XNOR-Net: ImageNet Classification Us-

ing Binary Convolutional Neural Networks”. In: CoRR abs/1603.05279
(2016). URL: http://arxiv.org/abs/1603.05279.

[20] Christian Szegedy et al. “Going Deeper with Convolutions”. In: CoRR
abs/1409.4842 (2014). arXiv: 1409.4842. URL: http://arxiv.org/abs/
1409.4842.

http://www.deeplearningbook.org
https://ieeexplore.ieee.org/document/8945720
https://ieeexplore.ieee.org/document/8945720
https://ieeexplore.ieee.org/document/6024781/
https://ieeexplore.ieee.org/document/6024781/
https://arxiv.org/pdf/1704.04861
https://ieeexplore.ieee.org/document/5392560
https://doi.org/10.1142/S0218488598000094
https://www.researchgate.net/publication/220355039_The_Vanishing_Gradient_Problem_During_Learning_Recurrent_Neural_Nets_and_Problem_Solutions
https://www.researchgate.net/publication/220355039_The_Vanishing_Gradient_Problem_During_Learning_Recurrent_Neural_Nets_and_Problem_Solutions
https://www.researchgate.net/publication/220355039_The_Vanishing_Gradient_Problem_During_Learning_Recurrent_Neural_Nets_and_Problem_Solutions
https://www.researchgate.net/publication/220355039_The_Vanishing_Gradient_Problem_During_Learning_Recurrent_Neural_Nets_and_Problem_Solutions
http://arxiv.org/abs/1603.05279
https://arxiv.org/abs/1409.4842
http://arxiv.org/abs/1409.4842
http://arxiv.org/abs/1409.4842

122 References

[21] Ciresan et al. Multi-column Deep Neural Networks for Image Classification.
2012. URL: https://arxiv.org/pdf/1202.2745.pdf.

[22] Andrew D. Back Lawrence Steve; C. Lee Giles; Ah Chung Tsoi. Face
Recognition: A Convolutional Neural Network Approach. 1997. URL: http:
//citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.92.5813.

[23] Matusugu et al. Subject independent facial expression recognition with ro-
bust face detection using a convolutional neural network. 2011. URL: https:
//www.sciencedirect.com/science/article/pii/S0893608003001151?

via\%3Dihub.
[24] Microsoft. Learning Semantic Representations Using Convolutional Neural

Networks for Web Search – Microsoft Research. 2015. URL: https://www.
microsoft.com/en-us/research/publication/learning-semantic-

representations - using - convolutional - neural - networks - for -

web- search/?from=http\%3A\%2F\%2Fresearch.microsoft.com\

%2Fapps\%2Fpubs\%2Fdefault.aspx\%3Fid\%3D214617.
[25] Ronan Collobert and Jason Weston. “A Unified Architecture for Natu-

ral Language Processing: Deep Neural Networks with Multitask Learn-
ing”. In: Proceedings of the 25th International Conference on Machine Learn-
ing. ICML ’08. Helsinki, Finland: Association for Computing Machin-
ery, 2008, 160–167. ISBN: 9781605582054. DOI: 10.1145/1390156.1390177.
URL: https://doi.org/10.1145/1390156.1390177.

[26] Y. Bengio. Practical recommendations for gradient-based training of deep ar-
chitectures. 2012. URL: https://arxiv.org/abs/1206.5533.

[27] D. E. Rumelhart and J. L. McClelland. “Learning Internal Represen-
tations by Error Propagation”. In: Parallel Distributed Processing: Ex-
plorations in the Microstructure of Cognition: Foundations. MITP, 1987,
pp. 318–362. URL: https://ieeexplore.ieee.org/document/6302929.

[28] Yann Lecun. “Generalization and network design strategies”. English
(US). In: Connectionism in perspective. Ed. by R. Pfeifer et al. Elsevier,
1989. URL: http://yann.lecun.com/exdb/publis/pdf/lecun-89.pdf.

[29] Kurt Hornik. “Approximation capabilities of multilayer feedforward
networks”. In: Neural Networks 4.2 (1991), pp. 251 –257. ISSN: 0893-6080.
DOI: https://doi.org/10.1016/0893-6080(91)90009-T. URL: http:
//www.sciencedirect.com/science/article/pii/089360809190009T.

