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Abstract

Nowadays, stream data are produced at a constant and rapid pace, more and more
applications attempt to use the streams in order to receive crucial decisions. This
outcome can be achieved by using algorithms and data structures that effectively
process large amounts of data. These data are called Big Data and can be generated
from different sources (sensors, social media). Processing and analysis of Big Data
has become essential. Synopses are used in queries in Big Data because of their quick
response times. Synopses summarize data set and provide approximate answers to

queries.

Apache Flink is one of the dominant systems for processing stream data. On data
streams it is very important to calculate aggregated results and usually this is achiev-
able using windows, since the number of streams is infinite. Results are, thus, pro-
duced after each window expires. However, Flink supports specific number of built-in

implemented functions for windows.

The purpose of this work is to extend the number of built-in functions that can
be supported by Flink, by allowing synopses to be computed and to then provide
approximate results. In addition, to maximize performance, we must ensure that
building the synopses is done during the time that data are inserted into their win-
dows. This is very important to avoid the pitfall of processing the tuples of a window

after it is closed, which would require a second pass over its elements.



I[TecbéNoyog

YITIC UEPES UOC, OEBOUEVA TOEAYOVTOL GUVEYXS O ACUAANTTOUS PLIUOUE XoL GAO XaL
TEPLOCOTEPES EPUPUOYES TTPOCTIOUY VoL YENOWOTOLACOLY O UTA Tor OEGOUEVA, VLot
VoL TdEoLY Xplotueg amo@doels. Autd, Umopoly Vo To TETOYOUY, YPNOHIOTOLOVTAS OA-
yopltuouc xou dopéc Bedouévwy mou enelepydlovion amodoTxd ueydha cOvoha Oe-
douévwy. To cUvoha autd, mapdyovton and Sidpopes Tnyé (m.y. aontrpes, uéoo
xowwvixig Bixtimong) xau ovopdlovton Meydha Acdouéva. H enelepyasio, xadde
xan 1) avéhuot Twv Meydhwv Acdouévov, €yel yiver TAéov avaryxoabo. T'o ) yeryoen
andvTnoT enepwThocwy oe Meydha AcSouéva, yenoylomoloivial GUVOYELS, Ol OTolEg
ouvoilouy T0 GUVOLO BEBOUEVLY KoL TUREYOLUY TEOOEYYIOTIXES ATAVIACELS OE UTO-

EQWTAUATL.

To Apache Flink eivou évo amd o xuplopya cucthuata yio enelepyaoia oe poég de-
douévmv. IIdve oe poég Bedopévev, elvor TOA) onuavTid vo utoloyilouue cuvadpoto-
TiXd amoTeEAéopaTa xat cLVH WS auTO uTopel va emiteLy el yenotuoTolvTag Topdiupa,
%0 oL poég elvan dmelpec. ‘Etol, ta anoteréoyarta mopdyovTon UeTd T AEN xdide
mopordVpou. To Flink uwe unootneilel cuyxexpuuévo apliud eVeOUITWUEVLY GUVIPTACEWY
ToL €youv LAoToLNUEL.

Yx0TOC TNG DIMAGUATIXNAS Hog epyaciog lvar Vo ETEXTEVOUUE TOV pLIUd TOY EVOWUATOUEVKDY
oLVoETACEWY Tou unopet va utootneilet to Flink, emtpénovtag Tov unoloyloud Twv
CUVOERY XL OTY CUVEYELN, TNV TOROY T XUTA TEOCEYYION anoTEAEOUdTLY. Emmiéoy,
YL VO UEYLO TOTIOLNCOUUE TNV AmdBOCT), TEETEL VoL DLUCPUACOUUE OTL 1) XATACKELY| TOV
oLvOPEwY yiveTon xaTd TN OLdEXEl TNG EloAYWYTS DEdoYEVmY oTa mapdiupa. Autd
elvai TOAD oMuaVTIXG Yt vou amo@eLy el 1 mary (o Tne eneepyasiog TwY TAEIB®Y EVOS
Topodpou ool xheloel, x4t Tou Vo anortodoe Eva 0E0TERO TEPAOUA TV GTOLYEWY

TOUL.
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Chapter 1

Introduction

Massive data quantities are produced at a constant pace from many different types
of sources (financing transactions, sensor networks) called Big Data. Data analysis
grows rapidly in scientific (or non-scientific) areas. Most of them, use data to pick
up valuable information in order to predict events for critical decisions in different
aspects (medical issues etc). Data science has been transferred to every scientific
field and has become a necessity. It is the development of scientific fields such as,
statistics, predictive analytics, machine learning, data mining. These fields have be-
come so evolutionary in recent years. As a consequence, they are responsible for the
creation of data science.

One of the system for processing big data is Apache Flink. Apache Flink is an
open source framework and distributed processing engine for large scale computa-
tions over unbounded and bounded data streams. Flink provides APIs for both
Stream and Batch processing, and libraries for relational queries, complex event pro-
cessing scenarios, graph processing and machine learning. DataStream programs in
Flink are regular programs that implement transformations on data streams. One of
the main transformations is window. Windows are at the heart of processing infinite
streams. Flink supports the implementation of user defined functions, while natively
supporting the sum, min and max aggregate functions.

In this work, research has been done on the functionalities of the windows. Some
algorithms have been modified in order to perform different computations (Frequent
[tem, Median, TopK, Cardinality, Average, Membership, Sampling) on the windows.
These algorithms are updated each time a new element is added to the window, rather
than processing the elements of the windows after the window has been closed, which
improves performance. The result is returned on window’s shutdown.



1.1 Thesis Outline

In Chapter 2, we describe Apache Flink. In chapter 3, we state the study background
and knowledge that required for usage of the stream algorithms. In Chapter 4, we
analyze the characteristics of our WindowSynopsisLibrary library, and the way that
it has been integrated to Flink. In Chapter 5, we present the results of this study.

In Chapter 6, contains concluding remarks.



Chapter 2
Apache Flink

Apache Flink [I] is a framework and distributed processing engine for stateful com-
putations over unbounded and bounded data streams. In 2010, a project started
named “Stratosphere”. This project is an object of study for three universities in
Berlin. From 2014, it has been integrated to Apache and has been widely known as
Flink. The core of Apache Flink is a distributed streaming dataflow engine written
in Java and Scala. Flink’s programs can be written in Scala, Java, Python, and
SQL, and can be deployed in local, cluster or cloud mode. Flink does not provide a
storage system but it uses “connectors” to thirdly-party systems like Apache Kafka
and HDFS for data sources (data entry) and sinks (data export). Figure 2.1 depicts
Flink’s architecture.
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Figure 2.1: Architecture of Apache Flink (image from [I])



Figure 2.2 shows the three layered APIs that Flink provides. Each API offers a
different trade-off between conciseness and expressiveness and targets different use
cases.

ProcessFunctions is the most expressive function interface that Flink offers. Pro-
cessFunctions processes individual events on streams (one or two) or events that
were grouped in a window. ProcessFunctions enable control over time and state.
Specifically, a ProcessFunction arbitrarily modify its state and register timers that
will trigger a callback function in the future.

DataStream API provides many operators for processing stream. Some services are
described in Section 2.3. The DataStream API is available for Java and Scala and is
based on function that can be defined by extending interfaces such as Java or Scala
lambda functions.

Table API and SQL are two relational APIs that Flink provides. These APIs are
unified APIs that can process batch and stream. Apache Calcite is utilized by Table
API and SQL for parsing, validation, and query optimization.

High-level QL / Table API ; !
tahl +
Analytics API SQL / Table (dynamic tables) i %
$ 5
[
Stream- & Ba.tch DataStrearn AP| (streams, windows) % %
Data Processing 2 o
S g
) Statefu_l EV_E nt- FrocessFunction (events, state, time) Y
Driven Applications +

Figure 2.2: Layered APIs of Apache Flink (image from [])

Flink has a variety of libraries for common data processing use cases. These libraries
are included in an API and are not autonomous. So, they can benefit from all fea-
tures of the API and be integrated with other libraries.

e Complex Event Processing (CEP): The CEP library is integrated with
Flink’s DataStream API and provides an API to specify patterns of events.
Network intrusion detection, business process monitoring and fraud detection
are some of the applications that can use the CEP library.
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e DataSet API: The DataSet API is Flink’s core API for batch processing
applications. The DataSet API includes important transformations such as
reduce, map, filter, co-group, and iterate. Algorithms and data structures
that are used from all operations, manage serialized data in memory and save
them to disk if the data size exceeds the size of memory.

e Gelly: Gelly is a library for scalable graph processing and analysis. Gelly
is implemented on top of and integrated with the DataSet API and therefore,
is favored for its scalable and robust operators.

2.1 Dataflow Programming Model

The basic building blocks of Flink programs are streams (is a flow of data records)
and transformations (is an operation). A transformation takes one or more streams
as input and produces one or more output streams as a result. During execution,
Flink programs are mapped to streaming dataflows, consisting of streams and trans-
formation operators. Each dataflow starts with at least one source and ends with
at least one sink. The dataflows resemble arbitrary directed acyclic graphs (DAGs,
Example in Figure 2.3)

Data Source »  Transformations ’ Data Sink

Figure 2.3: A directed acyclic graph of a dataflow (image from [I])

Figure 2.4 shows an example of a Flink program written in the DataStream API,
along with the DAG of the streaming dataflow.

1. The program creates a data connector to consume data from the source
(Apache Kafka) in the form of a stream of string records.

2. A Map operator uses the function “parse” for every string record so that it
can transform the data stream of strings to events.

9



3. Method keyby groups data, based on key “id”. Every 10 seconds, an aggre-
gation function is called to do calculations in events with the same key.

4. To store the results (of the aggregation function) to rolling files in the system,
a data sink is used.

DataStream<String> lines = env.addSource( :F Source

new FlinkkKafkaConsumer<>(..));
DataStream<tvent> events = lines.map((line) -> parse(line)); :}- Transformatior

DataStream<Statistics> stats = events
.keyBy("id")
.timeWindow(Time.seconds(10))
.apply(new MyWindowAggregationFunction());

Transformatior

stats.addSink(new RollingSink(path)); :}. Sink
Source Transformation Sink
Operator Operators Operator
v \
keyBy()/
Source mapi} window()/ Sink
\ ] y
Stream
\ J
!

Streaming Dataflow

Figure 2.4: Streaming Dataflow (parallelism 1, image from [I])

About Flink’s programs that are executed in parallel, each stream has one or more
stream partitions and each operator has one or more operator subtasks. The operator
subtasks can execute in different threads of machines and are independent from each
other. The program’s parallelism equals the number of operator subtasks. The
parallelism level can vary to operators of the same program. Figure 2.5 shows the
parallelism view of the previous example.
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Figure 2.5: Example of a parallel streaming dataflow (image from [I])

Time
In a streaming program, there are different definitions of time:

e Event Time: The time that each individual event created on its producing
device. This events usually described by a timestamp.

e Ingestion time: Is the time when an event enters the Flink dataflow at the
source operator.

e Processing Time: Refers in time (system) that a machine requires to per-
form the corresponding operation.

2.2 Distributed Runtime Environment

In one distributed execution, Flink chains operator subtasks together into tasks,
where each task is executed by one thread. Chaining operators together into tasks
improves program’s performance. As shown in Figure 2.5 above, we execute DAGs
with parallelism five (five subtasks, and hence with five parallel threads).

11
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Figure 2.6: Distributed Architecture of the runtime environment (image from [I])

The Flink runtime consists of two types of processes (Figure 2.6) :

e The JobManagers (also called masters) coordinate the distributed execu-
tion. The JobManagers schedule tasks, react to finished tasks or execution
failures, coordinate checkpoints, coordinate recovery on failures, etc. There
is always one Job Manager. A high-availability setup will have multiple Job-
Managers, with a leader and the rest of them on hold.

e The TaskManagers (also called workers) execute the tasks of a dataflow,
and buffer and exchange the data streams. There must exist at least one
TaskManager. The smallest unit of resource scheduling is a task slot. The
number of task slots indicates the number of concurrent processing tasks.

The JobManagers and TaskManagers can start in many ways such as: directly on the

machines as a standalone cluster, in containers, or managed by resource frameworks
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like YARN or Mesos. TaskManagers connect to JobManagers, in order to assign
tasks.