[33] Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-MNIST: a Novel
Image Dataset for Benchmarking Machine Learning Algorithms. Aug. 28,
2017. arXiv: cs.LG/1708.07747 [cs.LG]. URL: https://arxiv.org/
abs/1708.07747.

https://arxiv.org/pdf/1202.2745.pdf
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.92.5813
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.92.5813
https://www.sciencedirect.com/science/article/pii/S0893608003001151?via\%3Dihub
https://www.sciencedirect.com/science/article/pii/S0893608003001151?via\%3Dihub
https://www.sciencedirect.com/science/article/pii/S0893608003001151?via\%3Dihub
https://www.microsoft.com/en-us/research/publication/learning-semantic-representations-using-convolutional-neural-networks-for-web-search/?from=http\%3A\%2F\%2Fresearch.microsoft.com\%2Fapps\%2Fpubs\%2Fdefault.aspx\%3Fid\%3D214617
https://www.microsoft.com/en-us/research/publication/learning-semantic-representations-using-convolutional-neural-networks-for-web-search/?from=http\%3A\%2F\%2Fresearch.microsoft.com\%2Fapps\%2Fpubs\%2Fdefault.aspx\%3Fid\%3D214617
https://www.microsoft.com/en-us/research/publication/learning-semantic-representations-using-convolutional-neural-networks-for-web-search/?from=http\%3A\%2F\%2Fresearch.microsoft.com\%2Fapps\%2Fpubs\%2Fdefault.aspx\%3Fid\%3D214617
https://www.microsoft.com/en-us/research/publication/learning-semantic-representations-using-convolutional-neural-networks-for-web-search/?from=http\%3A\%2F\%2Fresearch.microsoft.com\%2Fapps\%2Fpubs\%2Fdefault.aspx\%3Fid\%3D214617
https://www.microsoft.com/en-us/research/publication/learning-semantic-representations-using-convolutional-neural-networks-for-web-search/?from=http\%3A\%2F\%2Fresearch.microsoft.com\%2Fapps\%2Fpubs\%2Fdefault.aspx\%3Fid\%3D214617
https://doi.org/10.1145/1390156.1390177
https://doi.org/10.1145/1390156.1390177
https://arxiv.org/abs/1206.5533
https://ieeexplore.ieee.org/document/6302929
http://yann.lecun.com/exdb/publis/pdf/lecun-89.pdf
https://doi.org/https://doi.org/10.1016/0893-6080(91)90009-T
http://www.sciencedirect.com/science/article/pii/089360809190009T
http://www.sciencedirect.com/science/article/pii/089360809190009T
https://arxiv.org/abs/cs.LG/1708.07747
https://arxiv.org/abs/1708.07747
https://arxiv.org/abs/1708.07747

References 123

[37] Tsung-Yi Lin et al. Microsoft COCO: Common Objects in Context. 2014.
arXiv: 1405.0312 [cs.CV]. URL: https://arxiv.org/abs/1405.0312.

[41] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. “ImageNet
classification with deep convolutional neural networks”. In: Commu-
nications of the ACM (2017), 84––90. URL: https://papers.nips.cc/
paper/4824-imagenet-classification-with-deep-convolutional-

neural-networks.pdf.
[42] Y. Lecun et al. “Gradient-based learning applied to document recog-

nition”. In: Proceedings of the IEEE 86.11 (1998), pp. 2278–2324. URL:
https://ieeexplore.ieee.org/document/726791.

[43] Matthew D Zeiler and Rob Fergus. Visualizing and Understanding Con-
volutional Networks. 2013. arXiv: 1311.2901 [cs.CV]. URL: https://
arxiv.org/abs/1311.2901.

[44] Karen Simonyan and Andrew Zisserman. Very Deep Convolutional Net-
works for Large-Scale Image Recognition. 2014. arXiv: 1409.1556 [cs.CV].
URL: https://arxiv.org/abs/1409.1556.

[45] Kaiming He et al. Deep Residual Learning for Image Recognition. 2015.
arXiv: 1512.03385 [cs.CV]. URL: https://arxiv.org/abs/1512.
03385.

[48] Yangqing Jia et al. “Caffe: Convolutional Architecture for Fast Feature
Embedding”. In: CoRR abs/1408.5093 (2014). arXiv: 1408.5093. URL:
https://arxiv.org/abs/1408.5093.