2.3 DataStream API

DataStream is the core API for processing streams. DataStream programs in Flink
can implement transformations such as defining windows, aggregating on data streams.
Data streams are represented by special classes (e.g., DataStream<T>, KeyedStream<T,
KEY>), which are immutable collections of data. Flink programs look like regular
programs that transform DataStreams. Each program consists of the same basic
parts:

1. Obtain a streaming execution environment. Function getExecutionEnviron-
ment () defines automatic context that the program will execute (e.g local or
remote environment).

I StreamExecutionEnvironment env = StreamExecutionEnvironment.
getExecutionEnvironment () ;

2. Load or create input data from data sources. A connection is created with a
source (Kafka topic, socket, txt, etc) that reads data.

| DataStream<String> text = env.readTextFile("file:///path/to/outputFile");
> DataStream<String> text = env.addSource(new FlinkKafkaConsumer<>(...));

3. Perform transformations on this data. DataStream API contains a set of
stream operators. Some of them are described below.

FlatMap: Takes one element and produces zero or more elements. A flatmap
function splits sentences to words.

1 dataStream.flatMap(new FlatMapFunction<String, String>() {
2 Q@0verride
public void flatMap(String value, Collector<String> out)
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throws Exception {
for(String word: value.split(" ")){
out.collect(word) ;
}
< }
o 1);

KeyBy: This method splits a stream to streams with same key (described in
Section 2.4).

dataStream.keyBy(value -> value.f0) // Key by the first element of a Tuple

Window: Windows group elements with the same key and other common
characteristics like belonging to the same time interval (e.g., 12:00 - 12:05).

dataStream.keyBy(value -> value.f0).window(TumblingEventTimeWindows.of (Time
.seconds(5))); // Last 5 seconds of data

WindowAll: In these windows belong all elements with some characteristic.

dataStream.windowAll (TumblingEventTimeWindows.of (Time.seconds(5))); // Last
5 seconds of data

WindowFunction: Determines calculations that are going to take place on
windows. The WindowFunction can be one of AggregateFunction, Reduce-
Function, ProcessWindowFunction or FoldFunction. In the example below,
ProcessAllWindowFunction is combined with an AggregateFunction to incre-
mentally aggregate elements as they arrive in the window. When the window
is closed, the ProcessWindowFunction will be provided with the aggregated
result.

dataStream.windowAll(...).aggregate(new AggregateFunction(), new
ProcessWindowFunction());

. Store output results. Sink functions of DataStream API write down results
to an external system. Below, it is shown an example of the creation of a sink.

dataStream.writeAsText("file:///path/to/outputFile");

14



5. Trigger the program execution: For the activation of the executions of trans-
formations, the execution environment calls method execute().

| env.execute("Job Name");

2.4 Windows

Windows are at the heart of processing infinite streams by dividing the stream into
finite-size “buckets”. On these buckets, different calculations can be made. A window
is created as soon as the first element that should belong to this window arrives, and
the window is completely removed when the time (event or processing time) passes
its end timestamp plus the user-specified allowed lateness. The most important fact
is the designation of the stream (Non-Keyed or Keyed). This happens before the
definition of window.

Keyed Windows

Calling method “keyby”, the stream is divided to z keyed streams where x is the
number of keys. Any attribute can be set as key. A keyed stream can make parallel
windows processing based on their keys. Specifically, all elements with the same key
will be sent in the same parallel task.

stream.keyBy(...).window(...)

Non-Keyed Windows
In case method keyby is not used, the stream is not keyed, consequently, all elements
are assigned to the same task. Therefore, the parallelism will be 1.

stream.windowAll(...)

2.4.1 Window Assigners

WindowAssigners are responsible for assigning each incoming element to one or more
windows. Flink provides four predefined WindowAssigner types, whose operations

15



are described below. Additionally, WindowAssigners’ extensions for differentiation
or construction new types of windows, are enabled.

e Tumbling Windows: Tumbling Windows: A “tumbling windows assigner”
assigns elements arriving at windows with size “window size”. The size is
constant and windows do not overlap.

e Sliding Windows: The “sliding windows assigner” assigns elements to win-
dows of fixed length. Apart from window size, it receives the parameter “win-
dow slide” that defines the frequency of the window starting. In case “windows
size” is greater than “window slide”, windows are overlapped. Therefore, an
element can belong to multiple windows.

e Session Windows: The “session windows assigner” groups elements by ses-
sions of activity. These windows do not have constant size and be terminated
when new elements do not arrive for some limit (session gap) e.g. a time
period.

e Global Windows: A “global windows assigner” assigns all elements with the
same key to the same single global window. Unless a trigger is not specified,
global windows will constantly receive elements without executing calcula-
tions.
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Chapter 3
Streaming Algorithms

In computer science, streaming algorithms [2] are used for processing data streams
in which the input is presented as a sequence of items and can be examined in only
a few passes (typically just one). In this kind of model, these algorithms have access
to limited memory (generally logarithmic in the size of and/or the maximum value
in the stream). They may also have limited processing time per item. Restraints can
be satisfied through algorithms approximate answers to data stream queries based

on a summary or “sketch”.

3.1 Frequent Itemsets

In the data stream model, the frequent elements problem is to output a set of ele-
ments that constitute more than some fixed fraction of the stream. More formally,
fix some positive constant ¢>1, let the length of the stream be m, and let f; denote
the frequency of value i in the stream. The frequent elements problem is to output
the set {i|f; > m/c}.

CCFCSketch [3]

A different version of Count Sketches from Charikar, Chen, Farach-Colton. The data
structure that CCFCSketch uses is named account sketch. Achieves better space-
bound than Count sketches.

17



WindowElement
This algorithm stores the number of elements of a set.

Majority
In this implementation, the algorithm receives boolean input values and counts their

frequency.

SimpleTopKCounting
A simple implementation of a stream-counting model. In this model, it is given as
an argument a threshold value k. This represents the maximum number of items

that may be tracked/monitored by the model.

Misra—Gries [4]

The Misra-Gries summary is an additional algorithm for the solution of the objects’
frequency problem. In this algorithm, parameter k determines the size of the array.
In case k has value 2, this problem is encountered as a majority problem. This
algorithm uses O(k(log(m) + log(n))) space, where m are distinct values and n the
length of the stream.