[53] Martín Abadi et al. “TensorFlow: Large-Scale Machine Learning on
Heterogeneous Distributed Systems”. In: CoRR abs/1603.04467 (2016).
arXiv: 1603.04467. URL: http://arxiv.org/abs/1603.04467.

[60] Sharan Chetlur et al. “cuDNN: Efficient Primitives for Deep Learning”.
In: CoRR abs/1410.0759 (2014). arXiv: 1410.0759. URL: http://arxiv.
org/abs/1410.0759.

[64] Norman P. Jouppi et al. “In-Datacenter Performance Analysis of a Ten-
sor Processing Unit”. In: CoRR abs/1704.04760 (2017). arXiv: 1704 .
04760. URL: http://arxiv.org/abs/1704.04760.

[71] Xilinx. PG338 - Zynq DPU v3.2 IP Product Guide (v3.2). May 2020. URL:
https://www.xilinx.com/support/documentation/ip_documentation/

dpu/v3_2/pg338-dpu.pdf.
[79] Sergei Arthur and David Vassilvitskii. “Dynamically scaled fixed point

arithmetic”. In: (1991). URL: https://ieeexplore.ieee.org/document/
160742/.

https://arxiv.org/abs/1405.0312
https://arxiv.org/abs/1405.0312
https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
https://ieeexplore.ieee.org/document/726791
https://arxiv.org/abs/1311.2901
https://arxiv.org/abs/1311.2901
https://arxiv.org/abs/1311.2901
https://arxiv.org/abs/1409.1556
https://arxiv.org/abs/1409.1556
https://arxiv.org/abs/1512.03385
https://arxiv.org/abs/1512.03385
https://arxiv.org/abs/1512.03385
https://arxiv.org/abs/1408.5093
https://arxiv.org/abs/1408.5093
https://arxiv.org/abs/1603.04467
http://arxiv.org/abs/1603.04467
https://arxiv.org/abs/1410.0759
http://arxiv.org/abs/1410.0759
http://arxiv.org/abs/1410.0759
https://arxiv.org/abs/1704.04760
https://arxiv.org/abs/1704.04760
http://arxiv.org/abs/1704.04760
https://www.xilinx.com/support/documentation/ip_documentation/dpu/v3_2/pg338-dpu.pdf
https://www.xilinx.com/support/documentation/ip_documentation/dpu/v3_2/pg338-dpu.pdf
https://ieeexplore.ieee.org/document/160742/
https://ieeexplore.ieee.org/document/160742/

124 References

[81] Xilinx. UG1037 - Vivado Design Suite: AXI Reference Guide. July 2017.
URL: https://www.xilinx.com/support/documentation/ip_documentation/
axi_ref_guide/latest/ug1037-vivado-axi-reference-guide.pdf.

[82] Xilinx. PG247 - SmartConnect v1.0 Product Guide (v1.0). Feb. 2020. URL:
https://www.xilinx.com/support/documentation/ip_documentation/

smartconnect/v1_0/pg247-smartconnect.pdf.
[83] Xilinx. PG021 - AXI DMA v7.1 Product Guide (v7.1). June 2019. URL:

https://www.xilinx.com/support/documentation/ip_documentation/

axi_dma/v7_1/pg021_axi_dma.pdf.
[84] Xilinx. PG034 - AXI Central Direct Memory Access v4.1 Product Guide

(v4.1). Apr. 2018. URL: https://www.xilinx.com/support/documentation/
ip_documentation/axi_cdma/v4_1/pg034-axi-cdma.pdf.

[85] Xilinx. PG078 - AXI Block RAM (BRAM) Controller v4.1 Product Guide
(v4.1). May 2019. URL: https://www.xilinx.com/support/documentation/
ip_documentation/axi_bram_ctrl/v4_1/pg078-axi-bram-ctrl.pdf.

[86] Xilinx. PG058 - Block Memory Generator v8.4 Product Guide (v8.4). Dec.
2019. URL: https://www.xilinx.com/support/documentation/ip_
documentation/blk_mem_gen/v8_4/pg058-blk-mem-gen.pdf.