LossyCounting [5]

This algorithm maintains a data structure, to observe objects, frequency and £. The
algorithm gets as input the allowable error. Imported data are split into windows
with dimension w = EW For every element, there is a counter which is increased
when the element appears again. At the end of each window, there is a compression

for the internal data structure so that the less appearing elements are deleted.

StickySampling [0]

StickySampling shows similarities with LossyCounting. Unlike Lossy Counting, the
size of the window is designated as follows: the first window has magnitude w=t
(where t = 1 -log(%) with €, 4, s parameter) and every next one will have a magni-
tude two times larger than the last one. Also, the number of elements is dependent

18



on sampling probability.

AMSSketch [7]

Suppose there is a zero vector v. While new elements arrive to the data stream,
vector v is modified by a weight w (positive or negative) in index i as v; < v; + w.
AMSSketch can be considered as a two-dimensional array n (Buckets) x m (Depth)
with n = O(1/e?) where ¢ is the allowable error and m = O(logz) where 1 — § is
probabilistic confidence. In each row n, a hash function h,, is set. This hash function
maps the input domain U uniformly to {1,2,...,m}. A second hash function called
gn, maps elements from U uniformly onto {—1,+1}. For the analysis to hold, we
require that g, is fourwise independent. All positions of the sketch are initialized to
zero. For the updating functionalities in index ¢ with weight w, the element goes
through the hash function in line j and updates the corresponding counter with the
value w - gj. For computation estimateF2 taking the sum of the squares of row of
the sketch in turn, and finds the median of these sums.

CountMinSketch [§]

CountMinSketch’s structure looks like a two-dimension array with w columns and
d rows. Width (w) and depth (d) are formed during the initialization of the sketch
depending on restraints (time, space, accuracy). For every line d, there is a hash
function that differs from the other series. Every time an element enters in the data
structure, these hash functions update the counter in line. This counter is initialized
to zero. The frequency of an object can be obtained by keeping the lowest counter
returning from the hash functions.

3.1.1 Top-K

TopK algorithms save high-frequency elements and find application to problems such
as Internet advertising, twitter logs, web mining, stock tickers, etc. In this class of
problems, a solution cannot always be found with memory restriction. The reason
behind this, is the large number of different items that can be found in a data stream.
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This memory insufficiency have impact in finding elements with maximum frequency.

StreamSummary [9]
The Stream-Summary data structure is utilized by the Space-Saving algorithm to
guarantee strict error bounds for approximate counts of elements, using very limited

space.

Frequent
The Frequent algorithm utilizes a data structure whose dimension is determined by

the error received as an argument.

StochasticTopper
Estimates most frequently occurring items in a data stream using a bounded amount

of memory.

3.2 Quantiles

Quantiles are cut points dividing the range of a probability distribution into contin-
uous intervals with equal probabilities or dividing the observations in a sample in
the same way. Median (or 2—quantile) is a number located right in the middle, so
that 50% of ordered numbers are over the median and the other 50% is below.

Frugal2U [10]

Algorithm Frugal-2U is an extension of algorithm Frugal-1U. Frugal-1U computes
¢-quantiles without considering previous elements. Frugal-2U receives two more ar-
guments step and sing for estimation improvement. Step is a variable, which is
increased when the current stream element is on the same side of the current es-
timate. On a contrary, step is reduced. Sing represents a bit, which indicates the

increment (or decrement) of the estimation.
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Quantiles Sketch (from Apache DataSketch [11])

The quantiles algorithm is an implementation of the Low Discrepancy Mergeable
Quantiles Sketch. Receives parameter k, which affects the accuracy of the results,
as well as the size of sketch. Accuracy of this quantile sketch is always with respect
to the normalized rank ( e.g. for k& = 256 to normalized rank error is <1%).

MPQuantiles [12]
Algorithm MPQuantiles (Munro-Paterson) can handle calculations about ¢-quantiles
of a sequence of N data elements in p passes, will need O(N'/?) space.

3.3 Cardinality

The count—distinct problem (also known in applied mathematics as the cardinality
estimation problem) is the problem of finding the number of distinct elements in a
data stream with repeated elements. The elements of a data collection or a stream
can contain IP addresses of packets passing through a router, unique visitors to a
web site, motifs in a DNA sequence, elements in a large database, or elements of
RFID /sensor networks. For instance, assume there is a stream: a, b, a, ¢, d, b, d. Car-
dinality estimation requires the number of different elements in the stream. As a
result, there are the unique elements n = [{a,b, ¢, d}| = 4 in the stream.

LogLog [17]

The algorithm uses a hashing function to bring data in a binary and uniformly
randomized form. Then, algorithm calculates the maximum number of consecutive
zeros e.g. 4 consecutive zeros (probability of zero 0.5) then, the cardinality esti-
mate is 2¥ = 2% = 16. The n bits from the hash function for the representation of
the buckets are bound, to improve the k as well as the estimations. These buckets
retaine the number of maximum zeros. Final result k& is computed by the average
number of buckets. The returned estimate is m-a,,-2* where a is a,,, correction factor.

AdaptiveCounting [16]

Uses the same data structure as Loglog counting, i.e. an array of m counters.
Let b, the ratio of empty buckets and b, the ratio of empty buckets when t = ¢,
(bs = b./m = e~' = 0.0051). The cardinality estimate is given by the formula:
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o fmean- 9m i MY ip 0 < B < 0.0051
| =m-1n(B) if 0.0051 < B3 <1

HyperLogLog [15]

An improvement of the Loglog algorithm. The general model resembles with LoglLog,
differentiated with two modifications and offers much better estimations. First,
harmonic mean E calculation is made with values of the buckets. Second, there
are changes in conditions: i) Empty posts in buckets, then the estimation Fs =
—m - log(V/m) where V is the number of buckets with zero numbers i) Multiple
conflicts in the buckets, for 32-bit registers then Es = —2%2 - log(1 — F/2%?). Under
normal circumstances, the estimate is Es =m - a,, - F.