[87] Xilinx. PG085 - AXI4-Stream Infrastructure IP Suite v3.0 Product Guide
(v3.0). Dec. 2018. URL: https://www.xilinx.com/support/documentation/
ip_documentation/axis_infrastructure_ip_suite/v1_1/pg085-

axi4stream-infrastructure.pdf.
[89] David P. Rodgers. “Improvements in Multiprocessor System Design”.

In: SIGARCH Comput. Archit. News 13.3 (June 1985), 225–231. ISSN: 0163-
5964. DOI: 10.1145/327070.327215. URL: https://doi.org/10.1145/
327070.327215.

[99] Antonios-Georgios Pitsis. “Design and implementation of an FPGA-
based convolutional neural network accelerator”. Diploma Thesis. Elec-
trical and Computer Engineering, Technical University of Crete, 2018.
URL: https://dias.library.tuc.gr/view/79092.

https://www.xilinx.com/support/documentation/ip_documentation/axi_ref_guide/latest/ug1037-vivado-axi-reference-guide.pdf
https://www.xilinx.com/support/documentation/ip_documentation/axi_ref_guide/latest/ug1037-vivado-axi-reference-guide.pdf
https://www.xilinx.com/support/documentation/ip_documentation/smartconnect/v1_0/pg247-smartconnect.pdf
https://www.xilinx.com/support/documentation/ip_documentation/smartconnect/v1_0/pg247-smartconnect.pdf
https://www.xilinx.com/support/documentation/ip_documentation/axi_dma/v7_1/pg021_axi_dma.pdf
https://www.xilinx.com/support/documentation/ip_documentation/axi_dma/v7_1/pg021_axi_dma.pdf
https://www.xilinx.com/support/documentation/ip_documentation/axi_cdma/v4_1/pg034-axi-cdma.pdf
https://www.xilinx.com/support/documentation/ip_documentation/axi_cdma/v4_1/pg034-axi-cdma.pdf
https://www.xilinx.com/support/documentation/ip_documentation/axi_bram_ctrl/v4_1/pg078-axi-bram-ctrl.pdf
https://www.xilinx.com/support/documentation/ip_documentation/axi_bram_ctrl/v4_1/pg078-axi-bram-ctrl.pdf
https://www.xilinx.com/support/documentation/ip_documentation/blk_mem_gen/v8_4/pg058-blk-mem-gen.pdf
https://www.xilinx.com/support/documentation/ip_documentation/blk_mem_gen/v8_4/pg058-blk-mem-gen.pdf
https://www.xilinx.com/support/documentation/ip_documentation/axis_infrastructure_ip_suite/v1_1/pg085-axi4stream-infrastructure.pdf
https://www.xilinx.com/support/documentation/ip_documentation/axis_infrastructure_ip_suite/v1_1/pg085-axi4stream-infrastructure.pdf
https://www.xilinx.com/support/documentation/ip_documentation/axis_infrastructure_ip_suite/v1_1/pg085-axi4stream-infrastructure.pdf
https://doi.org/10.1145/327070.327215
https://doi.org/10.1145/327070.327215
https://doi.org/10.1145/327070.327215
https://dias.library.tuc.gr/view/79092

125

External Links

[2] Forbes - How Much Data Is Collected Every Minute Of The Day. Aug. 2019.
URL: https://www.forbes.com/sites/nicolemartin1/2019/08/
07/how- much- data- is- collected- every- minute- of- the- day/

#747555a33d66.
[3] AMD EPYC 7002 Series Processors. Feb. 2020. URL: https://www.amd.

com/en/processors/epyc-7002-series.
[4] NVIDIA Titan RTX GPU. Feb. 2020. URL: https://www.nvidia.com/en-

us/deep-learning-ai/products/titan-rtx/.
[5] Google Cloud TPU. Feb. 2020. URL: https://cloud.google.com/tpu/

docs/system-architecture.
[7] Foundation of Research and Technology Hellas (FORTH). URL: https://

www.forth.gr/.
[11] Machine learning - Wikipedia. Sept. 2019. URL: https://en.wikipedia.

org/wiki/Machine_learning.
[12] Machine Learning – Applications. URL: https://www.geeksforgeeks.

org/machine-learning-introduction/.
[13] Top Machine Learning Applications in 2019. 2019. URL: https://www.

geeksforgeeks . org / top - machine - learning - applications - in -

2019/.
[14] Roundup Of Machine Learning Forecasts And Market Estimates. Feb. 2018.

URL: https://www.forbes.com/sites/louiscolumbus/2018/02/18/
roundup-of-machine-learning-forecasts-and-market-estimates-

2018/#536446aa2225.
[15] Activation Function - Wikipedia. Mar. 2020. URL: https://en.wikipedia.

org/wiki/Activation_function.
[18] Types of Artificial Neural Networks - Wikipedia. Mar. 2020. URL: https:

//en.wikipedia.org/wiki/Types_of_artificial_neural_networks.
[19] Convolutional Neural Networks - Wikipedia. Mar. 2020. URL: https://en.

wikipedia.org/wiki/Convolutional_neural_network.
[30] Udacity Intro to Deep Learning with PyTorch by Facebook AI. URL: https:

//www.udacity.com/course/deep-learning-pytorch--ud188.

https://www.forbes.com/sites/nicolemartin1/2019/08/07/how-much-data-is-collected-every-minute-of-the-day/#747555a33d66
https://www.forbes.com/sites/nicolemartin1/2019/08/07/how-much-data-is-collected-every-minute-of-the-day/#747555a33d66
https://www.forbes.com/sites/nicolemartin1/2019/08/07/how-much-data-is-collected-every-minute-of-the-day/#747555a33d66
https://www.amd.com/en/processors/epyc-7002-series
https://www.amd.com/en/processors/epyc-7002-series
https://www.nvidia.com/en-us/deep-learning-ai/products/titan-rtx/
https://www.nvidia.com/en-us/deep-learning-ai/products/titan-rtx/
https://cloud.google.com/tpu/docs/system-architecture
https://cloud.google.com/tpu/docs/system-architecture
https://www.forth.gr/
https://www.forth.gr/
https://en.wikipedia.org/wiki/Machine_learning
https://en.wikipedia.org/wiki/Machine_learning
https://www.geeksforgeeks.org/machine-learning-introduction/
https://www.geeksforgeeks.org/machine-learning-introduction/
https://www.geeksforgeeks.org/top-machine-learning-applications-in-2019/
https://www.geeksforgeeks.org/top-machine-learning-applications-in-2019/
https://www.geeksforgeeks.org/top-machine-learning-applications-in-2019/
https://www.forbes.com/sites/louiscolumbus/2018/02/18/roundup-of-machine-learning-forecasts-and-market-estimates-2018/#536446aa2225
https://www.forbes.com/sites/louiscolumbus/2018/02/18/roundup-of-machine-learning-forecasts-and-market-estimates-2018/#536446aa2225
https://www.forbes.com/sites/louiscolumbus/2018/02/18/roundup-of-machine-learning-forecasts-and-market-estimates-2018/#536446aa2225
https://en.wikipedia.org/wiki/Activation_function
https://en.wikipedia.org/wiki/Activation_function
https://en.wikipedia.org/wiki/Types_of_artificial_neural_networks
https://en.wikipedia.org/wiki/Types_of_artificial_neural_networks
https://en.wikipedia.org/wiki/Convolutional_neural_network
https://en.wikipedia.org/wiki/Convolutional_neural_network
https://www.udacity.com/course/deep-learning-pytorch--ud188
https://www.udacity.com/course/deep-learning-pytorch--ud188

126 External Links

[31] The MNIST database of handwritten digits. URL: http://yann.lecun.
com/exdb/mnist/.

[32] MNIST database - Wikipedia. URL: https://en.wikipedia.org/wiki/
MNIST_database.

[34] Fashion-MNIST - Github. URL: https://github.com/zalandoresearch/
fashion-mnist.

[35] CIFAR-10 and CIFAR-100. URL: http://www.cs.toronto.edu/~kriz/
cifar.html.

[36] CIFAR-10 and CIFAR-100 - Wikipedia. URL: https://en.wikipedia.
org/wiki/CIFAR-10.