KMinValue [14]

Method k& minimum values (KMV) solves the cardinality problem, using hash func-
tion h which converts the elements in a sequence with range [0,1]. Limit k& (given
from user) specifies how many values will be saved in hash space. In this particular
hash space, are retained the k lowest hash values. Eventually, the estimate of the
population is given by the formula |/X\] = % where Uy, is k—th smallest hash value.
LinearCounting [13]

This method faces the cardinality problem in two simple steps. It creates a bitmap
with size m (given by the user) and initializes all positions to zero. Every element
that is arrived, is converted to a position in bitmap through the hash function. In
this position, the value of the bit map is changed from 0 to 1. After that, zeros in the
bitmap are counted. The final estimation is given by the formula n = —m - log(Vn)

where Vn = (sum of zeros)/m.
CountThenEstimate

This algorithm avoids allocating a large block of memory for cardinality estimation
until a specified “tipping point” cardinality is reached.
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3.4 Average

For a data set, the arithmetic mean, also called the expected value or average, is the

central value of a discrete set of number.

MovingAverage
A simple method for computing the expected value of a stream of numbers by only
averaging the last P numbers from the stream, where P is known as the period.

ExponentialMovingAverage (EMA)

Also known as an exponentially weighted moving average (EWMA), is an algorithm
that can calculate average, giving greater importance in the recent elements of a
stream, without ignoring completely the older ones.

SimpleEWMA
Represents the exponentially weighted moving average of a series of numbers. It has
no warm-up period and it uses a constant decay. These properties let it use less

memory.

VariableEWMA
Represents the exponentially weighted moving average of a series of numbers. Unlike
SimpleEWMA, it supports a custom age, and thus uses more memory.

AverageElement
A simple algorithm that keeps sum and count of set’s elements.

3.5 Membership

A Bloom filter is a space-efficient probabilistic data structure, conceived by Burton
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Howard Bloom in 1970, that is used to test whether an element is a member of a
set. False positive matches are possible, but false negatives are not — in other words,
a query returns either “possibly in set” or “definitely not in set”. Elements can be
added to the set, but not removed the more items added, the larger the probability
of false positives.

BloomFilter [1§]

The base data structure of a Bloom Filter is a bit vector. The values of bit vector are
initialized to zero. Furthermore, there are different hash functions which correspond
a stream element in a bit vector’s position. The number of hash functions affects
throughput (the more the slower) and accuracy (the lower the more false positives) of
the result. To inspect if an element does not contain in a set, one bit in the position

that hash function exported must be zero. Otherwise, the element maybe exist.

{xxz}
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w

Figure 3.1: Bloom Filter testing if the element 'w’ is member of the set (image from [19])
In Figure 3.1, a Bloom Filter is illustrated with three elements 'x’, 'y’, and ’z’. Bit
vector has 18 positions that can be filled from 3 hash functions. The arrows of each
element, show the position over bit vector. Element w is not contained to set since

it hashes to a bit position containing 0.
CountingBloomFilter [20]

A Counting Bloom filter is a generalized data structure of the Bloom filter. It con-
tains a “bit vector” similar to the Bloom filter. Every position of bit vector includes
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counters (as shown to Figure 3.2.b) instead of 0 or 1. These counters are increasing
or decreasing when updates or deletions are made in the algorithm respectively.

DynamicBloomFilter
The basic idea is to express a dynamic set with a dynamic s X m bit matrix that

consists of s standard bloom filters.

VarCountingBloomFilter [21]
A variation of the algorithm CountingBloomFilter, where at each element insertion,
the hashed counters are incremented by a hashed variable increment instead of a

unit increment.

X X ¥ X Y
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Figure 3.2: (a) BF (b) CBF (c) V-CBF (image from [21])

In Figure 3.3, filter comparisons are depicted: BF, CBF, and V-CBF to query of
element z € S where S = {z,y}.

3.6 Sampling

Stream sampling is the process of collecting a representative sample of the elements
of a data stream. Usually, the elements of the sample are less than the elements of
the entire stream, but can have important data stream features. Unlike sampling
from a stored data set, stream sampling collects elements on arrival. Every element

that is not included in the sample, it vanishes without the ability of recovery.
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ReservoirSampler

Reservoir sampling is a family of randomized algorithms for choosing a simple ran-
dom sample without replacement. Besides sample’s size, it is set a skip factor for
new elements when the list is full.

BernoulliSampler
Bernoulli sampling is an equal probability, without replacement sampling design. In
this method, for each sample, roll the dice and pass/fail.

WeightedRandomSampler
In weighted random sampling (WRS) the items are weighted and the probability of

each item to be selected is determined by its relative weight.

SystematicSampler
Systematic sampling chooses population unit with a fixed period. The longer the
algorithm period, the more elements remain to sample.

WRSampler (With Replacement)
In this sampling algorithm, elements that belong to a sample in a list, are stored.
When the list is full, a decision is taken for every new element about replacement

with an old element.

SpaceSavingSampler

SpaceSavingSampler takes a sample and retains every element arrived, to a list (in-
crease their frequency if it is already found). When the list is full, new elements will
take place of the old ones with the least frequency to the list.
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Chapter 4

Implementation

In this chapter, we are gonna discuss the changes that we had to make on Apache
Flink, to support the new-functionalities on windows. Initially, we had to study
in-depth Flink’s functionalities for streaming data as well as the management of its
very own windows. We start to analyze the flow of the program, after the insertion
of our elements in the windows. Our first job after that, was to understand the func-
tionality of functions sum, min, max that Flink provides on windows. We must also
comprehend the functionality of some Flink’s functions, which are necessary for the
processing of elements on windows. Those functions are ProcessWindowFunction,
ReduceFunction, AggregateFunction, FoldFunction, which are provided by Flink and
their settings are determined by the user. Moreover, we must recognize how differ-
ent types of assignment on windows can reflect on those functions mentioned above.
Upon those protocols, we structured our very own classes on Flink to support the

extra-functionalities on windows.

4.1 fHink-streaming-java

In regards to the Flink sector, we have used folder flink-streaming-java to access the
streaming data. Our purpose is the library WindowSynopsisLibrary to be embodied
on the Flink-Windows. To achieve this, two classes have been created (WindowSyn-

opsisAggregator and WindowSynopsisFunction will be referred on Chapter 4.3) on
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folder aggregation. Also, some adjustments had to be made on classes Window-
Stream, AllWindowedStream in order to have them available for the call through
the main function, so that the user can have access in those classes.

Searching through Flink’s source code, we had to find the point in which the in-
sertion of elements on our windows was made, because the algorithms in library
WindowSynopsisLibrary are updated upon a new insertion of an element in our win-
dows. This way we ensure the user has direct access to the result upon window’s
shutdown.

4.2 WindowSynopsisLibrary

The body of implementation begins with the creation of interface WindowSynopsis,
which includes methods such as:

initialize: This function initializes the algorithm given by the user. Without
initialization, none of the following actions could be made.

e add: This function is called by the class created from the user and updates
the algorithm with the value given as a parameter.

e merge: This function inherits and unite (wherever that is supported) two
objects of the same class.

e result: This function returns an object of the class that is selected for the
computation the algorithm supports.

Moreover, the interface is implemented from one of the following abstract classes (Fre-
quent, TopK, Quantiles, Cardinalty, Average, Membership, Sampling) as shown in
Figure 4.1. Each abstract class implements methods add, merge, result and contains
an abstract initialize method. This method is defined on sub-classes that extends
their abstract classes (such as LossyCounting extend Frequent). In Figures 4.2-4.7
below, we display the hierarchies of our abstract classes.
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WindowSynopsis

+initialize(parameter:0Object[]): void
+add(value:Object): void

+merge(fl:WindowSynopsis, f2:WindowSynopsis): WindowSynopsis
+result(): Object

2
Membership : Sampling
+initialize(parameter:0bject[]): void i +initialize(parameter:0bject[]): void
add(value:Object): void i add(value:Object): void
merge(fl,f2:WindowSynopsis): WindowSynopsis ! merge(fl,f2:WindowSynopsis): WindowSynopsis
result(): Object H result(): Object
S e,
Average Frequent TopK

+initialize(parameter:0bject[]): void
add(value:Object): void
merge(f1,f2:WindowSynopsis): WindowSynopsis
result(): Object

+initialize(parameter:0bject[]): void
add(value:Object): void
merge(fl,f2:WindowSynopsis): WindowSynopsis
result(): Object

E +initialize(parameter:0bject[]): void

add(value:Object): void
merge(fl,f2:WindowSynopsis): WindowSynopsis

resulr(): Object

Quantiles

Cardinality

result(): object

+initialize(parameter:0bject[]): void
add(value:Object): void
merge(fl,f2:WindowSynopsis): WindowSynopsis

add(value:Object): void

result(): Object

+initialize(parameter:0bject[]): void

merge(fl,f2:WindowSynopsis): WindowSynopsis

Figure 4.1: Class diagram for WindowSynopsis

4.3 Enter data in windows

When an element arrives, it gets assigned a key using a KeySelector and it gets as-

signed to zero or more windows using a WindowAssigner. The set of elements with

the same key and window is called a pane. Based on this, the element is put into

panes. An element can be in multiple panes if it was assigned to multiple windows

by the WindowAssigner.

Each pane gets its own instance of the provided Trigger. This trigger determines

when the contents of the pane should be processed to emit results. When a trigger

fires, the given InternalWindowFunction is invoked to produce the results that are

emitted for the pane to which the Trigger belongs.
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4.4 Flink and WindowSynopsisLibrary

For the integration of WindowSynopsisLibrary to Flink, two classes have been cre-
ated:

WindowSynopsisAggregator: Initially, we define the constructor of our classes
for the necessary initializations and actions to be made, such as controlling the po-
sition and type of data the algorithm gets. In this class, we also define the function
reduce. This function with arguments the values (valuel and value2) is called each
time a new element is inserted on our window. It must be mentioned, that in the
body of reduce function we call the function that updates the class of WindowSyn-
opsisFunction.

WindowSynopsisFunction: In this abstract class, we ensure (through method
getForClass), that when called (getForClass) the type of data we have on the field
of computation are an object, this is required for us to be able to return our results
because in any other case they are rejected. Moreover, in this class we define the
abstract method update of class ObjectWindowSynopsis. This class (ObjectWin-
dowSynopsis) is initialized from method getForClass and its object is returned to
WindowSynopsisAggregator. This transpires as we want to call it from function re-
duce. Function reduce calls method update for each new element. As for method
update, it is an essential part of this procedure; it’s the connection line with library
WindowSynopsisLibrary. In this method, we also have the following functionalities:

e Initialization: When the first two values arrive on method wupdate, initial-
ization follows the algorithm that was selected by user according to table
parameter. After that, we update the algorithm (through add) with values:
valuel, value2. The following steps are to return the result (the object of our
algorithm) and save valuel until the window’s shutdown.

e Add: Every next time update method is being called, an object of the algo-
rithm class, that user selected, is being saved to argument valuel. As a result,
we update the algorithm with value2 and return back valuel.

e Merge: In case the value of argument value2 is an object of a subclass of
WindowSynopsis, then it’s required to unite the two objects. Hence, the
function merge is called.
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1 static class ObjectWindowSynopsis extends WindowSynopsisFunction {

2

3

private static final long serialVersionUID = 1L;

@0verride
public Object update(Object valuel, Object value2,WindowSynopsis wsn,0Object[]
parameter) {
if (value2 instanceof WindowSynopsis) { //merge valul,value2
valuel = ((WindowSynopsis) valuel) .merge(((WindowSynopsis) valuel), ((
WindowSynopsis) value2));
return valuel;
Yelse if (valuel instanceof WindowSynopsis){ //add value2
((WindowSynopsis) valuel).add(value2);
return valuel;

Yelse { //init algorithm
Class<? extends WindowSynopsis> clazz = wsn.getClass();
try {

wsn = clazz.getDeclaredConstructor () .newInstance();
wsn.initialize(parameter) ;
wsn.add(valuel);
wsn.add(value2); }
catch (InstantiationException | IllegalAccessException
| NoSuchMethodException | InvocationTargetException e) { e.
printStackTrace();
return wsn;
}
}

These classes (WindowSynopsisFunction, WindowSynopsisAggregator) must appear
on class DataStream through classes AllWindowedStream, WindowedStream. So,
they can be called and after initialized. One of this two classes according to the type
of window, will call WindowSynopsisAggregator.