[38] Microsoft COCO. URL: http://cocodataset.org/#home.
[39] ImageNet Official site. URL: http://image-net.org/index.
[40] ImageNet - Wikipedia. URL: https://en.wikipedia.org/wiki/ImageNet.
[46] François Chollet et al. Keras - Official site. 2015. URL: https://keras.

io/.
[47] Keras - Wikipedia. URL: https://en.wikipedia.org/wiki/Keras.
[49] Caffe - Official site. URL: https://caffe.berkeleyvision.org/.
[50] Caffe - Wikipedia. URL: https : / / en . wikipedia . org / wiki / Caffe _

(software).
[51] PyTorch - Official site. URL: https://pytorch.org/.
[52] PyTorch - Wikipedia. URL: https://en.wikipedia.org/wiki/PyTorch.
[54] TensorFlow - Official site. URL: https://www.tensorflow.org/.
[55] TensorFlow - Wikipedia. URL: https://en.wikipedia.org/wiki/TensorFlow.
[56] Google Just Open Sourced TensorFlow, Its Artificial Intelligence Engine -

Wired. URL: https://www.wired.com/2015/11/google-open-sources-
its-artificial-intelligence-engine/.

[57] Advanced Vector Extensions - Wikipedia. URL: https://en.wikipedia.
org/wiki/Advanced_Vector_Extensions.

[58] Streaming SIMD Extensions - Wikipedia. URL: https://en.wikipedia.
org/wiki/Streaming_SIMD_Extensions.

[59] NVIDIA CUDA. URL: https://developer.nvidia.com/cuda-zone.
[61] NVIDIA cuDNN. URL: https://developer.nvidia.com/cudnn.
[62] NVIDIA TensorRT. URL: https://developer.nvidia.com/tensorrt.
[63] NVIDIA PyCUDA. URL: https://developer.nvidia.com/pycuda.
[65] Google opens up about its Tensor Processing Unit. URL: https://www.

datacenterdynamics . com / news / google - opens - up - about - its -

tensor-processing-unit/.
[66] Coral Edge TPU. URL: https://coral.ai/.

http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/
https://en.wikipedia.org/wiki/MNIST_database
https://en.wikipedia.org/wiki/MNIST_database
https://github.com/zalandoresearch/fashion-mnist
https://github.com/zalandoresearch/fashion-mnist
http://www.cs.toronto.edu/~kriz/cifar.html
http://www.cs.toronto.edu/~kriz/cifar.html
https://en.wikipedia.org/wiki/CIFAR-10
https://en.wikipedia.org/wiki/CIFAR-10
http://cocodataset.org/#home
http://image-net.org/index
https://en.wikipedia.org/wiki/ImageNet
https://keras.io/
https://keras.io/
https://en.wikipedia.org/wiki/Keras
https://caffe.berkeleyvision.org/
https://en.wikipedia.org/wiki/Caffe_(software)
https://en.wikipedia.org/wiki/Caffe_(software)
https://pytorch.org/
https://en.wikipedia.org/wiki/PyTorch
https://www.tensorflow.org/
https://en.wikipedia.org/wiki/TensorFlow
https://www.wired.com/2015/11/google-open-sources-its-artificial-intelligence-engine/
https://www.wired.com/2015/11/google-open-sources-its-artificial-intelligence-engine/
https://en.wikipedia.org/wiki/Advanced_Vector_Extensions
https://en.wikipedia.org/wiki/Advanced_Vector_Extensions
https://en.wikipedia.org/wiki/Streaming_SIMD_Extensions
https://en.wikipedia.org/wiki/Streaming_SIMD_Extensions
https://developer.nvidia.com/cuda-zone
https://developer.nvidia.com/cudnn
https://developer.nvidia.com/tensorrt
https://developer.nvidia.com/pycuda
https://www.datacenterdynamics.com/news/google-opens-up-about-its-tensor-processing-unit/
https://www.datacenterdynamics.com/news/google-opens-up-about-its-tensor-processing-unit/
https://www.datacenterdynamics.com/news/google-opens-up-about-its-tensor-processing-unit/
https://coral.ai/

External Links 127

[67] An in-depth look at Google’s first Tensor Processing Unit (TPU). URL: https:
//cloud.google.com/blog/products/gcp/an-in-depth-look-at-

googles-first-tensor-processing-unit-tpu.
[68] Tensor Processing Unit - Wikipedia. URL: https://en.wikipedia.org/

wiki/Tensor_processing_unit.
[69] Cloud Tensor Processing Units. URL: https://cloud.google.com/tpu/

docs/tpus.
[70] CHaiDNN - A HLS-based Deep Neural Network Accelerator library for Xil-

inx Ultrascale+ MPSoC devices. URL: https://github.com/Xilinx/
CHaiDNN.

[72] Xilinx Vitis AI. URL: https://www.xilinx.com/products/design-
tools/vitis/vitis-ai.html.

[73] NVIDIA NVDLA. URL: http://nvdla.org/.
[74] MATLAB. URL: https://www.mathworks.com/.
[75] Kaggle. URL: https://www.kaggle.com/.
[76] Xilinx ZCU102 User Guide - UG1182. URL: https://www.xilinx.com/

support/documentation/boards_and_kits/zcu102/ug1182-zcu102-

eval-bd.pdf.
[77] Xilinx ZCU102 - Product Overview. URL: https://www.xilinx.com/

products/boards-and-kits/ek-u1-zcu102-g.html.
[78] Intel i7 4710MQ Processor. URL: https://ark.intel.com/content/www/

us/en/ark/products/78931/intel-core-i7-4710mq-processor-6m-

cache-up-to-3-50-ghz.html.
[80] Synaptic Pruning - Wikipedia. URL: https://en.wikipedia.org/wiki/

Synaptic_pruning.
[88] Network Topology - Wikipedia. URL: https://en.wikipedia.org/wiki/

Network_topology.
[90] Vivado Design Suite - HLx Editions. URL: https://www.xilinx.com/

products/design-tools/vivado.html.
[91] Xilinx ISE. URL: https://www.xilinx.com/products/design-tools/

ise-design-suite.html.
[92] Vivado Design Suite User Guide: High-Level Synthesis - UG902. URL: https:

//www.xilinx.com/support/documentation/sw_manuals/xilinx2020_

1/ug902-vivado-high-level-synthesis.pdf#nameddest=xApplyingOptimizationDirectives.
[93] Xilinx Software Development Kit (SDK). URL: https://www.xilinx.com/

products/design-tools/embedded-software/sdk.html.
[94] Eclipse IDE. URL: https://www.eclipse.org/.

https://cloud.google.com/blog/products/gcp/an-in-depth-look-at-googles-first-tensor-processing-unit-tpu
https://cloud.google.com/blog/products/gcp/an-in-depth-look-at-googles-first-tensor-processing-unit-tpu
https://cloud.google.com/blog/products/gcp/an-in-depth-look-at-googles-first-tensor-processing-unit-tpu
https://en.wikipedia.org/wiki/Tensor_processing_unit
https://en.wikipedia.org/wiki/Tensor_processing_unit
https://cloud.google.com/tpu/docs/tpus
https://cloud.google.com/tpu/docs/tpus
https://github.com/Xilinx/CHaiDNN
https://github.com/Xilinx/CHaiDNN
https://www.xilinx.com/products/design-tools/vitis/vitis-ai.html
https://www.xilinx.com/products/design-tools/vitis/vitis-ai.html
http://nvdla.org/
https://www.mathworks.com/
https://www.kaggle.com/
https://www.xilinx.com/support/documentation/boards_and_kits/zcu102/ug1182-zcu102-eval-bd.pdf
https://www.xilinx.com/support/documentation/boards_and_kits/zcu102/ug1182-zcu102-eval-bd.pdf
https://www.xilinx.com/support/documentation/boards_and_kits/zcu102/ug1182-zcu102-eval-bd.pdf
https://www.xilinx.com/products/boards-and-kits/ek-u1-zcu102-g.html
https://www.xilinx.com/products/boards-and-kits/ek-u1-zcu102-g.html
https://ark.intel.com/content/www/us/en/ark/products/78931/intel-core-i7-4710mq-processor-6m-cache-up-to-3-50-ghz.html
https://ark.intel.com/content/www/us/en/ark/products/78931/intel-core-i7-4710mq-processor-6m-cache-up-to-3-50-ghz.html
https://ark.intel.com/content/www/us/en/ark/products/78931/intel-core-i7-4710mq-processor-6m-cache-up-to-3-50-ghz.html
https://en.wikipedia.org/wiki/Synaptic_pruning
https://en.wikipedia.org/wiki/Synaptic_pruning
https://en.wikipedia.org/wiki/Network_topology
https://en.wikipedia.org/wiki/Network_topology
https://www.xilinx.com/products/design-tools/vivado.html
https://www.xilinx.com/products/design-tools/vivado.html
https://www.xilinx.com/products/design-tools/ise-design-suite.html
https://www.xilinx.com/products/design-tools/ise-design-suite.html
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2020_1/ug902-vivado-high-level-synthesis.pdf#nameddest=xApplyingOptimizationDirectives
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2020_1/ug902-vivado-high-level-synthesis.pdf#nameddest=xApplyingOptimizationDirectives
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2020_1/ug902-vivado-high-level-synthesis.pdf#nameddest=xApplyingOptimizationDirectives
https://www.xilinx.com/products/design-tools/embedded-software/sdk.html
https://www.xilinx.com/products/design-tools/embedded-software/sdk.html
https://www.eclipse.org/