AllWindowedStream class is about non-keyed streams and required addition of a
method sa to have access in class WindowSynopsisAggregator. Method sa has as
arguments: the position, the name of field for computation, the object of subclass

WindowSynopsis, the table with parameters based on which we will have our initial-
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izations, the function ProcessAllWindowFunction (which is defined by the user for
all initializations to be possible by the algorithm).

WindowedStream class is about keyed streams. Our changes in this class are
similar to the ones in class AllWindowedStream with the difference that method sa
has as its last parameter function ProcessWindowFunction (not ProcessAllWindow-

Function), which concerns keyed streams.

Frequent

+initialize(parameter:0bject(]): void
add(value:0bject): void
merge (f1l:WindowSynopsis, f2:WindowSynopsis): WindowSynopsis
result(): Object

StickySampling CCFCSketch
initialize(parameter:0Object[]): void initialize(parameter:0Object[]}): void
WindowElement SimpleTopKCounting
initialize(parameter:Object[]): void initialize(parameter:Object[]): void
LossyCounting MisraGries AMSSketch
initialize(parameter:Object(]): void initialize(parameter:0bject[]): void initialize(parameter:Object[]): void
CountMinSketch Majority
initialize(parameter:Object[]): void initialize(parameter:0Object[]): veid

Figure 4.2: Frequent class diagram
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SpaceSavingSampler WRSampler SystematicSampler
initialize(parameter:0bject[]): void initialize(parameter:Object([]): vold initialize(parameter:Object([]): vold
Sampling

+initialize(parameter:0bject[]): void
add(value:0bject): void
merge(T1l:WindowSynopsis, f2:WindowSynopsis) : WindowSynopsis

result(): Object

WeightedRandomSampler ReservoirSampler

BernoulliSampler

initialize(parameter:0Object

[1): void initialize(parameter:Object([]): woid initialize(parameter:Object([]): woid

Figure 4.3: Sampling class diagram

Average
+initialize(parameter:0Object[]): void
add(value:Object): wvoid
merge( fl:WindowSynopsis,f2:WindowSynopsis): WindowSynopsis
result(): Object

MovingAverage

initialize(parameter:0Object[]):

- ExponentialMovingAverage
SimpleEWMA P 9 9
void — - initialize(parameter:0Object[]): void
initialize(parameter:0Object[]): void

AvevageElement VariableEWMA

initialize(parameter:0Object[]): void

initialize(parameter:0bject([]): veoid

Figure 4.4: Average class diagram

TopK

+initialize(parameter:0bject[]): void
add (value:0bject): void
merge(fl:WindowSynopsis, f2:WindowSynopsis): WindewSynopsis
result(): Object

StochasticTopper

FrequentF

StreamSummary

initialize(parameter:Object|

1): void initialize(parameter:0Object[]): void initialize(parameter:0bject[]): void

Figure 4.5: TopK class diagram
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BloomFilter

initialize(parameter:0bject[]): void

VarCountingBloomFilter

initialize(parameter:0bject(]): void

v

Membership

+initialize(parameter:0bject[]): void
add(value:0bject): void
merge(fl:WindewSynopsis,f2:WindowSynopsis):
result(): Object

windowSynopsis

7

CountingBloomFilter

initialize(parameter:0Object[]): void

DynamicBloomFilter

initialize(parameter:0bject[]): void

Figure 4.6: Membership class diagram

Quantiles

result(

+initialize(parameter:0bject[]): void
add(value:Object): void
merge(fl:WindowSynopsis,T2:WindowSynopsis): WindowSynopsis

)i object

iy

MPQuantiles

DataSketch

Frugal2U

initialize(parameter:0Object[]): void

initialize(parameter:0bject[]): vold

initialize(parameter:0Object[]): void

Figure 4.7: Quantiles class diagram

HyperLogLog

AdaptiveCounting

LinearCounting

initialize(parameter:0Object[]): void

initialize(parameter:0Object[]): void

initialize(parameter:0Object[]): void

V4

Cardinality

result(

+initialize(parameter:0bject[]}: void
add(value:0Object): void
merge (fl:WindowSynopsis, f2:WindowSynopsis): WindowSynopsis

): Object

A

[

LoglLog

CountThenEstimate

KMinValues

initialize(parameter:0bject[]): void

initialize(parameter:0bject[]): void

initialize(parameter:0Object[]): void

Figure 4.8: Cardinality class diagram
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Chapter 5

Experimental Evaluation

We conducted several experiments locally and remotely using the multi-node cluster
of our university.

In order to run our experiments to the multi-node cluster of our university, we de-
ployed Flink by using the Standalone Cluster setup. This setup includes a single Job
Manager (master node) and at least one Task Manager (worker nodes). In our setup,
we used 12 Task Managers with maximum number of parallel task slots 36 (i.e. 36
physical cores). During our experiments, the maximum Job parallelism that we used
was 16, so we let Flink’s runtime to make the choice of the specific task slots. The
table below, presents the system specifications of the Job and Task managers.

Node CPU Cores Ram
1 Job Manager  Intel Xeon E5-2430 v2 6 32
12 Task Managers Intel Xeon X3323 4 8

In the following diagrams, we display the results of each algorithm category. The
arguments for each display are upon each diagram. The main source for data was
random numbers (that we were sending on Kafka’s topic), the range of those num-
bers was decided through the following logic:

e Average , Quantiles , Cardinality , Sampling : range 0 — 10.000.000
e Membership range : 0—100.000
e TopK , Frequent range : 0—1000 (key)
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Regarding the diagram for “Insert Value”, we recognize a number of tuples and their
time frame (in seconds) that are ready for insertion, as for the diagram for “Through-
put vs Parallelism=1" it displays the average number of tuples that is processed per
millisecond by the algorithm. In “Throughput vs Parallelism” diagrams, scalling per
level parallelism is presented, only for algorithms that can be executed in parallel.
What is to be expected considering these two, is that doubling the parallelism (wher-
ever that is supported) will actually double our throughput as well.

5.1 Sampling

The experiments of sampling collect elements from a large dataset. The criteria of
collection of those elements are in user’s ease for every algorithm. Once sampling is
done, a list of elements, that were collected, will be returned.