128 External Links

[95] PetaLinux. URL: https://www.xilinx.com/products/design-tools/
embedded-software/petalinux-sdk.html.

[96] FreeRTOS. URL: https://www.freertos.org/.
[97] GDB. URL: https://www.gnu.org/software/gdb/.
[98] NVIDIA RTX 2060 Super. URL: https://www.nvidia.com/en- eu/

geforce/graphics-cards/rtx-2060-super/.

https://www.xilinx.com/products/design-tools/embedded-software/petalinux-sdk.html
https://www.xilinx.com/products/design-tools/embedded-software/petalinux-sdk.html
https://www.freertos.org/
https://www.gnu.org/software/gdb/
https://www.nvidia.com/en-eu/geforce/graphics-cards/rtx-2060-super/
https://www.nvidia.com/en-eu/geforce/graphics-cards/rtx-2060-super/

	Abstract
	Acknowledgements
	Contents
	List of Figures
	List of Tables
	List of Algorithms
	List of Abbreviations
	Introduction
	Motivation
	Scientific Goals and Contributions
	Thesis Outline

	Theoretical Background
	Machine Learning
	Artificial Neural Networks
	ANNs Basic components
	Neuron
	Connections and Weights
	Propagation Function
	Activation Function

	Organization
	ANN Architectures
	Feedforward Networks
	Recurrent Networks

	Convolutional Neural Networks
	Structure
	Convolutional Layer
	Pooling Layer
	Fully-Connected Layer
	Activation Layer

	Theoretical knowledge sources

	Related Work
	CNN Architectures
	LeNet-5
	AlexNet
	ZFNet
	GoogLeNet / Inception
	VGGNet
	ResNet
	Summary

	Deep Learning Software Frameworks
	Keras
	CAFFE
	PyTorch
	TensorFlow

	Hardware Solutions
	CPUs
	GPUs
	Tensor Processing Units (TPU)
	FPGAs

	Quantization
	The FPGA Perspective
	Xilinx CHaiDNN
	Xilinx Deep Learning Processing Unit (DPU)
	NVIDIA NVDLA

	Thesis Approach

	Theoretical Modeling and Robustness Analysis
	PyTorch and C/C++ implementations
	Algorithms
	Convolution
	MaxPool
	Fully-Connected
	ReLU
	SoftMax

	Memory Footprint
	Data Types
	Evaluation
	Floating Point
	Fixed Point
	Fixed Point Activations

	Weight Pruning

	Architecture Design
	Non-Volatile Memory
	Volatile Memory
	Compute Engine
	I/O
	AMBA AXI4 Interface Protocol

	Software
	Scheduler Strategies
	Serial Strategy
	Layer-Pipelining Strategy
	Multi-Inference Strategy
	Image-Pipelining Strategy

	Amdahl's Law
	Platform Accelerator Architectures
	Convolution Accelerator
	Max-Pooling Accelerator
	Fully-Connected Accelerator

	FPGA Implementation
	Tools Used
	Vivado IDE
	Vivado High-Level Synthesis (HLS)
	Synthesis Report
	Optimization Directives

	Xilinx SDK and Xilinx Vitis IDE

	Results
	Specifications of the Compared Platforms
	Intel i7 4710MQ
	NVIDIA RTX-2060 Super 8GB
	Xilinx CHaiDNN

	Proposed Platform
	Performance Metrics
	Throughput
	Latency
	Power Consumption
	Energy Consumption

	CPU and GPU Performance
	Final Performance

	Conclusions and Future Work
	Conclusions
	Future Work

	References