ReservoirSampler : size = 1000 , skipFunction = R(10)

SystematicSampler : period = 750L

WRSampler : sampleSize = 1000
WeightedRandomSampler :weight=400, generator=JDKRandomGenerator()

SpaceSavingSampler : k = 100

BernoulliSampler : percent = 0.005
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The throughput of our results from the sampling category is good enough as ex-
pected. As a new element arrives, our algorithm must decide if that element will
be included in our sample. As a consequence, insertions don’t require huge cost of
processing.

Algorithm SpaceSavingSampler processes fewer tuples per millisecond. That’s the
result of its process: each time an element arrives, which is not included in our list,
the element with the smallest frequency will be replaced. So as we increase the size,
efficiency decreases. Regarding other algorithms by increasing frequency of sampling,

we increase the size of list with elements.

5.2 Membership

The experiments for Membership can answer rapidly if an element exists in a large
dataset. If the answer is false, the element will surely not exist in the total. Whereas
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if the answer is true, it may exist. The larger the size of our structure the better our
answers will be.

e BloomFilter : vectorSize = 1000000 , nbHash = 10 ,
hashType = Hash. MURMUR_ HASH

e CountingBloomFilter : vectorSize=1000000 ,nbHash= 10,
hashType = Hash. MURMUR_ HASH

e DynamicBloomFilter : vectorSize=1000000,nbHash = 10,
hashType = Hash. MURMUR_HASH, nr = 1000

e VarCountingBloomFilter : numElements = 1000000 ,bucketsPerElement =

10,
exp =4
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The Membership had a lower throughput in comparison to the rest of our categories.
That’s a result of a decrement in the speed of update of our algorithms comparing
with the other categories. Whereas, their deviation is quite small.
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5.3 TopK

The TopK experiments find the objects, which appear to have the highest frequency
inside a total.

e StreamSummary : capacity = 10000
e Frequent : error = 0.00001

e StochasticTopper : sampleSize = 10000
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In category TopK diagrams, we recognize that the throughput between algorithms
have a small deviation. Moreover, the increment in size of our structure decreases
our throughput.
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5.4 Average

In the experiments about Average, we sum up the elements of our dataset and hold
the total of our elements. These two numbers differ in every algorithm. The return
value is the Average.

e MovingAverage : period = 15000

e ExponentialMovingAverage : window = 15000

SimpleEWMA : —

VariableEWMA : age = 0.0001

e AverageElement : —
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Throughput vs Parallelism
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In category Average, the throughput of results was good enough and had small
deviations from algorithm to algorithm. That’s a consequence of no delays in the
update procedure (complexity O(1)). The scaling of throughput, based on the par-
allelism, is not ideal but yet good enough. This is due to the fact of the merge of
parallel windows’ termination so that the result can be exported. This has some cost.

5.5 Quantiles

From our experiments in Quantiles, we used the ability of median. We have the
following problem: from a large dataset find the median, this problem in a simple
solution (sort and take back length/2 ) could have huge complexity as of O(nlogn).
We compared our experiments with an algorithm (Median of medians), which needs
only one passage of our elements (complexity O(n)).

The algorithm OnePassElement (Median of medians) requires one passage of the
elements of the window upon its shutdown to be able to compute the median value.
It’s clear that, this way of commutation of the median value is significantly slower
to the computation by our Synopsis.

e Frugal2U : quantiles = double[]{0.01,0.25,0.5,0.75,0.95}
, initialEstimate = 0
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e Apache QuantilesSketch : k = 128 (default)
e MPQuantiles : numQuantiles = 10
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In Synopsis Quantiles, the throughput of results is better than the algorithm OnePas-
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sElement as we expected. That’s a result of the fact that, Synopsis only need one
passage of our elements (plus the cost of update). On the otherhand, algorithm
OnePassElement requires two passages (save the windows and process on shutdown).
The scaling in the diagram above throughput vs parallelism has good enough results.

5.6 Frequent

In this category of experiments, we had to find the frequency of elements of a data
collection. A special category is WindowElement (count), which counts the elements
of our window. Majority is another one, which counts a value (true or false in our
experiments) as a majority.

e CountMinSketch : epsOfTotalCount = 0.0001 , confidence = 0.99,
seed = 7364181

e LossyCounting : maxError = 0.00001
e MisraGries : k = 10.000

e StickySampling : support = 0.001 ,error = 0.09 ,
probabilityOfFailure = 0.0001

e SimpleTopKCounting : k = 10.000

e AMSSketch : depth = 5, buckets = 512

e CCFCSketch : buckets = 512, tests =5 , lgn = 4 ,gran = 1
e Majority : —

e WindowElement (count ) : —
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Regarding the algorithms of frequency of objects, the throughput of most algorithms
is quite close to the WindowElement. That shows us how algorithms operate at
rapid pace. In the diagram throughput vs parallelism, it’s a clear difference in scal-
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ing between CountMinSketch compared to WindowElement. The difference which
is presented in throughput, is caused from the highest cost (renewal and merge of
windows) of CountMinSketch.

5.7 Cardinality

In these types of experiments, we must recognize through a large dataset the number
of different elements existing.

e AdaptiveCounting : k = 10
Loglog : k = 10

HyperLoglLog : log2m = 10
LinearCounting : size = 10000000
CountThenEstimate : tippingPoint = 1000, builder = 1000000000

e KMinValues : k = 100000
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Throughput vs Parallelism
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In the category of cardinality, the throughput has very little deviations between the
algorithms. The insertions are quite fast, as the speed of update in this case, is
huge. In the diagram throughput vs parallelism, the transition to the next level of
parallelism is good enough and differs on each algorithm. The differences between
algorithms’ throughput are rising as parallelism level is increasing. This is due to
the merge cost of the windows.
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Chapter 6

Conclusions & Future Work

The purpose of this research is to provide the opportunity to the user, to select over
a wide range of functionalities of Flink’s-Windows, those that are required for their
needs through algorithm selection. In this work, we embody library WindowSyn-
opsisLibrary to Apache Flink. There is another option for this library to be called
through an aggregate function (so that a newer version of Flink can be supported).
Furthermore, the scalability of operations of this library is easily achieved. That’s
because creating a new category of algorithms (or reshape existing ones) is possible
by only having to construct methods: Initialize, add, merge and result.
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